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Abstract

This work presents a novel application of a high gain adaptive observer-based technique

for Lithium-ion (Li-ion) battery modeling. The model used in this work was originally

developed by Chen and Mora. However, in Chen and Mora’s original work, the param-

eters required for the battery model were estimated through intensive experimentation.

In contrast, this work presents an adaptive observer for estimating the battery model pa-

rameters. This results in the reduction of experimental effort required to estimate battery

model parameters. The selected model (Chen and Mora’s model) requires twenty one

parameters to accurately model a Li-ion battery. This work initially proposes three vari-

ations of a high gain adaptive observer-based technique to adaptively tune fifteen of the

required parameters accurately. The remaining six parameters related to the shape of

the no-load electromotive-force (EMF) curve are obtained via a voltage relaxation test.

Based on observations made during simulations of the above proposed techniques, an

improved estimation technique is proposed in the latter half of this document, and ex-

perimental results validating the proposed technique are presented. Experiments show

that the model obtained through this technique is independent of the magnitude and

type of load. The improved parameter estimation technique is justified using rigorous

mathematical analysis. The proposed improved technique can be used either online or

offline for estimating battery model parameters. This may be valuable for automatically

updating battery models parameters on-board future smart vehicles in real time.

Search Terms: Adaptive Parameter Estimation, Li-ion Battery, Universal Adaptive

Stabilization
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(runtime results)(scheme-2) . . . . . . . . . . . . . . . . . . . . . . 35

Figure 17: (Left) Battery output voltage with original parameters (y(t)) vs bat-
tery output voltage with estimated parameters using upper and lower
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Table 6: Values of parameters â13 to â15 (simulation) . . . . . . . . . . . . . . 53

Table 7: Estimation error for components R̂tl , Ĉtl , R̂ts, Ĉts (simulation) . . . . . 54
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Chapter 1: Introduction and Literature Review

Lithium-ion batteries have become an attractive choice because of their abil-

ity to handle numerous charge/discharge cycles and their good power to weight ratio.

Also, problems like the recovery effect are not prominent in Li-ion batteries. On av-

erage, a Li-ion battery can store up to one hundred and fifty watt-hours of energy per

kilogram [1]. An accurate state of charge (SOC) estimation of a Li-ion battery is im-

portant because it can be used to ascertain the capacity left in the battery. If a battery

is discharged completely (i.e., its SOC = 0), then adverse effects are observed upon the

next charge/discharge cycle. The SOC of a given battery cannot be measured directly,

but needs to be estimated [2]. Unless computationally expensive estimation strategies

like particle filtering [3] are used, the precision of SOC estimation depends upon the ac-

curacy of the battery model opted. Some challenges related to Li-ion battery modeling,

state estimation, and control are summarized in [4]. An overview and a comparison of

state of charge estimation methods for Li-ion batteries is presented in [5].

Battery modeling has been extensively investigated in the literature. An overview

of different types of battery models is presented in [6]. Moreover, six different type of

Li-ion battery models are discussed in [7] and state estimation techniques are also pre-

sented. The model discussed in [8] is an electro-chemical model, which is mainly used

to relate design parameters to battery voltage and current for optimizing the physical

design features of batteries. Electrochemical models are complex because they are usu-

ally modeled by partial differential equations, whose solution requires a lot of compu-

tational effort. A mathematical model used to predict the residual energy of a battery is

discussed in [9]. Most of the mathematical models do not provide essential information

related to the dynamics of a battery such as current and voltage, which are essential for

any accurate circuit simulation. The mathematical model presented in [10] is developed

specifically for a pocket computer; hence, it is application specific.

An equivalent circuit model of a battery is more attractive because it can pro-

vide real-time voltage and current dynamics under varying loads. Furthermore, it is

easy to integrate the effects of battery parameters variation in such models because

they do not lead to a substantial increase in the computational effort required to solve
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the model equations. The equivalent circuit models are further divided into three ma-

jor categories: namely run-time models, impedance-based models and Thevenin-based

models [11]. The model provided in [12] encapsulates nonlinear equilibrium potentials,

rate and temperature dependencies, thermal effects, and response to transient power de-

mand. Chen and Mora’s model [11] is also an equivalent circuit model, which is used in

this work. Chen and Mora’s model is selected because it captures the essential dynamic

characteristics i.e. nonlinear open-circuit voltage, current, temperature, cycle number,

storage time-dependent capacity and transient response of a battery, and the effects of

load current changes. Effects related to cycle number, temperature, and storage time

dependent capacity loss may also be captured via this model by relating these effects to

the SOC. This makes the model [11] versatile, and therefore provides further motivation

to use it in this work.

Extracting all parameters of any given battery model is usually a time consuming

process because multiple iterations of an experiment need to be performed for accurate

parameter estimation. Adaptive algorithms can be used to reduce the experimental ef-

fort required for battery modeling. Examples of work needing a lot of experimentation

are found in [11] and [13]. In [14], [15] and [16] the moving window least squares

method is used to estimate parameters. The observer gains in [15] are selected using

the linear quadratic (LQ) approach, and in [16] the observer gains are selected using the

pole placement method. A Lyapunov-based approach is used in [17] for online parame-

ters estimation. This method only uses the battery voltage and current measurements to

estimate battery parameters. A non-linear least squares method from [3] is used in [18]

to estimate battery model parameters, and the model in [18] is able to handle noise cor-

rupted input and output data. A curve-fitting-based method is proposed in [13]. In [19],

a Thevenin-based model is used along with an adaptive extended Kalman Filter (AEKF)

to estimate the SOC. Different SOC estimation methods are also discussed in [19] and

the AEKF approach is verified to be more accurate compared to other discussed ap-

proaches. The experimental results are used as a reference to compute the accuracy.

In [20], an equivalent circuit-based model is proposed, and a multi-objective optimiza-

tion technique is used to extract the model parameters. A linear parameter varying bat-

tery model is proposed in [21], and model identification is done using battery voltage
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and current measurements. The cell-to-cell variability of capacity and internal resis-

tance of a Li-ion pack are discussed in [22] using a statistical modeling approach. The

model in [22] allows verification of known relations between certain parameters (e.g.,

the capacity and internal resistance) of a battery. This helps in studying the variability

and the effect of the above mentioned parameters on the entire battery pack. The au-

thors in [23] present a way to predict the steady state characteristics of Li-ion battery

using the data sheet provided by the manufacturer. In [24], the impedance in z-domain

is used to estimate the Li-ion battery parameters, using a resistor to express the voltage

drop in frequency domain.

The state of charge estimation and health of a battery-pack on a cellular level

is presented in [25] using a model-driven approach that involves Kalman filtering and

a Battery Monitoring System. An experimental method is discussed in [26], where the

battery is discharged at different rates and interpolation of the data is done to obtain ac-

curate model parameters. A PSPICE parametric model is presented in [27], with the aim

of transferring parameter estimation techniques to PSPICE while working at the com-

ponent level. An experimentally validated SOC estimator is used in [28] to estimate the

capacity of a battery. In [29], methods like support vector machines and low-current

Hybrid Pulse Power characterization (L-HPPC) are used to predict the state of charge

and state of health of the battery. The standard least squares regression method is used

in [30] to separately estimate the slow and fast dynamics of the battery. This leads

to a better frequency response with a simple model. A non-chemical based partially

linearized input-output battery model is proposed in [31]. The recovery effect is incor-

porated in this model [31] to increase the accuracy of the battery lifetime estimation.

Artificial Neural Networks (ANN) are used in [32] to estimate the remaining battery

capacity. State and parameter estimation of an electrochemical model of a battery using

a multi-rate particle filer is proposed in [33]. The voltage data is divided into several

thresholds in [34] and a linear model is established at each threshold which helps in

identifying the parameters of the battery easily. State of charge estimation based on an

adaptive nonlinear observer design is presented in [35]. While different load profiles

are plotted to validate the accuracy of the obtained estimation. In [36], a thermal model
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is used to estimate the inner temperature of a Li-ion battery. The relation of battery

capacity and temperature is also analyzed using the model obtained.

The aim of this work is to develop a modeling methodology that reduces the time

spent on gathering experimental data for battery modeling. Another aim is to develop a

method which can be used either online or offline and to enable battery model identifi-

cation for future applications without requiring any substantial downtime. Such online

identification schemes allow for better performance, even if the battery degrades over

time. Therefore, a high gain adaptive observer-based methodology for modeling Li-ion

batteries is proposed. The adaptive observer is utilized to estimate the battery model

parameters, so that the difference between the output terminal voltage obtained from a

model and the terminal voltage of a real battery is minimized. This work shows a novel

use of a high-gain adaptive strategy for battery modeling. This research is inspired

by earlier work in [37], where a high gain adaptive observer is used to detect abrupt

changes in the battery states, which detects an impending battery terminal voltage col-

lapse. To make the model more accurate, three schemes based on the above mentioned

adaptive methodology are initially tested and verified through intensive computer sim-

ulations.

The first scheme can only estimate large valued parameters. The second scheme

can estimate all parameters with reasonable accuracy. However, both the first and sec-

ond schemes are more dependent upon the proper choices of the model parameters’

initial conditions. In contrast, the third scheme can estimate all the parameters of Chen

and Mora’s battery model, even if rough estimates of the bounds on the initial condi-

tions for the parameters are known, though the initial conditions still need to be close

to the original parameters values.

Based on the observations and analysis of the above mentioned three techniques,

an improved estimation technique is presented. In this methodology, curve fitting is

used to estimate the parameters of the open circuit voltage curve, and the battery series

resistance. The remaining parameters are estimated using a classical high-gain adaptive

technique. The advantage of this technique is that battery parameters can be estimated

with sufficient accuracy within few experimental runs. It is shown that accuracy in SOC

estimation is not sacrificed even if estimates of battery parameters do not converge to

16



their actual values. Further, it is proved that if the battery discharge current magni-

tude is sufficiently small, then the product of the estimated values of resistances and

capacitances appearing in parallel branches in the equivalent circuit model, converges

to the product of actual values of resistances and capacitances. If bounds on battery

parameter values are known, which is practically possible, it is shown that accuracy

of the estimated parameter values is improved. Above claims are supported by mathe-

matical proofs and experimental results which show that battery parameters estimated

using a constant load current are successfully able to model battery terminal voltage

and provide sufficiently accurate SOC estimates even in the presence of variable load

current.

1.1. Motivation

This work proposes a novel methodology using high-gain adaptive control the-

ory for estimating parameters required for Chen and Mora’s model. The proposed ap-

proach has advantages over other methods available in the literature. For example, using

the least squares estimation method given in [14], [15] and [16] could result in compu-

tationally intensive algorithms as large matrices may need to be inverted. Similarly, the

curve fitting method [13] to extract all battery parameters requires a lot of experimenta-

tion to get the required curves. Curve fitting also requires a suitable analytical form of

an equation relating a particular parameter to a measured quantity. The approach used in

this work doesn’t require linearization of the battery model, unlike Kalman filter-based

approaches [38]. The methodology suggested in this thesis uses an adaptive observer,

which estimates model parameters which are valid independent of load current. It is ob-

served that the model parameters’ convergence obtained using the proposed observer is

fast even in the presence of load changes, disturbances and battery nonlinearities. Thus,

the observed speed of parameter convergence and non-dependence of model parameter

estimates on load current are salient features of the developed method. Curve-fitting is

used for estimating parameters of the output equation. However, this doesn’t require

extensive experimentation as only a no-load test is needed. The functional form for the

output equation is also available from [11].
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In the future, Li-S batteries might supersede Li-ion batteries. In [39], a literature

review is done on different models used for the modeling the performance of Li-S bat-

teries. This shows that the research on modeling of Li-ion batteries is moving one step

further because now the modeling techniques on Li-S batteries are being researched and

compared.

1.2. Thesis Organization

In chapter two, a brief background about the basic concepts of adaptive estima-

tion and battery modeling is provided. Chapter three illustrates the concept of universal

adaptive stabilization technique for a Li-ion battery. Then, chapter four provides imple-

mentation of the proposed battery parameters estimation methodology in simulations

and mathematical validation is also presented. In chapter five, intensive experimenta-

tion is shown to validate the estimated battery parameters. Chapter six gives compar-

ative analysis and limitations of the proposed methodology. In Chapter seven future

works are discussed. Finally, chapter eight sums up the conclusion of the thesis.
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Chapter 2: Background

2.1. Chen and Mora’s Model

Chen Mora’s model [11] used in this work is shown in Figure 1. The left half

of the circuitry shown in Figure 1 models the battery state of charge dynamics. For

this work, the self discharge resistance is neglected because the effects of battery self-

discharge can be easily accounted for by multiplying the battery SOC by a certain factor

f , where 0 < f < 1. The right half of the circuitry shown in Figure 1 models the battery

output voltage dynamics in response to changing load currents. The state x1 repre-

sents the battery SOC, the state x2 represents the voltage across Rts||Cts, and the state

x3 represents the voltage across Rtl||Ctl . The parallel combination Rts||Cts models the

short-term terminal voltage dynamics in response to changes in the discharge current.

Similarly, the parallel combination Rtl||Ctl models the long-term terminal voltage dy-

namics in response to changes in the discharge current. The state x1 is normalized and

can vary from [0,1], and the states x2,x3 ∈ R. The state space equations for Chen and

Mora’s model as derived in [40] are:

ẋ1(t) =−
1

Cc
i(t) (2.1)

ẋ2(t) =−
x2(t)

Rts(x1)Cts(x1)
+

i(t)
Cts(x1)

(2.2)

ẋ3(t) =−
x3(t)

Rtl(x1)Ctl(x1)
+

i(t)
Ctl(x1)

(2.3)

y = Eo(x1)− x2(t)− x3(t)− i(t)Rs(x1) (2.4)

Figure 1: Chen and Mora’s battery model
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where the components Rts, Rtl , Cts, Ctl , Rs and Eo are given as follows:

Rts(x1) = a1e−a2x1 +a3 (2.5)

Rtl(x1) = a4e−a5x1 +a6 (2.6)

Cts(x1) =−a7e−a8x1 +a9 (2.7)

Ctl(x1) =−a10e−a11x1 +a12 (2.8)

Rs(x1) = a13e−a14x1 +a15 (2.9)

Eo(x1) =−a16e−a17x1 +a18 +a19x1−a20x2
1 +a21x3

1. (2.10)

Rs, Rts, Rtl , Cts and Ctl represent the various resistances and capacitances shown in Fig-

ure 1. The quantity Eo represents the open circuit EMF of a Li-ion battery, where

Eo : [0,1] → [b1,b2] and b1,b2 ∈ R, and b2 > b1 ≥ 0. The parameters ai > 0 for

i = {1,2,3....21} are the battery model parameters that need identification. Usually

experimental procedures are undertaken in the literature to find a1 to a21. In this work,

three schemes are initially tested. They are based on a high gain adaptive observer to

estimate parameters a1 to a15, while a16 to a21 are easily obtainable via the voltage

relaxation method [41]. Finally an improved adaptive parameters estimation scheme is

presented along with all the necessary mathematical details.

Figure 2: Simulation block diagram for Chen and Mora’s model
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2.1.1. Simulation of Chen and Mora’s model. The Simulink block diagram

shown in Figure 2 consists of different blocks corresponding to the model parameters

(resistors, capacitors) shown in Figure 1. The plot of each component (Rs, Rts, Cts,

Rtl and Ctl) is shown with respect to the state of charge in Figures 4, 5, 6, 7 and 8

respectively. Figure 3 shows the open circuit voltage (VOC) versus the state of charge

(SOC) of the battery. The voltage curve is almost linear when the state of charge is

higher, but becomes nonlinear once the state of charge decreases.

The behavior of Rs with respect to SOC is shown in Figure 4. It can be observed

that the value of Rs changes drastically when the SOC of a Li-ion battery goes below

10%.

2.1.2. Battery stability conditions. The battery system represented by equa-

tions (2.1) - (2.4), looses stability when the battery terminal voltage drops suddenly [42].

Defining the equations for δ1 and δ2 as follows:

δ1 =−
1
a8

ln
(

a9

a7

)
(2.11)

δ2 =−
1

a11
ln
(

a12

a10

)
(2.12)

where, δ1 and δ2 provide the worst case limit for the state of charge of a battery. If

the state of charge goes below δ1 or δ2, the battery must be switched off as the output

voltage will soon experience sudden drop, making the battery system unstable. Note
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Figure 6: Cts vs state of charge (x1)

that more detailed proofs regarding the stability analysis of the model are discussed

in [42].

2.2. Universal Adaptive Stablization (UAS)

A feedback control algorithm is usually used to achieve certain closed loop con-

trol objectives, for a known plant. The basic motivation for using adaptive control

algorithms is that the plant is not always accurately known. The goal of UAS is to

achieve control objectives using only the available structural information of a plant.

The controller adjusts its parameters by estimating plant parameters from the output

data of the plant. An overview of the universal adaptive stabilization approaches used

in nonlinear control is given in [43]. A method for designing a universal adaptive sta-

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

R
transient

l

 vs SOC

R
tr

an
si

en
t

l

SOC
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bilizer is presented in [44]. The work of Nussbaum and other researchers in the area of

non-identifier based adaptive control [45] is the inspiration for our work.

2.2.1. Mittag-Leffler function. The Mittag-Leffler function is a special and

complex function used for solutions of fractional equations [46]. It depends upon two

parameters α and β . It is defined in equation (2.13). The series converges for all values

of z whereas α and β are positive and real. We use the Mittag-Leffler function for

tuning adaptive gain, and the details are presented later.

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
(2.13)

2.2.2. Nussbaum function. Universal Adaptive Stabilizers (UAS) often use

Nussbaum functions [45]. Nussbaum functions are defined as below:

Definition 2.2.2.1: Let k′ ∈ R. Piecewise right continuous functions are switching

functions which allow identification of the sign of required control input. A piecewise

right continuous function N(·) : [k′,∞)→R is called a Nussbaum function if it satisfies

sup
k>k0

1
k− k0

∫ k

k0

N(τ)dτ =+∞

and

inf
k>k0

1
k− k0

∫ k

k0

N(τ)dτ =−∞

for some k0 ∈ (k′,∞)

Some examples of Nussbaum function extracted from [45] are shown below:

N1(k) = k2cosk

N2(k) = k(cos
√
|k|)

N3(k) = lnk(cos
√

ln(k))

2.2.3. Mittag-Leffler as Nussbaum function. A new family of Nussbaum

functions has been found in [47] which can be expressed by Mittag Leffler functions
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under certain conditions. The SIMULINK block diagram is obtained from [48] to sim-

ulate a Mittag Leffler function as a Nussbaum function. Figure 9 shows the simulink

diagram of the implementation. The output plot of the simulation is shown in Figure 10.

The Nussbaum function used for this work is further explained in Section 3.1 and more

details are presented in [47].

Figure 9: Mittag-Leffler as a Nussbaum
function - block diagram
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Chapter 3: Adaptive Parameter Estimation for Li-ion Batteries

In this section, three candidate methods for identification of Li-ion battery pa-

rameters are presented. They are subsequently evaluated by rigorous simulation. This

process helps in developing the final adaptive parameter estimation algorithm. The

proposed methods consist of two steps; the first step being a voltage relaxation test

for obtaining the shape of a no-load EMF curve which gives parameters â16 to â21 in

equation (2.10). These parameters are determined by using the curve-fitting toolbox in

MATLAB along with the no-load EMF curve obtained from the voltage relaxation test.

Curve-fitting is used to obtain the parameters of the no-load EMF equation because no

dynamics are available for it, thus rendering the use of any sort of dynamic parameter

estimation scheme impractical. The second step of the proposed modeling methodol-

ogy involves adaptive parameter estimation for parameters in the battery model state

equations. For this, three possible schemes are provided. Details are presented in Sec-

tions 3.2.1, 3.2.2 and 3.2.3. The following steps present the outline for the proposed

modeling methodology:

1. Perform voltage relaxation test to obtain no-load EMF curve for a given Li-ion

battery.

2. Find parameters â16 to â21 for equation (2.10) by curve-fitting of the data obtained

in step 3.

3. Select one of the three adaptive model parameter estimation schemes from Sec-

tions 3.2.1, 3.2.2 and 3.2.3.

4. Discharge the given Li-ion battery with any given load profile and store the mea-

sured terminal voltage and discharge current data.

5. Perform adaptive model parameter estimation for â1 to â15 using the data obtained

from step 4, based upon a selected scheme in step 3.

6. If the error e(t) in equation (3.15) converges to zero, then pick model parameters

â1 to â15 as specified in Section 3.2.4.
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3.1. Li-ion Battery Parameter Estimation - Overall Architecture

Figure 11 shows the overall architecture of the proposed battery parameter esti-

mation technique. It consists of seven blocks. The left most block represents the load.

The next block represents a physical (real) Li-ion battery. The current i(t) is the actual

current which the battery supplies to an external load. The Coulomb counting block

takes this current i(t) and provides the SOC by integration. The output voltage of the

battery is represented by y(t). The main block is the parameter estimation block. This

block requires the SOC and the error e(t) = y(t)− ŷ(t). This block estimates the pa-

rameters a1 to a15 in equations (2.5) to (2.9) by using one of the three schemes in equa-

tions (3.16), (3.17) or (3.18). The quantity ŷ(t) represents the terminal voltage output

from the battery model in equations (3.2), (3.3) and (3.14). The battery model is shown

by a dotted box in Figure 11. It contains two individual blocks; the dynamic equa-

tions block which represents the internal states of the battery model (equations (3.2) -

(3.3)), and the model output voltage block which represents the output voltage given by

equation (3.14).

The main idea of this work is to compute the control signal u(t), and to simul-

taneously tune parameters â1 to â15 so that the error e(t)→ 0 as time goes to infinity,

independent of the load current i(t) being supplied by the real battery. For this purpose

the universal adaptive stabilizer block is used, which is shown in Figure 11. This block

continuously tunes parameters â1 to â15 so that the required objective, stated above can

be met. It is hypothesized that, if the error e(t) given by equation (3.15) converges to a

sufficiently small value, then parameters â1 to â15 will have converged to certain values.

It is further hypothesized that if a control signal u(t) in Figure 11 can be picked so that

the error e(t) remains close to zero for a sufficiently long period of time, parameters a16

to a21 are known, and the initial guesses of â1 to â15 are reasonably close to their actual

values, then â1 to â15 will converge to values which will provide the necessary model

parameters for producing a reasonably accurate battery model independent of the load

current. Before presenting the schemes for adaptive estimation of model parameters,
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Figure 11: Li-ion battery parameter estimation algorithm - overall architecture

the battery model dynamic equations are proposed as follows:

˙̂x1 =
−1
Cc

i(t) (3.1)

˙̂x2(t) =−
x̂2(t)

R̂ts(x̂1)Ĉts(x̂1)
+u(t) (3.2)

˙̂x3(t) =−
x̂3(t)

R̂tl(x̂1)Ĉtl(x̂1)
+u(t) (3.3)

In the model equations, there are three states ˙̂x1, ˙̂x2 and ˙̂x3. Moreover, we can measure

current, and we are trying to estimate model parameters, so we are assuming that the

coulomb counting definition, shown in equation (3.1) gives a good enough estimate of

SOC, and even if there exist errors due to this, we show experimentally that this does

not affect the model accuracy. It is also assumed that the structure of a battery model

is known; hence equations (3.2) and (3.3) have similar analytical forms to Chen and

Mora’s model equations (i.e., equations (2.2) and (2.3)). Similarly, the circuit elements

R̂tl , Ĉtl , R̂ts, Ĉts have the same analytical forms as to Chen and Mora’s equations (i.e.,

equations (2.5) - (2.10))

R̂ts(x̂1) = â1e−â2x̂1 + â3 (3.4)

R̂tl(x̂1) = â4e−â5x̂1 + â6 (3.5)

Ĉts(x̂1) =−â7e−â8x̂1 + â9 (3.6)
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Ĉtl(x̂1) =−â10e−â11x̂1 + â12 (3.7)

R̂s(x̂1) = â13e−â14x̂1 + â15 (3.8)

Êo(x̂1) =−â16e−â17x̂1 + â18 + â19x̂1− â20x̂2
1 + â21x̂3

1. (3.9)

The following equations are used to obtain u(t) so that the adaptive observer can achieve

e(t)→ 0 as time goes to infinity. In equation (3.12), N(·) represents a Nussbaum type

switching gain [45], where N(k(t)) is defined as follows:

N(k(t)) = Eα(λk(t)α), λ > 0, α ∈ (2,3) (3.10)

where Eα(·) is the Mittag-Leffler function [47, 49] defined below:

Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)
(3.11)

Here Γ(·) represents the standard Gamma function (i.e., Γ(z+1) = zΓz,z > 0) and α is

a parameter.

u(t) =−N(k(t))e(t) (3.12)

k̇(t) = e2(t), k(t0) = k0 (3.13)

ŷ(t) = Eo(x1)− x̂2(t)− x̂3(t)−u(t)Rs (3.14)

e(t) = y(t)− ŷ(t) (3.15)

Note that the use of the Mittag-Leffler function in Nussbaum functions is inpired by the

previous experimental results in [49], which showed fast convergence. Simulink imple-

mentation of the Mittag-Leffler function as a Nussbaum function (i.e., equations (3.10)

and (3.11) is done by using the Simulink block developed in [48]. Note that equa-

tions (3.2) - (3.15) are a form of high-gain adaptive observer [50], [51], where N(k(t))

is an adaptive gain which can assume high values. The following subsections provide

the mathematical equations which are used for obtaining model parameters ai. From

equation (3.12) it can be seen that u(t) is not affected directly by changes in the model

parameters ai. Therefore, to aid accurate modeling, the following three schemes are

28



presented by which the model parameters ai can be obtained. Each scheme is observed

to have certain advantages and drawbacks, which are discussed in Section 3.2.5.

3.2. Adaptive Battery Parameter Estimation Methodology: Simulated Trials

3.2.1. Scheme-1. In this scheme it is proposed that the model parameters ai

are given as follows

˙̂ai(t) = e2(t) (3.16)

where âi(0) = âio , âio > 0 and i = {1,2,3...15}. The relationship given in equa-

tion (3.16) is chosen because âi > 0 for all i = {1,2,3...15}.

3.2.2. Scheme-2. On considering equation (3.16), the following problem may

arise. Some of the parameters âi, i = {1,2,3....15} may require extremely small val-

ues to obtain a reasonably accurate battery model. However, if the initial guess is even

slightly off from the required small parameters values, it is possible that the resultant

parameters obtained may provide an inaccurate model. In order to minimize this ef-

fect, it is proposed that the model parameters âi are given as follows. Let q = {i ∈

{1,2,3...15} : |ai(t)| ≤ ε,ε > 0, t → ∞}, here, ε is a very small positive real number

and t represents time. Similarly, let q̄ = {i ∈ {1,2,3...15} : |ai(t)|> ε,ε > 0, t→ ∞}.

˙̂ai(t) =
e2(t)+λi(âio− âi(t)),λi > 0 , i ∈ q

e2(t) , i ∈ q̄

 (3.17)

where âi(0) = aio , âio > 0. The set q = {i ∈ {1,2,3...15} : |ai(t)| ≤ ε,ε > 0, t →

∞} identifies the indices i corresponding to which the model parameters âi have very

small values. In equation (3.17) the term λiâio is used as a penalizing term to prevent

model parameters âi from diverging from the required small magnitude by increasing

the cost λi to a large positive number. Usually ε is easy to select because there are

few battery model parameters which require extremely small values, and the order of

magnitude for these values is known. The value for ε can be chosen to be similar to the
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order of magnitude required for these parameters. For the parameters âi which do not

have extremely small values, the set q̄ = {i ∈ {1,2,3...15} : |ai(t)| > ε,ε > 0, t → ∞}

identifies the indices i corresponding to which model parameters do not need the above

mentioned penalization.

3.2.3. Scheme-3. To relax the requirement of having initial guesses of the

model parameters close to the expected values, the following method is proposed.

Let aiu, ail represent the upper and lower bound, respectively, for the model parame-

ters, where i = {1,2,3...15}. Further, let λxi be weights related to upper bounds for

parameters ai, and λyi be weights related to lower bounds for parameters ai. Also

aiu ≥ ai ≥ ail > 0 for all i = {1,2,3...15} and aiu,ail ∈ R. Further, λxi,λyi are both

non-negative real numbers. Then the following equation is proposed for updating the

model parameters ai:

˙̂ai(t) = e2(t)+λxi(aiu− âi(t))+λyi(ail− âi(t)). (3.18)

where âi(0) = âio and i = {1,2,3....15}. The weights λxi and λyi can be thought of

as the user’s confidence in his/her estimates of the upper and lower bounds aiu and ail

respectively.

3.2.4. Obtaining battery model parameters. The above sections provide

details related to setting up the high gain observer for battery model parameters estima-

tion. However, due to the large number of parameters that require estimation, it is not

certain that the observer shown in Figure 11 will cause the error e(t) in equation (3.15)

to converge to zero as time goes to infinity. To guarantee convergence of the error to

zero, certain modifications need to be made to the observer structure, and the estimated

parameters need to meet certain technical constraints. These details are presented in

Chapter. 4.

For now, assuming the error e(t) converges to zero as time goes to infinity, the

following simple strategy is proposed for obtaining model parameter values âi from

the time series of values âi(t), which is obtained from the adaptive parameter estima-

tion methodology. It is observed that the model parameters âi converge to a constant
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value and stay at that value just until before the battery dies. This can be explained

from the fact that a Li-ion battery becomes unstable before its terminal voltage col-

lapses [37]. Thus, the following equation is proposed for calculating battery model

parameters âi, i = {1,2,3....15}:

âi =
1
N

tunst

∑
t=tint

âi(t) (3.19)

where N represents the number of samples available between time instants tint and tunst .

Also, tunst > tint > 0; and tint represents the time after which the error e(t) settles within

an acceptable small bound and tunst represents the time after which the battery is un-

stable, (i.e., time after which the battery voltage begins to drop suddenly). Both time

instants tint and tunst can be obtained by observation. Usually as per the observations,

after time t > tunst the model parameters âi tend to experience small fluctuations in their

values. The motivation for selecting a universal adaptive stabilizer to make the model

output voltage track the terminal voltage of a real battery is as follows. From [37], it is

known that as long as the battery terminal voltage stays in the region of linear decline,

the battery is stable, and once the battery SOC falls below a certain value, the battery

is unstable and the terminal voltage begins dropping extremely fast. To model a battery

accurately, any proposed model must be able to deal with both the stable and unstable

region of operation. However, making an unstable system with unknown time varying

parameters track a desired reference signal is challenging. Under certain technical as-

sumptions and constraints, universal adaptive stabilization [45] achieves such tracking.

For battery modeling, it is desired that the model should be able to track sudden drops

in the terminal voltage as the battery dies. Based on the above facts, a universal adaptive

stabilization-based strategy is selected.

Figure 12: Simulink model for simulation
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Table 1: Values of parameters â16 to â21 for simulation results

Parameter â16 â17 â18 â19 â20 â21

Value 1.031 35 3.685 0.2156 0.1178 0.3201

3.2.5. Simulation for each scheme. In this section, simulation results related

to the three adaptive parameters estimation schemes proposed in Section 3 are presented

and analyzed. The simulations are performed using MATLAB and Simulink. For sim-

ulation purposes, two blocks are created in a Simulink model as shown in Figure 12.

The first block represents a physical Li-ion battery and is modeled as per equa-

tions (2.1) - (2.4). The parameters for this model are obtained from [11]. The second

block assumes that the structure of the battery model is similar to Chen and Mora’s

model, but the parameters are unknown (i.e., uses equations (3.2) - (3.15)). The model

parameters for the second block are obtained by using one of the equations (3.16), (3.17)

or (3.18). Also, for all simulations a 275 mAh, 4V Li-ion battery is used. All constant

load discharges for the ideal Chen and Mora model and the adaptively estimated model

(using all schemes) are kept constant at 0.275A. Note that the values of parameters â16

to â21 are shown in Table 1, and these values are directly obtained from the parameters

obtained in [11] for the Êo given in equation (3.9).

0 500 1000 1500 2000 2500 3000 3500
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

Time(sec)

V
b

at
te

ry
 (

V
o

lt
s)

 

 
y(t)
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3.2.5.1. Simulation results - scheme-1. The simulation results for an adaptive

battery model parameter estimator using Scheme-1 are discussed in this section. Fig-

ure 13 shows run-time plots of the terminal voltage y(t) of a physical (simulated) Li-ion

battery and the terminal voltage ŷ(t) of the adaptively modeled battery. It can be seen

from Figure 13 that the output ŷ(t) of the adaptively modeled battery is mostly identi-

cal to the original output y(t). This verifies that the universal adaptive stabilizer based

terminal voltage tracking strategy can be used for obtaining convergence of the error

e(t) to zero as t → ∞. This is further verified by observing the plot of the error e(t) in

Figure 14. However, it is important to note that Figure 13 is produced by time varying

parameters âi(t), i ∈ {1,2,3....15} given as per equation (3.16). The average values for

parameters â1 to â15 are determined as per the technique mentioned in Section 3.2.4

and are shown in Table 2. The above set of parameter values shown in Table 2 are used

to simulate another run of a Li-ion battery model, which supplies the same constant

load as used to produce Figure 13, and the output is plotted against y(t) from Figure 13.

This plot is shown in Figure 15. Note that these results are not runtime results, i.e. fixed

estimated parameter values ai (obtained as per Section 3.2.4) are used as opposed to the

time-varying values âi(t) used to obtain Figure 13. It can be observed in Figure 15 that

the two curves do not match. This implies that Scheme-1 can only provide a terminal

voltage with the same general shape, but not with accurate numerical values. This is

due to the fact that certain parameters among â1 to â15 may need to be very small but

Scheme-1 has no provision to ensure this. Note that in Table 2 all parameters converge

to the original values except a1,a3,a6,a13,a15. This issue is fixed in the next subsection

by increasing the weight of these parameters in the overall error equation. This will be

further explained in the next subsection.

3.2.5.2. Simulation results - scheme-2. The simulations result for an adaptive

battery model parameter estimator using Scheme-2 are discussed in this section. Note

that the run-time tracking results shown in Figure 13 are a very good representation

of the run-time convergence of ŷ(t) to y(t) for all the schemes of adaptive parameter

estimation presented in this work when the universal adaptive stabilizer is continuously

tuning the model parameters. However, the real value of a simple usable model lies in
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Table 2: Comparison of initial and final parameters (â1 - â15) (scheme-1)

Parameter â1 â2 â3 â4 â5
Initial Values 0.30 29 0.04 6 155

Chen and Mora’s Values 0.30 29 0.04 6 155
Estimated Values 0.7607 29.4607 0.5007 6.4607 155.4607

Estimation Error (%) 153 1.5 1151 7.67 0.297

Parameter â6 â7 â8 â9 â10
Initial Values 0.04 752 13 703 6050

Chen and Mora’s Values 0.04 752 13 703 6050
Estimated Values 0.5007 752.4607 13.4607 703.4607 6050.4607

Estimation Error (%) 1151.75 0.0612 3.54 0.0655 0.00761

Parameter â11 â12 â13 â14 â15
Initial Values 27 4475 0.1 24 0.07

Chen and Mora’s Values 27 4475 0.1 24 0.07
Estimated Values 27.4607 4475.4 0.5607 24.4607 0.5307

Estimation Error (%) 1.7 0.0089 460.7 1.919 658.14

it’s ability to have constant parameter values which can be used regardless of the battery

load current. Hence, for all future schemes the run-time results are not shown. Figure 16

shows the plots of y(t) obtained from an ideal Li-ion battery based upon Chen and

Mora’s model and ŷ(t) obtained based upon a model which uses the parameters shown

in Table 3. The parameters shown in Table 3 represent the average values of parameters

â1 to â15 obtained as given in Section 3.2.4, when parameters â1(t) to â15(t) are updated

using equation (3.17) at run-time. For generating Figure 16, the following simulation

Figure 15: Battery output voltage with original parameters (y(t)) vs battery output volt-
age with estimated parameters (ŷ(t)) - via simulation (scheme-1).
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Table 3: Comparison of initial and final parameters (â1 - â15) (scheme-2)

Parameter â1 â2 â3 â4 â5
Initial Values 0.30 29 0.04 6 155

Chen and Mora’s Values 0.30 29 0.04 6 155
Estimated Values 0.3 29.6182 0.04 6.6182 155.6182

Estimation Error (%) 0 2.13 0 10.3 0.34

Parameter â6 â7 â8 â9 â10
Initial Values 0.04 752 13 703 6050

Chen and Mora’s Values 0.04 752 13 703 6050
Estimated Values 0.04 752.6182 13.6182 703.6182 6050.6

Estimation Error (%) 0 0.0822 4.755 0.0879 0.00991

Parameter â11 â12 â13 â14 â15
Initial Values 27 4475 0.1 24 0.07

Chen and Mora’s Values 27 4475 0.1 24 0.07
Estimated Values 27.6182 4475.6 0.1 24.6182 0.07

Estimation Error (%) 2.289 0.0134 0 2.575 0

parameters are used: A constant discharge current of 0.275A, λi = 100 and ε = 0.35,

for i= {1,3,6,13,15}; and λi = 0 for i= {2,4,5,7,8,9,10,11,12,14}. Note that λi = 0

for i = {2,4,5,7,8,9,10,11,12,14} because these parameters have a sufficiently large

value of the order of a few tens or hundreds at least hence these i’s ∈ q̄. The above set

of parameters values shown in Table 3 are then used to simulate another run of a Li-ion

battery model, supplying a constant load of 0.275A. Further, an ideal version of Chen
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Figure 16: (Left) Battery output voltage with original parameters (y(t)) vs battery out-
put voltage with estimated parameters (ŷ(t)) - via simulation (scheme-2). (Right) Error
between ŷ(t) and y(t) via simulation - (runtime results)(scheme-2)
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and Mora’s model is also simulated, supplying the same constant load of 0.275A. The

above simulations give ŷ(t) and y(t) respectively, and are plotted in Figure 15. From this

it is observed that Scheme-2 is successfully able to adaptively model a Li-ion battery in

the presence of a constant load.

3.2.5.3. Simulation results - scheme-3. The simulations results for an adap-

tive battery model parameter estimator using Scheme-3 are discussed in this section.

It is observed that in general parameters â1, â3, â6, â13, â15, â19, â20, â21 have very small

values of the order of magnitude of 0.1. The parameters â19 to â21 are available from

Chen and Mora’s model [11]. It is further observed that if the parameters â1, â3, â6, â13, â15

are allowed to drift far away from the order of magnitude of 0.1, then the results

shown in Figure 13 are obtained. This motivated the development of Scheme-3 in Sec-

tion 3.2.3, and now simulation results for this scheme are presented. As mentioned in

Section 3.2.3, the proposed Scheme-3 requires upper and lower bounds to be specified

for all parameters âi where i = {1,2,3...15}. For generating Figure 17, the following

simulation parameters are used: a constant discharge current of 0.275A, λxi = 100,λyi =

1 for i = {1,3,6,13,15}; and λxi = λyi = 0 for i = {2,4,5,7,8,9,10,11,12,14}. Also

for i = {1,3,6,13,15} the upper (aiu) and lower (ail) bounds on the parameter values

âi are specified in Table 4. For i = {2,4,5,7,8,9,10,11,12,14} the upper and lower

bounds are not provided because λxi = λyi = 0. λxi = λyi = 0 for i= {2,4,5,7,8,9,10,11,12,14}
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Figure 17: (Left) Battery output voltage with original parameters (y(t)) vs battery
output voltage with estimated parameters using upper and lower bounds (ŷ(t)) - via
simulation (scheme-3). (Right) Error between ŷ(t) and y(t) via simulation - (runtime
results)(scheme-3)
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is used because these parameter values are large (of the order of tens or hundreds), and

Scheme-3 is not required for them. Note that Scheme-3 has been observed to work

Table 4: Upper and lower bounds and final value for parameters (scheme-3)

ParameterU pper Bound(aiu)Lower Bound(ail)Estimated Value Desired Value Estimation Error(%)

â1 0.30 0.25 0.2946 0.3208 8.16
â3 0.045 0.03 0.0443 0.04669 5.11
â6 0.05 0.04 0.0491 0.04984 1.5
â13 0.15 0.1 0.1475 0.1562 5.569
â15 0.07 0.04 0.0489 0.04669 4.7

even if applied for all parameters â1 to â15. The average values for parameters â1 to

â15 are determined as per the technique mentioned in Section 3.2.4 and at run-time the

parameters â1(t) to â15(t) are updated using equation (3.18). Similar to Scheme-1 and

2, y(t) and ŷ(t) are obtained using Scheme-3 and are shown in Figure 17.
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Chapter 4: Proposed Battery Estimation Methodology and
Mathematical Justification

The observations and analysis of the schemes discussed in Section 3.2 reveal

several drawbacks. The drawbacks are:

1. Need of averaging at the end of parameter estimation to select estimated values

of model parameters.

2. Need to start very close to the actual values of model parameters.

3. Need to have extremely tight bounds on parameter estimates.

4. Doubtful if error e(t) will converge to zero with time.

All of the above drawbacks can be overcome by altering the differential equations of the

observer slightly. Thus, improved method to estimate the parameters of a Li-ion battery

is proposed. This method is inspired by the Scheme-3 mentioned in Section 3.2.3. As

shown in Figure 18, the following steps are proposed for estimating model parameters

for a given Li-ion battery:

1. Perform a voltage relaxation test as mentioned in 5.2.1 to determine â16, · · · , â21

by curve fitting using equation (2.10) and terminal voltage measurements so that

a curve Êo(x̂1) is obtained such that Êo(x̂1)≈ Eo(x1).

2. Perform adaptive parameter estimation with very small magnitude of discharge

current i, and obtain â1, · · · , â12 thus providing R̂ts,R̂tl ,Ĉts,Ĉtl . This process, which

uses equations (3.12)-(3.15), and (3.18), is shown as 2 in Figure 18. The output

equation is changed as follows for the new proposed estimation technique.

ŷ(t) = Eo(x1)− x̂2(t)− x̂3(t) (4.1)

3. Let i(t) 6= 0 for all time t, compute R̂s using the estimated parameters â1 to â12

and using equation (4.2), then use curve fitting to find â13, · · · , â15.

R̂s(x̂1(t)) = i(t)−1 (y(t)+ x2(t)+ x3(t)−Eo(x̂1(t))) (4.2)
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Figure 18: Steps (1,2,3) proposed for Li-ion battery model parameters estimation.

4.1. Mathematical Justification

This section shows that the process above can be used for obtaining battery

model parameters. Before proving convergence of estimated model parameters to their

actual values, some other results are first proved. These results are required for showing

that the error e(t) in equation (3.15) converges to zero.

The following result establishes conditions required to be obeyed by parameters

λxi, λyi, aiu, ail where i = {7,9,10,12}.

Lemma 4.1.1. Let i = {7,9,10,12}. Suppose λxi, λyi, aiu, ail are positive real numbers.

Further let 1 = [1 1]T , λi = [λxi λyi]
T , Pi = [aiu ail]

T , 1 > ε > 0, t > r > 0, then the

following statements hold for x̂1(t) ∈ [1,ε)

1. If â9(0)< â7(0), 1T λ9 > 1T λ7, PT
9 λ9 < PT

7 λ7, and â8(t)>− 1
x̂1(t)

ln
(

â9(t)
â7(t)

)
, then

Ĉts(x̂1(t))> 0

39



2. If â12(0)< â10(0), 1T λ12 > 1T λ10, PT
12λ12 <PT

10λ10, and â11(t)>− 1
x̂1(t)

ln
(

â12(t)
â10(t)

)
,

then Ĉtl(x̂1(t))> 0

Proof. Suppose that the assumptions made in the statement of Lemma 4.1.1 hold, then

proceed to prove the first statement. So let â9(0)< â7(0), 1T λ9 > 1T λ7, PT
9 λ9 < PT

7 λ7,

and â8(t)>− 1
x̂1(t)

ln
(

â9(t)
â7(t)

)
. The condition 1T λ9 > 1T λ7 implies

λx9 +λy9 > λx7 +λy7 (4.3)

and PT
9 λ9 < PT

7 λ7 implies

λx9a9u +λy9a9l < λx7a7u +λy7a7l (4.4)

Now consider L −1(Âi(s)), where Âi(s) is as in equation (4.69).

∴ âi(t) = âi(0)e−(λxi+λyi)t +(λxiaiu +λyiail)
∫ t

to
e−(λxi+λyi)τdτ +

∫ t

to
e2(t− τ)e−(λxi+λyi)τdτ

(4.5)

Now since λx9 +λy9 > λx7 +λy7 and 0< â9(0)< â7(0) then by properties of the function

ex, the following can be written

â9(0)e−(λx9+λy9)t < â9(0)e−(λx7+λy7)t < â7(0)e−(λx7+λy7)t , t > t0 (4.6)

From the above it also follows that

∫ t

to
e−(λx9+λy9)τdτ <

∫ t

to
e−(λx7+λy7)τdτ, t > t0 (4.7)

and further using equation (4.4), (4.7) together provides

(λx9a9u +λy9a9l)
∫ t

to
e−(λx9+λy9 )τdτ < (λx9a9u +λy9a9l)

∫ t

to
e−(λx7+λy7 )τdτ · · ·

· · ·< (λx7a7u +λy7a7l)
∫ t

to
e−(λx7+λy7 )τdτ (4.8)

40



Similarly utilizing properties of the exponential function, using equation (4.3) and

recognizing that e2(t− τ)> 0 for all t, the following can be written.

∫ t

to
e2(t− τ)e−(λx9+λy9)τdτ <

∫ t

to
e2(t− τ)e−(λx7+λy7)τdτ (4.9)

∴ Using equations (4.5), (4.6), (4.8) and (4.9) provides

â9(t)< â7(t), for all t > t0 (4.10)

∴ From above â9(t)
â7(t)

< 1 , ∴ ln
(

â9(t)
â7(t)

)
< 0. ∴ − ln

(
â9(t)
â7(t)

)
> 0, and also for x̂1(t)∈ [1,0)

− 1
x̂1(t)

ln
(

â9(t)
â7(t)

)
> 0 (4.11)

However,

− 1
x̂1(t)

ln
(

â9(t)
â7(t)

)
< â8(t) (4.12)

− ln
(

â9(t)
â7(t)

)
< x̂1(t)â8(t) (4.13)

x̂1(t)>
−1

â8(t)
ln
(

â9(t)
â7(t)

)
> 0 (4.14)

−x̂1(t)â8(t)< ln
(

â9(t)
â7(t)

)
(4.15)

e−x̂1(t)â8(t) <
â9(t)
â7(t)

(4.16)

⇒−â7(t)e−x̂1(t)â8(t) >−â9(t) (4.17)

∴−â7(t)e−x̂1(t)â8(t)+ â9(t)> 0 (4.18)

By definition of Ĉts and from equation (4.18), Ĉts > 0

This completes the proof of the first statement. For statement two, the above

steps are to be repeated by replacing â9(0) by â12(0), â7(0) by â10(0), λ9 by λ12, λ7 by

λ10, P9 by P12, P7 by P10 and â8 by â11 and following the exact same steps as above;

41



hence the process has not been repeated. However, following the above mentioned steps

leads to the complete proof. The theorem presented below proves the convergence of the

estimated parameters to the actual parameters if all the conditions explained in Lemma

4.1.1 are satisfied.

Theorem 4.1.2. Suppose that the conditions required for Lemma 4.1.1 to hold are satis-

fied. Further assume that the voltage relaxation test described in Section 5.2.1 provides

Ê0(x̂1) = E0(x1). Let e(t) = y(t)− ŷ(t), where y(t), ŷ(t) are given by equation (2.4)

and (3.14) respectively. If the discharge current i(t) is an infinitesimally small positive

number, then as t→ ∞

1. R̂ts(x̂1)Ĉts(x̂1) = RtsCts.

2. R̂tl(x̂1)Ĉtl(x̂1) = RtlCtl.

Proof. Suppose that the assumptions mentioned in the statement of this theorem are

satisfied. Note that in this proof the arguments of functions are not written for conve-

nience.

Let

y1 =−x2− x3 (4.19)

and

ŷ1 =−x̂2− x̂3 (4.20)

Since Ê0(x̂1) = E0(x1), and i(t)→ 0

e = y− ŷ = y1− ŷ1 (4.21)

Taking derivatives of both sides gives

ė = ẏ1− ˙̂y1 (4.22)
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Now add and subtract e to the R.H.S.

ė =−e+ e+ ẏ1− ˙̂y1 (4.23)

ė =−e+ y1− ŷ1 + ẏ1− ˙̂y1 (4.24)

Now rearrange terms to get

ė =−e− ˙̂y1− ŷ1 +(y1 + ẏ1) (4.25)

Let

S(t) = y1 + ẏ1 (4.26)

Therefore from equations (3.14), (4.25) and (4.26)

ė =−e+ ˙̂x2 + ˙̂x3− ŷ1 +S (4.27)

Now by equations (3.2), (3.3), and (3.14)

∴ ė =−e− x̂2

R̂tsĈts
− x̂3

R̂tlĈtl
+2u+ x̂2 + x̂3 +S (4.28)

ė =−e+2u+ x̂2

(
1− 1

R̂tsĈts

)
+ x̂3

(
1− 1

R̂tlĈtl

)
+S (4.29)

Since the conditions required for the Lemma 4.1.1 to hold are satisfied ∴ by Lemma

4.1.1, Ĉts > 0, Ĉtl > 0. Also R̂ts > 0, R̂tl > 0 by definition in equation (2.6) and (2.5).

∴ R̂tsĈts > 0, R̂tlĈtl > 0, So it is possible to write

1

R̂tsĈts
> 0 (4.30)

1− 1

R̂tsĈts
< 1 (4.31)
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x̂2

(
1− 1

R̂tsĈts

)
< x̂2 (4.32)

Similarly since R̂tlĈtl > 0 and following the procedure in equations (4.30), (4.31), and

(4.32) gives

x̂3

(
1− 1

R̂tlĈtl

)
< x̂3 (4.33)

From equations (4.32) and (4.33) it follows that

−x̂2

(
1− 1

R̂tsĈts

)
>−x̂2 (4.34)

−x̂3

(
1− 1

R̂tlĈtl

)
>−x̂3 (4.35)

∴ from the above

−x̂2

(
1− 1

R̂tsĈts

)
− x̂3

(
1− 1

R̂tlĈtl

)
>−x̂2− x̂3 (4.36)

From equations (3.14) and (4.36)

ŷ1 <−x̂2

(
1− 1

R̂tsĈts

)
− x̂3

(
1− 1

R̂tlĈtl

)
(4.37)

∴−ŷ1 > x̂2

(
1− 1

R̂tsĈts

)
+ x̂3

(
1− 1

R̂tlĈtl

)
(4.38)

y1− ŷ1 > y1 + x̂2

(
1− 1

R̂tsĈts

)
+ x̂3

(
1− 1

R̂tlĈtl

)
(4.39)

∴ From equation (3.15)

e > y1 + x̂2

(
1− 1

R̂tsĈts

)
+ x̂3

(
1− 1

R̂tlĈtl

)
(4.40)

Adding −e+2u+ ẏ1 to both sides gives

−e+2u+ ẏ1 + e >−e+2u+ ẏ1 + y1 + x̂2

(
1− 1

R̂tsĈts

)
+ x̂3

(
1− 1

R̂tlĈtl

)
(4.41)
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∴ From equations (4.26) and (4.29)

2u+ ẏ1 > ė(t) (4.42)

ė(t)< 2u+ ẏ1 (4.43)

Now consider

V (e,k) =
1
2

e2(t)+2
∫ k(t)

k(t0)
N(τ)dτ (4.44)

Taking the time derivative of equation (4.44) gives

V̇ = eė+2N(k(t))k̇(t) (4.45)

V̇ = eė+2N(k(t))e2(t) (4.46)

From equations (4.43) and (4.46)

V̇ = e(2u+ ẏ1 +2N(k(t))e2(t) (4.47)

Now since u =−N(k(t))e(t)

∴ V̇ <−2N(k(t))e2(t)+ eẏ1 +2N(k(t))e2(t) (4.48)

∴ V̇ < eẏ1 (4.49)

Consider the following for any value of e, ẏ1

(e− ẏ1)
2 > 0 (4.50)

e2−2eẏ1 + ẏ2
1 > 0 (4.51)

∴ eẏ1 <
1
2
(e2 + ẏ2

1) (4.52)
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From equations (4.49) and (4.52)

V̇ <
1
2

e2 +
1
2

ẏ2
1 (4.53)

Integrating the above from t0 to t gives

V (t)−V (t0)<
1
2

∫ t

to
e2(τ)dτ +

1
2

∫ t

to
ẏ2

1(τ)dτ (4.54)

Substituting equation (4.44) into equation (4.54) gives

1
2

e2(t)+2
∫ k(t)

k(t0)
N(τ)dτ−V (t0)<

1
2

∫ t

to
e2(τ)dτ +

1
2

∫ t

to
ẏ2

1(τ)dτ (4.55)

∴
1
2

e2(t)<
1
2

∫ t

to
e2(τ)dτ +

1
2

∫ t

to
ẏ2

1(τ)dτ−2
∫ k(t)

k(t0)
N(τ)dτ +V (t0) (4.56)

By definition of k̇(t) in equation (3.13)

1
2

e2(t)<
1
2

k(t)− 1
2

k(t0)+
1
2

∫ t

to
ẏ2

1(τ)dτ−2
∫ k(t)

k(t0)
N(τ)dτ +V (t0) (4.57)

Dividing both sides by 1
2(k(t)− k(t0))

1
(k(t)− k(t0))

e2(t)< 1+
1

(k(t)− k(t0))

∫ t

to
ẏ2

1(τ)dτ− 4
(k(t)− k(t0))

∫ k(t)

k(t0)
N(τ)dτ + · · ·

· · · 2
(k(t)− k(t0))

V (t0) (4.58)

Now by the definition of y, y1 in equation (2.4) and (4.19)

y1 = y−E0 + iRs (4.59)

ẏ1 = ẏ− ∂E
∂x1

+Rs
di
dt

+ i
dRs

dt
(4.60)

Using equation (2.10) in equation (4.60)

ẏ1 = ẏ+
i(t)
Cc

(a16a17e−a17x1 +a19−2a20x1 +3a21x2
1)+Rs

di
dt

+ i
dRs

dt
(4.61)
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Now using equation (2.9)

ẏ1 = ẏ+
i(t)
Cc

(a16a17e−a17x1 +a19−2a20x1 +3a21x2
1)+Rs

di
dt

+
i(t)2

Cc
(a13a14e−a14x1)

(4.62)

Now consider that t→∞. Every battery can supply current for a certain amount of time,

say T > t0. For all t > T , i(t) = 0, y(t) = 0, x1(t) = 0 and ∴ for t > T , ẏ(t) = 0, i(t) = 0.

Using the above facts with equation (4.62) gives the fact that there exists some

time T > t0 such that for all t > T , ẏ(t) = 0. Also note that in reality the terminal

voltage may have spikes however ẏ(t) cannot practically be infinite (even if a battery

short circuit occurs).

∴ ẏ1(t) in equation (4.62) is bounded and goes to zero as time progresses. There-

fore
∫ t

to ẏ2
1(τ)dτ is bounded.

Now suppose that k(t)→ ∞ as t → ∞; and based on the above discussion and

using equation (4.58)

lim
t→∞

1
(k(t)− k(t0))

e2(t)<− 4
(k(t)− k(t0))

∫ k(t)

k(t0)
N(τ)dτ (4.63)

Now if k(t)→ ∞ as t → ∞ then by the definition of a Nussbaum function in equation

(3.10) the R.H.S of equation (4.63) can take values approaching −∞, and therefore this

will violate equation (4.63) as considering the definition of k(t) in equation (3.13), the

L.H.S of equation (4.63) is positive, and k(t)→ ∞ leads to a positive number less than

a negative number.

By this contradiction, the assumption that k(t)→∞ is false and therefore k(t) is

bounded. However k̇(t) is a non decreasing function by definition and k(t) is bounded.

This implies that k(t)→ k∞ as t→ ∞ which further implies that k̇(t)→ 0 as t→ ∞, i.e.

e2(t)→ 0 as t→ ∞ or e(t)→ 0 as t→ ∞, i.e. y1→ ŷ1 as t→ ∞.

Consider now that y1→ ŷ1, which implies that

−x2− x3 =−x̂2− x̂3 (4.64)

[−1 −1]
([

x2

x3

]
−
[

x̂2

x̂3

])
= 0 (4.65)
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The above implies x2 = x̂2, x3 = x̂3 and therefore also means that ẋ2 = ˙̂x2 and ẋ3 = ˙̂x3.

Let’s consider ẋ2 = ˙̂x2, which is written using equations (3.2) and (2.2) as

− x2(t)
Rts(x1)Cts(x1)

+
i(t)

Cts(x1)
=− x̂2(t)

R̂ts(x̂1)Ĉts(x̂1)
+u(t) (4.66)

Since it is proved above that e(t)→ 0 as t → ∞, u(t) =−N(k(t))e(t), i(t) is infinitesi-

mally small, and x2(t) = x̂2(t).

∴ all the terms in equation (4.66) cancel out providing

R̂tsĈts = RtsCts (4.67)

Considering ẋ3 = ̂̇x3 and following exactly the same arguments as above, it is similarly

possible to conclude that R̂tlĈtl = RtlCtl . This completes the proofs of the two required

results.

The above result proves that as long as the discharge current has a very small

value, the magnitude of the product of estimated RC pairs R̂tsĈts will equal the product

of the actual RC pairs RtsCts, regardless of the values to which the constants â1, · · · , â12

converge. Now we proceed to prove that the constants â1 to â12 converge.

Lemma 4.1.3. Let ˙̂ai(t) be defined by equation (3.18) then âi(t)→
λxiaiu+λyiail

λxi+λyi
as t→∞,

where λxi, λyi, aiu, ail are positive real numbers.

Proof. Taking the Laplace transform of equation (3.18) and rearranging terms gives.

sÂi(s)− âi(0) = L[e2(t)]+
λxiaiu +λyiail

s
− (λxi +λyi)Âi(s) (4.68)

Âi(s) =
L[e2(t)]

(s+λxi +λyi)
+

âi(0)
(s+λxi +λyi)

+
λxiaiu +λyiail

s(s+λxi +λyi)
(4.69)

Now applying final value theorem to equation (4.69) provides the following.

lim
t→∞

âi(t) = lim
s→0

sÂi(s) =
λxiaiu +λyiail

λxi +λyi

(4.70)

Therefore from equation (4.70) the required results are proved.
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Algorithm 1 Adaptive Li-ion battery parameter estimation algorithm (pseudocode)

• Physical requirements: A fully charged Li-ion battery, appropriate discharging,
data acquisition circuitry.
• Data: Initial time t0, time step tstep, termination time tmax. Parameters â16, · · · , â21

from ‘Step 1’ of the procedure in Section 4. Parameters âi(t0), aiu, ail , λxi, λyi
for i ∈ {1, · · · ,12} satisfying conditions required for Lemma 4.1.1 to hold. Very
small positive discharge current i(t) for t ≥ t0. Adaptive tracking error bound ε2 >
0. Initial conditions x̂1(t0) = 1, x̂2(t0) = x̂3(t0) = ŷ(t0) = 0, battery Ah capacity C.
• Output: Estimated battery parameters [â1, · · · , â12].

1: for t = t0 : tstep : tmax do
2: Read measured battery terminal voltage y, battery discharge current i.
3: Calculate e = y− ŷ
4: Find u as per equation (3.12).
5: Get estimated battery parameters âi according to equation (3.18) for i ∈
{1, · · · ,12}.

6: Compute state estimates x̂1, · · · , x̂3 using equations (3.2)-(3.3).
7: Update estimated battery terminal voltage ŷ using equation (4.1).
8: if e < ε2 then
9: Return [â1, · · · , â12]

10: Continue loop execution
11: else
12: Return Null
13: Continue loop execution
14: end if
15: end for

Lemma 4.1.3 shows that the parameters âi(t) for i = {1, · · ·12} converge to

values depending upon the choices of the weights λxi , λyi and the upper and lower

bounds aiu and ail . Note that Lemma 4.1.3 only guarantees convergence of âi(t) for i =

{1, · · ·12}, however, it does not guarantee that âi(t) convergence to the correct values.

Further, it is shown that this does not hinder extracting parameters R̂ts(x1), R̂tl(x1),

Ĉts(x1), Ĉtl(x1) accurately.

The error in estimation depends on the choice of upper and lower bounds. Sup-

pose Ĉts = Cts +∆, where ∆ is the error in estimation of model parameters due to the

assumption that i(t)→ 0 or due to improper choice of upper and lower bounds.

From the theorem R̂tsĈts = RtsCts

∴ R̂ts =
RtsCts

Ĉts +∆
=

Rts

1+ ∆

Cts

(4.71)
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The equation (4.71) provides an approximation of estimation error of Rts in terms of

error in estimating Cts. Similarly the following equation can be written.

∴ R̂tl =
RtlCtl

Ĉtl +∆
=

Rtl

1+ ∆

Ctl

(4.72)

The estimation procedure is shown in pseudo code presented in Algorithm 1.

4.1.1. Simulation results. This section comprises of simulation results using

the improved estimation method discussed in Section 4. In the simulation case, the

parameters â16 to â21 are already obtained as previously shown in Table 1, which are

extracted from the data given in [11]. Now that the parameters â16 to â21 are obtained,

the next step is to use the estimation technique to get parameters â1 to â12, whereas

parameters â13 to â15 will be obtained at the end using a separate calculation method.

For the parameters â1 to â12, the conditions mentioned in Lemma 4.1.1 are strictly fol-

lowed, which assures convergence as already validated in Section 4.1. Note that there

are some stability conditions that need to be met, and these conditions inform about

when the estimation needs to be stopped, so that the estimated values don’t give an

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

120

140

160

180

200

State of Charge (x
1
)

M
ag

n
it

u
d

e

 

 
Estimated a

8
(t)

Estimated a
11

(t)

Condition for a
8

Condition for a
11

Figure 19: Intersection point of â8 and â11 with their respective stability conditions.
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Figure 20: R̂tsĈts and R̂tlĈtl plots of estimated parameters versus Chen and Mora’s
parameters (Simulation Results)

unstable model. Note that in all the plots, the dashed vertical line shows the stabil-

ity condition δ1 = − 1
â8

ln
(

â9
â7

)
, the dotted vertical line shows the stability condition

Table 5: Simulation results for estimated parameters

Parameter U pper Bound(aiu) Lower Bound(ail) λxi λyi Initial Value Estimated Value Desired Value Estimation Error(%)

â1 1 0.1 50 50 180 0.5555 0.3208 42.25
â2 50 10 50 50 17 29.9996 29.14 2.86
â3 0.1 0.01 50 50 24 0.0557 0.04669 16.17
â4 10 1 50 50 3600 5.6095 6.603 17.71
â5 200 100 50 50 93 149.9983 155.2 3.47
â6 0.1 0.01 50 50 264 0.0630 0.04984 20.88
â7 1000 500 60 55 510 759.2573 752.9 0.837
â8 30 1 50 10 78 10.6712 13.51 26.6
â9 800 500 80 50 451 684.61 703.6 2.77
â10 7000 5000 10 10 420 5999.6 6056 0.94
â11 50 5 50 50 162 27.5014 27.12 1.386
â12 5000 3000 10 20 363 3666.6 4475 22.04
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Figure 21: (Top Left) Plot for R̂tl with required stability conditions (simulation result).
(Top Right) Plot for R̂ts with required stability conditions (simulation result). (Bottom
Left) Plot for Ĉtl with required stability conditions (simulation result). (Bottom Right)
Plot for Ĉts with required stability conditions (simulation result).

δ2 = − 1
â11

ln
(

â12
â10

)
. The dashed-dotted vertical line shows the state of charge point

found by the intersection of a8 found by using adaptive technique and the stability con-

dition− 1
x̂1(t)

ln
(

â9(t)
â7(t)

)
while the solid vertical line shows the state of charge point found

by the intersection of â11 found by using adaptive technique and the stability condition

− 1
x̂1(t)

ln
(

â12(t)
â10(t)

)
. In all the plots presented in the simulation section as well as the ex-

perimentation section, the vertical lines show the limits of these stability conditions.

The estimation technique needs to be stopped before these values are reached by the

parameters. If estimation is not stopped before these stability conditions are reached,

the model becomes unstable and the parameters extracted give unstable model. Once

the adaptive technique discussed in Section 4 is implemented, the intersection points

of â8 and â11 are found respectively for their stability conditions. This is presented in

Figure 19. After obtaining the points of the state of charge for each intersection, these
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Figure 22: Calculated R̂s values for different currents in comparison with Chen and
Mora’s values

points can be used to plot the vertical lines, which will show the criteria to stop the

estimation algorithm. Note that the proof discussed in Section 4.1 suggests that the

product R̂tlĈtl and R̂tsĈts converges even if the estimates of the individual parameters

(R̂tl , R̂ts, Ĉtl , and Ĉts) do not converge to the actual values independently by themselves,

which can be observed in Figure 20. This implies that even if there is some error in

estimating either the resistances or capacitances, the product of estimated resistance

and capacitance converges to the true value of the product, thus the battery model dy-

namics can be replicated reasonably well by using the estimated parameters. Further, if

bound on either the resistance or the capacitance values are known then the estimation

of the individual parameters can be improved. The individual plots for R̂tl , R̂ts, Ĉtl , and

Ĉts are shown in Figure 21. Once these parameters are obtained, the only thing left is

to find the parameters for R̂s (â13 to â15), which is computed using equation (4.2). It

can be observed that in equation (4.2), the current plays an important role, hence R̂s is

computed using different currents, and then an average value is obtained using the curve

fitting method. The plots are shown in Figure 22. This concludes the estimation process

Table 6: Values of parameters â13 to â15 (simulation)

Parameter â13 â14 â15

Desired Value 0.1562 24.37 0.07446
Estimated Value 0.4963 33.07 0.06546
Estimation Error 2.17 35.6 0.06546
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as now all the parameters are extracted. The obtained parameters along-with their re-

spective initial conditions and bounds are presented in Table 7, whereas the parameters

â13 to â15 are presented in Table 6. The parameters are shown in two different tables,

for ease of understanding, as parameters â1 to â12 are estimated using our proposed

estimation technique, whereas parameters â13 to â15 are calculated using the estimated

values of â1 to â12. The absolute estimation error in components R̂tl , Ĉtl , R̂ts, Ĉts and

the product R̂tlĈtl and R̂tsĈts is shown in Table 7. Once the parameters are extracted,

the estimated model with estimated parameters needs to be compared with the model

with original parameters from [11]. A 4V and 0.275mA battery was used in the simu-

lation as the original model [11] is available only for this rating. The estimation needs

to be validated by comparison to the original model. The plots shown in Figure 23 are

Table 7: Estimation error for components R̂tl , Ĉtl , R̂ts, Ĉts (simulation)

Component Absolute Average Estimation Error (%)

R̂ts 8.61
R̂tl 3.54
Ĉtl 1.326
Ĉts 19.166

R̂tsĈts 1.9225
R̂tlĈtl 0.0384
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presented to validate the extracted model against the original model from [11]. Note

that there are three plots in Figure 23, the runtime voltage represents the voltage curve

obtained while the parameter estimation is being performed in real time, whereas the

estimated voltage is obtained after the simulation is completed and the parameters are

extracted, which are used in the battery model. The comparison shows that both the

actual voltage and the estimated voltage match hence the battery parameter estimation

is satisfactory. The Simulink models used in this work are presented in Appendix A.
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Chapter 5: Experimental Validation

The experimental results of proposed adaptive parameter estimation on real Li-

ion batteries are presented in this section. The results are verified by discharging the

batteries using constant load at various fixed magnitudes, step discharge currents with

constant step magnitudes, and step discharge currents with variable step magnitudes.

This chapter is further subdivided into two sections: Section 5.1 describes the setup

used to conduct real life experiments, and Section 5.2 presents the results.

5.1. Experimental Setup

The block diagram of the experimental setup is shown in Figure 24. The Li-

ion battery is connected to a load through a current and voltage sensor for the volt-

age and current measurements. The dSpace DS 1104 control board is used to ac-

quire the data. The experimental test bench is shown in Figure 25. A Thunder Power

(T P6600− 6SP+ 25) Li-ion battery rated at 22.2V, 6.6 Ah is connected with PF2200

series power thin film resistors, which are used as a load. Two 25Ω,50W resistors are

used as individual, series and parallel combinations to construct the loads of 25Ω,50Ω,

and 12.5Ω, respectively. Also, two 50W,12V DC bulbs are used for rigorous load

testing. Both the load current and the battery terminal voltage are monitored using a

carefully calibrated LEM USA Inc LA 25-NP sensor and a 0-25V Arduino voltage sen-

sor, respectively. The load is changed by manually inserting or removing resistors with

different ratings to get the desired battery discharge currents. In order to maintain the

constant operating temperature for the load resistors, a heavy duty electrical fan (i.e.,

Figure 24: Block diagram for experimental setup
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Figure 25: Test bench for adaptive battery modeling experiments

2GDSu15− 120x126L) is used. This also helps in creating a safer work environment,

as it was observed that the temperature of the power resistors can reach above 50◦C.

The use of the fan gives more accurate results for the current and voltage curves as the

resistance of the load doesn’t change much with time due to cooling provided by the

fan.

5.2. Experimental Results

In this section the proposed adaptive battery parameter estimation methodology

is verified through experimental results. Note that the adaptive technique can be im-

plemented online as the battery discharges in real time, or offline as well by collecting

and saving the data for later use. The battery voltage and current data have been col-

lected through longer experimental runs which last about 4 to 16 hours. This results in

an extensive amount of data, which has been observed to limit the available computer

memory while running the adaptive methodology online. Therefore, the adaptive bat-

tery parameter estimation has been performed offline. The sampling frequency of the

experiment is set at 100 Hz.
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The experimental results are presented in the same order of conducting the tests.

The steps of the estimation are already explained in Figure 18 presented in Section 4.

5.2.1. Voltage relaxation tests. The no-load EMF curve of the above battery

required for estimating parameters â16 to â21 is obtained using the voltage relaxation

method. A voltage relaxation test is performed where each cycle consists of a 15 min

battery discharge stage followed by a 15 min rest stage to allow depolarization of the

battery [41]. The discharge and rest cycles are repeated until the battery is completely

Figure 26: Eo vs SOC for different discharge currents (experimental results)

discharged. Four individual runs are performed to obtain average values of parameters

â16 to â21. The voltage relaxation tests are conducted at different loads (25Ω, 50Ω,

12.5Ω and 50W DC Bulb) which correspond to average value of currents (860mA, 416

mA, 1741 mA and 3652 mA).

The curves presented in Figure 26 are obtained using the voltage relaxation

method for the above mentioned load currents. The current plots for different loads are

Table 8: Values of estimated parameters â16 to â21 from experimental results

Parameter â16 â17 â18 â19 â20 â21

Value 5.112 40.955 22.195 1.9215 1.7590 3.0435
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Figure 27: Current discharge curve for different loads during no load voltage relaxation
tests for E0 (experimental results)

presented in Figure 27 The relaxation time is selected to be fifteen minutes when doing

the voltage relaxation experiments. For each of the above four experiments, four sets of

data are obtained (i.e., four curves Ê0 vs SOC as shown in Figure 26). For each Ê0 vs

SOC curve, the parameters â16 to â21 are calculated by fitting equation (2.10) to the col-

lected data. The set of parameters obtained are named as follows: {â161, · · · , â211} cor-

responding to 25Ω load. Similarly, {â162, · · · , â212}, {â163, · · · , â213}, {â164 , · · · , â214}

are the parameters corresponding to loads of 50Ω, 12.5Ω and 50W DC Bulb, respec-

tively. To attain an accurate value of the estimated parameters over the entire range of

possible battery discharge currents, the parameters â16 to â21 are shown in Table 8, and

are computed as follows:

â16 =
1
4

4

∑
i=1

â16i (5.1)

...

â21 =
1
4

4

∑
i=1

â21i (5.2)

5.2.2. Adaptive battery parameter estimation. The battery terminal voltage

data corresponding to 50Ω as load, is used to estimate the battery parameters using

the adaptive parameter estimation methodology proposed in Section 4. This value of

current is used because the proof explained in 4 requires minimum current to estimate
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the parameters. Based upon the available loads, the minimum average current is 416mA

and hence this is selected to estimate the parameters. As shown in Section 4.1.1, the

estimation technique is used to get parameters â1 to â12, whereas parameters â13 to â15

will be obtained at the end using a separate calculation method. Further, â16 to â21 are

already obtained from curve fitting as discussed in Section 5.2.1. For the parameters â1

to â12, the conditions mentioned in 4.1.1 are followed. Figure 28 shows the intersection

of â8 and â11 with their corresponding conditions respectively. Hence, now the vertical

lines can be plotted indicating the stopping stability conditions for the experimental

case. The plots for R̂tlĈtl and R̂tsĈts are shown in Figure 29. The individual plots

for R̂tl , R̂ts, Ĉtl , and Ĉts are shown in Figure 30. The values of parameters â13 to â15

are presented in Table 9, whereas the rest of the parameters â1 to â12 are presented in

Table 10. Note that the initial values used in Table 10 are far away, but the parameters

still show convergence as proved in Lemma 4.1.1. This further shows that the proposed

estimation technique doesn’t depend on initial conditions.

5.2.3. Parameters for Rs. Once the parameters â1 to â12 are estimated, and

the parameters â16 to â21 are extracted using the relaxation tests, the parameters for R̂s
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can be calculated using equation (4.2). The plot of R̂s using different currents is shown

in Figure 31. The average value is also plotted in Figure 31. The parameters â13 to â15

are extracted using curve fitting on the calculated average Rs value and are presented in

Table 9.

5.3. Model Validation Under Variable Load Conditions

The battery model parameters obtained by estimation technique for a load cur-

rent corresponding to 50Ω load, are given in Table 10. The obtained model is rigor-
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Figure 30: (Top Left) Plot for R̂tl with stability conditions (experimental result). (Top
Right) Plot for R̂ts with stability conditions (experimental result). (Bottom Left) Plot
for Ĉtl with stability conditions (experimental result). (Bottom Right)Plot for Ĉts with
stability conditions (experimental result).

ously tested by defining the following testing protocols, until the battery is completely

discharged.

1. Constant loads of 50Ω, 25Ω and 12.5Ω using power resistors.

2. Constant load of 50W using DC bulbs.

Table 9: Values of parameters â13 to â15

Parameter â13 â14 â15

Experimental Value 0.0439 59.07 0.2246
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Figure 31: Calculated R̂s values for different currents

3. With a pulse discharge having no load for 15 mins and a load of 12.5Ω for 15

mins.

4. With a pulse discharge of variable loads.

Table 10: Experimental results for estimated parameters

Parameter U pper Bound(aiu) Lower Bound(ail) λxi λyi Initial Value Estimated Value

â1 1 0.1 50 50 1800 0.5505
â2 50 10 50 50 174000 30.0475
â3 0.1 0.01 50 50 240 0.0551
â4 10 1 50 50 36000 6.2585
â5 200 100 50 50 9300 30
â6 0.1 0.01 50 50 264 0.0551
â7 1000 500 60 55 4512000 760.2266
â8 30 1 50 10 78000 10.7686
â9 800 500 80 50 5100000 685.7457
â10 7000 5000 10 10 36300000 6036.4
â11 50 5 50 50 162000 27.5422
â12 5000 3000 10 20 42000000 3696
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Figure 32: (a) Actual model vs estimated model comparison for 25Ω load (b) Actual
model vs estimated model comparison for 50Ω load (c) Actual model vs estimated
model comparison for 12.5Ω load (d) Actual model vs estimated model comparison for
50W DC bulb as load.

It is worth mentioning that for all these tests, the battery model parameters â1 to â12 are

kept the same as in Table 10 i.e. parameters as estimated with a load current of 50Ω to

test their insensitivity to any load change. Also, parameters â16 to â21 are kept the same

as in Table 8. And parameters â13 to â15 are kept the same as in Table 9.

5.3.1. Model testing for test protocol 1 and 2. The experimental results for

the constant loads are shown in Figure 32. The subplots (a), (b) and (c) show the

terminal voltage curves corresponding to 25Ω load, 50Ω load and 12.5Ω load, using

the power resistors. The subplot (d) shows the curve for 50W DC blub as a load. The
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Figure 33: (a) Estimation error for 25Ω load(b) Estimation error for 50Ω load(c) Esti-
mation error for 12.5Ω load (d) Estimation error for 50W DC bulb as load.

subplots (a) to (d) in Figure 32 show that actual battery output voltage and the estimated

model’s output voltage overlap with each other. The estimation error is negligibly small

for these constant discharge currents as presented in Figure 33. The load currents plots

are presented in Figure 34. The maximum magnitude of the error is 0.9%. These tests

validate that the designed battery model is independent of the magnitude and the type

of load.

5.3.2. Model testing for test protocol 3 and 4. The battery is discharged

according to testing protocol 3 (i.e., with a pulse discharge having no load for 15 mins

and a load of 12.5Ω for 15 mins.), and the results are presented in Figure 35. The

obtained curve is then compared with the output voltage curve of the estimated model.

The plots for load currents are shown in Figure 36. The maximum magnitude of the

error is 0.8%. Note that the model was obtained by running the adaptive parameter
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Figure 34: (a) Load current plot for discharge using 25Ω as load (b) Load current plot
for discharge using 50Ω as load (c) Load current plot for discharge using 12.5Ω as
load(d) Load current plot for discharge using 50W DC bulb as a load.

estimation method with a constant load of 50Ω, yet it is effectively able to estimate

the output voltage accurately under the loading condition of testing protocol 3. Testing

protocol 4 has a variable step discharge, in contrast to testing protocol 3, for rigorous

testing of the estimated model. The experiment is started with a load of 12.5Ω. The

load is increased to a 50W DC bulb and then decreased again to 12.5Ω with variable

time intervals. The results for actual and estimated voltage are plotted in Figure 37. The

magnitude of the error e(t) is presented in Figure 38 for both constant step discharge and

variable step discharge, and it shows that the estimated voltage and the actual battery
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Figure 35: Actual battery vs output response with estimated parameters with respect to
time (experimental results for constant step discharge)

discharge voltage are close to each other. The maximum value of the estimation error

e(t) is 1.5%, whereas most of the time it is close to 0.1% as observed in Figure 38.

It is observed that the battery model gives an accurate estimate of the battery output

voltage even under the variable magnitude square wave discharge. Hence all these

Figure 36: (a) Load current plot for constant step discharge current (b) Load current
plot for variable step discharge current
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Figure 37: Actual battery vs output response with estimated parameters with respect to
time (experimental results for variable step discharge)

extensive experimental results show the accuracy of the Li-ion battery model obtained

by adaptive parameter estimation.

Figure 38: (a) Estimation error for constant step discharge (b) Estimation error for
variable step discharge
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Chapter 6: Comparative Analysis and Limitations

In this chapter, a summary of the thesis work is provided, and the limitations of

the proposed battery model parameters estimation technique are discussed. The work

proposes an adaptive estimation methodology to estimate the battery model parameters

for Chen and Mora’s model. The model used in this work, ignores the self discharg-

ing property of the batteries to simplify the model, hence our estimation technique is

also not able to capture this effect. Moreover, the state of charge in this estimation

technique is assumed to be the same as given by the original Chen and Mora’s model,

hence the state of charge is not being estimated using this modeling technique. Some

improvements can be done to cover these aspects of the modeling technique to make

the technique more intensive and more useful for accurate battery modeling. The es-
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Figure 39: Dynamic model and static model with respect to time (transient response)

Table 11: Voltage estimation error for different load cases

Test Cases Average Estimation Error for Output Voltage (%)
25Ω power resistor as constant load 0.234
50Ω power resistor as constant load 0.2697

12.5Ω power resistor as constant load 0.3390
50W DC bulb as constant load 0.1805

Constant step discharge 0.4744
Variable step discharge 0.4645
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Table 12: Estimation error by using dynamic and static approaches (simulation results)

Model Average Absolute Estimation Error for Output Voltage (%)
Estimated Dynamic Model 4.5

Estimated Static Model 6.44

timation errors between the estimated parameters â1 to â15 are shown in Table 6 and

Table 7. The curves for the estimation error between the actual output and the model

output are shown in Section 5 and the percentage errors are shown in Table 11. Note

that despite using some assumptions in the estimation methodology, the error in the

output voltage curves is very small. The methodology can be improved to reduce these

errors and make the model more accurate as it is observed that the equation for R̂s gives

some error in the calculation. Moreover, very small current is needed to estimate the

parameters accurately so to reduce the error in the output, the current can be further

reduced.

The Chen and Mora’s model is a dynamic model, and this model is selected

in this work so that all the dynamic characteristics i.e. no load open circuit voltage,

transient response, and usable capacity of the battery can be captured. A comparison

of the Chen and Mora’s model with a static model is shown in Figure 39 for simulation
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Figure 40: Actual voltage, dynamic model and static Model with respect to time. (tran-
sient response)
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results. The average absolute error is presented in Table 12. The dynamic model is

different than the static model in the region with low state of charge, this indicates that

it is more accurate to use the state of charge x1 in the parameters to capture all the

effects of the battery model, which is the case with Chen and Mora’s battery model.

These results show that the dynamic model gives more accurate information about the

battery. The experimental results are shown in comparison with the static and dynamic

approaches in Figure 40. It can be observed that the dynamic model is more closer to

the actual battery’s voltage output. The average absolute error is presented in Table 13.

Table 13: Estimation error by using dynamic and static approaches (experimental re-
sults)

Model Average Estimation Error for Output Voltage (%)
Estimated Dynamic Model 0.003

Estimated Static Model 0.358
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Chapter 7: Future Work

The work done in this thesis is versatile and can be applied to the following

different scenarios namely:

1. SOC Estimation.

2. Battery Fault Detection.

3. Estimating Parameters of a Fuel Cell.

The following sections provide a brief glimpse into each of the above mentioned items.

7.1. SOC Estimation

State of charge estimation can be done using the estimated battery model as fol-

lows. The E0 curve obtained by the voltage relaxation test and the Ê0 curve based on

the estimated model are used in a look-up table and interpolation technique is used to

extract the correct state of charge of the battery at any time instant. Note that in our

parameter identification technique, coulomb counting is used to calculate the state of

charge of the battery, this interpolation technique provides an alternative to extract a

more accurate state of charge of the battery. The extracted state of charge is shown

in Figure 41 alongwith the state of charge obtained using the coulomb counting. Note
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Figure 41: SOC plot for Coulomb counting vs estimated soc using constant load of
50W DC Bulb
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Figure 42: E0 plot versus SOC using Coulomb counting vs estimated SOC using inter-
polation for constant current

that the E0 curve for both cases is also shown in Figure 42. Hence this could lead to

future work that studies and applies the state of charge estimation of a Li-ion battery us-

ing the universal adaptive stabilization technique, onto real battery energy management

systems.

7.2. Battery Fault Detection

Another line of work that can be explored on the basis of the work in this thesis

is battery fault detection. In most of the applications, there are battery banks comprising

of huge number of batteries. If there is a faulty battery in the bank, it would keep on

degrading in every cycle as the battery might be discharged more than the threshold

limit. If this happens, the battery life gets damaged.

The first step is to estimate the parameters of the whole battery bank and get a

model for an entire battery bank composed of many individual Li-ion batteries. Once

this model is obtained, it can be used as a reference to compare the Eo curve of the

bank at every cycle. If the comparison shows a difference in the state of charge of both

models, it indicates that there is a faulty battery. An algorithm can be developed to

sound alarm once a faulty battery is found. This can avoid catastrophic failure of an
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entire battery bank due to overheating and thermal runaway caused by a single faulty

battery.

The method using the Eo curve for battery fault detection is simulated for three

battery banks and the result is shown in Figure 43. Note that two batteries were started

at a lesser state of charge and one battery had the full state of charge. That’s why

the plot shows two dips corresponding to each battery’s failure. An algorithm can be

developed to detect the point at which these dips occur and the comparison with the

estimated E0 in a look-up table can give the correct time at which the fault occurs, and

proper measures can be taken to disconnect the specific battery from the bank at that

time. A future extension of this work could develop a pre-warning system which alerts

Figure 44: Experimental setup of a 30W fuel cell.
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Figure 45: Voltage discharge curve of a 30W fuel cell.

a user if one of the batteries in a bank is about to fail, based only on the measurements

of voltage and current at the bank level. This will therefore reduce the cost associated

with installing a wiring sensor to each individual battery for detecting faults.

7.3. Estimating Model Parameters of a Fuel Cell

A small 30W fuel cell system shown in Figure 44 was used to obtain a voltage

curve presented in Figure 45. The adaptive parameter estimation technique developed
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Figure 46: Voltage discharge curve versus the estimated voltage curve of a 30W fuel
cell.
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in this work can be applied to a given model of a fuel cell, and model parameters can

be extracted. The initial results of estimation technique are shown in Figure 46. This

is obtained using a simple equivalent circuit model, thus the strengths of the proposed

estimation technique are obvious as it is versatile and can be applied to a variety of sys-

tems. Usually the fuel cells have very complicated models and need a lot of parameters.

The modeling technique can be made less complicated by using the adaptive parameter

estimation technique along with simple equivalent circuit models.
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Chapter 8: Conclusion

In this work a high gain adaptive observer-based battery model parameters esti-

mation technique is presented for Li-ion batteries. The methodology assumes that the

batteries have a particular structure inspired by Chen and Mora’s battery model. The

Li-ion battery model requires twenty one parameters out of which six parameters cor-

responding to the shape of the no-load EMF curve are obtained via a voltage relaxation

test and curve fitting. The remaining parameters are estimated using an adaptive pa-

rameters estimation technique. Initially three schemes are proposed for the adaptive pa-

rameter estimation of the desired parameters. Based on the observations, an improved

estimation technique is proposed which requires less experimentation to estimate the

battery model parameters.

The battery model parameters estimation techniques have been thoroughly sim-

ulated and experimentally validated. The experiments are done on constant loads as well

as variable loads to check the accuracy of the estimated model. The estimated model

performs reasonably accurately and the estimation error is very small. The mathemat-

ical proof is also presented showing the convergence of the parameters to the actual

values which further validates our work. The novel contributions of this work are: (i)

The development of battery model parameters estimation methodology using a uni-

versal adaptive stabilizer, which provides battery parameters that are independent of

the magnitude and type of load; (ii) The proposed technique requires only a few tests

to produce a sufficiently accurate model in contrast to experimental battery modeling

techniques available in the literature requiring many charge/discharge tests on a battery.
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Appendix-A: Simulink models

The simulink models used in the proposed battery estimation technique are pre-

sented in Figures 47-49. The Mittag-Leffler function is also shown in Figure 50.

Figure 47: Simulink diagram of overall algorithm

Figure 48: Adaptive model block
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Figure 49: Cts block

Figure 50: Mittag-Leffler function used in simulation
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