DNA BASE-CALLING TECHNIQUES

Fadi Odeh, Candidate for the Master of Science Degree

American University of Sharjah, 2008

ABSTRACT

The availability of substantial amounts of DNA sequence information has begun to revolutionize the practice of biology. So it is obvious that manual sequencing output is not adequate to keep pace with the growing demand and is far from what is required to obtain the 3-billion-base human genome sequence.

To avoid this difficulty, replacing manual sequencing with an automated one is essential, and it is particularly important that human involvement in data processing be significantly reduced or eliminated. Progress in this respect requires both improving the amount of error-free data being processed, as well as the reliable accuracy measures to reduce the need for human involvement in error correction. Here, we precede one step toward that goal: a basecalling program for automated DNA sequencing, with improved accuracy.

The major goal of this thesis is to develop a new basecalling technique to improve the efficiency of the DNA sequencing process. Improved efficiency will be achieved by increasing the average length of error-free sequences and enhancing the base identification

process at the beginning and end of the DNA sequences. This will greatly increase sequencing throughput and reduce both cost and error associated with the current DNA sequencing process. ABI machines (Applied Bio-systems Incorporated sequencing machines) are currently the major source of reading DNA data. They are capable of producing sequences of 1000 bases in length (bases produced by PCR (Polymerase chain reaction)). These machines are associated with basecalling software, the most advanced software is called KB Basecaller v1.4 and it is publicly used by the sequencing community because of its reliability and accuracy. It can produce impressive results of 500~600 errorfree sequences. The error-free sequences are normally located in the middle of the 1000 base length where the data is clear, and bases are easily distinguishable. However, the bases at the beginning and end of a 1000 base sequence are obscure and difficult to identify. The base calling error in these regions is relatively high. Thus the average basecalling error over a 1000 base sequence is between 3.5 and 6%. The foundation of this proposed research is based on a new base-calling program related to combining signal processing and pattern recognition systems which includes the following steps: noise filtration, baseline adjustment, mobility shift correction, feature extraction and the development of an intelligent basecalling algorithm. The new algorithm will be tested and validated on a number of pre-sequenced DNA sequences.

Combining Gaussian Mixture Models and Hidden Markov Models (GMM-HMM) classifier will be used as a classification model for the recognition of the DNA bases based on its several advantages over other classifiers in that they do not require heavy training, they are very simple to implement with the number of classes, and they ensure the coverage of the statistical properties of the data using Gaussian distribution.

DNA sequence information is critical to understand genetic variations that can influence both disease, and genetic interactions, which in turn can influence drug efficacy. As such, automated sequencers play a vital role in the drug discovery process.

CONTENTS

ABSTRACT	i
LIST OF FIGURES	v
CHAPTER 1 DNA SEQUENCING BACKGROUND	1
1. BIOINFORMATICS The Goals of Bioinformatics	1 1
2. INTRODUCTION TO DNA	2
3. HOW GENES CAUSE CANCER Oncogenes Tumor Suppressor Genes DNA Repair Genes	3 4 4 5
4. SUMMARY	6
CHAPTER 2 DNA SEQUENCING PROCESS	7
1. DNA SAMPLES PREPARATION	7
2. ELECTROPHORESIS	8
3. Data Flow Data Frame	10 10
4. SIGNAL PROCESSING Signal Pre-Processing Errors in Signal after Pre-Processing	11 12 15
5. BASECALLING	17
6. SUMMARY	18
CHAPTER 3 PATTERN RECOGNITION SYSTEMS	19
1. INTRODUCTION	19
2. DESIGN OF PATTERN RECOGNITION SYSTEMS	19
3. SELECTION OF MODEL PARAMETERS Gradient Descent Expectation-Maximization	20 20 22

4. PATTERN RECOGNITION MODELS	26
Gaussian Mixture Models	26
Artificial Neural Networks	30
Neuron Model	31
Network Structure	33
Error Backpropagation Network	34
Polynomial Classifiers	37
Hidden Markov Models (HMMs)	39
Introduction	39
Markov Chains	39
HMM Elements	41
HMM Model	42
5. HYBRID PATTERN RECOGNITION MODELS	48
Combining GMMs and HMMs	49
Combining ANNs and HMMs	51
Combining Polynomial Classifiers and HMMs	52
6. SUMMARY	56
CHAPTER 4 COMBINING SIGNAL PROCESSING AND PATTERN	
RECOGNITION MODELS TO SOLVE DNA SEQUENCING PROBLEM	57
1. INTRODUCTION	57
2. SIGNAL PROCESSING.	58
Noise Filtration	59
Discrete Wavelet Packet	60
Baseline Correction	61
Mobility Shift Correction	62
3. FEATURES SELECTION	65
4. HMM TOPOLOGY	66
5. RESULTS EVALUATION AND CONCLUTION	68
Evaluation Results	69
Conclusion	74
	<i>i</i> -T
6. SUMMARY	75
REFERENCE LIST	76

LIST OF FIGURES

Figure 1.1: From genes to proteins		
Figure 1.2: Gene coding	3	
Figure 1.3: Germline mutation		
Figure 1.4: Acquired bone cells		
Figure 1.5: Gene mutation		
Figure 1.6: Mutation in HBB gene		
Figure 1.7: Difference between normal blood cells and sickle blo	ood cells 5	
Figure 2.1: Cyclic sequencing	7	
Figure 2.2: Chain termination DNA sequencing		
Figure 2.3: Electrophoresis process representation		
Figure 2.4: Normalized fluorescence emission spectra for each of	of the four	
dyes following excitation at 488nm		0
Figure 2.5: Charge-coupled device camera organization		1
Figure 2.6: Fluorescence pattern		1
Figure 2.7: Background noise affects the basecaller	12	2
Figure 2.8: The problem of spectral cross-talk between DNA se	equence data	
channels	13	3
Figure 2.9: Cross-talk problem removal		3
Figure 2.10: The problem of baseline offset between DNA sign	als 14	4
Figure 2.11: The effect of mobility shift problem in DNA signal	ls 14	4
Figure 2.12: Mobility shift correction		5
Figure 2.13: Extra space between A and G was ignored by based	caller 15	5
Figure 2.14: Extra space between A and G was picked as error b	by basecaller 10	6
Figure 2.15: Extra space between A and G was picked as a real	base by	
basecaller	10	6
Figure 2.16: Single nucleotide polymorphism SNP		6
Figure 2.17: Two peaks above each other		7
Figure 2.18: Dye blob problem		7
Figure 3.1: Pattern recognition cycle		9
Figure 3.2: Gradient descent		1

Figure 3.3: Weights update using gradient descent	22
Figure 3.4: Expectation-Maximization overview	25
Figure 3.5: Multiple gaussian components when modeling a distribution	26
Figure 3.6: Typical multilayer perceptron model	30
Figure 3.7: Neuron model	31
Figure 3.8: Unit step transfer function	31
Figure 3.9: Linear transfer function	32
Figure 3.10: Sigmoid transfer function	32
Figure 3.11: Softmax transfer function	32
Figure 4.1: Raw data signal generated from the sequencing machine	58
Figure 4.2: Discrete wavelet transformation of 3 levels	60
Figure 4.3: Raw data signal after noise filtration and baseline correction	62
Figure 4.4: Raw data peaks before shifting	64
Figure 4.5: Raw data peaks after shifting	64
Figure 4.6: DNA bases features. The height and width extracted for each	
peak	65
Figure 4.7: Mutated raw data peak	66
Figure 4.8: HMM topology to model DNA bases transitions	66
Figure 4.9: Markov model representing states transition of base peak in time:	
rising, width, and top	67
Figure 4.10: Final HMM structure that will be used for recognition	67
Figure 4.11: Simplified HMM model	68
Figure 4.12: The results of comparing ABI software with GMM-HMM	
basecaller	71
Figure 4.13: The results of comparing PHRED with GMM-HMM basecaller.	72