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ABSTRACT  

Power transformers are one of the major components in electric network. The 

service area of power transformers is quite large which means that the failure of such 

equipment will cause huge losses for power companies. Therefore, continuous 

monitoring of power transformers and preventing such failures is of great importance.  

During operation, power transformers are affected by different stresses such as electrical, 

thermal and mechanical stresses. Also, the presence of some defects within the 

transformer insulation under the applied electrical stress may initiate internal partial 

discharges. Previous experience has shown that internal partial discharges can cause 

serious damages for the insulation. Different methods like acoustic, optical and RF 

sensors were proposed to detect the partial discharge activity. Compared to other 

techniques, acoustic detection methods are cost effective and less susceptible to noise 

and interference. In addition, partial discharge (PD) source can be located using multiple 

acoustic sensors. However, acoustic methods have some drawbacks such as low 

sensitivity and high attenuation of acoustic signals. 

In this thesis, artificial neural networks are utilized to enhance the acoustic PD detection 

under different insulation conditions. Experimental results have shown that high 
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detection rates of PD can be obtained under different conditions. Also, classification of 

insulation condition based on the acquired acoustic PD signals was successful.  
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1. INTRODUCTION 

1. 1 Background  
1.1.1. General 

Power transformers constitute a major part of the electric power network.  In fact, the 

reliability of the power network is mainly dependent on the reliability of power 

transformers. Also, a large percentage of the capital investment in electric network is 

allocated for power transformers. Clearly, extending the useful life of power 

transformers has great economical value [1].  

The life span of power transformer is usually determined by the status of its 

insulation. Therefore, several tests are done in the laboratory to check the healthiness 

of the transformer's insulation. Such tests include: dielectric dissipation factor test, 

insulation resistance, hi-pot test and partial discharge measurements. In addition to 

testing the transformers' insulation during manufacturing, it should be monitored 

while the transformer is in operation. During operation, the transformer insulation is 

affected by different stresses which include: electrical, mechanical and thermal 

stresses. By time, such stresses may alter the dielectric characteristics of the 

transformer insulation. Also, the presence of some defects within the transformer 

insulation under the applied electrical stresses may initiate partial discharge activity. 

Research has shown that partial discharge is one of the major factors that can cause 

serious damages to the transformer insulation. Hence, on line monitoring of partial 

discharge signals can be used to evaluate the condition of transformer insulation [2].  

The occurrence of partial discharges is associated with different physical 

phenomena such as: electromagnetic radiation, pressure waves and light. This fact 

was utilized to develop different techniques to detect the partial discharge signal. 

Such techniques include: acoustic detection, optical detection and RF antenna. 

Compared to other detection methods, acoustic emission detection has several 

attractive points. Acoustic emission detection is relatively a low cost method, it has 

less susceptibility to noise and electromagnetic interference and it can be used for on- 

line monitoring of transformer insulation [3]. Also, it is possible to locate the partial 

discharge activity within the transformer by using multiple acoustic sensors. 

However, the acoustic technique suffers from some drawbacks such as: the low 

sensitivity due to the high damping of the acoustic signals because of some 
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transformer components. Also, the use of multiple sensors for identification of PD 

location will increase the amount and the complexity of data which mandates the use 

of some signal processing tools to analyze the acquired data [1]. 

1.1.2. Definition of Partial Discharge 

According to IEC 60270, partial discharge is defined as "an electric discharge that 

only partially bridges the insulation between conductors". Partial discharge has 

different measurable quantities such as: apparent charge, repetition rate, average 

discharge current and quadratic rate [4].  

1.1.3. Mechanism of PD generation 

The equivalent circuit diagram for a solid insulation material that contains a void is 

shown in Figure 1.  

 
Figure 1: Equivalent cicuit for PD generation 

The capacitance value (C a ) represents the healthy part of the insulation material 

between the high potential and the ground. The capacitance (C b ) represents the 

insulation that is in series with the cavity. The capacitance of the air void is 

represented by (C c ). When the applied voltage increases, the electric field across the 

air void will be enhanced more than the other parts of insulation because of the lower 

permittivity of air compared to the insulation material. This will continue until the 

breakdown voltage for the air void is reached, and then voltage across the air void 

will drop to zero. This will create a potential difference between the two branches 

and accordingly some charges will move from C a  to C b . This phenomenon is 

described as partial discharge.  

1.1.4. Types of Partial Discharge 

Partial Discharge activity is classified into two main categories; internal discharges 

and external discharges. Internal partial discharges are usually generated from defects 

in phase-phase or phase-earth in insulation system that will create high stress at certain 
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points which will result in small discharges across such defects. Examples for internal 

partial discharges include: cavity discharge inside transformer winding and treeing 

channels inside underground cable. The mechanism of cavity discharges was 

described in the previous section. Another type of internal discharge is treeing 

channels which usually occur in underground cables as a result of water diffusion. 

External Discharges result from the presence of high stress points between the 

conductors or the conductor and the earth. Examples for external partial discharges 

include corona discharge and surface discharges. Corona refers to partial discharges 

in air. It occurs due to electric field enhancement around high voltage equipment. 

Such discharges may occur around transformer bushings and overhead lines. Another 

example of external discharge is the Surface discharge. The Surface discharge 

activity occurs along the surface of the insulation because of the presence of some 

contamination such as dirt or condensate which will provide a propagation path for 

the discharge current. This type of discharge may occur in outdoor insulators [5].  

1. 2 Detection Methods: 
The methods for detecting partial discharge activities are classified into two groups:  

1. Electrical methods  

2. Non-electrical methods [6][7]. 

 

1.2.1. Electrical methods:  

Electrical methods include capacitive coupling, CT and RF antenna. Description 

about each method is shown below.  

1.2.1.1.Voltage drop via capacitive coupling  
In this method, a coupling capacitor is used. AC voltage is applied across the tested 

sample as shown in Figure 2. When the partial discharge occurs, the voltage across 

the sample (represented by capacitance) will drop to a certain value and using the 

coupling capacitor and the coupling quadripole, the voltage waveform can be 

measured.  
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Figure 2: Capacitive detection 

1.2.1.2.Induction Detection (Current Impulse)  
The inductive detection captures the PD current pulse through the use of high 

frequency current transformer (HF-CT). When the partial discharge occurs, very 

narrow electrical current pulses will pass through the grounding conductor. This 

signal can be detected by using a HF-CT as shown in Figure 3. 

 

Figure 3: PD detection using HF-CT [6] 

1.2.1.3.RF Antenna Detection  
The RF antenna detection is based on the RF energy generated by the partial 

discharge. RF antennas can be placed within the power equipment or outside and the 

RF signals can be acquired and analyzed.  

1.2.2. Non-Electrical methods  

Non-electrical methods include chemical method, optical, and acoustic emission. 

Description for each method is shown below.   
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1.2.2.3.Chemical Detection 
Partial Discharge activity results in changes to the chemical composition of the 

insulation system. Detection of these changes can help to verify the presence of PD 

activities. There are two major chemical tests for PD detection. The first one is 

dissolved gas analysis (DGA) and the other is high performance liquid 

chromatography (HPLC). DGA is used to identify the gas levels in the oil and can be 

used for both oil and SF6 but it can’t be used for solid insulation like cables. HPLC 

is used to Measure the by-products of transformer wall insulation breakdown. 

1.2.2.4.Optical Detection (Light Flash and UV)  
The generation of PD activity is associated with a radiation of light in the ultraviolet, 

visible and infrared ranges. UV detectors were developed to detect the PD activity 

and to relatively measure its intensity.   

1.2.2.5.Acoustic Emission Detection  
Each partial discharge activity delivers acoustic energy that can be detected as sound. 

In practice, there are different types of acoustic sensors utilized in the detection of 

PD signals. The acoustic sensors have frequency ranges from 0-1MHz. Microphones 

and piezoelectric transducer are used as sensors. A typical acoustic PD signal is 

shown in Figure 4: 

 

Figure 4: Acoustic PD signal 
 

Table 1 summarizes the advantages and disadvantages for the different methods: 
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Table 1:Advantages and disadvantages of PD detection methods 

Method Advantages Disadvantages 

Voltage Drop via 

capacitive coupling 

 

• High accuracy and 
sensitivity. 

 

• Noise immune system. 
 

• Tests are intrusive 
• Requires external voltage 

source. 

• Relatively expensive 

Induction Detection 

(Current Impulse) 

 

• Non intrusive test 
 

• No external voltage source is 
required 

 

• Poor directionality 

• Low SNR level. 

 

RF Antenna Detection 

 

• Safe method.  

• Can be used to determine the 

location of the PD.  

• Non-intrusive  

 

• Catches RF noise around it.  

• Needs a line-of-sight  

• Suffers high attenuation  

• Expensive equipment.  

 

Chemical Detection 

 

• Inexpensive method.  

• It is a very accurate method  

• Late stage detection of PD 

• Can't be used for identifying 

PD source location  

 

Optical Detection 

(Light Flash and UV) 

 

• On-line testing  

• Good location accuracy.  

• Safe method.  

 

• Can detect external PD only  

• Relatively expensive.  

• Requires visible line-of-sight 

• Calibration is not possible 

 

Acoustic Emission 

Detection 

 

• Less susceptible to noise.  

• Low cost, small size, 

portable and accurate 

method.  

• Can be used to locate PD  

• It has a very small false 

alarm  

• Calibration is not possible  

• Needs acoustic line-of-sight  

• Provides weak signal so a 

preamplifier is usually used  
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1.3. Literature Review  

Acoustic emission technique has been utilized for partial discharge detection 

in different components of the electric network like cables [8] gas insulated 

substations [9] and power transformers [10]. Moreover, multiple acoustic sensors 

were used to precisely locate the partial discharge source in power transformers as in 

[11]. In addition to PD detection and localization, the identification of PD source has 

great importance. In fact, identifying the source of the PD will help to correctly 

evaluate the severity of the insulation defect. Several approaches were developed for 

classifying the different PD sources. In [12] a new approach for the classification of 

different partial discharge sources was proposed. Partial discharge activity was 

detected be means of acoustic emission sensor. Eight different types of PD were 

simulated. The chosen algorithm for training the neural network was the Resilient 

Back-propagation (RPROP). The power spectral density (PSD) and the Short Time 

Fourier Transform coefficients of the AE were used for training and testing the 

neural network. It was found that by using STFT, better recognition rates were 

obtained but the time required for training the neural network was much longer. In 

this work, the presence of the partial discharge was not confirmed by other PD 

sensors. Also, optimizing the size of window in case of STFT could be a challenging 

task because of the variety of PD signals and the difference in the time resolution 

required for each signal. In addition to using the FFT and the STFT coefficients, 

wavelet coefficients were also utilized to form the input feature vectors for the neural 

network as proposed in [13]. The objective of the proposed system was to classify 

different PD signals based on the PD source. Three different types of partial 

discharge sources were simulated, namely; sharp-edges, polluted insulators and 

loose-contacts. The total number of acquired samples was 5100 for each PD type 

where 66% of the data was used for training the neural network and 34% for testing. 

The three input components were: the mean of the absolute value, the 2nd and the 3rd 

order central moments of the wavelet coefficients. The length of the input feature 

vector was 17 and the hidden layer size was 15 neurons. The recognition rates 

obtained were in the range of 96-97%. A classification system for different PD 

sources within high voltage cables was proposed in [14]. Seven different types of 

defects generating partial discharge within HV cables were simulated in the 

laboratory. A multi-layer feed-forward neural network was used for the classification 
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process. Short duration Fourier Transform was performed on the acoustic signal and 

the SDFT coefficients were used as input to the neural network. For each case, 30 

samples were acquired; 10 used for training the neural network and 20 for testing 

purposes. The recognition rate obtained was 97%. In case of using short-duration 

Fourier Transform for analyzing the PD signal, the choice of the window size will 

certainly affect the classification process. Smaller window size provides high 

resolution in the time domain and poor resolution in the frequency domain and vice 

versa. This means that some important features might be lost due to the poor choice 

of window size. 

Another important issue related to partial discharges is the evaluation of the 

transformer insulation based on the acquired partial discharge signal. Although 

acoustic emission technique has not been utilized to achieve this goal, other sensors 

were used in insulation assessment. In [15], Current transformer was utilized to 

detect the partial discharge current. The features extracted from the partial discharge 

signals were used to classify the aging of the transformer insulation into three 

different aging periods. The aging periods of the insulation were defined as the 

insulation-aging period, significant insulation aging and failure imminent. A neural 

network was used with four statistical features as input. The statistical features used 

were: skewness, kurtosis, cross-correlation and asymmetry. Particle Swarm 

Optimization was employed to compute the initial weights and biases of the neural 

network. A total of 606 data samples were used with 50% of the data for training the 

neural network and 50% for testing. A classification rate of 96% was achieved in the 

noise-free case. When noise was added with 30% of the amplitude of original PD 

signal, the recognition rates dropped significantly to 80%. Other types of features, in 

addition to the used statistical features, could have been used to enhance the 

recognition rates. In another work, the partial discharge signal parameters were used 

to interpret the condition of the transformer oil [16]. Partial discharge was detected 

using capacitive coupling. The three types of transformer oil used were: clean oil, oil 

with solid containments and oil with high moisture content. In addition to the 

different oil conditions, the oil temperature was also varied to account for the 

different ambient temperatures and the fluctuation in the load. A multi-layer feed-

forward neural network with back propagation technique was used for classification. 

The magnitude of the partial discharge signal and the number of counts were used as 

input parameters for the neural network. The effect of different parameters such as: 
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learning rate, number of nodes in the hidden layer and number of hidden layers was 

investigated. Prediction accuracy with an error of 0.88% was obtained for the 

classification of the oil condition. In order to better simulate the actual cases, it must 

be taken into account that the formation of solid containments and high levels of 

moisture are associated with the aging of transformer, hence the use of aged oil is 

closer to real cases.  

1.4. Proposed research  

Partial discharges produce mechanical pressure waves which can be detected using 

acoustic sensors. However, detection of partial discharge signals using the acoustic 

emission sensors is affected by different factors such as: the acoustic impedance 

between the PD source and the sensor and the reflections at the impedance 

discontinuities. The acoustic impedance of a medium is given by equation 1: 

VZ ρ=    (1)                                                               

Where ρ  represents the density of the medium and V is the velocity of acoustic 

signals in that medium [10]. 

Based on this equation, there is a direct relationship between the acoustic impedance 

and the density of the medium. The magnitude of the acoustic impedance dictates the 

amount of attenuation for the propagating acoustic signals. Considering a partial 

discharge source within the transformer, the resulting acoustic emissions can take 

different paths until they reach the sensor mounted on the transformer tank. 

Depending on the propagation paths of the acoustic signals (oil, tank…); different 

attenuation factors could be encountered.  Also the distance between the PD source 

and the sensor will affect the amount of attenuation. Hence, acoustic PD signals 

could be highly attenuated which makes the identification of the presence of PD 

activity using this technique a very difficult task. An example for an acoustic PD 

signal which was embedded in noise is shown in Figure 5.  
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Figure 5 : Highly Attenuated Acoustic PD signal 

The acoustic PD signal shown in Figure 5 was highly attenuated due to the long 

propagation distance between the PD source and the acoustic emission sensor.  

The aim of this thesis is to study the possibility of enhancing the acoustic detection 

of partial discharge signals under different insulation conditions using artificial 

neural networks. In addition, it aims to investigate the ability to evaluate the 

transformer insulation condition based on the detected partial discharge signals. 
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2. MATERIALS AND METHODS 

2.1. Experimental Setup 

Partial discharge generation and measurements were carried out using the 

experimental setup in the high voltage laboratory at AUS. The test setup is shown in 

Figure 6. It consists of a high voltage transformer which was connected to a metallic 

electrode using high voltage cables. A grounded tank filled with oil was used to 

model the transformer tank. The digital oscilloscope was utilized to monitor the 

applied voltage. The generated partial discharge was measured using two sensors; RF 

antenna and acoustic emission sensor.  

 

 

Figure 6: Experimental Lab Setup 
 

2.1.1. Partial Discharge Generation 

In order to generate controllable partial discharge signals, a high voltage 

transformer (AC) with variable output voltage was utilized. The components of the 

partial discharge generation system are as follows: 

a) 15 KVA, 20/22kV Transformer 

b) 0-220 V variac 
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c) Grounded tank: two tanks were used in the PD generation process; 

tank 1 with dimensions (40×40×40) cm and tank 2 with dimensions of 

(100×100×50) cm.  

d) Sharp edge metallic electrode 

e) High voltage probe with ratio of 1/1000. 

f) Digital  oscilloscope 

g) High voltage cables (25 kV) 

Oil Samples 

Two types of oil were used in the research; old and new oil. The results of the routine 

oil tests performed for the two oil samples are recorded in table 2: 

Table 2: Routine test results for the two oil samples 

Tests Methods Old Oil Results New Oil Results 

Breakdown voltage (kV) IEC 60156 27.7 44.9 

Water content (PPM) ASTM D 4928-00 30 12 

 
2.1.2. Partial Discharge Measurements 

2.1.2.1. Acoustic Emission Sensor 

The acoustic emission sensor was used to detect PD signals created in the air 

and in the oil. In previous work, it was found that most of the acoustic PD signal 

energy is in the frequency range 23-80 KHz [10]. Based on that an acoustic sensor 

with frequency range 20-80 KHz was utilized in the measurements of PD signal. The 

magnitude of the acoustic signals is low which required the use of a pre amplifier and 

a band-pass filter to remove the noise from the acquired signal. The characteristics of 

the AE sensor are shown in table 3:  
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Table 3: AE sensor 
No. Characteristic Value 

1 Preamplifier gain 46 dB into 50 Ohm 

2 Bandwidth (-3 dB) 20-80 kHz (10 Vpp) 

4 Power Supply 28 Vdc, 24 mA (no signal), 64 
mA,(max. signal), 

5 Output connector BNC 

6 Output range 10 Vpp into 50 Ohm 

2.1.2.2. Couplant 

In order to make the contact region between the acoustic sensor and the tank 

smoother, silicone greases was used. This has the effect of increasing the quality of 

the transferred acoustic signals and it will reduce the reflections on the surface of 

contact.   

2.1.2.3. RF antenna: 

The aim of using an RF antenna is to ensure the presence of the partial discharge 

activity. A pre-amplifier was used which operates in the frequency range of 0.5-2 

GHz. A typical RF PD signal is shown in Figure 7.  
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Figure 7: RF PD signal 

The detected RF PD signal was used to trigger the detection of the acoustic PD signal 

as shown in Figure 8. 
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Figure 8: RF and AE partial discharge signals 

2.1.2.4. Digital Oscilloscope: 

TDS2014B digital oscilloscope is a two channel 60MHz bandwidth with a 

1Gs/second sampling rate. It has 8-bit resolution with 2mV/division vertical 

sensitivity. TDS2014B is not only a data acquisition and measurement device but it 

has data storage capability with a USB interface. The time resolution was set to be 

50μs. When the magnitude of the acquired RF signal (Channel 1) exceeds the trigger 

level, set at 3.4 mV, the signal from channel 2 which represents the acoustic emission 

signal is displayed on the oscilloscope and then it can be saved on USB device in 

excel format which can be transferred to Matlab. 

2.1.2.5. Measurements 

 The measurements of the acoustic PD signal were carried out under different 

insulation conditions such as new and old oil. In addition, some factors that could 

affect the propagation of the acoustic PD signals were considered such as: the 

presence of some barrier (core material, paper insulation), the location of the PD 

source relative to the sensor and the tank size. Table 4 summarizes the different cases 

of measurements: 
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Table 4: Measurments 
Case of measurement Picture 

PD source at position a 

 

Metallic barrier (core 

material) inserted between the 

PD source and the acoustic 

sensor 

 

Paper insulation inserted 

between the PD source and the 

acoustic sensor 

 

PD source at position b 
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2.2. Classification System: 

2.2.1. Pre-processing: Digital filtering: 
 

Before extracting the features for the detection and classification process, the 

acquired signals were filtered using a digital band-pass Butterworth filter with cut-off 

frequencies at 25 kHz and 75 kHz. Filtering is required to remove noise and 

interference outside the range of the sensor. The frequency response of the designed 

filter is shown in Figure 9. 
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Figure 9: Frequency response of digital filter 
 

2.2.2. Features extraction 

Due to the large amount of input data, it will not be possible to process the acquired 

acoustic signals. Thus, certain features will be extracted from the acquired signals.   

2.2.2.1.Wavelet Transform 

In discrete wavelet transforms, the acquired signal can be analyzed in two 

dimensions: time and scale. The scale domain is related to the effective frequency of 

the mother wavelet. The signal is passed through series of low-pass and high-pass 
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filters. The output of the high-pass filter is the 'details' which represent the high 

frequency content of the signal in a certain band while the output of the low-pass 

filter is the 'approximations' which represent the low frequency content of that band. 

The methodology of the discrete wavelet decomposition is shown in Figure 10. 

 

Figure 10: Wavelet methodology 

By applying wavelet transform decomposition, the acoustic emission PD signals are 

decomposed into several details and approximations at different levels. The mother 

wavelet function used was 'db 15' with 5 levels of decomposition.  

Wavelet based features:  

1.  Entropy 

Wavelet entropy is a statistical measure of the energy dispersion among different 

spectral bands. Basically it describes the "concentration" of coefficients in a certain 

band. So, wavelet entropy would be large when all coefficients are roughly of the 

same size and small when all but few coefficients are negligible [17][18]. Entropy of 

a signal ix ; Ni ≤≤1  is given by equation 2: 

∑−= )log(* 22
ii xxE      (2) 

2. Variance  

The variance of a discrete signal ix , where Ni ≤≤1  is defined as shown in equation 

3: 

1

)(
: 1

2

2

−

−
=
∑
=

N

x
Variance

N

i
i µ

σ    (3) 

Where µ  is the mean value. 
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2.2.2.2.Kurtosis 

Kurtosis is a measure of sharpness for any data distribution with respect to the 

normal distribution. A normal distribution has a kurtosis of three and excess kurtosis 

of zero. This is shown in Figure 11. 

 

Figure 11: Kurtosis types [19] 
  

The kurtosis of a discrete signal iy , where )( ii xfy = ; Ni ≤≤1  is defined as shown 

in equation 4: 

4
1

4)(
:

σ

µ

N

x
KKurtosis

N

i
i

u

∑
=

−
=    (4) 

Where µ  is the mean value and σ  is the standard deviation. 

2.2.2.3.Skewnees 

Skewness measures the asymmetry of the data distribution with respect to the normal 

distribution. If the distribution is symmetric, the value of skewness is zero. If the 

distribution is skewed to the left or to the right, then the skewness value will be 

larger or less than zero as illustrated in Figure 12.  
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Figure 12: Skewness Measure [19] 
 

The value of skewness measure of the signal iy , where )( ii xfy = ; Ni ≤≤1  is 

defined as shown in equation 5: 
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SSkewness
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∑
=

−
=     (5) 

The extracted features must be processed using a classifier in order to make a 

decision about the class of the acquired signal. Artificial neural network was adopted 

as a classifier. 

2.2.3. Artificial Neural Network 

Due to the complexity of the classification problem, artificial neural network was 

adopted. A feed-forward neural network with back propagation learning algorithm 

was used. The architecture of the neural network is shown Figure 13: 
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Figure 13: Architecture of NN 

The number of hidden nodes was set initially to be twice the number of input nodes, 

it was then increased until the point where there was no further improvement in the 

performance of the network. The criterion for measuring the performance of the 

network in training was the Mean Squared Error (MSE) which reflects the norm of 

the difference between the output of the network during the training stage and the 

desired targets. The number of epochs was varied between 1000-2000 epochs. An 

example of the convergence of the neural network during the training stage is shown 

in Figure 14: 
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Figure 14: Convergence of NN 

 

The performance of the classification system was evaluated based on the recognition 

rate which represents the average of the correctly identified signals to the total 

number of tested signals. False alarms rate was calculated by dividing the number of 

no PD signals which were incorrectly classified as PD signals by the total number of 

tested signals. False positives rate was computed by finding the percentage of PD 

signals which were incorrectly classified as no PD signals.  

For each case of measurements, the number of acquired signals was 60 where 80% of 

the acquired signals are used for training the neural network and 20% for testing. In 

order to improve the statistical significance of the testing results, the acquired 

acoustic signals were mixed in 12 different combinations for training and testing the 

neural network for each case.  

Four different types of features were used as the input to the neural network as 

follows: 

1. Kurtosis, skewness values for the acquired signals  

2. Variance of wavelet sub-bands 

3. Entropy of wavelet sub-bands 

4. Discrete Fourier Transform coefficients (DFT) in the range (25-75 kHz). The 

total number of DFT coefficients in the relevant frequency range is 23 

coefficients. 
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3. RESULTS AND DISCUSSION 

3.1. Presence of Partial Discharge Activity 

The aim of this part is to verify the presence of the partial discharge activity within 

the transformer model. Different experiments were designed to simulate actual cases 

where acoustic emission due to partial discharge activity may propagate through 

metallic barriers (as transformer core), paper insulation of the transformer windings 

or through transformer oil. Also, the location of the partial discharge source with 

respect to the acoustic sensor was considered. In order to study the effect of 

insulation aging on the ability to detect the partial discharge activity, the new oil was 

replaced by aged oil. Furthermore, a larger tank size was used in PD generation and 

the acquired acoustic PD signals were used to test the generalization capability of the 

neural network  

3.1.1. New oil: 

In this case, the acoustic sensor was mounted in position A as described in section 

2.1. The samples were acquired at two different voltage levels, at 2.5 kV where no 

partial discharge activity was recorded and at 2.65 kV where the partial discharge 

signal was first observed. Typical acoustic signals with and without PD in addition to 

their wavelet decomposition levels are shown in Figure 15. 
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Figure 15: Typical acoustic signals with their wavelet decomposition, (new oil at position a) 
(a) with PD (b) with no PD  

By analyzing the different wavelet scales for the two signals, it can be observed that 

the values of the wavelet coefficients for the acoustic PD signal at levels 4 and 5 are 

higher compared to the same levels of the acoustic signal with no PD. This 

corresponds to higher energy values for levels 4 and 5 of the analyzed acoustic PD 

signal. Moreover, by examining the approximation scales for the two signals, it can 

be noticed that there are more variations around the mean value in case of the 

acoustic signal with PD which leads to higher variance value.  

The acoustic PD signal and acoustic signal with no PD are also analyzed based on 

their data distribution. The histograms of the acoustic signals with PD and with no 

PD are shown in Figure 16. 
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         (a)         (b) 

Figure 16:Histogram of a typical acoustic signal , (new oil at position a), (a)with PD (b) with no PD 

By inspecting the two histograms, it can be observed that the distribution of the AE 

signal is much more concentrated around the mean value. The Kurtosis measures the 

'sharpness' in the data distribution, which is shown to be much greater in the case of 

PD signal. This is unlike the acoustic signal with no PD where the histogram is 

flatter and it is closer to a Gaussian distribution. In addition, the distribution of the no 

PD signal has some negative skewness while the distribution of the acoustic PD 

signal is more symmetric.  

The frequency spectra for the acoustic signal with PD and with no PD are shown in 

figure 17.  
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   (a)     (b) 

Figure 17:Frequency spectrum of typical acoustic signals ,(new oil at position a) 
 (a)with PD and (b)with no PD 
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Based on the two spectra, it can be seen that most frequency components in the 

spectrum of the acoustic PD signal have higher magnitudes relative to the spectrum 

of the acoustic signal with no PD. For this case, the dominant frequencies in the 

spectrum of the PD signal are in the range of 54-60 kHz.  

Training and testing of the neural networks were based on the four types of features 

described in section 2.2. The recognition rates obtained for this case are shown in 

Table 5.  

Table 5: Recognition rates for PD in new oil 

Features Recognition Rate (%) 

Sub-band Variances 100% 

Sub-band Entropies 98% 

Kurtosis and Skewness 98% 

FFT 100% 

 

The recognition rates obtained using the different types of features were close to 

100%. Such high recognition rates indicate that there is a strong correlation between 

the extracted features and the ability to detect the acoustic partial discharge signals in 

new oil. For example, when analyzing the wavelet coefficients of the acoustic signals 

with and without PD as shown in Figure 15, it can be seen that the energy level of the 

acoustic PD signal is higher at levels 4 and 5, which resulted in higher entropy value 

for those levels compared to the same wavelet levels of the acoustic signal with no 

PD. Also, analyzing the histograms of the acoustic signals with and without PD 

shown in Figure 16, demonstrates distinct difference between the two signals in 

terms of the kurtosis and skewness measures. The PD signals have higher kurtosis 

value in this case. In addition, by inspecting the frequency spectra of the two signals 

shown in Figure 17, it can be noticed that the magnitude of most frequency 

components in the spectrum of the PD signal is greater as compared to the spectrum 

of acoustic signal with no PD. It is worth mentioning that the kurtosis and skewness 

measures were evaluated for the original signals since it was found that using 

skewness and kurtosis of wavelet sub-bands produces lower recognition rates. 
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3.1.2. New oil with Paper Insulation: 

The PD source and the acoustic sensor were fixed in the same positions as in the 

previous case, while a paper insulation sheet was inserted between the PD source and 

the acoustic sensor. The data was acquired at two voltage levels: 2.55 kV where there 

was no PD activity and at 2.75 kV where the PD activity was detected. The 

waveforms of the acoustic PD signal and the acoustic signal with no PD were similar 

to those obtained in case 1. The resulting recognition rates for this case are shown in 

Table 6:  

Table 6: Recognition rates for PD in new oil with paper insulation 

Features Recognition Rate (%) 

Sub-bands Variances 100% 

Sub-bands Entropies 100% 

Kurtosis and Skewness 96% 

FFT 98% 

 

Similar to the previous case with no barrier, the different types of features have 

produced high recognition rates. Based on this, it can be concluded that the presence 

of paper insulation did not affect the propagation of the acoustic signal and it did not 

cause significant attenuation for the acoustic PD signals that could have altered the 

classification performance. This could be due to the fact that there was no significant 

change in the acoustic impedances in the medium because the paper insulation was 

impregnated with oil.   

 

3.1.3. New oil with metallic barrier: 

The paper insulation sheet was replaced with a metallic barrier made of the 

transformer core material as shown in Table 7. The experiment was conducted with 

voltage levels of 2.4 KV (no PD activity) and at 2.6 KV (inception voltage level). 

The acquired acoustic PD signals are similar to those in cases 1 and 2. The 

recognition rates obtained for this case are summarized in Table 7.  
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Table 7: Recognition rates for PD in new oil with metallic barrier 

Features Recognition Rate (%) 

Sub-band Variances 97% 

Sub-band Entropies 100% 

Kurtosis and Skewness 90% 

FFT 98% 

 

Except for the kurtosis and skewness measures which resulted in slightly less 

recognition rate than the previous cases, all other features have produced high 

recognition rates similar to those in case 1 and 2. The decrease in the recognition rate 

obtained for the skewness and kurtosis measures can be explained by knowing that 

the metallic barrier was not completely stable. In fact it was producing some 

vibrations which could be detected by the acoustic sensor. The presence of those 

vibrations in the acoustic signal with no PD resulted in similar data distributions to 

the signals with PD activity. Hence, for some cases the kurtosis and the skewness 

measures for the acoustic signals with and without PD were comparable. Apart from 

that, the presence of metallic barrier did not influence the detection ability of 

acoustic PD signal. 

3.1.4. Changing the source location: 

In this experiment, the location of the PD source was changed in order to investigate 

the effects of the travelling distance on the acoustic PD signals. The PD source was 

shifted to position b as described in section 2.1. In actual measurements, a mesh of 

acoustic sensors will be mounted on the transformer tank to account for the different 

propagation paths for the acoustic signal and the different attenuation factors.  

The samples were acquired at 2.6 kV where PD was first recorded and at 2.4 where 

there was no PD activity. Typical acoustic signals with and without PD in addition to 

their wavelet coefficients are shown in Figure 18.  
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Figure 18: Acquired acoustic signals with their wavelet coefficients (new oil at position b) for (a) PD 

signal and (b) no PD signal  

In this case, the propagating acoustic emission signal suffered from larger attenuation 

due to the relatively long travelling distance. This can be clearly observed when 

comparing the approximation coefficients of the PD signal to the case 1 where the 

PD source was located in position a as shown in Figure 15. There was a significant 

reduction in the magnitudes of the approximations coefficients when the PD source 

was shifted to position b. In addition, the signal variations around the mean values 

are comparable for the different wavelet scales of the acoustic signals with and 

without PD, except for level d4 and a5 in this case. For the above shown signals, 

there is more concentration of the acoustic PD signal in levels 4 and 5 relative to the 

acoustic signal with no PD which resulted in higher entropy values for those levels. 

The distribution of the entropy values in the two dimensional feature space for levels 

a5 and d5 is shown in Figure 19. 
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Figure 19: Sub-band entropies distributions for acoustic signals with and without PD, (new oil at 

position b) 

Figure 19 shows that the values of the sub-band entropies for the acoustic signal with 

and without PD are mostly falling in two different clusters. Thus, the sub-band 

entropies have good discriminating ability between the two classes in this case.  

The histograms of the acoustic signals with and without PD are shown in Figure 20.  
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Figure 20: Histogram of acoustic signals (new oil at position b) (a) PD signal (b) no PD  
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The histogram of the acoustic PD signal is flatter than in case 1. Due to the large 

attenuation, the magnitude of the acquired PD signal is closer to the magnitude of the 

background noise and the values are more distributed. This generally resulted in less 

kurtosis values for the acoustic PD signals in this case relative to case 1. When 

examining the skewness measure, it can be seen that the two histograms are almost 

symmetric around the mean, thus the skewness measure is close to zero for both 

signals. The distribution of the skewness and kurtosis values in the 2-D feature space 

for the acoustic signal with and without PD is shown in Figure 21 
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Figure 21: Ditstributions of kurtosis and skewness measres foracoustic signal with and with out PD, 

(new oil, position b) 

Unlike the distribution of entropy values, the values for skewness and kurtosis 

measures for the two classes are mostly overlapping. This shows that the skewness 

and kurtosis measures have high sensitivity to the level of the acoustic signals and 

the amount of attenuation.  

The frequency spectra of the PD signal and the no PD are shown in Figure 22.  
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Figure 22: Frequency spectrum of  acoustic signals (new oil at position b) with and without PD 

There is clear attenuation for the different frequency components. The energy in the 

two spectra is also comparable.  However, it can be noticed the magnitude of the 

frequency components in the range 50-60 kHz is higher in the spectrum of the 

acoustic PD signal.  

The recognition rates obtained in this case for the different types of features are 

summarized in Table 8. 

Table 8: Recognition rates for PD-position b 

Features Recognition Rate (%) 

Sub-band Variances 85% 

Sub-band Entropies 90% 

Kurtosis and Skewness 70% 

FFT 80% 

 

There is a significant drop in the recognition rates obtained in this case compared to 

previous cases. This is mainly due to the long propagation distance, which causes 

more attenuation for the acoustic signals. Moreover, since PD source was placed 

close to tank side, the effect of reflections and interference became more apparent.   

Table 8 shows that highest recognition rate was obtained using the sub-band 

entropies. This is because of the greater concentration of acoustic PD signal in 
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certain wavelet sub-bands relative to the acoustic signal with no PD as shown in 

Figure 19. It can be also noticed that the values of the sub-band entropy for the two 

classes were grouped in two different clusters. Thus, using the sub-band entropies 

has better detection performance in this case. On the other hand, the kurtosis and 

skewness measures produced the lowest recognition rates. This is because of the 

greater similarity between the data distributions of the acoustic PD signal and the 

acoustic signal with no PD as represented in Figure 20. Using the FFT coefficients 

produced good accuracy rate (80%). By inspecting the frequency components in the 

spectra of the two signals in Figure 22, it can be observed that the frequency 

components in the PD spectrum have greater magnitudes. Figure 23 shows the 

percentage of false alarms and false positives produced for the different types of 

features:  
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Figure 23:  Evaluation of PD detection with the sensor located in positin b 

The highest percentage of false alarms was produced when using the kurtosis and 

skewness measures, while the sub-band variances and the FFT coefficients resulted 

in high false positives rate.  

3.1.5. Old oil: 

The new oil was replaced with aged oil. The point here is to study the effect of the 

status of transformer oil, as insulation medium, on the partial discharge signal and 

hence on the detection of PD signals. The samples were acquired at two different 

voltage levels, at 2.00 kV where no partial discharge signal was recorded and at 2.35 

kV which was the inception voltage of the PD activity. The inception voltage of the 

PD signal was less than previous cases due to the degradation in the insulating 
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properties of the old oil. Figure 24 shows typical acoustic signals with and without 

PD activity in addition to their wavelet decomposition. 
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   (a)     (b) 

Figure 24: Acoustic signal and their wavelet coefficients (old oil) (a) PD signal (b) no PD 

By comparing the different wavelet levels of the two analyzed signals, it can be 

noticed that there are greater variations around the mean values in case of the 

acoustic PD signal. Additionally, the wavelet coefficients of the acoustic PD signal at 

levels 3 to 5 have greater magnitudes than the coefficients at the same scales of the 

signal with no PD. This means that the energy of the PD is more concentrated in 

these levels which correspond to higher entropy values in this case. Figure 25 

illustrates the distribution of the entropy values in the 2-D feature space for the 

acoustic signals with and without PD. 
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Figure 25 : Sub-bands entropy distributions for acoustic signals with and without PD, (old oil) 

It can be seen that the amount of overlap between the two classes is relatively small. 

In fact, except for few signals, most of the PD signals have higher sub-band entropies 

values compared to signal with no PD. This shows that the sub-band entropy is a 

discriminating feature between the two classes.  

The histograms of the acoustic signal with and without PD are shown in Figure 26: 
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Figure 26: Histogram of acoustic signals (old oil) (a) with PD (b) no PD  
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By inspecting the histograms of the two signals, it can be noticed that both 

distributions have similar sharpness which indicates that the kurtosis values of the 

two signals are comparable. Also the two histograms are symmetric around the mean 

value which corresponds to zero skewness for both signals. The distribution of the 

skewness and kurtosis measures for the acquired signal in the 2-D feature space is 

shown in Figure 27: 
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Figure 27: Distributions of kurtosis and skewness measures for acoustic signal with and without PD, 
(old oil) 

The skewness and kurtosis values for the two classes are completely overlapping. 

Most signals have zero skewness and kurtosis of 3 which is equivalent to Gaussian 

distribution. Thus, the statistical measures have poor discriminating ability in this 

case.   

The frequency spectra of the acoustic PD signal and the acoustic signal with no PD 

are shown in Figure 28.  
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Figure 28: Frequency spectrum of acoustic signals with and without PD , (old oil) 

In this case, the dominant frequencies of the acoustic PD spectrum are in the range of 

54-58 kHz. Also, compared to case 4 (PD source in position b), there is less 

attenuation for the different frequency components in the spectrum of the PD signal 

in this case. 

The recognition rates obtained in this case are summarized in Table 9: 

Table 9: Recognition rates for PD-old oil 

Features Recognition Rate (%) 

Sub-band Variances 78% 

Sub-band Entropies 88% 

Kurtosis and Skewness 60% 

FFT 82% 

 

The sub-band entropy measure produced the highest recognition rate (around 88%), 

while the rest of features resulted in less classification rates. The values of the sub-

bands entropy for the acoustic PD signal were generally higher than those of the 

acoustic signal with no PD as illustrated in Figure 25. The lowest recognition rate 

was obtained using kurtosis and skewness measures. Because of the high attenuation, 

the values of the PD signal were very close to the background noise. Thus, there is 

high similarity between the histograms of the acoustic signals with and without PD 
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as demonstrated in Figure 26. Hence the values of the kurtosis and skewness measure 

were comparable for the two signals. In fact, the old oil used has greater density than 

new oil. This is mainly because of the presence of some by-products that resulted 

from the degradation in paper insulation. The density of old oil is directly 

proportional to the acoustic impedance as dictated by Equation 1. Hence, old oil has 

greater acoustic impedance than new oil which affected the detection performance in 

this case. In order to improve the recognition rates, the different features were also 

used in combinations but there was no significant improvement in the recognition 

rates.  

The distribution of misclassifications due to false alarms and false positives is shown 

in Figure 29: 
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Figure 29: Evaluation of PD detection in old oil 

Classification error was mainly due to false positives in the case of entropy. On the 

other hand, the kurtosis and skewness produced high false alarms. 

3.1.6. Big Tank: 

In this case, the effect of the tank size on the ability to detect the acoustic partial 

discharge signal was investigated. Another tank with larger dimension was used. 

Typical acoustic signals with and without PD activity and their wavelet coefficients 

are shown in Figure 30. 
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   (a)     (b) 

Figure 30: Acoustic signal and their wavelet coefficients, (big tank) 
for (a) PD (b) no PD 

From the figure shown, it can be seen that due to the bigger tank size, the acoustic 

energy released during the PD activity was scattered over larger area. Thus, the 

detected PD signal using the acoustic sensor is highly attenuated compared to all 

previous cases. Also, it can be observed that the magnitudes of the wavelet 

coefficients for the two acoustic signals are comparable at the different 

decomposition levels. Moreover, there is similar amount of variations in both cases 

which means that the values of the sub-band variances are very close. The 

distribution of entropy values in the 2-D feature space for scales a5 and d5 is shown 

in Figure 31:  
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Figure 31: Distribution of sub-band entropies for acoustic signals with and without PD, (big tank) 

Unlike the previous cases, most values of the sub-band entropies for the two classes 

are overlapping in this case. However, there is some concentration of entropy values 

for the PD signals as illustrated in Figure 31. This shows that there might be some 

correlation between the presence of PD signals and the values of the sub-band 

entropies.  

The histograms of acoustic signal with and without PD are shown in Figure 32: 
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Figure 32: Histogram for acoustic signals (big tank) (a) PD signal (b) no PD  
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Due to the large attenuation, the distribution of the PD is much closer to the 

distribution of the acoustic signal with no PD. The two histograms have similar 

sharpness. The value of kurtosis measure for both distributions is around 3. The 

skewness is also comparable in both cases because the two distributions are almost 

symmetric around the mean value. The distribution of the skewness and kurtosis 

values in the 2-D feature space for the acoustic signals with and without PD is shown 

in Figure 33. 

 

Figure 33: Distribution of kurtosis and skewness measures for acoustic signal with and with out PD, 
(big tank) 

Similar to the previous two cases, the values of the skewness and kurtosis measures 

for the two classes are completely overlapping in this case. Thus, the skewness and 

kurtosis measures are not reliable features for PD recognition in this case as well.   
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The frequency spectra for the PD signal and the no PD are shown in Figure 34:  
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Figure 34: Frequency spectrum of acoustic signals (big tank)  

Compared to all previous cases, the different frequency components in the spectrum 

of the PD signal were much more attenuated in this case. The energy levels of the 

two spectra are comparable. 

The signals acquired in the big tank experiment were used for training and testing the 

neural network. The resulting recognition rates are shown in Table 10:  

Table 10: Recognition rates for PD-Big tank 

Features Recognition Rate (%) 

Sub-bands Variances 50% 

Sub-bands Entropies 78% 

Kurtosis and Skewness 54% 

FFT 65% 

 

It can be observed that using the sub-band entropies resulted in the highest 

recognition rates (around 78%). This shows that there is a stronger correlation 

between the sub-bands entropy and the ability to detect PD signals. The recognition 

rate obtained using the sub-band variances was 50%. By analyzing the wavelet 

decomposition levels, shown in Figure 30, it can be seen that the coefficients 
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variations are comparable for both cases. Using the FFT coefficients produced an 

accuracy rate of 65%. As can be observed in Figure 34, the spectra of the two signals 

have similar magnitudes for the different frequency components. Figure 35 shows 

the false alarm rate against the false positives rate for the different features used:  
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Figure 35: Evaluation of PD detection in new oil (big tank) 

The rate of false positives reached its maximum when using the statistical features 

(variance, kurtosis, skewness). While using the sub-band entropies measure, the 

classification error was mainly due to false alarms.  

In order to check the generalization ability of the trained neural network for 

completely new cases, the training was done using the samples from a previous 

experiment (case 1), and the neural network was tested with acquired signals in the 

big tank experiment. The recognition rates obtained are shown in Table 11: 

Table 11: Recognition rates for PD-Big tank 

Features Recognition Rate (%) 

Sub-bands Variances 50% 

Sub-bands Entropies 50% 

Kurtosis and Skewness 50% 

FFT 45% 
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All types of features produced poor recognition rates in this case. This indicates that 

the values of the extracted features for the two cases (big tank and small tank) are 

mostly falling in two different ranges. 

3.2. Assessment of Transformer Oil Condition 

In this part, the effect of the transformer insulation aging on the partial discharge 

signal was studied. Since the acoustic emission signal is a mechanical wave, its 

propagation is affected by the status of the medium. By knowing what features of the 

partial discharge are more affected when the transformer insulation is aged, it might 

be possible to predict the condition of the transformer oil based on the value of those 

features. Usually when the transformer oil is aged, it becomes less homogenous 

because of the higher percentage of water content and the particles resulted from 

chemical reaction because of heating (through overloading, short circuit or due to the 

partial discharge activity). For this case, features were extracted from the PD signal 

that occurred in both types of oil and fed to the neural network. The samples were 

acquired at 2.35 kV for the old oil and at 2.6 kV for the new oil. Typical acoustic PD 

signal obtained in new and old oil and their wavelet coefficients are shown in Figure 

36. 
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   (a)     (b) 
Figure 36: Acoustic PD signal and their wavelet coefficients in (a) old oil (b) new oil  

There are more variations in the magnitudes of the wavelet coefficients for the 

acoustic PD signal in new oil, especially for the details and approximation signals at 

level 5. Also, the signal energy is more distributed among the different wavelet levels 

in case of old oil while it is more concentrated in level 5 for the PD in new oil. This 

corresponds to a difference in the sub-band entropy measures for the two signals.  

The histograms of the PD signal in new oil and old oil are shown in Figure 37. 



 

 45 

-1 -0.5 0 0.5 1
0

200

400

600

800

Magnitude (v)

C
ou

nt

-1 -0.5 0 0.5 1
0

200

400

600

800

1000

Magnitude (v)

C
ou

nt

 
   (a)     (b) 

Figure 37: Histogram for (a) old oil PD (b) new oil PD 

 The histogram of the PD in new oil has more sharpness and it is more concentrated, 

while the histogram of the PD signal in old oil is flatter and the data is more 

distributed. This resulted in higher kurtosis value for the PD signal in new oil in this 

case. Furthermore, the two histograms are almost symmetric around the mean which 

indicates that skewness values for both signals are close to zero. 

The frequency spectra of the PD signal in new oil and old oil are shown in Figure 38.  
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Figure 38: Frequency spectrum of PD signal in new oil and old oil 

It can be observed that most of the frequency components in the spectrum of the PD 

signal in new oil have greater magnitudes as compared to the spectrum of PD in old 

oil. This due to the higher attenuation for PD signals in old oil.  
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The same features as in the previous part were used to construct the feature vectors 

for training the neural network. The recognition rates obtained are shown in Table 

12: 

Table 12: Recognition rates for PD in new oil and old oil 

Features Recognition Rate (%) 

Sub-band Variances 95% 

Sub-band Entropies 100% 

Kurtosis and Skewness 90% 

FFT 95% 

High recognition rates were obtained (above 90%) for the different types of features 

used. Using the sub-band entropies measures produced a classification rate of 100%. 

By inspecting the wavelet coefficients of the two signals shown in Figure 36, it can 

seen that the wavelet coefficients of the PD signal in new oil have greater 

magnitudes and they are more concentrated which resulted in higher entropy values 

relative to the PD signal in old oil. The recognition rate obtained using the skewness 

and kurtosis measures was 90%. The histogram of the PD signal in new oil has more 

sharpness which means higher kurtosis value. On the other hand, by observing the 

two histograms shown in Figure 37, it can be noticed that the two distributions are 

almost symmetric, thus the skewness values for both signals are close to zero. The 

FFT coefficients also produced high recognition rate (95%). By comparing the two 

frequency spectra shown in Figure 38, it can be noticed that most frequency 

components in the spectrum of PD in new oil have greater magnitudes relative to the 

spectrum of PD in old oil. In fact, the acoustic PD signal in old oil was more 

attenuated because old oil has higher acoustic impedance than new oil.   

3.3. Classification of PD source  

Partial discharge signals can be generated either outside or inside the transformer 

tank. Even after attenuation, the magnitude of the corona discharges might be greater 

than PD signal generated in the transformer insulation because acoustic signals 

propagating in air are less attenuated. Thus, those external discharges could be 

acquired by the acoustic sensor and might be confused with PD signal which 
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occurred in transformer oil. The objective of this part is to compare between the 

external PD and the oil PD using the different types of features.   
 
3.3.1. Old Oil PD and Air PD: 

In this case, the features were extracted from the partial discharge signal within the 

old oil and the corona discharge. Figure 39 shows typical corona discharge signal 

and PD signal in old oil in addition to their wavelet decomposition (levels 3-5). 
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   (a)     (b) 
Figure 39: Acoustic PD signal and their wavelet coefficients in (a) old oil (b) Corona 

As can be seen in Figure 39, there are more variations in the magnitudes of the 

wavelet coefficients for the corona discharge signal especially at the different 

decomposition levels as compared to the same levels of the analyzed acoustic PD in 

old oil. Also, it can be noticed that the signal energy is more concentrated in level 5 

in case of corona discharge which indicates that the values sub-band entropies are 
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greater for the corona discharge signal. The histograms of the PD in old oil and the 

corona discharge are shown in Figure 40:  
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   (a)     (b) 

Figure 40: Histogram for (a) old oil PD (b) Corona discharge signal 

Both histograms have similar sharpness levels. Thus, the corona discharge signal has 

comparable kurtosis value with PD in old oil. On the other hand, the skewness value 

for the two distributions is close to zero, because they are almost symmetric around 

the mean.  

The frequency spectra of the PD in old oil and the air PD are shown in Figure 42.  
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Figure 41: Frequency spectra of  PD in old oil  and Corona discharge signal  

Based on the two spectra, it can be noticed that the different frequency components 

have greater magnitudes in case of corona discharge signal. This is mainly because 

PD signals propagating in air are less attenuated as compared to PD in old oil.  
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The output recognition rates using the different types of features are summarized in 

Table 13: 

Table 13: Classification rates for PD in old oil and air PD 

Features Recognition Rate (%) 

Sub-band Variances 98% 

Sub-band Entropies 100% 

Kurtosis and Skewness 65% 

FFT 96% 

In this case, all types of features have produced high recognition rates. This indicates 

that the extracted features have good discriminating ability between the two types of 

partial discharge. For example, the sub-band variances have produced a classification 

rate of 97%. By examining the wavelet analyzed signals shown in Figure 39, it can 

be noticed that there are more variations in the magnitude of the wavelet coefficients 

for the corona discharge signal which resulted in higher variance values relative to 

the PD in old oil. The skewness and the kurtosis measures produced a low 

recognition rate as compared to the sub-band variances. As shown in Figure 40, the 

histograms of the PD signal in old oil and the corona discharge have similar 

sharpness and they are both symmetric. Thus the kurtosis and skewness values were 

comparable for both signals. 

 

3.3.2. New oil and Air PD: 

In this case, the acoustic signals were acquired at the inception voltages for PD in 

new oil and PD in air. The recognition rates obtained for the different features are 

shown in Table 14. 
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Table 14: Classification rates for PD in new oil and air PD 

Features Recognition Rate (%) 

Sub-band Variances 100% 

Sub-band Entropies 98% 

Kurtosis and Skewness 88% 

FFT 95% 

 

Similar to the previous case, high recognition rates were obtained for the different 

types of features. Using the sub-band variances has produced a classification rate of 

100. Compared to the PD signal in new oil, the corona discharge signal was almost 

continuous and the acoustic signals were less attenuated. This resulted in higher 

variance values for the wavelet sub-bands for the case corona discharge. The lowest 

recognition rate was produced using the skewness and kurtosis measures (88%). The 

histograms of PD in new oil and corona discharge are shown in Figure 42. 
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   (a)     (b) 

Figure 42: Histogram for (a) new oil PD (b) Corona discharge signal 
  

Based on the two histograms, the distribution of PD signal in new oil has more 

sharpness relative to the distribution of corona discharge. Thus, the kurtosis value is 

higher for PD signal in new oil. On the other hand, the two distributions are almost 

symmetric around the mean vale which could have reduced the recognition rate in 

this case. 
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3.4. Limitations of this work 

There are some limitations that have to be considered in this research. One limitation 

is regarding the case where the sensor location was changed with respect to the PD 

source (position b). There was significant drop in the output recognition rates which 

indicates that the acoustic signal was highly attenuated due to the increase in the 

propagation distance. Thus, by considering the addition of more acoustic sensors for 

PD detection, the detection performance could be improved because some sensors 

might be closer to the PD source which leads to less attenuation for the acoustic PD 

signals.  

Another limitation is where a larger tank size was used in PD generation. In this case 

also, poor recognition rates were obtained. The detected PD was highly attenuated 

because PD acoustic energy was scattered over a large area and there were less 

reflections due to the PD signals. The use of more acoustic sensors may also enhance 

the performance of the detection system.     
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4. CONCLUSIONS AND RECOMMENDATIONS 

On-line monitoring of partial discharge activity is a very powerful tool for insulation 

diagnosis. Compared to other techniques, the acoustic detection method has several 

strengths. The acoustic detection is cost effective and is less susceptible for noise and 

electromagnetic interference. Also, multiple acoustic sensors can be employed to 

precisely locate the partial discharge source. The main drawback when using 

acoustic detection is its low sensitivity. The fact that acoustic waves suffer from high 

attenuation until, mandates the use of artificial intelligence tools to enhance the 

detection reliability. 

In this research, an artificial neural network was utilized to enhance the acoustic 

detection of PD signals under different conditions. Those conditions include the 

presence of some barriers in the propagation path of the acoustic signals like paper 

insulation and transformer core material. The different types of features produced 

high recognition rates which reflects a strong correlation between the features 

extracted and the ability to detect acoustic PD signals. Also, the status of transformer 

insulation was evaluated based on the detected PD signals. The comparison was 

conducted between acoustic partial discharge signals acquired in new oil and aged 

oil. High recognition rates were obtained using the different types of features. 

Classification of PD activity that occurred within the oil tank and corona discharge 

was also performed. It was found that high classification rates can be obtained when 

comparing the air PD to PD in new or old oil. In addition, the effect of long 

propagation distances on the detection of acoustic PD signal was considered. The PD 

source was located in different point and some selected features were extracted from 

the acoustic signals with and without PD. It was verified that using features like the 

sub-band entropies and the FFT coefficients would enhance the detection 

performance. Also, the effect of insulation aging on the identification of PD signals 

was studied. Compared to the case of new oil, recognition rates dropped significantly 

except for the sub-band entropies. The recognition rates obtained using the sub-band 

entropies was around 90% which shows that it has good discriminating ability. In 

order to verify the generalization capability of the trained neural network, the 

training was done with acoustic signals acquired in a small tank while testing was 

performed using signals acquired in a larger tank size. Poor recognition rates were 

obtained for the different types of features in this case. Then, signals acquired in the 
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big tank were used for training and testing the neural network. There was significant 

improvement in the recognition rates when using the sub-band entropy measure.  

It can be concluded that the reliability of acoustic PD detection under different 

conditions can be enhanced through utilizing artificial neural networks. The selection 

of features is important and it can highly influence the detection performance. Also, 

through all the experiment, the sub-band entropy measure has produced high 

recognition rates. The skewness and kurtosis measures showed a high sensitivity for 

the magnitude of the PD signal which indicates that they are not reliable features for 

detecting highly attenuated PD signals. On the other hand, it was verified that the use 

of an acoustic sensor in the low frequency range (20-80 kHz) can provide good 

detection performance. The high classification rates obtained when comparing 

acoustic PD signals in new oil and old oil shows that utilizing acoustic PD detection 

with the aid of artificial neural network can provide very good tool for insulation 

diagnosis.  

For future work, it is recommended to use external triggering circuit for acoustic PD 

detection. It was found that due the high time resolution required for acquiring the 

RF signal, only few acoustic PD signals were captured. By acquiring a longer time 

domain signal, more acoustic PD events can be captured acoustic signal which might 

enhance the neural network performance. It is also recommended to use a 

transformer model that would better simulate the actual case. When using different 

tank size, comprehensive data for several tank sizes is required for training the neural 

network. Thus the neural network can perform the classification between the 

different tank sizes at the first stage and then it can match the recognized tank size 

with the corresponding feature vector. Finally, different types of classifiers types can 

be used.  
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APPENDIX A MATLAB CODE 

Plotting frequency and time domain signals: 
 
% filename=['C:\Documents and Settings\User\Desktop\4-2-
2010\data_9_1_voltage level_metallic barrier\@2.8\AS25_3.xls']; 
% filename=['C:\Documents and 
Settings\User\Desktop\readings_2_1_2010\@2.4\AS2_2.xls']; 
t= 0:2e-7:5e-4-2e-7; 
fs=5000000; 
% x=NPN(64,:); 
n = 4; Wn = [25000  75000]/fs*2; 
        [b,a] = butter(n,Wn); 
% signal=x; 
signal=OPN(32,:); 
signal1=AOP(65,:); 
f_sig=filter(b,a,signal); 
f_sig1=filter(b,a,signal1); 
f=(1/(t(1,9)-t(1,8)))*(-1*(length(f_sig)/2):(length(f_sig)/2)-
1)/length(f_sig); 
L=length(signal); 
spec=abs(fftshift(fft(f_sig)))/L; 
spec2=abs(fftshift(fft(f_sig1)))/L; %   compute FFT coefficients 
%  
figure(1) 
subplot(1,2,1),plot(f,spec) 
title ('(a)') 
xlim([0,80000]) 
xlabel('Frequency (Hz)'),ylabel('Magnitude (v)') 
subplot(1,2,2),plot(f,spec2) 
xlim([0,80000]) 
title ('(b)') 
xlabel('Frequency (Hz)'),ylabel('Magnitude (v)') 
  
[c,l] = wavedec(f_sig,5,'db15'); %   WT decomposition 
[c1,l] = wavedec(f_sig1,5,'db15'); 
        a5=c(1:l(1)); 
        d5=c(l(1)+1:2*l(1)); 
        d4=c(2*l(1)+1:2*l(1)+l(3)); 
        d3=c(2*l(1)+l(3)+1:2*l(1)+l(3)+l(4)); 
        d2=c(2*l(1)+l(3)+l(4)+1:2*l(1)+l(3)+l(4)+l(5)); 
        d1=c(2*l(1)+l(3)+l(4)+l(5)+1:2*l(1)+l(3)+l(4)+l(5)+l(6)); 
         
        a51=c1(1:l(1)); 
        d51=c1(l(1)+1:2*l(1)); 
        d41=c1(2*l(1)+1:2*l(1)+l(3)); 
        d31=c1(2*l(1)+l(3)+1:2*l(1)+l(3)+l(4)); 
        d21=c1(2*l(1)+l(3)+l(4)+1:2*l(1)+l(3)+l(4)+l(5)); 
        d11=c1(2*l(1)+l(3)+l(4)+l(5)+1:2*l(1)+l(3)+l(4)+l(5)+l(6)); 
     
% Plotting commands     
%figure(3) 
%      
%     xlim([0,5e-4-2e-7]); 
%  
%     subplot(5,2,1),plot(t,OPN(32,:)),title('(a)') 
%   
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%     subplot(5,2,3),plot(d3),title(['d',num2str(3)]); 
%  
%     subplot(5,2,5),plot(d4),title(['d',num2str(4)]); 
%  
%     subplot(5,2,7),plot(d5),title(['d',num2str(5)]); 
%  
%     subplot(5,2,9),plot(a5),title(['a',num2str(5)]); 
%  
%          
%  
%     subplot(5,2,2),plot(t,AOP(64,:)),title('(b)') 
%     xlim([0,5e-4-2e-7]); 
%  
%     subplot(5,2,4),plot(d31),title(['d',num2str(3)]); 
%  
%     subplot(5,2,6),plot(d41),title(['d',num2str(4)]); 
%  
%     subplot(5,2,8),plot(d51),title(['d',num2str(5)]); 
%     
%     subplot(5,2,10),plot(a51),title(['a',num2str(5)]); 
  
     
    
%     xlabel('Time (s)') 
  
% figure(4) 
% subplot(1,2,1),hist(f_sig) 
% title('Histogram of acoustic PD signal') 
% xlabel('Magnitude (v)'),ylabel('Frequency') 
% subplot(1,2,2),hist(f_sig1) 
% title('Histogram of acoustic signal with no PD') 
% xlabel('Magnitude (v)'),ylabel('Frequency') 
%     subplot(3,2,1),plot(D1),title(['D',num2str(1)]); 
%     subplot(3,2,2),plot(D2),title(['D',num2str(2)]); 
%     subplot(3,2,3),plot(D3),title(['D',num2str(3)]); 
%     subplot(3,2,4),plot(D4),title(['D',num2str(4)]); 
%     subplot(3,2,5),plot(D5),title(['D',num2str(5)]); 
%     xlabel('Time (s)'),ylabel('Magnitude') 
%%%%%%%%%%%%%%NN%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all; 
clear all; 
clc; 
 fs=5000000; 
load NPN 
load BHPN 
%% 
%%%%%%%%%%%%%%Training%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Train_set = []; % Initiate training vector 
Test_set=[]; % Initiate testing vector 
% load BHPN; 
 
n = 4; Wn = [25000  75000]/fs*2; % Band-pass Butterworth Filter 
 
        [b,a] = butter(n,Wn); % Filtering 
%% 
    for j=1:50; 
        signal=NPN12(j,:); 
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        f_sig=filter(b,a,signal);  
        L=length(signal); 
        spec=abs(fftshift(fft(f_sig)))/L; % Evaluate FFT 
coefficients 
        [c,l] = wavedec(f_sig,5,'db15'); % perform WT decomposition 
%         pha=angle(fftshift(fft(f_sig)))/L; 
%         ATR1= appcoef(c1,l1,'db15',4); 
%              
%         
%        subplot(2,1,1) 
        a5=c(1:l(1)); 
        d5=c(l(1)+1:2*l(1)); 
        d4=c(2*l(1)+1:2*l(1)+l(3)); 
        d3=c(2*l(1)+l(3)+1:2*l(1)+l(3)+l(4)); 
        d2=c(2*l(1)+l(3)+l(4)+1:2*l(1)+l(3)+l(4)+l(5)); 
        d1=c(2*l(1)+l(3)+l(4)+l(5)+1:2*l(1)+l(3)+l(4)+l(5)+l(6)); % 
evaluate WT coefficients 
%             E_a5=wentropy(a5,'log energy'); 
%             E_d5=wentropy(d5,'log energy'); 
%             E_d4=wentropy(d4,'log energy'); 
%             E_d3=wentropy(d3,'log energy'); 
%             E_d2=wentropy(d2,'log energy'); 
%             E_d1=wentropy(d1,'log energy'); 
            E_a5=wentropy(a5,'shannon'); 
            E_d5=wentropy(d5,'shannon'); 
            E_d4=wentropy(d4,'shannon'); 
            E_d3=wentropy(d3,'shannon'); 
            E_d2=wentropy(d2,'shannon'); 
            E_d1=wentropy(d1,'shannon'); 
            ATR1=[var(a5) var(d5) var(d4) var(d3) var(d2) var(d1)]; 
% variance of wavelet sub-bands 
%         ATR1=[kurtosis(f_sig) skewness(f_sig)]; 
%          ATR1=[wentropy(signal,'shannon');wentropy(signal,'log 
energy')]; 
%          ATR1=[wentropy(signal,'shannon');kurtosis(signal)]; 
%          t=wentropy(signal,'shannon'); 
%          ATR1=[t t*t t*t*t sqrt(t)]; 
%         ATR1=[var(a5) var(d5) var(d4) var(d3) var(d2) var(d1)]; 
%             ATR1=wentropy(f_sig,'log energy'); 
%             ATR1=E_d1; 
%             ATR1=E_d5; 
%             ATR1=E_d1; 
%             ATR1=wentropy(f_sig,'shannon'); 
%         ATR1=spec(1251:1285); 
%             ATR2=ATR1'; 
%         for  k=1:10 
%             ATR(k,:)=mean(ATR2(10*(k-1)+1:10*k,:)); 
%         end 
        Train_set=[Train_set;ATR1]; 
    end 
    %% 
     
    for k=1:50; 
        signal=NPN24(k,:); 
%           
        f_sig=filter(b,a,signal);  
        L=length(signal); 
%         f_sig=f_sig/max(f_sig); 
        spec=abs(fftshift(fft(f_sig)))/L; 
        [c,l] = wavedec(f_sig,5,'db15'); 
%         pha=angle(fftshift(fft(f_sig)))/L; 
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%              
%            
         
%         ATR1= appcoef(c1,l1,'db15',4); 
%             [c1,l1] = wavedec(signal(:,1),5,'db15'); 
%             m= detcoef(c1,l1,'db15',3); 
        a5=c(1:l(1)); 
        d5=c(l(1)+1:2*l(1)); 
        d4=c(2*l(1)+1:2*l(1)+l(3)); 
        d3=c(2*l(1)+l(3)+1:2*l(1)+l(3)+l(4)); 
        d2=c(2*l(1)+l(3)+l(4)+1:2*l(1)+l(3)+l(4)+l(5)); 
        d1=c(2*l(1)+l(3)+l(4)+l(5)+1:2*l(1)+l(3)+l(4)+l(5)+l(6)); 
%             m1=m(3); 
%             ATR1= cell2mat(m1); 
%          ATR1=kurtosis(f_sig); 
%          ATR1=skewness(signal); 
%          ATR1=wentropy(signal,'log energy'); 
%             E_a5=wentropy(a5,'log energy'); 
%             E_d5=wentropy(d5,'log energy'); 
%             E_d4=wentropy(d4,'log energy'); 
%             E_d3=wentropy(d3,'log energy'); 
%             E_d2=wentropy(d2,'log energy'); 
%             E_d1=wentropy(d1,'log energy'); 
            E_a5=wentropy(a5,'shannon'); 
            E_d5=wentropy(d5,'shannon'); 
            E_d4=wentropy(d4,'shannon'); 
            E_d3=wentropy(d3,'shannon'); 
            E_d2=wentropy(d2,'shannon'); 
            E_d1=wentropy(d1,'shannon'); 
%             ATR1=E_d5; 
%             ATR1=E_d1; 
%             ATR1=wentropy(f_sig,'log energy'); 
%             ATR1=[E_a5 E_d5 E_d4 E_d3 E_d2 E_d1 spec(1263:1285)]; 
%             ATR1=[E_a5 E_d5 E_d4 E_d3 E_d2 E_d1 var(a5) var(d5) 
var(d4) var(d3) var(d2) var(d1)]; 
%             ATR1=[kurtosis(f_sig) skewness(f_sig) E_a5 E_d5 E_d4 
E_d3 E_d2 E_d1]; 
%             ATR1=[kurtosis(f_sig) skewness(f_sig) var(d5) var(d4) 
var(d3) var(d2) var(d1)]; 
%             ATR1=[kurtosis(f_sig) skewness(f_sig)]; 
%          ATR1=wentropy(f_sig,'shannon'); 
%            ATR1=[wentropy(signal,'shannon');kurtosis(signal)]; 
%             t=wentropy(signal,'shannon'); 
%             ATR1=[t t*t t*t*t sqrt(t)]; 
%             ATR1=spec(1251:1285); 
        ATR1=[var(a5) var(d5) var(d4) var(d3) var(d2) var(d1)]; 
%             ATR1=E_d1; 
%         ATR2=ATR1'; 
%         for  k=1:10 
%             ATR(k,:)=mean(ATR2(10*(k-1)+1:10*k,:)); 
%         end 
        Train_set=[Train_set;ATR1]; 
    end 
    
  
 %%        
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for j=1:10; 
        signal=BHPN12C(j,:); 
        
        f_sig=filter(b,a,signal);  
        L=length(signal); 
%         f_sig=f_sig/max(f_sig); 
        spec=abs(fftshift(fft(f_sig)))/L; 
        [c,l] = wavedec(f_sig,5,'db15'); 
%         pha=angle(fftshift(fft(f_sig)))/L;      
         
        a5=c(1:l(1)); 
        d5=c(l(1)+1:2*l(1)); 
        d4=c(2*l(1)+1:2*l(1)+l(3)); 
        d3=c(2*l(1)+l(3)+1:2*l(1)+l(3)+l(4)); 
        d2=c(2*l(1)+l(3)+l(4)+1:2*l(1)+l(3)+l(4)+l(5)); 
        d1=c(2*l(1)+l(3)+l(4)+l(5)+1:2*l(1)+l(3)+l(4)+l(5)+l(6)); 
%          ATS1=kurtosis(f_sig); 
%          ATS1=skewness(signal); 
%          ATS1=wentropy(signal,'log energy'); 
%         ATS1=wentropy(f_sig,'shannon'); 
%             ATS1=[wentropy(signal,'shannon');kurtosis(signal)]; 
%             t=wentropy(signal,'shannon'); 
%         ATS1=[kurtosis(f_sig) skewness(f_sig)]; 
%             E_a5=wentropy(a5,'log energy'); 
%             E_d5=wentropy(d5,'log energy'); 
%             E_d4=wentropy(d4,'log energy'); 
%             E_d3=wentropy(d3,'log energy'); 
%             E_d2=wentropy(d2,'log energy'); 
%             E_d1=wentropy(d1,'log energy'); 
            E_a5=wentropy(a5,'shannon'); 
            E_d5=wentropy(d5,'shannon'); 
            E_d4=wentropy(d4,'shannon'); 
            E_d3=wentropy(d3,'shannon'); 
            E_d2=wentropy(d2,'shannon'); 
            E_d1=wentropy(d1,'shannon'); 
            ATS1=[var(a5) var(d5) var(d4) var(d3) var(d2) var(d1)]; 
%             ATS1=[E_a5 E_d5 E_d4 E_d3 E_d2 E_d1 spec(1263:1285)]; 
%             ATS1=[E_a5 E_d5 E_d4 E_d3 E_d2 E_d1 var(a5) var(d5) 
var(d4) var(d3) var(d2) var(d1)]; 
%             ATS1=[kurtosis(f_sig) skewness(f_sig) E_a5 E_d5 E_d4 
E_d3 E_d2 E_d1]; 
%             ATS1=[kurtosis(f_sig) skewness(f_sig) var(d5) var(d4) 
var(d3) var(d2) var(d1)]; 
%             ATS1=[t t*t t*t*t sqrt(t)]; 
%             ATS1=spec(1251:1285); 
%         ATS1=E_d1;  
%             ATS1=E_d5; 
%             ATS1=E_d1; 
%             ATS1=wentropy(f_sig,'log energy'); 
%         ATS2=ATS1'; 
%         for  k=1:10 
%             ATS(k,:)=mean(ATS2(10*(k-1)+1:10*k,:)); 
%         end 
        Test_set=[Test_set;ATS1]; 
end 
    for k=1:10; 
        signal=BHPN24C(k,:); 
        
        f_sig=filter(b,a,signal);  
        L=length(signal); 
%         f_sig=f_sig/max(f_sig); 
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        spec=abs(fftshift(fft(f_sig)))/L; 
        [c,l] = wavedec(f_sig,5,'db15'); 
%         pha=angle(fftshift(fft(f_sig)))/L;   
%                
        a5=c(1:l(1)); 
        d5=c(l(1)+1:2*l(1)); 
        d4=c(2*l(1)+1:2*l(1)+l(3)); 
        d3=c(2*l(1)+l(3)+1:2*l(1)+l(3)+l(4)); 
        d2=c(2*l(1)+l(3)+l(4)+1:2*l(1)+l(3)+l(4)+l(5)); 
        d1=c(2*l(1)+l(3)+l(4)+l(5)+1:2*l(1)+l(3)+l(4)+l(5)+l(6)); 
%          ATS1=kurtosis(f_sig); 
%          ATS1=skewness(signal); 
%         ATS1=[kurtosis(f_sig) skewness(f_sig)]; 
%          ATS1=wentropy(signal,'log energy'); 
%          ATS1=wentropy(f_sig,'shannon'); 
%             t=wentropy(signal,'shannon'); 
%            ATS1=[t t*t t*t*t sqrt(t)]; 
%             E_a5=wentropy(a5,'log energy'); 
%             E_d5=wentropy(d5,'log energy'); 
%             E_d4=wentropy(d4,'log energy'); 
%             E_d3=wentropy(d3,'log energy'); 
%             E_d2=wentropy(d2,'log energy'); 
%             E_d1=wentropy(d1,'log energy'); 
            E_a5=wentropy(a5,'shannon'); 
            E_d5=wentropy(d5,'shannon'); 
            E_d4=wentropy(d4,'shannon'); 
            E_d3=wentropy(d3,'shannon'); 
            E_d2=wentropy(d2,'shannon'); 
            E_d1=wentropy(d1,'shannon'); 
            ATS1=[var(a5) var(d5) var(d4) var(d3) var(d2) var(d1)]; 
%         ATS1=E_d1; 
%             ATS1=[E_a5 E_d5 E_d4 E_d3 E_d2 E_d1 spec(1263:1285)]; 
%             ATS1=[E_a5 E_d5 E_d4 E_d3 E_d2 E_d1 var(a5) var(d5) 
var(d4) var(d3) var(d2) var(d1)]; 
%             ATS1=[kurtosis(f_sig) skewness(f_sig) E_a5 E_d5 E_d4 
E_d3 E_d2 E_d1]; 
%             ATS1=[kurtosis(f_sig) skewness(f_sig) var(d5) var(d4) 
var(d3) var(d2) var(d1)]; 
%             ATS1=E_d1; 
%             ATS1=wentropy(f_sig,'log energy'); 
%             ATS1=E_a5; 
%             ATS1=spec(1251:1285); 
%             ATS2=ATS1'; 
%         for  k=1:10 
%             ATS(k,:)=mean(ATS2(10*(k-1)+1:10*k,:)); 
%         end 
        Test_set=[Test_set;ATS1]; 
    end 
  
%% 
Tr = Train_set; % Training vector 
Ts = Test_set; % Testing vector 
Tr = abs(Tr); 
Ts = abs(Ts); 
TG = zeros(100,2); % initiate target matrix 
for i = 1:2; 
    TG(50*(i-1)+1:(i*50),i) = 1; % set the target vector 
end 
maxima = max([max(max(Tr)) max(max(Ts))]); 
Tr = Tr/maxima; 
Ts = Ts/maxima; %%%%%%%%%%% Normalization 
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%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
X= Tr;% 
P=X'; 
net=newff(P,TG',10,{'tansig'},'trainlm'); 
net.performFcn = 'mse'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Training 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
net.trainParam.epochs = 1000;%number of epochs 
%% 
net = train(net,P,TG'); 
%% 
Y = sim(net,Ts'); 
for i = 1:20; 
    [val ind] = sort(Y(:,i), 'descend'); 
    rec(i)=ind(1); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% recognition rate %%%%%%%%% 
c = 1:2; 
d = repmat(c,10,1); 
d = d(:)'; 
rec - d;  
N = length(find(rec-d==0)); 
rate = N / 20; %  
%% 
%% Plotting features in 2-D space 
x1=zeros(60,1); 
x2=zeros(60,1); 
x111=zeros(60,1); 
x1=[]; 
x2=[]; 
load OPN; 
x11=[OPN(1:60,:)]; 
x22=[OPN(61:120,:)]; 
 fs=5000000; 
n = 4; Wn = [25000  75000]/fs*2; 
        [b,a] = butter(n,Wn); 
       
         
for i=1:60 
    x11(i,:)=x11(i,:); 
    f_sig=filter(b,a,x11(i,:)); 
%     f_sig=x11(i,:); 
%     f_sig=f_sig./max(f_sig); 
    [c,l] = wavedec(f_sig,5,'db15'); 
%         ATR1= appcoef(c1,l1,'db15',4); 
%             [c1,l1] = wavedec(signal(:,1),5,'db15'); 
%          
        a5=c(1:l(1)); 
        d5=c(l(1)+1:2*l(1)); 
        d4=c(2*l(1)+1:2*l(1)+l(3)); 
        d3=c(2*l(1)+l(3)+1:2*l(1)+l(3)+l(4)); 
        d2=c(2*l(1)+l(3)+l(4)+1:2*l(1)+l(3)+l(4)+l(5)); 
%         x1(i)=wentropy(d5,'shannon'); 
        x1(i)=kurtosis(f_sig); 
        
    
%         x1(i)=var(d5); 
end 
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for i=1:60 
        x11(i,:)=x11(i,:); 
        f_sig=filter(b,a,x11(i,:));  
%         f_sig=x11(i,:); 
%         f_sig=f_sig./max(f_sig); 
        [c,l] = wavedec(f_sig,5,'db15'); 
%         ATR1= appcoef(c1,l1,'db15',4); 
%             [c1,l1] = wavedec(signal(:,1),5,'db15'); 
%          
        a5=c(1:l(1)); 
        d5=c(l(1)+1:2*l(1)); 
        d4=c(2*l(1)+1:2*l(1)+l(3)); 
        d3=c(2*l(1)+l(3)+1:2*l(1)+l(3)+l(4)); 
        d2=c(2*l(1)+l(3)+l(4)+1:2*l(1)+l(3)+l(4)+l(5)); 
%         x2(i)=wentropy(a5,'shannon'); 
        x2(i)=skewness(f_sig); 
         
     
%         x2(i)=var(d5); 
end 
% maxima = max([max(max(x1)) max(max(x2))]); 
  
% x2=x2/max(x2); 
% x1=x1/max(x1); 
% scatter(x1,aa,'r*') 
%         hold on 
%         bb=[7:0.1:13]; 
        scatter(x2,x1,'ko') 
%         hold on 
%         scatter(x2,x1) 
       
% plot(x1) 
% plot(x1,,x2,) 
% shg 
% hold on 
% plot(x2,'ro') 
% title('old oil PD vs no pd PD_shannon ') 
% shg 
% xt=[Tr(1:50,:);Tr(51:100,:)]; 
% xs=[Ts(1:10,:);Ts(11:20,:)]; 
% % xt=[x1(1:50);x2(1:50)]; 
% % xs=[x1(51:60);x2(51:60)]; 
% % help classify 
% tr=[zeros(50,1);ones(50,1)]; 
% m=classify(xs,xt,tr); 
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