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Abstract 
 
 

 Fluid-Structure Interaction (FSI) occurs due to interaction of multiple 

continuum fields. In our daily life, FSI is a common phenomenon. Birds flying in the 

air, leaves falling off the tree and waving flags are examples of the interaction of a 

structure with air. The forces of fluid (liquid/gas) that are acting on the structure will 

deform the adjacent elastic solid structure. The structural deformations are mainly 

enforced by fluid fields, acoustic fields and external forces. This work aims at 

demonstrating how variations of geometries' parameters would affect the fluid 

loading effect in water using COMSOL Multiphysics 4.4 and compared with 

analytical data. Three-dimensional objects are placed in a water medium. A solid 

circular cylinder, a solid sphere, and a rectangular cantilever beam are placed in water 

and the acoustic wave is applied to the objects. More specifically, background 

acoustic pressure has been used to simulate an incident plane wave which excites the 

structures in water. Additionally, the inlet velocity and an outlet pressure are applied 

for fluid structure interaction investigation. When a structure is placed in water, the 

interaction between them plays an important role in determining the amount of fluid 

loading mass. The calculated results of added mass of the common geometry shapes 

match well with the analytical calculations and the discrepancy behavior of added 

mass amount due to the establishment of variation of geometries' parameters. More 

specifically, this research introduces an added mass effect study for fluid structure 

interaction while a specific micro electro mechanical system is submerged in water 

medium. Subsequently, based on the mentioned studies, an added mass formulation is 

derived for a specific MEMS (Micro Electro Mechanical System). 

 

Search Terms: Fluid Structure Interaction, Added Mass, Common Geometry 

Shapes, Formulation, MEMS, Acoustics 
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Chapter 1. Introduction 
 

1.1. Overview 

 

 Fluid Structure Interaction (FSI) is the study of a structure that is surrounded 

by flowing and in some cases stationary fluid. FSI does have great relevance to 

numerous engineering applications, such as fluttering and buffeting of bridges, 

vibration of wind turbines, wind-plant contacts, aeroelastic response of airplane and 

several natural streams, such as blood flow in the vessels. When an object is moving 

in a fluid, the fluid surrounding the body will be displaced. The amount and direction 

of the displaced fluid are dependent on a number of criteria; for instance, the shape 

and orientation of the body, the amount of fluid surrounding the body, the type of the 

fluid and the external forces. The force required to accelerate the body immersed in 

fluid is much more than that needed in the case of air. The additional force will be 

needed in terms of added mass of the object in the fluid which will be added to the 

equation of motion. Finite Element Analysis (FEA) is a practical application of Finite 

Element Method (FEM) which is mostly used for studying the behavior of such 

coupling problems. Engineers and scientists are frequently using the FEM in order to 

model and solve the complex coupling multiphysics structure, mathematically and 

numerically respectively. The FEA application is also used to describe the Micro 

Electro Mechanical Systems (MEMS) behavior under water, which is the main focus 

of this study.  

Micro Electro Mechanical System (MEMS) devices are trademark technology 

for the 21st century. Their ability to sense, analyze, compute and control all inside a 

single chip offers numerous innovative and influential products [1]. MEMS device is 

an up-and-coming device in a number of areas of science and technology, such as 

engineering structures, electronics, chemistry, physics, biology and health sciences. 

The two major key features of MEMS based devices are mechanical based structure 

to an electrical chip which gives a vast improvement to performance and 

functionality. These devices have been particularly used in the current marketplace for 

computer storage systems and automobiles due to the widespread use of sensors and 

actuators. Different kinds of sensors are used to sense the environmental conditions, 

and actuators are used to implement any action that is required to deal with the 

corresponding condition happening. Most MEMS devices are primarily based on 
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mechanical structures, such as beam, pump, gears and motors, as shown in Figure 1 

[1].  

 

 

Figure 1: MEMS devices: (a) Micropump, (b) Micromotor, (c) Microbeam, (d) 

Microgear [1] 

 

     It has been stated that the simplest devices among MEMS are the beam based  

sensors in which they provide an extreme bright future for the evolution of new 

physical, chemical and biological sensors [1]. They are also verified to be 

multipurpose devices and are used in numerous fields, such as accelerometers and 

chemical sensors. MEMS beam based sensors mainly depend on the mechanical 

deformation of the beam. When the beam is burdened, the under stress elements will 

deform in which the structure shape changes and its corresponding static and dynamic 

behavior would be different than its unburdened case. The main idea behind the 

deflection comes from a load applied on the beam sides or along the surface. 

Normally, the loadings are either force applied on the structure or the added mass 

overwhelming/attached on the structure [1]. 
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1.2. Objective 

 

  The primary objective of this study is to compute the hydrodynamic (added) 

mass of common geometry shapes, such as rectangular cantilever beam, solid sphere 

and circular cylinder. An extension of this objective is to determine the computed 

added mass with the variation of geometric parameters, so that such correlations may 

be used for designing sensor/transducers for underwater applications. In order to 

analyze how structures are experiencing the added mass loading effect differently by 

varying its geometry parameters, it is necessary to investigate the effect of each 

dimension of its geometry by comparing the numerical values of added mass. The 

following parametric study would be utilized to approximate the complicated 

geometry into a simple one. This methodology is used for determining the effect of 

added mass for the specific MEMS concerned in this study. This study might not be 

exact; however, it will at least provide a ballpark figure. 

1.3. Thesis Report Organization 

 

 The current thesis is preceded with literature review on the added mass 

studies for the common geometry shapes and the MEMS in chapter 2. This is 

followed by the parametric study for the common geometry shapes and their 

corresponding added mass effects in chapter 3 and chapter 4, respectively. 

Furthermore, the added mass study for the specific beam based MEMS is presented 

in both mathematical and simulation based data in chapter 5. Chapter 6 concludes the 

presented study and suggests recommendations for future research.    
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Chapter 2. Literature Review 
 

 2.1. Common Geometry Shapes 

  

  Fluid Structure Interaction (FSI) occurs due to the interaction of multiple 

continuum fields. The added mass loading, also called hydrodynamic mass, is one of 

the most common FSI phenomenon. Basically, the added mass effect is when a 

structure acts as if it were heavier when it interacts with an external fluid continuum. 

Calculation of added mass has been widely studied in terms of deriving analytical 

formulas for the flexural and torsional resonant frequencies of common geometry 

shapes, such as cantilever beams, cylinders and spheres mostly. Various MEMS have 

been used in AFM for decades. Atomic force microscopy is a scanning probe with 

high resolution on order of a fraction of a nanometer [2]. Major efforts, both 

experimental and theoretical, have been done to study and understand the behavior of 

such elastic devices. Understanding the frequency behavior of such systems is 

dominant in the application to the atomic force microscope [3]. The frequency 

response of such elastic devices is highly reactive to the nature of the fluid in which 

they are immersed [2].  

 Sader et al. [4] used Elmer and Dreier's method to derive explicit analytical 

formulae for the numerical quantity of added mass, specifically for the rectangular 

cantilever beam. Sader et al. demonstrated a general hypothetical model for the 

frequency response of cantilever beam with an arbitrary cross sectional area. In this 

model, the cantilever beam is energized by a random driving force while immersed in 

a viscous fluid while assuming an arbitrary fluid density as well as the viscosity. The 

fundamental assumptions made toward the cantilever beam analysis are small 

vibration amplitude, incompressible fluid and the length of the beam must 

significantly exceed its width [4]. The general formulation is made based on 

specification of the hydrodynamic function that considered the cross section of the 

beam which was set to be a rectangular cross section. Depending on this study, the 

ratio between wet and dry natural frequencies is derived for different modes of 

vibration. The obtained formula can be used for obtaining the added mass effect on 

the rectangular cantilever beam. On the other hand, Liu et al. [5] propose an added 

mass matrix model based on dynamic responses of the beam when it is in contact with 

air and water where it can replicate any influence made by change in depth of water. 
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In this work, the real structure and the FEM models are used for validation of the 

proposed model as well as experimentation. There is an added mass correction factor 

proposed in Liu's [5] model, which compensates for the variation of the mass and 

stiffness matrices in real structure and the FEM analysis. One of the greatest 

improvements in this study is that this method could approximate the added mass 

matrix of water without consideration of any water related assumptions since all the 

water effects are represented in measured dynamic responses of the structure 

immersed in water.   

 Causin et al. [6] proposed a fluid structure model that simulates the 

propagation and encounters the added mass effect of incompressible fluid while a 

circular cylinder is immersed in water. In this model, a numerical and mathematical 

representation is proposed in order to clarify the coupled behavior of the cylinder 

immersed in water. The model represents the interaction between potential fluids 

coupling with linear elastic circular cylinder. This model has the capability to 

replicate the propagation phenomena; moreover, it accounts for the added mass effect 

of the fluid on the structure. More specifically, the fluid is presented by the Navier-

Stokes equations in Arbitrary Lagrangian Eulerian formulation, and the cylinder at 

rest is described using a one-dimensional generalized string model [6]. Singhal et al. 

[7] derived an analytical model to describe the true and exact modes of vibration and 

corresponding natural frequencies of a circular cylinder and to find the added mass 

effect on the structure. The modal analysis was done through FEA, and the 

corresponding natural frequencies were obtained. The structure is described using the 

three-dimensional elastic theory, and the natural frequencies are derived through the 

well known energy method. Lastly, Singhal et al. [7] made an experimental setup to 

validate the model, and the obtained experimental data correspond to theoretical 

values. Lozzo et al. [8] studied the dynamic behavior of a circular cylinder submerged 

in water while the flexural oscillation was applied. The circular cylinder structure is 

idealized using one dimensional Euler Bernoulli beam and is immersed in water, 

where water is described through the potential theory. The sectional added mass 

corresponding to the inertial effects of hydrodynamic forces is firstly determined 

assuming cosine type deflected shape. Then, a lumped mass model is established, and 

the finite element method is devoted for finding the primary wet natural frequencies 

[8].  
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 Govardhan et al. [9] focused on the study of the vorticities, forces and 

displacements to describe the dynamic behavior of the elastic sphere immersed in 

steady flow water. In their study, the behavior of sphere is described using the 

dynamics equation of the motion, considering the applied force on the structure by 

representing a phase angle between fluid force and body displacement. Using these 

equations, the natural frequencies for each mode are found in the case of vacuum. The 

corresponding wet natural frequencies are obtained through FEA analysis, and the 

added mass values are obtained for each mode. Experimentation was also performed 

to validate the obtained theoretical values. In another study of added mass for a 

sphere, Fackrell [10] developed a model in order to determine the forces acting on the 

sphere. He proposed two methods for dividing the total into unsteady drag and added 

mass components. The first approach relies on the linear form of equation that relates 

the added mass, dimensionless force, viscous drag and dimensionless displacement. 

The second method proposed is the Optimized Cubic Spline Method (OCSM) that 

uses cubic splines to estimate the added mass coefficient when a body is immersed in 

water. In Fackrell's study, the dynamic behavior of the sphere coupling with water is 

represented through elastic and potential theory, respectively. On the other hand, 

Ghassemi et al. [11] focused on calculating the added mass coefficient for the 

immersed sphere using numerical boundary element method. In their study, the fluid 

is assumed to be compressible and inviscid. Furthermore, the hydrodynamic forces 

and moments are determined by fluid inertia and the corresponding viscous properties 

due to the movement of immersed sphere. The method used in this study basically 

represents the hydrodynamic forces and the inertia as added mass terms. Kinetic 

energy of the fluid is described coupled with the dynamic behavior of the body along 

numerical methods such as Strip theory which could result in the added mass 

coefficient. Furthermore, the added mass coefficient obtained in this study has been 

validated along with the analytical value for the added mass. Moreover, the obtained 

added mass values were validated through experimentation.   

2.2. Research Methodology  
 

 In this study, two hydrodynamics mass equations from White's work in [12] 

are used to estimate the analytical added mass value for each freely placed sphere and 

circular cylinder when the medium is accelerated at a certain rate. Moreover, the 
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equations of flexural and torsional resonant frequencies of a rectangular cantilever 

beam from Sader's et al. [4] study are used to evaluate the analytical amount of added 

mass when an incident plane wave excites both fluid and structure. The numerical 

added mass values of the structures obtained from both acoustic domain analysis and 

fluid domain analysis are compared to each other as well as with the analytical values. 

Finally, the obtained result shows how varying any of the geometries' parameters 

results in different added mass. In COMSOL Multiphysics 4.4 module, the Acoustic 

module is used through a frequency domain analysis which will consequently lead to 

the study of added mass for a beam based MEMS. 
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Chapter 3. Added Mass Effect Parametric Study 

3.1. Theory  

 

  A rectangular cantilever beam is one of the structures considered for this 

parametric study. Chu [13] represents the relationship of the natural frequency of a 

beam in different mediums in terms of fluid ff and vacuum fv. The script   is the 

density of fluid,    is density of the beam, and h and b are thickness and width of the 

beam, respectively. Equation 3.1 is valid for both viscid and inviscid stationary fluid 

model at macroscopic level.  

                      ff 

2/1

4
1


















hc

b
vf 

                                                        (3.1)  

 

 A solid sphere and a circular cylinder are other geometries that are considered 

for this parametric study. In the following study, R is the radius of the sphere, and the 

symbols R and L are considered for the radius and the length of the circular cylinder 

respectively, while both are immersed in water with a density of ρ. The summation of 

forces on the system will be in terms of mass of the body and hydrodynamic mass 

(  ). Based on the potential theory [8], the hydrodynamic mass depends on the shape 

of a body and the direction of the flow stream and can be calculated by summing the 

total kinetic energy of the fluid relating it to the kinetic energy of the body where dm 

is the mass element. In this context, the Vrel and U are velocity of the fluid associated 

with the body and velocity of fluid, respectively. Elgabaili [14] used the calculation of 

relative velocity (Vrel) as an approach for determining the added mass value when the 

body and fluid are moving at a certain velocity in which R is the radius, r is the radial 

direction, and θ is the azimuthal angle. However, in this parametric study, water is 

flowing at a certain velocity over the immersed structure. These equations are shown 

in Equations 3.2 - 3.5, where Equations 3.4 and 3.5 are the hydrodynamic mass of 

submerged sphere and cylinder, respectively. 
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 The 3D fluid structure interaction module in COMSOL Multiphysics 4.4 is 

used through a frequency domain analysis and a transient analysis to demonstrate the 

added mass loading effect. The geometry shapes are all made of aluminum 3003-H18, 

and the dimensions for the given geometries are provided in Table 1. This parametric 

study is mainly done through varying any of the geometries' parameters that would 

result in added masses. In order to run the cantilever beam simulation, one of the 

parameters is varied while the other two parameters are kept fixed. This simulation is 

repeated until all the parameters are varied while one of the parameters is constant. 

For the case of a sphere, its radius was changing through a range of values to analyze 

its effect on the added mass value. Finally, for a circular cylinder, either the radius 

was kept and the length was varied or vice versa. 

 

Table 1: Baseline Parameters of Geometry Shapes 

Rectangular Cantilever beam 

Type Symbol Value 

Width 

Height 

Length 

b 

a 

L 

0.1 m 

0.5 m 

4 m 

Solid Circular cylinder 

Type Symbol Value 

Radius 

Length 

R 

L 

0.5 m 

4 m 

Solid Sphere 

Type Symbol Value 

Radius R 0.5 m 

 

 

 In the pressure acoustic module, the acoustic wave is applied to the fluid 

medium which is water, immersing the geometries. More specifically, the background 

acoustic pressure field is used to generate a travelling plane wave which excites the 

structure in the water. Regarding the boundary conditions in the fluid structure 

interaction module, an inlet velocity of 1 m/s and an outlet pressure of 0 kPa are 

applied on the encountering water domain to study the fluid structure interaction, and 

the water domain outer faces are regarded as hard walls.   

 The rectangular cantilever beam structure is fixed at one end, and it is 

immersed in a rectangular water environment in both pressure Acoustics and 

Computational Fluid Dynamics (CFD) studies. On the other hand, for a sphere and a 
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circular cylinder, the water environment is modeled as a sphere and a box in pressure 

Acoustics and CFD studies, respectively and the geometries are freely spaced in these 

environments. 

 In fluid solid interaction module, all domains are meshed by Free Tetrahedral 

elements. Whereas, in the acoustic module, the computational mesh has to provide 

adequate resolution of the waves. In 3D acoustic models, it is essential to have a 

minimum of 6 elements per wavelength λ, and the maximum element size for mesh is 

the wavelength over 6, Lmax=λ/6=c/6f , where c and f are the speed of sound and 

driving frequency, respectively.  In the case of Acoustics module, both of global and 

sub models are solved in Eigen frequency and frequency domain. In the fluid structure 

interaction module, the model is solved using time dependent domain analysis.  

 Based on COMSOL simulations, the Eigen frequencies and kinetic energies 

are utilized to calculate the added mass in Acoustics and fluid structure interaction 

modules, respectively. Time harmonic analyses are performed under two different 

medium: water and air. The frequency responses obtained from the simulations, for 

the case of air, are represented in Figures 2 and 3. The similar plots were used for 

each parametric case, in two mediums, in order to find the wet (
wetW ) and dry (

dryW ) 

natural frequencies. 

 

 
 

Figure 2: Frequency Response of Solid Sphere 
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Figure 3: Frequency Response of Solid Circular Cylinder 

 

 In the case of fluid structure interaction, the average kinetic energy of the 

structure is obtained over one period of time using body surface integration. The 

calculated added mass of the common geometry shapes along with the analytical 

calculations, and the discrepancy behavior of added mass amount due to variation of 

geometries' parameters will be represented later in this text. Based on the obtained 

data, a percentage difference between the added mass values obtained from the two 

modules is calculated and is defined as "E (%) with CFD". In the COMSOL 

simulation, the total surface displacement result is represented for the geometry 

undergoing this parametric study. 

 3.1.1. Rectangular Cantilever Beam. The obtained numerical values of 

added mass for the cantilever beam using fluid structure interaction module are 

provided in Table 2 - 4. Based on White's [12] study, the integration of relative 

velocity to find the fluid kinetic energy (KEfluid) can be obtained using body surface 

integration based on Equation 3.2.   
 

                       )(2 baLb
h

m                                                    (3.6) 

Equation 3.6 from white's [13] study provides the hydrodynamic mass of a submerged 

cantilever beam where a and b are the height and the width of the beam. 
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Table 2: Fixed Length "L=4" using Kinetic Energy Method 

Height a 

(m) 

Width b  

(m) 

Body Mass 

(Kg) 

Added Mass 

(Kg) 

0.5 0.1 546.00 542.68 

0.6 0.2 1310.40 1401.34 

0.7 0.3 2293.20 2270.51 

0.8 0.4 3494.40 3440.19 

0.9 0.5 4914.00 4789.53 

1 0.6 6552.00 6497.11 

0.4 0.7 3057.60 3009.24 

0.3 0.8 2620.80 2600.15 

0.2 0.9 1965.60 1901.79 

0.1 1 1092.00 1030.57 

 

Table 3: Fixed Height "a=0.5" using Kinetic Energy Method 

Length L 

(m) 

Width b 

(m) 

Body Mass 

(Kg) 

Added Mass 

(Kg) 

4 0.1 546.00 542.68 

3 0.2 819.00 950.96 

2 0.3 819.00 809.79 

1 0.4 546.00 542.53 

5 0.5 3412.50 3398.87 

6 0.6 4914.00 4876.25 

7 0.7 6688.50 6592.95 

8 0.8 8736.00 8688.19 

9 0.9 11056.50 10997.58 

10 1 13650.00 13255.37 

 

Table 4: Fixed Width "b=0.1" using Kinetic Energy Method 

Length L 

 (m) 

Height a 

(m) 

Body Mass 

(Kg) 

Added Mass 

(Kg) 

4 0.5 546.00 542.68 

3 0.4 327.60 321.84 

2 0.3 163.80 171.51 

1 0.2 54.60 53.45 

5 0.1 136.50 223.18 

6 0.6 982.80 966.68 

7 0.7 1337.7 1333.92 

8 0.8 1747.20 1736.35 

9 0.9 2211.30 2188.86 

10 1 2730.00 2692.15 
  

 According to the obtained data, as the cross section of the rectangular 

cantilever beam increases, the numerical value of added mass increases. When the 
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length is kept constant, the added mass value increases as the cross section increases 

in dimension, and it decreases while the cross section decreases. The obtained 

differences in percentage is relatively high, which indicates the need for further 

investigation on parametric analysis.  

 In the case of pressure Acoustics simulation, the wet and dry natural 

frequencies are obtained from the frequency plots. These natural frequencies are used 

in relation with what Sader et al. [4] suggested for the added mass. In order to find the 

natural frequency of the submerged cantilever beam, an incident plane wave is 

applied through a range of different frequencies in both air and water mediums, such 

as 10 Hz and 60 Hz as shown in Figures 4 and 5, respectively. 

 
 

Figure 4: Surface Total Displacement in Frequency Domain of 10 [Hz] 

 

 
 

 

Figure 5: Surface Total Displacement in Frequency Domain of 60 [Hz] 
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 The analytical equations used for acoustics calculations are provided in 

Equations 3.7 - 3.12, where the mass moment of inertia I, Young's modulus of 

elasticity E, cross sectional area A and dry natural frequency equations are used to 

find the added mass value. 
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Consequently, calculations to find the added mass are done. On the other hand, the 

calculated added mass using pressure acoustic module is tabulated in Tables 5 - 7. 

 

Table 5: Fixed Length "L=4" using Pressure Acoustics Module 

Height a 

(m) 

Width b  

(m) 

W_wet 

(rad/s) 

W_dry 

(rad/s) 

Body 

Mass (Kg) 

Added Mass  

(Kg) 

E(%) with 

CFD 

0.5 0.1 155.07 159.47 546.00 543.29 0.13 

0.6 0.2 182.76 191.33 1310.40 1296.17 0.17 

0.7 0.3 210.61 223.22 2293.20 2276.13 0.25 

0.8 0.4 238.06 254.61 3494.40 3457.14 0.49 

0.9 0.5 266.16 286.64 4914.00 4823.99 0.72 

1 0.6 294.48 318.89 6552.00 6502.91 0.18 

0.4 0.7 103.97 127.49 3057.60 3016.73 0.25 

0.3 0.8 71.96 95.67 2620.80 2605.47 0.21 

0.2 0.9 32.39 63.78 1965.60 1905.21 0.18 

0.1 1 16.19 31.89 1092.00 1058.68 0.17 
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Table 6: Fixed Height "a=0.5" using Pressure Acoustics Module 

Length L 

(m) 

Width b 

(m) 

W_wet 

(rad/s) 

W_dry 

(rad/s) 

Body 

Mass (Kg) 

Added Mass 

(Kg) 

E(%) with 

CFD 

4 0.1 155.07 159.47 546.00 543.29 0.13 

3 0.2 268.41 283.43 819.00 806.93 0.25 

2 0.3 588.96 637.77 819.00 812.86 0.35 

1 0.4 2300.17 2551.18 546.00 544.05 0.28 

5 0.5 89.92 102.04 3412.50 3403.05 0.12 

6 0.6 61.09 70.86 4914.00 4890.32 0.29 

7 0.7 43.95 52.06 6688.50 6621.07 0.42 

8 0.8 32.97 39.89 8736.00 8723.21 1.12 

9 0.9 25.56 31.49 11056.50 11041.24 0.39 

10 1 20.31 25.49 13650.00 13419.05 1.22 

 

Table 7: Fixed Width "b=0.1" using Pressure Acoustics Module 

Length L  

(m) 

Height a 

(m) 

W_wet 

(rad/s) 

W_dry  

(rad/s) 

Body 

Mass (Kg) 

Added Mass 

(Kg) 

E(%) with 

CFD 

4 0.5 155.07 159.47 546.00 543.29 0.13 

3 0.4 218.95 226.69 327.60 323.65 0.61 

2 0.3 365.53 382.66 163.80 162.01 0.64 

1 0.2 954.36 1020.69 54.60 54.02 1.05 

5 0.1 17.98 20.41 136.50 136.14 0.25 

6 0.6 83.07 85.04 982.80 969.01 0.24 

7 0.7 71.42 72.78 1337.7 1334.19 0.76 

8 0.8 62.61 63.73 1747.20 1738.44 0.12 

9 0.9 55.81 56.69 2211.30 2191.29 0.11 

10 1 50.29 51.01 2730.00 2697.66 0.21 

 

 In this case, as provided in the obtained data shown in Table 7, the wet natural 

frequencies are lower compared to the dry frequencies. Calculations are done to 

obtain the added mass values for each case. It is found that as the length is constant, 

the cross section and added mass values experience a direct relationship; whereas, 

when the constant parameter is height, a fluctuation occurs. This implies that the 

added mass increases as the cross section increases; nonetheless, at length of 1m and 

width of 0.4m, added mass value drops. After this combination of parameters, there is 

a direct relationship between the rectangular cross section and added mass. Finally, 

when the width is constant, there is also a direct relationship between the numerical 

value of cross section and added mass. Referring to the tables, the relative percentage 

error varies mainly as the length of the beam increases, and it increases the width of 

the beam. The percentage difference of the added mass obtained using acoustic 
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module and fluid structure interaction module is relatively low, which indicates that 

the modules will result close to each other. 

 3.1.2. Solid Circular Cylinder. The obtained added mass values for the solid 

circular cylinder, freely immersed in an inviscid water flow, using fluid structure 

interaction module are illustrated in Tables 8 - 9. Based on White's [12] study, the 

integration of relative velocity to find the fluid kinetic energy (KEfluid) can be obtained 

using body surface integration. Accordingly, with the use of COMSOL Multiphysics, 

the kinetic energy of the structure that is obtained over one period of time (10 

seconds) is averaged. The solid circular cylinder's total surface displacement for Fluid 

structure Interaction module at the first parametric sweep is shown in Figure 6.   

 

Figure 6: Surface Total Displacement in Fluid Structure Interaction Module 

 

Table 8: Fixed Length "L=4" using Kinetic Energy Method 

Radius R  

(m) 

Body Mass 

(Kg) 

Added Mass 

(Kg) 

0.5 8576.55 3169.55 

0.6 12350.23 4560.98 

0.7 16810.03 6200.62 

0.8 21955.96 8076.25 

0.9 27788.02 10230.67 

1 34306.19 12661.87 

0.4 5488.99 2022.08 

0.3 3087.56 1140.47 

0.2 1372.25 503.91 

0.1 343.06 126.02 
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Table 9: Fixed Radius "R=0.5" using Kinetic Energy Method 

Length L  

(m) 

Body Mass 

(Kg) 

Added Mass 

(Kg) 

4 8576.55 3169.55 

5 10720.68 3948.19 

6 12864.82 4743.48 

7 15008.95 5524.72 

8 17153.09 6327.79 

9 19297.23 7108.16 

10 21441.37 7912.09 

3 6432.41 2365.14 

2 4288.27 1585.24 

1 2144.14 788.61 

 

 According to the data obtained for circular cylinder's parametric sweep, there 

is an increase in the added mass value as either radius or length increases. The low 

percentage difference between the analytical values shows the accurateness of the 

simulation. 

The solid circular cylinder's total surface displacement for pressure acoustic module at 

the first parametric sweep is shown in Figure 7. In order to calculate the analytical 

acoustic added mass values, Equations 3.13 - 3.15 are used respectively. The obtained 

data is tabulated in Tables 10 and 11. 
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Figure 7: Surface Total Displacement in Pressure Acoustic Module 

 

Table 10: Fixed Length "L=4" using Pressure Acoustic Module 

Radius R 

(m) 

W_wet 

(rad/s) 

W_dry 

(rad/s) 

Body Mass 

(Kg) 

Added Mass 

(Kg) E(%) with CFD 

0.5 34.6 47.5 8576.55 3179.72 0.32 

0.6 36.6 50.2 12350.23 4578.84 0.41 

0.7 34.2 46.8 16810.03 6219.12 0.29 

0.8 31.18 42.8 21955.96 8189.91 1.38 

0.9 28.4 39 27788.02 10375.92 1.39 

1 25.2 34.6 34306.19 12835.96 1.36 

0.4 33.3 45.7 5488.99 2043.38 1.04 

0.3 22.5 30.9 3087.56 1155.27 1.28 

0.2 16.9 23.2 1372.25 513.94 1.95 

0.1 7.8 10.7 343.06 127.68 1.31 
 

Table 11: Fixed Radius "R=0.5" using Pressure Acoustic Module 

Length L 

(m) 

W_wet 

(rad/s) 

W_dry  

(rad/s) 

Body Mass  

(Kg) 

Added Mass 

(Kg) E(%) with CFD 

4 34.6 47.4 8576.55 3172.82 0.11 

5 24.6 33.6 10720.68 3926.78 0.54 

6 16.2 22.3 12864.82 4784.16 0.85 

7 12.5 17.2 15008.95 5621.55 1.72 

8 10.1 13.9 17153.09 6412.12 1.32 

9 8.3 11.4 19297.23 7161.72 0.75 

10 4.9 6.8 21441.37 7989.85 0.97 

3 44.3 60.9 6432.41 2406.74 1.73 

2 58.6 80.4 4288.27 1597.95 0.79 

1 72.8 100.1 2144.14 803.88 1.89 
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 According to the data obtained using acoustic module, there is also an increase 

in the added mass value as either radius or length increases, which is similar to what is 

obtained in the CFD analysis. The low percentage difference between the CFD values 

shows the accuracy of both modules. 

 3.1.3. Solid Sphere. The obtained added mass values for the solid sphere, 

freely immersed in an inviscid water flow, using fluid structure interaction module are 

illustrated in Table 12. Based on White's [13] study, the integration of relative 

velocity to find the fluid kinetic energy (KEfluid) can be obtained using body surface 

integration. Accordingly, with the use of COMSOL Multiphysics 4.4, the kinetic 

energy of the structure that is obtained over one period of time (10 seconds) is 

averaged. The solid circular cylinder's total surface displacement for Fluid structure 

Interaction module at the first parametric sweep is shown in Figure 8.   
 

 
 

Figure 8: Surface Total Displacement in Fluid Structure Interaction Module 

 

Table 12: Varying Radius "R" using Kinetic Energy Method 

Radius R  

(m) 

Body Mass 

(Kg) 

Added Mass 

(Kg) 

0.5 1429.42 263.38 

0.6 2470.04 456.23 

0.7 3922.34 721.75 

0.8 5854.92 1078.22 

0.9 8336.40 1528.64 

1 11435.39 2102.35 

0.4 731.86 135.26 

0.3 308.75 56.68 

0.2 91.48 16.88 

0.1 11.44 2.09 
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 According to the data obtained for solid sphere's parametric sweep, there is an 

increase in the added mass value as either radius or length increases. The low 

percentage difference between the analytical values shows the accurateness of the 

simulation. 

The solid sphere's total surface displacement for pressure acoustic module at the first 

parametric sweep is shown in Figure 9. In order to calculate the analytical acoustic 

added mass values, Equations 3.13 - 3.15 are used respectively, and the obtained data 

is tabulated in Table 13. 
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Figure 9: Surface Total Displacement in Pressure Acoustic Module 
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Table 13: Varying Radius "R" using Pressure Acoustics Module 

Radius R  

(m) 

W_wet 

(rad/s) 

W_dry 

(rad/s) 

Body Mass 

(Kg) 

Added Mass 

 (Kg) E(%) with CFD 

0.5 37.5 75.7 1429.42 266.72 1.25 

0.6 46.4 74.8 2470.04 461.53 1.15 

0.7 23.4 40.1 3922.34 730.27 1.17 

0.8 20.2 36.8 5854.92 1100.81 2.05 

0.9 19.3 36.2 8336.40 1550.85 1.43 

1 10.1 20.5 11435.39 2145.92 2.03 

0.4 104.1 106.3 731.86 138.18 2.11 

0.3 112.5 118.7 308.75 57.61 1.61 

0.2 115.2 122.4 91.48 17.32 2.54 

0.1 100.4 107.5 11.44 2.12 1.42 

 

 The obtained data shown in Table 13 reveals that the wet natural frequencies 

are lower compared to the dry frequencies. The results indicate that the added mass 

increases when the radius is increased. This outcome is similar to the result obtained 

through CFD analysis. Nonetheless, this low percentage difference between the 

acoustic and fluid structure interaction analysis shows the closeness of the modules 

for the same case study. 
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Chapter 4. Added Mass Effect for a Special MEMS 
 

 

 The MEMS structure that has been selected for this study is shown in Figure 

10, in which two identical beams are connected by a torsional spring in the middle. In 

Figure 10, F is the excitation force, #1 and #2 are used for numbering each beam, C is 

the damping coefficient of dampers, K is the spring and torsional stiffness and L 

represents the beam length. Both beams have rectangular cross sections. As shown in 

the figure, both free ends of each beam are connected to a spring and a damper that 

are fixed to the ground. There is a harmonic excitation force applied at the free tip of 

beam #2 which will end up having a forced damped coupling vibration. The 

vibrational behavior of the following 2 degree of freedom system has been studied 

through hand calculations. Consequently, the plot response of the system due to a 

harmonic wave has been obtained using MATLAB software. The codes for this part 

are provided in the Appendix A. In other words, the analytical values of natural 

frequencies are compared to the natural frequencies obtained from coupled transfer 

function plot of the selected MEMS. It is worth noting that the structure is 

symmetrical in all terms; this indicates that the beams have the same length, same 

cross sectional area and same body mass ( 1m  equals to 2m ). In addition, the damping 

values of C1 and C2 are equal and also the spring stiffness values of K1 and K2 are 

equivalent.  

 

Figure 10: Selected MEMS 

 

 The main objective of this thesis is to study the behavior of this forced 

vibrating system when submerged in water. It is a challenge to consider the effect of 
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surrounding water on the behavior of the structure extensively. The general effect of 

surrounding fluid on any structure is mainly adding extra mass which causes 

distortion in both flow and the behavior of the structure. More specifically, the 

surrounding water will add extra mass to the mass of beam itself, extra damping to 

each C and extra stiffness to each K. In this fluid structure interaction study, water is 

assumed to be a still fluid which will be excited due to the vibrational motion of the 

structure. Referring to literature, when the flow behavior is changed drastically due to 

structural vibration and high amplitude, which cannot be neglected, the system is 

called strongly coupled fluid structure interaction system [15]. In contrast, weakly 

coupled fluid structure interaction happens when the flow behavior is changed slightly 

[15]. Accordingly, in the current study, the weakly coupled system is studied in terms 

of added mass, stiffness and damping to the system. However, the main focus is on 

formulating the added mass effect for this specific system. The added effects due to 

presence of fluid medium are dependent on several factors such as structure cross 

section shape, the Reynolds number, surface roughness, flow velocity, motion of the 

structure, etc. [16]. It is been stated that there is no such solution or model that can 

consider all the factors simultaneously [16]. The 2 degrees of freedom behavior of the 

selected MEMS, when it stands by no external medium, are represented in Equations 

4.1 and 4.2 that represent the equation of motion for beam #1 and #2, respectively. 

Where 1  and 2 are the generalized coordinates, tie 
 is the applied harmonic force. 

These equations are derived using Newton’s Second Law and Euler Law based on the 

Free Body Diagram of the selected MEMS shown in Figure 11. 

 

 
Figure 11: Free Body Diagram 
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where Ms is the mass matrix of the MEMS, Cs is the damping of the structure, Ks is 

the spring and torsional stiffness attached to the MEMS, and F is the harmonic 

acoustic wave force applied on the MEMS.  

 In this stage, the fluid loading effects on the MEMS are considered in each 

equation of motion. The additional terms such as the added mass ma, added damping 

coefficient Ca and added spring stiffness Ka show the effect of added water 

represented in Equations 4.4 and 4.5. These effects added due to presence of fluid 

medium are all unique for each different fluid [17]. Sedlar [17] suggests that the 

additional water stiffness effect for most of the common structures such as beams are 

neglected which means that all the Ka terms will be set equal to zero in the equations. 

Hence, the remaining damping and mass effect of water is studied in the coming 

sections.  
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4.1. Added Mass Study  

      4.1.1. Assumptions. To start the added mass study, a number of 

assumptions that have been implemented on developing the MEMS model and its 

corresponding calculations should be noted. These assumptions are as follows: 

 

 Symmetric MEMS 

 Fluid is considered to be inviscid, stationary and adiabatic 

 No internal damping 

 The fluid is compressible 

 Vortex made due to added fluid is neglected 

 Spring and dampers are assumed to be ideal elements 

 Torsional spring is assumed to be an ideal element 

 Uniform cross section over the entire beam length 

 Beams are made of linear elastic isotropic material  

 Internal frictions of beams are neglected 

 The selected fluid is water 

 Beams are made of Aluminum H3003-18 

 Vibration amplitude of the beams is assumed to be very small compared to 

their length scale 

 4.1.2. Simulation. As stated earlier in this report, the submerged structure 

experiences extra added mass, which affects the dynamic behavior of the structure. 

The two second order ordinary differential sets of equation of motions are arranged in 

a matrix form in order to find the eigenvalues and the natural frequencies. This 

process is done using MATLAB software. Firstly, the structure behavior is studied 

with no extra medium than air, and the analytical natural frequencies are compared 

with the transfer functions obtained from the equation of motions of coupled structure. 

Secondly, a symbolic study is done for two cases of air and water medium. For the 

ease of representation, as stated earlier, 'dry' is the term used for the case of air 

surrounding the structure while 'wet' is used when water is provided around the 

structure. The first two natural frequencies are obtained in both dry and wet cases, 

symbolically. The MATLAB code is provided in Appendix B in which 1m = 2m = m , 
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1K = 2K , and 1C = 2C = C , and added mass is represented by am . In order to find the 

relation between wet and dry natural frequencies, ratios 1R  and 2R  are defined for the 

first and second natural frequencies as shown in Equations 4.6 and 4.7, respectively.   

       
dry

wetR
1

1
1 


                                                  (4.6) 

      
dry
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2
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                 (4.7) 

In the above equations ω1wet  and ω2wet  are the first two natural frequencies when 

water is added to the structure, and ω1dry , ω2dry are the first and second natural 

frequencies when there is air around the structure only.  

The baseline parameters for the Symmetric MEMS that are used for the numerical 

investigations are provided in Table 14.  

 

Table 14: Baseline Parameters for the MEMS 

Micro Electro Mechanical System 

Type Symbol Value  

Width 

Thickness 

Length 

Spring Stiffness 

Torsional Spring Stiffness 

Damping Values 

Beam Mass 

Fluid Density 

Aluminum H3003-18 Density 

Modulus of Elasticity of 

Aluminum  

Modulus of Elasticity of 

Polysilicon 

b 

t 
 

L 
 

1K = 
2K  

 

K  
 

 

1C = 
2C = C  

Lbtmm  lA21   

 

ρf  

ρAl 

 

E  

 

E  

6101   m 

61005.0  m 

6101   m 

61020   N/m 

6101000   N/m 

0  N.s/m 

3110365.1  g 

1000  kg/m
3 

2730 kg/m
3 

 

70 Gpa 

 

160 Gpa
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 In this stage, the COMSOL Multiphysics 4.4 is used for the added mass study 

in which the identical system with the same baseline parameters is designed in the 

Acoustic module where the outer box resembles the environment around the MEMS 

and the simulation is computed for two cases. These cases are when the encountered 

box is once made of air and the corresponding dry frequencies are obtained. The 

second case is when the outer box is set to be a water domain and the obtained natural 

frequencies are corresponding to the wet case. Therefore, the first and second natural 

frequencies in both cases are determined. It is worth noting that the cylinder attached 

in between the beams is modeled to resemble the torsional spring and its 

corresponding stiffness is added. The first two natural frequencies for the dry case are 

then compared with the simulated results using MATLAB codes. The obtained 

frequencies are deviating from each other by 12 % for the first natural frequency and 

9.5% for the second natural frequency variation which is reasonable due to the 

different numerical computing methods they are made of and operating at. The 

MEMS structure is modeled as shown in Figure 12, where the attached thin plates are 

modeled in order to resemble the spring and damper as of that attached to the MEMS 

at the tip of each beam. These thin vertical plates are chosen to be made of 

Polysilicon, and the values of the spring and dampers are added to them according to 

the baseline parameters defined earlier.  

 

Figure 12: MEMS Modeled in Acoustic Module in COMSOL 
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 The first and second mode shapes corresponding to natural frequencies are 

obtained for the MEMS placed in both air and water mediums. The frequency 

response of the MEMS placed in air is represented in Figure 13, and its corresponding 

eigenmode shape is represented in Figure 14. Similarly, the frequency response of the 

MEMS submerged in water is represented in Figure 15, and its corresponding 

eigenmode shape is represented in Figure 16. 

 

Figure 13: Frequency Response of MEMS in Contact with Air 

 

 

 

Figure 14: (a) First Eigenmode (Rocking) (b) Second Eigenmode (Bending) Shapes of 

the MEMS in Air (yz Plane View) 
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Figure 15: Frequency Response of the MEMS Submerged in Water 

 

 

 

Figure 16: (a) First Eigenmode (Rocking) (b) Second Eigenmode (Bending) Shapes of 

the MEMS in Water (yz Plane View) 

 

 At this point, where the natural frequencies obtained from MATLAB and 

COMSOL Multiphysics 4.4 are well matched, this data can be used in the suggested 

formulas in order to find the effect of added mass on the selected MEMS. In the 

following parts, the two suggested formulas based on Acoustic and elastic beam 

theory are explained in detail, and the corresponding added masses are calculated, 
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respectively. The eigenmode shapes and their corresponding natural frequencies for 

the first two modes of the MEMS are presented in Table 15, where subscript i stands 

for the eigenmode number, Weti  and Dry
i

  represent the natural frequencies in 

water and air cases, respectively.  

 

Table 15: Eigenmode Numbers and Corresponding Natural Frequencies 

Micro Electro Mechanical System 

Mode Natural Frequency in air Natural Frequency in water 

i Dryi (Hz) Weti (Hz) 

1 660 175 

2 1630 800 

 

 Moreover, these obtained natural frequencies are used for calculating the 

added mass values through different methods. Then, these obtained added mass values 

are compared to the added mass obtained using general ratio of dry and wet natural 

frequencies in Equations 4.6 and 4.7. 

 4.1.3. Acoustics Method. In this section, acoustic wave propagation in fluid is 

considered for providing an added mass equation for the specific selected MEMS. The 

fluid can be either liquid or gas while in this study the goal is to study the liquid effect 

on the structure. The fluid flow is assumed to be macroscopic, which means that the 

fluid properties resemble the summation of all the molecular properties. Acoustic 

waves are microscopic oscillations of pressure that are directly linked with the local 

motion of fluid particles. This is the reason behind mainly using differential equations 

of acoustic pressure for modeling the fluid coupling with a structure [18]. In the case 

of fluid structure coupling interaction, the behavior of fluid pressure could be 

expressed by Helmholtz's equation below which is an acoustic wave equation:  

                       02
2

2

2
1






tc
                 (4.8) 

 This equation is derived based on Navier-Stokes equation of motion and 

continuity equation, where P is the fluid's pressure, c is the speed of sound in fluid 

medium, 2  is the Laplacian operator, and t stands for time [19]. The Laplacian 
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operator in Helmholtz's equation can be described by introducing it in terms of 

Laplacian matrix notation:  

 

                      0)}({}{
2

2

2
1


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LTL

tc
                                    (4.9) 

 

 Galerkin procedure [20] is used for discretization of Equation 4.9 and is then 

multiplied by a virtual pressure change defined as ),,,( tzyxPP    where the x, y, z, t 

are the pressure changes in each direction with respect to time [19]. Discretized 

equation is then integrated over the volume of the domain and is equated to the 

integration over surface in which the derivative of pressure normal to the surface is 

enforced which is shown in Equation 4.10. [21]. 
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In the above equation, v represents the volume of domain and {n} is the unit normal to 

the interface S.  

 Continuity equation is used for deriving the interaction between the fluid and 

structure at the interface boundary.  The normal displacement of the structure has to 

be equal to the normal displacement of the fluid. Hence, the fluid momentum equation 

is described at the fluid structure interface S in terms of normal pressure gradient of 

the fluid and normal acceleration of the structure [21]. 

               
2

2
}{}{}{ 0

t

U
nPn




                                     (4.11) 

In the above equation, ρ0 is the fluid density and U is the displacement vector of the 

structure at the interface S.  

Assuming a rigid wall boundary will make the right side of Equation 4.11 equal to 

zero. This assumption is mainly the no slip condition where fluid velocity is identical 

to the surface velocity is: 
 

              0}{}{  Pn                                     (4.12) 

The applied force matrix [F] is an acoustic sound plane wave radiation applied on the 

coupling structure which is shown in Equation 4.13.  

            rkiepF

 0][                          (4.13) 
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Where p0 is the pressure amplitude of wave radiation, propagation vector is described 

as zkykjxkik 


 , and the vector position is defined as 
zyx

jir 


 . In the 

mentioned equation kx, ky, and kz are complex constants describing wave number 

vector k. More specifically, a time harmonic mean of is considered     . The script ω 

stands for the angular frequency of the applied plane wave which is related to 

frequency ω=2πf. The wave number k is defined as the ratio ω/c which shows the 

relation between angular frequency and speed of sound. Referring back to Figures 13 

and 14, the first two eigenmode shapes for both mediums, only small changes in 

eigenmode shapes between air and water mediums are detected. The study of 

eigenmodes is cautiously studied and strongly established in preceding works such as 

Liang et al. [22] and Meirovitch's [23] in which it is proven that the eigenmodes in air 

and water are almost identical. Since the mode shapes are validated to be the same in 

the two mediums, the maximum potential energy remains constant in these two 

mediums. Similarly, the kinetic energy of the vibrating MEMS will also remain 

unchanged [19]. When the MEMS is vibrating in the water medium, part of its kinetic 

energy will be lost while struggling to enhance the kinetic energy of the surrounding 

water through implementing work in opposition to the force of water. As a result the 

velocity of the vibrating MEMS will decay and thus the natural frequencies will also 

experience a decrease [23]. Accordingly, the relation between natural frequencies in 

the two mediums can be expressed as shown in Equations 4.14 and 4.15 below:  
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In the above equations, Ps is the maximum potential energy of the structure, Ks and KF 

are initial kinetic energy of the structure and fluid respectively. Defining a ratio 

between the kinetic energies as λ in Equation 4.16 will provide the relation between 

the natural frequencies obtained as shown in Equation 4.17.  
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The kinetic energies could be interpreted in terms of mass as shown in Equations 4.18 

and 4.19 below: 

 

  
v
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  
v
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where Ms is the mass of MEMS, Ma is the added mass due to fluid presence, v 

represents the volume of the MEMS, and W(x,y,z) describes a function in terms of 

three dimensional displacement. 

Therefore, the ratio defined in Equation 4.16 becomes [23] 
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Now, combining Equation 4.17 with Equation 4.20 and solving simultaneously for Ma 

would result in  
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The obtained natural frequencies represented earlier in Table 15 are used in Equation 

4.21 above in order to calculate the added mass Ma for each mode shape i. The 

obtained added mass values are tabulated in Table 16 below. According to [24], the 

obtained values indicate that the added mass values of the lower modes are higher 

compared to the higher modes. 

 

Table 16: Added Mass Values Through Acoustic Method 

Acoustic Method for the MEMS 

Mode                          Added Mass (g) 

i                                     iaM  

1                                  3110538.2   

2                                  3110072.2   
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 4.1.4. Beam Theory. In this section, vibration energy of the beam is studied 

for investigation of the added mass for the selected MEMS. Vibration energy is 

presented as a summation of kinetic and potential energies of the selected Micro 

Electro Mechanical System. As a harmonic vibration is applied, the displacement of 

the beam is given by y(x,t) 

 

 teiiAtxy  ),(                (4.22) 
 

where A is the amplitude, ω is the frequency at which the beam oscillates, φ is the 

eigenmode shape, and the subscript i is the mode number [25]. 

The general equations for the kinetic and potential energies are represented in 

Equations 4.23 and 4.24. Where PE is a notation for potential energy, KE represents 

the kinetic energy, D is the flexural rigidity of the beam, L is the length of the beam, 

and the script m represents the mass of the beam. 
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In the case where the water medium is added, the beam experiences an additional 

mass term in the kinetic energy equation. Accordingly, the applied pressure of 1 Pa 

affects the general equation of flexural rigidity of the beam provided in Equation 4.25 

[26]. The new flexural rigidity Da becomes the expression shown in Equation 4.26. 
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where P is the pressure, b is the beam thickness, E is the modulus of elasticity of the 

beam, and ν is the Poisson's ratio [25].  

Solving the kinetic and potential energies for the deflection of the beam, assuming

)(
2

2
x

x








, results in having the energy equation shown in Equations 4.27 and 4.28. 
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where ma is the script used for representing the added mass on the beam. By equating 

the kinetic and potential term represented in Equation 4.29 and defining a mass ratio 

as
am

m
M  , the expression for natural frequency is obtained as [25]: 
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Assuming homogenous fluid medium, the flexural rigidity and mass ratio are 

independent of x, and they can be excluded from the integration. Moreover, the final 

expression for wet natural frequency, when the beam is immersed in water is provided 

in Equation 4.31. 
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In the general case when there is not extra medium added to the beam, the same 

procedure is used in order to find its dry natural frequency in the case when the beam 

is placed in air/vacuum.  

Similarly, the dry natural frequency is [25]: 

 

 
m

LD
dry

2                  (4.32) 

 

The frequency ratios defined earlier in Equations 4.6 and 4.7 are used along with 

Equations 4.31 and 4.32 in order to solve for the added mass term. The obtained 

added mass expression is described in Equation 4.33. 
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The obtained natural frequencies represented earlier in Table 15 are used in Equation 

4.33 provided above in order to calculate the added mass Ma for each mode shape i. 

The obtained added mass values are tabulated in Table 17 below. According to [24], 

the obtained values indicates that the added mass values of the lower modes are higher 

compared to the higher modes. 

 

Table 17: Added Mass Values Through Beam Theory 

Beam Theory for the MEMS 

Mode                          Added Mass (g) 

i                                     iaM  

1                                  3110974.4   

2                                  3110711.3   

 

 4.1.5. Comparison. In this subsection, the added mass values calculated 

through acoustic method and beam theory are compared to each other as well as to the 

general added mass values. The general added mass value refers to the calculation of 

added mass using Equations 4.6 and 4.7. For the case of comparison, added mass 

values obtained through the acoustic method and the beam theory are tabulated in 

Table 18 below, and the percentage difference for both modes is calculated. 

 

Table 18: Added Mass Obtained from Acoustic Method vs. Beam Theory 

Added Mass  

Mode Acoustic Method Beam Theory Difference 

i iaM (g) iaM (g) (%) 

1 3110538.2   3110974.4   48.5 

2 3110072.2   3110711.3   44.2 

 

 The percentage difference between the obtained added mass values of the 

acoustic method and beam theory is calculated and tabulated above for each mode. 
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The first mode added mass values are about 48.5% different, which is relatively high 

and represents the deviation of the process calculation. As it is mentioned earlier, the 

process calculations are deviating because the acoustic method mainly uses the natural 

frequencies of wet and dry cases in order to evaluate the added mass values. On the 

other hand, the beam theory considers the properties of the beam; for example, 

Young's modulus of elasticity, Poisson's ratio, moment of inertia as well as the wet 

and dry natural frequencies. These additional details make the added mass calculation 

more inclusive of involved parameters. Similarly, this will affect the percentage 

difference between the obtained added mass values of these two methods for the 

second mode of vibration. The second mode percentage difference is about 44.2% 

which is slightly lower than the first mode, yet the difference is considered high. 

Furthermore, the added mass values obtained from both methods are compared to the 

general added mass values. Table 19 represents the tabulated data of the acoustic 

theory versus general method for the mean of contrast in order to check the reliability 

of the suggested method.  

 

Table 19: Added Mass Obtained from Acoustic Method vs. General Method 

Added Mass  

Mode Acoustic Method General Method Difference 

i iaM (g) iaM (g) (%) 

1 3110538.2   3110610.3   29.6 

2 3110072.2   3110834.2   26.8 

  

 The obtained percentage difference for the first mode is about 29.6 %, which 

indicates that the added mass value obtained from acoustic method is deviating from 

the added mass value obtained from general method by less than 30%. This difference 

is slightly lower for the second mode of vibration with 26.8% deviation. The main 

reason behind this percentage difference is the variation in defining the frequency 

ratio than that of the general method. The percentage in the second mode is lower 

since the added mass values are smaller in the higher modes. 
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Similarly, the added mass values obtained from beam theory are represented against 

the general added mass values which are provided in Table 20 in order to check the 

reliability of the suggested method. 

 

Table 20: Added Mass Obtained from Beam Theory vs. General Method 

Added Mass  

Mode Beam Theory General Method Difference 

i iaM (g) iaM (g) (%) 

1 3110974.4   3110610.3   27.4 

2 3110711.3   3110834.2   23.6 

 

 The percentage differences between the general method and the beam theory 

are tabulated in Table 20 above. The percentage difference of the first mode is found 

to be 27.4%, which points out that the added mass value calculated through beam 

theory and the added mass value obtained using general method are deviating by less 

than 30%. The second mode percentage difference is calculated to be 23.6% which is 

lower than the first mode of vibration. The deviation between these two methods is 

mainly due to the difference in the characteristics of the equations. The added mass 

equation obtained from the beam theory is inclusive of both natural frequencies and 

beam internal properties, such as density, Young's modulus of elasticity and Poisson's 

ratio. In other words, the beam theory is dependent on the material type of the beam as 

well as the wet and dry natural frequencies. Comparison of the percentage differences 

tabulated in the Tables 19 and 20 reveals that the beam theory is considerably closer 

to the general method compared to the acoustic method. Therefore, added mass 

calculations through the beam theory would result in a more accurate result. 
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Chapter 5. Added Mass Formulation 

5.1. Formulation 

 

 The obtained formula for the added mass effect of this specific MEMS is 

represented in terms of few parameters involved in the process. In other words, the 

formula is a function of parameters such as linear spring stiffness, torsional spring 

stiffness, dry natural frequency, wet natural frequency, MEMS' dimensions and fluid 

density; these parameters will be explained in details later in the text. In addition to 

the above parameters, added mass would also have an extra part which is a mass due 

to displaced water close to the MEMS.  

 The proposed formula includes a correction factor for flexural modes Γf since 

the flexural modes are extensively affected by immersion in fluid. This correction 

factor is taken from Eysden et al. [27] work and it is represented in Equation 5.1 

below. 

 
3058364.0235004.074273.01

214862.074273.01










f
              (5.1)   

In the above equation, the   is the wave number defined as a fraction of frequency f 

over the speed of sound c provided in Equation 5.2.  

 
c

f
                    (5.2) 

 

The general equations of natural frequencies for wet and dry cases are represented in 

the Equations 5.3 and 5.4.  
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In the above equations, eqK is representing the equivalent of linear and torsional 

stiffness in the system. sm and am are masses corresponding to the structure and the 

amount of fluid loading, respectively. It is important to note that the mss of structure 

is as shown in Equation 5.5. 
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 Lbt
Alsm                      (5.5) 

 

The equivalent stiffness is obtained based on the Potential Energy method. Due to 

symmetry of this specific MEMS, the equivalent stiffness is shown in Equation 5.6 in 

which 1K represents the linear spring and K represents the torsional spring. 

 

 KLKeqK  2
1                    (5.6) 

 

Inserting Equation 5.4 into Equation 5.3, and solving for added mass term am results 

in the Equation 5.7 provided below. The term i, as stated earlier, is the notation for the 

mode number. 
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In the above equation displaced mass of water is represented as dispm  which is equal 

to the volume of the MEMS multiplied by the fluid density of water. This expression 

is shown in Equation 5.8. 
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By substituting Equations 5.8 and 5.6 into Equation 5.7, the final formula proposed 

for the added mass for the fluid structure interactions on this specific MEMS for 

different modes is obtained and shown in Equation 5.9. It is important to state that in 

this study, only the first two modes are considered. 
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           (5.9) 

5.2. Calculations 

 

 In order to calculate the arithmetic value for the added mass, according to the 

established formula, the numerical values of the involved parameters will be used. 

These baseline parameters for this specific MEMS have been defined earlier in Table 

14. Moreover, the natural frequencies were obtained using the COMSOL multiphysics 

4.4 and provided two modes for both wet and dry cases earlier in Table 15. 
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Meanwhile, the correction factor is a parameter which requires an independent 

calculation before it can be applied to the Equation 5.9.  

To calculate the correction factor  Γf , the wave number   should be intended first. 

Doing so, the average frequency range and the speed of sound in water are 

implemented in Equation 5.2. The obtained values for correction factor Γf , and wave 

number   are shown in the Table 21.  

 

Table 21: Correction Factor Calculated Value 

Symbol Numerical Value 

  0.14 
m

1  

f  0.99 2m  

 
 Implementation of the wave number , as it is defined in the table above, 

results in a correction factor which is approximately equal to unity. This approximated 

value will be used in the calculation process of the added mass. Consequently, the 

numerical value of the added mass based on Equation 5.9 is calculated. The values for 

the first two modes are provided in Table 22. 

 

Table 22: Added Mass Values Through Proposed Established Formulation 

Proposed Added Mass Formula for the MEMS 

Mode                          Added Mass (g) 

i                                     iaM  

1                                  3110391.5   

2                                  3110036.3   

 
These obtained values, as expected, shows that the added mass effect gets smaller as 

the mode number increase. 

5.3. Comparison  

 

 In this section, the calculated values will be validated through comparison with 

the well known methods. These methods have been studied earlier in this report and 

the added mass values for the first two modes were tabulated. The methods used are 
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Acoustic method and Beam theory in which the obtained added mass values were 

tabulated in Table 16 and Table 17, respectively.  

Firstly, the added mass values are provided in comparison with the general method of 

calculating the added mass which was discussed in Equations 4.6 and 4.7. Table 23 

represents the tabulated data of the proposed formula versus general method for the 

mean of contrast in order to check the reliability of the suggested formulation. 

 

Table 23: Added Mass Obtained from Proposed Formulation vs. General Method 

Added Mass  

Mode Proposed Formulation General Method Difference 

i iaM (g) iaM (g) (%) 

1 3110931.5   3110974.4   16.1 

2 3110036.3   3110711.3   18.2 

 

 The percentage differences between the obtained added mass values of the 

proposed formula and the general method are calculated and tabulated above for each 

mode. The obtained average difference is about 17.2% which indicates that the 

obtained values are not far from each other. This difference is mainly due to use of 

extra detail in the anticipated formula, such as correction factor, fluid's density and 

mass of displaced water around the MEMS.     

Secondly, the added mass values are provided in comparison with the Acoustics 

method of calculating added mass. Table 24 represents the tabulated data of the 

proposed formulation versus Acoustics method for the sake of contrast in order to 

check the reliability of the formula. 

 

Table 24: Added Mass Obtained from Proposed Formulation vs. Acoustics Method 

Added Mass  

Mode Proposed Formulation Acoustic Method Difference 

i iaM (g) iaM (g) (%) 

1 3110931.5   3110538.2   57.2 

2 3110036.3   3110072.2   31.7 
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 The percentage differences between the obtained added mass values of the 

proposed formulation and acoustic method are calculated and tabulated above for each 

mode. In the first two modes, the added mass values are about an average of 44.5% 

different, which is relatively high and represents the deviation of the process 

calculation. As mentioned earlier, the process calculations are deviating because the 

acoustic method mainly uses the natural frequencies of wet and dry cases in order to 

evaluate the added mass values. On the other hand, the suggested formula is mainly 

uses the MEMS parameters' extensively.  

Lastly, the added mass values are provided in comparison with the beam theory for 

the calculation of added mass values. Table 25 represents the tabulated data of the 

proposed formulation versus beam theory for the sake of contrast in order to check the 

reliability of the suggested formula. 

 

Table 25: Added Mass Obtained from Proposed Formulation vs. Beam Theory 

Added Mass  

Mode Proposed Formulation Beam Theory Difference 

i iaM (g) iaM (g) (%) 

1 3110931.5   3110974.4   16.1 

2 3110036.3   3110711.3   22.2 

 

 The percentage differences between the obtained added mass values of the 

proposed formulation and beam theory are calculated and tabulated above for each 

mode. The average percentage difference of 19.2% shows that these two method of 

the added mass calculations are relatively close. The calculated values are not 

deviating since there are many common involved parameters in both methods. The 

beam theory considers the properties of the beam; for example, Young's modulus of 

elasticity, Poisson's ratio, moment of inertia as well as the wet and dry natural 

frequencies. These mentioned and few additional parameters have been also 

implemented onto the proposed formula.  

 As mentioned earlier in the deriving process, the proposed formulation nature 

is based on the both acoustics and beam theory. According to the obtained data, the 

formula is much closer to the beam theory than Acoustics method. The comparison 



55 

 

 

between the mentioned methods have shown that the proposed formula is reasonable 

and valid. However, the main validation process would require an experimental 

instrumentation with the specific MEMS. The experimental setup is considered as a 

future work and it was not possible to be done due to the lack of available fund. 

Nevertheless, the experimental setup and its required facilities has been defined in the 

conclusion section. 

5.4. Validation 

 5.4.1. Cantilever Beam. In this section, the proposed formula is going to be 

evaluated for the popular case of the cantilever beam. This process is the validation of 

the formula according to the literature other than experimental. Consequently, a 

simulation in an acoustic module is done with a cantilever beam with the same 

dimension as one side of the MEMS studied. The dimensions are as follows: width of 

m6101  , length of m6101   and thickness of m61005.0  . The material used is 

same as the MEMS which is Aluminum H3003-18. The same identical conditions are 

applied for this cantilever beam. The obtained natural frequencies for the case of wet 

and dry for first two modes are tabulated in Table 26.  

 

Table 26: Eigenmode Numbers and Corresponding Natural Frequencies 

Cantilever Beam 

Mode Natural Frequency in air Natural Frequency in water 

i Dryi (Hz) Weti (Hz) 

1 71.2 57.1 

2 101.5 81.2 

 

 

Then the stiffness of the cantilever beam is obtained through the Equation 5.10 shown 

below. 
 

 
3

3

L

EI
K                   (5.10) 

 

Having all the requirements, the calculation is done using the proposed formulation 

Equation 5.9 mentioned earlier in this chapter. This equation does have a small 

modification in which the equivalent stiffness does not include any torsional stiffness. 

The modified equation of the proposed formula is provided in Equation 5.11. 
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The added mass values for the first two modes are tabulated in Table 27 shown below. 

 

Table 27: Added Mass Values Through Proposed Established Formulation 

Proposed Added Mass Formula for the Cantilever Beam 

Mode                          Added Mass (g) 

i                                     iaM  

1                                  311043.1   

2                                 3110056.0   

 

 The validation is done with the comparison of the analytical added mass 

formulation, mentioned in the chapter 3, versus the proposed formula to see whether 

the formula is valid for this popular case or not. The analytical added mass 

formulation is provided in Equations 3.7 - 3.12. The result of comparison is tabulated 

in Table 28 represented below.  

 

Table 28: Added Mass Obtained from Proposed Formulation vs. Analytical 

Formulation for Cantilever Beam 

Added Mass for Cantilever Beam 

Mode Proposed Formulation Analytical Formulation Difference 

i iaM (g) iaM (g) (%) 

1 311043.1   311050.1   4.67 

2 3110056.0   311006.0   6.75 

 

 As it is shown in the Table 28 above, the average percentage differences 

between the analytical calculation of added mass and the proposed formulation are 

less than 10% for each case. This low difference can show that the established 

formulation is a valid formula for calculating the added mass value for the structures 

in micro dimension. However, the validation through experimentation is a mandatory 

process which needs to be done in future works.  
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 5.4.2. Displaced Mass. In this section, further analysis is done to see the effect 

of displaced mass (mdisp) on the added mass value. First of all, the added mass to the 

air must be obtained using the proposed formulation. In this analysis, the popular case 

of cantilever beam with the exact same dimensions as defined in section 5.4.1 is used. 

Moreover, the pressure acoustics module is used to find the first two modes of natural 

frequencies when the cantilever beam is placed in vacuum. The obtained natural 

frequencies for the first two modes, coupled with air and vacuum, are tabulated in 

Table 29. Where Vac
i

  is the natural frequency of the beam in the vacuum, and airi  

is the natural frequency of the beam interacting with air.  

 

Table 29: Eigenmode Numbers and Corresponding Natural Frequencies 

Cantilever Beam 

Mode Natural Frequency in vacuum Natural Frequency in air 

i Vaci (Hz) airi (Hz) 

1 71.2 71.2 

2 101.7 101.5 

 

 The obtained natural frequencies are implemented in the proposed formulation 

provided in Equation 5.11. When the cantilever beam is coupled with air, its natural 

frequencies slightly drops compared to the natural frequencies in the case of vacuum.  

More specifically, the coupling behavior of the cantilever beam can also be 

interpreted in terms of added mass. Therefore, the added mass values due to air, for 

each mode, are tabulated in Table 30. 

 

Table 30: Added Mass Values Through Proposed Established Formulation 

Proposed Added Mass Formula for the Cantilever Beam 

Mode                          Added Mass (g) 

i                                     iaM  

1                                  3110062.0   

2                                  311015.0   
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 The added mass value for the first mode is not a zero value even though the 

natural frequencies in both vacuum and air mediums are the same. The added mass 

value for the first mode equals to a small value which is mainly due to the 

perturbation made by the beam's vibration in the air. However, this value is small in 

amount compared to the mass of the cantilever beam, but the added mass effect on the 

structure remains. The comparison between the structural mass Ms and the added mass 

in the scale of 10 is provided in Table 31. The added mass effect can be ignored when 

the surrounding medium have zero density. Typically, added mass effect is neglected 

when the structure is placed in vacuum and no coupling is happening between 

mediums.   

 

Table 31: Structural Mass and Added Mass Comparison 

 Cantilever Beam 

Mass   Mass Values (g) Difference (%) 

sM                              3110365.1   
45 

aM                              3110062.0   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

 

Chapter 6. Conclusion 
 

 

 This work aimed at demonstrating how variations of geometries' parameters 

would affect the fluid loading effect in water through parametric investigation for 

common geometry shapes. More specifically, this research introduced an added mass 

effect study for fluid structure interaction while a specific MEMS is submerged in 

water medium. Subsequently, based on the mentioned studies, an added mass 

formulation is derived for this specific beam based MEMS. The parametric 

investigation study is conducted numerically to demonstrate the variation of 

geometries' parameters and the corresponding behavior of the fluid loading effect in 

water using COMSOL Multiphysics 4.4. The added mass values of the structures 

obtained from both acoustic domain analysis and fluid domain analysis are compared 

to each other as well to the analytical values. These calculated results of added mass 

of the common geometry shapes are in accordance with the analytical calculations and 

the discrepancy behavior of added mass amount due to the establishment of variation 

of geometries' parameters for the common geometry shapes. For the rectangular 

cantilever beam, it is found that the increase in length and cross section results in the 

increase of added mass value. In the case of sphere, the obtained result shows the 

relation in which increasing the added mass value happens as the radius increases. 

Finally, the parametric study on the circular cylinder reveals that as either the radius 

or length increases the added mass gets higher. The analytical formulas suggested by 

White [12] works out the best for the circular cylinder and sphere, yet the natural 

frequency based formula recommended by Chu [13] works the best for rectangular 

cantilever beam. 

 Although the main objective of this study was to compute the hydrodynamic 

mass of common geometry shapes, e.g., rectangular cantilever beam, solid sphere and 

circular cylinder, is extended to determining the computed added mass with the 

variation of geometric parameters so that such correlations may be used for design 

purposes. The parametric study have enhanced knowledge of added mass 

phenomenon in which it built the basis for added mass study conducted in this 

research. A specific beam based MEMS was selected for this study. The selected 

system is one of the most popular MEMS available in the industry, and the studies of 

this system are increasing gradually. The added mass study for this MEMS revealed 
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how fluid loading on this structure could affect its performance, mainly in terms of 

natural frequencies. The natural frequencies for the first two modes are analyzed for 

two different cases, when the MEMS is placed in air and when it is submerged in 

water. Analyzing these two cases has exposed the fluid loading effect in terms of 80% 

drop in natural frequencies when MEMS was submerged in water compared to the 

case where the MEMS was in contact with the air. This natural frequency drop is 

mainly due to the fluid loading effect and it has been interpreted by the means of 

added mass. It is revealed that the added mass effect is greater at lower modes of 

vibration and this effect gets smaller at higher modes. The added mass study for the 

specific MEMS is done and compared through two different method; the acoustic 

method and beam theory. Studies show that the beam theory provides considerably 

closer added mass values to the general added mass method. The added mass 

formulation for this specific MEMS is obtained based on the beam theory and 

Acoustic method. The numerical values of the proposed formulation are compared 

with all three method; general method, Acoustic theory and Beam theory. The 

comparison revealed that the calculated added mass values are considerably closer to 

the general method and Beam theory method, respectively.   

 As stated earlier, submerged structure experiences the effect of added fluid on 

its behavior. One of the most important fluid effects on structure is the added damping 

coefficient Ca. This additional damping term is mainly a hydrodynamic damping since 

water density and its forces are considerably higher compared to the case of 

unavailability of water [28]. In his PhD dissertation, Venugopal [28] mainly studied 

the damping due to water effect for a submerged cylinder, yet he mentions the general 

idea for all the available types of structures. He stated that the fluid damping is 

dependent on several parameters; for instance, density of fluid, kinematic viscosity, 

shape of cross section, length, mass, amplitude of displacement and surface roughness 

of the structure [28]. He specified an additional case when the added fluid is in 

stationary mode. More specifically, it is noted that damping due to motion of structure 

in stationary water is mainly dependent on the Reynolds number in terms of the 

velocity of the structure and the amplitude of the response [28]. As a structure moves 

in fluid, the imposing forces of fluid slow down the movement of the structure. These 

forces are called drag forces, representing the combination of pressure drag and 

friction drag [29]. Pressure drag is the force imposed on the structure; whereas, 
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friction drag is the shear stress at the wall of the fluid container [29]. According to 

Fossen's findings in his book [30], when a structure or body is submerged in water 

and it is forced to oscillate due to harmonic frequency based wave, the damping effect 

of water is called linear frequency dependent potential damping. The drag coefficient 

is not a constant value, and it is dependent on several parameters, such as flow 

condition and shape of the structure; more specifically, it is the function of Reynolds 

number which clarifies the flow condition [30]. Consideration of the damping due to 

water while studying the fluid loading effect on MEMS could be an interesting area to 

investigate in further research.     

 It is highly recommended to validate the obtained added mass formula through 

experimentation. An experimental configuration based on the available equipment in 

the previous experiments is suggested. This experimentation could not be done due to 

funding and time constraints prior to this project. The main goal of this experiment is 

to detect the first and second natural frequencies of the proposed vibrating structure in 

both water and air mediums. One of the main required equipments for this experiment 

is the LDV which is a scientific device used for detecting non-contact surface 

vibration measurements. This non-contact measuring device detects the structural 

response of a structure undergoing the test, such as damping, natural frequency and 

mode shapes. Sriram et al. [31] states that these scanning LDVs are not accurate for a 

submerged vibrating structure since the spread signal arrives in discontinuous bursts 

analogous to the particles crossing the LDV's probe volume which may cause error in 

measurements. To solve the inaccuracy issue, it is recommended to use a calibrator 

before considering the final measurements. Accordingly, it is suggested to use a 

handheld calibrator as the objective prior to the actual measurement and then execute 

the measurement with a turned on calibrator. It is also recommended to execute these 

measurements in time domain, so that if there is any noise added to signal, it can be 

detected and removed accordingly. If this medium validation measurement is 

executed with the estimated result, it can be stated that the medium (water) does not 

interfere with the consequent actual measurements [32]. The equipment needed for 

this validation experiment is a shaker that can be used in both mediums to vibrate the 

structure. For this purpose, an electromagnetic or a hydraulic shaker can be used at the 

point of interest of structure [33]. For running the experiment, the electromagnetic 

shaker has to be connected to an output gate of a FRA with a certain voltage. This 



62 

 

 

FRA will transform the voltage into a magnetic harmonic force of the same frequency 

range [34]. The shaker will excite the structure by the harmonic force at a certain 

frequency, and data for force, response signal, and the phase information will be 

recorded [33]. Another main factor that should be considered for the experimentation 

is the design of the water container. It is recommended to select a relatively large 

container, so that the walls would not have a significant effect on the experimental 

result [35]. Considering all the factors mentioned earlier, the proposed experimental 

setup is where the structure is placed on the electromagnetic shaker. The magnetic 

shaker is connected to the output of FRA system for signal generation and hence its 

transformation to mechanical force. This connection could be done using either smart 

tether wires, which are mainly designed for underwater use only, or through a wireless 

FRA system [36]. The excitation of the structure will be scanned using a LDV system. 

However, the LDV system is only calibrated for air measurements, so presence of 

water will lead to a diffraction of laser beams. To overcome this problem, the 

following proposed method can be used. This method involves a LDV for acousto-

optic sensing in which the system detects the propagated data from vibrating water-air 

interfacing surface [37], where acousto-optic is a division of physics which focuses on 

the study of interaction between sound waves and light waves. On the other hand, the 

optical diffraction index of water can be considered for eliminating the inaccuracies 

due to laser vibrometer [38]. The LDV system is connected to a DAQ which is an 

interference between the signal and a computer to convert the analog signals of the 

sensor into digital values. According to the literature, when running the experiment 

for the case of submerged, a handheld calibrator is added in between the LDV and 

DAQ. This experiment will allow the user to obtain the first and second natural 

frequencies of vibrating structure in both mediums. Then, these values will be used 

for calculation of experimental added mass and comparison with the obtained 

analytical values. 

 

 

 

 



63 

 

 

References 
 

 
 

[1]  S. M. Firdaus and H. Omar and I. A. Azid, "High Sensitive Piezoresistive Cantile-

 ver MEMS Based Sensor by Introducing Stress Concentration Region (SCR)," in  

 Finite Element Analysis - New Trends and Developments, Open Science InTech, 

 2012, pp. 225-229. 

 

[2]  D. R. Brumley, "The Dynamics of High Frequency NanoElectroMechanical Reso-

 nators in Fluid," .Sc Thesis, University of Melbourne, Melbourne, Australia,2008. 

 

[3]  W. Mai, "Home Page - Professor Zhong L. Wang's Nano Research Group," June,

 2002. [Online]. Available: http://www.nanoscience.gatech.edu/zalwang/research/ 

 afm.html. [Accessed: May. 15, 2016]                 

 

[4] J. E. Sader and C. A. Van Eysden, "Frequency Response of Cantilever Beams  I-

 mmersed in Compressible Fluids with Applications to the Atomic Force 

 Microscope," Applied Physics, vol. 84, no. 1, pp. 1-8, July. 1998. 
 

[5] F. Liu and H. Li and H. Qin and B. Liang, "Added Mass Matrix Estimation of B-

 eams Partially Immersed in Water using Measured Dynamic Response," Sound 

 and Vibration, vol. 333, no. 20, pp. 5004-50017, Sept. 2014. 
 

[6] P. Causin and J.F. Gerebau and F. Nobile, "Added-Mass Effect in the Design of 

 Partitioned Algorithms for Fluid-Structure Problem," Computer Methods in 

 Applied Mechanics and Engineering, vol. 194, pp. 4506-4527, Dec. 2004. 

 

[7] R. K. Singhal and W. Guan and K. Williams, "Modal Analysis of a Thick-Walled

 Circular Cylinder," Mechanical System and Signal Processing, vol. 16, no.1, 

 pp.141-153, Jan. 2002.     

 

[8] E. Da Lozzo and F. Auricchio and G. M. Calvi, "Added Mass Model for Vertical 

 Circular Cylinder Immersed in Water," in Proceedings of the 15th World 

 Conference on Earthquake Engineering, 15WCEE, 24-28 Sept. 2012,  Lisbon, 

 Portugal, pp. 1-10. 

 

[9] R. N. Govardhan and C. K. Williamson, "Vortex-Induced Vibrations of Sphere,"          

 Journal of Fluid Mechanics, vol. 531, pp. 11-47, May. 2005. 

 

[10]  S. A. Fackrell, "Study of the Added Mass of Cylinders and Spheres," Ph.D. disse-

 rtation, University of Windsor, Ontario, CA, Canada, 2011. 

 



64 

 

 

[11]  H. Ghassemi and E. Yari, "The Added Mass Coefficient Computation of Sphere, 

 Ellipsoid and Marine Propellers using Boundary Element Method," Polish   

 Maritime Research, vol. 18, no. 68, pp. 17-26, 2011. 

 

[12] F. M. White, "Potential Flow and Computational Fluid," in Fluid Mechanics, 5th 

 ed. New York: McGraw-Hill, 2003, pp. 566-568.  

 

[13] W. H. Chu, "Further Developments of a More Accurate Method for Calculating 

 Body-Water Impact Pressure" in Fundamental Hydrodynamics Research 

 Program, Tech. Rep. no. 2, pp.10-52, April. 1963.  
 

[14] M. Elgabaili,  "Hydrodynamic Mass of Bluff Bodies with and without Cavity,"

 M. S. thesis,  California State University, Northridge, California, 2012.          

 

[15]  J. C. Jo, "Fluid Structure Interactions," in Pressure Vessels and Piping Systems - 

 Encyclopedia of Life Support Systems, Tech. Rep. no. 5, pp. 11-45, Sept. 2010.    

 

[16]  K. Vikestad and C. M. Larsen and J. K. Vandiver, "Damping of Vortex- Induced

 Vibrations," in Proceedings of the Offshore Technology Conference, OTC 

 11998, 1-4 May. 2000, Texas, United State of America, pp. 1-7. 

 

[17] D. Sedlar and Z. Lozina and D. Vucina, "Experimental Investigation of the 

 Added Mass of the Cantilever Beam Partially Submerged in Water,"  Technical  

 Gazette, vol. 18, no. 4, pp. 589-594, April. 2011.  

 

[18]  S. Mönkölä, "Numerical Simulation of Fluid-Structure Interaction Between Aco-

 ustics and ElasticWaves," Studies in Computing Fluid Structure Interaction, vol. 

 36, pp. 1-129, 2011. 

 

[19]  Q. Liang, C. Rodríguez, E. Egusquiza, X. Escaler, M. Farhat, and F. Avellan,

 "Numerical simulation of fluid added mass effect," Computers & Fluids, pp. 

 1106-1118, 2010. 

 

[20]   L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics, 2d Ed. New York: Wi-

 ley, 1962. 

 

[21]  O. C. Zienkiewicz and R. E. Newton, "Coupled Vibrations of a Structure Sub-

   merged in a Compressible Fluid," Symposium on Finite Element Techniques, 

     1969. 

 

[22]   C. C. Liang, C. C. Liao, Y. S. Tai, and W. H. Lai, "The Free Vibration Analysis

 of Submerged Cantilever Plates," Ocean Engineering, vol. 28, no. 9, pp. 1225 -

 1245, Sept. 2001. 

 



65 

 

 

[23]   L. Meirovitch, Elements of Vibration Analysis, 2nd Ed. New York: McGraw-

  Hill, 1986. 

 

[24]   R. Shabani, H. Hatami, F. G. Golzar, S. Tariverdilo, and G. Rezazadeh," Coup-

 led Vibration of a Cantilever Micro-Beam Submerged in a Bounded Incompre-

 ssible Fluid Domain," Acta Mechanica Acta Mech, pp. 841-850, 2012. 

 

[25]   D. Lin and B. T. Yakub, "Interface Engineering of Capacitive Micromachined 

 Ultrasonic transducer for medical applications," IEE Symposium on Ultrasonics,

 vol. 20, no. 1, pp. 8-31, 2011. 

 

[26]  R. Gruter, "Simultaneous Detection of Added Mass and Change in Stiffness usi-

 ng Micromechanical resonator," M.S. thesis, University of  Basel, Basel, CH,

 Switzerland, 2009. 

 

[27]  C.V. Eysden and J. E. Sader, "Resonant Frequencies of a Rectangular Cantilever 

  Beam Immersed in a Fluid," J. Appl. Phys. Journal of Applied Physics, vol.100, 

  no. 11, p. 114916, 2006. 

 

[28] M. Venugopal, "Damping and Response Prediction of a Flexible Cylinder in a    

 Current ," Ph.D. dissertation, Massachusetts Institute of Technology, Massachu-

 sett, United State of America, 1996. 

  

[29]  A. Bakker, "Reynolds Number and Drag on Immersed Bodies," Applied Compu-

 tational Fluid Dynamics, vol.1, no. 2, pp.1- 4, 2011. 

 

[30] T. H. Fossen, "Maneuvering Theory," in Handbook of Marine Craft Hydrodyna-

 mics and Motion Control, Wiley, 2011, pp.122-126. 

 

[31]  P. Sriram and S. Hanagud and J. I. Craig, "Modal Analysis," The International 

 Journal of Analytical and Experimental Modal Analysis, vol.7, no. 3, pp. 169-

 178, July. 1992. 

 

[32]  K. B. Gatzwiller and K. B. Ginn and A. Betts and S. Morel, "Practical Aspects 

 of Successful Laser Doppler Vibrometry based Measurements," in Proceedings 

 of the Society for Experimental Mechanics Conference, IMAC-XXI, 2003, pp. 

 1-6.  

 

[33] K. Cheng, Machining Dynamics Fundamentals, Applications and Practice: 

 Dynamic Analysis and Control, Middlesex: Springer, 2009, pp. 43-46. 

 

[34]  C. T. F. Ross, Pressure Vessels External Pressure Technology: Vibration of a 

 thin-walled shell under external water pressure using ANSYS, 2nd ed. 

 Cambridge: Woodhead, 2011, pp. 394-396.   



66 

 

 

 

[35]  J. Singer and J. Arbocz and T. Weller, Buckling Experiment:Experimental Meth-

 ods in Buckling of Thin-Walled Structure: Stiffened Shells, 2nd ed. Canada:John

 Wiley & sons, Inc, 2002, pp. 1019-1021.  

 

[36]  A. Zoksimovski and D. Sexton and M. Stojanovic and C. Rappaport," Underwat-

 er Electromagnetic Communications Using Conduction - Channel Characterizat-

 ion," in Proceedings of the ACM International Conference on Underwater Net-

 works & systems, WUWNet'12, 5-6 Nov. 2012, Los Angeles, CA, United State 

 of America, pp.1-7. 

 

[37]  J. M. Buick and J. A. Cosgrove and P. A. Douissard and C. A. Greated and B. 

 Gilabert, "Application of Acousto-optic Effect to Pressure Measurements in 

 Ultrasound Fields in Water using a Laser Vibrometer," Review of Scientific 

 Instruments, vol. 75, no. 10, pp.3-5, Sept. 2004. 

 

[38] T. F. Argo and P. S. Wilson and V. Palan, "Measurement of the Resonant 

 Frequency of Single Bubbles using a Laser Doppler Vibormeter," Journal of 

 Acoustical Society of America, vol. 123 , no. 6, pp. 2-5, June. 2008. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



67 

 

 

Appendix A 
 
 

The Matlab codes which has been used for studying the vibrational behavior 

of the MEMS without any fluid medium is provided below.  Where analytical and 

transfer function's natural frequencies were compared.  

 

clc 

clear all 

close all 

%% Forced-Damped Vibration for two Coupling Beams connected through torsional 

%% Spring  

%% Harmonic input force e^iwt 

L=1e-6; 

m1=1.365e-31; 

m2=1.365e-31; 

k1=20e-6; 

k2=20 e-6; 

k=1000 e-6; 

c1=0; 

c2=0; 

w=20;     %w=2*pi*f frequency 

  

%% Mass, Stiffness, Damping Matrices 

  

M=[m1 0; 0 m2]; 

C=[-c1*L-c2*L c2*L; c2*L -c2*L]; 

K=[k*L-k1*L+k2*L k2*L-k*L; k2*L-k*L k*L-k2*L]; 

  

%% Physical matrix of 2DOF system 

%% analytical natural Frequencies 

  

a=((w*c1)+(w*c2)); 

b=((-w*w*m1)+k-k1+k2); 
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d=(k2-k); 

f=((-w*w*m2)+k-k2); 

h=(w*c2); 

  

A=[a b -h d; b -a d h; -h d h f; d h f -h]; 

  

[V,D]=eig(A); 

freq=sqrt(D); 

  

W1anal=freq(3,3) 

W2anal=freq(4,4) 

  

%% Natural Frequencies form Response plot 

%% Numerator for TF#1 

a0= m2; 

a1=(w*i*m2-c2); 

a2=(k-k2-((w*i)*c2)); 

a3=w*i*(k-k2); 

num1=[a0 a1 a2 a3]; 

  

%% Numerator for TF#2 

a00=m1; 

a11=(-c1-c2+(w*i*m1)); 

a22=(k-k1+k2-((w*i)*c2)-((w*i)*c1)); 

a33=w*i*(k-k1+k2); 

num2=[a00 a11 a22 a33]; 

  

%% Denominator 

T=m1*m2; 

N=((-m1*c2)-(m2*c1)-(m2*c2)); 

P=((k*m1)-(k2*m1)+(c1*c2)-(k1*m2)+(k*m2)+(k2*m2)+1); 

Q=((-k*c1)+(k2*c1)+(k1*c2)-(2*k2*c2)); 

R=((2*k*k2)-(k*k1)+(k1*k2)-(2*k2*k2)); 
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b0=T; 

b1=N; 

b2=(P+(T*w*w)); 

b3=(Q+(2*w*w*N)); 

b4=(R+(2*w*w*P)+(T*(w^4))); 

b5=((2*w*w*Q)+((w^4)*N)); 

b6=((2*w*w*R)+((w^4)*P)); 

b7=((w^4)*Q); 

b8=(R*(w^4)); 

  

denum=[b0 b1 b2 b3 b4 b5 b6 b7 b8]; 

sys1= tf(num1,denum); 

sys2=tf(num2,denum); 

  

%% Frequency Plot 

wf= logspace(-1,3,1000000); 

Y=freqresp(num1,denum,wf); 

y1=abs(Y); 

y2=angle(Y); 

  

subplot(2,1,1) 

semilogx(wf,20*log10(y1)); 

grid on 

ylabel('Magnitude (dB)') 

title('Bode Diagram') 

  

subplot(2,1,2) 

semilogx(wf,y2*(180/pi)); 

grid on 

ylabel('Phase (deg))') 

xlabel('Frequency (Hz)') 

%% Extracting Frequency from Bode plot 



70 

 

 

[Wn] =damp(sys2); 

   

W1=Wn(3,1) 

W2=Wn(7,1) 

  

%% Difference Between Frequencies 

Difference_W1= abs(((W1-W1anal)/W1)*100) 

Difference_W2= abs(((W2-W2anal)/W2)*100) 
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Appendix B 
 
 

The Matlab codes which has been used for symbolic study of wet and dry for 

the first two natural frequencies. The relationship between dry and wet frequencies 

are obtained using ratio. 

 

clc 

clear all 

close all 

 

syms w c m k k1 ma 

 

%% Physical matrix of 2DOF sys 

A=[(w*c)+(w*c) ((-w*w*m)+k-k1+k1) (-w*c) (k1-k); ((-w*w*m)+k-k1+k1) (-

w*c)+(-w*c) (k1-k) (w*c);-(w*c) (k1-k) (w*c) ((-w*w*m)+k-k1);(k1-k) (w*c) ((-

w*w*m)+k-k1) (-w*c)];   

[V,D]=eig(A); 

freq=sqrt(D); 

W1dry=freq(3,3) 

W2dry=freq(4,4) 

 

%%Physical Matrix of 2DOF with Added mass  

B=[(w*c)+(w*c) ((-w*w*(m+ma))+k-k1+k1) (-w*c) (k1-k); ((-w*w*(m+ma))+k-

k1+k1) (-w*c)+(-w*c) (k1-k) (w*c);-(w*c) (k1-k) (w*c) ((-w*w*(m+ma))+k-k1);(k1-

k) (w*c) ((-w*w*(m+ma))+k-k1) (-w*c)]; 

[S,N]=eig(B); 

freqq=sqrt(N); 

W1wet=freqq(3,3) 

W2wet=freqq(4,4) 

  

R1=W1wet/W1dry 

R2=W2wet/W2dry 
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