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Abstract 

Sound is abundant energy found in our everyday lives, especially in urban places. 

Acoustic energy can be thought of as a good alternative energy source. Despite the fact 

that the sound is prevalent; it is challenging to scavenge energy for practical application 

due to the low-power density. However, the harvested energy from acoustics can be 

used to power low-power electronic devices. Researchers have established various 

techniques and mechanisms to increase the harvested energy at the low frequency 

range. One widely famous and effective mechanism is the use of piezoelectric (PZT) 

transducers. This technique has been used by many researchers to maximize the energy 

harvested from sound (vibration). Dual piezoelectric cantilever plates will be employed 

to harness the acoustic waves and obtain the natural frequency. The natural frequency 

is first determined through a proposed mathematical model and it is found to be 247 

Hz. Then, the natural frequency is verified by a numerical method used by COMSOL 

Multiphysics software and it is found to be 242 Hz. This frequency is then validated 

with experimental data and it found to be 239 Hz; which is close to the mathematical 

and simulation results. The dual piezoelectric cantilever plates will be placed inside a 

quarter-wavelength straight-tube resonator. The tube resonator works as an amplifier 

when an incident wave travels through it. An acoustic resonant wave is applied and 

drives the PZT plates causing it to generate energy. The amplification ratio is 3.58 dB 

at the resonant frequency (239 Hz). Several tests are carried out to validate the resonant 

frequency within the tube resonator and it is verified to be 239 Hz. Furthermore, 

multiple tests are conducted with tube resonator placed at different locations from the 

acoustic source. Those tests confirmed that the maximum voltage is produced at the 

resonant frequency (239 Hz). The goal of this research is to find an improved way to 

harvest the currently wasted acoustic/vibration energy through piezoelectric cantilever 

plates. 

Keywords: Piezoelectric; PZT; energy harvesting; natural frequency; low 

frequency; Cantilever; FEM; COMSOL 
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Chapter 1: Introduction  

 

1.1.    Introduction 

Energy harvesting has been a topic of an interest to most of the researchers [1-

10], where they have developed ways to convert the ambient energy in the environment 

into electrical energy. The term energy harvesting is used for low-scale power 

generation in which the power generated is in the scale of micro-to-milli-watts. 

Harvesting energy from thermal [4], solar [11], wind [12], mechanical vibration [13], 

has been investigated theoretically and experimentally for powering low-power 

devices. However, acoustic energy compared with other energy sources has received 

the least attention to develop harvesting methods. The acoustic energy is abundant, free, 

sustainable and clean energy source that can be extracted and converted into electrical 

energy.  

The acoustic waves convey energy that causes some element to vibrate and 

possibly to deform a structure thereby generating electricity. Recently, there have been 

significant efforts to develop mechanism to harvest the acoustic energy from airports, 

road traffic, construction sites, and work plants [9]. Moreover, the conversion of 

mechanical vibration (sound) to electricity can be done using three types of generators, 

namely, electromagnetic, electrostatic, and piezoelectric generators. Amongst the three 

mechanisms, piezoelectric transduction has received the greatest attention.  

Piezoelectric (PZT) is a smart alternative for batteries, which can create energy 

on the go. Many researches were conducted around this topic. The first micromachined 

acoustic energy harvester was introduced by Horowitz et al. as it used Helmholtz 

resonator with piezoelectric ring attached to one of the walls [1]. He was able to achieve 

maximum power of ~0.1 nW at frequency of 13.6 kHz. Then on the same concept, Liu 

et al. [2] developed an electromechanical Helmholtz resonator that utilizes the uniform 

pressure of the incident wave in the resonator chamber to bend the piezoelectric plate. 

This work generated power of 30 mW at 2.6 kHz frequency, this power is enough to 

supply low powered electronic devices. Kim et al. [4] used the Helmholtz resonator to 

harvest airflow and aeroacoustic energy using the magnet driven by acoustic pressure 

principle and they were able to generate 4 mV voltage at 1.4 kHz frequency. Lallart et 

al. [5] tried to improve the power gain in acoustic energy harvesting at a high frequency. 

Most of the above studies generated power/voltage at high frequencies which can be 
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found in military and governmental communication systems, aviation, and over the 

horizon radar system. However, these applications are not used on daily basis. 

Therefore, the need to harvest acoustic energy from low frequencies that are found in 

our daily life such as TVs, traffic, sirens at 30m, jet engines and many other sound 

sources, is examined and studied in this work. Nevertheless, all the previous studies 

generated power using single piezoelectric beam and dual piezoelectric beams 

configuration has not been investigated. Therefore, the main objective of this research 

is to develop a new method to harvest energy from low frequency sound waves using 

dual piezoelectric beams. This approach is able to double the harvested energy since 

dual PZTs are employed. To attain the maximum output power density from the PZT, 

the PZTs’ frequency should match the excitation frequency. The resonant frequency is 

confirmed mathematically and through simulation in COMSOL software to optimize 

the dimensions of the PZT plates. And then various experiments are executed to 

validate the resonant frequency of the PZT system with the specific boundary condition 

(BC). After, designing an appropriate PZT setup, a quarter-wavelength tube resonator 

will be fabricated to amplify the voltage generated from the PZT setup. 

1.2.    Literature Review 

Li, and You [6], utilized the Helmholtz resonator to maximize the energy 

harvested from piezoelectric plates. They managed to change shape of the Helmholtz 

resonator to have rectangular shape to increase the sound pressure amplification factor. 

Also, the rectangular shape of the tube will minimize the eigenfrequency and bring it 

down to be around 400 Hz. In this study, two tests were conducted; one with single 

beam and the second is with nine beams placed inside the tube resonator. The single 

beam showed energy storage of 0.0569 µJ when the sound pressure level applied is 100 

dB. The number of beams was increased to be 9 beams and the output energy was 0.382 

µJ. Though, the total stored energy of the 9 beams is greater than that of the single beam 

that does not mean the total energy increases linearly with the increase of the beam 

number inside the tube. This is due to the interaction of the air particles with the beams. 

Therefore, a limited number of beams must be placed inside the tube that will ensure 

high energy output. Moreover, the energy generated cannot be used to power devices. 

Therefore further studies on different energy sources that show high voltage 

generation is investigated. An extraction of renewable energy from rain drops and wind 

speeds were investigated by Vatansever et al. [7]. The voltage was generated from these 
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natural phenomena using ceramic based piezoelectric fiber composite structures (PFCs) 

and polymer based piezoelectric strips, PVDF (Polyvinylidene fluoride), to be used in 

powering small devices. After running various experiments on both piezoelectric 

materials and changing the parameters such as the wind speed, the weight of droplets 

and the releasing height, conclusions were drawn. The greater the height and the larger 

the mass of the water drops, the higher voltage was generated. The energy scavenging 

depends on the geometric dimension of the material and the type of films. Finally, it 

was proven that the peak voltage was higher, relative to the ceramic piezoelectric 

materials, when the polymer based piezoelectric material was used in this application. 

From there on further studies on piezoelectric material is conducted and their 

application. Based on [7], Li et al. [8] use PZT beams based piezoelectric material in 

tube resonator. Two different in length tube resonators were designed to test the output 

voltage of the piezoelectric material plates. A 52 cm and 42 cm tube resonator study 

the effect of using the two piezoelectric materials that are PVDF and PZT respectively. 

For the 52 cm tube resonator it showed a voltage generation of 0.105 V and 55.6 nW 

when single PVDF beam was placed near the open inlet. On the other hand, the 42 cm 

tube generated voltage and power density of 1.433 V and 0.193 mW, respectively, when 

single beam was placed. Then, the voltage and power were increased when 5 to 7 beams 

of PVDF were placed in the 52 cm tube and the output voltage and power are 0.42V 

and 171.48 nW at 100 dB. However, the PZT in the 42 cm tube showed 9 and 1813 

times higher voltage and power increase than the PVDF, when 4 to 6 beams were placed 

(3.789 V and 0.311 mW, respectively). Then, they harvested travelling sound of a low 

frequency inside a 42 cm straight tube resonator that is open from one end and contains 

lead zirconate titanate (PZT) cantilever plates. The working mechanism is that when 

the incident travelling sound frequency matches the resonator resonance frequency the 

amplified acoustic pressure inside the tube excites the vibration motion of the 

piezoelectric plates, causing voltage generation. The amplification factor for the first 

eigenfrequency (199 Hz) was 97.2. The voltage generated at 100 dB with 4 PZT plates, 

is 5.089 V and when the incident sound pressure was increased to 110 dB, the voltage 

produced increased to 15.689 V, in which it was concluded that there is a linear 

relationship between the voltage and the incident sound pressure. The corresponding 

power is 12.697 mW and the areal (power per unit area) and volume power densities 

are 0.635 mW cm-2 and 15.115 µW cm-3, respectively [9]. Then, building on the same 

result of [14], they were able to simulate the quarter-wave length resonator using 
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commercial finite element software (COMSOL software). The amplification factor for 

the simulated model was 100.1 at the first eigenfrequency (198 Hz) and the 

amplification factor for the experimental model was 97.2 at 199 Hz. When a single PZT 

was simulated at 100 dB, it generated 1.6 V at 196 Hz. When it was compared to the 

experimental data, it was close as it generated 1.43 V at 199 Hz. Then, the number of 

PZT plates was increased to 4 PZT, generating 0.37 mW at 190 Hz. Subsequently, 

beams were increased to 5 PZT plates and it generated 4.06 V at 189 Hz. It can be 

concluded that the experimental data are 7% and 19% lower than the simulation results 

(3.79 V at 193 Hz and 0.31 mW at 194 Hz) [10]. Then Li et al. [6], tested the 58 cm 

tube resonator with PVDF cantilever beams and placed them in two configurations 

aligned and zigzag. The zigzag configuration showed significant increase in the voltage 

and power relative to the aligned configuration. The zigzag configuration has more 

open path for the acoustic air particle motion, which leads to higher amplification ratio. 

The first three eigenfrequencies that are 146 Hz, 439 Hz, and 734 Hz the amplification 

ratios are 59.1, 42.2, and 23.3, respectively. The maximum voltage when multiple 

PVDF beams were used is 0.696 and the power is 0.31 µW at 100 dB. And due to the 

linear relationship between the sound pressure level (SPL) and the output voltage, the 

voltage was increased to 1.48 V when the pressure level reached 110 dB [8]. 

1.3.    Thesis Methodology 

The previous studies have focused on harvesting energy through a tube 

resonator [6, 7, 9, 10, 14], where multiple piezoelectric beams were used in specific 

configuration. The multiple beams were placed successively from the open inlet 

towards the closed inlet of the tube resonator to harvest energy. The output voltage 

decreases as the piezoelectric beams move to the close inlet. Moreover, the number of 

piezoelectric beams that can be placed and hence the output voltages are limited 

because of the interaction of the acoustic air particles inside the resonator.    

In order to solve this problem, two piezoelectric cantilevers are placed vertically 

on top of each other near the open end inlet of the quarter-wavelength tube resonator. 

This method is anticipated to double the voltage scavenged when the resonant 

frequency of the PZT matches the exciting frequency. A mathematical model is 

developed to calculate the resonant frequency of the PZT. Then, numerical simulations 

are performed using COMSOL software, to verify the resonant frequency. The resonant 

frequency of the system is compared against the mathematical and simulation models, 
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through experimental procedure. After that, a quarter-wavelength tube resonator is 

designed, fabricated and tested to amplify the output voltage of the system. 

1.4.    Research Contribution  

A novel PZT configuration is suggested in this research to harvest acoustic 

energy from the surrounding environment. This configuration amplifies the energy 

harvested with fewer PZTs at low frequency. A new mathematical model is proposed 

to model the PZT plates. The PZT plate model is simulated to validate the mathematical 

model and compare it against it. The mathematical model is then validated against the 

finite element (FE) simulation. Based on the results of the designed PZT system a 

customized tube resonator is built to amplify the harvested energy. 

1.5.    Thesis Organization 

This thesis starts with the introduction including background information about 

energy harvesting followed by literature review about the previous methods to harness 

energy from acoustics. The preliminary studies on piezoelectric and the design of both 

the cantilever PZTs as well as the tube resonator are presented in Chapter 2. Chapter 3 

models the cantilever PZT through nonconventional mathematical method. Through 

the mathematical model, the natural frequencies of the system are obtained and to study 

the behavior of the system when it is directed to a harmonic force. The cantilever PZT 

design setup is numerically simulated using the finite element analysis software 

COMSOL and it is documented in Chapter 4. Also, in Chapter 4, the analytical model 

is confirmed using experimental data and the small discrepancy is explained. The 

simulation of the tube resonator is presented in Chapter 5. Furthermore Chapter 5 

contains the experimental apparatus and the results of the tube resonator. Finally, 

Chapter 6 concludes and summarizes the findings and proposes ideas for future 

research. 
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Chapter 2: Literature Survey 

 

In this chapter, an early investigation about vibration-based energy harvesting 

using the piezoelectric transduction is done. A summary about the basic transduction 

techniques to convert vibration to electricity is discussed. Also, the advantages of 

selecting the piezoelectric transduction amongst other mechanisms are investigated. 

Based on the piezoelectric transduction selection, the theory of the piezoelectric effect 

is presented. Further studies on the cantilever configuration, choice of material, and the 

suitable harvester design configuration are discussed. Then, the analytical relationship 

between the output voltage and the displacement of the piezoelectric when a mechanical 

stress, is examined. Finally, a brief description about the practical application of the 

piezoelectric is presented.   

2.1.    Vibration-Based Harvesting Mechanism 

 Over the last decade energy harvesting has gained special attention especially 

vibration-based energy. Researchers have developed many methods to harvest 

vibrational energy and convert it into electricity for microsystems [15]. This 

unexploited mechanical energy (vibration) can be harvested through three basic 

mechanisms that are electromagnetic [16, 17], electrostatic [18, 19], and piezoelectric 

[20, 21] transductions. The electromagnetic transducer is widely used in low frequency 

ranges for medium size devices. The electromagnetic transducer has high compatibility 

level with Si microsystems technology [22]. It also operates in higher frequency range 

(50 Hz); in which generates higher power density [23]. However, the high cost of 

integrating it with a microsystem is one of the drawbacks since it is complex to design 

and manufacture. Another disadvantage is the bulky size of the permanent magnets and 

the timing coil. The second mechanism is the electrostatic, which is the best fit 

mechanism for MEMS applications and it does not need smart material. But this type 

requires external voltage source such as battery to charge and has mechanical 

constraints. The last transducer is piezoelectric transducer which is commonly used. 

This is due to the property of the material that makes it very attractive, where these 

materials have large power density, compact configuration, high coupling in sole crystal 

and high feasibility for daily applications [24]. Piezoelectricity is the property where 

electricity is generated from mechanical stress. It is form of charges stored in the solid 

materials like ceramics, crystals, and bones when a pressure is applied. This property 
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of piezoelectric materials makes them attractive in energy scavenging. The 

piezoelectric material can withstand huge amount of strain magnitude to convert 

mechanical energy into electrical energy compared to other transductions. Figure 1 

represents the high power density of the piezoelectric compared with other mechanism 

verses voltage. 

 

Figure 1: Power density vs. voltage [14] 

2.2.   Theory  

In 1880, Pierre and Jacques Curie discovered the piezoelectric effect. 

Piezoelectricity is the linear relation between the electric potential and mechanical 

stress in a crystal. When mechanical stress is applied in crystal or solid materials, an 

electric field is generated. This property of piezoelectric materials makes them 

attractive in energy scavenging. 

There are two forms of piezoelectric effect that are the direct and the converse 

effect. The direct effect is the change of electric polarization when strain is applied. In 

other words, when mechanical stress (tensile or compressive) is applied due to external 

force, it will alter the separation between the positive and the negative charges in the 

crystal leading to net polarization at the surface. The effect of the piezoelectric has 

proportional relation with the symmetry of the material. The more symmetric the crystal 

is the more electric polarization produced. Then, in 1881, Gabriel Lippmann found out 
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that piezoelectric materials exhibit the reverse piezoelectric effect. In a similar manner, 

the converse effect (reciprocal) is whereby a piezoelectric crystal changes when the 

electric field is applied, causing the material to produce mechanical strain [25]. As an 

example of application that uses converse effect is the motors and ultra-exact, while the 

microbalances and scanning microscopy are examples that employ the direct 

piezoelectric. In addition, the direct piezoelectric effect is accountable for the material’s 

ability to act as a sensor and the converse piezoelectric effect is accountable for its 

ability to act as an actuator [26]. 

There are coupled linear mathematical equations that describes the piezoelectric 

effect and they are as follows: 

𝑺 =  𝒔𝑬. 𝑻 + 𝒅𝒕. 𝑬 (1) 

𝑫 =  𝒅. 𝑻 + 𝜺𝑻. 𝑬 (2) 

where S is the mechanical strain vector, T is the mechanical stress vector, D is the 

electric displacement (charge density), E is the electric field, 𝑠𝐸 is the compliance 

(strain produced by unit stress), 𝜀𝑇 is the dielectric permittivity, while d and 𝑑𝑡 are the 

matrices for the direct and converse piezoelectric effect (the t indicates transpose). Both 

equations can be extended to describe 6 mm crystal class such as PZT ceramic [27]. 

2.3.   Piezoelectric Actuators 

Piezoelectric actuators consist of two main categories that are: stack actuators 

and stripe actuators (bending actuators). The stack actuators consist of layers of 

piezoelectric mounted vertically on top of each other. They have low stroke, high 

blocking force and the total volume increases the output energy. The stripe actuators 

are multi-layers of piezoceramics that are fixed either as double or single ended i.e. 

cantilever [28]. The stripe actuator has large stroke and very limited blocking force 

relative to the stack actuator. A special type of stripe actuator is the piezoelectric 

bimorph actuator.  

A stripe bending actuator with triple layers from APC International, Ltd. is used 

as displayed in Figure 2. The stripe actuator is designed to create a fairly large 

mechanical deflection when an electrical voltage is applied. One layer of the 

piezoelectric bimorph expands and the other contracts [29].  Figure 2, shows a bimorph 

PZT piezoelectric consist of two thin strips of piezoelectric sandwiching a carbon fiber 
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layer as central shim. The two piezoelectric (piezoceramic) layers are bonded together 

in a way that the direction of polarization is matching. Also, these stripes are connected 

electrically together in parallel manner in which this configuration ensures high 

sensitivity for any input. This design of actuator achieves relatively higher deflection 

compared to other designs and configurations. According to [30], the maximum 

deflection can reach up to 2.5 mm for a cantilever mounting structure for any regular 

magnitude actuator.  

The stripe actuator is modelled as multi-layer cantilever beam. A beam is a long, 

slender structure that is capable of withstanding transverse loading which results in 

bending effects (as seen in Figure 2).  

 

Figure 2: Bimorph PZT configuration [30] 

The PZT three parallel layers consist of two piezoceramic layers and one carbon 

fiber layer in the middle. The carbon fiber layer is longer by 5.5mm than the other two 

layers. The piezoceramic layers are coated with electrical insulation to protect it from 

the environmental changes like dust, humidity and other hazards. Also, there are two 

solderable electrodes, positive and negative, to connect the PZT with any electrical 

connection [30]. 

2.4.    Cantilever Configuration 

The geometry of the PZT affects the amount of energy harvested especially 

mechanical energy harvesting from vibration. Typically cantilever shaped PZT is 

mostly used in vibration-based energy harvesting. Cantilever configuration has one 

edge clamped and the other edge is moving freely. Most of the resonance frequency of 

the cantilever is lower than the other vibration modes of the piezoelectric element. 
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Consequently, the design of cantilever devices involves a unimorph or a bimorph 

cantilever beam/plate. Moreover, the construction of cantilever beam is simple and 

easier to get low resonant frequency (~100 Hz). Cantilever structure is preferred over 

two edge-clamped bridge structure because it can generate larger mechanical strain 

when a same input force is applied, similarly when cantilever structure is compared to 

all-edge-diaphragm. 

In cantilever structure, the strain is at its maximum at the clamped edge and it 

starts to decrease when moving further away from the clamped part. Therefore, the non-

stressed portion does not contribute to the total power generated [31]. It was therefore 

chosen as the configuration to this thesis. 

2.5.    Choice of Material 

 Piezoelectric ceramic materials are used in energy harvesting devices due to 

their properties, low cost, and the ease to be combined into energy harvesting devices. 

Among all of the piezoelectric ceramics, the Lead Zirconate Titanate (PZT) is attractive 

material for energy harvesting because of the high Curie temperature and its excellent 

properties. Over the past decades [32], the PZT has expanded and modified using 

chemical composition and fabrication processes to include broad range of piezoelectric 

properties. Some of the frequently used piezoelectric include PZT-5H, PZT-5A, and 

PZT-5X. Piezoelectric ceramics can be used based on the mechanical energy source. 

As an example when harvesting energy from vibration, thin and thick films of ceramic 

piezoelectric, and plates are preferred because they can be easily integrated with the 

cantilever. But if the energy is to be harvested from mechanical impacts, layers of 

piezoelectric ceramic can be used to increase the efficiency since the bimorph has more 

efficiency than the monomorph due to its polarity. 

Roundy et al. [31] developed an energy harvesting device using bimorph PZT 

bimorph cantilevers. It harvested energy from low level vibration to power wireless 

sensor nodes. First, Roundy was able to build PZT cantilever using PZT-5A ceramic 

piezoelectric and steel center shim to reduce the resonance frequency of the cantilever. 

A proof mass was attached to the end of the cantilever too.  The device was driven a 

vibration at 100 Hz which matches the natural frequency of the PZT. The output power 

recorded was 60 µW. Then, he was able to enhance the device by using two cantilevers 

using PZT-5H, and it was able to produce about 200 µW and 380 µW. 
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Sodano et al., in 2003, stated that when dimension of 63.5x60.3x0.27 mm3 of 

PZT-5H cantilever is driven on an electromagnetic shaker at the resonance frequency 

(50 Hz), the cantilever was able to charge a 1000 mAh NiMH rechargeable battery to 

90% of the battery’s capacity within 22 hours [33]. 

In this study, a PZT-5X piezoelectric bimorph cantilever is used to convert the 

sound wave from the loudspeaker into electricity. This is due to its large deflection, 

force lead or no lead, competitive price and availability. 

2.6.    Piezoelectric Harvester Design Configurations  

The main objective of this work is to employ piezoelectric material in energy 

harvesting application. Consequently, the focus is on the independent elements in the 

coupling d tensor.  In d tensor, there are three elements; d15, d31 and d33. The d15 is 

related to shear stress, while d31 and d33 are related to energy harvesting. Therefore, the 

later d tensor elements will be described in details. The 31 mode is where the vibration 

force is applied perpendicular to the poling direction. The second mode 33, is where 

the applied force on the same side as the poling direction. The first number (3) indicates 

that the voltage is generated in the z axis. The second number specifies the direction in 

which the stress is applied. In 33 operation mode, the stress and voltage are of the same 

direction. While in the 31 mode, the stress is applied along the x axis and the voltage 

appears in the z axis. The 31 mode is commonly used for energy harvesting 

applications. Many energy harvesting structures, like cantilevers and double clamped 

beam, work in the 31 mode. This is because the lateral stress on the surface of the beam 

is easily coupled to the deposited material on the beam. Therefore, the d31 mode is of 

our interest in this study. Thus for the 31 mode, the stress equation can be re-written as 

follows [31]: 

𝑺𝟏𝟏 = 𝒔𝟏𝟏
𝑬 . 𝑻𝟏 + 𝒅𝟑𝟏. 𝑬𝟑 (3) 

2.7.    Relationship between PZT plate deflection and Voltage 

After realizing the relation between the electric and mechanical vectors, a more 

specific study between the deflection of the PZT and the voltage generated is analyzed. 

The bimorph piezoelectric actuator has similar working principle as that of the 

thermostatic bimetals. When the ceramic is energized, it creates a bending moment and 

the substrate that is coupled with the piezoelectric actuator deflects. The deflection 

motion is proportional to the applied voltage. Also, the bending moment transforms the 
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small change in length into large bending displacement vertical to the contraction. 

Displacements of millimeters can be completed within microseconds. Therefore, an 

estimation of the bending displacement of the three layers connected in parallel is 

calculated [34] as follows:  

∆𝐿𝑏𝑒𝑛𝑑 =
3

8
∗ 𝑛 ∗ 𝑑31 ∗

𝑙𝑓
2

ℎ𝑝2
1 + 𝑅ℎ

1 + 1.5𝑅ℎ + 0.75𝑅ℎ
2 + 0.125𝑅𝐸𝑅ℎ

3 𝑉 (4) 

Table 1 shows all the parameter of the bending actuator equation and their 

respective numerical values.  

Table 1: Piezoelectric bender equation parameter 

Symbols Representation Values Units 

n number of stacked layers 3 - 

d31 deformation coefficient 750p m/V 

lf free length of PZT 0.03 m 

hp height of the piezoceramic 0.0007 M 

Rh 
ratio of substrate height (hs) and piezoceramic 

element height (hp) 

𝑹𝒉 =
ℎ𝑠
ℎ𝑝

=
0.00022

0.00048

= 0.4583 

- 

RE 
ratio of the moduli of elasticity of substrate 

(Es) and piezoceramic element (Ep) 

𝑹𝑬 =
𝐸𝑠
𝐸𝑝

 

=
2𝐺𝑃𝑎

40𝐺𝑃𝑎

= 0.05 

- 

V Operating voltage 2.20 V 

The bending displacement depends on many parameters that are: the number of 

ceramic layers, the deformation coefficient, the free length of the actuator, the height 
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of the actuator and the operating voltage. The operating voltage depends on the 

thickness of a single layer of the actuator. After defining the parameters of the bending 

displacement of the multi-layer bending actuator, it is then substituted in Eq. 4. The 

bending displacement is 5.27𝑥10−9𝑚 when voltage of 1V is applied. 

2.8.    Applications of Piezoelectric  

The piezoelectric effect was not utilized well in the first period after its 

discovery and practical application were limited. Pierre and Jacques described 

piezoelectric devices for static measurement of various parameters. Due to the 

properties of the piezoelectric it is possible to transform electricity into acoustical 

signals and vice versa. The property of the piezoelectric crystal allows it to produce 

accurate quantity of electric charge.  This property works well in the construction of 

precision devices’ [35]. An illustration of piezoelectric effect and its applications is 

displayed in Figure 3. 

 

Figure 3: Piezoelectric application [35] 
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2.9.    Tube Resonator 

Acoustic resonators are known for their absorption application, sound 

augmentation [36] and noise attenuation [37]. Acoustic resonator such as tube resonator 

works as energy storage. When an incident sound wave excites the tube resonator 

resonant frequency, acoustic energy is produced inside it. This energy comes in 

resonating standing wave shape. There are three types of acoustic resonators namely 

Helmholtz resonator (HR), half-wavelength and quarter-wavelength resonator as seen 

in Figure 4.  

 

Figure 4: Schematic of the resonators: from left to right: a) Helmholtz, b) Half-wavelength, c) 

Quarter-wavelength resonators [2] 

2.9.1. Helmholtz Resonator (HR) 

A Helmholtz resonator is shaped as neck and cavity. The resonator is 

represented as spring, mass damper as seen in Figure 5. It operates when an incident 

sound wave frequency matches the resonators eigenfrequency. When the air in the HR 

neck vibrates, it acts like a mass and the air in the cavity acts like spring since it expands 

and experiences compression too. The energy dissipation happens when there is a 

friction between the wall and the air [14].    

 

Figure 5: Helmholtz resonator [10] 

2.9.2. Half-wavelength Resonator  

As seen from Figure 4b, the half-wave resonator is a straight tube that is open 

from both ends. Since the tube is open from two ends, there is not enough pressure. 
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Therefore, each end must be an antinode, a point of maximum vibration, for the air 

motion. The center of the tube is a node for the vital mode and where the pressure is 

high. Half-wavelength resonator is of a great deal in industrial application such as 

combustion chamber [38]. 

2.9.3. Quarter-wavelength Resonator  

A quarter-wavelength tube resonator is a tube with one end open and the second 

is closed unlike the half-wave resonator. The quarter-wavelength tube cannot be 

modelled as lumped parameter like the HR. A study between the half wavelength and 

quarter-wavelength is conducted to analyze the efficiency of accumulating acoustic 

energy. It was experimentally proven that quarter-wavelength stores three times more 

energy than half-wavelength at the same input frequency [39]. In further experiment, 

the quarter wavelength resonator was proven to harvest more energy than Helmholtz 

resonator at the same volume and frequency [39]. 

In this work, a suitable resonator that is efficient in the acoustic energy 

harvesting field must be chosen. Since both the HR and half-wavelength are used in the 

industrial applications like combustion chamber. Thus, the quarter wavelength 

resonator falls within these criteria and hence it is selected. 

The travelling waves in the quarter-wavelength tube are determined by the 

boundary condition at the ends of the tube. The boundary conditions are dependent on 

acoustic pressure, longitudinal particle velocity or impendence. In the closed end of the 

tube, the velocity is zero and the pressure is zero. For the open end, the velocity and the 

pressure are at maximum. The pressure 𝑃𝑛(𝑧) and the longitudinal particle velocity 

𝑢𝑛(𝑧) are related in sinusoidal function as [9]: 

𝑃𝑛(𝑧) = 𝑃0𝑛 sin
𝜋(2𝑛 − 1)𝑧

2𝐿
 (5) 

𝑢𝑛(𝑧) = 𝑢0𝑛 cos
𝜋(2𝑛 − 1)𝑧

2𝐿
 (6) 

where z is the distance from the open inlet along the tube 

The corresponding resonance frequency is expressed as: 

𝑓 =
(2𝑛 − 1)𝑐0

4𝐿
 (7) 
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where 𝑐0 is the speed of the sound in the air, n is an integer mode number and L is the 

length of the tube. As one can see from Eq. 7 the resonant frequency is function of the 

length of the tube. Therefore, changing the length of the tube can change the resonance 

frequency. Moreover, since the first resonance frequency is of our interest then (n=1). 
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Chapter 3: Mathematical Model 

 

A mathematical model for the bimorph PZT plates is established to calculate 

the natural frequency and analyze the vibrational effect. The mathematical model is 

derived based on the Galerkin method, which is used to determine the stiffness and 

mass matrices of the beam. The Bernoulli-Euler beam theory is also introduced to 

investigate the PZT plate. The PZT plates are considered as composite cantilever beam 

and thus its parameters are designed. Furthermore, the Galerkin method provides a 

solution for the modal analysis where the natural frequencies are evaluated. 

3.1. Literature Review   

Various mathematical models have been established to analyze the behavior of 

the smart structure when piezoelectric sensors and actuator are incorporated within 

them. There are two main groups when analyzing the smart structures that are: induced 

strain models and coupled electromechanical models. The induced strain models 

neglect the electric potential, while the electromechanical models include the electrical 

potential and the displacement. The induced strain models predict the actuator behavior 

of the piezoelectric materials. Chee et al. [40] formulated an analytical composite smart 

structure with higher order displacement. The model was developed using the 

Hamilton’s variational principle and validated using finite element analysis. Another 

study by Beheshti-Aval and Lezgy-Nazargah [41] modeled a laminated structure using 

the coupled electromechanical model. The composite beam is bonded with piezoelectric 

actuators and sensors where sinus model is employed to model the mechanical 

displacement. The layer theory is applied on each piezoelectric layer to study the 

variation of the electric potential and model it. This led to developing a two-nodded 

Hermitian layer-wise nodded part for beam with multiple layers. The model is valid for 

different loading types whether mechanical or electrical. In similar approach a finite 

element modeling of the plate with known location of the piezoelectric sensors and 

actuators embedded in a plate is presented in [42].  Hamilton's principle is utilized to 

find the finite element equations through ANSYS software. Then the analytical 

solutions are compared to the numerical solution developed using Kirchhoff's plate 

theory. Then the static and dynamic analysis of the symmetric patches of the 

piezoelectric bonded in the plate are investigated in 2D. In another related work [43], a 

finite element analysis of structure with piezoelectric sensors and actuator is developed 
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in one dimensional (1D) plane. This method uses Euler-Bernoulli method and presumes 

a bilinear distribution of the electric potential across the beam. The analyses were 

conducted on steel beam along with studying the sensitivity. Then using modal analysis, 

the three first eigenfrequencies were evaluated and provided good results. Similar study 

is done by Reddy et al. [44] where he develops a higher order theory for laminated 

composite plates. This theory considers the transverse shear strains throughout the 

thickness of the plates. An exact solution of the symmetric layers is obtained and 

compared with first order shear deformation theory. The higher order theory is better 

than the first order theory in terms of calculating the deflections and stresses.   

 Previous studies have modeled the smart structures with piezoelectric sensors 

and actuators lumped to it as a plate and solved it accordingly [41, 43, 44]. They also 

used the coupled electromechanical model to predict the sensors and the actuator 

behavior of the piezoelectric. However, in this thesis, the piezoelectric beam itself will 

be modeled as cantilever beam rather than embedding it within structure. The cantilever 

beam will be clamped at one end thus it is more likely to be modeled as beam element 

than a plate element since we are only interested in the deflection motion not the other 

two rotation motions of the plate [45]. Moreover the piezoelectric is treated as a sensor 

hence it is efficient to model it to work as sensor only. Therefore, it is more suitable to 

model the PZT beam as 2 DOF composite beam element using the elementary beam 

theory.   

3.2.    Beam Theory 

Theories related to beams theory take huge part in analyzing several structures 

in solids. The beam theory is a simple tool for designers to analyze the beam models 

and other structures. Although there are more advanced tools like finite element 

analysis, yet the beam theory is a basic tool for any designer. The calculations in beam 

theory provide insight into the structure and fundamental computational solutions. 

Many beam theories are developed and each offers diverse number of solutions and 

levels of accuracy. One of the simplest and commonly used theory is the Euler Bernoulli 

theory. The Euler Bernoulli theory covers the bending characteristics of a beam [46]. 

The bending effect was discovered by researchers and was recognized as an 

important factor in transversely vibrating beam. The bending effect relationship with 

the elasticity of the curvature of the beam was discovered by Jacob Euler (1654-1705). 

Then his nephew, Daniel Bernoulli (1700-1782), formulated the differential equations 
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for vibrating beam. Then in 1707, Bernoulli’s theory was accepted by Leonhard Euler 

while discovering the shape of the elastic beam under different loading circumstances. 

After, Euler’s many trials and a development on the elastic curves of the beam, the 

beam theory was established. It is a simple and good engineering approximation for 

many problems [47]. The Euler Bernoulli beam theory assumes an infinite rigidity of 

the cross section of the beam in its plane that there exists no defamation in this section. 

Therefore, the in-plane displacements of the cross section represented as two rigid body 

translational and one rigid body rotation [46].  

3.3.    Mathematical Formulation 

The stripe PZT actuator mentioned in section 2.3 is modeled as single composite 

cantilever beam. The cantilever beam has two degrees of freedom (DOF) that is 

transverse deflection and rotation. The deflection occurs when the beam is exposed to 

a force or bending moments at its tip node. In our case, the PZT is subjected to harmonic 

sound wave causing it to deflect around its local axial coordinate at the free end 

(unclamped end).     

Figure 6, shows the three layers of the cantilever beam PZT. The carbon layer 

in the middle is longer than the other layers by 0.005 m and for simplicity it is 

considered to have the same length as the other layers (0.035 m). The PZT is clamped 

at the longer part of the carbon fiber layer and is free to vibrate at the other end. This 

helps the mathematical model derivation with ease.  

 

Figure 6: Multilayer cantilever beam 

The governing differential equation of the piezoelectric cantilever beam in 2D 

will be analyzed in section 3.3.1. 



31 

 

3.3.1.  Equation of motion of beam element 

The equation of motion for a linear-elastic beam can be described by the 

following differential equation. Figure 7, shows the acting shear forces (V) and bending 

moments (M) on a beam element. 

 

Figure 7: Shear forces and bending moments on beam 

The shear forces, the bending moments and the loading force w(x) of the beam 

at equilibrium is calculated as: 

∑𝐹𝑦 = 0 (7) 

𝑉 − (𝑉 + 𝑑𝑉) − 𝑤(𝑥)𝑑𝑥 = 𝜌𝐴(𝑥)𝑑𝑥
𝜕𝑣

𝜕𝑡
 (8) 

Where V is the shear force, 𝜌 is the mass density, A(x) is the cross sectional area of the 

beam and 𝑣 is the transverse displacement function in the 𝑦̂ direction. 

The moment equation about the y axis leads to:  

∑𝑀2 = 0 (9) 

−(𝑉 + 𝑑𝑉)𝑑𝑥 + 𝑑𝑀 + 𝑤(𝑥̂)𝑑𝑥(
𝑑𝑥

2
) = 0 (10) 

Then, by arranging 𝑑𝑉 =
𝜕𝑉

𝜕𝑥
  and  𝑑𝑀 =

𝜕𝑀

𝜕𝑥
𝑑𝑥 

when dividing the equation by 𝜕𝑥 and taking the limit of the equation as 𝑑𝑥̂ approaches 

0, then 𝑤(𝑥̂) will disappear.  
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Then the following equation will relate the shear force (V) with the bending moment 

(M):  

𝑉 =
𝜕𝑀

𝜕𝑥
 (11) 

From the above equations 

−
𝜕2𝑀

𝜕𝑥2
+ 𝑤(𝑥̂) = 𝜌𝐴(𝑥)𝑑𝑥

𝜕2𝑉

𝜕𝑡2
 (12) 

Moreover, the moment of the beam is related to the curvature 𝑘 of the beam as follows: 

𝑘 =
𝑀

𝐸𝐼
 (13) 

where E is the elastic modulus and I is the moment of inertia about the 𝑧 axis. The 

moment of inertia for rectangular cross section is given by: 

𝐼 =
𝑏ℎ3

12
 (14) 

where b is the base (width) and h is the height 

 The curvature for small slope ∅ is given by: 

𝑘 =
𝜕∅̂

𝜕𝑦
=
𝜕2𝑣

𝜕𝑥2
 (15) 

A relation can be found between the transverse displacement and the shear force to 

obtain differential equation: 

𝜕2𝑣

𝜕𝑥2
=
𝑀

𝐸𝐼
 (16) 

Inserting Eqs. 13 and 14, we obtain the equation of the motion for the forced transverse 

vibration: 

𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑣

𝜕𝑥2
) + 𝜌𝐴

𝑑2𝑣

𝑑𝑡2
= 𝑤(𝑥̂) (17) 

For free vibration force𝑤(𝑥) = 0, thus it becomes: 
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𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑣

𝜕𝑥2
) + 𝜌𝐴

𝑑2𝑣

𝑑𝑡2
= 0 (18) 

The equation of motion for the linear-elastic beam is given by the following differential 

equation:  

𝐸𝐼
𝑑4𝑣

𝑑𝑥4
+ 𝜌𝐴

𝑑2𝑣

𝑑𝑡2
= 0 (19) 

where the beam equation includes the mass and stiffness terms and neglects the 

damping term. The stiffness matrix and the consistent-mass matrix (CMM) will be 

developed as well as the equations for a beam element and then it will demonstrate a 

complete system of equation for the beam [48]. 

3.3.2. Boundary Condition  

The boundary conditions must be specified otherwise the stiffness matrix [K] 

will be singular. In other words, the determinant of the stiffness matrix will be zero 

which leads to unstable system. Specifying boundary conditions will prevent the system 

from moving as rigid body and will allow it to resist different applied loads. In this case, 

the boundary condition that makes [K] non-singular is two, where the number of 

boundary condition depends on the number of nodal displacement. The boundary 

conditions for the system are applied at nodes 1 and 2 as shown in Figure 8: 

 

Figure 8: Boundary condition for beam element 

The boundary conditions are: 

[𝐸𝐼(
𝑑4𝑣

𝑑𝑥4
)𝛿(

𝑑4𝑣

𝑑𝑥4
)]
0

𝐿

= 0 (20) 



34 

 

[
𝜕

𝜕𝑥
(𝐸𝐼(

𝑑4𝑣

𝑑𝑥4
)𝛿𝑣]

0

𝐿

= 0 (21) 

where 𝑚 = 𝐸𝐼 (
𝑑4𝑣

𝑑𝑥4
) is the bending moment,  𝛿 is the displacement, and 

𝜕

𝜕𝑥
(𝐸𝐼(

𝑑4𝑣

𝑑𝑥4
) is 

the shear force. The analysis of these equations will be done through the finite element 

method. In which the solution is assumed in the form of polynomial and it is substituted 

in the equation of motion of the beam. Therefore, the assumed solution will have 

residue left out and all the equations will not be satisfied. Thus the Galerkin method 

will be used to reduce the residue and have better results.  

3.3.3. Galerkin Method 

There are various methods to find the stiffness matrix for a beam which are the 

direct method, variational method, and the Galerkin method. The first method is more 

suitable for computer-automated analysis of complex structures. The second method 

involves the calculation of the potential energy of the structure and the load in order to 

minimize the error term [49]. However, the last method is useful for developing the 

element equations. This method is used when information about the energy of the 

system is unknown like the potential energy, kinetic energy. The methods of residuals 

applied directly to the differential equation can be used to develop the finite element 

equations. There are many residual methods like the least squares and least squares 

collocation. However, the Galerkin method is chosen in calculating the stiffness matrix 

in the finite element method and in implementation.  

At first, the solution will be assumed as a polynomial describing the transverse 

displacement variation through the element length to be: 

𝑢(𝑥, 𝑡) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 (22) 

In which it is a polynomial of 3rd order because there are 4 degrees of freedom 

(DOF), the motions are transverse displacement ui and small rotation at each node 𝜑𝑖. 

Also, the cubic function satisfies the basic beam differential equation and the conditions 

of displacement. Moreover, the cubic function fulfills the boundary conditions of the 

displacement. The cubic polynomial equation can be described in matrix form as: 
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𝑢(𝑥, 𝑡) = [𝑁1 𝑁2 𝑁3   𝑁4] {

𝑢1
𝑢2
𝑢3
𝑢4

} (23) 

𝑢(𝑥, 𝑡) = [𝑁(𝑥)]{𝑢(𝑡)} (23.a) 

Where 

𝑁1 = 1 − 3
𝑥2

𝐿2
+ 2

𝑥3

𝐿3
 

𝑁2 = 𝑥 − 2
𝑥2

𝐿2
+
𝑥3

𝐿2
 

𝑁3 = 3
𝑥2

𝐿2
− 2

𝑥3

𝐿3
 

𝑁4 = −
𝑥2

𝐿
+
𝑥3

𝐿2
 

𝑁1, 𝑁2, 𝑁3, 𝑁4 are shape functions for a beam element and they are functions of x, while 

u is function of t. When the beam element is evaluated at node 1, 𝑁1 = 1 and at node 2 

𝑁1 = 0. And 𝑁3 = 0 at node 1, and at node 2, 𝑁3 = 1. Shape functions N2 and N4 their 

derivatives have similar properties. 

Therefore, when the solution is substituted in the equation of motion the residue will 

be: 

𝑅 =
𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑣

𝜕𝑥2
+ 𝜌𝐴

𝑑2𝑣

𝑑𝑡2
) (24) 

Now to reduce the residue it will be multiplied by shape function and be equated to 

zero: 

∫ 𝑅 ∗ 𝑁𝑖  𝑑𝑥 = 0
𝐿

0
          𝑖 = 1,2,3,4 (25) 

∫ 𝑁𝑖(𝑥)(𝐸𝐼
𝑑4𝑣

𝑑𝑥4
+ 𝜌𝐴

𝑑2𝑣

𝑑𝑡2
)𝑑𝑥 = 0

𝐿

0

 (26) 

Then to have complete solution, the elastic part will be integrated using 

integration by parts to yield to: 
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= 𝑁𝑖
𝑑

𝑑𝑥
(𝐸𝐼𝑦𝑦

𝑑2𝑣

𝑑𝑥2
) − 𝑁𝑖

′ (𝐸𝐼𝑦𝑦
𝑑2𝑣

𝑑𝑥2
) + ∫𝑁𝑖

′′𝐸𝐼𝑦𝑦
𝑑2𝑣

𝑑𝑥2
 𝑑𝑥 (27) 

The displacement equation will be substituted in the equation of motion to get 

the elemental matrix: 

= ∫ [𝑁𝑖]
−1 𝜌𝐴

𝑑2𝑣

𝑑𝑡2
𝑑𝑥

𝐿

0

+∫ [𝑁′′𝑖]
−1𝐸𝐼𝑦𝑦

𝑑2𝑣

𝑑𝑥2
 𝑑𝑥

𝐿

0

 (28) 

where i=1,2,3,4 since there are four shape functions.  

Therefore the expanded elemental matrix is:  

=

{
 
 

 
 
[𝑁1 (𝐸𝐼𝑦𝑦𝑢

′′(𝑥, 𝑡))′]0
𝐿

[𝑁2 (𝐸𝐼𝑦𝑦𝑢
′′(𝑥, 𝑡))′]0

𝐿

[𝑁3 (𝐸𝐼𝑦𝑦𝑢
′′(𝑥, 𝑡))′]0

𝐿

[𝑁4 (𝐸𝐼𝑦𝑦𝑢
′′(𝑥, 𝑡))′]0

𝐿
}
 
 

 
 

+

{
 
 

 
 [𝑁′1 𝐸𝐼𝑢

′′(𝑥, 𝑡)]0
𝐿

[𝑁′2 𝐸𝐼𝑢
′′(𝑥, 𝑡)]0

𝐿

[𝑁′3 𝐸𝐼𝑢
′′(𝑥, 𝑡)]0

𝐿

[𝑁′4 𝐸𝐼𝑢
′′(𝑥, 𝑡)]0

𝐿
}
 
 

 
 

 (29) 

Simplifying and substituting the displacement yields to: 

= ∫  𝜌𝐴[𝑁𝑖]
−1[𝑁𝑖] 𝑑𝑥 [𝑢(𝑡)̈ ]

−1 
𝐿

0

+∫ 𝐸𝐼𝑦𝑦[𝑁′′]
−1[𝑁′′]

𝐿

0

 𝑑𝑥[𝑢(𝑡)̈ ]−1 (30) 

The first part represents the mass matrix [M], while the elastic second term 

represents the stiffness matrix. The stiffness matrix can be found from the integration 

by substituting the shape functions and since u(t) is function of t, it could be left out of 

the integration: 

[𝐾] = ∫ 𝐸𝐼𝑦𝑦[𝑁′′]
−1[𝑁′′]

𝐿

0

 𝑑𝑥 (31) 

[𝐾] = ∫ 𝐸𝐼𝑦𝑦

{
 

 
𝑁1
′′

𝑁2
′′

𝑁3
′′

𝑁4
′′}
 

 
[𝑁1

′′ 𝑁2
′′ 𝑁3

′′ 𝑁4
′′]

𝐿

0

 𝑑𝑥 (31.a) 

[𝐾] = ∫ 𝐸𝐼𝑦𝑦

𝐿

0

(
𝑁1
′′𝑁1

′′ 𝑁1
′′𝑁2

′′ 𝑁1
′′𝑁3

′′ 𝑁1
′′𝑁4

′′

⋮ ⋱ : ⋮
𝑁4
′′𝑁1

′′ ⋯ … 𝑁4
′′𝑁4

′′
) (31.b) 

when integrating: 
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[𝐾𝑏𝑒𝑎𝑚] =
𝐸𝐼𝑦𝑦

𝐿3
[

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿
6𝐿 2𝐿2 −6𝐿 4𝐿2

] (32) 

It is noted that the elements of the stiffness matrix are symmetric and that is 

statement of Maxwell’s Reciprocity Theorem: 

𝐾𝑖𝑗 = 𝐾𝑗𝑖 

The stiffness matrix relates the nodal displacement {d} to the forces {F} at the 

nodes as: 

{𝐹} = [𝐾]{𝑑} (33) 

In a similar manner, the consistent-mass matrix can be evaluated,  

[𝑀] = ∫  𝜌𝐴[𝑁𝑖]
−1[𝑁𝑖] 𝑑𝑥  

𝐿

0

 (34) 

[𝑀] = ∫  𝜌𝐴 [
𝑁1
2 ⋯ 𝑁14
⋮ ⋱ ⋮
𝑁41 ⋯ 𝑁4

2
]  𝑑𝑥  

𝐿

0

 (34.a) 

[𝑀𝑏𝑒𝑎𝑚] =
𝜌𝐴𝐿

420
[

156 22𝐿 54 −13𝐿
22𝐿 4𝐿2 13𝐿 −3𝐿2

54 13𝐿 156 −22𝐿
−13𝐿 −3𝐿2 −22𝐿 4𝐿2

] (34) 

3.3.4. Equivalent beam parameters 

The PZT beam consists of two different isotropic materials with different 

parameters such as the Young’s modulus, mass density and thickness. In order to obtain 

the mathematical model for the bi-material beam element, the stiffness and mass 

matrices must consider the mixture of the piezoceramic and carbon fiber. The 

parameters of the new composite beam element will be evaluated. The composite 

consists of 3 layers with top and bottom piezoceramic and carbon fiber in the center. 

The piezoceramic layers are symmetric and the mixture can therefore be reduced to 2 

different layers i.e. pizeoceramic and carbon fiber making the parameters of our PZT 

easier to compute.  

The procedure of the calculating the composite beam element parameters can 

be divided into two parts that is calculating the parameters of the consistent-mass matrix 



38 

 

and stiffness matrix. First step is calculation of the total mass density for the two 

materials. Afterward the beam element is scaled to find the equivalent moment of 

inertia and subsequently the area. Next step is to obtain the equivalent Young’s modulus 

and to evaluate the effective length of the beam. After calculating these variables, they 

will be used to calculate the equivalent mass and stiffness matrices and perform modal 

analysis. 

Firstly, the mass of components of the composite beam is calculated. The mass 

density is defined as the mass over volume. The mass density of a mixture of two 

materials (piezoceramic and carbon fiber) is added with respect to the volume. Figure 

9, shows the three layers that can be transformed into one mass by adding the mass of 

each layer.  

 

Figure 9: Equivalent mass density 

Since the volume of each of the materials is additive hence the mass density for 

each layer is added. The following addition applies:  

𝜌𝑡𝑜𝑡𝑉𝑡𝑜𝑡 = 𝜌𝑝𝑉𝑝 + 𝜌𝑐𝑉𝑐 (35) 

where 𝜌𝑡𝑜𝑡is the total mass density of the beam is, 𝑉𝑡𝑜𝑡 is the total volume of the beam, 

𝜌𝑝 is the mass density of piezoceramic, 𝑉𝑝 is the volume of the piezoceramic, while 𝜌𝑐is 

the mass density of the carbon fiber and 𝑉𝑐 is the volume of the carbon fiber.  

Substituting for the volume:   

𝜌𝑡𝑜𝑡(ℎ𝑡𝑜𝑡 ∗ 𝑏 ∗ 𝐿) = 𝜌𝑝(ℎ𝑝 ∗ 𝑏 ∗ 𝐿) + 𝜌𝑐(ℎ𝑐 ∗ 𝑏 ∗ 𝐿) (36) 

where, htot is the total height of the beam, b is the width of the beam, hp is the height of 

the piezoceramic layer, and hc is the height of the carbon fiber layer. 

𝜌𝑡𝑜𝑡ℎ𝑡𝑜𝑡 = 𝜌𝑝ℎ𝑝 + 𝜌𝑐ℎ𝑐 (37) 

The total mass density of the beam is then obtained as follows: 
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𝜌𝑡𝑜𝑡 = 𝜌𝑝
ℎ𝑝

ℎ𝑡𝑜𝑡
+ 𝜌𝑐

ℎ𝑐
ℎ𝑡𝑜𝑡

 (38) 

After calculating the total mass density, the stiffness of the material is analyzed 

through scaling the composite beam by evaluating an equivalent area. The equivalent 

area represents the stiffness of the second material i.e. carbon fiber which has low 

stiffness. In other words, the size of the equivalent piezoceramic layer differs by the 

ratio of the Young’s modulus of both materials as given in Eq. 39. Since the carbon 

fiber has lower Young’s modulus than the pizeoceramic layer thus more material is 

needed to maintain the same strain distribution and the same load as the original shape. 

Figure 10b, shows the scaled area of the composite beam element.  

 

Figure 10: a) Cross section of the beam b) equivalent cross section of the beam 

The area is scaled in the horizontal direction because the dimensional change 

should be perpendicular to the loading plane. In this case the loading plane is vertical 

to the beam. Therefore, to account for the stiffness difference the area is scaled to the 

carbon fiber material through n. 

𝑛 =
𝐸𝑝

𝐸𝑐
 (39) 

where n is the ratio of the Young’s modulus for the carbon fiber Ec and the Young’s 

modulus of the piezoceramic Ep 
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Then the new moment of inertia is calculated at the centroid of the full 

transformed area around the neutral axis as represented in Figure 11. And the new width 

of the transformed material is found as: 

𝑤 = 𝑛 ∗ 𝑏 (40) 

where w is the new width of the beam, b is the width of original beam element 

Using the new width, the moment of inertia can be calculated for the 

transformed section as follows: 

𝐼 =
𝑏𝑐ℎ𝑐

3

12
+ 2(

𝑤ℎ𝑝
3

12
+ 𝐴𝑑2) (41) 

Where  

𝐴 = 𝑤 ∗ ℎ𝑝 (42) 

And d is the distance from the center of the upper or lower layer to the centroid as 

shown in Figure 11. 

 

Figure 11: Equivalent cross section 

Since the transformed beam element consists of one material that is carbon fiber 

hence the total Young’s modulus is the carbon fiber Young’s modulus. Finally, it should 

be noted that the length of the carbon fiber layer is longer than the piezoceramic layer 

by 5.5 mm. Therefore, the beam is clamped at the edge of the carbon fiber layer so the 
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effective carbon layer length is the same as the piezoceramic length. The calculated 

parameters are tabulated in Table 2: 

Table 2: Parameters of the beam element 

Parameters Value Unit (SI) 

Mass density (ρ) 5.36x103 Kg/m3 

Moment of Inertia (I) 11.096x10-12 m4 

Area (A) 1.42x10-5 m2 

Young’s modulus (E) 2G Pa 

Length (L) 0.035 m 

3.4.    Frequency Response Analysis  

After assembling the element matrix and evaluating the global matrices for the 

mass and stiffness, the global system of equation can be obtained. In frequency response 

analysis, the structural dynamic of a system is calculated at the excitation frequency. 

This analysis solves coupled matrix equation through complex algebra. The forced 

vibration equation of the PZT bending actuator with harmonic excitation is given by: 

[𝑀]{𝒙(𝒕)̈ } + [𝐶]{𝒙(𝒕)}̇ + [𝐾]{𝒙(𝒕)} = {𝑭(𝒘)} (43) 

where M is the mass matrix, C is the damping coefficient matrix, K is the stiffness 

matrix, F is the forcing sinusoidal force of angular frequency w, and x is the transverse 

displacement  

In the undamped free vibration case, the damping factor and the force will be 

cancelled (C=0) and (F=0).  Therefore, the homogenous equation is written as: 

[𝑀]{𝒙(𝒕)̈ } + [𝐾]{𝒙(𝒕)} = 𝟎 (44) 

The solution for the complex harmonic motion is assumed as: 

{𝑋} = {𝒖(𝒘)}𝑒𝑗𝑤𝑡 (45) 

{𝑋̇} = 𝑗𝑤{𝒖(𝒘)}𝑒𝑗𝑤𝑡 (46) 

{𝑋̈} = (𝑗𝑤)2{𝒖(𝒘)}𝑒𝑗𝑤𝑡 = −𝑤2{𝒖(𝒘)}𝑒𝑗𝑤𝑡 (47) 

where u is a constant vector, which will be determined later.  
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Substituting the solution into the differential equation: 

(−[𝑀]𝑤2 + [𝐾]){𝒖(𝒘)}𝑒𝑗𝑤𝑡 = 𝟎 (48) 

where 𝑒𝑗𝑤𝑡 ≠ 0  

Therefore,  

(−[𝑀]𝑤2 + [𝐾]){𝒖(𝒘)} = 𝟎 (49) 

where M is the global consistent-mass matrix, w is the natural frequency, K is the global 

stiffness matrix.  

The natural frequency can be acquired through finding the determinant 

consisting of the mass and stiffness matrices: 

det(−𝑤2[𝑀𝑔] + [𝐾𝑔]) = 0 (50) 

Therefore, the numerical values of the global consistent-mass and stiffness 

matrices were computed in MATLAB to acquire the angular frequency (w). There are 

4 possible combinations of the natural frequency. But only the first 2 natural 

frequencies are calculated. The natural frequency is computed as follows: 

𝑓 =
𝑤

2𝜋
 (51) 

The system natural frequency can be compared with the theoretical natural 

frequency and the numerical FEM method in the next chapter.  

The mode (eigenvector{𝒖(𝒘)}) of each the frequencies (eigenvalue w) is determined 

by solving the differential equation after acquiring the natural frequency. The 

eigenvectors are the mode shapes of the system. The mode shape of the system is 

calculated as:   

(−[𝑀]𝑤2 + [𝐾]){𝒖(𝒘)} = 0 (52) 

[𝐾]{𝒖(𝒘)} = 𝑤2[𝑀]{𝒖(𝒘)} (53) 

Let 

𝑿 = {𝒖(𝒘)} (54) 
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And  

𝜆 = 𝑤2 (55) 

Thus, the equation that holds the generalized eigenvalues and eigenvector is: 

𝐾𝑿 = 𝜆𝑀𝑿 (56) 

The eigenvalues are obtained through MATLAB and they are 

𝑓1 = 247𝐻𝑧 and𝑓2 = 1545𝐻𝑧. 

Figure 12 shows the cantilever beam at the first mode. The resonant frequency 

at the first mode is 247 Hz. The first mode shows the displacement of the beam from 

the fixed end at t=0.  

 

Figure 12: The first mode at f = 247 Hz 

            Figure 13 shows the second mode of the beam. The second natural frequency is 

found to be 1558 Hz. In this mode, the beam oscillates around the deflection axis. In 

this case, a minimum of two elements is chosen to be able to view the second mode. As 

time progress the second mode and higher modes will oscillate around the zero 

displacement.  
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Figure 13: The second mode at 1545 Hz 

Figure 14, shows the resonant frequency for all the modes of the beam when 2 

elements are selected.  

 

Figure 14: Resonant frequencies verses the mode shapes 

Then, a harmonic force representing the acoustic wave from the subwoofer is 

applied to the beam to analyze the amplitude of the resonant frequency. The differential 

equation of the complex harmonic motion is now solved for the nonhomogeneous part 

that is when a plane wave is applied at the beam: 
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[𝑴]{𝒙(𝒕)̈ } + [𝑲]{𝒙(𝒕)} = [𝑭] (57) 

where  

𝐹 = {

𝑓1
𝑓2
𝑓3
𝑓4

} (58) 

And since only the force applied at the tip of the beam is of our interest then the force 

vector is re-written as: 

𝐹 = {

𝑓1
0
0
0

} (59) 

where 

𝑓1 = 𝐴 sin(𝑤𝑡 + 𝜃) (60) 

where A is the maximum amplitude of the sine wave (A=1), w is the angular frequency 

and Ɵ is phase shift. 

Figure 15, shows the resonant frequency and the corresponding amplitude of 

the first two modes when the force is applied at the tip. From Figure 15, it shows that 

the first natural frequency at 247 Hz has the highest amplitude.  

 

Figure 15: Bode plot for the first two resonant frequencies 
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Figure 16 displays only the first mode at 247 Hz with the corresponding 

amplitude of 1.04𝑥10−5 V. 

 

Figure 16: First mode at 247 Hz 

The shape of the modes can be better enhanced by increasing the number of 

elements. Increasing the number of elements will help observe the higher modes and 

improves the first two modes to have real-like deflection motion. The number of 

elements is increased to be 10. Figure 17, shows the first mode of the 10 elements case. 

The first mode shows a smoother deflection than the first case when 2 elements are 

used and the resonant frequency is the same as well. The difference between the two 

cases is small and negligible 0%. 

 

Figure 17: First mode for the 10 elements case 
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Figure 18, represents the second mode shape of the beam. The second mode is 

enhanced and the shape is flatter than the case of the 2 elements. Moreover, it has lower 

resonant frequency than the one of the 2 elements case. And the difference between the 

two cases is 0.83%. 

 

Figure 18: Second mode for the 10 elements case 

Figure 19 represents all the modes of the beam and their corresponding resonant 

frequency when 10 elements are selected.  

 

Figure 19: Resonant frequency verses the number of modes 
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Application of harmonic force at the tip of the beam element results in the 

highest peak at the resonant frequency as shown in Figure 20. The resonant frequency 

for the first mode is at 247 Hz. And the second mode appears at 1545 Hz. 

 

Figure 20: Bode plot for 10 elements case 

In conclusion, the first mode for the case of the 2 elements and 10 elements has 

the same the resonant frequency. While in the second mode, the resonant frequency in 

both cases is different by 0.83%. Consequently, one can conclude that there is not much 

difference when using 2 elements or 10 elements and the model would still be valid for 

both cases. Therefore, the model can be simplified by using 2 elements.   

3.5.    Theory of the Beam under Free Vibration 

The differential equation of a distributed mass along a cantilever beam under 

free vibration given in equation with the boundary condition given in equation, have 

mode shapes of the form [50]: 

𝑋𝑛(𝑥) =  𝐴𝑛 𝑠𝑖𝑛(𝜆𝑛𝑥) + 𝐵𝑛 𝑐𝑜𝑠(𝜆𝑛𝑥) + 𝐶𝑛𝑠𝑖𝑛ℎ(𝜆𝑛𝑥) + 𝐷𝑛𝑐𝑜𝑠ℎ(𝜆𝑛𝑥)  (61) 

Thus the closed form solution of the uniform beam with continuous free 

vibration for the first two modes is represented as: 
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𝜔𝑛
2  =  𝛼𝑛

2 √
𝐸𝐼

𝜌𝐴𝐿4
 (62) 

𝛼1 = 1.875 

  𝛼2 = 4.694 

The natural frequencies are computed for the PZT actuator beam and compared 

to the mathematical model proposed earlier. In Table 3 the theoretical natural 

frequencies are compared against the mathematical model and the results are discussed.  

Table 3: Comparison between theoretical natural frequencies and the mathematical model 

Number 

of modes 

Theoretical 

natural 

frequency 

(Hz) 

(Ftheoretical) 

Mathematical 

model natural 

frequency (Hz) 

(Fmathematical) 

𝐸𝑟𝑟𝑜𝑟 % = 

|Fmathematical − Ftheoretical|

Ftheoretical
𝑥100% 

1st 246 247 0.40% 

2nd 1545 1545 0% 

The percentage of error column in Table 3 shows small difference between the 

values of the natural frequency of the theoretical results and the proposed mathematical 

model for 2 elements.   
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Chapter 4: PZT Design Setup 

 

This chapter verifies the results obtained in the previous chapter through 

simulation and experimentation. It will be divided into two main sections: the 

simulation and the experimental work for the PZT design setup. The simulations are 

carried out using finite element analysis through means of COMSOL Multiphysics 

software. The details of the experimental setup are also presented in this section. The 

results and discussion of each section is included.  

4.1.    Simulation 

This section simulates the PZT cantilever beam using COMSOL Multiphysics 

software. Through this software, the natural frequency of the cantilever beams during 

vibration can be determined. During vibration, the maximum deflection occurs at the 

first resonance (natural) frequency. COMSOL uses the finite element method (FEM) 

analysis to perform the modal analysis. The equations that result from the modal 

analysis can be viewed as eigenvalues and eigenvector where they represent the 

frequencies and corresponding mode shapes.  

Two dimensional (2D) and three dimensional (3D) simulations of PZT 

cantilever beams are conducted using COMSOL. The 3D simulation of the cantilever 

beams is more accurate because it operates in a real world-like manner. 3D simulations 

are more suitable for nonlinear systems with complex geometry. Those systems are less 

likely to have closed form solutions. However, the 2D simulations are less 

computational intensive and have low memory requirements. It also provides fair 

approximation to the 3D simulation for simple structures. 

4.1.1. 3D simulation 

The piezoelectric cantilever beams are simulated using COMSOL in 3D and 2D 

for validation of the results. The first mode of 3D simulation model is shown in Figure 

21 and it corresponds to the natural frequency. The natural frequency is found to be 

242.16 Hz which can be interpreted as eigenvalue and the bending mode is represented 

by the eigenvector. An incident wave travelling with 249 Hz deforms the beam the most 

when compared with the other frequencies.  
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Figure 21: 3D simulation of the first mode (f=242.16 Hz) 

In the second mode, the natural frequency occurs at 1543.3 Hz and the 

corresponding bending mode in 3D simulation is shown in Figure 22. 

 

Figure 22: 3D simulation of the first mode (f = 1489.3 Hz) 

In comparison with the mathematical model in Eq. 47, the first mode has natural 

frequency close to the simulation results. The difference between the mathematical 

natural frequency and the natural frequency of the 3D COMSOL simulation is 1.9%. 

While the second natural frequency obtained from the mathematical model Eq. 47. is 
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1545 Hz, the FE simulation resulted in a frequency of 1489.3 Hz. The percentage of 

error between the simulation results and the mathematical model for the first and second 

modes are 1.9% and 3.7%. This difference can be reduced by increasing the number of 

the elements used in the mathematical model. Moreover, this difference is due to the 

approximated 3D model used in simulation. Table 4 compares the natural frequency 

from the solution of the differential equation (theoretical model), the proposed 

mathematical model and the 3D COMSOL simulation.  

Table 4: Comparison of the theoretical results, mathematical model, 3D simulation, and 

percentage of error 

Number 

of modes  

Theoretical 

natural 

frequency 

(Hz) 

Mathematical 

model natural 

frequency (Hz) 

3D COMSOL 

simulation of 

the natural 

frequency (Hz) 

%Error between 

mathematical 

model and 3D 

Simulation 

1st 246 247 242.16 1.9% 

2nd 1545 1545 1489 3.7% 

 

4.1.2. 2D simulation 

A 2D simulation of the cantilever beam for the first and second mode is shown 

in Figures 23 and 24, respectively. The first mode is attained at the natural frequency 

at 249.42 Hz corresponding to the first bending mode. Similarly, the second bending 

mode occurs at natural frequency of 1543.3 Hz. The 2D simulation results are much 

closer to the theoretical and the proposed mathematical model. The difference between 

the mathematical model and the 2D COMSOL simulation for the first mode is 0.8%.  

The second bending mode is off by the same amount (0.8%) showing that the results 

are in agreement with the mathematical model.   

A comparison of theoretical results, mathematical model and COMSOL 

simulation results are presented in Table 5. From Tables 4 and 5 it can be seen that the 

results obtained from 2D and 3D simulations are close to each other. 
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Figure 23: 2D simulation of the first mode (f=249.42 Hz) 

 

 

Figure 24: 2D simulation of the second mode (f=1543.3 Hz) 
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Table 5: Comparison of the theoretical results, mathematical model, 2D simulation, and 

percentage of error 

Number 

of modes 

Theoretical 

natural 

frequency (Hz) 

Mathematical 

model natural 

frequency (Hz) 

2D COMSOL 

simulation of the 

natural frequency 

(Hz) 

%Error 

between 

mathematical 

model and 

2D 

Simulation 

1st 246 247 249 0.8% 

2nd 1545 1545 1543 0.8% 

The aforementioned 3D simulations results are closer to the mathematical 

model. Also, the 2D simulation result is close approximation to the 3D and is less 

computationally expensive. Therefore, the 2D COMSOL simulation can be used 

instead of the 3D. Moreover, the small difference between the 3D COMSOL simulation 

and the mathematical model can be attributed to the fact that COMSOL software uses 

large number of elements, while the mathematical model uses only 2 elements to 

represent the system. In conclusion, the proposed mathematical model gives good 

approximation to the simulation results. 

4.2.    Experimental Apparatus and Results  

The experimental setup and the recommended methodology to harvest energy 

from acoustics using dual PZTs are presented in this section. A PZT setup is designed 

to validate the simulation and mathematical models. The proposed methodology 

improves the energy harvested in comparison with previous studies [6, 9]. The resonant 

(natural) frequency of the system is experimentally obtained. It is shown that the 

experimentally obtained system frequency agrees with the mathematical model derived 

in chapter 3. The obtained energy from the dual PZT is amplified using quarter-

wavelength resonator tube. The design, manufacturing and tube testing is completed 

and the results are discussed in Chapter 5. The block diagram of the experimental setup 

is shown in Figure 25.  
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Figure 25: Block diagram for experimental setup 

A TG550 function generator produces a sine wave which will be driven by a 

Crown XLS 1000 DriveCore Series power amplifier (by Harman) to amplify the 

subwoofer speaker (JBL JRX118S 18 in Compact Subwoofer). The PZT design setup 

is placed in front of the subwoofer and the data is collected through Le Croy 

oscilloscope connected to a computer (PC). 

The design of the dual PZTs setup uses two single PZT plates to harvest energy. 

It consists of two steel plates that aim to wrap the two PZTs. The two single bimorph 

PZT piezoelectric plates (model Stripe Actuator 40-2010) are used. The steel plates are 

cleaned and well-polished to allow perfect enclosure when tightened with nuts and 

bolts. An insulating tape is covering both steel plates from the inside to prevent short 

circuit between them and allow harvesting data without any complication. The design 

was fixed on two metal rods with a base that was on top of a table facing the subwoofer. 

Figure 26 illustrates the dual PZTs setup system.  

The intended sound of our interest is of a low frequency. The subwoofer 

produces a low frequency sound wave that can be used to simulate the real life sound 

waves. The piezoelectric system can be placed in front of the speaker at different 

distances based on the following equation: 

𝜆 =
𝑣

𝑓
 

(63) 
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where 𝜆 is the wavelength of the sound wave, v is the speed of the sound and f  is the 

frequency. 

 

Figure 26: The PZT design setup 

A subwoofer is employed along with an amplifier and function generator to 

generate an incident wave. The sound pressure level (SPL) of the incident wave is found 

through employing a microphone. A quarter-inch microphone (model 377C10 

manufactured by PCB Piezotronics) is used. The pressure output from the subwoofer is 

calculated through the following equation:  

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑃𝑎) =
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑚𝑉)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (
𝑚𝑉
𝑃𝑎 )

 (64) 

where S is the sensitivity of the microphone and it is (1 mV/Pa) 

Then the SPL is calculated as follows: 

𝑆𝑃𝐿 = (20 log (
𝑉𝑟𝑚𝑠

𝑆 𝑃𝑟𝑒𝑓
))  𝑑𝐵 (65) 

where Pref is the reference pressure in the air which is 20 µPa [26]. 

The function generator is connected to the subwoofer to generate sound waves 

of specific frequency and amplitude. The maximum frequency the subwoofer can 

tolerate is 250 Hz according to the subwoofer manufacturing datasheet thus the 

maximum wavelength can be calculated as:  

𝜆 =
𝑣

𝑓
=
343.2 𝑚/𝑠

250 𝐻𝑧
= 1.37 𝑚 
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There exists a full wavelength of the sound wave at the 250 Hz when placed at 

1.37 m. However, there does not exist an insulated area i.e. anechoic chamber to prevent 

the background noise interfering the subwoofer sound waves. Therefore, the 

experimental setup is placed close to the subwoofer to minimize the noise and error. 

 Both the voltage produced by the deformed cantilever PZT plate and the 

frequency of the function generator are measured and recorded. Natural frequencies of 

both of the PZTs are determined and to be compared with the mathematical model. The 

function generator generated sine wave with amplitude of 2Vpp and the frequency is 

varied between 190-250 Hz. The incident wave SPL is calculated using Eq. 62: 

𝑆𝑃𝐿 = (20 log (
𝑉𝑟𝑚𝑠

𝑆 𝑃𝑟𝑒𝑓
)) 𝑑𝐵 

𝑆𝑃𝐿 = (20 log (
2.7𝑥10−8

1𝑚𝑉 ∗ 20𝜇
)) = 101 𝑑𝐵 

The incident sound pressure level is 101dB.   

Then the frequency is ranged to find the natural frequency of dual piezoelectric 

cantilever beams at SPL of 101 dB. The experimental apparatus is shown in Figure 27 

with all equipment used. The experimentation is conducted in the Mechatronics lab. 

 

Figure 27: Experimental Setup 

For testing purposes, one PZT plate is investigated to verify the natural 

frequency. The output voltage of the PZT plate is first observed in Le croy oscilloscope 
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while changing the frequency. The highest amplitude sinusoidal signal is observed at 

239 Hz in the time domain. The data of the output voltage is then plotted in MATLAB 

to view the natural frequency of the single PZT (See Figure 28).  

 

Figure 28: Time domain signal at 239 Hz in MATLAB 

The Fast Fourier Transfer (FFT) plot proved that the resonant frequency is 239 

Hz which is close to 242.16 Hz of the simulation results in 2D. As shown in Figure 29 

the natural frequencies differ by 1.3%. Also, the experimental results are different from 

the mathematical model by 3.2%.  

 

Figure 29: Spectral analysis of single PZT 



59 

 

One can observe that the percentage of error is minor and the simulation 

matches the experimental results. The small percentage of error indicates that the design 

works fine. The amplitude can be further amplified through the tube resonator.  

Next, an experimental setup using the two PZTs was to be realized. One PZT 

plate is fixed upward and the second one downward where both are facing the center of 

the subwoofer. The orientation of the PZT plates is made in such a way it doubles the 

energy harvested when compared to one PZT plate.  

Figure 30, shows the output of both PZTs actuators. The yellow signal 

represents the upper PZT (C1) and the red signal (C2) represents the lower PZT. Both 

PZTs produce almost the same wave signals with almost identical amplitude. The 

reason behind the small difference could is due to the incident waves on the two PZTs. 

To further minimize the difference the bulky steel design can be optimized and reduced 

to have both PZTs closer to each other. The natural frequencies for the upper and lower 

PZTs are at 239 Hz and almost the same as the simulation results and close to the 

mathematical model. 

 The percentage of error is the same for both PZTs that is 1.3%. There are many 

factors involved that affect the harvesting process; one of them is that the combinations 

of free length, thickness, width, and the applied voltage play huge role in the resulting 

resonant frequency. Since the resonant frequency is function of length of the PZT. The 

resonant frequency could be changed according to the free length of the PZT that is not 

securely clipped within the steel plates. In other words, more of the length of the PZT 

plate should be clamped. The highest peak was found at 239 Hz and the FFT was done 

in Figure 29. The natural frequency can be better enhanced by allowing the free length 

of the PZT to be inserted more within the steel plates. There exists an inverse 

relationship between the free length and the natural frequency of the PZT system.  

The sine waves of both PZTs were plotted in MATLAB to verify the results and 

to obtain the FFT. Figure 30 shows the signals in the time domain at 239 Hz. 
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Figure 30: Both PZT signals in time domain at 239 Hz in MATLAB 

The FFT of both signals is presented in Figure 31 and Figure 32 respectively. 

The highest peaks of both PZTs is at 239 Hz, however, there is small difference in the 

amplitude of the PZT signals. The first PZT (Lower PZT) has amplitude of 0.849 mV 

while the second PZT has amplitude of 0.8969 mV (Upper PZT). 

 

Figure 31: Spectral analysis of the lower PZT at 239 Hz 
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Figure 32: Spectral analysis of the upper PZT at 239 Hz 

This small difference in the peaks can be due to the orientation position of each 

of the PZTs. Another reason could be because of the size of the steel plates sandwiching 

the PZT plates where it can be reduced to smaller dimension to have incident waves 

directed to the PZTs cantilevers as much as possible.  

Moreover, the output voltage can be increased when the SPL is increased. An 

increase of the incident SPL =114 dB produces an output voltage of 3.701 mV as shown 

in Figure 33. In comparison with Figure 31 and Figure 32 when the incident SPL = 101 

dB at the natural frequency showed lower output voltage than the case of SPL = 114 

dB. Thus one can conclude that there exists a relationship between the increase of SPL 

and output voltage. 

 

Figure 33: Voltage output of PZT at SPL=114 dB 
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Moreover, the results of the experimental data are compared to the mathematical 

model formulated in Chapter 3. The natural frequency found through experimentation 

showed high resemblance to the mathematical model’s natural frequency. The natural 

frequency from the experiment is found to be 239 Hz while the one obtained from the 

mathematical model is 247 Hz; i.e. a difference of 8 Hz which indicates that the 

mathematical model is in close agreement with the experimental results. The natural 

frequency acquired experimentally and the one attained mathematically are plotted in 

Figure 34.   

To further increase the total output voltage from the PZT plates; the plates can 

be placed within a tube resonator. The design procedure of the tube resonator is 

discussed in Chapter 5. 

 

Figure 34: Mathematical and the experimental results 
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Chapter 5: Tube Resonator 

 

In this chapter, the PZT design setup built previously will be used to amplify its 

output voltage through a quarter-wavelength tube resonator. The process of designing 

the tube resonator in simulation is described in details. After determining the length of 

the tube from the simulation it was preceded to manufacturing. Then different tests were 

carried on with the tube in which all of them are discussed in details. 

5.1.    Simulation 

A straight acoustic tube resonator with PZT piezoelectric plates is designed to 

amplify the energy harvested from the PZT design setup. Simulation is first 

accomplished through COMSOL Multiphysics to identify the length of the tube 

resonator. The length of the tube depends on the previously obtained natural frequency 

of the system. First the dimensions of the tube resonator are considered according to 

the dimensions of the designed PZT setup. A width of 0.07 m and height of 0.15 m 

were defined with inclusion of tolerance. The length of the tube is calculated using 

COMSOL with the succeeding equation:     

𝑓 =
𝑐

4 ∗ (𝐿 + 0.4 ∗ 𝑑)
 (66) 

 

where c is the speed of sound, L is the length of the tube, d is opening diameter, f is the 

resonant frequency 

Re-arranging the equation to solve for the length L: 

𝐿 =
𝑐

4 ∗ 𝑓
− 0.4 ∗ 𝑑 (66.a) 

A tube resonator of length 0.3587 m is chosen after many trials to get the natural 

frequency as close as possible to the one obtained experimentally through simulation. 

The natural frequency changes with the change in the length of the tube. Figure 35, 

shows a vertical line from the simulation is very close to the resonance frequency from 

the experimental results 239 Hz. 
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Figure 35: Comparison between experimental results and simulation 

5.2.    Experimental Apparatus and Results 

Based on the simulation, the quarter-wavelength straight tube resonator is 

manufactured with dimensions, 0.07 × 0.15 × 0.3587 𝑚 and half inch polycarbonate 

material. Figure 36 displays the tube open from one end and closed from the other. 

 

Figure 36: Perspective view of quarter-wavelength tube resonator 

The tube is adjusted to fit the PZT system which is placed in the centerline and 

0.05 m away from the open inlet. This is due to the fact that the pressure gradient is 

maximum at a distance of 0.05 m from the inlet, hence a large displacement of the plates 

will occur causing high voltage generation [9]. From [8], it should be noted that the 
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piezoelectric plates are set starting from the open inlet and successively placed towards 

the closed end of the tube. Thus, the first plate at the open inlet will generate the highest 

voltage relative to the other plates. Therefore, in this design dual piezoelectric are 

placed closer to the open inlet to double the voltage generated. 

 

Figure 37: Front view of quarter-wavelength tube resonator with PZT plates 

Afterward, the quarter-wavelength tube resonator is placed on top of base 

constructed of wood to have rigid support. Also, the wooden base will absorb any 

external vibration that might interfere with the acoustic vibration from the subwoofer. 

The height of the wooden base is such that the tube resonator is facing the subwoofer 

in the middle.  

 

Figure 38: Experimental setup 
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 Furthermore, similar to the experiment conducted in Chapter 4, the function 

generator will supply the amplifier of the subwoofer thereby the generating sound at 

low frequency. The wave sound will travel through the tube resonator across the PZT 

system to ensure that the tube is excited at the resonance frequency. The experimental 

setup for the overall system with the tube is shown in Figure 38. 

5.2.1. Results and Discussion 

For testing, a single PZT is placed inside the tube resonator to verify the 

amplification that the tube causes.  Figure 39, shows the simulation results of the single 

PZT. 

 

Figure 39: Single upper PZT inside the tube 

The peak is found to be at the resonant frequency (239 Hz). The peak is 

amplified and it is 2.266 mV compared to the results obtained earlier without the tube 

there is an increase of 1.3691. 

Afterward, the two PZTs are placed within the tube in the aforementioned 

distance. Then, the subwoofer was operated 239 Hz resonant frequency. Figure 40, 

represents the upper and lower voltage output from the PZTs. It is noticed that the upper 
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PZT produces more voltage than the lower one. The voltage output of the upper and 

lower PZTs are 2.105 mV and 1.784 mV respectively.  

 

Figure 40: Spectral analysis of the PZTs inside the tube 

The input voltage from the function generator is 2.20 Vpp that is 1.09 V is the 

supplied voltage to the subwoofer. However, the input voltage to the upper PZT is 1.35 

mV measured through the aforementioned microphone device. Therefore the 

amplification ratio can be calculated as: 

𝐴𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 = 20log (
𝑉𝑜
𝑉𝑖𝑛
) (67) 

where Vo is the output voltage and Vin is the input voltage 

𝐴𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 = 20𝑥𝑙𝑜𝑔 (
2.105 𝑚𝑉

1.35𝑚𝑉
) = 3.85𝑑𝐵 

The fact that the PZTs output voltage is higher than the input voltage means that 

the tube resonator amplified the voltage at the resonant frequency (239 Hz). Similarly, 

the amplification ratio is calculated for the lower PZT and it is 2.411 dB. 
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5.3.    Multiple Tests 

Placing the PZT plates inside the tube resonator changes the resonance behavior 

of the tube. The reason behind the change of behavior is due to the disturbance of 

motion of the air particles inside the tube. Therefore, a test to ensure the tube is excited 

at the resonant frequency. The incident frequency inside the tube is swept to observe 

the output voltage. The frequencies ranged from 230-250 Hz. The results are tabulated 

in Table 6 which represents the frequency and the corresponding amplitude for the 

upper PZT. 

Table 6: Frequency Vs. Amplitude for PZT1 

Frequency (Hz) Amplitude (mV) 

233 1.275 

239 2.341 

243 2.244 

253 1.861 

Then using MATLAB the range of frequnices along with their amplitudes are 

plotted as shown in Figure 41. 

 

Figure 41: Frequencies Vs. Amplitude for PZT 1 
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Figure 41 verifies that the maximum output voltage is achieved at the resonant 

frequency. In other words, the structural resonant frequency of the PZT plate is 

matching the acoustic resonant frequency of the tube where the maximum energy 

harvesting occurs. The harnessed electricity is generated at d31 mode. 

Similarly, for PZT 2, the incident frequency is ranged from 230-250 Hz. The 

incident frequency and the corresponding amplitude is recorded in Table 7 and plotted 

in Figure 42. 

Table 7: Frequencies and the amplitudes of PZT2 

Frequency (Hz) Amplitude (mV) 

233 1.293 

239 1.784 

243 1.633 

253 1.614 

 

Figure 42: Frequency Vs. Amplitude for PZT2 

It is noticed that the resonant frequency produces the highest voltage inside the 

tube and that means the tube resonator is manufactured accurately. 
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Then, the experimental data were plotted against the mathematical model. 

Figure 43, shows that the resonant frequency of the mathematical model at 247 Hz 

while the experimental resonant frequency is at 239 Hz. Both of the plots show that the 

resonant frequency produces the highest voltage.  

 

Figure 43: Comparison between the mathematical results and the experimental 

5.4. Testing with 1 meter distance 

For practical applications, the PZTs will not be placed directly near the sound 

source but rather in appropriate distant location. Therefore, in this study the tube 

resonator along with the PZT plates within is located 1 meter away from the subwoofer. 

The experimental setup is then modified by moving the tube resonator 1 meter from the 

subwoofer as seen in Figure 44. 

 

Figure 44: Experimental setup with 1 meter distance 
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The same test to evaluate the maximum voltage at resonant frequency is 

conducted. The resonant frequency at 239 Hz for the individual PZTs generated voltage 

of 1.75 mV and 0.635 mV. The generated voltage is lower than that when the tube was 

closer to the subwoofer. This is due to the fact that the acoustic waves are not fully 

transmitted to the piezoelectric plates but rather lost in the air. In comparison with the 

case of the tube being near the subwoofer the waves were directed to the PZT plates 

thus the maximum amount of sound was absorbed. However, the generated voltage is 

still higher when comparing it to the results found without the tube. This means the tube 

works well as an amplifier when compared to the case of the PZT plates without the 

tube. 

 

Figure 45: Spectral analysis for the dual PZT plates 

Through experimentation, the lower PZT is noticed to give less voltage than the 

upper PZT, a difference of 1.115 mV between the lower and upper PZT.   

5.4.1. Multiple Testing with 1 meter distance: 

A test for the PZTs within the tube that is 1 meter away from the subwoofer is 

conducted. This is done to verify that the incident wave natural frequency matches the 

tube resonator natural frequency. Figure 46 demonstrates the various frequencies and 

their corresponding amplitudes.  

Compared to Figure 41, the amplitudes are lower than when the tube was closer 

to the subwoofer by 1.6156 mV.  
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Figure 46: Frequency Vs. Amplitude for PZT1 

Furthermore, the amplitude of the resonant frequency is still the highest. The 

data of the frequencies and their corresponding amplitudes are tabulated in Table 8 . 

Table 8: Range of frequencies and their amplitudes for PZT1 

Frequency (Hz) Amplitude (mV) 

232 0.561 

236 0.4512 

239 0.7254 

242 0.4189 

Similarly, the second lower PZT is interfaced with various ranges of frequencies 

from 230-240 Hz. This is done to verify the operation of the tube resonator and the 

resonant frequency is found to be at 239 Hz. Figure 47 shows the frequencies and their 

corresponding amplitudes of the second PZT.  
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Figure 47: Frequency Vs. Amplitude for PZT2 

Table 9 represents the output amplitude of the second PZT which have lower 

amplitude than the first PZT. 

Table 9: Range of frequencies and their amplitudes for PZT2 

Frequency (Hz) Amplitude (mV) 

232 0.2948 

236 0.2362 

239 0.4239 

242 0.3047 

The tube resonator has shown fair amplification ratio when it was used near and 

1 meter away from the subwoofer. Therefore, it can be used to amplify the output 

voltage from the PZT plates. The tube resonator worked quite well due to the proper 

dimension choice.     
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Chapter 6: Conclusions and Future Work 

A low frequency acoustic energy harvesting setup using dual PZTs is designed. 

This design has not been recorded in the energy harvesting field. It will be used to 

convert sound/vibrational energy into voltage to power low-power electronic devices. 

This research focuses on developing a new method to harvest maximum energy from 

the surrounding acoustics at low frequencies such as airplanes, factories and car traffic 

noise. A mathematical model was first established to evaluate the natural frequency of 

the system and the different corresponding modes. Theses natural frequencies and 

modes were validated through a simulation model employing FEA methods through 

means of the COMSOL Multiphysics software. The simulation results provided natural 

frequency that is close to the mathematical model. The natural frequency for the PZTs 

is 242 Hz in simulation and 247 Hz from the mathematical model. The natural 

frequency was then verified using experimentation. 

The natural frequency and its corresponding output voltage harvested are then 

amplified using quarter-wavelength straight-tube resonator. The PZT plates are placed 

within the straight quarter-wavelength tube resonator that is manufactured according to 

the natural frequency attained. The output voltage is almost double the input voltage. 

The amplification ratio is 3.85 dB at the resonant frequency (at 239 Hz). Multiple tests 

were conducted when the tube resonator was located near and 1 meter away from the 

subwoofer. Those tests were studied and the conclusion can be drawn that the further 

the sound source from the PZT the less the energy harvested. 

Future work will come in the form of reducing the size of the PZT design to be 

more compatible and efficient. The bulky design of the PZT inside the tube will allow 

the acoustic travelling waves to directly be in contact with the PZT plates. Furthermore, 

accurate capture of the natural frequency can be achieved by finding a fixed way to 

mark the free length of the cantilever PZT and thus changing it accordingly. Also, the 

experiments could be conducted in an isolated room where the sound will be absorbed 

completely i.e. anechoic chamber. Also, conducting the tests in cold environment will 

help produce more energy.  

Moreover, the PZT design can be altered in such a way so that the PZT 

cantilever plates are mechanically coupled. This will allow the PZT plates to have two 

natural frequencies by employing the two vibration modes (rocking and bending). 
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