AUS-UAV HILS SETUP OF DYNAMIC FLIGHT PATH PLANNING

Mohammed Mahedi Hasan, Candidate for the Masters of Science Degree in Mechatronics Engineering

American University of Sharjah, 2006

ABSTRACT

My research will utilize the existing UAV test-bed consisting of the TRI-60 RC airplane, the Avionics Unit, the embedded controller system, and the Ground Station to test minimum time flight path algorithms and mission planning capability in three dimensions. The research will be two pronged: with one area being directed toward an up-to-date reliable simulation capability to test the UAV to ensure its flight readiness and the other area being to create actual test scenarios to collect data, and verify the validity of the simulations and fine tune the mechanical and electrical configurations. The Ground Station will be used to monitor the UAV status during flight, and to make the UAV "flexible missions" capable. For the purpose of this research, missions are described as the ability of the UAV to move between two different coordinates in the map, indicated by their Global Positioning Satellite (GPS) coordinates and altitude.

A successful demo of the Hardware in the Loop Simulation of the Ground Station and Avionics Unit depicts the embedded microcontroller of the UAV accepting mission waypoints and then controlling the virtual TRI-60 RC airplane over them according to the path strategy devised. The path strategy takes the aircraft between two waypoints in *three dimensions* using the *shortest path* and at the same time ensures that the aircraft faces a *certain heading* once it reaches its waypoint. During the course of the thesis, minimum time paths, dead reckoning (inertial navigation) algorithms, and practical real time effects were researched. Future UAV research for this university should include the ability to land and take off autonomously, and the ability to do formation flights. The UAV test-bed should also be upgraded using new design technologies to create a more sophisticated Avionics Unit capable of auto-navigation. The ability to do surveillance should also be incorporated into the UAV by including an onboard camera and an image processor. This would require upgrading to a bigger fuselage (or airframe) to store the required components.

TABLE OF CONTENTS

ABSTRACT iii
LIST OF FIGURES viii
LIST OF TABLES xii
NOMENCLATURE xiii
ACKNOWLEDGEMENTS xv
CHAPTER 1: INTRODUCTION11.1: Background11.1: Avionics Unit21.1.2: Ground Station41.1.3: Limitations of Previous Research51.2: Path Planning Literature71.2.1: Approaches to Path Planning Strategies71.2.2: Path Planning Strategies101.2.3: Three Dimensional Path Strategies131.2.4: Ground Station Design141.3: Thesis Outline15
CHAPTER 2: PROBLEM STATEMENT 17 2.1: AUS-UAV Research Requirements 17 2.2: Thesis Requirements 18 2.2.1: Objectives 18 2.2.2: Specific Thesis Contribution 19 2.2.3: Significance of the Research 20 2.3: Proposed Solution and Design Overview 20
CHAPTER 3: 3D PATH ALGORITHM AND CONSTRAINTS 23 3.1: 3D Path Constraints 23 3.1.1: Turn Rate Constraints 24 3.1.2: Longitudinal Autopilot Constraints 25 3.1.3: Lateral Autopilot Constraints 30 3.2: Shortest Flight Path Algorithm in 3D 36 3.2.1: Feedback Guidance Strategy 37 3.2.2: Bidirectional Feedback Guidance Strategy to 40
403.2.3: Alternative Method to Control Heading
CHAPTER 4: FLEXIBLE MISSION DESIGN – GROUND STATION534.1: Ground Station Design534.1.1: Path Generation and Waypoint Selection554.1.2: Ground Station Flight Panel Display Update Process574.1.3: Path Algorithm Implement in the Ground Station604.1.4: Communication with the Embedded System61

CHAPTER 5: FLEXIBLE MISSION DESIGN – EMBEDDED SYSTEM	63
5.1: Embedded System Design	63
5.1.1: Real Time Implementation of Control Algorithm	65
5.1.2: Implementation of the Trajectory Tracker Algorithm	67
5.1.3: Communication Interface between two Microcontrollers	69
5.1.4: Communication with the Ground Station	73
5.1.5: Implementation of Dead Reckoning (GPS/INS) Algorithm	/5
5.2: Calibration of the Avionics Unit	/6
5.2.1: Calibration of Inertial Sensors without using the	70
	/8
5.2.2: Calibration Results and Tuning of Inertial Sensors	81
5.2.3: Calibration of Inertial Sensors using the Microcontroller	80
5.2.4: Calibration of the Alf Data Unit	00
CHAPTER 6: HILS SETUP – SIMULINK MODEL DESIGN	93
6.1: Simulation only Design	93
6.1.1: Design of Trajectory Tracker and Autopilot Algorithm	94
6.1.2: Design of Waypoint Navigation System	96
6.1.3: LQR State Feedback Lateral Autopilot	98
CHADTED 7. HILS SETUD DSDACE AND ELICHTCEAD	100
7 1: Hordware in the Loon Simulator Design	100
7.1.1: High Lovel Overview of the HILS Setup	102
7.1.2: Flight Gear Flight Simulator Design	105
7.1.2. Flight Ocal Flight Simulator Design	103
7.1.3. Stages in files Design	100
CHAPTER 8: RESULT AND ANALYSIS	113
8.1: "Simulation Only" Waypoint Navigation Results and Analysis	113
8.1.1: Bang-Bang control using PID Lateral Autopilot	113
8.1.2: Bang-Bang Control using LQR State	
Feedback Lateral Autopilot	116
8.1.3: Heuristic Control using PID Lateral Autopilot	118
8.1.4: Heuristic Control using LQR State	
Feedback Lateral Autopilot	120
8.1.5: LQR State feedback Longitudinal Autopilot	122
8.1.6: Summary of "Simulation Only" Waypoint Navigation	124
8.2: HILS Waypoint Navigation Results and Analysis	125
CHAPTER 9: CONCLUSION AND FUTURE WORK	130
9.1: Timing Analysis	130
9.2: Summary of Contributions	131
9.3: Future Work	132
DEEEDENCE LIST	133
	155
APPENDIX A: GROUND STATION CODE	136
A-1: Main Dialog Box Code	137
A-2: Compass/Altimeter/Speedometer Layer Code	179
A-3: Map Layer Code	195
A-4: Resource and Header Files	200

APPENDIX B: EMBEDDED SYSTEM CODE	212
B-1: DFC Microcontroller Code	213
B-2: GNC Microcontroller Code	226
B-3: Resource Files	231
Appendix C: Simulink Models	243
C-1: Simulation Only Model PID	244
C-2: Simulation Only Model LQR	245
C-3: dSpace Model	246
C-4: Simulink Serial Model	247
C-5: Simulink Resource Files	248
Appendix D: Hardware Utilized	251
D-1: S12 Compact Pins	252
D-2: dSpace Controller Board Pins	253
D-3: XStream Radio Frequency Transceiver	254
VITA	255

LIST OF FIGURES

Figure 1-1: The Avionics Unit constructed in [1] by Mahmoud Hadi
Figure 1-2: High Level overview of Ground Station Architecture implemented in [2]
Figure 1-3: The Ground Station GUI designed in [2]
Figure 1-4: Schematic Description of a Behavioral Based Approach to Path Planning
Figure 1-5: Schematic Representation of a Layered Architecture
Figure 1-6: Schematic Representation of Error due to Low Position Update Frequency
Figure 1-7: Path taken by UAV when entering a curve using Feedback Guidance Strategy
Figure 1-8: Schematic Representation of Path Created using Clothoids 11
Figure 1-9: Schematic Representation of k-trajectory Flight Path 12
Figure 1-10: Overview of the MPC Control Scheme in [18] and its use in [19] as RH
Figure 2-1: A High Level Overview of the HILS Setup
Figure 3-1: Plot of Theoretical Stall Speed Required for a Given Bank Angle 24
Figure 3-2: Plot of Flying Radii vs. Bank Angle Maintaining the Stall Speed 25
Figure 3-3: Block Diagram of the Longitudinal Autopilot
Figure 3-4: Autopilot Pitch Angle and Pitch Rate Constrains
Figure 3-5: Autopilot Climb Rate Constraints and Behavior of Ascent and Descent 28
Figure 3-6: Distance Constraints to Reach Steady State after Ascent or Descent 29
Figure 3-7: Block Diagram of the Lateral Autopilot Implementation using Two Methods
Figure 3-8: Plot of 3D Circular Path Taken by TRI-60 due to Roll of 40 Degrees 33
Figure 3-9: Plot of Angular Rate and Bank Angle during Entry and Exit of a Circular Path 34
Figure 3-10: Plot of Altitude over Time as the Aircraft Enters and Exits a Turn 34
Figure 3-11: Extension of the Feedback Guidance Strategy – Bidirectional 37
Figure 3-12: Path taken by the UAV When Entering a Curve using Feedback Guidance
Figure 3-13: Detailed description of Bidirectional Feedback Guidance Strategy 40

Figure 3-14: Detailed Sketch of k-Feedback Guidance	. 42
Figure 3-15: Effect of Altitude Change Command when UAV fly in a Circle	. 45
Figure 3-16: Effect of Altitude Change Command when UAV fly in a Circle	. 45
Figure 3-17: Changes in Speed and Pitch due to Ascending and Descending Motion	. 46
Figure 3-18: Schematic Representation due to Discrete Position Update of 1 Hz	. 47
Figure 3-19: Inertial Navigation System High Level Overview [10]	. 48
Figure 3-20: Inertial Navigation System Block Diagram in Earth Navigation Frame [28]	49
Figure 3-21: INS Navigation Frame terminology [28]	50
Figure 3-22: Sketch of Aircraft Body and Inertial Axis	. 52
Figure 4-1: Pictorial Representation of the Ground Station Framework	. 55
Figure 4-2: Map Area Showing the Waypoints Selected by the User	. 56
Figure 4-3: Schematic Representation of Allowed and Disallowed Paths	. 57
Figure 4-4: Block Diagram of Ground Station Components	. 58
Figure 4-5: Flowchart of the Display Updating Process	. 59
Figure 4-6: Flowcharting Illustrating Path Algorithm Implementation in Ground Station	. 61
Figure 5-1: Block Diagram of Avionics Unit Embedded System Framework	. 63
Figure 5-2: Flow Diagram of Embedded System Architecture	. 64
Figure 5-3: Flowchart of Processes inside the GNC Microcontroller (Flight Computer)	65
Figure 5-4: Flowchart of Processes inside the DFC/SAS and Trajectory Microcontroller	. 66
Figure 5-5: Information necessary for the trajectory controller	. 67
Figure 5-6: Flowchart showing Path Algorithm Implementation in Trajectory Controller	. 68
Figure 5-7: The CAN Data Frame Format	. 71
Figure 5-8: Schematic of CAN Network Architecture	. 72
Figure 5-9: Detailed Flowchart of the CAN Initialization and Tx/Rx Algorithm	. 73
Figure 5-10: 3DM-G Inertial Measurement Unit from MicroStrain	. 77
Figure 5-11: Calibration of the Avionics Unit using NIDAQ to Capture Analog Values	. 80
Figure 5-12: Flowchart of Filtering Operation to Match IMU and Avionic Unit Readings	. 81
Figure 5-13 (a-h): Scatter plot of IMU Parameter Readings and Avionics Unit Voltages	. 83

Figure 5-14 (a-g): Plot comparing IMU readings with the Tuned Avionics Unit Readings 86
Figure 5-15: Block Diagram of the Calibration of Avionics Unit using Microcontroller
Figure 5-16: Avionics Unit Calibration using Microcontroller
Figure 5-17: Wind Tunnel Calibration of Gauge Pressure Sensor
Figure 5-18: Illustration of Normal and Wind Tunnel Pitot tube operation
Figure 6-1: Simulink model of TRI-60 UAV Implemented using Aerosim Blockset 2.8
Figure 6-2: Trajectory Tracker Algorithm implementation in Simulink
Figure 6-3: Simplified Block Diagram of Waypoint Navigation System in Simulink using PID Lateral Autopilot
Figure 6-4 : Sample Waypoint Navigation Result in FlightGear and Matlab X-Y plot
Figure 6-5: Simplified Block Diagram of Waypoint Navigation System in Simulink using LQR State Feedback Lateral Autopilot
Figure 6-6: Difference between the Heuristic and Bang-Bang approach
Figure 7-1: Simplified Block Diagram of the Simulink Model used in the HILS Setup
Figure 7-2: Overview of the HILS Setup for the Embedded System and Ground Station
Figure 7-3: Simulink Model of Serial to Flight Gear Data Management System
Figure 7-4: First stage of HILS setup – Simulink Model 108
Figure 7-5: First stage of HILS setup – Hardware Setup 109
Figure 7-6: Second stage of HILS setup – Hardware Setup 110
Figure 7-7: Complete electrical circuit diagram of the HILS Setup 111
Figure 7-8: Photo of the HILS Setup
Figure 8-1 (a – c): Bang-Bang PID Lateral Autopilot Control Response 115
Figure 8-2 (a – c) : Bang-Bang LQR State Feedback Lateral Autopilot Control Response
Figure 8-3 (a – c): Heuristic PID Lateral Autopilot Control Response 119
Figure 8-4 (a – c): Heuristic LQR State Feedback Lateral Autopilot Control Response
Figure 8-5 (a – c) : LQR State Feedback Longitudinal Response to Dutch Roll Effect
Figure 8-6 (a-d): Plots of 3D and 2D Waypoint Navigation using Various Approaches

Figure 8-7: Result of HILS Stage One Run Testing Trajectory Tracker Algorithm in 2D	126
Figure 8-8: Plot of HILS Stage Two Run Testing Heuristic Trajectory, Autopilots in 2D	126
Figure 8-9 (a-c): Plot of Stage Two Run Testing Heuristic Trajectory, Autopilots in 3D	128

LIST OF TABLES

Table 1-1 : Shortcoming of the TBI and the menu system of interaction	. 6
Table 3-1: List of Constraints to be considered by Trajectory Tracker during Path Planning	. 35
Table 5-1: Linear Equations Relating IMU Readings with Avionics Unit Voltages	. 83
Table 5-2: Tuned Linear Equations Relating IMU Readings with Avionics Unit Voltages	84
Table 5-3: Final Calibration Equation and Comparison with Equations given in [1]	88
Table 5-4 : Tabulation of Wind Tunnel Results and Analysis	91
Table 5-5: Tabulation of Voltage and Altitude Relationship of Absolute Pressure Sensor	92
Table 5-6: Result of the Air Data Unit	92

ABBREVIATION

lpha , eta	Angle of attack, and side slip
$\phi_{, heta, heta}$	Euler angles (roll, pitch, and yaw)
ρ	Density of air
AUS-UAV	American University of Sharjah Unmanned Aerial Vehicle
C _L	Lift coefficient
CAN	Controller Area Network
ССР	Concurrent Constraint based Programming
COTS	Commercial off the Shelf
CRC	Cyclic Redundancy Code
DFCS	Dynamic Flight Controller System
FGFS	Flight Gear Flight Simulator
FSR	Full Scale Range
g	Acceleration due to gravity (9.78 m/s^2)
GNC	Guidance Navigation and Control
GPS	Global Positioning System
GPS/INS	Inertial Navigation System and Global Position System Integration
GUI	Graphical User Interface
h	Altitude
HILS	Hardware in the Loop Simulation
IMU	Inertial Measurement Unit
INS	Inertial Navigation system
LQR	Linear Quadratic Regulator
MFC	Microsoft Foundation Classes
NIDAQ	National Instruments Data Acquisition Unit
p, q, r	Angular rates (roll, pitch, and yaw)
PAH	Pitch Attitude Hold
PCB	Printed Circuit Board
RAH	Roll Attitude Hold
RCU	Remote Control Unit
S	Surface area of the wings

SAS	Stability Augmentation System
SCI	Serial Communication Interface
SPI	Serial Peripheral Interconnectivity
TBI	Text Based Interface
TRH	Turn Rate Hold
u, v, w	Body frame longitudinal, lateral, and vertical airspeed
UAV	Unmanned Aerial Vehicle
W	Aircraft weight

ACKNOWLEDGEMENTS

First of all I would like to say Al-Hamdu-Lillah for being able to able to reach this far. None of this would be possible if Allah did not give me the patience and steadfastness especially when things became really hectic.

I would also like to thank my parents for having patience with me and supporting me, and especially my mother for ensuring that I was properly looked after at home so I could wholeheartedly focus in my work.

Most of all I would like to thank Dr. Mohammed Ameen Al-Jarrah for guiding me through this endeavor. His enthusiasm for UAV research was an inspiration to all of us who worked under his supervision. Although this thesis only accomplished a small part of his vision, I was honored to have been a part of it.

I would also like to give especial thanks to my colleagues who helped me tremendously, and who slaved through this as much as I have. I would specifically like to thank Rami Al-Shanaah, Saeed Islam Said, and Oubadah Al-Dabbas.

I cannot forget my other Mechatronics colleagues who kept me company and made my experience rich and wonderful. I would like to thank Ihab Mohammed Abu Younis, Fadi Al-Saleem, Mohammed Jarrah, Joudeh and others who I cannot mention in this short space.

Last but not least I would like to thank the Mechatronics Faculty for there role in making this program an internationally recognized one.