Alkyl Monolayers on Silica Surfaces **Prepared from Neat, Heated** 3-Glycidoxypropyldimethylethoxysilane Analyzed by XPS Ghaleb A. Husseini, Matthew R. Linford, Matthew C. Asplund, Justin Peacock, and Eric T. Sevy Dept. of Chemistry and Biochemistry, Brigham Young University, Provo, UT Silane monolayers on silica, prepared from mono-, di-, and trichlorosilanes, are widely used in industry for surface functionalization and modification. However, unlike di- and trichlorosilanes, monochlorosilanes are particularly easy to work with because they can dimerize, but not polymerize, upon reaction with water. Typically, an organic solvent is used when depositing a silane monolayer. Here we show XPS spectra of monolayers of 3-glycidoxypropyldimethylethoxysilane (CAS# 17963-04-1) on silicon oxide (silicon wafer) prepared using a rapid, solvent-free approach. Reaction conditions are 100 °C for 10 min using the neat (pure) compound, and no inert atmosphere or special treatment of the compound is required. © 2003 American Vacuum Society. [DOI: 10.1116/11.20020504] Keywords: x-ray photoelectron spectroscopy; silane; alkylation; monochlorosilanes **PACS:** 79.60.Fr, 82.80.Pv, 82.65.+r, 81.05.Lg Accession # 00740 Technique: XPS Host Material: Alkyl monolayer/Si-Glycidoxypropyldimethylethoxysilane Instrument: Surface Science SSX-100 Major Elements in Spectrum: C, Si, Minor Elements in Spectrum: none Printed Spectra: 4 Spectra in Electronic Record: 21 Spectral Category: technical Original Submission: 5/23/2002 Accepted for Publication: 9/30/2002 #### INTRODUCTION - Silanes (Ref. 1) attach to silica surfaces by reacting with surface silanols (Si-OH). While monolayers prepared from monochlorosilanes are more subject to hydrolysis than those derived from diand trichlorosilanes, surface functionalization with the mono-functionalized compounds is generally more straightforward because they cannot polymerize. Numerous preparations of silane monolayers on surfaces have been reported in the literature. For example, Maoz and Sagiv first showed that alkyl-terminated monolayers can be prepared on planar silicon using trichlorosilanes (Ref. 2). Recognizing the advantages of mono- over di- and trichlorosilanes, Rabolt and co-workers described a gas phase procedure for depositing perfluorinated alkyldimethylchlorosilanes on SiO₂ (Ref. 3). Both Linton and co-workers (Ref. 4) and Watts and co-workers (Ref. 5) deposited monolayers of alkyldimethylchlorosilanes, onto silica particles using an organic solvent. Typical surface modification conditions call for exposing a surface to a heated, dilute solution of a silane under inert atmosphere. In contrast, here we take clean, dry, native-oxide-terminated silicon (1.5–2.0 nm), place 3-glycidoxypropyldimethylethoxysilane on its surface, and heat it in an oven at 100 °C for 10 min (relative humidity = 52%). After reacting, the surface is cleaned, dried, loaded into an XPS UHV chamber, and analyzed by XPS, which showed carbon levels consistent with monolayer quantities of surface alkyl chains [ellipsometric thickness = 0.70 ± 0.36 nm, advancing contact angle (θ_a) = 63.3° \pm 1.0°, receding contact angle $(\theta_r) = 53.6^{\circ} \pm 0.91$]. Three replicate samples were subjected to identical treatment and analysis, to show the reproducibility of our technique. Only one sample, with its spectra, is published here, except that the Table of Spectral Features lists comparable features from all three samples. In addition, complete data and spectra for all three samples are archived in the Surface Science Spectra database. #### SPECIMEN DESCRIPTION - Host Material: Alkyl monolayer on native oxide terminated silicon derived from glycidoxypropyldimethylethoxysilane **CAS Registry #:** 7440-2-13 Host Material Characteristics: homogeneous; solid; single crystal; semiconductor; glass; thin film; coating Chemical Name: silicon/silicon oxide Source: Montco Silicon Technologies, Inc. Host Composition: Si/SiO₂ **Form:** single crystal wafer, p-type Lot #: W9969 sample 7 Structure: Si(100) As Received Condition: silicon wafer, 125 mm diameter Analyzed Region: host material plus prepared monolayer Ex Situ Preparation/Mounting: The silicon surfaces were first cleaned with a solution of NH₄OH (conc.): H₂O₂ (conc.) (50:50) (v/v) for 30 min at room temperature. They were then rinsed with water and finally washed with 5% vol. HCl (conc.) for 1 h. After reaction in the oven (for 10 min), the wafers were rinsed with acetone, cleaned with a soft artists brush using a 2% sodium dodecyl sulfate solution in water, and placed in a Soxhlet apparatus overnight using m-xylene (b.p. ~139 °C) as the extraction solvent. The samples were then removed from the Soxhlet, rinsed with water, dried, and mounted into the XPS machine. (Note: Source beam size on the instrument was not well characterized and may be up to twice as large as the manufacturer's values given here [See entry for Source Beam Size at Specimen Surface].) Warning: this procedure should not be attempted with volatile silanes. Fumes from a volatile organic compound are potentially explosive. In addition, the NH₄OH/H₂O₂ cleaning solution is extremely caustic and should be used with great care. In Situ Preparation: not specified Charge Control: none Temp. During Analysis: 298 K Pressure During Analysis: $<1.79\times10^{-7}$ Pa #### INSTRUMENT DESCRIPTION Manufacturer and Model: Surface Science Laboratories, Inc., SSX-100 Analyzer Type: spherical sector **Detector:** resistive anode position detector **Number of Detector Elements:** 128 #### INSTRUMENT PARAMETERS COMMON TO ALL SPECTRA #### ■ Spectrometer Analyzer Mode: constant pass energy Throughput ($T = E^N$): N = 0 Excitation Source Window: $10 \mu m$ Mylar Excitation Source: Al K_{α} monochromatic **Source Energy:** 1486.6 eV **Source Strength:** 200 W Source Beam Size: $0.8 \text{ mm} \times 0.8 \text{ mm}$ Analyzer Width at 84 eV: $1500~\mu\mathrm{m} \times 12000~\mu\mathrm{m}$ **Signal Mode:** multichannel direct **Effective Detector Width:** 13.0906 eV # ■ Geometry Incident Angle: 55° Source to Analyzer Angle: 70.8° Emission Angle: 55° Specimen Azimuthal Angle: 0° Acceptance Angle from Analyzer Axis: 30° Analyzer Angular Acceptance Width: $30^{\circ} \times 30^{\circ}$ #### DATA ANALYSIS METHOD Peak Shape and Background Method: background Shirley function #### **ACKNOWLEDGMENTS** The authors acknowledge the help of Yit-Yian Lua at Brigham Young University in using the XPS. #### **REFERENCES -** - E. P. Plueddemann, Silane Coupling Agents (Plenum, New York, 1991). - 2. R. Maoz and J. Sagiv, J. Colloid Interface Sci. 100, 465 (1984). - P. W. Hoffman, M. Stelzle, and J. F. Rabolt, Langmuir 13, 1877 (1997). - S. J. Simko, M. L. Miller, and R. W. Linton, Anal. Chem. 57, 2448 (1985). - V. A. Brown, D. A. Barrett, P. N. Shaw, M. C. Davies, H. J. Ritchie, P. Ross, A. J. Paul, and J. F. Watts, Surf. Interface Anal. 21, 263 (1994). #### SPECTRAL FEATURES TABLE **Peak Width** Element/ **Peak Peak Area** Sensitivity Concen-Peak Spectrum ID# Transition **FWHM Factor** tration **Assignment** Energy (counts) (eV) (eV) (at. %) 00740-02 99.9 29792 0.9 Si 2p1.674 39.669 00740-03 C 1s 285.99 3.805 21639 1.0 26.085 . . . 00740-04 O 1s532.93 1.851 71096 2.49 34.301 00740-05 Si 2p. . . 4911 0.9 C 1s 00740-06 3937 1.0 00741-02 Si 2p 101.06 4.55 32276 0.9 44.34 C 1s 00741-03 286.4 3.764 11766 1.0 14.60 00741-04 O 1s82503 2.49 41.05 532.96 2.650 0.9 . . . 00741-05 Si 2p100.06 1.218 5172 00741-06 C 1s 286.43 3.327 1778 1.0 . . . 00741-07 O 1s533.35 1.449 12779 2.49 00742-02 Si 2*p* 99.73 1.313 48196 0.9 44.75 00742-03 C 1s 286.06 3.485 18677 1.0 15.67 00742-04 O 1s533.10 2.205 117595 2.49 39.58 0.9 . . . 00742-05 Si 2p99.9 1.188 8456 00742-06 C 1s 286.42 3.983 4014 1.0 00742-07 O 1s533.01 1.755 21833 2.49 #### **ANALYZER CALIBRATION TABLE** | Spectrum
ID # | Element/
Transition | Peak
Energy
(eV) | Peak Width
FWHM
(eV) | Peak Area
(counts) | Sensitivity
Factor | Concentration (at. %) | Peak
Assignment | |------------------|------------------------|------------------------|----------------------------|-----------------------|-----------------------|-----------------------|--------------------| | a | Au 4f _{7/2} | 83.92 | 0.98 | 2200 | 10.67 | ••• | ••• | | b | Au $4f_{7/2}$ | 83.92 | 1.6 | 6000 | 10.67 | • • • | | | c | Cu 3s | 122.36 | 3.0 | 1600 | 1.05 | • • • | • • • • | | b | Cu $2p_{3/2}$ | 932.45 | 1.78 | 4000 | 9.73 | ••• | ••• | $^{^{\}rm a}$ Spot size 300 $\mu{\rm m}$, pass energy 50 eV, 2 scans. ### **GUIDE TO FIGURES** | Spectrum (Accession) # | Spectral
Region | Voltage
Shift* | Multiplier | Baseline | Comment # | |------------------------|--------------------|-------------------|------------|----------|-----------| | 740-1 | Survey | 0 | 1 | 0 | | | 740-2 | Si 2p | 0 | 1 | 0 | | | 740-3 | C 1s | 0 | 1 | 0 | | | 740-4 | O 1s | 0 | 1 | 0 | | | 740-5 [NP]** | Si 2p | 0 | 1 | 0 | | | 740-6 [NP] | C 1s | 0 | 1 | 0 | | | 740-7 [NP] | O 1s | 0 | 1 | 0 | | | 741-1 [NP] | Survey | 0 | 1 | 0 | | | 741-2 [NP] | Si 2p | 0 | 1 | 0 | | | 741-3 [NP] | C 1s | 0 | 1 | 0 | | | 741-4 [NP] | O 1s | 0 | 1 | 0 | | | 741-5 [NP] | Si 2p | 0 | 1 | 0 | | | 741-6 [NP] | C 1s | 0 | 1 | 0 | | | 741-7 [NP] | O 1s | 0 | 1 | 0 | | | 742-1 [NP] | Survey | 0 | 1 | 0 | | | 742-2 [NP] | Si 2p | 0 | 1 | 0 | | | 742-3 [NP] | C 1s | 0 | 1 | 0 | | | 742-4 [NP] | O 1s | 0 | 1 | 0 | | | 742-5 [NP] | Si 2p | 0 | 1 | 0 | | | 742-6 [NP] | C 1s | 0 | 1 | 0 | | | 742-7 [NP] | O 1s | 0 | 1 | 0 | | ^{*}Voltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon. $^{^{\}rm b}$ Spot size 800 $\mu{\rm m}$, pass energy 150 eV, 1 scan. $^{^{\}rm c}$ Spot size 800 $\mu{\rm m}$, pass energy 150 eV, 3 scans. ^{**[}NP] signifies not published; digital spectra are archived in SSS database but not reproduced in the printed journal. | Accession # | 00740-01 | | | | |--------------------------------|--|--|--|--| | Host Material | Alkyl monolayer/Si-Glycidoxypropyldimethylethoxysilane | | | | | Technique | XPS | | | | | Spectral Region | survey | | | | | Instrument | Surface Science SSX-100 | | | | | Excitation Source | Al K_{α} monochromatic | | | | | Source Energy | 1486.6 eV | | | | | Source Strength | 200 W | | | | | Source Size | $0.8~\mathrm{mm} \times 0.8~\mathrm{mm}$ | | | | | Analyzer Type | spherical sector | | | | | Incident Angle | 55° | | | | | Emission Angle | 55° | | | | | Analyzer Pass Energy | 150 eV | | | | | Analyzer Resolution | 1.5 eV | | | | | Total Signal Accumulation Time | 220 s | | | | | Total Elapsed Time | 420 s | | | | | Number of Scans | 1 | | | | | Effective Detector Width | 13.0906 eV | | | | ■ Accession #: 00740-02 ■ Host Material: Alkyl monolayer/Si- Glycidoxypropyldimethylethoxysilane ■ Technique: XPS ■ Spectral Region: Si 2p Instrument: Surface Science SSX-100 Excitation Source: Al K_{α} monochromatic Source Energy: 1486.6 eV Source Strength: 200 W Source Size: $0.8\,\text{mm}\times0.8\,\text{mm}$ Incident Angle: 55° Analyzer Type: spherical sector Analyzer Pass Energy: 150 eV Analyzer Resolution: 1.5 eV Emission Angle: 55° Total Signal Accumulation Time: 184 s Total Elapsed Time: 353 s Number of Scans: 3 Effective Detector Width: 13.0906 eV ■ Accession #: 00740-03 ■ Host Material: Alkyl monolayer/Si-Glycidoxypropyldimethylethoxysilane ■ Technique: XPS ■ Spectral Region: C1s Instrument: Surface Science SSX-100 Excitation Source: Al Ka monochromatic Source Energy: 1486.6 eV Source Strength: 200 W Source Size: $0.8 \text{ mm} \times 0.8 \text{ mm}$ Incident Angle: 55° Analyzer Type: spherical sector Analyzer Pass Energy: 150 eV Analyzer Resolution: 1.5 eV Emission Angle: 55° Total Signal Accumulation Time: 184 s Total Elapsed Time: 353 s Number of Scans: 3 Effective Detector Width: 13.0906 eV ■ Accession #: 00740-04 ■ Host Material: Alkyl monolayer/Si-Glycidoxypropyldimethylethoxysilane ■ Technique: XPS ■ Spectral Region: O1s Instrument: Surface Science SSX-100 Excitation Source: Al K_{α} monochromatic Source Energy: 1486.6 eV Source Strength: 200 W Source Size: $0.8 \, \text{mm} \times 0.8 \, \text{mm}$ Incident Angle: 55° Analyzer Type: spherical sector Analyzer Pass Energy: 150 eV Analyzer Resolution: 1.5 eV Emission Angle: 55° Total Signal Accumulation Time: 184 s Total Elapsed Time: 353 s Number of Scans: 3 Effective Detector Width: 13.0906 eV