3D Printers for Sustainable Construction

Sara Kandil (ELE)

Fadel Haj Murad (CVE)

A Sulaiman (CVF

Malek Malke (CMP)

Situation

- An increase in building construction due to an increase in population and growing demands.
- The limited availability in energy and resources that can be utilized in building construction.

Research Question: How can 3D printing contribute to the sustainability of building construction?

Problems

Building construction has two main problems associated with it:

- Waste produced by the building process
- Labour force cost
- Amount of pollution emitted during and after construction[4].
- Time

Table 1: Quantity and Percentage of Non-Hazardous Wastes, 2014 (Tonnes) [1]

Source of Wastes	اتسية تعنوية %	ئىيىرغ Total	Method of Disposing				
			Method of Disposing		Methods of Recovery		
			Other methods in Disposing	Dumping ²	Other methods in recovery ¹	Composting	Recycling
Constructions Waste	55.9	*********	27,440.0	**********	15,154.4	0.0	2,153,530.6
Municipality Waste	20.6	5,228,527.8	0.0	*******	606,260.0	560.0	395,656.3
Industrial General Wastes (Non-hazardous)	15.4	3,899,601.1	124,000.0		6,914.0	0.0	475,368.6
Agriculture Wastes	3.0	766,081.9	16,054.0	663,610.0	2,760.0	83,657.9	0.0
Sludge of Wastewater ⁴	3.0	766,248.1	0.0	672,085.3	68,370.3	25,792.5	0.0
Others	2.1	538,868.3	0.0	538,868.3	0.0	0.0	0.0
Total ⁵	100.0	*******	167,494.0	*******	699,458.6	110,010.4	*******
% of disposing Method		100.0	0.7	84.2	2.8	0.4	11.9

Solution

More efficient ways are needed for construction, therefore 3D printing of sustainable buildings could be used.

Software applications such as, AutoCAD can be used to model a 3D construction and interface it with the printer.

A 3D printer can be used on site, and it can be assembled on-site or transported to the site.

Figure 1: 3D ceramic printing process [2].

Additionally, 3D printers use the exact amount of material needed for a construction which reduces waste emissions [5].

3D construction printers contribute to lower costs in terms of:

- Labour force
- Transportation
- Material

Figure 2: Schematic of a 3D printer and the printed construction [3].

Sustainable buildings use efficient materials in constructions.

Evaluation

We evaluated our solution in terms of three factors:

References

[1] Federal Competitiveness And Statistics Authority (2014). [Table]. Waste 2014 Available:

 $\label{lem:http://www.fcsa.gov.ae/EnglishHome/ReportDetailsEnglish/tabid/121/Default.aspx? ItemId=2457\&PTID=104\&MenuId=1.$

[2] materialise(2015). "3d-printing-process-for-ceramics.jpg"in How 3D Printing in Ceramics Really Works[Online]. Available: https://i.materialise.com/blog/going-strong-how-3d-printing-in-ceramics-really-works/

[3]A.Nehuen(2015). "New-Model-CC2-650x355.jpg," in 3D printing construction & architecture: building the home of the future[Online]. Available:

https://www.sculpteo.com/blog/2015/10/07/3d-printing-construction/

[4] V. Kukadia, S. Upton and D. Hall, Control of dust from construction and demolition activities, 1st ed. London: BRE publications, 2003, pp. 5-9.

[5] T. Peng, "Analysis of Energy Utilization in 3D Printing Processes," *Procedia CIRP*, vol. 40, pp. 62-67, 2016.

[6]"Apis Cor | We print buildings", Apis-cor.com. [Online]. Available: http://apis-cor.com/en/.