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ABSTRACT 
 
 
 

The main objective of this research is to present wavelet networks as a new 

scheme to model and control nonlinear dynamic systems. The ability to control a 

system depends on how well it is modeled. Most real-world systems are inherently 

nonlinear, and conventional PID controllers, having fixed proportional, integral and 

derivative terms, are not able to deal with time-varying nonlinearities. Such 

conditions require adaptive controllers that can modify the P, I and D terms to 

compensate for these nonlinearities. Furthermore, the capability of wavelet networks 

in the modeling of dynamic nonlinear systems makes them appealing for use in 

system modeling and control. 

This research develops an adaptive PID- Dynamic Wavelet Network controller, 

comprising a digital PID controller and a proposed new wavelet network scheme 

called the Dynamic Wavelet Network (DWN), in order to model and control 

nonlinear systems. The learning strategy for the wavelet network and PID controller is 

developed based on the gradient descent algorithm. The performance of the proposed 

controller is demonstrated via extensive numerical simulations. 
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CHAPTER 1 

INTRODUCTION 

Wavelet networks have received a lot of interest over the past few years in the 

area of control systems. Wavelet networks are relatively new; however, their 

applications and growth have come from many areas including wavelet theory, neural 

networks, statistics, computer science, pattern recognition, and communication, to 

name a few. Neural networks and wavelet theory, traditionally taught in two different 

disciplines, were integrated under the common theme of wavelet networks. There are 

several advantages of combining wavelets and neural networks. Wavelet networks are 

universal approximators with the ability of achieving faster convergence than neural 

networks and the capability of dealing with inputs of higher dimensions [7, 10]. 

Wavelet networks have been used for both static and dynamic modeling [6, 8, 9, 10, 

11, 12, 13, 14]. The capabilities of wavelet networks make them a good candidate for 

nonlinear system identification and control. 

Recent progress in wavelet network theory provides us with new tools for 

modeling, identification and control of complex nonlinear dynamic systems. 

Intelligent control, with special focus on adaptive control can be used to solve 

difficult real control problems which are basically nonlinear, noisy and complex. This 

is because wavelet networks have an inherent ability to learn from input-output 

functions and approximate an arbitrarily nonlinear function well. A large number of 

identification and control structures have been proposed on the basis of neural and 

wavelet networks in recent years [15, 16, 17, 18, 19]. 

Design and implementation of adaptive control for nonlinear dynamic systems 

is challenging and extremely difficult. In most cases, developing adaptive control 

strategies depends on the particular information of the nonlinear structure of the plant 

that needs to be controlled. Wavelet networks with the ability to deal with 

nonlinearities can be used to develop an adaptive controller for unknown systems. If 

the relationship between the input and the output of the unknown nonlinear plant is 

modeled by an appropriate wavelet network, the obtained model can be used to 

construct a proper controller. After constructing and training the wavelet network, the 

wavelet based controller can be implemented on-line. The wavelet network model is 
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updated by measured plant input and output data and then the controller parameters 

are directly adapted using the updated model. 

In this research wavelet networks are used for system identification and the 

design of an adaptive PID controller for nonlinear dynamic systems. The proposed 

wavelet network and wavelet-based controller are applied to first order and second 

order nonlinear systems, and the effect of noise on their performance is analyzed. 

1.1 Literature Review 

The combination of wavelet theory and neural networks has received a lot of 

attention in recent years for modeling and control of nonlinear systems. This 

combination led to the development of Wavelet Networks (WN). A wavelet network 

is basically a feed-forward neural network with one hidden layer of nodes, whose 

basis functions are drawn from a family of orthonormal wavelets [1]. The popularity 

of wavelet networks can be attributed to the original work by Pati and Krishnaprasad 

[2, 3], Zhang and Benveniste [4], Szu, Telfer and Kadambe [5] among others. Zhang 

and Benveniste [4] found a link between the wavelet decomposition theory and neural 

networks and presented a basic backpropagation wavelet network learning algorithm. 

Their wavelet networks preserved the universal approximation properties of the 

traditional feed-forward neural networks and presented an explicit link between the 

network coefficients and some appropriate transform. Szu, Telfer and Kadambe [5] 

applied wavelet networks to speech segmentation and speaker recognition. Zhuang 

and Baras [7] showed how a wavelet network can be used for the identification of 

infinite dimensional systems. They developed a systematic approach to find the 

optimal discrete orthonormal wavelet basis with compact support for spanning the 

subspaces employed for system identification. This approach was believed to reduce 

the number of neurons needed to achieve the same performance provided that the 

wavelets contain useful information of the systems in consideration. The wavelet 

network also adjusted its wavelet basis according to measurements and was thus 

called an Adaptive Wavelet Neural Network (AWNN). Marrar, Filho and 

Vasconcelos [9] introduced a family of polynomial wavelets generated from powers 

of sigmoids to be used in designing wavelet networks. They showed through 

examples how this set of wavelets can provide a very good approximation capability, 
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with a fast convergence of the training process. They also observed how only a small 

number of daughter wavelets were necessary to provide good approximation 

characteristics. Li and Chen [10] developed a robust learning rule based on Least 

Trimmed Squares method (LTS) to reduce the sensitivity of wavelet networks to 

outliers, which are encountered as a result of training data being contaminated by non-

Gaussian noise whereby some points fall far outside of the majority of the data. They 

proposed adaptively adjusting the number of residuals contributing to weight updates 

and demonstrated through simulation the superiority of the robust learning algorithm 

over the conventional approach in function approximation from outlying data. Sgarbiy, 

Coll and Reyneri [11] showed how wavelet networks are a specific case of the more 

general Weighted Radial Basis Functions Networks (WRBFN). They made a 

comparison between the two networks for function approximation by using the same 

initialization and learning rules for both types of networks. They concluded that 

WRBFN are as good approximators as WN and that the performance of either 

network depended on how well the chosen mother/activation function “fits” the 

function to be approximated. The simulations showed that a periodic function is better 

approximated by a wavelet network with an “oscillating” mother wavelet, while an 

exponential function is better approximated by a WRBFN with a Gaussian activation 

function. Oussar and Dreyfus [12] developed an initialization procedure, called 

initialization by selection, for the parameters of wavelet networks used in function 

approximation. They used wavelet frames stemming from the discrete wavelet 

transform to initialize the translation and dilation parameters of wavelet networks 

trained using gradient based techniques. The procedure consists in generating first a 

family of wavelets based on the input signals range. The wavelets are next ranked in 

order of decreasing relevance by the Gram-Schmidt method. Ranking the wavelets 

involves first estimating the weights of the direct connections of the network by 

standard least squares (LS) and then deriving a training sequence by subtracting the 

output of the linear model derived by LS from the initial training sequence. Thereafter, 

the wavelets (without the direct connections) are ranked and selected using the 

residuals of the linear model. The authors compared their proposed initialization 

procedure to the heuristic procedure and simulation results showed that the effect of 

the random initialization of the weights of the network is much smaller when the 

wavelet centers and dilations are initialized by selection than when they are initialized 

heuristically, making WN training more efficient. 
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In the framework of dynamic modeling of nonlinear systems, wavelet 

networks have been applied by Zhang to the identification of a robot arm and shown 

to perform much better than a linear Auto Regressive with eXogenous input model [6], 

and later to the modeling of a gas turbine system [8]. Yeung and Li [13] used 

algorithms for the identification of nonlinear multi-input dynamical systems to 

develop a rainstorm prediction tool. They used a wavelet network for identifying a 

state space model of the system using radar images as input and the rain gauge 

measurement as output. By comparing the wavelet network with the traditional neural 

network, they showed that the WN offered significant improvement in terms of speed, 

reliability and accuracy. Oussar, Rivals, Personnaz and Dreyfus [14] developed 

training algorithms for feedback wavelet networks used in the dynamic modeling of 

single-input-single-output (SISO) processes. The two algorithms were called 

feedforward wavelet predictor and feedback wavelet predictor. The first was used 

when it was assumed that noise was acting on the process input, while the second was 

used when it was assumed that noise was acting on the process output. They also 

presented an original initialization procedure that takes the locality of the wavelet 

functions into account. The initialization of the wavelets was based on the domain of 

the training data, in particular the minimum and maximum values. This procedure 

guaranteed the dilation and translation parameters were initialized so that the mother 

wavelet was at the center of the training sequence and extended over the whole input 

domain. When comparing with classical sigmoidal neural networks, they concluded 

that the two types of networks can perform equivalently in terms of accuracy and 

parsimony for low order nonlinear processes, provided proper initialization is done 

and efficient training algorithms are used. 

Adaptive controllers have been implemented using neural networks and, more 

recently, using wavelet networks to regulate nonlinear dynamic systems. J. Wang, F. 

Wang, J. Zhang and J. Zhang [15] presented a self-tuning PID controller based on the 

gradient decent learning algorithm with a neural network. The training of the NN was 

performed off-line so as to learn the dynamics of the plant, which required long 

training time. The P, I and D parameters were optimized on-line according to the cost 

function: 

∑=
N

ieJ
1

 



5 

Where ei is the error between setpoint and NN output at the ith step and N is the 

number of steps. 

By comparing the self-tuning PID controller to the common PID controller, 

they concluded that the new controller (i) could compensate for different process and 

environment uncertainties, (ii) was simple to configure since it did not require a 

process model, (iii) could track changes of process dynamics on-line, (iv) had all 

properties of common PID algorithm, and (v) could compensate for large dead time if 

it existed. The strategy scheme is shown in Figure 1.1. 

 

r PID 
Controller

 

PLANT 
y - 

+ 

PID Self 
Tuning

 

NN 

- 

+ 
P I D 

 
Figure 1.1 PID Self-Tuning Strategy Scheme 

 

Omatu [16] constructed an adaptive PID controller using two neural networks. 

The first NN was used to generate the P, I and D terms according to the cost function 

( )22 )1()1(
2
1)1(

2
1

+−+=+= nynrneE  

Where r(n) is the desired reference signal, y(n) is the plant output and n is the sample 

number. 

The second NN was used to emulate the plant. The proposed method was 

implemented in a SISO temperature control system and in an electric vehicle torque 

control system. The experimental results showed that the proposed method performed 

well in both systems. The configuration of the self-tuning neuro-PID controller is 

shown in Figure 1.2. 
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Figure 1.2 Self-Tuning Neuro-PID controller 

 

Lekutai [17] presented two self-tuning wavelet network controllers. The first 

was a self-tuning wavelet network controller, shown in Figure 1.3. The controller was 

constructed with a wavelet network utilizing twenty wavelets and was implemented in 

the control of a nonlinear dynamic system. 

 

r(k) Controller  
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WN 
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Figure 1.3 Self-Tuning Wavelet Network Controller 

 

The second was an adaptive PID controller shown in Figure 1.4. The 

controller was constructed using the same sized wavelet network and was 

implemented in the control of the same nonlinear dynamic system. 
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Figure 1.4 Adaptive PID Controller 

 

The author observed that in the first scheme the WN tracked the set-point 

reference faster than the actual plant, while in the second scheme the plant response 

was faster than the WN. The proposed controllers were also utilized in the cases when 

Gaussian noise contaminated the input of the WN or the output of the plant. The 

controllers were found to perform better in the case of input noise contamination than 

in the case of output noise contamination. While the self-tuning wavelet network 

controller was found to provide quicker tracking adjustment to control changes, the 

adaptive PID controller was found to be more robust and less sensitive to noise. 

Cheng, Chen and Shiau [18] developed an adaptive wavelet network controller by 

using the technique of feedback linearization, the adaptive control scheme and the H∞ 

optimal control theory. They obtained an inversion-based nonlinear controller by 

employing the technique of feedback linearization. They then developed the structure 

of the adaptive wavelet controller using the certainty equivalent principal of adaptive 

control theory. The H∞ optimal control theory was used to obtain the adaptive wavelet 

network control law and the parameter update algorithm. Two examples – an inverted 

pendulum system and a two-link robotic system – were given to illustrate the 

proposed controller’s design procedure and performance. In both examples the 

controller was shown to perform well by attenuating the tracking error. Wai and 

Chang [19] presented an intelligent control system for an induction servo motor drive 

utilizing a wavelet network. The WN controller had adaptive learning rates that were 

derived using the discrete-type Lyapunov stability theorem to guarantee the 

convergence of the tracking error. The authors used a four layer wavelet network with 

fourteen one-dimensional wavelets and seven two-dimensional wavelets. A periodic 
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reference signal was used to test the effectiveness of the proposed control system and 

the simulation and experimental results showed that the controlled servo motor drive 

had good tracking control performance and good robustness to uncertainties under 

wide operating ranges. 

1.2 Objectives of Research 

The goal of this work is to investigate wavelet networks for system 

identification and control. The first part of this work focuses on the design of wavelet 

networks for nonlinear system identification, where the nonlinearity is identified 

explicitly as a cascaded block to the linear part of the system. The second part 

addresses the design of a nonlinear controller by utilizing a wavelet network for the 

self-tuning control problems of highly nonlinear systems. The proposed method 

shows how a wavelet network can be combined with a self-tuning control algorithm 

to control known or unknown discrete-time complex systems. The gradient descent 

learning algorithm has been deployed to construct this adaptive controller. The control 

scheme used in this work is an adaptive PID controller based on a self-tuning wavelet 

network. The original contributions of this work are introducing new wavelet network 

architecture and defining an adaptive mechanism for the PID controller parameters. 

1.3 Research Organization 

This work is organized as follows: chapter one introduces a general overview 

of the methodology used. Fundamentals of wavelets and the wavelet transform are 

presented in chapter two. Then in chapter three wavelet networks are introduced and 

their application in nonlinear function approximation is presented. Chapter four 

explains the use of wavelet networks in the dynamic modeling of nonlinear systems 

along with several examples that highlight the advantage of the new wavelet network 

architecture, the dynamic wavelet network (DWN), over conventional wavelet 

networks. The effect of noise on the performance of the DWN is then investigated. 

Chapter five presents the control structure and design of an adaptive PID-DWN 

controller and its application in two case studies, including the effect of noise on the 

performance of the controller. The conclusion of this work is given in chapter six. 
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CHAPTER 2 

WAVELETS 

The term wavelet means a “little wave”. This little wave must have at least a 

minimum oscillation and a fast decay to zero, in both positive and negative directions, 

of its amplitude. This property is analogous to an admissibility condition of a function 

that is required for the wavelet transform [20]. 

Sets of “wavelets” are employed to approximate a signal, whereby the goal is 

to find a set of daughter wavelets constructed by a dilated (scaled or compressed) and 

translated (shifted) original wavelet or “mother” wavelet, that best represent the signal. 

So by “traveling” from the large scales toward the fine scales, one “zooms in” and 

arrives at more and more exact representations of the given signal. 

The mother wavelet used in this research is the Gaussian wavelet of order 1, 

which is the first derivative of a Gaussian function. The equation of this wavelet is 

2

2

)(
x

xex
−

−=φ  (2.1) 

This wavelet is regarded as a differentiable version of the Haar wavelet, and 

has the universal approximation property [4]. Figure 2.1 shows the Gaussian wavelet 

of order 1. 
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Figure 2.1 Gaussian Wavelet of Order 1 
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Other wavelet functions include the Morlet wavelet and the Mexican Hat 

wavelet, among others. The Morlet wavelet, named after Jean Morlet, has the 

following equation [21] 

( )xex
x

0
2 cos)(
2

ωφ
−

=  (2.2) 

This function is the real part of the Morlet’s basic wavelet function, which is a 

multiplication of the Fourier basis with a Gaussian window [24]: 

tj
t

eeth 0

2

2)( ω−
=  (2.3) 

The imaginary part is a Sin-Gaussian function. The Cos-Gaussian wavelet is a 

real even function. Figure 2.2 shows the Morlet wavelet. 
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Figure 2.2 Morlet Wavelet 

 
The Mexican Hat wavelet is proportional to the second derivative function of 

the Gaussian probability density function and its equation is 

( ) 224
1 2

1
3

2)(
x

exx
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= πφ  (2.4) 

This wavelet is from the family of POLYnomials WindOwed with Gaussians 

(POLYWOG) wavelets. It was introduced by Gabor and is well known as the 

Laplacian operator, mostly used for zero-crossing multiresolution image edge 

detection [23]. The Mexican Hat wavelet is even and real valued. Figure 2.3 shows 

the Mexican Hat wavelet. 
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Figure 2.3 Mexican Hat Wavelet 

 

Figure 2.4 (a) shows the Gaussian wavelet of order 1 and (b)-(d) show 

possible daughter wavelets obtained from the mother wavelet using different dilation 

(a) and translation (b) parameters. Note the constant shape of these daughter wavelets; 

the same number of oscillations is in each wavelet. 
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Figure 2.4 (a) GaussianWavelet of Order 1 (mother) and (b)-(d) Daughter Wavelets 
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2.1 Wavelet Transform 

The Wavelet Transform (WT) was developed as an alternative approach to the 

Short Time Fourier Transform (STFT). The STFT was developed as a signal 

processing tool for the analysis of non-stationary signals. The idea behind using the 

STFT was to get a time-frequency representation of signals with time-varying 

frequencies. This representation would enable the identification of the points in time 

at which the different frequencies occurred. In the STFT a window function is used to 

look at the signal, where it is assumed that the signal is stationary across the width of 

that window. However, the fixed width of the window function gives rise to a 

resolution problem. A narrow window gives good time resolution but poor frequency 

resolution, while a wide window gives good frequency resolution but poor time 

resolution. The WT solves the dilemma of resolution to a certain extent by analyzing 

a signal using Multi Resolution Analysis (MRA). MRA analyzes the signal at 

different frequencies with different resolutions. Spectral components are not resolved 

equally as done in the STFT. MRA was designed to give good time resolution and 

poor frequency resolution at high frequencies, and good frequency resolution and 

poor time resolution at low frequencies. This approach is suitable when the signal at 

hand has high frequency components for short durations and low frequency 

components for long durations. It so happens that the signals encountered in practical 

applications are often of this type [27]. 

The wavelet transform is an operation that transforms a function by integrating 

it with modified versions of some kernel function [25]. The kernel function is called 

the mother wavelet, and the modified version is its daughter wavelet. For a function to 

be a mother wavelet it must be admissible. A wavelet is said to be admissible if it 

satisfies the Grossmann-Morlet conditions; that is, it must be oscillatory with fast 

decay to zero and its DC content must be zero. More rigorously, a function ( )RLh 2∈  

(the set of all square integrable or a finite energy function) is admissible if [22] 

( )
∞<= ∫

∞

∞−

ω
ω
ω

d
H

ch

2

 (2.2) 

where H(w) is the Fourier transform of h(t). The constant ch is the admissibility 

constant of the function h(t), and the requirement that it is finite allows for inversion 

of the wavelet transform [26]. Any admissible function can be a mother wavelet. For a 
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given h(t), the condition ∞<hc  holds only if H(0) = 0 i.e., the wavelets are inherently 

band-pass filters in the Fourier domain or equivalently, if ( ) 0=∫
∞

∞−

dtth  (zero-mean 

value in time domain).  

The wavelet transform of a function ( )RLf 2∈  with respect to a given 

admissible mother wavelet h(t) is defined as [23]: 

( ) ( ) ( )dtthtfbaW baf
∗

∞

∞−
∫= ,,  (2.3) 

Where * denotes the complex conjugate. However, most wavelets are real valued. The 

daughter wavelets are generated from a single mother wavelet h(t) by dilation and 

translation: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

bth
a

th ba
1

,  (2.4) 

Where a > 0 is the dilation factor and b is the translation factor. The constant 2/1−a  

term is for energy normalization (unitary affine mapping) that keeps the energy of the 

daughter wavelet equal to the energy of the original mother wavelet. 

An example of the wavelet transform is presented. A signal with time varying 

frequency (chirp) is analyzed using the WT with the Gaussian wavelet of order 1 as 

the mother wavelet. Figure 2.5 shows the chirp signal with a frequency range of 0.01 

to 1 Hz. 
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Figure 2.5 Chirp Sinal (0.01 – 1 Hz) 
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Figure 2.6 shows the wavelet transform of the chirp signal. The WT contains 

information about the signal such as, the frequencies present in the signal, the times at 

which these frequencies occur, and the relative magnitudes of those frequencies. The 

WT represents frequencies as scales, which are inversely proportional to one another. 

Thus, lower scales correspond to higher frequencies, while higher scales correspond 

to lower frequencies. From the WT, shown in Figure 2.6, it can be seen that the signal 

has a lower frequency initially and then its frequency gradually increases with time. 

Furthermore, the relative magnitudes decrease with the rise in frequency. 
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Figure 2.6 Wavelet Transform of Chirp Sinal 

2.2 Conclusion 

The term wavelet means a “little wave”. Sets of “wavelets” are employed to 

approximate a signal, whereby the goal is to find a set of daughter wavelets 

constructed by a dilated (scaled or compressed) and translated (shifted) original 

wavelet or “mother” wavelet, that best represent the signal. For a function to be a 

mother wavelet it must be admissible. A wavelet is said to be admissible if it satisfies 

the Grossmann-Morlet conditions; that is, it must be oscillatory with fast decay to 

zero and its DC content must be zero. The mother wavelet used in this research is the 

Gaussian wavelet of order 1, which is the first derivative of a Gaussian function. 

The wavelet transform (WT) is a useful signal processing tool for the analysis 

of non-stationary signals. It was developed as an alternative approach to the Short 

Time Fourier Transform. The WT employs wavelets to resolve the multiple frequency 

components of time varying signals and identify the points in time at which they 
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occur. By analyzing a signal using Multi Resolution Analysis (MRA), the WT can 

give good time resolution at high frequencies, and good frequency resolution at low 

frequencies. 
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CHAPTER 3 

WAVELET NETWORKS 

Combining the wavelet transform theory of Chapter 2 with the basic concept 

of neural networks led to the development of a new mapping network called a wavelet 

network. A wavelet network approximates any desired signal y(t) by generalizing a 

linear combination of a set of daughter wavelets φa,b(t), where φa,b(t) are generated by 

dilation, a, and translation, b, from a mother wavelet φ(t): 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

bttba ϕϕ ,  (3.1) 

Where the dilation factor a > 0. Note that equation (3.1) is similar to that of equation 

(2.4), but without the energy normalization. 

3.1 Models 

The conventional wavelet network has the architecture shown in Figure 3.1, 

where the network output ŷ is computed as 

∑∑
==

++Φ=
Ni

k
kkj

Nw

j
j axacy

1
0

1

ˆ  (3.2) 

The network has an input layer having Ni inputs, a wavelet layer having Nw 

weighted wavelet neurons and an output layer having a linear output neuron. The 

coefficients of the linear part of the network are called direct connections [12]. 
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ŷ  

1 x2 a1

a2 a0 

aNi

 

Figure 3.1 Conventional Wavelet Network 

 

Conventional wavelet networks used for modeling multi-input processes use 

multidimensional wavelets [12] which can be constructed as the product of Ni scalar 

wavelets: 

∏
=

=Φ
Ni

k
jkj z

1

)(φ
 (3.3) 

jk

jkk
jk d

mx
z

−
=

 (3.4) 

Ni is the number of input variables, and mj and dj are the translation and dilation 

vectors respectively. 

The conventional wavelet network model can be used for both static and 

dynamic nonlinear system modeling. 

The second model is the proposed new wavelet network scheme, called the 

Dynamic Wavelet Network (DWN). The DWN was designed for the dynamic 

modeling of nonlinear single input single output (SISO) systems. It is comprised of 

two cascaded sections: a single input single output wavelet network and a recursive 

filter. The DWN architecture is shown in Figure 3.2. 
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Figure 3.2 Dynamic Wavelet Network 

 

The network output is computed as 

)(ˆ)()(ˆ
1

1
0

mkynkuky
N

m
m

N

n
n −+−= ∑∑

==

αβ  (3.5) 

N is the order of the system, βn are the feedforward coefficients and αm are the 

feedback coefficients of the filter. 

The output of the nonlinear wavelet network section written as 

( ) 01
1

1 )()( akuakcku
Nw

j
jj ++= ∑

=

φ  (3.6) 

3.2 Training 

Wavelet network training is based on minimizing the following quadratic cost 

function [14]: 

( ) ( )∑∑
==

−==
Np

n

nn
Np

n

n yyeJ
1

2

1

2 ˆ
2
1

2
1)(θ  (3.7) 

Where nn
n yye ˆ−=  is the error between the target output, ny , and the corresponding 

wavelet network output, nŷ , for training pattern n, and Np is the number of elements 

in the training set. 

The network parameters are represented by the set θ. For the conventional 

wavelet network, θ = {mjk, djk, cj, ak, a0}, with j = 1, …, Nw and k = 1, …, Ni, where a0 

is the output bias, ak are the direct connection weights, cj are the wavelet neuron 

output weights, mjk are the translations and djk are the dilations. For the DWN, θ = {mj, 

dj, cj, a1, a0, βn, αm}, with j = 1, …, Nw, k = 1, …, Ni, n = 0,…,N and m = 1,…,N, 

where βn are the feedforward coefficients and αm are the feedback coefficients. 
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The minimization is performed based on the gradient descent algorithm. The 

partial derivative of the cost function with respect to θ is: 

∑
= ∂

∂
−=

∂
∂ Np

n

n
n yeJ

1

ˆ
θθ

 (3.8) 

The components of the above vector for the conventional wavelet network are: 
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jk

j zzzz
z

φφφφ ′=
∂

Φ∂
, and ( ) 2

2
jkz

jkjk ezz
−

−=φ  (3.13) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−•

∂

Φ∂
•=

∂

∂
•

∂

Φ∂
•=

∂
∂

jk

jk

jk

j
j

jk

jk

jk

j
j

jk d
z

z
c

d
z

z
c

d
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k = 1,…, Ni and j = 1,…, Nw 

The components of the above vector for the DWN are: 
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where j = 1,…, Nw 
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For modeling a first order system, the derivative equations would be as 

follows: 
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The network parameter set θ is updated every epoch by using 

)1()( −Δ+
∂
∂

−=Δ kJk θγ
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μθ  (3.30) 

Where μ is the learning rate and γ is the momentum coefficient. 

The learning rate and momentum coefficient are set in the interval (0, 1). The 

training is performed to achieve a specified mean squared error value, given by 
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3.3 Initialization Methods 

There are two methods for initializing wavelet networks using the Gaussian 

wavelet of order 1 as mother wavelet, namely the heuristic method and the selection 

method [12]. The heuristic initialization method is a general one, used for both static 

and dynamic modeling of nonlinear systems, whereas the initialization by selection 

method is used for static modeling only. 

The heuristic method takes into account the domain [ak, bk] containing the 

values of the kth component of the input vectors [x1, …, xNi]. The translation 

parameters are initialized so that the wavelets are centered in the parallelepiped 

defined by the Ni intervals. The dilation parameters are initialized so that the wavelets 

extend initially over the whole input domain. 

The translation parameters of wavelet j are initialized to: 

)(
2
1

kkjk bam +=  (3.32) 

The dilation parameters of wavelet j are initialized to: 

)(2.0 kkjk abd −=  (3.33) 

The other network parameters, (output bias, a0, direct connection weights, ak, 

wavelet neuron output weights, cj) are initialized to small random values. Figure 3.3 

shows a flowchart for the training process of the wavelet network when using the 

heuristic initialization method. 
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Figure 3.3 Heuristic Method Flowchart 

 

The initialization by selection method involves building a library of wavelets 

that have their translation and dilation parameters initialized based on wavelet frames 

originating from the discrete wavelet transform [12].The dilation parameters are 

defined by djk = 2-m, where m is an integer. Considering three successive dilations, 

where the largest gives a wavelet extending over the whole domain of the 

corresponding input variable, since m must be an integer, the three values will be: 
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Where [ ] represents the integer part operator. 

For each dilated wavelet produced from the dilation set, a corresponding set of 

daughter wavelets with all possible translations in [ak, bk] is produced and entered in 

the library, where mjk = 2-mn. These result in the following relation for translations: 

k
m

k bna ≤≤ −2  (3.35) 
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All the values of n obeying the previous condition are of interest and are 

determined as: 

k
m

k
m bna 22 ≤≤  (3.36) 

Since n must be an integer, the values will be: 

[ ] [ ] [ ]{ }k
m

k
m

k
m baa 2,...,22,12 ++  (3.37) 

As a result, the number of translation parameters increases exponentially with 

m. 

The wavelet library is ranked by the Gram-Schmidt method in order of 

decreasing relevance and the most relevant wavelets are selected to be used in the 

wavelet network. 

The weights of the direct connections are estimated using standard least 

squares: 

( ) YXXX TT
LS

1ˆ −
=θ  (3.38) 

Where X is the matrix of input vectors, Y is the training sequence, and T is the 

transpose operator. 

Subsequently, a new training sequence is derived from subtracting the output 

of the linear model of the wavelet network from the initial training sequence. 

Therefore, the initialization by selection method comprises three main steps: 

1. Generate a library of wavelets 

2. Rank all wavelets in order of decreasing relevance 

3. Select the most relevant wavelets to be used in the network 

This method produces large libraries with a high modeling ability; however, 

the selection process becomes lengthy when dealing with multidimensional wavelets. 

Figure 3.4 shows a flowchart for the training process of conventional wavelet 

networks when using the initialization by selection method. 
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Stop training when desired minimum 
error value is reached 

Train the network using an iterative 
gradient-based method. Include only 
the wavelet neuron output weights in 

the training. 

Subtract the output of the linear 
model from the initial training 

sequence 

Estimate the weights of the direct 
connections of the network by 

standard least squares 

Rank the wavelets by the Gram-
Schmidt method and select the most 

relevant wavelets 

If more than one input vector then 
construct multidimensional wavelets 

as the product of each group of Ni 
scalar wavelets in the library 

Generate the wavelet library from the 
dilation and translation sets for each 

input vector  

Create the dilation and translation sets 
for each input vector based on the 

selection procedure  

 
Figure 3.4 Selection Method Flowchart 
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For the DWN, the network parameters shared with the conventional WN are 

initialized according to the heuristic method. Furthermore, the linear coefficients, βn, 

αm, are initialized using least squares estimation. This step is similar to the estimation 

of the direct connections for the conventional WN when using the initialization by 

selection method. In this case, the DWN output is considered as: 
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mkynkuky
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n
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==

αβ  (3.39) 

Thus, the input matrix will consist of delayed sample vectors of the system 

input, u, and the system output, y. This is done because it results in a faster 

convergence during training compared to the case when the linear coefficients are 

initialized to small random numbers. Equation 3.39 is similar in form to the linear 

model of the feedforward wavelet predictor model, which is described in Chapter 4. 

3.4 Nonlinear Function Approximation 

In static modeling the wavelet network performs a mapping between a 

multivariable input x and the output y of a nonlinear function. A block diagram of the 

model training is shown in Figure 3.5. 
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Figure 3.5 Nonlinear Function Approximation 

 
Two examples are presented. The first involves approximating a nonlinear 

function of one input variable and the second involves approximating a nonlinear 

function of two input variables. Each example was performed with wavelet networks 

initialized by the heuristic and selection methods respectively, and then with a neural 
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network as a baseline comparison. As mentioned in Chapter 2, the Gaussian wavelet 

of order 1 was used as mother wavelet: 

2

2

)(
x

xex
−

−=φ  (3.40) 

Figure 3.6 shows the one and two dimensional mother wavelets used in 

training. 
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Figure 3.6 (a) One and (b) Two Dimensional Mother Wavelets 

 
The nonlinear function of the first example is as follows, and a plot of the 

function is shown in Figure 3.7: 
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Figure 3.7 Desired Output of First Example 
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The first wavelet network was initialized based on the heuristic method. The 

number of wavelets used was 10. The weights were initialized to small random 

numbers. The learning rate and momentum term were set to 0.1 and 0.8 respectively. 

The simulation was run to achieve a mean squared error of 1x10-2. The statistics are 

shown in Table 3.1. Plots of the MSE and wavelet network output are shown in 

Figure 3.8 (a) and (b) respectively. 

 

Table 3.1 
 
Simulation Statistics for One Input Function Approximation using Heuristic Method 
 
MSE Number of Iterations Simulation Time 

1x10-2 7,043 41 seconds 
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Figure 3.8 (a) MSE and (b) WN Output (Heuristic Method) 

 

The second wavelet network was initialized based on the selection method. A 

library of 73 wavelets was generated from the set of dilations and translations. The 

output bias and direct connection weights were estimated using least squares. The 

wavelet neuron output weights were initialized to small random numbers. The 

learning rate and momentum term were set to 0.5 and 0.5 respectively. The simulation 

was run to achieve a mean squared error of 1x10-2. The statistics are shown in Table 

3.2 (simulation time includes library generation time). Plots of the MSE and wavelet 

network output are shown in Figure 3.9 (a) and (b) respectively. 
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Table 3.2 
 
Simulation Statistics for One Input Function Approximation using Selection Method 
 
MSE Number of Iterations Simulation Time 

1x10-2 545 2 seconds 
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Figure 3.9 (a) MSE and (b) WN Output (Selection Method) 

 
The simulation results showed that the selection method enabled the wavelet 

network to achieve faster convergence than the heuristic method. 

Finally, a traditional feedforward neural network based on the 

backpropagation algorithm was used. It has three layers (input layer, hidden layer, 

output layer) with 10 hidden neurons, employing the sigmoid activation function. The 

network weights were initialized to small random values. The learning rate was set to 

5x10-2 and the momentum coefficient to 0.9. The simulation was run to achieve a 

mean squared error of 1x10-2. The statistics are shown in Table 3.3. Plots of the MSE 

and neural network output are shown in Figure 3.10 (a) and (b) respectively. 

 

Table 3.3 
 
Simulation Statistics for One Input Function Approximation using Feedforward 
 
Neural Network 
 
MSE Number of Iterations Simulation Time 

1x10-2 9,651 58 seconds 
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Figure 3.10 (a) MSE and (b) NN Output 

 

The simulation results showed that the neural network exhibited slower 

convergence than both wavelet networks. 

The nonlinear function of the second example is as follows, and a plot of the 

function is shown in Figure 3.11: 
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Figure 3.11 Desired Output of Second Example 

 

The first wavelet network was initialized based on the heuristic method. The 

number of wavelets used was 20. The weights were initialized to small random 

numbers. The learning rate and momentum term were set to 0.1 and 0.8 respectively. 

The simulation was run to achieve a mean squared error of 1x10-4. The statistics are 

shown in Table 3.4. Plots of the MSE and wavelet network error are shown in Figure 

3.12 (a) and (b) respectively. 
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Table 3.4 
 
Simulation Statistics for Two Input Function Approximation using Heuristic Method 
 
MSE Number of Iterations Simulation Time 

1x10-4 96,961 1 hour 17 minutes 
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Figure 3.12 (a) MSE and (b) WN Error (Heuristic Method) 

 

The second wavelet network was initialized based on the selection method. A 

library of 3,481 wavelets was generated from the sets of dilations and translations. 

The output bias and direct connection weights were estimated using least squares. The 

wavelet neuron output weights were initialized to small random numbers. The 

learning rate and momentum term were set to 0.5 and 0.5 respectively. The simulation 

was run to achieve a mean squared error of 1x10-4. The statistics are shown in Table 

3.5 (simulation time includes library generation time). Plots of the MSE and wavelet 

network error are shown in Figure 3.13 (a) and (b) respectively. 

 

Table 3.5  
 
Simulation Statistics for Two Input Function Approximation using Selection Method 
 
MSE Number of Iterations Simulation Time 

1x10-4 729 8 minutes 17 seconds 
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Figure 3.13 (a) MSE and (b) WN Error (Selection Method) 

 
The simulation results showed that the selection method enabled the wavelet 

network to achieve faster convergence than the heuristic method. 

Finally, a traditional feedforward neural network based on the 

backpropagation algorithm was used. It has three layers (input layer, hidden layer, 

output layer) with 20 hidden neurons, employing the sigmoid activation function. The 

network weights were initialized to small random values. The learning rate was set to 

5x10-2 and the momentum coefficient to 0.9. The simulation was run to achieve a 

mean squared error of 1x10-4. The statistics are shown in Table 3.6. Plots of the MSE 

and neural network error are shown in Figure 3.14 (a) and (b) respectively. 

 

Table 3.6 
 
Simulation Statistics for One Input Function Approximation using Feedforward 
 
Neural Network 
 
MSE Number of Iterations Simulation Time 

1x10-4 1,136,105 18 hours 56 minutes 
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Figure 3.14 (a) MSE and (b) NN Error 

 

The simulation results showed that the neural network exhibited much slower 

convergence than both wavelet networks. 

In the two examples shown, the wavelet libraries generated with the selection 

method were not reduced in size by further ranking and selecting the most relevant 

wavelets. This process would have increased the total simulation time for the 

selection method and was shown to be unnecessary. 

3.5 Conclusion 

A wavelet network approximates any desired signal by generalizing a linear 

combination of a set of daughter wavelets generated by the dilation and translation of 

a mother wavelet. Conventional wavelet networks used for modeling multi-input 

processes use multidimensional wavelets which can be constructed as the product of 

scalar wavelets. The conventional wavelet network model can be used for both static 

and dynamic nonlinear system modeling. The Dynamic Wavelet Network (DWN) 

was designed for the dynamic modeling of nonlinear single input single output (SISO) 

systems. Wavelet network training is based on minimizing a quadratic cost function. 

The minimization is performed based on the gradient descent algorithm. The training 

is performed to achieve a specified mean squared error value (MSE). 

There are two methods for initializing wavelet networks using the Gaussian 

wavelet of order 1 as mother wavelet, namely the heuristic method and the selection 

method The heuristic initialization method is a general one, used for both static and 

dynamic modeling of nonlinear systems, whereas the initialization by selection 
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method is used for static modeling only. The selection method produces large libraries 

with a high modeling ability; however, the selection process becomes lengthy when 

dealing with multidimensional wavelets. Wavelet networks, initialized using the 

heuristic method, require all network parameters to be optimized during training, 

while those initialized using the selection method require only the wavelet neuron 

weights to be optimized during training. Hence, these two initialization methods 

enable the design of two different wavelet networks in terms of size as well as 

parameter optimization. 

In static modeling the wavelet network performs a mapping between a 

multivariable input and the output of a nonlinear function. In the two examples shown 

on nonlinear function approximation, training time and number of iterations were 

significantly less with the selection method than with the heuristic method. This was 

because with the selection method, the network only needed to optimize one 

parameter, whereas with the heuristic method, all the network parameters needed to 

be optimized. Furthermore, with the selection method, the minimization of error 

between the wavelet network output and the desired output was more uniform across 

the function’s domain than with the heuristic method. Therefore, the selection method 

was found to be superior to the heuristic method in the area of static modeling. When 

compared to traditional feedforward neural networks, both wavelet networks were 

shown to be superior. 
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CHAPTER 4 

DYNAMIC MODELING 

When wavelet networks are used in the framework of dynamic modeling, 

network training is performed in a recursive manner. There are two configurations 

used to train conventional wavelet networks, namely the feedforward wavelet 

predictor and the feedback wavelet predictor [14]. Based on the assumptions about 

noise, either feedforward or feedback predictors are used. If it is assumed that noise is 

acting on the states of the system, a feedforward predictor is used, whereas if noise is 

assumed to be acting on the output of the system, a feedback predictor is used. In the 

absence of noise, either configuration can be used. 

In the feedforward wavelet predictor configuration, the wavelet network input 

consists of delayed samples of the system input u(k) and the system output y(k). The 

number of inputs to the wavelet network increases with the order of the system being 

modeled. Hence, the wavelet network output is computed as 
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Where N is the order of the system being modeled. 

A block diagram of the dynamic modeling of an Nth order nonlinear system 

using a feedforward wavelet predictor is shown in Figure 4.1. 
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Figure 4.1 Feedforward Wavelet Predictor 
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Dynamic modeling with the feedforward configuration can be similar to static 

modeling, since the wavelet network input data is known prior to training. Therefore, 

input variables are treated as vectors rather than scalars, and training is performed in 

batch mode, resulting in shorter simulation times. 

In the feedback wavelet predictor configuration, the wavelet network input 

consists of delayed samples of the system input u(k) and the wavelet network output 

ŷ(k). The number of inputs to the wavelet network increases with the order of the 

system being modeled. Hence, the wavelet network output is computed as 
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 (4.2) 

A block diagram of the dynamic modeling of an Nth order nonlinear system 

using the feedback wavelet predictor is shown in Figure 4.2. 
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Figure 4.2 Feedback Wavelet Predictor 

 

Since the network input data is not known prior to training, input variables are 

treated as scalars and training must be performed in iterative mode. 

Dynamic modeling with the DWN involves adjusting the size of the recursive 

filter section to accommodate the order of the system being modeled, as opposed to 

adjusting the number of inputs to the wavelet network with conventional dynamic 

modeling methods. This method enables the user to model higher order systems 

without the need for using multidimensional wavelets and thus avoiding the added 

complexity to the network. The network output is computed as 
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A block diagram of the dynamic modeling of an Nth order nonlinear system 

using the DWN is shown in Figure 4.3. 

 

- 

 

1φ  

z-1 

 Σ  Σ 

u(k) 

u1(k) 

c1 

cj 

cNw 

jφ  

Nwφ

1β

0β
a1 

z-1

a0 

1 

1α  nβ
z-1

Nβ
z-1 mα

Nα
z-1 

z-1

Nonlinear System 

ŷ(k) 

+ 
 Σ 

y(k) 

e 

Figure 4.3 Dynamic Modeling using DWN 

 

Due to the sample delays in the filter section of the network, training must be 

performed in iterative mode. 

4.1 First Order System 

A first order system can be represented as 

n

s
K

ω
+1

 (4.5) 

K is the low frequency (or DC) gain and ωn is the corner (or natural) frequency. 

This representation is equivalent to that of a first order low pass filter, which 

implies that the system will respond in a similar manner to a given input. Inputs with 
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frequencies below ωn will be multiplied by the system’s low frequency gain K, while 

those above ωn will be attenuated by the system at a rate of 20 dB/dec. The system’s 

natural frequency is at the point where the DC gain is less by 3dB. A Bode plot shows 

the frequency response of a first order system in Figure 4.4. 
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Figure 4.4 First Order System Bode Plot 

 

The system response was examined for the following first order system: 

s5.01
5.0

+
 (4.6) 

Where K = 0.5 and ωn = 2 rad/sec. 

A step response is shown in Figure 4.5. The system output stabilized at 0.5, 

which was half the amplitude of the input. 
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Figure 4.5 First Order System Step Response 
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The second system response was to a sinusoid signal u(k)=sin(0.2πk), shown 

in Figure 4.6 (a). The system output was a sinusoid with a smaller peak and shifted to 

the right, shown in Figure 4.6 (b). 
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Figure 4.6 First Order Linear System (a) Input and (b) Output 

 

The frequency of the input was 0.1 Hertz and its maximum amplitude was 1, 

while the output had the same frequency but its maximum amplitude was about half 

the input, at 0.48, with a shift of about half a second or 17.4˚. The sampling interval 

was set to 0.01 seconds. 

4.2 First Order System with Saturation 

When input signal saturation is introduced into a first order linear system, the 

system’s response becomes nonlinear. This is similar to having a limit set on the 

system input. A block diagram of the nonlinear system is shown in Figure 4.7. 
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Figure 4.7 First Order Nonlinear System 

 

Figure 4.8 shows the representation of saturation at 0.6. 
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Figure 4.8 Saturation at 0.6 

 
To demonstrate the effect of saturation, the system was excited by a sinusoidal 

input as shown in Figure 4.6 (a). The input after saturation is shown in Figure 4.9 (a) 

and the system output is shown in Figure 4.9 (b). 
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Figure 4.9 (a) Saturated Input and (b) System Output (First Order System) 

 

It was seen that the maximum amplitude of the system output had decreased to 

0.3, which was 60% of the maximum amplitude when there was no saturation. This 

was directly related to the level of saturation applied. As a result, the system response 

was considered to be nonlinear. 

The system was modeled using both a conventional wavelet network and a 

dynamic wavelet network. In the first case, a feedforward wavelet predictor, shown in 

Figure 4.10, was used to model the system. The number of wavelet neurons used was 

4. The initial values of the wavelet neuron weights, cj, output bias, a0 and direct 

connections, ak, were initialized to small random values. The dilation and translation 
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parameters were initialized using the heuristic method. The learning rate was set to 

1x10-4 and the momentum coefficient to 0.7. The simulation was run to achieve a 

normalized mean squared error of 1x10-4. Normalized MSE provides a universal 

criterion for measuring WN modeling performance since it is not affected by the 

magnitude of the system output. The equation for normalized MSE is: 

( )2
maxy

MSEMSE Normalized =  (4.7) 

The statistics are shown in Table 4.1. Plots of the normalized MSE and 

wavelet network output are shown in Figure 4.11 (a) and (b) respectively. 
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Figure 4.10 Feedforward Wavelet Predictor for First Order Nonlinear System 

 

Table 4.1 
 
Simulation Statistics for Dynamic Modeling of First Order Nonlinear System using  
 
Conventional WN 
 
Normalized MSE Number of Iterations Simulation Time 

1x10-4 2,771 52 seconds 
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Figure 4.11 (a) Normalized MSE and (b) WN Output (Conventional WN) 

 

The simulation results showed that the network was able to model the system 

by utilizing four wavelets. 

If we consider the system model without saturation, the system becomes 

purely linear and the transfer function is 

s5.01
5.0

+
 (4.8) 

The discrete form of the system’s transfer function for a sampling interval of 

0.01 seconds and using a zero-order hold is 

0.9802 - z
0.009901)( =zH  (4.9) 

It was observed that the coefficients of the discrete transfer function were 

nearly equivalent to the direct connections of the wavelet network when estimated 

using the least squares method: 

a0 = 1.6620 x 10-6 
a1 = 0.0100 
a2 = 0.9800 

Thus, for a first order linear system, the discrete transfer function could be 

approximated using the direct connections of the wavelet network as 
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In the second case, the dynamic wavelet network, shown in Figure 4.12, was used to 

model the system. The number of wavelet neurons used was 4. The initial values of 

the wavelet neuron weights, cj, output bias, a0 and direct connections, ak, were 

initialized to small random values. The dilation and translation parameters were 
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initialized using the heuristic method. The linear coefficients, β0, β1, α1 were 

initialized using least-squares estimation. Four learning rates were used in training the 

wavelet network. The learning rate for the wavelet neuron weights, output bias, and 

direct connections, was set to 1x10-3. The learning rate for the dilation and translation 

parameters was set to 1x10-4. The learning rates for the linear coefficients, βn and αm 

were set to 1x10-7 and 1x10-6 respectively. The momentum coefficient was set to 0.5. 

The simulation was run to achieve a normalized mean squared error of 1x10-4. The 

statistics are shown in Table 4.2. Plots of the normalized MSE and wavelet network 

output are shown in Figure 4.13 (a) and (b) respectively. 
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Figure 4.12 Modeling of First Order Nonlinear System using DWN 

 

Table 4.2 
 
Simulation Statistics for Dynamic Modeling of First Order Nonlinear System using  
 
Dynamic WN 
 
Normalized MSE Number of Iterations Simulation Time 

1x10-4 454 84 seconds 
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Figure 4.13 (a) Normalized MSE and (b) WN Output (Dynamic WN) 

 
The simulation results showed that the DWN was able to model the system 

within a smaller number of iterations compared to the conventional wavelet network 

and by utilizing the same number of wavelets. However, the simulation time was 

longer, due to the difference in training modes between the two schemes. The 

feedforward wavelet predictor was trained in batch mode, while the DWN was trained 

in iterative mode. 

Furthermore, the intermediate output u1, shown in Figure 4.14 against the 

saturated input, was used to identify the level of saturation in the system. 
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Figure 4.14 Intermediate Output u1 

 

If we consider the system of Figure 4.7 without saturation being applied, the 

linear system transfer function is as shown in Equation 4.7 and its DC gain is equal to 

0.5. Based on the results obtained, the following equation was derived 
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K

Gu
Saturation

×
= max1

 (4.11) 

Where u1max is the maximum value of u1, K is the DC gain of the linear system, and 

1

10

 -1 α
ββ +

=G  (4.12) 

Substituting values into Equation 4.11, we get 

6248.0
5.0
0.32320.9666

=
×

=Saturation  

The percentage error of the calculated saturation level was 4.13% of the actual 

value 0.6. 

Finally, the system was modeled using a traditional feedforward neural 

network based on the backpropagation algorithm. A three-layer network (input layer, 

hidden layer, output layer) with 4 hidden neurons, employing the sigmoid activation 

function, was used in the feedforward predictor configuration. The network weights 

were initialized to small random values. The learning rate was set to 5x10-2 and the 

momentum coefficient to 0.5. The simulation was run to achieve a normalized mean 

squared error of 1x10-4. The statistics are shown in Table 4.3. Plots of the normalized 

MSE and neural network output are shown in Figure 4.15 (a) and (b) respectively. 

 

Table 4.3 
 
Simulation Statistics for Dynamic Modeling of First Order Nonlinear System using  
 
Feedforward Neural Network 
 
Normalized MSE Number of Iterations Simulation Time 

1x10-4 50,944 5 minutes 56 seconds 
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Figure 4.15 (a) Normalized MSE and (b) NN Output 

 

The simulation results showed that the neural network modeled the system 

with a much larger number of iterations compared to the conventional wavelet 

network. The feedforward neural network predictor was also trained in batch mode. 

4.3 Second Order System 

A second order system can be represented as 

22

2

2 nn

n

ss
K

ωζω
ω

++
 (4.13) 

K is the low frequency (or DC) gain, ωn is the corner (or natural) frequency and ζ is 

the damping ratio. 

In the frequency domain, the system is equivalent to a second order low pass 

filter. Inputs with frequencies below ωn will be multiplied by the system’s low 

frequency gain K, while those above ωn will be attenuated by the system at a rate of 

40 dB/dec. There is a peak in the frequency response at the system’s natural 

frequency ωn. This peak is dependant upon the value of the damping ratio ζ. The 

smaller the damping ratio, the higher the gain is at the natural frequency. A Bode plot 

shows the frequency response of a second order system with different damping ratios 

in Figure 4.16. 
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Figure 4.16 Bode Plot For Second Order System 

 
The system response was examined for the following second order system: 

42
2

2 ++ ss
 (4.14) 

Where K = 0.5, ωn = 2 rad/sec and ζ = 0.5. 

A step response is shown in Figure 4.17. The system output stabilized at 0.5, 

which was half the amplitude of the input. The system also displayed an under 

damped response. 
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Figure 4.17 Second Order System Step Response 

 

The second system response was to a sinusoidal signal u(k)=sin(0.4πk), 

shown in Figure 4.18 (a). The system output was a sinusoid with a smaller peak and 

shifted to the right, shown in Figure 4.18 (b). 
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Figure 4.18 Second Order Linear System (a) Input and (b) Output 

 

The frequency of the input was 0.2 Hertz and its amplitude was 1, while the 

output had the same frequency but its amplitude was about half the input, at 0.52, with 

a shift of about 0.64 seconds or 46.1˚. The sampling interval was set to 0.005 seconds. 

4.4 Second Order System with Saturation 

When input signal saturation is introduced into a second order linear system, 

the system response becomes nonlinear. Figure 4.19 shows the considered second 

order nonlinear system with input saturation at 0.6. 
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Figure 4.19 Second Order Nonlinear System 

 
To demonstrate the effect of saturation, the system was excited by the same 

sinusoidal input shown in Figure 4.18 (a). The input after saturation is shown in 

Figure 4.20 (a) and the system output is shown in Figure 4.20 (b). 
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Figure 4.20 (a) Saturated Input and (b) System Output (Second Order System) 

 

It was seen that the maximum amplitude of the system output had decreased to 

0.35, which was 70% of the maximum amplitude when there was no saturation of the 

input signal. This was directly related to the level of saturation applied and the 

damping ratio of the system. As a result, the system response was considered to be 

nonlinear. 

The system was modeled using both a conventional wavelet network and a 

dynamic wavelet network. In the first case, a feedforward wavelet predictor, shown in 

Figure 4.21, was used to model the system. The number of wavelet neurons used was 

8. The initial values of the wavelet neuron weights, cj, output bias, a0 and direct 

connections, ak, were initialized to small random values. The dilation and translation 

parameters were initialized using the heuristic method. The learning rate was set to 

1x10-4 and the momentum coefficient to 0.6. The simulation was run to achieve a 

normalized mean squared error of 1x10-4. The statistics are shown in Table 4.4. Plots 

of the normalized MSE and wavelet network output are shown in Figure 4.22 (a) and 

(b) respectively. 
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Figure 4.21 Feedforward Wavelet Predictor for Second Order Nonlinear System 

 

Table 4.4 
 
Simulation Statistics for Dynamic Modeling of Second Order Nonlinear System using 
 
Conventional WN 
 
Normalized MSE Number of Iterations Simulation Time 

1x10-4 3,508 9 minutes 7 seconds 
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Figure 4.22 (a) Normalized MSE and (b) WN Output (Conventional WN) 
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The simulation results showed that the network was able to model the system 

by utilizing eight wavelets. 

If we consider the system model of Figure 4.19 without saturation, the system 

is purely linear and the transfer function is 

42
2

2 ++ ss
 (4.15) 

The discrete form of the system transfer function for a sampling interval of 

0.005 seconds and using a zero-order hold is 

99.099.1
2.483x102.492x10)( 2

-5-5

+−
+

=
zz

zzH  (4.16) 

It was observed that the coefficients of the discrete transfer function were not 

all similar to the direct connections of the wavelet network when estimated using the 

least squares method: 

a0 = 2.5567x10-14 
a1 = 4.9791x10-5 
a2 = -4.1231x10-8 
a3 = 1.9900 
a4 = -0.9900 

Only the coefficients in the denominator were similar to a3 and a4. Thus, for a 

second order linear system, the discrete transfer function can not be approximated 

using the direct connections of the wavelet network. 

In the second case, the dynamic wavelet network, shown in Figure 4.23, was 

used to model the system. The number of wavelet neurons used was 8. The initial 

values of the wavelet neuron weights, cj, output bias, a0 and direct connections, ak, 

were initialized to small random values. The dilation and translation parameters were 

initialized using the heuristic method. The linear coefficients, β0, β1, β2, α1, α2 were 

initialized using the least-squares estimation method. Four learning rates were used in 

training the wavelet network. The learning rate for the wavelet neuron weights, output 

bias, and direct connections, was set to 1x10-3. The learning rate for the dilation and 

translation parameters was set to 1x10-4. The learning rates for the linear coefficients, 

βn and αm were set to 1x10-12 and 1x10-11 respectively. The momentum coefficient was 

set to 0.6. The simulation was run to achieve a normalized mean squared error of 

1x10-4. The statistics are shown in Table 4.5. Plots of the normalized MSE and 

wavelet network output are shown in Figure 4.24 (a) and (b) respectively. 
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Figure 4.23 Modeling of Second Order Nonlinear System using DWN 

 

Table 4.5 
 
Simulation Statistics for Dynamic Modeling of Second Order Nonlinear System using 
 
Dynamic WN 
 
Normalized MSE Number of Iterations Simulation Time 

1x10-4 3,602 16 minutes 29 seconds 
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Figure 4.24 (a) Normalized MSE and (b) WN Output (Dynamic WN) 

 

The simulation results showed that the DWN was able to model the system 

within a slightly larger number of iterations than the conventional wavelet network 

and by utilizing the same number of wavelets. However, the simulation time was 
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longer, due to the difference in training modes between the two schemes. The 

feedforward wavelet predictor was trained in batch mode, while the DWN was trained 

in iterative mode. 

Furthermore, the intermediate output u1, shown in Figure 4.25 against the 

saturated input, was used to identify the level of saturation in the system. 
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Figure 4.25 Intermediate Output u1 

 

If we consider the system of Figure 4.19 without saturation being applied, the 

linear system transfer function is as shown in Equation 4.14 and its DC gain is equal 

to 0.5. Again, we use derived Equation 4.11 with 

21

210

 - -1 αα
βββ ++

=G  (4.17) 

Substituting values into Equation 4.11, we get 

6242.0
5.0
0.42390.7362

=
×

=Saturation  

The percentage error of the calculated saturation level was 4.03% of the actual 

value 0.6. 

Finally, the system was modeled using a traditional feedforward neural 

network based on the backpropagation algorithm. A three-layer network (input layer, 

hidden layer, output layer) with 8 hidden neurons, employing the sigmoid activation 

function, was used in the feedforward predictor configuration. The network weights 

were initialized to small random values. The learning rate was set to 5x10-2 and the 

momentum coefficient to 0.5. The simulation was run to achieve a normalized mean 
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squared error of 1x10-4. The statistics are shown in Table 4.6. Plots of the normalized 

MSE and neural network output are shown in Figure 4.26 (a) and (b) respectively. 

 

Table 4.6 
 
Simulation Statistics for Dynamic Modeling of First Order Nonlinear System using  
 
Feedforward Neural Network 
 
Normalized MSE Number of Iterations Simulation Time 

1x10-4 158,460 46 minutes 7 seconds 
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Figure 4.26 (a) Normalized MSE and (b) NN Output 

 

The simulation results showed that the neural network modeled the system 

with a much larger number of iterations compared to the conventional wavelet 

network. The feedforward neural network predictor was also trained in batch mode. 

4.5 Effect of Noise on DWN 

In order to study the effect of noise on the dynamic wavelet network, it was 

trained in the two cases of noise contamination. The first case was input noise training, 

where the input of the wavelet network model was contaminated by a noise source, as 

shown in Figure 4.27 (a). The second case was output noise training, where the output 

of the modeled plant was contaminated by a noise source, as shown in Figure 4.27 (b). 
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Figure 4.27 (a) Input Noise Training and (b) Output Noise Training 

 
In both cases, three increasing noise levels were successively added. The noise 

signal was a random noise with a uniform distribution and its mean squared value was 

calculated as: 

∑
=

=
N

k
rms kV

N
V

1

22 )(1
 (4.18) 

Where N is the number of data samples. 

The resulting signal to noise ratio (SNR) in dB of the contaminated 

input/output signal was then calculated as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

10log10
rms

rms

V
SSNR  (4.19) 

Where S2
rms is the mean squared value of the clean input/output signal. 
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4.5.1 First Order System with Saturation 

The DWN was trained on the same system of Figure 4.7. The system was 

excited by a chirp signal with a frequency range of 0.01 Hertz to 1 Hertz and 

amplitude of 1, shown in Figure 4.28 (a). The system output is shown in Figure 4.28 

(b). The sampling interval was set to 0.01 seconds. 
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Figure 4.28 (a) System Input and (b) System Output (First Order Response) 

 

The system was modeled using a dynamic wavelet network with 4 wavelets. 

The initial values of the wavelet neuron weights, cj, output bias, a0 and direct 

connections, ak, were initialized to small random values. The dilation and translation 

parameters were initialized using the heuristic method. The linear coefficients, β0, β1, 

α1 were initialized using the least-squares estimation method as explained in Chapter 

4. Four learning rates were used in training the wavelet network. The learning rate for 

the wavelet neuron weights, output bias, and direct connections, was set to 1x10-3. 

The learning rate for the dilation and translation parameters was set to 1x10-3. The 

learning rates for the linear coefficients, βn and αm were set to 1x10-7 and 1x10-6 

respectively. The momentum coefficient was set to 0.6. The simulation was run to 

achieve a normalized mean squared error of 1x10-4. The statistics are shown in Table 

4.7. Plots of the normalized MSE and wavelet network output are shown in Figure 

4.29 (a) and (b) respectively. Plots of the wavelet neuron weights, direct connections, 

dilations, translations and linear coefficients are shown in Figure 4.30 (a), (b), (c), (d) 

and (e) respectively. 
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Table 4.7 
 
Simulation Statistics for Dynamic Modeling of First Order Nonlinear System without 
 
Noise 
 
Normalized MSE Number of Iterations Simulation Time 

1x10-4 450 69 seconds 
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Figure 4.29 (a) Normalized MSE and (b) DWN Output (Noise-free) 
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Figure 4.30 (a) Wavelet Neuron Weights, (b) Direct Connections, (c) Dilations, 
 

(d) Translations and (e) Linear Coefficients 

 

The simulation results showed the network was able to model the system by 

utilizing four wavelets. 

For input noise training, the simulation was run for the same number of 

iterations as in the noise-free case. The statistics are shown in Table 4.8. 

 

Table 4.8  
 
Simulation Statistics for Dynamic Modeling of First Order Nonlinear System with 
 
Input Noise 
 
SNR (dB) Number of Iterations NMSE 

61.66 450 9.98 x10-5 

41.66 450 9.97 x10-5 

21.66 450 1.30 x10-4 

 

Figure 4.31 (a)-(c) shows the network input with successively increasing noise. 
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Figure 4.31 (a)-(c) DWN Input with Successively Increasing Noise 

 

Figure 4.32 (a)-(c) shows the corresponding wavelet network output after 

training. 

 

0 1 2 3 4 5 6 7 8 9 10

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (sec)

A
m

pl
itu

de

Desired Output
Network Output

0 1 2 3 4 5 6 7 8 9 10

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (sec)

A
m

pl
itu

de

Desired Output
Network Output

 
 (a) (b) 



59 

0 1 2 3 4 5 6 7 8 9 10

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (sec)
A

m
pl

itu
de

Desired Output
Network Output

 
(c) 

Figure 4.32 (a)-(c) DWN Output with Successively Increasing Input Noise 

 

The simulation results showed the DWN performed as good as the noise-free 

case at the lowest and intermediate noise levels. At the highest noise level the 

performance was slightly poorer. Thus, input noise had a slight effect on training the 

DWN on a first order nonlinear system when the noise had a magnitude of 3.15 x10-3. 

For output noise training, the simulation was run for the same number of 

iterations as in the noise-free case. The statistics are shown in Table 4.9. The values of 

NMSE are for the normalized error between the clean plant output and the wavelet 

network output. 

 

Table 4.9  
 
Simulation Statistics for Dynamic Modeling of First Order Nonlinear System with  
 
Output Noise 
 
SNR (dB) Number of Iterations NMSE 

59.19 450 9.92 x10-5 

39.19 450 9.65 x10-5 

19.19 450 5.85 x10-5 

 

Figure 4.33 (a)-(c) shows the plant output with successively increasing noise. 
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(c) 

Figure 4.33 (a)-(c) Plant Output with Successively Increasing Noise 

 

Figure 4.34 (a)-(c) shows the corresponding wavelet network output after 

training. 
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(c) 

Figure 4.34 (a)-(c) DWN Output with Successively Increasing Output Noise 

 

The simulation results showed the DWN performed as good as the noise-free 

case at the lowest and intermediate noise levels. At the highest noise level the 

performance was slightly better. Thus, output noise had no effect on training the 

DWN on a first order nonlinear system. 

4.5.2 Second Order System with Saturation 

The DWN was trained on the same system of Figure 4.19. The system was 

excited by a chirp signal with a frequency range of 0.01 Hertz to 1 Hertz and 

amplitude of 1, shown in Figure 4.35 (a). The system output is shown in Figure 4.35 

(b). The sampling interval was set to 0.01 seconds. 
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Figure 4.35 (a) System Input and (b) System Output (Second Order Response) 

 

The system was modeled using a dynamic wavelet network with 4 wavelets. 

The initial values of the wavelet neuron weights, cj, output bias, a0 and direct 
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connections, ak, were initialized to small random values. The dilation and translation 

parameters were initialized using the heuristic method. The linear coefficients, β0, β1, 

β2, α1, α2 were initialized using the least-squares estimation method as explained in 

Chapter 4. Four learning rates were used in training the wavelet network. The learning 

rate for the wavelet neuron weights, output bias, and direct connections, was set to 

1x10-3. The learning rate for the dilation and translation parameters was set to 1x10-4. 

The learning rates for the linear coefficients, βn and αm were set to 1x10-12 and 1x10-11 

respectively. The momentum coefficient was set to 0.6. The simulation was run to 

achieve a normalized mean squared error of 1x10-4. The statistics are shown in Table 

4.10. Plots of the normalized MSE and wavelet network output are shown in Figure 

4.36 (a) and (b) respectively. Plots of the wavelet neuron weights, direct connections, 

dilations, translations and linear coefficients are shown in Figure 4.37 (a), (b), (c), (d) 

and (e) respectively. 

 

Table 4.10 
 
Simulation Statistics for Dynamic Modeling of Second Order Nonlinear System  
 
without Noise 
 
NMSE Number of Iterations Simulation Time 

1x10-4 861 140 seconds 
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Figure 4.36 (a) Normalized MSE and (b) DWN Output (Noise-free) 
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Figure 4.37 (a) Wavelet Neuron Weights, (b) Direct Connections, (c) Dilations, 
 

(d) Translations and (e) Linear Coefficients 

 

The simulation results showed the network was able to model the system by 

utilizing four wavelets. 

For input noise training, the simulation was run for the same number of 

iterations as in the noise-free case. The statistics are shown in Table 4.11. 
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Table 4.11 
 
Simulation Statistics for Dynamic Modeling of Second Order Nonlinear System with 
 
Input Noise 
 
SNR (dB) Number of Iterations NMSE 

61.66 861 9.95 x10-5 

41.66 861 9.11 x10-5 

21.66 861 8.54 x10-5 

 

Figure 4.38 (a)-(c) shows the network input with successively increasing noise. 
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(c) 

Figure 4.38 (a)-(c) DWN Input with Successively Increasing Noise 

 

Figure 4.39 (a)-(c) shows the corresponding wavelet network output after 

training. 

 



65 

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (sec)

A
m

pl
itu

de

Desired Output
Network Output

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (sec)

A
m

pl
itu

de

Desired Output
Network Output

 
 (a) (b) 

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (sec)

A
m

pl
itu

de

Desired Output
Network Output

 
(c) 

Figure 4.39 (a)-(c) DWN Output with Successively Increasing Input Noise 

 

The simulation results showed the DWN performed as good as the noise-free 

case at all the noise levels. Thus, input noise had no effect on the training of a DWN 

on a second order nonlinear system. 

For output noise training, the simulation was run for the same number of 

iterations as in the noise-free case. The statistics are shown in Table 4.12. The values 

of NMSE are for the normalized error between the clean plant output and the wavelet 

network output. 
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Table 4.12  
 
Simulation Statistics for Dynamic Modeling of Second Order Nonlinear System with  
 
Output Noise 
 
SNR (dB) Number of Iterations NMSE 

58.74 861 1.39 x10-2 

38.74 861 8.07 x10-2 

18.74 861 4.48 x10-2 

 

Figure 4.40 (a)-(c) shows the plant output with successively increasing noise. 
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Figure 4.40 (a)-(c) Plant Output with Successively Increasing Noise 

 

Figure 4.41 (a)-(c) shows the corresponding wavelet network output after 

training. 
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Figure 4.41 (a)-(c) DWN Output with Successively Increasing Output Noise 

 

The simulation results showed the DWN performed worse than the noise-free 

case at all the noise levels. Thus, output noise had a major effect on the training of a 

DWN on a second order nonlinear system. 

4.6 Conclusion 

When wavelet networks are used in the framework of dynamic modeling, 

network training is performed in a recursive manner. There are two configurations 

used to train conventional wavelet networks, namely the feedforward wavelet 

predictor and the feedback wavelet predictor. In the feedforward wavelet predictor 

configuration, the wavelet network input consists of delayed samples of the system 

input and the system output. In the feedback wavelet predictor configuration, the 

wavelet network input consists of delayed samples of the system input and the 

wavelet network output. The number of inputs to the wavelet network increases with 
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the order of the system being modeled. Dynamic modeling with the DWN involves 

adjusting the size of the recursive filter section to accommodate the order of the 

system being modeled, as opposed to adjusting the number of inputs to the wavelet 

network with conventional dynamic modeling methods. This method enables the user 

to model higher order systems without the need for using multidimensional wavelets 

and thus avoiding the added complexity to the network. 

The DWN was shown to be as effective as the conventional wavelet network 

in the dynamic modeling of first and second order nonlinear systems. The advantage 

of the DWN was shown in the case of input saturation, where the intermediate output 

u1 was used to identify the level of saturation. The disadvantage of the DWN was in 

the longer simulation times compared to the feedforward wavelet predictor. When 

compared to traditional feedforward neural networks, both wavelet network models 

were shown to be superior. 

Dynamic modeling of first and second order nonlinear systems with the DWN 

was shown to be unaffected by input noise resulting in SNR values of 61.66 dB and 

41.66 dB. However, with input noise resulting in a SNR of 21.66 dB, only dynamic 

modeling of a second order nonlinear system was unaffected, while it slightly affected 

dynamic modeling of a first order nonlinear system. Nevertheless, the result can be 

improved by increasing the training time of the DWN. In the case of output noise, 

dynamic modeling of a first order nonlinear system was shown to be unaffected by 

output noise resulting in SNR values of 59.19 dB, 39.19 dB and 19.19 dB, while 

dynamic modeling of a second order nonlinear system was greatly affected by output 

noise resulting in SNR values of 58.74 dB, 38.74 dB and 18.74 dB. Thus, the DWN 

was found to be highly sensitive to output noise in the dynamic modeling of second 

order nonlinear systems. In order to avoid this outcome, the output data must be 

filtered prior to modeling the system. 
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CHAPTER 5 

ADAPTIVE PID-DWN CONTROLLER 

The Proportional-Integral-Derivative (PID) controller is one of the simplest of 

the traditional feedback control schemes. Nevertheless, the linear PID algorithm 

might have difficulties dealing with processes with complex dynamics such as those 

with large dead time, inverse response and highly nonlinear characteristics. To 

improve the control performance, an adaptive PID algorithm is proposed by utilizing 

the simple PID controller structure based on self-tuning schemes of the proportional, 

integral and derivative parameters. The basic idea of PID control is that the control 

action u(k) should be proportional to the error, the integral of the error over time, and 

the temporal derivative of the error. However, limited performance can be a 

disadvantage of the linear PID controller i.e., the PD action is used to accelerate the 

speed of the response and the PI mode is used to eliminate the steady-state offset, 

which sometimes can cause excessive overshoot due to direct implementation of the 

integral action, etc. The proposed adaptive variable PID controller can help to 

improve the limited performance of the static PID controller dealing with conflict in 

nature between static accuracy (steady-state error) and dynamic responsiveness (speed 

of response). 

5.1 Structure and Algorithm 

Figure 5.1 depicts the block diagram of the network topology based on the 

PID controller paradigm. 
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Figure 5.1 Adaptive PID-DWN Controller 
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Where r(k) is the desired set point and ŷ(k) is the wavelet network output. The digital 

PID controller can be expressed in discrete time as follows [15, 16, 17]: 
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Where P, I and D are proportional, integral and derivative terms, u(k) is the plant 

input at kT, where T is the sampling interval, and 

)()()( kykrk −=ε  (5.3) 

The P, I and D parameters are considered part of the cost function J, and are 

optimized and updated according to the gradient descent algorithm. The PID 

controller parameters are represented by the set θ, i.e. θ = {P, I, D}. The partial 

derivative of the cost function with respect to θ is: 
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From Equation 4.3, the derivative equations of the above vector with respect 

to the DWN output, ŷ(k), are: 
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From Equation 4.4, the derivative equations of the above vector with respect to the 

DWN intermediate output, u1(k), are: 
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The derivative equations of the above vector with respect to the plant input, u(k), are: 
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The controller parameters are updated every sampling interval by 

P
JkP P ∂

∂
−=Δ μ)(  (5.14) 

I
JkI I ∂

∂
−=Δ μ)(  (5.15) 

D
JkD D ∂

∂
−=Δ μ)(  (5.16) 

Where μP, μI, μD are the proportional, integral and derivative parameter learning rates, 

respectively. 
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5.2 Simulation Analysis 

The proposed adaptive PID-DWN controller was implemented in 

Matlab/Simulink environment and utilized in the control of two nonlinear dynamic 

systems. The first was a first order system with saturation and the second was a 

second order system with saturation. The DWN models in both cases were trained on 

the nonlinear systems off-line. Step and sine inputs were used to test the effectiveness 

of the proposed control system. The effects of input noise and output noise were also 

investigated. 

5.2.1 Simulink Model 

The Simulink model of the control system is shown in Figure 5.2. The 

contents of the DWN + PID Tuning block and the PID Controller block are shown in 

Figure 5.3 and 5.4, respectively. 
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Figure 5.2 Adaptive PID-DWN Control System (Simulink Model) 

 



73 

4
D

3
I

2
P

1
yhat

beta&alpha

ak&cj

zj

dj

Epsilon

Errorhat

P

I

D

PID Tuning

Memory9

Memory8

Memory7

Memory6

Memory5

Memory4

Memory3

Memory2

Memory11

Memory10

Memory1

u1

y hat

Error

zj&phij

u

beta&alpha

ak&cj

mj&dj

dj

DWN Tuning

beta0

beta1

alpha1

m1

m2

m3

m4

d1

d2

d3

d4

a0

a1

c1

c2

c3

c4

u

u1

y hat

z1

z2

z3

z4

phi1

phi2

phi3

phi4

DWN

4
Errorhat

3
Epsilon

2
u

1
Error

 
Figure 5.3 DWN + PID Tuning Block 
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Figure 5.4 PID Controller Block 
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5.2.2 First Order System with Saturation 

The same system studied in subsection 4.2, shown in Figure 5.5, was to be 

controlled by the proposed PID-DWN controller. 
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Figure 5.5 First Order System with Saturation 

 
The DWN was first trained on the nonlinear system off-line. In order for the 

DWN to be properly trained and learn the system dynamics, a chirp signal, as in 

subsection 4.5.1, was used for the identification. The system was modeled, using the 

wavelet network, initialization method and learning rates, as in subsection 4.5.1. 

The PID-DWN controller was tested in tracking two reference signals: a 

sinusoid and a step. 

The sinusoid signal had a frequency of 0.1Hz and maximum amplitude of 0.1. 

The initial values of the PID terms were KP = 0, KI = 0, KD = 0.The learning rates for 

the wavelet network weights, dilations, translations and linear coefficients were set to 

3x10-6. The momentum coefficient was set to 0. The proportional, integral and 

derivative learning rates were set to 1x10-3, 1x10-4 and 1x10-8, respectively. The 

sampling interval was set to 0.01 seconds. The simulation was run for 400 cycles. 

Figure 5.6 (a)-(c) shows the tracking performance of the controller in 5 cycle long 

plots. Figure 5.6 (d) shows the final cycle in the simulation. 
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Figure 5.6 (a)-(c) Tracking Plots and (d) Final Cycle (Sine Ref.) 

 
The final values of the PID terms were KP = 0.0057, KI = 2.149, KD = 

6.64x10-11. Figure 5.7 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.7 (a) Proportional, (b) Integral and (c) Derivative Terms 

 

Figure 5.8 shows the plot of the derivative term for the first ten cycles. 
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Figure 5.8 Derivative Term during First Ten Cycles 

 

The controller was able to track the reference signal and the PID terms 

stabilized by the end of the simulation. The plant output started from zero and began 

to follow the reference signal. By the 10th cycle they were very close and by the 20th 

cycle the two signals were almost identical. 

The step signal had a frequency of 0.1Hz and maximum amplitude of 0.1. The 

initial values of the PID terms were KP = 0, KI = 0, KD = 0. The learning rates for the 

wavelet network weights, dilations, translations and linear coefficients were all set to 

3x10-6. The momentum coefficient was set to 0. The proportional, integral and 

derivative learning rates were set to 1x10-1, 1x10-5 and 1x10-8, respectively. The 

sampling interval was set to 0.01 seconds. The simulation was run for 400 cycles. 

Figure 5.9 (a)-(c) shows the tracking performance of the controller in five cycle long 

plots. Figure 5.9 (d) shows the final cycle in the simulation. 
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Figure 5.9 (a)-(c) Tracking Plots and (d) Final Cycle (Step Ref.) 

 

The final values of the PID terms were KP = 4.848, KI = 0.163, KD = 3.42x10-9. 

Figure 5.10 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.10 (a) Proportional, (b) Integral and (c) Derivative Terms 

 
Figure 5.11 (a) shows the DWN output during the first five cycles and 5.11 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.11 (a)-(b) DWN Output during Simulation 

 
Figure 5.12 (a) shows the controller output during the first five cycles and 5.12 

(b) shows the controller output during the last five cycles. 
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Figure 5.12 (a)-(b) Controller Output during Simulation 

 

The controller was able to track the reference signal and the proportional and 

integral terms stabilized by the end of the simulation. While the derivative term had 

not stabilized, its value was around zero during the simulation. The plant output 

started from zero and began to follow the reference signal. By the 100th cycle the 

plant output was close to the reference signal and by the 150th cycle the plant output 

was close in shape to the final cycle, the difference being in the overshoot. The larger 

value of the control signal’s maximum amplitude relative to the reference signal’s 

maximum amplitude was due to the proportional and derivative parts of the discrete 

PID control equation. 
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5.2.2.1 Effect of Noise 

The PID-DWN controller was tested in tracking the step signal, as in 

subsection 5.2.2, with the addition of noise. As in subsection 4.5.1, two cases of noise 

contamination were considered: input noise and output noise. The first involved the 

addition of noise to the input of the DWN, while the second involved the addition of 

noise to the output of the plant. The noise signal was a random noise with a uniform 

distribution and its mean squared value was calculated as in Equation 4.18. In both 

cases, two increasing noise levels were successively added. 

The DWN was trained on the nonlinear system off-line under similar noisy 

conditions as in subsection 4.5.1. The initial PID values, as well as the learning rates 

of the DWN parameters and PID terms were set as in subsection 5.2.2. The sampling 

interval was set to 0.01 seconds. The simulation was run for 400 cycles. 

For the case of input noise, the first noise signal had a mean squared value of 

4.09 x10-8, shown in Figure 5.13. This resulted in the input signal having a SNR of 

61.63. 
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Figure 5.13 Input Noise (MS = 4.09 x10-8) 

 
Figure 5.14 (a)-(c) shows the tracking performance of the controller in five 

cycle long plots. Figure 5.14 (d) shows the final cycle in the simulation. 
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Figure 5.14 (a)-(c) Tracking Plots and (d) Final Cycle (Input SNR = 61.63) 

 
The final values of the PID terms were KP = 4.848, KI = 0.163, KD = 3.43x10-9. 

Figure 5.15 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.15 (a) Proportional, (b) Integral and (c) Derivative Terms 
 

(Input SNR = 61.63) 

 

Figure 5.16 (a) shows the DWN output during the first five cycles and 5.15 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.16 (a)-(b) DWN Output during Simulation (Input SNR = 61.63) 

 
Figure 5.17 (a) shows the controller output during the first five cycles and 5.17 

(b) shows the controller output during the last five cycles. 
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Figure 5.17 (a)-(b) Controller Output during Simulation (Input SNR = 61.63) 

 

The controller displayed similar behavior to the noise-free case with no 

differences in the final values of the PID terms. Thus, an input signal having a SNR of 

61.63 had no effect on the performance of the PID-DWN controller. 

The second noise signal had a mean squared value of 4.09 x10-6, shown in 

Figure 5.18. This resulted in the input signal having a SNR of 41.63. 
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Figure 5.18 Input Noise (MS = 4.09 x10-6) 

 

Figure 5.19 (a)-(c) shows the tracking performance of the controller in five 

cycle long plots. Figure 5.19 (d) shows the final cycle in the simulation. 
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Figure 5.19 (a)-(c) Tracking Plots and (d) Final Cycle (Input SNR = 41.63) 

 
The final values of the PID terms were KP = 4.842, KI = 0.165, KD = 3.56x10-9. 

Figure 5.20 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.20 (a) Proportional, (b) Integral and (c) Derivative Terms 
 

(Input SNR = 41.63) 

 

Figure 5.21 (a) shows the DWN output during the first five cycles and 5.21 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.21 (a)-(b) DWN Output during Simulation (Input SNR = 41.63) 

 

Figure 5.22 (a) shows the controller output during the first five cycles and 5.22 

(b) shows the controller output during the last five cycles. 
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Figure 5.22 (a)-(b) Controller Output during Simulation (Input SNR = 41.63) 

 
The controller displayed similar behavior to the noise-free case with minor 

differences in the final values of the PID terms. Thus, an input signal having a SNR of 

41.63 had no effect on the performance of the PID-DWN controller. 

For the case of output noise, the first noise signal had a mean squared value of 

1.08 x10-8, shown in Figure 5.23. This resulted in the output signal having a SNR of 

59.35. 
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Figure 5.23 Output Noise (MS = 1.08 x10-8) 

 

Figure 5.24 (a)-(c) shows the tracking performance of the controller in five 

cycle long plots. Figure 5.24 (d) shows the final cycle in the simulation. 
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Figure 5.24 (a)-(c) Tracking Plots and (d) Final Cycle (Output SNR = 59.35) 

 

The final values of the PID terms were KP = 4.842, KI = 0.164, KD = 3.62x10-9. 

Figure 5.25 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.25 (a) Proportional, (b) Integral and (c) Derivative Terms  
 

(Output SNR = 59.35) 

 

Figure 5.26 (a) shows the DWN output during the first five cycles and 5.26 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.26 (a)-(b) DWN Output during Simulation (Output SNR = 59.35) 

 

Figure 5.27 (a) shows the controller output during the first five cycles and 5.27 

(b) shows the controller output during the last five cycles. 
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Figure 5.27 (a)-(b) Controller Output during Simulation (Output SNR = 59.35) 

 

The controller displayed similar behavior to the noise-free case with minor 

differences in the final values of the PID terms. Thus, an output signal having a SNR 

of 59.35 had no effect on the performance of the PID-DWN controller. 

The second noise signal had a mean squared value of 1.08 x10-6, shown in 

Figure 5.28. This resulted in the output signal having a SNR of 39.35. 
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Figure 5.28 Output Noise (MS = 1.08 x10-6) 

 

Figure 5.29 (a)-(c) shows the tracking performance of the controller in five 

cycle long plots. Figure 5.29 (d) shows the final cycle in the simulation. 
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Figure 5.29 (a)-(c) Tracking Plots and (d) Final Cycle (Output SNR = 39.35) 

 

The final values of the PID terms were KP = 4.823, KI = 0.168, KD = 4.46x10-9. 

Figure 5.30 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.30 (a) Proportional, (b) Integral and (c) Derivative Terms  
 

(Output SNR = 39.35) 

 

Figure 5.31 (a) shows the DWN output during the first five cycles and 5.31 (b) 

shows the DWN output during the last five cycles. 

 

0 5 10 15 20 25 30 35 40 45 50
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (sec)

A
m

pl
itu

de

Plant Output
DWN Output

3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (sec)

A
m

pl
itu

de

Plant Output
DWN Output

 
 (a) (b) 

Figure 5.31 (a)-(b) DWN Output during Simulation (Output SNR = 39.35) 

 

Figure 5.32 (a) shows the controller output during the first five cycles and 5.32 

(b) shows the controller output during the last five cycles. 
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Figure 5.32 (a)-(b) Controller Output during Simulation (Output SNR = 39.35) 

 

The controller displayed similar behavior to the noise-free case with minor 

differences in the final values of the PID terms. Thus, an output signal having a SNR 

of 39.35 had no effect on the performance of the PID-DWN controller. 

5.2.3 Second Order System with Saturation 

The same system studied in subsection 4.3, shown in Figure 5.33, was to be 

controlled by the proposed PID-DWN controller. 
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Figure 5.33 Second Order System with Saturation 

 
The DWN was first trained on the nonlinear system off-line. In order for the 

DWN to be properly trained and learn the system dynamics, a chirp signal, as in 

subsection 4.5.2, was used for the identification. The system was also modeled, using 

the wavelet network, initialization method and learning rates, as in subsection 4.5.2. 

The PID-DWN controller was tested in tracking two reference signals: a 

sinusoid and a step. 

The sinusoid signal had a frequency of 0.1Hz and maximum amplitude of 0.1. 

The initial values of the PID terms were KP = 1, KI = 0, KD = 0. The learning rates for 

the wavelet network weights, dilations, and translations were set to 5x10-5. The 
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learning rates for the linear coefficients were set to 5x10-10. The momentum 

coefficient was set to 0. The proportional, integral and derivative learning rates were 

set to 2.8, 2.8x10-6 and 1x10-8, respectively. The sampling interval was set to 0.01 

seconds. The simulation was run for 2000 cycles. Figure 5.34 (a) shows the initial 

cycle in the simulation. Figure 5.34 (b)-(e) shows the tracking performance of the 

controller in five cycle long plots. Figure 5.34 (f) shows the final cycle in the 

simulation. 
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Figure 5.34 (a) Initial Cycle, (b)-(e) Tracking Plots and (f) Final Cycle (Sine Ref.) 
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The final values of the PID terms were KP = 29.478, KI = 0.546, KD =3.5x10-11. 

Figure 5.35 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.35 (a) Proportional, (b) Integral and (c) Derivative Terms 

 

The controller was able to track the reference signal and by the end of the 

simulation the Integral term stabilized while the proportional and derivative terms 

were beginning to stabilize. By the 30th cycle the plant output was very close to the 

reference signal and by the end of the simulation the two signals were almost identical. 

The step signal had a frequency of 0.1Hz and maximum amplitude of 0.1. The 

initial values of the PID terms were KP = 1, KI = 0, KD = 0. The learning rates for the 

wavelet network weights, dilations, and translations were set to 3x10-5. The learning 

rates for the linear coefficients were set to 3x10-10. The momentum coefficient was set 

to 0. The proportional, integral and derivative learning rates were set to 2x10-1, 4x10-7 

and 1.2x102, respectively. The sampling interval was set to 0.01 seconds. The 

simulation was run for 300 cycles. Figure 5.36 (a) shows the initial cycle in the 
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simulation. Figure 5.36 (b)-(e) shows the tracking performance of the controller in 

five cycle long plots. Figure 5.36 (f) shows the final cycle in the simulation. 
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Figure 5.36 (a) Initial Cycle, (b)-(e) Tracking Plots and (f) Final Cycle (Step Ref.) 

 
The final values of the PID terms were KP = 8.854, KI = 0.0543, KD = 95.502. 

Figure 5.37 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.37 (a) Proportional, (b) Integral and (c) Derivative Terms 

 

Figure 5.38 (a) shows the DWN output during the first five cycles and 5.38 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.38 (a)-(b) DWN Output during Simulation 
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Figure 5.39 (a) shows the controller output during the first five cycles and 5.39 

(b) shows the controller output during the last five cycles. 
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Figure 5.39 (a)-(b) Controller Output during Simulation 

 

The controller was able to track the reference signal and the proportional and 

integral terms stabilized by the end of the simulation. Although the derivative term 

did not begin to stabilize, the simulation was ended based on the satisfactory tracking 

performance. By the 150th cycle, the plant output was close to the reference signal, but 

was having a big overshoot followed by oscillations. By the end of the simulation, the 

overshoot had decreased and the oscillations had been significantly minimized. The 

larger value of the control signal’s maximum amplitude relative to the reference 

signal’s maximum amplitude was due to the proportional and derivative parts of the 

discrete PID control equation. 

5.2.3.1 Effect of Noise 

The PID-DWN controller was tested in tracking the same square wave input as 

in subsection 5.2.2 with the addition of noise. As in subsection 4.5.2, the two cases of 

noise contamination were considered: input noise and output noise. The first involved 

the addition of noise to the input of the DWN, while the second involved the addition 

of noise to the output of the plant. The noise signal was a random noise with a 

uniform distribution and its mean squared value was calculated as in Equation 4.18. In 

both cases, two increasing noise levels were successively added. 

The DWN was trained on the nonlinear system off-line under similar noisy 

conditions as in subsection 4.5.2. The initial PID values, as well as the learning rates 
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of the DWN parameters and PID terms were set as in subsection 5.2.3. The sampling 

interval was set to 0.01 seconds. The simulation was run for 300 cycles. 

For the case of input noise, the first noise signal had a mean squared value of 

3x10-7, shown in Figure 5.40. This resulted in the input signal having a SNR of 61.44. 

 

0 1 2 3 4 5 6 7 8 9 10
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Time (sec)

A
m

pl
itu

de

Uniform Noise (MS = 3x10-7)

 
Figure 5.40 Input Noise (MS = 3 x10-7) 

 

Figure 5.41 (a) shows the initial cycle in the simulation. Figure 5.41 (b)-(e) 

shows the tracking performance of the controller in five cycle long plots. Figure 5.41 

(f) shows the final cycle in the simulation. 
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Figure 5.41 (a) Initial Cycle, (b)-(e) Tracking Plots and (f) Final Cycle  
 

(Input SNR = 61.44) 

 

The final values of the PID terms were KP = 8.848, KI = 0.0537, KD = 95.771. 

Figure 5.42 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.42 (a) Proportional, (b) Integral and (c) Derivative Terms  
 

(Input SNR = 61.44) 

 

Figure 5.43 (a) shows the DWN output during the first five cycles and 5.43 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.43 (a)-(b) DWN Output during Simulation (Input Noise = 61.44) 

 

Figure 5.44 (a) shows the controller output during the first five cycles and 5.44 

(b) shows the controller output during the last five cycles. 
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Figure 5.44 (a)-(b) Controller Output during Simulation (Input Noise = 61.44) 

 

The controller displayed similar behavior to the noise-free case with minor 

differences in the final values of the PID terms. Thus, an input signal having a SNR of 

61.44 had no effect on the performance of the PID-DWN controller. 

The second noise signal had a mean squared value of 3 x10-5, shown in Figure 

5.45. This resulted in the input signal having a SNR of 41.44. 
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Figure 5.45 Input Noise (MS = 3 x10-5) 

 

Figure 5.46 (a) shows the initial cycle in the simulation. Figure 5.46 (b)-(e) 

shows the tracking performance of the controller in five cycle long plots. Figure 5.46 

(f) shows the final cycle in the simulation. 
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Figure 5.46 (a) Initial Cycle, (b)-(e) Tracking Plots and (f) Final Cycle  
 

(Input SNR = 41.44) 

 
The final values of the PID terms were KP = 8.787, KI = 0.0475, KD = 98.205. 

Figure 5.47 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.47 (a) Proportional, (b) Integral and (c) Derivative Terms  
 

(Input SNR = 41.44) 

 

Figure 5.48 (a) shows the DWN output during the first five cycles and 5.48 (b) 

shows the DWN output during the last five cycles. 

 

0 5 10 15 20 25 30 35 40 45 50
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (sec)

A
m

pl
itu

de

Plant Output
DWN Output

2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (sec)

A
m

pl
itu

de

Plant Output
DWN Output

 
 (a) (b) 

Figure 5.48 (a)-(b) DWN Output during Simulation (Input SNR = 41.44) 
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Figure 5.49 (a) shows the controller output during the first five cycles and 5.49 

(b) shows the controller output during the last five cycles. 
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Figure 5.49 (a)-(b) Controller Output during Simulation (Input SNR = 41.44) 

 

The controller displayed similar behavior to the noise-free case. However, the 

final value of the integral term was smaller. As a result, there was a small steady state 

error by the end of the simulation. Thus, an input signal having a SNR of 41.44 had a 

minor effect on the performance of the PID-DWN controller. 

For the case of output noise, the first noise signal had a mean squared value of 

1.2 x10-8, shown in Figure 5.50. This resulted in the output signal having a SNR of 

58.65. 

 

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10-3

Time (sec)

A
m

pl
itu

de

Uniform Noise (MS = 1.2x10-8)

 
Figure 5.50 Output Noise (MS = 1.2 x10-8) 
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Figure 5.51 (a) shows the initial cycle in the simulation. Figure 5.51 (b)-(e) 

shows the tracking performance of the controller in five cycle long plots. Figure 5.51 

(f) shows the final cycle in the simulation. 
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Figure 5.51 (a) Initial Cycle, (b)-(e) Tracking Plots and (f) Final Cycle  
 

(Output SNR = 58.65) 
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The final values of the PID terms were KP = 5.697, KI = 0.0056, KD = -1.581. 

Figure 5.52 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.52 (a) Proportional, (b) Integral and (c) Derivative Terms  
 

(Output SNR = 58.65) 
 

Figure 5.53 (a) shows the DWN output during the first five cycles and 5.53 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.53 (a)-(b) DWN Output during Simulation (Output SNR = 58.65) 

 

Figure 5.54 (a) shows the controller output during the first five cycles and 5.54 

(b) shows the controller output during the last five cycles. 
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Figure 5.54 (a)-(b) Controller Output during Simulation (Output SNR = 58.65) 

 

The controller did not display similar behavior to the noise-free case. The final 

values of the PID terms were smaller. As a result, the oscillations were not minimized 

and there was a big steady state error by the end of the simulation. Thus, an output 

signal having a SNR of 58.65 had a major effect on the performance of the PID-DWN 

controller. 

The simulation was repeated with the DWN trained on noise-free data as in 

subsection 4.5.2. This simulated the process of filtering the training data prior to 

modeling the plant. Figure 5.55 (a) shows the initial cycle in the simulation. Figure 

5.55 (b)-(e) shows the tracking performance of the controller in five cycle long plots. 

Figure 5.55 (f) shows the final cycle in the simulation. 
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Figure 5.55 (a) Initial Cycle, (b)-(e) Tracking Plots and (f) Final Cycle  
 

(Output SNR = 58.65) 

 
The final values of the PID terms were KP = 8.854, KI = 0.0543, KD = 94.889. 

Figure 5.56 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.56 (a) Proportional, (b) Integral and (c) Derivative Terms  
 

(Output SNR = 58.65) 
 

Figure 5.57 (a) shows the DWN output during the first five cycles and 5.57 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.57 (a)-(b) DWN Output during Simulation (Output SNR = 58.65) 
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Figure 5.58 (a) shows the controller output during the first five cycles and 5.58 

(b) shows the controller output during the last five cycles. 
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Figure 5.58 (a)-(b) Controller Output during Simulation (Output SNR = 58.65) 

 

The controller displayed similar behavior to the noise-free case with a minor 

difference in the final value of the derivative term. Thus, an output signal having a 

SNR of 58.65 had no effect on the performance of the PID-DWN controller when the 

DWN was trained on noise-free data. 

The second noise signal had a mean squared value of 1.2 x10-6, shown in 

Figure 5.59. This resulted in the output signal having a SNR of 38.65. 
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Figure 5.59 Output Noise (MS = 1.2 x10-6) 
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Figure 5.60 (a) shows the initial cycle in the simulation. Figure 5.60 (b)-(e) 

shows the tracking performance of the controller in five cycle long plots. Figure 5.60 

(f) shows the final cycle in the simulation. 
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Figure 5.60 (a) Initial Cycle, (b)-(e) Tracking Plots and (f) Final Cycle  
 

(Output SNR = 38.65) 
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The final values of the PID terms were KP = 16.792, KI = 0.23, KD = 14.507. 

Figure 5.61 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.61 (a) Proportional, (b) Integral and (c) Derivative Terms  
 

(Output SNR = 38.65) 
 

Figure 5.62 (a) shows the DWN output during the first five cycles and 5.62 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.62 (a)-(b) DWN Output during Simulation (Output SNR = 38.65) 

 

Figure 5.63 (a) shows the controller output during the first five cycles and 5.63 

(b) shows the controller output during the last five cycles. 
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Figure 5.63 (a)-(b) Controller Output during Simulation (Output SNR = 38.65) 

 

The controller did not display similar behavior to the noise-free case. The final 

values of the proportional and integral terms were larger, while the derivative term 

was smaller. As a result, the plant output had a large overshoot and many oscillations 

by the end of the simulation. Thus, an output signal having a SNR of 38.65 had a 

major effect on the performance of the PID-DWN controller. 

The simulation was repeated with the DWN trained on noise-free data as in 

subsection 4.5.2. This simulated the process of filtering the training data prior to 

modeling the plant. Figure 5.64 (a) shows the initial cycle in the simulation. Figure 

5.64 (b)-(e) shows the tracking performance of the controller in five cycle long plots. 

Figure 5.64 (f) shows the final cycle in the simulation. 
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Figure 5.64 (a) Initial Cycle, (b)-(e) Tracking Plots and (f) Final Cycle  
 

(Output SNR = 38.65) 

 
The final values of the PID terms were KP = 8.42, KI = 0.0513, KD = 57.364. 

Figure 5.65 (a)-(c) shows the plots of the PID terms during the simulation. 
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Figure 5.65 (a) Proportional, (b) Integral and (c) Derivative Terms  
 

(Output SNR = 38.65) 
 

Figure 5.66 (a) shows the DWN output during the first five cycles and 5.66 (b) 

shows the DWN output during the last five cycles. 
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Figure 5.66 (a)-(b) DWN Output during Simulation (Output SNR = 38.65) 
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Figure 5.67 (a) shows the controller output during the first five cycles and 5.67 

(b) shows the controller output during the last five cycles. 
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Figure 5.67 (a)-(b) Controller Output during Simulation (Output SNR = 38.65) 

 

The controller displayed similar behavior to the noise-free case. However, the 

final value of the derivative term was smaller. As a result, by the end of the simulation, 

the oscillations were not minimized as well as the noise-free case. Thus, an output 

signal having a SNR of 38.65 had a minor effect on the performance of the PID-DWN 

controller when the DWN was trained on noise-free data. 

5.3 Conclusion 

When implemented on a first order nonlinear system, the PID-DWN controller 

successfully tracked the sinusoidal and step reference signals by tuning the PID terms. 

In the cases of input and output noise contamination, performance of the controller 

was shown to be unaffected by input noise resulting in SNR values of 61.63 dB and 

41.63 dB, and by output noise resulting in SNR values of 59.35 dB and 39.35 dB. 

When implemented on a second order nonlinear system, the PID-DWN 

controller successfully tracked the sinusoidal and step reference signals by tuning the 

PID terms. In the case of input noise contamination, performance of the controller 

was shown to be unaffected by input noise resulting in a SNR of 61.44 dB, while 

being slightly affected by input noise resulting in a SNR of 41.44 dB. However, in the 

case of output noise contamination, performance of the controller was shown to be 

greatly affected by output noise resulting in SNR values of 58.65 dB and 38.65 dB. 



116 

When the controller used a DWN trained on noise-free data, which simulated the 

process of filtering the training data prior to modeling the plant, performance of the 

controller was shown to be unaffected by output noise resulting in SNR of 58.65 dB, 

and slightly affected by output noise resulting in SNR of 38.65 dB. Therefore, 

performance of the controller was shown to be directly related to off-line training 

results of the DWN. 



117 

CHAPTER 6 

CONCLUSION 

This work investigated wavelet networks for system identification and control. 

The first part started with an introduction to wavelets and the wavelet transform. This 

was followed by an introduction to wavelet networks and the new wavelet network 

architecture, the dynamic wavelet network (DWN). Their architecture, training 

process and initialization methods were explained. The identification of nonlinear 

systems was demonstrated first in the scope of static modeling. The heuristic method 

and the selection method were compared in one dimensional and two dimensional 

function approximation examples. The selection method was shown to be superior to 

the heuristic method in both examples. The superiority of wavelet networks over 

neural networks in nonlinear function approximation was also demonstrated. The 

focus then moved to the use of wavelet networks in dynamic modeling of nonlinear 

systems. The DWN was compared to the conventional WN scheme in the dynamic 

modeling of first order and second order nonlinear systems with input saturation. The 

DWN exhibited faster convergence speed than the conventional WN when used in the 

dynamic modeling of first order nonlinear systems, while when used in the dynamic 

modeling of second order nonlinear systems, both schemes had about the same 

convergence speed. Furthermore, the DWN enabled a method in which to 

approximate the level of saturation, thus providing additional information about the 

system. This was an advantage to using the DWN over the conventional WN scheme. 

The superiority of wavelet networks over neural networks in dynamic modeling of 

nonlinear systems was also demonstrated. The effect of noise on the DWN was 

investigated using three successively increasing noise levels. In the case of input noise 

contamination, dynamic modeling of first order and second order nonlinear systems 

was virtually unaffected at all noise levels. However, in the case of output noise 

contamination, dynamic modeling of first order nonlinear systems was unaffected at 

all noise levels, while dynamic modeling of second order nonlinear systems was 

greatly affected. 

The second part addressed the design of an adaptive PID controller, based on a 

self-tuning dynamic wavelet network. The controller was implemented on first order 
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and second order nonlinear systems by tracking two reference signals: a sinusoid and 

a step. In both cases, the PID-DWN controller successfully tracked the reference 

signals by tuning the PID terms. The effect of noise on the controller was investigated 

for two successively increasing noise levels. In the case of input noise contamination, 

control of first order nonlinear systems was unaffected at both noise levels, while 

control of second order nonlinear systems was unaffected at the lower noise level and 

was minimally affected at the higher noise level. In the case of output noise 

contamination, control of first order nonlinear systems was unaffected at both noise 

levels, while control of second order nonlinear systems was greatly affected. This was 

due to the results of off-line training of the DWN in the presence of output noise. 

When the controller was implemented with a DWN trained on noise-free data, 

simulating the process of filtering the training data prior to modeling the plant, the 

performance of the controller improved significantly. As a result, the controller was 

unaffected at the lower noise level and was minimally affected at the higher noise 

level. 

The contributions of this work have been: i) the introduction of the dynamic 

wavelet network scheme and its training mechanism and ii) the implementation of the 

DWN in an adaptive PID controller and defining the adaptive mechanism for the PID 

parameters. The outcome of this work has shown the effectiveness of the DWN in the 

modeling and control of first order and second order nonlinear dynamic systems. 
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APPENDIX A 

SIMULINK MODELS 

First Order PID-DWN Controller 
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Figure A9 Linear Coefficients Block 



127 

dyhat/dm1

dyhat/dm2

dyhat/dm3

dyhat/dm4

dyhat/dd1

dyhat/dd2

dyhat/dd3

dyhat/dd4
8

deltad4

7
deltad3

6
deltad2

5
deltad1

4
deltam4

3
deltam3

2
deltam2

1
deltam1

Sum of
Elements7

Sum of
Elements6

Sum of
Elements5

Sum of
Elements4

Sum of
Elements3

Sum of
Elements2

Sum of
Elements1

Sum of
Elements

Product9

Product8

Product7

Product6

Product5

Product4

Product31

Product30

Product3

Product29

Product28

Product27

Product26

Product25

Product24

Product23

Product22

Product21

Product20
Product2

Product19

Product18

Product17

Product16

Product15

Product14

Product13

Product12

Product11

Product10

Product1

Product

Memory9

Memory8

Memory7

Memory6

Memory5

Memory4

Memory3

Memory24

Memory23

Memory22

Memory21

Memory20

Memory2

Memory19

Memory18

Memory17

Memory16

Memory15

Memory14

Memory13

Memory12

Memory11

Memory10

Memory1

gamma

Gain9

eta2

Gain8

gamma

Gain7

gamma

Gain6

eta2

Gain5

eta2

Gain4

eta2

Gain3

gamma

Gain2

gamma

Gain16eta2

Gain15

gamma

Gain14eta2

Gain13

gamma

Gain12eta2

Gain11

eta2

Gain10

gamma

Gain1

Add7

Add6

Add5

Add4

Add3

Add2

Add1

Add

12
B4

11
B3

10
B2

9
B1

8
A4

7
A3

6
A2

5
A1

4
alpha1

3
beta1

2
beta0

1
Error
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Figure A12 Direct Connections and Wavelet Neuron Weights D.E. Block 
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