
MORPHOLOGY FOR PLANAR HEXAGONAL

MODULAR SELF-RECONFIGURABLE ROBOTIC SYSTEMS

A THESIS IN MECHATRONICS

Presented to the faculty of the American University of Sharjah

School of Engineering

in partial fulfillment of

the requirement of the degree

MASTER OF SCIENCE

by

HOSSEIN SADJADI

Sharjah, U.A.E

March 2009

© 2009

HOSSEIN SADJADI

ALL RIGHTS RESERVED

We approve the thesis of Hossein Sadjadi

Space

Date of signature

Dr. Mohammad Amin Al-Jarrah

Professor, Mechanical Engineering

Thesis Advisor

Space

Dr. Khaled Assaleh

Associate Professor, Electrical Engineering

Thesis Co-Advisor

Space

Dr. Taha Landolsi

Assistant Professor, Computer Sciense and Engineering

Graduate Committee

Space

Dr. Aydin Yesildirek

Associate Professor, Electrical Engineering

Graduate Committee

Space

Dr. Rached Dhaouadi

Associate Professor, Electrical Engineering

Coordinator, Mechatronics Graduate Program

Space

Dr. Hany El-Kadi

Associate Dean, College of Engineering

Space

Dr. Yousef Al-Assaf

Dean, College of Engineering

Space

Mr. Kevin Lewis Mitchell

Director, Graduate & Undergraduate Programs

iii

MORPHOLOGY FOR PLANAR HEXAGONAL

MODULAR SELF-RECONFIGURABLE ROBOTIC SYSTEMS

Hossein Sadjadi, Candidate for the Master of Science Degree

American University of Sharjah, 2009

ABSTRACT

This thesis primarily covers the design and implementation of a planar hexagonal

Modular Self-Reconfigurable Robotic System (MSRRS) along with the construction of

its reconfiguration path planner and control algorithm. Both platform and algorithm are

designed based on a multilayer approach where each layer is dedicated to perform a spe-

cific task; in other words, the design itself is considered to be modular. In the first part a

universal module is carefully designed to maintain certain criteria that seem to be in line

with the common goals of this promising field including homogeneity, cost-effectiveness,

fast actuation and quick and strong connections. In the second part, a reconfiguration path

planner and a control algorithm is developed to determine the required sequence of indi-

vidual module movements that transforms the shape of the system from an arbitrary ini-

tial configuration to a desired goal configuration in an optimal manner while enforcing

several constraints and taking into account the kinematic model of the system.

The shape of the physical platform was inspired form natural structures such as

bees’ nest and crystal molecules, where homogeneous hexagonal modules are capable of

forming variety of structures. Electromagnets installed on six sides serve as the required

actuating force providing fast and cost effective motion for the module. In this case, each

module is not able to perform any motion alone; however, a combination of two or more

modules makes the motion possible. Moreover, pull type solenoids located on six corners

of the module provide quick and strong inter-module connections. Although the imple-

iv

mented working prototype is both large and restricted to a planar geometry, it is designed

such that its hardware and software can be scaled up in the number of units and down in

unit size; similarly, the platform has the potential to be extended for 3D applications. The

software infrastructure of this platform is designed in a way that different hierarchies for

distributed control and communication can be implemented.

The path planner is designed to minimize the number of module movements dur-

ing reconfiguration while enforcing collision avoidance and connectivity constraints. The

algorithm is based on a hierarchical multilayer approach, where upper layers decompose

the problem into sub-problems solvable by lower layers. The core of the algorithm relies

on a heuristic function and a Markov Decision Process (MDP) optimization to generate a

centralized near-optimal reconfiguration path planner and a control algorithm for a lat-

tice, homogenous, rigid, planar hexagonal MSRRS. In this approach the connectivity test

and MDP formulation require a centralized stage, yet the scalability issues required to

move towards a truly decentralized approach are discussed in this thesis as well.

Among several novel approaches incorporated in this system, multilayer nature of

both hardware and software design provides openness, flexibility and ease of modifica-

tion or adaptation for other platforms. In this approach each layer is dedicated to perform

a specific task and can be modified or enhanced separately while keeping the remaining

layers untouched.

Thesis Supervisor: Dr. Mohammad Ameen Al-Jarrah

Professor and Department Head

Mechanical Engineering Program, AUS

Thesis Supervisor: Dr. Khaled Assaleh

Associate Professor

Electrical Engineering Program, AUS

v

Contents

ABSTRACT .. III

LIST OF FIGURES .. XI

LIST OF TABLES ... XV

ACKNOWLEDGMENT ... XVI

 1 INTRODUCTION .. 1

1.1 PROBLEM STATEMENT .. 1

1.2 BACKGROUND ... 2

1.2.1 Modular Self-Reconfigurable Robotic Systems (MSRRSs) .. 2

1.2.2 Research Motivation and Challenges .. 5

1.3 CONTRIBUTION .. 12

1.4 THESIS OUTLINE... 13

 2 RELATED WORK .. 14

2.1 HISTORY ... 15

2.2 CHOICES FOR PHYSICAL PLATFORM .. 15

2.2.1 Architectural Topology .. 15

2.2.2 Homogeneity ... 18

2.2.3 Rigidity ... 19

2.2.4 Shape ... 20

2.3 RANGE OF CONTROL ALGORITHMS .. 22

2.3.1 Reconfiguration vs. Locomotion .. 22

2.3.2 Deterministic vs. Stochastic ... 24

vi

2.3.3 Optimal vs. Near Optimal .. 25

2.3.4 Centralized vs. Distributed ... 25

2.3.5 Serial vs. Parallel .. 27

2.4 MODULAR SELF-RECONFIGURING ROBOTS .. 27

2.4.1 ATRON ... 27

2.4.2 Catom .. 28

2.4.3 CEBOT .. 29

2.4.4 CONRO ... 30

2.4.5 Crystalline .. 30

2.4.6 Fracta / 3D Fracta .. 31

2.4.7 I-Cubes ... 32

2.4.8 Metamorphic ... 32

2.4.9 Miche ... 33

2.4.10 Micro Unit ... 33

2.4.11 Molecube .. 34

2.4.12 Molecule ... 35

2.4.13 MTRAN .. 35

2.4.14 Polypod / PolyBot ... 35

2.4.15 Programmable Parts ... 37

2.4.16 RIKEN Vertical ... 38

2.4.17 Stochastic (2D/3D) .. 38

2.4.18 SuperBot ... 39

2.4.19 Telecube .. 39

 3 HEXBOT: PHYSICAL PLATFORM .. 41

3.1 DESIGN CRITERIA ... 41

3.2 MECHANICAL DESIGN ... 42

3.2.1 Universal Module ... 42

3.2.2 Actuators ... 44

3.2.3 Inter-Module Connections ... 45

3.2.4 Motion through Rotation ... 46

3.3 ELECTRICAL SYSTEM .. 50

3.3.1 Design .. 51

3.3.2 Power Base .. 54

3.3.3 Layer 1 – Power Connection & Mechanical Support .. 55

3.3.4 Layer 2 – Power Unit.. 57

vii

3.3.5 Layer 3 – Drive Circuit .. 58

3.3.6 Layer 4 – Control Board ... 60

3.3.7 Layer 5 – Communication .. 60

3.4 PROCESSING UNIT .. 63

3.4.1 Microcontrollers .. 63

3.4.2 Internal Module Connections... 67

3.4.3 IR Transceivers ... 68

3.4.4 Handshaking .. 69

3.4.5 Testing and Debugging .. 70

3.4.6 Reprogramming ... 70

3.5 GRAPHICAL USER INTERFACE .. 71

3.5.1 Communication with the MSRRS ... 71

3.5.2 Interface .. 73

3.5.3 Functions ... 74

3.6 SUMMARY .. 78

 4 RECONFIGURATION PLANNING ... 79

4.1 PRELIMINARIES .. 80

4.1.1 Environment .. 80

4.1.2 Reinforcement Learning .. 81

4.1.3 Markov Property .. 82

4.1.4 Markov Decision Process (MDP) .. 83

4.1.5 Partially Observable MDP (POMDP) .. 84

4.1.6 Multi-Agent MDP (MMDP) .. 85

4.2 CONSTRAINTS AND ASSUMPTIONS ... 85

4.2.1 Constraints ... 86

4.2.2 Markov Assumptions ... 87

4.2.3 Kinematic Model Assumptions .. 88

4.2.4 Initial and Goal Configuration Assumptions .. 88

4.3 PROBLEM FORMULATION .. 89

4.3.1 Reference Frame and Coordinate system .. 90

4.3.2 MSRRS Representation .. 91

4.3.3 Hierarchical Multilayer Approach .. 92

4.3.4 Layer 1 – Obtain Initial and Goal States .. 94

4.3.5 Layer 2 – Potential Voids and Mobile Electrons .. 98

4.3.6 Layer 3 – Void Propagation ... 105

viii

4.3.7 Layer 4 –Mobile Electron Path Planning .. 106

4.3.8 Layer 5 – Mobile Electron Motion.. 117

4.3.9 Simulation .. 119

4.4 KEY ISSUES.. 119

4.4.1 Scalability... 119

4.4.2 Energy Consumption .. 120

4.4.3 Discussion .. 121

4.5 SUMMARY .. 122

 5 EVALUATION .. 123

5.1 EXPERIMENTAL SETUP ... 123

5.2 EXAMPLES AND EXPERIMENTS .. 124

5.2.1 Physical Platform Performance ... 124

5.2.2 Reconfiguration Algorithm Performance ... 128

5.3 DISCUSSIONS ... 140

5.3.1 HexBot Evaluation Criteria and Performance .. 141

 6 CONCLUDING REMARKS .. 143

6.1 SUMMARY .. 143

6.2 CONCLUSIONS ... 144

6.3 LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH.. 144

BIBLIOGRAPHY ... 146

 APPENDICES .. 161

A. MICROCONTROLLER CODES ... 161

Control Board Program .. 162

Communication Board Program .. 168

Wireless SPI Code ... 179

B. VISUAL BASIC CODE .. 184

Port Configuration ... 185

Main Window .. 186

C. MATLAB FUNCTIONS .. 192

Function 1: FindVE .. 193

Function 2: Hex ... 193

Function 3: HexActuate ... 194

Function 4: HexAll_P ... 196

ix

Function 5: HexAll_S ... 197

Function 6: HexCCW .. 198

Function 7: HexCG ... 198

Function 8: HexCGT ... 199

Function 9: HexCW .. 200

Function 10: Hexgrid .. 200

Function 11: HexIMS .. 201

Function 12: Hexmove .. 201

Function 13: HexNe .. 203

Function 14: HexNeM ... 203

Function 15: Hexp .. 203

Function 16: Hexplot .. 204

Function 17: Hexpm ... 205

Function 18: HexVP .. 205

Function 19: HexVPT .. 206

Function 20: HexZP ... 208

Function 21: Jointplot ... 208

Function 22: MDP_Action .. 208

Function 23: MDP_NRL .. 209

Function 24: MDP_Reward .. 211

Function 25: MDP_State .. 211

Function 26: MDP_VI ... 213

Function 27: Mobile ... 214

Function 28: PV .. 214

Function 29: Sideplot .. 215

Test 1: TestAll_P01 ... 216

Test 2: Test_All_P02 ... 217

Test 3: Test_All_S01.. 218

Test 4: Test_All_S02.. 219

Test 5: Test_CG ... 220

Test 6: Test_Constraints1 ... 220

Test 7: Test_Constraints2 ... 221

Test 8: Test_Immobile .. 221

Test 9: Test_IR_Simulation ... 222

Test 10: Test_Layer5 ... 222

x

Test 11: Test_Localization .. 222

Test 12: Test_MDP.. 223

Test 13: Test_MDP_Convergence ... 223

Test 14: Test_Simulator .. 224

Test 15: Test_VP ... 225

VITA .. 227

xi

LIST OF FIGURES

FIGURE 1-1 ARTIST'S RENDITION OF A SPACE APPLICATION ... 4

FIGURE 1-2 SELF-ASSEMBLY AND SELF-REPAIR .. 6

FIGURE 2-1 BASIC CHARACTERISTICS OF PHYSICAL PLATFORMS ... 16

FIGURE 2-2 PRIMARILY ARCHITECTURAL TOPOLOGIES ... 17

FIGURE 2-3 RIGID, DEFORMABLE AND COMPRESSIBLE MODULES .. 19

FIGURE 2-4 TWO DIMENSIONAL TRIANGULAR, CUBICAL, HEXAGONAL AND CIRCULAR PLATFORMS 21

FIGURE 2-5 THREE DIMENSIONAL CUBICAL, RHOMBIC DODECAHEDRON AND SPHERICAL PLATFORMS 22

FIGURE 2-6 CONTROLLER DESIGN HIERARCHY ... 23

FIGURE 2-7 ATRON (CHRISTENSEN & STOY, 2006) .. 28

FIGURE 2-8 CATOM (GOLDSTEIN, MOWRY, GIBBONS, PILLAI, RISTER, & LEE, 2006) ... 29

FIGURE 2-9 CEBOT (FUKUDA & KAWAKUCHI, 1990) .. 29

FIGURE 2-10 CONRO (CASTANO, BEHAR, & WILL, 2002) ... 30

FIGURE 2-11 CRYSTALLINE (RUS & VONA, 2001) .. 31

FIGURE 2-12 FRACTA (MURATA, KUROKAWA, & KOKAJI, 1994) .. 31

FIGURE 2-13 3D FRACTA (MURATA, KUROKAWA, YOSHIDA, TOMITA, & KOKAJI, 1998) .. 31

FIGURE 2-14 I-CUBES (UNSAL & KHOSLA, 2000) .. 32

FIGURE 2-15 METAMORPHIC (CHIRIKJIAN G. , 1994) .. 32

FIGURE 2-16 MICHE (GILPIN, KOTAY, & RUS, 2007) ... 33

FIGURE 2-17 MICRO UNIT (YOSHIDA E. , MURATA, KOKAJI, KAMIMURA, TOMITA, & KUROKAWA, 2002) 34

FIGURE 2-18 MOLECUBE (ZYKOV, MYTILINAIOS, ADAMS, & LIPSON, 2005) ... 34

FIGURE 2-19 MOLECULE (KOTAY & RUS, 2005) ... 35

FIGURE 2-20 MTRAN (KAMIMURA A. , KUROKAWA, YOSHIDA, TOMITA, MURATA, & KOLAJI, 2003), (KUROKAWA,

KAMIMURA, YOSHIDA, TOMITA, KOKAJI, & MURATA, 2003) ... 36

FIGURE 2-21 POLYPOD(YIM M. , 1993) .. 36

FIGURE 2-22 POLYBOT (YIM, DUFF, & ROUFAS, 2000) .. 37

FIGURE 2-23 PROGRAMMABLE PARTS(KLAVINS, BURDEN, & NAPP, 2006) .. 37

FIGURE 2-24 RIKEN VERTICAL (HOSOKAWA, ET AL., 1998) .. 38

FIGURE 2-25 STOCHASTIC (WHITE, KOPANSKI, & LIPSON, 2004), (WHITE, ZYKOV, BONGARD, & LIPSON, 2005) 38

FIGURE 2-26 SUPERBOT (SHEN, KRIVOKON, CHIU, EVERIST, RUBENSTEIN, & VENKATESH, 2006) 39

FIGURE 2-27 TELECUBE (SUH, HOMANS, & YIM, 2002) ... 40

FIGURE 3-1 NATURAL HEXAGONAL STRUCTURES .. 43

FIGURE 3-2 HEXBOT STRUCTURE .. 43

FIGURE 3-3 SELF-ALIGNING MECHANISM ... 44

xii

FIGURE 3-4 HOLD FORCE VS. INPUT POWER .. 44

FIGURE 3-5 HEXBOT ACTUATORS .. 45

FIGURE 3-6 BALL TRANSFER UNITS .. 45

FIGURE 3-7 INTER-MODULE CONNECTIONS ... 46

FIGURE 3-8 HEXBOT MOTION .. 49

FIGURE 3-9 MULTILAYER ELECTRICAL SYSTEM DESIGN FOR HEXBOT .. 50

FIGURE 3-10 POWER CIRCUIT SCHEMATIC .. 51

FIGURE 3-11 DRIVE CIRCUIT SCHEMATIC .. 52

FIGURE 3-12 MICROCONTROLLER DESIGN SCHEMATIC .. 52

FIGURE 3-13 IR COMMUNICATION SCHEMATIC ... 53

FIGURE 3-14 BREADBOARD VERIFICATION .. 53

FIGURE 3-15 POWER BASE .. 54

FIGURE 3-16 GRIDS AND COORDINATE SYSTEM ... 55

FIGURE 3-17 BASE LAYER DESIGN ... 55

FIGURE 3-18 MANUFACTURED BASE LAYER .. 56

FIGURE 3-19 POWER TRANSFER TO THE MODULE .. 56

FIGURE 3-20 POWER CIRCUIT DESIGN ... 57

FIGURE 3-21 MANUFACTURED POWER UNIT .. 58

FIGURE 3-22 DRIVE CIRCUIT DESIGN ... 59

FIGURE 3-23 MANUFACTURED DRIVE CIRCUIT .. 59

FIGURE 3-24 CONTROL BOARD DESIGN .. 60

FIGURE 3-25 MANUFACTURED CONTROL BOARD ... 61

FIGURE 3-26 COMMUNICATION BOARD DESIGN .. 62

FIGURE 3-27 MANUFACTURED COMMUNICATION BOARD ... 62

FIGURE 3-28 MULTILAYER PCBS .. 63

FIGURE 3-29 INTERNAL MODULE CONNECTIONS .. 67

FIGURE 3-30 MODULATED IR SIGNAL .. 68

FIGURE 3-31 SETTING THE PROGRAMMING JUMPER ... 71

FIGURE 3-32 PC-MSRRS COMMUNICATION COMPONENTS .. 72

FIGURE 3-33 PC-MSRRS COMMUNICATION .. 72

FIGURE 3-34 GRAPHICAL USER INTERFACE .. 73

FIGURE 3-35 PORT CONFIGURATION WINDOW ... 74

FIGURE 4-1 REINFORCEMENT LEARNING MODEL .. 82

FIGURE 4-2 SEQUENCE OF ACTIONS IN REINFORCEMENT LEARNING ... 82

FIGURE 4-3 PARTIALLY OBSERVABLE MDP MODEL .. 84

xiii

FIGURE 4-4 CONNECTIVITY CONSTRAINT... 87

FIGURE 4-5 COLLISION AVOIDANCE CONSTRAINT ... 87

FIGURE 4-6 IMMOBILE CONFIGURATION ... 89

FIGURE 4-7 TRANSFORMATION FROM AN INITIAL CONFIGURATION TO A GOAL CONFIGURATION 90

FIGURE 4-8 COORDINATE SYSTEM ... 91

FIGURE 4-9 REFERENCE JOINT AND SIDE NUMBERING ... 91

FIGURE 4-10 SYSTEM REPRESENTATION ... 92

FIGURE 4-11 HIERARCHICAL MULTILAYER APPROACH ... 93

FIGURE 4-12 MSRRS TASK HANDLING .. 94

FIGURE 4-13 LOCALIZATION PROCESS (0) ... 95

FIGURE 4-14 LOCALIZATION PROCESS (1) ... 96

FIGURE 4-15 LOCALIZATION PROCESS (2, 3) ... 97

FIGURE 4-16 ELECTRONS AND VOIDS ... 99

FIGURE 4-17 MOBILE ELECTRONS AND POTENTIAL VOIDS .. 100

FIGURE 4-18 EXAMPLE OF ME AND PV ... 101

FIGURE 4-19 GRAPH REPRESENTATION .. 102

FIGURE 4-20 CONNECTIVITY GRAPH .. 102

FIGURE 4-21 ARTICULATING NODES .. 102

FIGURE 4-22 LAPLACIAN MATRIX REPRESENTATION ... 104

FIGURE 4-23 EXAMPLE OF A DISCONNECTED CONFIGURATION .. 104

FIGURE 4-24 VOID PROPAGATION... 106

FIGURE 4-25 STATES OF MDP ... 108

FIGURE 4-26 AVAILABLE ACTIONS OF AN STATE ... 109

FIGURE 4-27 STATES REWARD FUNCTION ... 110

FIGURE 4-28 VALUE FUNCTION OF STATES ... 113

FIGURE 4-29 CONVERGENCE OF VI .. 115

FIGURE 4-30 MOTION OF A MOBILE ELECTRON ... 117

FIGURE 4-31 MOBILE ELECTRON ACTUATION .. 119

FIGURE 5-1 EXPERIMENTAL SETUP .. 123

FIGURE 5-2 PORT CONFIGURATION ... 124

FIGURE 5-3 HANDSHAKING .. 125

FIGURE 5-4 LOCALIZATION TEST .. 126

FIGURE 5-5 REFERENCE MODULE .. 126

FIGURE 5-6 LOCALIZATION ... 127

FIGURE 5-7 ROTATION TEST ... 128

xiv

FIGURE 5-8 SIMULATION TEST 1 ... 131

FIGURE 5-9 SIMULATION TEST 2 ... 135

FIGURE 5-10 SIMULATION TEST 3 ... 137

FIGURE 5-11 SIMULATION TEST 4 ... 140

xv

LIST OF TABLES

TABLE 3-1 REQUIRED ROTATION STEPS (ONLY 2 MODULES WITH NO OTHER NEIGHBORS) .. 47

TABLE 3-2 REQUIRED ROTATION STEPS (2 MODULES WITH OTHER NEIGHBORS).. 48

TABLE 3-3 PORT CONFIGURATION (COMMUNICATION MICROCONTROLLER) .. 64

TABLE 3-4 PORT CONFIGURATION (CONTROL MICROCONTROLLER) ... 66

TABLE 3-5 IR CHANNEL SELECTOR ... 69

TABLE 3-6 MICROCONTROLLERS FUSE BITS SETTINGS.. 70

TABLE 3-7 HEXBOT FUNCTIONS .. 75

TABLE 3-8 MESSAGE FORMAT .. 77

TABLE 3-9 WEIGHT OF HEXBOT COMPONENTS .. 78

TABLE 4-1 RELATIVE COORDINATES AND ORIENTATIONS .. 96

TABLE 4-2 DISCOUNT FACTOR AND NUMBER OF ITERATIONS .. 116

TABLE 4-3 MODULE ACTUATION ... 118

xvi

ACKNOWLEDGMENT

First and foremost, I would like to thank God for giving me the opportunity to be

raised in my lovely family which in turns paved the way for me to be educated in my

wonderful university and accomplish this work.

My dept to my parents and my family is undoubtedly beyond measure and I will

be forever grateful for what they have sacrificed for me to get to this point, thank you so

much.

To our dean, Dr. Assaf, the founder of Mechatronics center Dr. Jarrah and our

program coordinator Dr. Dhaouadi, I cannot adequately express how deeply indebted I

am to all you for the supports and facilities you have provided at AUS.

To my always busy advisors, Dr. Jarrah for his everlasting supports and motiva-

tions he gave me to continue manufacturing my little modules and Dr. Khaled for intro-

ducing me to the Markovian word, thank you so much for all your help and support and I

am always grateful to you.

I would not be standing here without the unyielding support of my best friend

Omid for his help in the Mechanical design; even though, I really had to push him so

hard. I will never forget the support I got from Mr. Ashraf, Mr. Narayanan and Mr. Ri-

cardo who helped me out during the manufacturing process.

I am also, of course, very thankful to Roozbeh for his brilliant design ideas and

Behrooz for his advice to reduce my circuit noise.

I can no way forget my excellent friend Younes and all our chats during our even-

ing Starbucks coffee breaks; you are the real “Bogh Al-Havij” by all sense of meaning,

you are a great person, thank you.

I am grateful to many dear friends especially, Amer Al-radaideh, Laith Sahawneh

“Tanak Al-Zeytoon”, Ali Ghaz and Amir Jafari for the unforgettable times we spent to-

gether, thank you so much.

This work will remain as a great honor of my life and my heart is filled with noth-

ing but gratitude to all of you, thank you.

xvii

DEDICATION

It is my biggest joy and privilege to dedicate this work to my thoughtful, caring

and compassionate parents.

Chapter 1 - Introduction 1

 Chapter 1

 1 Introduction

This thesis primarily aims to explain the physical implementation of HexBot, a

two dimensional Modular Self-Reconfigurable Robotic System (MSRRS) built in the

AUS Mechatronics Center, along with its developed reconfiguration planning and control

algorithm. The idea behind the proposed design both for the platform and the algorithm

will be clearly addressed in this thesis.

1.1 Problem Statement

The work includes the construction of a centralized near-optimal reconfiguration

path planner and a control algorithm for a lattice, homogenous, rigid, planar hexagonal

MSRRS in addition to the implementation of HexBot as a universal module for such an

algorithm.

To clarify and explain more details about the above statement regarding the pro-

posed algorithm and the implemented platform, this chapter will be continued by a brief

background about MSRRS. Moreover, to position this work, next chapter will thoroughly

explore similar related works.

Chapter 1 - Introduction 2

1.2 Background

1.2.1 Modular Self-Reconfigurable Robotic Systems (MSRRSs)

A conventional robot with a fixed architecture is usually designed for a limited

task and works in a particular environment. Therefore, it can no more perform well when

either its task or environment is changed. On the contrary, MSRRSs gained popularity

since their functionalities were no longer restricted to a specific task or a certain envi-

ronment.

MSRRSs are aimed to mimic the infrastructural principle of life and matter,

where every element is composed of its fundamental components such as cells or atoms.

Although each fundamental component is quite simple in its shape, intelligence and etc, a

huge combination of them can form a powerful and complex living creature or object.

There are several examples of such formations in our real life. One given by (Bishop, et

al., 2005), is the ribosome that seem to be built out of large numbers of simple compo-

nents. “This seems to occur when simple components self-organize via local interactions

into more complex aggregates which, in turn, self-organize into larger aggregates and

processes”.

Likewise, MSRRS implement the same concept by being composed of several

simple robotic modules where each module has the ability to move around its neighbor

modules to change its location using its primitive actuators, sensors, processors and

communication. Therefore, the complete system would be capable of changing its shape

autonomously and transforming into other shapes by moving its modules. Having such a

feature, MSRRSs can reconfigure themselves to form structures that best fit the operating

environment as well as the required functionality.

Overall similarities of a living biological organism and a MSRRS are summarized

by (Murata & Haruhisa, 2007), as follow:

• Both consist of small components, living cells for the former and robotic modules

for the latter

• Communication among the components is achieved by the diffusion of chemical

substances in the former and by the exchange of digital information through mod-

ule-to-module communication in the latter

Chapter 1 - Introduction 3

• In both cases, the components cooperate with one another to adjust their configu-

ration to the environment

• The mechanism of cooperation is embedded as the genomic information in the

living cell and as a distributed program for each processor in the module

In MSRRSs the main concept that needs to be heeded is the “global formation” of

the entire system out of “local interactions” among its individual modules which requires

the coordination of a very large number of modules with a high degree of freedom.

As can be seen, the key feature of MSRRSs is versatility. For example, such a

system composed of numerous small and simple modules can reconfigure itself to:

• form a locomotion gait that best fits the existing terrain

• avoid obstacles in highly constrained and unstructured environments

• envelope objects for protection or recovery

• form a manipulator that best fits the object needs to be handled

• optimize the measurement of sensory information

• grow structures such as bridges in times of emergency

Significant technological advances are expected from MSRRSs. An illustrative

example of a potential application of such a versatile system is as follow: “A modular

platform could carry a collection of self-reconfiguring modules to a site. The modules

could then grow into a tower, enter the site through a small opening (such as a window)

and reconfigure to survey the site. The modules could carry different sensors and collabo-

rate to deploy these within their environment” (Butler & Rus, 2003).

The main difference in the design of a MSRRS and a conventional robot is ex-

plained by (Murata & Haruhisa, 2007). Many successful conventional robots are de-

signed by mimicking the dynamical function of living creatures; however, MSRRSs are

designed by mimicking the structural formation of living creatures. Conventional robots

are designed top-down, i.e. based on the required performance and functionality, funda-

mental components are selected. In contrast, MSRRSs are designed down-top, i.e. initial

module specifications will eventually determine the potential functionality of the com-

plete system. As a result, modules should be designed in a way that the overall system

would deliver the desired functionality. The point is that a MSRRS “is not a robot de-

Chapter 1 - Introduction 4

signed to perform a specific task but a system that develops into various types of robots

and executes a variety of tasks” (Murata & Haruhisa, 2007).

Figure �1-1 illustrates an artist’s rendition of a space application of a MSRRS re-

configured in various morphologies for a variety of tasks (Zykov, Mytilinaios, Desnoyer,

& Lipson, 2007).

Figure �1-1 Artist's rendition of a space application

However, as discussed by (Yim, Duff, & Roufas, 2000) and (Murata & Haruhisa,

2007), it should be noted that the need of such versatile MSRRSs will be felt more in

places where their unique functionalities are required; otherwise, fixed-architecture con-

ventional robots designed for a particular task always perform better than MSRRSs for

the same task and are also more cost effective and efficient.

As mentioned by (Yim, et al., 2007), there are few other types of robotic systems

that share similar design and control challenges, but they are not MSRRSs. For example:

• Modular Robots: Built form modules, but cannot reconfigure themselves

• Self-assembling systems: Composed of multiple modules and can take different

configuration, but cannot dynamically control or reconfigure their target shape

Chapter 1 - Introduction 5

• Tensegrity robots: Composed of multiple interchangeable modules, but cannot

self-reconfigure

• Multi-robot cooperating systems such as swarm robots: Composed of multiple

units, but do not typically connect to form more complex physical structures

• Industrial robots with tool changers: Can be considered modular, but the degree to

which they self-reconfigure is very limited

Unfortunately, conventional robotics methods are not able to address the field of

MSRRSs and realization of the potential applications for MSRRSs based on the latest

mechatronics designs is still beyond the current state-of-the-art.

Consequently, the growing field of MSRRS poses a distinct set of engineering

challenges including: design of a universal module, implementation of the module in a

relatively small scale, inter-module connections, communications, motion planning and

control.

These challenges are mainly classified into two categories:

• Physical Implementation

• Algorithmic Development

Physical implementation focuses more on providing modules with a relatively

small size, enough strength, robust inter-module connections, reliable communication,

proper actuators, required processing power and of course a cost-effective solution which

enables mass production of potentially numerous modules.

Apart from physical implementation difficulties, algorithmic issues are even more

challenging to deal with. Path planning for a large number of modules in a potentially pa-

rallel and distributed manner considering the limited functionality of each simple indi-

vidual module in terms of its computational and communicational power seems to be ex-

tremely demanding.

1.2.2 Research Motivation and Challenges

This section will address research motivation, potential application and challenges

of the field of MSRRSs.

Chapter 1 - Introduction 6

Motivation

The unique self-reconfiguration capability of MSRRSs provides this new field of

robotics with a bright and promising future. The main incentives behind the development

and design of MSRRSs are summarized below and an example (Inou, Minami, & Koskei,

2003) is illustrated in Figure �1-2:

Figure �1-2 Self-Assembly and Self-Repair

• Versatility – (Through: Morphology, Shape changing / shifting, Self-assembling /

organizing):

As discussed so far the diverse behavior of MSRRSs has been a fundamental mo-

tivation factor behind the ongoing research.

The self-reconfiguration capability enables multi functionality for these robots by

making them potentially more adaptive to new tasks and thus performing a wide range of

activities.

Not only that, but such a robotic system can also dynamically reconfigure itself

and continue its mission in a changing, unstructured or even uncertain environment. A

MSRRS can switch between different locomotion gaits such as: crawling, walking, roll-

ing, climbing, jumping, shrinking, climbing stairs and etc.

Examples of such versatility can be seen in several works done in this field such

as: (Fukuda & Nakagawa, 1987), (Murata, Kurokawa, Yoshida, Tomita, & Kokaji, 1998),

(Yim, Duff, & Roufas, 2000), (Castano, Shen, & Will, 2000) and (Murata & Haruhisa,

2007).

• Robustness – (Through: Self-Repair):

Since the complete robotic system is basically composed of a large number of in-

terchangeable modules, a malfunctioning module can be autonomously replaced with

another one.

Self-repair was studied in several works such as: (Murata, Kurokawa, & Kokaji,

1994), (Yoshida E. , Murata, Tomita, Kurokawa, & Kokaji, 1998), (Tomita, Murata,

Chapter 1 - Introduction 7

Kurokawa, Yoshida, & Kokaji, 1999), (Fitch, Rus, & Vona, 2000) and (Murata, Yoshida,

Kurokawa, Tomita, & Kokaji, 2001). An illustration is also depicted in Figure �1-2.

• Self-Reproduction:

The modularity of MSRRSs transforms them to potential candidates for self-

reproduction. Self-reproduction refers to the process where a system has the ability to au-

tonomously produce another functional system as explained by (Zykov, Mytilinaios,

Adams, & Lipson, 2005).

If the produced system is identical to the original system, this process is called

self-replication. In self-replication, the produced copy can as well make a copy of itself

and such a process can proceed till enough number of the required system is available.

Such a process tends to duplicate the fundamental nature of biological life.

As explained by (Zykov, Mytilinaios, Desnoyer, & Lipson, 2007) conventional

robots achieve long-term sustainability and adaptation by the use of durable hardware and

adaptive controllers which is totally in contrast with the way biological systems behave.

In biological systems, long-term sustainability and evolutionary adaptation are provided

through the process of self-repair and, ultimately, self-reproduction.

• Scalability:

Another interesting feature of MSRRs is scalability. Having modular building

blocks, these robotic systems can be scaled relatively easily compared to conventional

robots. Note that it is generally difficult to realize complete scalability in robotic systems,

i.e. scalable mechanical platform, scalable distributed controller, scalable communication

and etc. In practice there is normally a tradeoff between scalability and response time of

systems; the more the number of modules, the less the speed of response. This issue is

addressed in (White & Yim, 2007).

• Cost-Effectiveness:

MSRRS are eventually cost effective. Once a single module or few types of mod-

ules are designed, the overall system can be formed by mass-production of the same

modules. Not only that, but once modules are mass produced, huge variety of robots can

be built from them as well.

As explained earlier in the in 1.2.1, it should be always noted that the need of

such versatile MSRRSs will be felt more in places where their unique functionalities are

Chapter 1 - Introduction 8

required; otherwise, fixed-architecture conventional robots designed for a particular task

always perform better than MSRRSs for the same task and are also more cost effective

and efficient. Moreover, the current mechatronics state-of-the-art is still not capable of

realizing all these features and more research needs to be done in this growing field.

Application

The current ideas behind the applications for MSRRSs rely primarily on versatili-

ty and fault tolerance rather than quick or optimal response. Potential applications for

such robotic systems are classified into three main categories: locomotion, manipulation

and structure formation.

• Locomotion:

MSRRSs can form different locomotion gaits and move in various environments.

The importance of such locomotion gaits becomes extremely attractive when the envi-

ronment is unstructured, uncertain or dynamically changing.

Typical application in this category would be: Search and rescue missions (fire

fighting, earthquake, etc.), Sea or space exploration (undersea mining, planetary search

and data collections, etc.), Hazardous or remote environment operations (chemical plants,

desert sites, etc.), Surveillance (monitoring, etc.), General locomotion (climbing stairs,

obstacle avoidance, etc.) and Sensory network monitoring (Optimize the measurement of

a sensory network, etc.)

As an illustrative example, let’s look at “Space Exploration”, where perhaps the

most attention is paid to MSRRS. (Yim, et al., 2007) describe the situation as follow:

“Long-term space missions require a self-sustaining robotic ecology that can handle un-

foreseen situations and may require self-repair. Self-reconfigurable systems are better

able to handle tasks that are not known a priori, especially compared to fixed-

configuration systems. In addition, space missions are highly volume and mass con-

strained. Sending a robot system that can reconfigure to achieve many tasks saves ship-

ping mass and volume as compared to sending many robots that each can accomplish one

task.”

• Manipulation:

Chapter 1 - Introduction 9

As MSRRS are modular, they can change their shape to form the most suitable

manipulator needed to handle objects. Such a feature enables forming several different

manipulators from a collection of simple modules.

• Structure Formation:

There are also interests in using MSRRSs to form structures. As an example, a

MSRRS can be utilized to form a physical 3D simulation of a part or a graph. Other

examples are growing structures to form bridges or buttresses in times of emergency

as explained by (Walter, Tsai, & Amato, 2005) or envelopment of objects, (such as

satellites in space) for protection or recovery purposes.

Challenges

The fast growing field of MSRRS with unique capabilities poses many fundamen-

tal engineering challenges. Few of those challenges have been addressed and especially

during the last decade, there has been a huge advancement in this field. Nevertheless,

there still exist many more challenges to be overcome in future.

These challenges are essentially classified in three categories. First is to design a

physical platform composed of universal modules to achieve the goal of MSRRS in terms

of small size, fast actuation, enough strength and etc, all at a reasonable cost. The second

challenge refers to algorithmic issues regarding reconfiguration, locomotion, manipula-

tion, intelligence, control and etc, all in an optimal manner. The last category is to find

suitable application for such systems where such capabilities can be utilized considering

the overall performance of the system. These three challenges are explained briefly be-

low:

• Physical Implementation

Performance of a MSRRS depends directly on the design of its individual mod-

ules and the performance of each individual module in turn depends on a number of fac-

tors such as: space filling geometric shape, robustness to failure, physical strength, light

weight, scalable in size and quantity, fast actuation, quick and reliable connection, low

power consumption and cost-effectiveness.

Consider designing a universal module, where the task and environment of a ver-

satile system composed of a huge number of it, are not known before hand during the de-

sign stage while all the above factors are meant to be taken into consideration.

Chapter 1 - Introduction 10

So far, there have been several designs proposed by different researchers in this

field and each tried to address some of the above factors. Though, there has not been a

single design addressing all those factors efficiently. Those fundamental challenges are

briefed as follow:

o Shape: Different geometrical shapes have been proposed and tested which in-

cludes, spherical, cubical and hexagonal modules. The main criterion for the

physical shape is to be able to fill the required structure densely with minimum

gaps. However, in some designs these gaps are utilized to provide the complete

system with a degree of flexibility.

o Robustness: Modules shall be designed such that the overall system shall be able

to recover itself from any kind of failure (mechanical, electrical, control, commu-

nication, power, etc). In other words, ideally modules shall be able to understand

if there is a failure in them or their neighbors and the system shall be able to re-

move the faulty module when it is not responding.

o Strength: Modules shall be made from materials that have enough strength to

provide the system with the ability of performing different tasks. The down side

of this is usually either the weight or the cost if a composite material is chosen. In

general it is preferred to use material with high strength to weight ratio.

o Weight: To increase the overall performance and efficiency of the system, every

single part of the module shall be designed to be as light as possible so that the

overall module can move with the minimum amount of energy. However, some-

times for stability purposes this condition is overlooked.

o Scalability: (Scale down the size, scale up the quantity) Size: the smaller the

modules the finer the resolution of the complete system. Some researchers are

now thinking of MEMs to manufacture smaller modules. Quantity: Most of cur-

rent available systems are made of less than 100 modules which is just enough for

the research purposes and demonstration of the conceptual design.

o Actuation: It’s preferred to have fast actuation; however, most designs lack this

factor which is considered as one of the most important properties of a module.

Once the quantity of modules increased, the need of fast actuation will be felt

more.

Chapter 1 - Introduction 11

o Connection: Inter-module connection plays an important rule as well. Ideal con-

nections shall be strong and shall not require precise alignment between two

modules. Moreover, the connection shall be performed quickly with minimum

power consumption. Preferably, once modules are connected no more power shall

be consumed to maintain the connection.

o Power Consumption: Clearly, it is preferred to keep the system working for a

long period and the overall power consumption of the system depends directly on

the power consumption of its modules. Therefore, ideally, it is proffered to have

very high efficiency for module actuators.

o Cost-effectiveness: Since the goal is to make huge collection of modules, each

single module should be implemented with a minimum cost. Mass production

would hopefully reduce the overall cost of these systems, once an ideal universal

module is designed.

• Algorithmic Issues

The unique nature of MSRRS requires the coordination of a large number of

modules in an optimal manner in terms of time or energy. This leads to the development

of challenging algorithms. The ultimate goal for these algorithms is to be decentralized

(acting in a distributed manner), unsupervised (no global feedback) and architecture in-

dependent (can be applied to different systems). Furthermore, they shall incorporate pa-

rallel actuation and cooperative actions. The primarily requirements for such algorithms

are summarized below:

o Intelligence: A high level algorithm is required to specify the optimal configura-

tion or locomotion gait, based on the current state of the environment and as-

signed task.

o Robustness: A high level algorithm is required to detect failure (in modules or

the overall system) and rearrange to recover from failure and continue the mis-

sion.

o Reconfiguration: A low level algorithm is required to plan paths for modules to

transform the shape of the system from one configuration into another configura-

tion.

Chapter 1 - Introduction 12

o Locomotion: A low level algorithm is required to provide motion for the com-

plete system. Reconfiguration algorithm may be used for this purpose while en-

forcing constraints for the intermediate configurations.

Several methods proposed have not been very successful since they are computation-

ally very expensive for the current state-of-the-art. Therefore, hierarchical multilayer

approaches (like the one in this work) are preferred to distribute the load into different

levels.

• Application

Apart from the mentioned engineering challenges, there still one uncommon chal-

lenge remains which deals with an appropriate application for MSRRS. Many researchers

in this field such as (Yim, et al., 2007) agree that identifying a truly demanding applica-

tion for MSRRSs where all capabilities and advantages are required is still a key chal-

lenge.

1.3 Contribution

The thesis in general contributes to the growing field of modular self-

reconfigurable robotic systems. Specific contributions of this thesis are mainly those ad-

dressing the first two sets of challenges: physical implementation and algorithmic devel-

opment. Listed below are the detailed contributions:

• Platform

1. Design of a universal two dimensional hexagonal module towards the promis-

ing goals of the field of MSRRS

2. Homogeneity in all aspects, such as actuation, connection, computation and

etc

3. Fast actuation and motion with no moving parts through magnetic fields, in

line with the ultimate goals and possible scalability issues in terms of size re-

duction and cost effectiveness.

4. Quick and strong connection without requiring precise alignment

5. Multilayered electronics circuits and possibility of replacement, modification

or improvement for every individual layer separately

Chapter 1 - Introduction 13

6. Experimental performance evaluation for the functionality of the entire plat-

form

• Algorithm

1. Development of a hierarchical multilayer framework for lattice based modular

systems

2. Optimization and path planning for minimum module movement

3. Problem formulation as a Markov Decision Process (MDP) that can be easily

adopted for other platforms

4. Implementation of an optimal policy search method enforcing the required

constraints using dynamic programming in MDP

5. Multilayered nature of the framework, providing openness, flexibility and

ease of modification and improvement for each individual layer to move to-

wards the essential goals

6. Modeling, testing and simulation of the complete algorithm with access to

every single function using Matlab

1.4 Thesis Outline

Having introduced the topic in this chapter, we will continue with a literature re-

view to look at related works in this field in chapter 2. This chapter will briefly review li-

terature in terms of available physical and algorithmic platforms for MSRRS. Next we

move on to chapter 3 where we explain about our universal module implementation and

our design criteria are explained. In chapter 4, the control algorithm will be introduced in

details using a simple example that is followed throughout the chapter. Chapter 5 is dedi-

cated to several examples to illustrate and evaluate the performance of the proposed sys-

tem and continues with results and discussions. Finally, chapter 6 concludes the work by

a summary along with the limitations and directions for future research.

Chapter 2 – Related Work 14

 Chapter 2

 2 Related Work

There has been great advancement in the field of MSRRS over the past decade.

Achieving the ultimate goal in this promising field has pushed researchers forward to at-

tempt overcoming the challenges by proposing several hardware implementations along

with algorithmic developments.

The overall performance of a MSRRS is a combination of hardware as well as

software functionalities. Furthermore, the hardware and software performances are di-

rectly linked together; in other words, the physical platform imposes its possible actua-

tions and limitations to the algorithm and at the same time the algorithm imposes its

computational and communicational needs to the platform. As a result optimization of the

overall system depends heavily on the development and functionally of both hardware

and software.

The new field of MSRRS has been attracting significant attention during the re-

cent years and there has been incredible improvement in this filed. Therefore, this chapter

is dedicated to review the literature in order to position and motivate this work. The chap-

ter will continue by introducing a brief history and the overall infrastructure of MSRRSs

in terms of different methods implemented in hardware and software. Majority of suc-

Chapter 2 – Related Work 15

cessful implemented platforms will be introduced and several developed control algo-

rithms will be presented.

2.1 History

According to (Murata & Haruhisa, 2007), the basic idea of having systems com-

posed of homogeneous building blocks dates back to 1966 by (Neumann, 1966). Howev-

er, as a new trend in robotics, the idea of MSRRS was first introduced in 1987 by

(Fukuda & Nakagawa, 1987) with CEBOT (cellular robot) where each module was in

fact a complete mobile robot that could work individually and independent from other

modules. The design was based on heterogeneous modules (locomotion module, rotation

joint module, prismatic joint module and end-effecter module) and it was demonstrated

that a system composed of all these individual modules is capable of performing several

tasks.

Later on the concept was geared towards simulating the behavior of living biolog-

ical organisms and modules became simpler (like atoms and cells) which could perform

tasks only in groups and eventually leading towards MSRRSs.

2.2 Choices for Physical Platform

Clearly performance of the overall MSRRS depends directly on the design of its

individual modules and so far there have several types of physical platforms proposed by

different researchers in this field. Figure �2-1 illustrates the main characteristics of any

physical platform and each of these categories is briefly explained.

2.2.1 Architectural Topology

MSRRSs are classified into four categories based on their architectural topolo-

gies: mobile, lattice, chain, and hybrid. Figure �2-2 illustrates the main topologies.

In mobile architecture, modules have the ability to move in the environment inde-

pendently from other modules. A universal module in this category shall be equipped

with all necessary components required for motion which is considered to be a disadvan-

tage. Modules can disconnect, move around and reconnect to each other and form a chain

or lattice type of configuration. The best example for this class is the work done by

Chapter 2 – Related Work 16

(Fukuda & Nakagawa, 1988) for CEBOT. Not all researchers agree that this type can be

considered as a MSRRS since modules will be disconnected during the reconfiguration

and therefore other categories gained more popularity.

In lattice architecture modules are more similar to biological cells. In this configu-

ration, modules can fill discrete positions in a grid structure. This architecture offers: pa-

rallel and open-loop control, simple reconfiguration, high potential for scalability, and

relatively easy collision detection (only locally). In general, the lattice configuration per-

forms very well for reconfiguration but not for locomotion. Many platforms have been

designed based on lattice architecture, such as: (Murata, Kurokawa, Yoshida, Tomita, &

Kokaji, 1998) for 3D Fracta robots, (Christensen & Stoy, 2006) for ATRON robots,

(Goldstein, Mowry, Gibbons, Pillai, Rister, & Lee, 2006) for Catom robots, (Rus &

Vona, 2001) for Crystaline robots, (Yoshida E. , Murata, Kurokawa, Tomita, & Kokaji,

1998) for Fracta robots, (Unsal, Kiliccote, & Khosla, 1999) for I-Cube robots, (Gilpin,

Kotay, & Rus, 2007) for Miche robots, (Yoshida E. , Murata, Kokaji, Kamimura, Tomita,

Platforms

Architectural Topology

Homogeneity

Rigidity

Mobile

Lattice

Chain

Hybrid

Homogeneous

Heterogene-

Rigid

Deformable

Compressible

2D

3D

Triangular

Cubical

Hexagonal

Circular

Cubical

Rhombic Dodecahedron

Spherical

Shape

Figure �2-1 Basic Characteristics of Physical Platforms

Chapter 2 – Related Work 17

& Kurokawa, 2002) for Mico Unit robots, (Kotay K. , Rus, Vona, & McGray, 1998) for

Molecule robots, (Inou, Minami, & Koskei, 2003) for Pneumatic robots, (Klavins,

Burden, & Napp, 2006) for Programmable Parts robots, (Hosokawa, et al., 1998) for RI-

KEN Vertical robots and (Suh, Homans, & Yim, 2002) for Telecube robots. Moreover,

some researchers developed lattice based algorithms such as: (Walter, Tsai, & Amato,

2002) for Hexagonal modules, (Fitch, Rus, & Vona, 2000) for Cubical modules,

(Pamecha, Ebert-Uphoff, & Chirikjian, 1997) for Metamorphic hexagonal modules.

a) Lattice (Gilpin,

Kotay, & Rus,

2007)

b) Chain (Yim M. , 1994)

c) Hybrid (Kurokawa,

Kamimura, Yoshida,

Tomita, Kokaji, &

Murata, 2003)

Figure �2-2 Primarily Architectural Topologies

In chain architecture, modules are connected to each other in a serial manner

forming tree (open) or loop (closed) structures. Chain architecture is primarily successful

for motion generation and locomotion. Although modules can also fold and form space

filling structures, self-reconfiguration is computationally very demanding and cannot be

easily performed as it is done in lattice architectures. The chain architecture usually re-

quires a closed loop control for locomotion and is considered to be more versatile as it

can reach continuous locations in the space. Collision detection is relatively more diffi-

cult in this category since global collision detection technique is required, compared to

local collision detection methods used in lattice architecture. The first work in chain ar-

chitecture started by (Yim, Lamping, Mao, & Chase, 1997) for Polypod robots although

it was not considered to be a totally MSRRS since inter-module connections were not au-

tomatic but the newer version (Yim, Goldberg, & Casal, 2000) for PolyBot robots had

automatic connections between modules. Other works in this area include: (Hamlin &

Sanderson, 1998) for Tetrobot modules, (Bojinov, Casal, & Hoag, 2000) for Proteo ro-

Chapter 2 – Related Work 18

bots, (Stoy, Shen, & Will, 2002) for CONRO robots, (Mytilinaios, Desnoyer, Marcus, &

Lipson, 2004) for Molecubes robots and (Casal & Yim, 1999) for self-reconfiguration

planning.

In hybrid architecture, designs are combining both lattice and chain configura-

tions to take advantage of their potential benefits and eliminate their drawbacks. There-

fore, hybrid systems are capable of performing remarkable motion generation needed for

locomotion and are also capable to reconfigure into different configurations. The best ex-

amples of hybrid systems can be seen in the work of (Yoshida E. , Murata, Kamimura,

Tomita, Kurokawa, & Kokaji, 2003) for MTRAN modules and (Salemi, Moll, & Shen,

2006) for SuperBot robots.

2.2.2 Homogeneity

MSRRSs are classified into two major categories: homogeneous and heterogene-

ous as described below.

Homogeneous systems (also known as metamorphic) are composed of identical

modules where all modules have the exact same physical shape, computational power

and communicational capabilities. The main advantage in these systems is referred to as

“module interchangeability” that increases the overall robustness of the system by the

means of redundancy that helps self-repair and self-replication. Another advantage in this

category referrers to simplified control algorithms as it is not necessary to move a specif-

ic module to a specific location as long as all modules are the same. Homogeneous sys-

tems are given a lot of attention in this field such as the work of (Murata, Kurokawa, &

Kokaji, 1994) for Fracta robots, (Pamecha, Ebert-Uphoff, & Chirikjian, 1997) for Meta-

morphic robots, (Yim, Lamping, Mao, & Chase, 1997) for Polypod robots, (Kotay &

Rus, 1998) for Molecule robots, (Hosokawa, et al., 1998) for RIKEN Vertical robots,

(Walter, Welch, & Amato, 2000) for hexagonal modules, (Yoshida, Kokaji, & Murata,

2000) for Micro Unit robots, (Rus & Vona, 2001) for Crystalline robots, (Castano, Behar,

& Will, 2002) for CONRO modules, (Murata, Yoshida, Kamimura, Kurokawa, Tomita,

& Kokaji, 2002) for MTRAN robots, (Suh, Homans, & Yim, 2002) for Telecube robots,

(Mytilinaios, Desnoyer, Marcus, & Lipson, 2004) for Molecubes robots and (Klavins,

Burden, & Napp, 2006) for Programmable Parts robots.

Chapter 2 – Related Work 19

Heterogeneous systems on the other hand provide the freedom of having different

types of modules in the system. The primary advantage of these systems relies on specific

modules functionality. For example, there can be sensor modules, communication mod-

ules, locomotion modules, power modules and etc. in the same system which reduces the

cost of each module as long as all modules are not supposed to be equipped with all these

features. The main drawback in these systems is the loss of redundancy and also more

complex software requirements. Less work has been done on this category which includ-

ing the work of (Fukuda & Ueyama, 1994) for CEBOT robots, (Fitch, Butler, & Rus,

2003) and (Fitch, butler, & Rus, 2005) addressing the reconfiguration planning.

2.2.3 Rigidity

In terms of rigidity there have been three types modules proposed: rigid, deform-

able and compressible as shown in Figure �2-3.

a) Rigid (Zykov,

Mytilinaios, Desnoyer,

& Lipson, 2007)

b) Deformable (Pamecha,

Chiang, Stein, & Chirikjian,
1996)

c) Compressible

(Butler, Fitch, &
Rus, 2002)

Figure �2-3 Rigid, Deformable and Compressible Modules

Most systems developed in this field are based on rigid modules such as the work

of (Fukuda, Ueyama, & Kawauchi, 1990) for CEBOT robots, (Murata, Kurokawa, &

Kokaji, 1994) for Fracta robots, (Hosokawa, et al., 1998) for RIKEN Vertical robots,

(Walter, Welch, & Amato, 2000) for hexagonal modules, (Bojinov, Casal, & Hoag, 2000)

for Proteo robots, (Yim, Duff, & Roufas, 2002) for PolyBot robots, (White, Kopanski, &

Lipson, 2004) for 2D stochastic robots and (White, Zykov, Bongard, & Lipson, 2005) for

3D stochastic robots.

Chapter 2 – Related Work 20

Deformable and compressible modules make the reconfiguration planning easier

by allowing modules to change their shape or size and help other modules to pass among

them and therefore reduce the collision constraint. Work on these modules include,

(Pamecha, Chiang, Stein, & Chirikjian, 1996) for deformable Metamorphic robots, (Rus

& Vona, 2001) for compressible Crystalline robots and (Suh, Homans, & Yim, 2002) for

compressible Telecube robots.

2.2.4 Shape

Two Dimensional Platforms

Work was primarily started with two dimensional modules such as: (Hosokawa, et

al., 1998) for RIKEN Vertical robots, (Casal & Yim, 1999) for reconfiguration planning,

(Tomita, Murata, Kurokawa, Yoshida, & Kokaji, 1999) for Fracta robots, (Chiang &

Chirikjian, 2001) for Metamorphic robots, (Rus & Vona, 2001) for Crystalline robots,

(Inou, Kobayashi, & Koseki, 2002) for Pneumatic robots, (Walter, Welch, & Amato,

2002) for reconfiguration planning of hexagonal modules, (Yoshida E. , Murata, Kokaji,

Kamimura, Tomita, & Kurokawa, 2002) for Micro Unit robots, (White, Kopanski, &

Lipson, 2004) for 2D stochastic robots, (Goldstein, Mowry, Gibbons, Pillai, Rister, &

Lee, 2006) for Catom robots and (Klavins, Burden, & Napp, 2006) for Programmable

Parts robots.

These robots were mainly built in triangular, cubical, hexagonal or circular shapes

as shown in Figure �2-4.

Three Dimensional Platforms

MSRRSs are not limited only to two dimensional planar robots since several three

dimensional robots were proposed afterwards such as the work of (Yim, Lamping, Mao,

& Chase, 1997) for Polypod robots, (Murata, Kurokawa, Yoshida, Tomita, & Kokaji,

1998) for 3D Fracta robots, (Hamlin & Sanderson, 1998) for Tetrobot robots, (Kotay &

Rus, 1999) for Molecule robots, (Kurokawa, Murata, Yoshida, Tomita, & Kokaji, 2000)

for MTRAN robots, (Castano & Will, 2000) for CONRO robots, (Unsal & Khosla, 2000)

for I-Cubes robots, (Yoshida, Kokaji, & Murata, 2000) for Micro Unit robots, (Yim,

Zhang, Lamping, & Mao, 2001) for Proteo robots, (Suh, Homans, & Yim, 2002) for Te-

Chapter 2 – Related Work 21

lecube robots, (Yim, Roufas, Duff, Zhang, Eldershaw, & Homans, 2003) for PolyBot ro-

bots, (Jorgensen, Ostergaard, & Lund, 2004) for ATRON robots, (Zykov, Mytilinaios,

Adams, & Lipson, 2005) for Molecubes robots, (White, Zykov, Bongard, & Lipson,

2005) for 3D Stochastic robots, (Salemi, Moll, & Shen, 2006) for SuperBot robots and

(Gilpin, Kotay, & Rus, 2007) for Miche robots.

a) Programmable Parts (Bishop, et al., 2005)

b) Crystalline (Butler, Fitch, & Rus, 2002)

c) Fracta (Murata, Kurokawa, & Kokaji,

1994)

d) Catom (Goldstein, Mowry, Gibbons, Pillai,

Rister, & Lee, 2006)

Figure �2-4 Two Dimensional Triangular, Cubical, Hexagonal and Circular Platforms

These robots were mainly built in cubical, rhombic dodecahedron and spherical

shapes as shown in Figure �2-5.

Cubical platforms are constructed for MTRAN (Murata, Yoshida, Kurokawa,

Tomita, & Kokaji, 2001), Molecubes (Mytilinaios, Desnoyer, Marcus, & Lipson, 2004)

and 3D stochastic (White, Zykov, Bongard, & Lipson, 2005). Rhombic dodecahedron

shape is used in Polypod (Yim, Lamping, Mao, & Chase, 1997) and Proteo (Bojinov,

Casal, & Hoag, 2000). Finally spherical platforms are built for Molecule (Kotay K. , Rus,

Vona, & McGray, 1998) and ATRON (Jorgensen, Ostergaard, & Lund, 2004).

Chapter 2 – Related Work 22

a) Telecube (Suh, Homans, &

Yim, 2002)

b) Polypod (Yim M. , 1994)

c) Molecule (Kotay

& Rus, 2005)

Figure �2-5 Three Dimensional Cubical, Rhombic Dodecahedron and Spherical Platforms

2.3 Range of Control Algorithms

Effective use of MSRRSs requires a method powerful enough to deal with a pos-

sibly large number of modules so that the combination of the modules will perform the

required action. This is generally referred to as a path planner and controller design and

considered to be one of the key challenges of this field.

The controller can be generally designed for different purposes in different ways

and can have several properties as illustrated in Figure �1-2.

2.3.1 Reconfiguration vs. Locomotion

The planning algorithms are mainly designed for either reconfiguration or loco-

motion.

• Reconfiguration (also referred to as morphology) algorithms generate a sequence

of module movements that transforms the overall shape of the system from an ar-

bitrarily initial configuration to a desired goal configuration. In other words, these

algorithms specify how modules shall rearrange themselves to form different

structures.

• On the other hand, locomotion algorithms are primarily designed to generate mo-

tion for the overall system through different locomotion gaits.

Chapter 2 – Related Work 23

Generally speaking locomotion may seem to be a subset of reconfiguration when

a group of module reconfigure themselves into different intermediate configurations to

move form a starting location towards a goal location. However, it should be noted that

reconfiguration algorithms are only interested in the initial configuration and the goal

configuration; therefore, the shape of the system during reconfiguration is unspecified

and not restricted to any boundaries. While locomotion algorithms take into account the

initial, intermediate and goal configuration of the overall system.

Reconfiguration problem is addressed in several works such as: (Chirikjian,

Pamecha, & Ebert-Uphoff, 1996) for Metamorphic robots, (Murata, Kurokawa, Yoshida,

Tomita, & Kokaji, 1998) for 3D Fracta robots, (Casal & Yim, 1999) for chain modules,

(Shen, Will, & Castano, 1999) for CONRO robots, (Bojinov, Casal, & Hoag, 2000) for

Proteo robots, (Kotay & Rus, 2000) for Molecule robots, (Walter, Welch, & Amato,

2002) for hexagonal modules and (Vassilvitskii, Kubica, & Rieffel, 2002) for Telecube

robots.

Controller

Reconfiguration Locomotion

Stochastic Deterministic

Optimality Processing Execution

Optimal Near Op-

timal

Centralized Hybrid Distributed Serial Parallel

Figure �2-6 Controller Design Hierarchy

Chapter 2 – Related Work 24

Locomotion algorithms are also presented in several works such as: (Yim M. ,

1994) for Polypod robots, (Kotay & Rus, 1999) for Molecule robots, (Stoy, Shen, & Will,

2002) for CONRO robots, (Yoshida E. , Murata, Kamimura, Tomita, Kurokawa, &

Kokaji, 2003) for MTRAN robots, (Kamimura A. , Kurokawa, Yoshida, Tomita, Kokaji,

& Murata, 2004) for MTRAN robots, (Kamimura A. , Kurokawa, Yoshida, Murata,

Tomita, & Kokaji, 2005) for MTRAN robots and (Shen, Krivokon, Chiu, Everist,

Rubenstein, & Venkatesh, 2006) for SuperBot robots.

2.3.2 Deterministic vs. Stochastic

Deterministic reconfiguration algorithms require path planning for every individ-

ual module to be moved from one location into another. Therefore, control algorithm dic-

tates a sequence of module movements. In this type of reconfiguration, the exact loca-

tions of modules need to be known for the algorithm and the time takes for the reconfigu-

ration can be guaranteed.

On the contrary, in stochastic reconfiguration, modules are moved randomly in

the environment and collide with each other. The task of the control algorithm in this case

is to determine whether the collided modules should stay connected after the collision or

not. In this type of reconfiguration, the locations of modules are unknown unless they

collide with the substrate and the reconfiguration time can be statistically guaranteed. It

should be noted that stochastic reconfiguration can help reduce the size of modules since

the required movement actuation can be provided externally from the environment and

does not need to be implemented in the modules.

Deterministic planners are the common controllers designed for MSRRSs and ex-

tensively studied in literature, such as the work of: (Fukuda & Nakagawa, 1988) for CE-

BOT robots, (Fukuda, Buss, Hosokai, & Kawauchi, 1991) for CEBOT robots, (Yim M. ,

1994) for Polypod robots, (Yoshida E. , Murata, Kurokawa, Tomita, & Kokaji, 1998) for

Fracta robots, (Casal & Yim, 1999) for chain robots, (Rus & Vona, 1999) for Crystalline

robots, (Kotay & Rus, 2000) for Molecule robots, (Salemi, Shen, & Will, 2004) for CO-

NRO robots, (Unsal & Khosla, 2001) for I-Cube robots, (Butler, Fitch, & Rus, 2002) for

Crystalline robots, (Walter, Tsai, & Amato, 2002) for hexagonal modules, (Yim, Zhang,

& Duff, 2002) for PolyBot robots, (Vassilvitskii, Kubica, & Rieffel, 2002) for Telecube

Chapter 2 – Related Work 25

robots(Christensen, Ostergaard, & Lund, 2004) for ATRON robots and (Yoshida,

Kurokawa, Kamimura, Tomita, Kokaji, & Murata, 2004) for MTRAN robots.

Stochastic reconfiguration was addressed in few works such as: (White,

Kopanski, & Lipson, 2004) for 2D stochastic robots, (White, Zykov, Bongard, & Lipson,

2005) for 3D stochastic robots and (Klavins, Burden, & Napp, 2006) for Programmable

Parts robots.

2.3.3 Optimal vs. Near Optimal

Optimal sequence of moves from an arbitrary initial configuration to a desired

goal configuration can be found in theory by searching the graph of all possible configu-

rations; however, such search approaches become intractable due to the fact that the

number of possible configurations grows exponentially with the number of modules in

the configuration. Therefore, techniques relying on such a representation require space

and computation proportional to the number of modules, leading to intractable space (sto-

rage) and time complexity.

As a result, near optimal reconfiguration algorithms are gaining more popularity

where heuristics and optimization come together to perform the required reconfiguration.

2.3.4 Centralized vs. Distributed

In the centralized control method, modules are given instructions from a central

unit. This unit needs to have complete global information of all modules and decide on

what motion is required for each module to perform the reconfiguration. This method can

be suitable for MSRRSs that have small number of modules and more optimal reconfigu-

rations paths can be computed since global information is available. The main problem

with this type of controller is the single point of failure; once the controller fails all mod-

ules will fail. Another problem is that this method requires huge communication band-

width once the system is scaled up and in most cases modules require to have fixed ID to

communicate with the central unit. Another problem in this method is that all the compu-

tation is done in one unit and therefore the processing takes more time. Such controllers

are addressed in (Yim M. , 1994) for Polypod robots, (Kotay K. , Rus, Vona, & McGray,

1998) for Molecule robots, (Yoshida E. , Murata, Kaminura, Tomita, Korokawa, &

Chapter 2 – Related Work 26

Kokaji, 2000) for MTRAN robots, (Chiang & Chirikjian, 2001) for Metamorphic robots

and (Nguyen, Guibas, & Yim, 2001) for PolyBot robots.

In the distributed control method, the global reconfiguration of the system is

achieved through the decision and motion of each individual module based on its local

neighborhood information. Distributed controllers are more robust since they do not rely

on a centralized unit and they can be easily scaled up. Moreover, parallel processing

makes the reconfiguration faster in these systems. The absence of a centralized controller

eliminates the need of very high bandwidth communication and the ID’s can be assigned

dynamically. All these come at accost of near-optimal solutions where the reconfigura-

tion cannot be performed as optimal as it’s done in the centralized controllers. There are

many researchers in this field trying to address the distributed controllers design such as:

(Fukuda, Ueyama, & Sekiyama, 1995) for CEBOT robots, (Yoshida E. , Murata, Tomita,

Kurokawa, & Kokaji, 1998) for Fracta robots, (Hosokawa, et al., 1998) for RIKEN Ver-

tical robots, (Casal & Yim, 1999) for chain robots, (Walter, Welch, & Amato, 2000) for

hexagonal modules, (Butler, Byrnes, & Rus, 2001) for Crystalline robots, (Yim, Zhang,

Lamping, & Mao, 2001) for Proteo robots, (Kubica, Casal, & Hogg, 2001), (Lee &

Sanderson, 2001) for Tetrabot robots, (Vassilvitskii, Yim, & Suh, 2002) for Telecube ro-

bots, (Butler, Kotay, Rus, & Tomita, 2002) for Crystalline robots, (Shen, Salemi, & Will,

2002) for CONRO robots, (Yim, Zhang, & Duff, 2002) for PolyBot robots, (Payne,

Salemi, Will, & Shen, 2004) for CONRO robots and (Rosa, Goldstein, Lee, Campbell, &

Pillai, 2006) for lattice based robots.

Many successful controllers designed are considered to be hybrid. In other words,

to provide an optimal reconfiguration plan they are composed of both a centralized part

and a distributed part. These algorithms are usually multiphase or multilayer. In an initial

processing phase they require a global knowledge of the system and the remaining

processing can be done in a distributed manner. For example (Yoshida E. , Murata,

Kamimura, Tomita, Kurokawa, & Kokaji, 2001) proposed a two-layered motion planning

for MTRAN. The first layer is a global flow planner to provide the possible paths and

motion orders and the second layer is a local motion scheme selector based on a rule da-

tabase to make the flow. Another example is (Prevas, Unsal, Efe, & Khosla, 2002) where

Chapter 2 – Related Work 27

a hierarchical motion planning strategy for a distributed bipartite robotic system, I-Cubes

is presented.

2.3.5 Serial vs. Parallel

Depending on the design of the algorithm either single module can move at a time

(serial motion) or several modules can move at a time (parallel motion). When the recon-

figuration time is being minimized by the algorithm, parallel motion has definitely an ad-

vantage over serial motion. On the contrast, when total energy consumption or numbers

of moves are being minimized, parallel motion do not usually have an advantage over

serial motion.

2.4 Modular Self-Reconfiguring Robots

2.4.1 ATRON

ATRON is shown in Figure �2-7 and is developed by (Christensen & Stoy, 2006).

This platform is based on a lattice, spherical, 3D, one degree of freedom module. The

modules are composed of two hemispheres where one can rotate with respect to the other

one. This module weighs around 850g and has a diameter of 11cm.

Each module can connect to other modules through four strong actuated connec-

tors positioned at four sides of the module. The power can also be transmitted through the

same connectors. There are also four infrared communication channels below each of

these connectors to allow local communication among modules.

There are 100 ATRON modules constructed mainly to explore the idea of using

meta-modules to perform reconfiguration.

Chapter 2 – Related Work 28

Figure �2-7 ATRON (Christensen & Stoy, 2006)

2.4.2 Catom

Catom is shown in Figure �2-8 and is developed by (Goldstein, Mowry, Gibbons,

Pillai, Rister, & Lee, 2006). This platform is based on a lattice, circular 2D modules. In

this platform gravity holds the individual modules to a surface and there is no connectors

connecting the modules together. The actuation force is provided by electromagnets. Ca-

tom weighs 105g (50g for the magnets, 55g for everything else) and has a diameter of

44mm and a height of 60mm.

Chapter 2 – Related Work 29

Figure �2-8 Catom (Goldstein, Mowry, Gibbons, Pillai, Rister, & Lee, 2006)

2.4.3 CEBOT

CEBOT stands for Cellular Robot is shown in Figure �2-9 and developed by

(Fukuda & Kawakuchi, 1990). CEBOT is a mobile platform composed of heterogeneous

modules and works in a 2D plane. Each module is designed for a simple function such as

move, bend, rotate and slide.

Several prototypes were developed for this project. In the first prototype Mark I

the modules were cubical and had passive connectors on opposite sides. Latching was

performed using shape memory ally (SMA) actuators. In the other prototypes Mark II and

Mark IV, the connection was performed using a mechanical hook and also a cone shape

mechanical alignment mechanism was added to modules. In Mark III, modules were hex-

agonal shaped and each side had a connector.

a) Mark II b) Mark III
c) Mark IV

Figure �2-9 CEBOT (Fukuda & Kawakuchi, 1990)

Chapter 2 – Related Work 30

2.4.4 CONRO

The CONRO (CONfigurable RObot) is shown in Figure �2-10 and is developed by

(Castano, Behar, & Will, 2002). This platform is based on chain, homogeneous, 3D mod-

ules.

Each module is equipped with a female connector on one side and three male

connectors on the other side. Shape memory alloys are used to lath the connectors. Each

of these connectors has also an infrared transceiver used for local communication. These

connectors can rotate with respect to the body in two orthogonal orientations.

The rectangular bounding box of each module is around 10cm x 4.5cmx 4.5cm

and the module weighs around 100grams.

Figure �2-10 CONRO (Castano, Behar, & Will, 2002)

2.4.5 Crystalline

Crystalline robots are shown in Figure �2-11 and developed by (Rus & Vona,

2001). This platform is based on lattice, homogeneous, compressible, cubical, 2D mod-

ules.

The main advantage in this platform is that modules are not restricted to move on-

ly on the surface of the platform but they can also move through the structure. This is

done using an inch-worm method when two neighboring modules scrunch into a single

grid space and leave a free space behind for the moving module to pass through it. This

mechanism has lead to a Melt-Grow type of algorithm where the modules will first Melt

to provide space for the moving modules and then Grow.

Chapter 2 – Related Work 31

Figure �2-11 Crystalline (Rus & Vona, 2001)

2.4.6 Fracta / 3D Fracta

Fracta is shown in Figure �2-12 and developed by (Murata, Kurokawa, & Kokaji,

1994). This platform is based on lattice, homogeneous, rigid, hexagonal, 2D modules.

Figure �2-12 Fracta (Murata, Kurokawa, & Kokaji, 1994)

The platform was later modified to work in a three dimensional environment as

shown in Figure �2-13.

Figure �2-13 3D Fracta (Murata, Kurokawa, Yoshida, Tomita, & Kokaji, 1998)

Chapter 2 – Related Work 32

2.4.7 I-Cubes

I-Cubes platform is shown in Figure �2-14 and developed by (Unsal & Khosla,

2000). This platform is based on three dimensional lattice modules and consists of pas-

sive cubes and active links. The links have two male connectors that can connect to cubes

and relocate them.

Figure �2-14 I-Cubes (Unsal & Khosla, 2000)

2.4.8 Metamorphic

Metamorphic robots are shown in Figure �2-15 and developed by (Chirikjian G. ,

1994). The platform is based on lattice, homogeneous, deformable, hexagonal, 2D mod-

ules.

Figure �2-15 Metamorphic (Chirikjian G. , 1994)

Chapter 2 – Related Work 33

2.4.9 Miche

Miche is shown in Figure �2-16 and developed by (Gilpin, Kotay, & Rus, 2007).

This platform is based on lattice 3D modules and has demonstrated robust performance

for over hundreds of experiments for self-assembly and disassembly. Modules are

equipped with magnetic switch connectors and can communicate locally via infrared.

Figure �2-16 Miche (Gilpin, Kotay, & Rus, 2007)

2.4.10 Micro Unit

Micro unit is shown in Figure �2-17 and developed by (Yoshida E. , Murata,

Kokaji, Kamimura, Tomita, & Kurokawa, 2002). This platform is based on lattice, ho-

mogeneous, 2D modules. The main concept of the design is the miniaturization using

shape memory alloy for both actuations and connections. A 3D module can also be im-

plemented combining two of the 2D modules.

Chapter 2 – Related Work 34

Figure �2-17 Micro Unit (Yoshida E. , Murata, Kokaji, Kamimura, Tomita, & Kurokawa, 2002)

2.4.11 Molecube

Molecube is shown in Figure �2-18 and developed by (Zykov, Mytilinaios, Adams,

& Lipson, 2005). This platform is based on chain, homogeneous, cubical, 3D modules.

Each module has one degree of freedom normal to its longest diagonal. The inter-module

connection is based on electromagnets. Main power is supplied from a power base and it

is passed through the face of modules. Each module is around 650g and 10cm long edge.

The platform was primarily tested for self-replication algorithms.

Figure �2-18 Molecube (Zykov, Mytilinaios, Adams, & Lipson, 2005)

Chapter 2 – Related Work 35

2.4.12 Molecule

The Molecule is shown in Figure �2-19 and developed by (Kotay K. , Rus, Vona,

& McGray, 1998). This platform is based on lattice, homogeneous, spherical, 3D mod-

ules. Each Molecule is composed of two spherical atoms linked by a rigid bond connec-

tion. Atoms can rotate 180 degrees relative to the bond.

Figure �2-19 Molecule (Kotay & Rus, 2005)

2.4.13 MTRAN

MTRAN (Modular Transformer) is shown in Figure �2-20 and developed by

(Murata, Yoshida, Kamimura, Kurokawa, Tomita, & Kokaji, 2002). This platform is

based on hybrid, homogeneous, cubical, 3D modules. There are both local and global

communication capabilities available in these modules.

2.4.14 Polypod / PolyBot

Polypod is shown in Figure �2-21 and developed by (Yim M. , 1993). The platform

is based on chain, rigid, rhombic dodecahedron, 3D modules. There are basically two

types of modules in the system: segment and node. Segments have two connections and

two degrees of freedom while nodes have six connections and no degrees of freedom.

Chapter 2 – Related Work 36

Figure �2-20 MTRAN (Kamimura A. , Kurokawa, Yoshida, Tomita, Murata, & Kolaji, 2003), (Kurokawa,

Kamimura, Yoshida, Tomita, Kokaji, & Murata, 2003)

The designed was not considered completely a MSRRS since the connections

were not automated and therefore it was followed by its successor PolyBot shown in Fig-

ure �2-22 developed by (Yim, Duff, & Roufas, 2000).

Figure �2-21 Polypod(Yim M. , 1993)

Chapter 2 – Related Work 37

This platform is based on chain, rigid, 3D modules. Each module has one rota-

tional degree of freedom and the inter-module connections are performed using shape

memory alloy. Communication is done through IR transceivers. This platform was very

successful in demonstrating several locomotion gaits including a rolling type with a

1.6m/s speed.

Figure �2-22 PolyBot (Yim, Duff, & Roufas, 2000)

2.4.15 Programmable Parts

Programmable Parts platform is based on lattice, homogeneous, triangular, 2D

modules and is shown in Figure �2-23. This platform is developed by (Klavins, Burden, &

Napp, 2006) to basically understand how to program stochastic self-assembly. Modules

are moved randomly on an air-table and when they collide with each other they decide

whether to stay connected or not based on their local communication and decisions.

Figure �2-23 Programmable Parts(Klavins, Burden, & Napp, 2006)

Chapter 2 – Related Work 38

2.4.16 RIKEN Vertical

RIKEN Vertical is shown in Figure �2-24 and developed by (Hosokawa, et al.,

1998). This platform is based on lattice, homogeneous, rigid, cubical, 2D modules. Each

module has two degrees of freedom one prismatic and one revolute and the bonding sides

are covered with magnetic sheets.

Figure �2-24 RIKEN Vertical (Hosokawa, et al., 1998)

2.4.17 Stochastic (2D/3D)

Stochastic platforms are shown in Figure �2-25 and developed by (White,

Kopanski, & Lipson, 2004) for two dimensional and (White, Zykov, Bongard, & Lipson,

2005) for three dimensional. These platforms are based on rigid, triangular/cubical, 2/3D

modules.

Figure �2-25 Stochastic (White, Kopanski, & Lipson, 2004), (White, Zykov, Bongard, & Lipson, 2005)

Chapter 2 – Related Work 39

2.4.18 SuperBot

SuperBot is shown in Figure �2-26 and developed by (Shen, Krivokon, Chiu,

Everist, Rubenstein, & Venkatesh, 2006). This platform is based on hybrid, homogene-

ous, 3D modules. The modules have three degree of freedom (pitch, yaw and roll) and the

inter-module connection is based on six identical dock connectors which are also used for

communication. This platform is primarily developed for real world applications and

demonstrated an excellent performance.

Figure �2-26 SuperBot (Shen, Krivokon, Chiu, Everist, Rubenstein, & Venkatesh, 2006)

2.4.19 Telecube

Telecube is shown in Figure �2-27 and developed by (Suh, Homans, & Yim,

2002). This platform is based on lattice, homogeneous, cubical, 3D modules. It is consi-

dered as the 3D version of the Crystalline platform and it uses permanent magnets for

connections.

Chapter 2 – Related Work 40

Figure �2-27 Telecube (Suh, Homans, & Yim, 2002)

Chapter 3 – Physical Platform 41

 Chapter 3

 3 HexBot: Physical Platform

Designing a universal module for a MSRRS requires a deep understanding of the

ultimate goals in the research area. In 3.4 physical implementation challenges were brief-

ly introduced. In my point of view the main implementation challenge to be overcome is

the scalability which in turn enforces other challenges as well. There are primarily two

scalability issues 1) reduce the size 2) increase the quantity. Eventually the size of each

module should be scaled down to a level that a complete system composed of such mod-

ules can form structures with a reasonable resolution. Meanwhile, the number of modules

in the system shall be scaled up to fill the required structure.

3.1 Design Criteria

Considering scalability issues and imagining a huge collection of tiny modules

working together, the following design criteria were considered:

1) Extremely fast actuation for modules so that a large number of them can be

moved in an acceptable amount of time

2) Quick and strong inter-module connection

3) Mass production of the universal module shall be extremely cost effective

Chapter 3 – Physical Platform 42

4) Power consumption shall be as low as possible to keep the system working for a

long period of time. Ideally no motion for a module should result in no power re-

quired for its actuators or connectors to maintain its status

5) Suitable shape to form an arbitrary structure with minimum gaps

6) Homogeneity offers module interchangeability which is preferred for serf-repair

and helps reconfiguration algorithms to perform faster

Taking the above criteria into considerations immediately eliminates the idea of

having a regular robot with DC motors and wheels as an individual module to move

around its neighbors. Perhaps, ultimately each module should look like a charged particle

that can be moved quickly in a magnetic field to fulfill the above requirements.

3.2 Mechanical Design

The module is primarily designed to satisfy the above requirements and the sys-

tem is developed for two dimensional environments.

3.2.1 Universal Module

Inspiring form natural structures such as bees nest, crystal molecule structures and

etc, it was decided to have hexagonal shaped modules. The main reason behind having

hexagons as building blocks of the complete MSRRS is their ability of densely filling

structures as shown in Figure �3-1.

Furthermore, the system is designed to be homogenous allowing module inter-

changeability to make reconfiguration or auto repair faster and easier. Figure �3-2 illu-

strates the designed and the implemented HexBot module.

a) Bees nest

b) Crystal structure of hexagonal RMnO3

Chapter 3 – Physical Platform 43

c) Hexagonal ice

d) Hexagonal water 6 H2O

Figure �3-1 Natural Hexagonal Structures

a) Designed module – bottom view

b) Designed module – top view

c) Implemented HexBot module

Figure �3-2 HexBot Structure

Chapter 3 – Physical Platform 44

As shown in Figure �3-3 the edges of the HexBot modules were further modified to

provide a mechanical self-aligning mechanism.

a) Designed sine-shape curve

b) Implemented mechanical self-aligning mechanism

Figure �3-3 Self-Aligning Mechanism

3.2.2 Actuators

Electromagnets are chosen to provide the required actuation for the modules. This

choice provides quick actuation at a relatively cost effective manner.

As shown in Figure �3-3, each side of the module is equipped with an electromag-

net E-05-125 from Magnetic Sensor Systems with a holding force plotted as a function of

input power in Figure �3-4:

Figure �3-4 Hold Force vs. Input Power

Chapter 3 – Physical Platform 45

One module by itself is not able to perform any motion; however, a combination

of two modules with their magnetic forces makes the motion possible. In order to per-

form any rotation there will be an initial repulsion between two adjacent sides of the

modules, followed by an attraction between the other two sides of the modules as shown

in Figure �3-5.

Figure �3-5 HexBot Actuators

As shown in Figure �3-6, each module is equipped with three ball transfer units

(passive elements) providing an omni-directional motion the module.

a) Ball transfer units on the module

b) Ball transfer units – bottom view

Figure �3-6 Ball Transfer Units

3.2.3 Inter-Module Connections

One of the most limiting factors for fast module movements is related to inter-

module connections. Most designs are suffering from either slow or weak connection

Chapter 3 – Physical Platform 46

mechanisms. In HexBot, in order to provide a strong as well as quick connection between

two modules, pull type solenoids are utilized. Each edge of the module is equipped with a

solenoid S-69-38 (active actuated male connector) from Magnetic Sensor Systems in ad-

dition to a passive female connector as shown in Figure �3-7

Figure �3-7 Inter-module Connections

3.2.4 Motion through Rotation

The relocation of a module is provided by its rotation around its neighboring

modules. As mentioned before, one module by itself is not able to perform any motion;

however, a combination of two modules with their magnetic forces makes the motion

possible. Moreover, there should be some precise delays and timings for the actuation of

the electromagnets and solenoids in order to perform a consistent and complete rotation.

The embedded microcontroller of HexBot specifies these delays and controls the actua-

tors accordingly. These timings are sent manually to the modules and were calculated

based on the dynamic model of the system.

Table �3-1 specifies the required steps for the mobile module to rotate around its

substrate when there are no other modules in their neighborhood. In this platform one

complete rotation takes nearly 220 ms with an angular speed of 9.52 rad/s. This speed is

considered to be relatively fast compared to other platforms.

Chapter 3 – Physical Platform 47

Table �3-1 Required Rotation Steps (Only 2 modules with no other neighbors)

Steps

Rotation CW

(around joint i=4)

Rotation CCW

(around joint i=5)

Mobile Substrate

No

Neighbors

Mobile Substrate

No

Neighbors

- All Jx Close All Jx Close All Jx Close All Jx Close

- All Sx Off All Sx Off All Sx Off All Sx Off

1 Ji+1 Open Ji-3,Ji-2 Open Ji, Ji-1 Open -

2
Delay

t1 = 80 ms

Delay

t1 = 80 ms

Delay

t1 = 80 ms

Delay

t1 = 80 ms

3 Si-1, Si -ve Si-3 -ve, Si-2 +ve Si-1, Si -ve Si+2 –ve, Si+1 +ve

4
Delay

t2= 45 ms

Delay

t2= 40 ms

Delay

t2= 40 ms

Delay

t2= 45 ms

5 Ji Open All Jx Close Ji Close Ji+1,Ji+2 Open

6
Delay

t3= 90 ms

Delay

t3= 95 ms

Delay

t3= 95 ms

Delay

t3= 90 ms

7 All Jx Close - All Jx Close All Jx Close

8 All Sx Off All Sx Off All Sx Off All Sx Off

Note that before any module movements all actuators (sides and joints) are off

and after completing the rotation they will be switched off as well. This will ensure min-

imum power consumption for modules when the system is not changing. The delay tim-

ings (t1, t2 and t3) are set such that the required actuations take place precisely. These tim-

ings are sent manually to the modules as will be explained at the end of this chapter.

Chapter 3 – Physical Platform 48

Table �3-2 specifies the same rotation steps required to be taken if there exist other

modules in the neighborhood apart from the substrate.

Table �3-2 Required Rotation Steps (2 modules with other neighbors)

Steps

Rotation CW

(around joint i=4)

Rotation CCW

(around joint i=5)

Mobile Substrate
Other

Neighbors
Mobile Substrate

Other

Neighbors

- All Jx Close All Jx Close All Jx Close All Jx Close All Jx Close All Jx Close

- All Sx Off All Sx Off All Sx Off All Sx Off All Sx Off All Sx Off

1
All Jx except

Ji Open
Ji-3,Ji-2 Open Jn Open All Jx Open - Jn Open

2
Delay

t1 = 80 ms

Delay

t1 = 80 ms
-

Delay

t1 = 80 ms

Delay

t1 = 80 ms
-

3 Si-1, Si -ve Si-3 -ve, Si-2 +ve - Si-1, Si -ve Si+2 –ve, Si+1 +ve -

4
Delay

t2= 45 ms

Delay

t2= 40 ms
-

Delay

t2= 40 ms

Delay

t2= 45 ms
-

5 Ji Open All Jx Close - Ji Close Ji+1,Ji+2 Open -

6
Delay

t3= 90 ms

Delay

t3= 95 ms
-

Delay

t3= 95 ms

Delay

t3= 90 ms
-

7 All Jx Close - Jn Close All Jx Close All Jx Close Jn Close

8 All Sx Off All Sx Off - All Sx Off All Sx Off -

Figure �3-8 illustrates these different steps required to perform a single module ro-

tation. As can be seen in this figure, during each rotation both solenoids (mobile and sub-

strate) are utilized.

Chapter 3 – Physical Platform 49

a) Individual module

b) Initial configuration – Joints 3 and 4 open

c) Joints 1, 3 and 4 open – Rotation around

joint 2

d) Joints 1 and 4 open – Switching the pivot

joint from 2 to 3

e) Joints 1, 2 and 4 open – Rotation around

joint 3

f) Joints 1 and 2 open – Fixing the module

by joints 3 and 4
Figure �3-8 HexBot Motion

1
2

3
4

Chapter 3 – Physical Platform 50

3.3 Electrical System

The electrical system is designed based on the mechanical platform requirements.

This system is basically responsible to get the power from a power base and switch on

and off the required actuator or joint based on the control algorithm. The design is based

on a modular multilayer approach as shown in Figure �3-9. Such an approach is extremely

open and flexible, since each module (or layer) can be modified individually. At the same

time, when there is a failure in the system, only the faulty module needs to be replaced.

The first layer is primarily responsible to provide the module with the main power

supply, and it also acts as a mechanical support for joints and actuators. The second layer

receives the main power from layer 1 and regulates it into different voltages required for

the system. Upon receiving a control signal from layer 4, layer 3 will drive required actu-

ators and solenoids. Layer 5 is mainly dedicated for both inter-module and centralized

user-module communication. Each of these layers is briefly discussed below.

Layer 5: Communication

Layer 4: Control

Layer 3: Drive

Layer 2: Power

Layer 1: Power Connection & Mechanical Support

Figure �3-9 Multilayer Electrical System Design for HexBot

Chapter 3 – Physical Platform 51

3.3.1 Design

The required circuits to be designed were the followings:

a) Power

b) Drive

c) Control

d) Communication

A proper power circuit design plays an important role in the electrical system

since all actuators are inductive loads and therefore generate huge noise during transi-

tions. If the noise is not filtered properly it can damage other components of the system

and it may also cause the complete system fail by restarting the microcontrollers during

the transitions. The circuit was designed as illustrated in Figure �3-10.

Figure �3-10 Power Circuit Schematic

Next a simple drive circuit was designed as shown in Figure �3-11. As can be

seen, electromagnets are switched on and off with different polarities using relays and the

coils of the relays are actuated through transistor arrays. Solenoids are switched on and

off through the use of a transistor array directly. Each solenoid uses three channels of a

transistor array to obtain sufficient current for actuation.

Chapter 3 – Physical Platform 52

Figure �3-11 Drive Circuit Schematic

The control and communication microcontrollers were designed as shown in Fig-

ure �3-12.

Figure �3-12 Microcontroller Design Schematic

Chapter 3 – Physical Platform 53

More details about the microcontrollers are provided in the 3.4.

Finally the communication board (based on infrared) was designed as illustrated

in Figure �3-13.

Figure �3-13 IR Communication Schematic

In this design a single serial port of the communication microcontroller with a

transmit (TX) and a receive (RX) pins is connected to seven infrared transceivers using a

multiplexer and a demultiplexer. The signals are modulated (38kHz) to eliminate the en-

vironment noise.

All these designs were tested on bread boards as shown in Figure �3-14 before pro-

ceeding to the printed circuit board (PCB) design.

Figure �3-14 Breadboard Verification

Chapter 3 – Physical Platform 54

In the remaining of this chapter all different components of the electrical system

are explained in details.

3.3.2 Power Base

In order to provide power to the modules a power base is designed as shown in

Figure �3-15.

Figure �3-15 Power Base

The based is composed of strips of aluminum connected alternatively to positive and

negative of the main supply. Modules can freely move on the base using their ball trans-

fer units and get the required power from the base. Providing power form the base helps

the modules to be lighter by not carrying a separate battery. Moreover, the base can also

be used to illustrate the coordinate system in addition to location and orientation of mod-

ules as shown in Figure �3-16.

+26V

Ground
Isolation

Chapter 3 – Physical Platform 55

Figure �3-16 Grids and Coordinate System

3.3.3 Layer 1 – Power Connection & Mechanical Support

This layer is a single sided printed circuit board (PCB) dedicated to transfer the

main power supply from the base to the power unit. The shape of this PCB is also de-

signed to match the physical module shape to act as a mechanical support for module

components. This layer is designed in AutoCAD as illustrated in Figure �3-17.

Figure �3-17 Base Layer Design

As can be seen in Figure �3-17, the outer shape of the PCB forms the base of the

module and the holes (specified by crosses) are drilled to mount the components such as

ball transfer units, electromagnets and solenoids. The six holes located at the edges of the

board are also the passive female connectors for solenoids as can be seen in Figure �3-18.

Chapter 3 – Physical Platform 56

Figure �3-18 Manufactured Base Layer

Figure �3-19 illustrates the spring-loaded pins located at the edges of the module

transferring the main power supply to the power unit.

Figure �3-19 Power Transfer to the Module

The width of the power strips on the ground and their spacing is designed in a

way to ensure that at each location and orientation at least one of the six spring-loaded

pins contacts the negative supply and at least another one contacts the positive supply.

Chapter 3 – Physical Platform 57

3.3.4 Layer 2 – Power Unit

Each spring-loaded pin is either connected to the positive supply or negative

supply or neither of them (if connected to the isolating material). The power unit is

equipped with three full bridges connected to these pins and provides a positive and nega-

tive supply. This supply is further divided for the following resources:

1) Electromagnet Supply: 24V, 4A

2) Solenoid Supply: 6V, 500mA

3) Drive Circuit Supply: 12V, 500mA

4) Microcontroller and Communication Supply: 9V, 1A

Only the drive circuit supply is permanently fixed to 12V. Other supplies are de-

signed such that they can be manually adjusted if required using trimmers. The supply for

the electromagnets is the main supply minus the power dissipation of the full bridges

(around 1.7V) and the supplies for the solenoid and microcontroller can be adjusted using

two trim potentiometers.

The PCB is designed as shown in Figure �3-20.

Figure �3-20 Power Circuit Design

The circuit is manufactured as shown in Figure �3-21. All supplies are perfectly fil-

tered because of the inductive nature of the actuators and their corresponding transition

noises.

Chapter 3 – Physical Platform 58

a) Power unit

b) Power unit installed on the module

Figure �3-21 Manufactured Power Unit

3.3.5 Layer 3 – Drive Circuit

In order to switch on each electromagnet that requires high current, a pair of re-

lays each with two parallel form C contacts is used. The control signals coming from the

control board are switching the relays through a transistor array. The PCB is designed as

shown in Figure �3-22.

Chapter 3 – Physical Platform 59

Figure �3-22 Drive Circuit Design

Note that the drive circuit is designed to drive only the electromagnets not the so-

lenoids. The solenoids do not require high power and can be switched directly from the

microcontroller through a transistor array. The PCB is manufactured in a double sided

board as shown in Figure �3-23.

a) Drive circuit

b) Drive circuit installed on the power unit

c) Drive circuit installed on the module

Figure �3-23 Manufactured Drive Circuit

Chapter 3 – Physical Platform 60

3.3.6 Layer 4 – Control Board

ATMEGA 162 of the AVR family from Atmel is chosen to send control signals to

the drive circuit and actuate the required solenoids and magnets. This microcontroller

comes with two serial ports, one port is linked to the other microcontroller on the com-

munication board to receive and execute the commanded functions. The other port is pre-

served for testing and debugging purposes. The PCB was designed as shown in Figure

�3-24.

Figure �3-24 Control Board Design

The PCB is manufactured as shown in Figure �3-25. There are eight configuration

micro switches incorporated into this board that can be used to configure different func-

tionality of the board such as timings, operation modes and etc.

3.3.7 Layer 5 – Communication

The last layer is dedicated to provide both inter-module communication and cen-

tral communication to the PC. This layer is equipped with seven infrared transceivers; six

of them are located on the sides of the hexagonal module and one is located in the center

of the module for central communication. One serial port of the ATMEGA 162 micro-

controller on this board is connected to all the seven infrared transceivers through a set of

multiplexer and demultiplexer. The other serial port of the microcontroller is linked to the

control board microcontroller to send the required control commands.

Chapter 3 – Physical Platform 61

a) Control board

b) Control board installed on drive circuit

c) Control board installed on the module

Figure �3-25 Manufactured Control Board

The communication board comes also with two Serial Peripheral Interface (SPI)

ports; one for the control board microcontroller and the other for the communication

board microcontroller. Both microcontrollers can be easily reprogrammed by In-System

Programming (ISP) feature through these ports. One of the SPI ports can also be utilized

for wireless communication which is planned to be added in the next stage of the project.

The board was designed as shown in Figure �3-26.

Chapter 3 – Physical Platform 62

Figure �3-26 Communication Board Design

The PCB is manufactured as shown in Figure �3-27.

a) Communication board

Communication board installed

Figure �3-27 Manufactured Communication Board

As can be noticed the communication board is sized to be exactly the same size as

the power base grids.

As shown in Figure �3-28 all these different layers are connected through male

headers and can easily be disconnected or replaced for maintenance and future modifica-

tions.

Chapter 3 – Physical Platform 63

Figure �3-28 Multilayer PCBs

3.4 Processing Unit

The processing unit in the HexBot is primarily responsible to provide:

1. Inter-module communication

2. Centralized communication with the PC

3. Activate the solenoids to open or close the joints

4. Actuate the magnets to provide motion

5. Indicate the status of the module using several LEDs

3.4.1 Microcontrollers

Two ATMEGA 162 microcontrollers from Atmel form the core for control and

communication of HexBot. One is located in the control board and the other one in the

communication board. These microcontrollers are responsible for actuation and commu-

nication (inter-module and centralized) and have the following features:

• High-performance, Low-power AVR® 8-bit Microcontroller

• Advanced RISC Architecture

o 131 Powerful Instructions – Most Single-clock Cycle Execution

o 32 x 8 General Purpose Working Registers

o Fully Static Operation

o Up to 16 MIPS Throughput at 16 MHz

• High Endurance Non-volatile Memory segments

o 16K Bytes of In-System Self-programmable Flash program memory

Chapter 3 – Physical Platform 64

o 512 Bytes EEPROM

o 1K Bytes Internal SRAM

o In-System Programming by On-chip Boot Program

• JTAG (IEEE std. 1149.1 Compliant) Interface

• Peripheral Features

o Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes

o Two 16-bit Timer/Counters with Separate Prescalers, Compare Modes, and

Capture Modes

o Real Time Counter with Separate Oscillator

o Six PWM Channels

o Dual Programmable Serial USARTs

o Master/Slave SPI Serial Interface

• Special Microcontroller Features

o Power-on Reset and Programmable Brown-out Detection

o Internal Calibrated RC Oscillator

• I/O and Packages

o 35 Programmable I/O Lines

More details about Atmega162 microcontrollers are available in the datasheets

available on Atmel website.

Table �3-3 shows the port configuration for the communication microcontroller.

The first column is the microcontroller pin number and second column corresponds to the

port number. Column three indicates connections between this layer (communication

layer) and other layers which in this case is only the control layer. The last column speci-

fies the assigned functionality of each pin.

Table �3-3 Port Configuration (Communication Microcontroller)

Microcontroller
Communication Board

Connections Functions

Pin Port Control

1 PB0 COM SPI (4)

2 PB1

3 PB2 (RX1) IR - RX

Chapter 3 – Physical Platform 65

4 PB3 (TX1) IR - TX

5 PB4 (SS) COM SPI (8)

6 PB5 (MOSI) COM SPI (3)

7 PB6 (MISO) COM SPI (9)

8 PB7 (SCK) COM SPI (2)

9 - (RST) COM RST

10 PD0 (RX0) Control 9 UART - CONTROL BOARD

11 PD1 (TX 0) Control 8 UART - CONTROL BOARD

12 PD2

13 PD3

14 PD4 Joint 6 LED

15 PD5 Side 6 (2) LED

16 PD6 Side 6 (1) LED

17 PD7 Joint 1 LED

18 - (XTAL1)

19 -(XTAL2)

20 -(GND)

21 PC0 Side 5 (2) LED

22 PC1 Side 5 (1) LED

23 PC2 Joint 5 LED

24 PC3 Side 4 (1) LED

25 PC4 Side 4 (2) LED

26 PC5 Joint 4 LED

27 PC6 Side 3 (1) LED

28 PC7 Side 3 (2) LED

29 PE2 Joint 3 LED

30 PE1 Side 2 (1) LED

31 PE0 Side 2 (2) LED

32 PA7 Joint 2 LED

33 PA6 Side 1 (1) LED

34 PA5 Side 1 (2) LED

35 PA4

36 PA3

37 PA2 Selector A

38 PA1 Selector B

39 PA0 Selector C

Chapter 3 – Physical Platform 66

40 -(VCC)

Similarly Table �3-4 shows the port configuration for the control microcontroller.

Note that this layer is interfaced to both drive and communication layers.

Table �3-4 Port Configuration (Control Microcontroller)

Microcontroller
Control Board

Connections Functions

Pin Port Communication Drive

1 PB0 Drive 7 Side 1 (1)

2 PB1 Drive 6 Side 5 (1)

3 PB2 (RX1) Comm 1 UART RX

4 PB3 (TX1) Comm 2 UART TX

5 PB4 (SS) Comm 3 Drive 5 Side 4 (2)

6 PB5 (MOSI) Comm 4 Drive 4 Side 5 (2) - CTR SPI (3) - MOSI

7 PB6 (MISO) Comm 5 Drive 3 Side 3 (1) - CTR SPI (9) - MISO

8 PB7 (SCK) Comm 6 Drive 2 Side 6 (1) - CTR SPI (2) - SCK

9 - (RST) Comm 7 CTR RST

10 PD0 (RX0) Comm 8 UART - COMM BOARD

11 PD1 (TX 0) Comm 9 UART - COMM BOARD

12 PD2 Drive 14 Side 6 (2)

13 PD3 Drive 13 Side 2 (1)

14 PD4 Drive 12 Side 4 (1)

15 PD5 Drive 11 Side 2 (2)

16 PD6 Drive 10 Side 1 (2)

17 PD7 Drive 9 Side 3 (2)

18 - (XTAL1)

19 -(XTAL2)

20 -(GND)

21 PC0 DIP 1

22 PC1 DIP 2

23 PC2 DIP 3

24 PC3 DIP 4

25 PC4 DIP 5

26 PC5 DIP 6

27 PC6 DIP 7

Chapter 3 – Physical Platform 67

28 PC7 DIP 8

29 PE2

30 PE1

31 PE0

32 PA7

33 PA6

34 PA5 Joint 3

35 PA4 Joint 4

36 PA3 Joint 2

37 PA2 Joint 1

38 PA1 Joint 6

39 PA0 Joint 5

40 -(VCC)

3.4.2 Internal Module Connections

The primary communication functionalities of each module are listed below and

illustrated in Figure �3-29.

1. IR transceivers

2. Communication between the two microcontrollers

Control

Microcontroller

Communication
Microcontroller

IR

Transceivers

UART1

3

2

1

SPI1

SPI2

4

Figure �3-29 Internal Module Connections

Chapter 3 – Physical Platform 68

3. UART1 connection

4. SPI connection

3.4.3 IR Transceivers

As mentioned earlier in layer 5, infrared (IR) transceivers are used for both inter-

module and centralized communication. The infrared emitter is transmitting a 38 kHz

modulated signal to reduce the effect of the environmental noise. Similarly the receiver is

equipped with band pass filter centered at 38 kHz to reject any other unfavorable signals

as illustrated in Figure �3-30.

Figure �3-30 Modulated IR Signal

The serial port of the communication microcontroller is connected through a set

of multiplexer and demultiplexer to the seven IR transceivers as shown in Table �3-5

38kHz Pulse

Serial Data

Modulated Pulse Being Transmitted

Chapter 3 – Physical Platform 69

Table �3-5 IR Channel Selector

IR TRANSCEIVER

Selector RX TX

C B A MUX PIN SIDE DEMUX PIN TA (PIN) SIDE

L L L Y0 13 1 Y0 15 16 1

L L H Y1 14 6 Y1 14 15 6

L H L Y2 15 Center Y2 13 14 Center

L H H Y3 12 2 Y3 12 13 2

H L L Y4 1 5 Y4 11 12 5

H L H Y5 5 3 Y5 10 11 3

H H L Y6 2 4 Y6 9 10 4

In this table the first three columns are the outputs from the microcontroller to

specify which channel needs to be selected. The channel shall be either one of the six

sides or the center. It is clear that it is not possible to connect the serial port of the micro-

controller to more than one channel at a time in this configuration. The next three col-

umns represent the seven IR receivers connection to the microcontroller RX pin through

the multiplexer which its pin numbers are listed. The last four columns correspond to the

connection of the TX pin of the microcontroller to the demultiplexer which is further

connected to the seven IR emitters through a transistor array (TA).

3.4.4 Handshaking

The serial communication between the two microcontrollers is required to provide

the transmission of data from the communication layer to the control board to achieve the

required actuation. To ensure that this connection is available and active, once the mod-

ule is switched on, both microcontrollers start the process of handshaking by transmitting

specific packets to each other and respond accordingly. If the process is successful the

user will find a new module on the graphical user interface mentioning that the module’s

microcontrollers are ready.

Chapter 3 – Physical Platform 70

3.4.5 Testing and Debugging

UART1 provides direct access to control board for testing and debugging purpos-

es. It can also be used to send control commands directly to the module without the use of

the communication layer.

3.4.6 Reprogramming

SPI1 and SPI2 are used to reprogram the microcontrollers through the In-System

Programming (ISP) feature and they can also be used for wireless communication

planned to be added in the next stage.

The fuse bits of both microcontrollers shall be set as shown in Table �3-6 before

programming. Note that JTAG is not enabled in this configuration since the JTAG pins

are used for other purposes.

Table �3-6 Microcontrollers Fuse Bits Settings

Fuse bits: 0XFF, 0XD9, 0X62

Brown-out detection disabled BODLEVEL=111

Boot flash size = 1024 words and start address = $1C00 BOOTSZ=00

Divide clock by 8 internally CKDIV8=0

Int RC Osc. Start up time: 6CK + 65ms CKSEL=0010 SUT=10

Reprogramming of the microcontrollers can be done following these steps:

1. Switch off the module by placing it outside the power base

2. Set the programming jumper for the corresponding microcontroller (Figure �3-31

a)

3. Connect the ISP cable from the STK500 to the corresponding SPI port of the

module

4. Connect the power cable from the STK500 to the UART1 port of the module

5. Turn on STK500 board

6. Download the program (Ctr+F9)

7. Turn off STK500 board

8. Set the programming jumper back (Figure �3-31 b)

Chapter 3 – Physical Platform 71

9. Switch on the module by placing it in the power base

Figure �3-31 illustrates an example of how to set the programming jumper to re-

program the control microcontroller.

a) Set for programming the control board

b) Set for running the module

Figure �3-31 Setting the Programming Jumper

3.5 Graphical User Interface

A simple Graphical User Interface (GUI) is developed using Visual Basic (VB).

This interface is basically used to send different messages to the modules and receive

their status.

3.5.1 Communication with the MSRRS

All modules are interfaced to the computer through their IR transceivers as illu-

strated in Figure �3-29. For testing or debugging purposes one module can also be inter-

faced to the GUI using its UART1 connection.

From the computer side, two boards were designed to provide communication to

modules. One is an IR transceiver (Figure �3-32 a) and the other one is an RS232 conver-

ter (Figure �3-32 b).

Chapter 3 – Physical Platform 72

a) Central IR transceiver

b) RS232 converter

Figure �3-32 PC-MSRRS Communication Components

In order to have the centralized communication, modules shall first switch to their

center IR transceivers based on Table �3-5 and then start communicating to the central IR

transceiver. The central IR transceiver is also connected to the PC through the RS232

converter as illustrated in Figure �3-33.

Any message sent to a module will receive an acknowledgement from the same

module to ensure that the proper function was executed.

HexBot

IR
Transceiver

RS 232
Converter

PC with
GUI

UART1

IR

Figure �3-33 PC-MSRRS Communication

Chapter 3 – Physical Platform 73

3.5.2 Interface

The VB interface is shown in Figure �3-34:

Figure �3-34 Graphical User Interface

The GUI is basically divided into five parts:

1. Communication (upper left)

2. Message Transmition (upper right)

3. UART1 Terminal (center left)

4. IR Terminal (center right)

Chapter 3 – Physical Platform 74

5. Function Code Table (down)

The communication frame provides a port configuration window for setting the

ports as shown in Figure �3-35 along with connect / disconnect buttons.

Figure �3-35 Port Configuration Window

Message transmition is used to send different commands to the modules. The

command codes are listed in the “Function Code Table” at the bottom of the same win-

dow providing an easy access to all functions. These functions are listed and explained in

the next section.

If UART1 is connected, the UART1 terminal displays all messages coming from

the control board. All functions executed in the control layer with their corresponding pa-

rameters and acknowledgment codes are displayed in the same frame as well.

The IR terminal is the main terminal communicating with all modules. Any mes-

sage sent from modules will be immediately displayed on this terminal with the module

ID number. Also all executed functions will be acknowledged form the module by trans-

mitting the executed function code.

3.5.3 Functions

There have been several useful functions implemented within the HexBot includ-

ing configuration settings, testing, localization and rotation. These functions are listed in

Table �3-7 below:

Chapter 3 – Physical Platform 75

Table �3-7 HexBot Functions

Control Board Functions

Code Function Arguments Comment

1 JxOpen(i) i: Joint Number (1 to 6) Open a solenoid

2 JxClose(i) i: Joint Number (1 to 6) Close a solenoid

3 JxOpenAll() - Open all solenoids

4 JxCloseAll() - Close all solenoids

5 JTest(n,t)
n: number of test
t:delay between actuations

Open all solenoids alternatively

6 - - Not Used

7 - - Not Used

8 - - Not Used

9 - - Not Used

10 - - Not Used

11 SxP(i) i: Side Number (1 to 6)
Turn on a magnet (Positive
pole)

12 SxN(i) i: Side Number (1 to 6)
Turn on a magnet (Negative
pole)

13 SxOff(i) i: Side Number (1 to 6) Turn off a magnet

14 SxOffAll() - Turn off all magnets

15 SPTest(n,t)
n: number of test
t:delay between actuations

Turn on all magnets alternative-
ly (Positive pole)

16 SNTest(n,t)
n: number of test
t:delay between actuations

Turn off all magnets alterna-
tively (negative pole)

17 - - Not Used

18 - - Not Used

19 - - Not Used

20 TurnOffAll() - Turn off all actuators

21 MCW(i,t1,t2,t3)

i: rotation joint
t1:delay before magnets start
t2: delay before joints are ex-
changed
t3: delay before magnets stop

Mobile module Clockwise rota-
tion

22 MCCW(i,t1,t2,t3)

i: rotation joint
t1:delay before magnets start
t2: delay before joints are ex-
changed
t3: delay before magnets stop

Mobile module Counterclock-
wise rotation

23 SCW(i,t1,t2,t3)

i: rotation joint
t1:delay before magnets start
t2: delay before joints are ex-
changed
t3: delay before magnets stop

Substrate Clockwise support

24 SCCW(i,t1,t2,t3)

i: rotation joint
t1:delay before magnets start
t2: delay before joints are ex-
changed
t3: delay before magnets stop

Substrate Counterclockwise
support

Chapter 3 – Physical Platform 76

Communication Board Functions

Code Function Arguments Comment

25 IrSel (i) Side number (0-6), 0:center UART1 (IR) Channel Selection

26 - - Not Used

27 - - Not Used

28 SideOnP (i) Side number (1-6) Positive Magnet On LED

29 SideOffP (i) Side number (1-6) Positive Magnet Off LED

30 SideOnAllP () - All Positive On LEDs

31 SideOffAllP () - All Positive Off LEDs

32 SideOnN (i) Side number (1-6) Negative Magnet On LED

33 SideOffN (i) Side number (1-6) Negative Magnet Off LED

34 SideOnAllN () - All Negative On LEDs

35 SideOffAllN () - All Negative Off LEDs

36 SidePTest(n,t)
n: number of test
t:delay between actuations

Turn on all magnets alternative-
ly (Positive pole)

37 SideNTest(n,t)
n: number of test
t:delay between actuations

Turn off all magnets alterna-
tively (negative pole)

38 JointOn (i) Joint number (1-6) Joint On LED

39 JointOff (i) Joint number (1-6) Joint Off LED

40 JointOnAll () - All Joint On LEDs

41 JointOffAll () - All Joint Off LEDs

42 RESERVED "*" Beginning of MSG -

43 JointTest(n,t)
n: number of test
t:delay between actuations

Open all solenoids alternatively

44 LOn () All LEDs On

45 LOff () All LEDs Off

46 LCircle (n,t)
n: number of test
t:delay between lights

Rotating LEDs

47 LColor (n,t)
n: number of test
t:delay between lights

Rotating LEDs

48 LFlash1 (n,t)
n: number of test
t:delay between lights

Flashing LEDS

49 LFlash2 (n,t)
n: number of test
t:delay between lights

Flashing LEDS

50 LYref (i) i: CCW=1, CW=-1 Ref. Indicating LEDs

51 - - Not Used

52 - - Not Used

53 - - Not Used

54 - - Not Used

55 - - Not Used

56 LMCW(i,t1,t2,t3)

i: rotation joint
t1:delay before magnets start
t2: delay before joints are ex-
changed
t3: delay before magnets stop

Mobile module Clockwise rota-
tion LEDs

57 LMCCW(i,t1,t2,t3)

i: rotation joint
t1:delay before magnets start
t2: delay before joints are ex-
changed
t3: delay before magnets stop

Mobile module Counterclock-
wise rotation LEDs

Chapter 3 – Physical Platform 77

58 LSCW(i,t1,t2,t3)

i: rotation joint
t1:delay before magnets start
t2: delay before joints are ex-
changed
t3: delay before magnets stop

Substrate Clockwise support
LEDs

59 LSCCW(i,t1,t2,t3)

i: rotation joint
t1:delay before magnets start
t2: delay before joints are ex-
changed
t3: delay before magnets stop

Substrate Counterclockwise
support LEDs

60 - - Not Used

61 - - Not Used

62 - - Not Used

63 - - Not Used

64 - - Not Used

65 Ref() - Set the module as the reference

66 Localize() - Start a localization process

67 CW(si,st1,st2,stt,mi,mt1,mt2,mt3)
Similar to CW
both for Substrate and Mobile

One message for both modules

68 CCW(si,st1,st2,stt,mi,mt1,mt2,mt3)
Similar to CCW
both for Substrate and Mobile

One message for both modules

69 - - Not Used

70 - - Not Used

71 - - Not Used

72 - - Not Used

73 - - Not Used

74 - - Not Used

75 - - Not Used

126 RESERVED
"~" UART Receive time exceeded
time out indication

-

The message format to call and execute a function is shown in Table �3-8.

Table �3-8 Message Format

* B1 B2 B3 B4 B5 B6 B7 B8 B9 #

Arguments

B1 Message Code Number

B2 si or i or n

B3 st1 or t1 or t

B4 st2 or t2

B5 st3 or t3

B6 mi

B7 mt1

B8 mt2

B9 mt3

Chapter 3 – Physical Platform 78

Each message starts with “*” and ends with “#”. B1 is the code number of the

message and B2 to B9 are the arguments of the functions.

3.6 Summary

The implementation of HexBot was discussed in details in this chapter. Mechani-

cal design, electrical system, processing unit and the graphical user interface were ex-

plained. Physical specification of the implemented module is as follow:

Each HexBot is a hexagonal module with a side of 78mm and a height of 110mm.

The weight of each part and the module is measured and tabulated in Table �3-9.

Table �3-9 Weight of HexBot Components

Item Qty Weight (g) Total (g)

Magnet + Support 6 56 336

Solenoid + Support 6 23 138

Power Pins 6 2 12

Ball Transfer Units 3 42 126

Mechanical Layer 1 4 4

Power Board 1 79 79

Drive Board 1 99 99

Control Board 1 53 53

Communication Board 1 100 100

Total 947

Chapter 4 – Reconfiguration Planning 79

 Chapter 4

 4 Reconfiguration Planning

This chapter details the control algorithm used for the transformation of the global

shape of the system form an arbitrary initial configuration to a desired goal configuration.

Although each module of the system may have very limited motion, a huge col-

lection of these modules causes the overall system to have numerous degrees of freedom.

Consequently, to achieve the unique potential of MSRRS, the distinct and complicated

challenge of path planning for a large number of independent modules shall be overcome.

The reconfiguration planning should determine the sequence of individual module

movements that transforms the shape of the system from an initial configuration to a de-

sired goal configuration in a preferably optimal manner while enforcing several con-

straints and considering the kinematic model of the modules.

1. Optimality in MSRRS may be:

• Minimizing the number of module movements

• Minimizing the overall reconfiguration time

• Minimizing the energy consumption during reconfiguration

Chapter 4 – Reconfiguration Planning 80

In this work the effort has been done to minimize the number of module move-

ments and as will be explained in section 4.4.2, approximately, this choice will as well

minimize the total energy consumption during reconfiguration.

2. The following primary constraints are considered for the reconfiguration planning

which are further explained in section 4.2.1:

• Avoid collision

• Maintain connectivity

3. Assumptions of the kinematic model are also specified in section 4.2.3.

In this work the reconfiguration planning problem is considered for a limited

number of modules as the algorithm incorporates a centralized path planner; however, the

scalability issues and techniques to move towards a decentralized path planning are ex-

plained and discussed in section 4.4.1.

4.1 Preliminaries

4.1.1 Environment

In order to plan the paths for modules to move and reconfigure the shape of the

system, the environment in which this motion is taking place has to be studied. The main

environmental properties are as follow:

• Discrete vs. Continuous

• Static vs. Dynamic

• Deterministic vs. Stochastic

• Fully observable vs. Partially observable

• Episodic vs. Sequential

Let’s briefly examine the environmental properties of MSRRS.

Discrete or continuous: Finite number of actions and discrete states leads to a dis-

crete environment.

Static or dynamic: Parallel actuation of several modules at a time means a dynam-

ic environment; in other words, the environment will not remain unchanged till a specific

module takes an action. However, it is possible to have serial execution for module

Chapter 4 – Reconfiguration Planning 81

movements and consider the environment static which comes at a cost of more reconfigu-

ration time.

Deterministic or stochastic: The environment can only be considered determinis-

tic, if there are no uncertainties, i.e. full control over the environment, no failures during

movement and etc. which is not the case in MSRRS.

Fully or partially observable: Since this work addresses reconfiguration planning

for limited number of modules, the environment can be considered fully observable.

However in general case of MSRRS the environment is partially observable. Thus section

4.1.5 demonstrates an extension of the utilized tool that overcomes this limitation.

Episodic or sequential: Module movements have long term effects and each

movement depends on movements performed earlier; therefore, the environment is se-

quential.

4.1.2 Reinforcement Learning

There are generally three types of learning:

• Unsupervised Learning: Decision making based on observations only with no

feedback

• Reinforcement Learning: Decision making based on observation and only a scalar

evaluative feedback such as a reward function

• Supervised Learning: Decision making based on observation and a detailed feed-

back specifying the exact error

Considering the environmental properties of MSRRS, reinforcement learning is

chosen to act as the basic platform for the reconfiguration planning. For a rich and excel-

lent introduction to reinforcement learning, the reader is referred to the textbook (Sutton

& Barto, 1998). The main ideas and key features are summarized below.

• Reinforcement leaning tries to optimize the performance of the system in uncer-

tain environments by decision making based on direct interaction with environ-

ment, without relying on external supervision

• The learner is not told which actions to take, but instead must discover which ac-

tions yield the most (long term) reward

Chapter 4 – Reconfiguration Planning 82

• In the most interesting and challenging cases such as MSRRS, actions affect not

only the immediate reward but also all subsequent rewards

Looking at MSRRS in the context of reinforcement learning, each module is con-

sidered as an agent who is planning to reach its goal in an optimal manner. Therefore, the

agent and its environment interact over a sequence of discrete time steps as illustrated in

Figure �4-1.

At each discrete time step t the agent interacts with the environment based on the

followings:

1. Observe the environment state: st

2. Make a decision and execute an action action: at

3. Receive the resulting reinforcement reward: rt+1

4. Observe the resulting state state: st+1

Consequently, the overall sequence of discrete actions will look as in Figure �4-2.

4.1.3 Markov Property

In causal systems the response of the system at time step t can depend on all the

actions that has taken place up to time step t-1; therefore, the state of the system can only

be represented if the complete history of actions is available.

Agent
(A module)

Environment
(Complete system: Physical environment + all modules)

A
ctio

n

S
ta

te

R
ew

ar
d

Figure �4-1 Reinforcement Learning Model

St St+1 St+2
at at+1 at+2

rt+1 rt+2

Figure �4-2 Sequence of Actions in Reinforcement Learning

Chapter 4 – Reconfiguration Planning 83

On the other hand, if the state could somehow retain all previous actions, it is

called a Markov and its environment has a Markov Property; therefore in a Markovian

World, the response of the system at time step t depends only on the state and action at

time step t-1.

This means that knowing the current state and action in an environment with a

Markov property will enable predication of the next state and its expected reward. As a

result of iteration, in a Markovian world, all future states and expected rewards can also

be predicted by knowing only the current state and actions which are being taken.

The Markov property is a key concept in reinforcement learning since decisions

are assumed to be a function of the current state only.

4.1.4 Markov Decision Process (MDP)

MDP is considered as the main framework for studying planning under uncertain-

ty. It can be applied to fully observable environments with Markov properties which are

history-independent and stationary; in other words, they have what are so called Marko-

vian Dynamics to be modeled as MDPs.

Now, considering a transition model T(s, a, s’) which specifies the outcome prob-

abilities for each action at each state (i.e. probability of reaching state s’ if action a is tak-

en at state s), an MDP will be formulated as 4-tuple <S, A, T, R> with:

• A set of states: S

• A set of legal actions at each state: A(s)

• A set of transition probabilities: T(s, a, s’)

• A set of expected rewards: R(s)

Given an MDP, an agent objective is to learn a policy �(s) which specifies what

action shall be taken at state s that maximizes the expected reward. Note that in general

case for MDPs, policies can also be considered non-deterministic, i.e. �(s, a) meaning the

probability of choosing action a in state s.

Chapter 4 – Reconfiguration Planning 84

4.1.5 Partially Observable MDP (POMDP)

The main difference between MDP and POMDO is whether the current state is

fully observable or not. The reader is referred to (Cassandra, Littman, & Kaelbling, 2003)

for a comprehensive introduction to POMDPs and their solution techniques.

MDP requires the state to be completely known. However, in some cases, like

general MSRRS, each agent can observe only part of the state which is available in its lo-

cal neighborhood. In such cases, full observability of the state is not a valid assumption

and each agent should learn to behave in a partially observable environment.

In POMDPs we will need to introduce a Belief State that represents the world

state with uncertainty due to partial or imperfect information, in addition to an observa-

tion model which specifies the probability of each observation at each state:

• Observation model: O(s’, a, o)

• Belief state: B(s)

In this case the fully observable world state is replaced with an observation model

and a belief state; however, since the world state is still no longer available, the entire his-

tory of the process needs to be stored. Nevertheless, it can be shown that maintaining a

probability distribution over all of the states provides the same information as maintain-

ing the complete history.

Therefore, the agent will initially hold an internal belief state b, once an action a

is taken and an observation o is made, the agent will use a state estimator (SE) to update

the belief state from b to b’ as shown in Figure �4-3.

Agent

Environment

A
ctio

n

SE �
b

O
b
se

rv
at

io
n

Figure �4-3 Partially Observable MDP Model

Chapter 4 – Reconfiguration Planning 85

4.1.6 Multi-Agent MDP (MMDP)

As can be implied form the name, MMDP refers to environments in which more

than one agent is trying to make decisions and such environments are usually modeled as

multi-agent MDPs.

In MMDPs, single-agent MDP techniques can no longer be applied since the de-

cision of other agents and their consequent actions are directly affecting the environment

state and therefore, such an environment cannot be considered static. In effect, the actions

taken by other agents influence the decision and action taken by the agent.

In a single-agent MDP, the environment is normally assumed to be fully observa-

ble and the goal is to find an optimal policy that maximizes the agent expected rewards.

However, in a multi-agent MDP, the environment is usually partially observable

to each agent and the goal is to find an optimal policy that maximizes the expected global

rewards for the agent team.

The idea of a single-agent MDP can be simply (but inefficiently) extended to the

multi-agent MDPs as follow:

MMDP will be formulated as 5-tuple <N, S, A, T, R> where:

• A set of Agents: N

• A set of states: S

• A set of legal joint actions at each state: A

• A set of transition probabilities: T

• A set of expected rewards: R

The main drawback with this formulation is that the number of the states and ac-

tions are dramatically increasing as the number of agents in the system increases.

4.2 Constraints and Assumptions

In order to proceed with the problem formulation and explain how the algorithm

works a number of constraints and assumptions which are considered shall be addressed.

The enforced constraints are the primarily constraints required for any reconfigu-

ration planning algorithm to generate paths for the mobile modules in our MSRRS. How-

Chapter 4 – Reconfiguration Planning 86

ever, the assumptions are made based on the technique used in this work to attack the

problem of the reconfiguration planning.

Note again that in this work the reconfiguration planning problem is addressed for

only a limited number of modules and scalability issues and techniques are discussed in

section 4.4.1.

4.2.1 Constraints

Constraints which are mainly due to the physical model of the MSRRS need to be

considered for the motion of each module in the system and include the following:

1. Maintain Connectivity

2. Avoid Collision

The first constraint prevents global disconnection which is imposed based on the

concept of MSSRS and ensures that every module remains connected to at least one other

module during its motion.

Besides, there exists one module physically fixed to ground to specify the initial

coordinates and orientation of the complete system. The importance of this fix module

will become more obvious in section 4.3.

Figure �4-4 illustrates an example for connectivity constraint. In this figure the

blue module is fixed permanently to ground and the motion of the green module can vi-

olate the connectivity constraint.

The second constraint ensures that the motion of a module will not cause any col-

lision with other modules. This constraint can also be extended to avoid collision with

obstacles in the environment as explained in 4.3.

Figure �4-5 illustrates an example for the collision constraint. As can be seen from

this figure, motion of the green module to M’ will cause collision with M. In fact, rotation

of the green module around point O, requires mapping of vertices [a b c d] to new loca-

tions [a’ b’ c’ d’] which violates the collision constraint since during this motion vertex c

will collide with vertex d’ of M.

Chapter 4 – Reconfiguration Planning 87

Figure �4-4 Connectivity Constraint

Figure �4-5 Collision Avoidance Constraint

4.2.2 Markov Assumptions

In order to use MDP as the main framework to formulate our problem the follow-

ing assumptions about the nature of the environment shall be made:

• Stationary Environment

It is assumed that the environment does not change over time

• Fully Observability

 It is assumed that the agent has complete information about the state

• Markovian Transition

M’

M

a b
c

d
a'

b'
c' d'

O

Chapter 4 – Reconfiguration Planning 88

 It is assumed that transitions are Markovian, i.e. the next state of the envi-

ronment depends only on the current state and the current action being

taken by the agent

4.2.3 Kinematic Model Assumptions

Modules kinematic assumptions are quite similar to those of the other researchers

who have considered hexagonal modules as the base of their algorithms, such as (Jennifer

E. Walter, 2002):

• Each module is a rigid hexagon of the same size as the cells of the plane and al-

ways occupies exactly one of the cells.

• One module is connected to the fixed base.

• Each module can move maximum of one lattice space per time step.

• Modules can move into spaces which are not occupied by other modules.

• One module can lift only itself and cannot carry other modules.

• The only motion allowed for a module is the rigid rotation around a vertex it

shares with some immobile substrate in the configuration.

• Modules do not fail during rotation even though a pre-specified rotation timing is

not guaranteed.

• After initial localization, each module would know at all times: its location, its

orientation and also which of its neighboring cells are occupied by other modules.

4.2.4 Initial and Goal Configuration Assumptions

There are basically four main assumptions about the initial and goal configura-

tions:

1. Each module in the configurations is at least connected to one other module.

2. At least one module is connected to the fix base.

3. Common modules in both configurations do not need to move.

4. Configurations are not immobile.

Chapter 4 – Reconfiguration Planning 89

Assumptions 1 and 2 are pretty clear from the concept of MSRRS. Assumption 3

indicates that there is no need for path planning for common modules. Assumption 4 is

explained by (Nguyen, Guibas, & Yim, 2001) as following:

A configuration is said to be immobile when no module is able to move without

violating the motion constraints. Therefore, if the initial or final configuration is immo-

bile, it will be impossible to find a motion plan between the two configurations. Figure

�4-6, illustrates an immobile configuration where any module movement will violate the

constraints.

Figure �4-6 Immobile Configuration

4.3 Problem Formulation

This section explains the details of the reconfiguration planner algorithm. Since

we are dealing with a homogeneous MSRRS the algorithm therefore rely on module in-

terchangeability.

Before moving into details, let’s review the problem once again:

The reconfiguration planning algorithm requires to determine the sequence of in-

dividual module movements that transforms the shape of the system from an initial con-

figuration to an arbitrary desired goal configuration. Figure �4-7 illustrates an example of

such a problem.

Chapter 4 – Reconfiguration Planning 90

This problem could be formulated directly using an MMDP approach. However

such a formulation would be an extremely inefficient method since the number of states

and actions increases tremendously with the number of modules.

Therefore in this work an alternative method is presented which is based on a hie-

rarchical multilayer approach.

4.3.1 Reference Frame and Coordinate system

Let’s first establish the coordinate systems and the reference frame for an individ-

ual universal module.

As shown in Figure �4-8, the plane is divided into equal hexagons and the coordi-

nate system is chosen to be similar to that of other researchers working with hexagonal

modules such as (Chirikjian G. , 1994).

Figure �4-9 illustrates the labeling considered for each individual universal mod-

ule. After each rotation, modules update their status to keep the same orientation and

labeling for consistency and ease of programming.

The reference numbering shown in Figure �4-9 is referred to in all relevant codes

used in either in Matlab or Microcontroller attached in appendices.

?

Figure �4-7 Transformation from an Initial Configuration to a Goal Configuration

Chapter 4 – Reconfiguration Planning 91

Figure �4-8 Coordinate System

4.3.2 MSRRS Representation

A complete MSRRS can be represented as a set where each module in the system

corresponds to an element of this set. In each configuration, coordinates of modules spe-

cify those elements. For example, Figure �4-10 illustrates a system consisting of four

modules.

X

Y

(0,0)

(1,0)

(1,1)

(0,1)

Figure �4-9 Reference Joint and Side Numbering

Chapter 4 – Reconfiguration Planning 92

Figure �4-10 System Representation

This configuration can be represented as: C1={(1,0), (2,0), (3,0), (3,1)}. Using

this representation, set theory can be utilized to provide useful information about differ-

ent configurations. For example, C1�C2 can specify common modules in two configura-

tions.

The example in Figure �4-10 can also be represented in an array format as:

C1 = �� � � �� � � �� � � ��
where in this case modules are represented by one and free locations are the zero

elements of the array.

The array format representation is very similar to the set representation and can

provide the same information. In this work array representation was proffered since it

was easier to manipulate arrays in Matlab.

4.3.3 Hierarchical Multilayer Approach

The ground has now been paved to proceed with the algorithm. The algorithm is

designed in five layers as depicted in Figure �4-11. In this approach, upper layers decom-

pose the problem into sub-problems solvable by lower layers. The functionality of each

layer is briefly explained as follow:

• Layer 1 is responsible to obtain the initial configuration of the modules through

localization. It is also responsible to obtain the desired goal configuration from

higher level controllers which in this work is provided manually through user

Chapter 4 – Reconfiguration Planning 93

• Layer 2 is responsible to find which gaps shall be first covered and which mod-

ules shall be first moved

• Layer 3 is based on a heuristic method to find the corresponding module for each

gap

• Layer 4 is responsible to plan the path for each individual module

• Layer 5 is responsible to transfer the required motion into available module actua-

tions

Layers 1 to 3 are considered as Global Flow Planners since they are dealing with

the complete system, while layers 4 and 5 are considered to be Local Motion Planners as

they are dealing with only an individual module.

Note that the combination of the heuristic method used in layer four in addition to

the optimization method used in layer five yields a Near-Optimal solution for the recon-

figuration problem.

Layer 1: Initial and Goal States (Localization)

Layer 2: Potential Voids and Mobile Electrons (Constraints)

Layer 3: Void Propagation (Heuristic)

Layer 4: Mobile Electron Path Planning (Optimization)

Layer 5: Mobile Electron Motion (Actuation)

Figure �4-11 Hierarchical Multilayer Approach

Chapter 4 – Reconfiguration Planning 94

4.3.4 Layer 1 – Obtain Initial and Goal States

Let’s start with the first layer. Figure �4-12 illustrates the importance of the task

assigned to this layer.

As can be observed from the general picture in Figure �4-12, this layer interacts

with the higher level controller to get the desired goal configuration which is feed ma-

nually in our case. At the same time this layer interacts with the physical platform to ob-

tain the current status of the modules in the system. This requires all modules to be loca-

lized and ready to send their location to this layer.

Note that for the reconfiguration planner, orientation of the modules does not mat-

ter since all modules are symmetrical and following the reference orientation as shown

earlier in Figure �4-9. However, orientation of each individual module is important for the

module itself in order to know its corresponding sides and joints to actuate during its mo-

tion.

As a result a localization routine is essentially considered necessary for all mod-

ules to know the following at all times:

1. Their location for the reconfiguration planner

Environment Required Task

MSRRS

Configuration Required
(based on task and environment)

Reconfiguration Planner

Physical Platform

Figure �4-12 MSRRS Task Handling

Chapter 4 – Reconfiguration Planning 95

2. Their orientation for the actuation required during their motion

Localization

When the system initially starts, no module knows its location and orientation.

Therefore a localization routine is executed to provide modules with this information.

The process starts with the module fixed to the base, which is the only module in

the configuration knowing its location and orientation as shown in Figure �4-13.

Figure �4-13 Localization Process (0)

This module tries to localize its neighbor modules. Once neighbor modules are

localized, they similarly try to localize their neighbor modules and this process continues

till all the modules in the configuration are localized. For example, the configuration

shown in Figure �4-13 it takes 3 steps for all the modules to be localized as shown in Fig-

ure �4-14 and Figure �4-15

Now, let’s look at more localization details. The following two main features of

the physical platform are required for the localization purpose:

1. Optical Switches (installed on all sides of the modules)

2. IR (infrared) Communication with Multiplexer (communicating to all sides)

For example in Figure �4-13, the localize module at location (0,0) would know the

existence of non-localized neighbors at sides 1, 3 and 6 through the use of its optical

switches; therefore, it tries to multiplex the serial communication between these sides and

1
2

3

5

(0,0)
6 4

Chapter 4 – Reconfiguration Planning 96

informs them about their locations and orientations by sending them messages in the

form of MSG1. MSG1 is an 8 byte message that looks like the following:

MSG1: * ± X X ± Y Y S

The message starts with a “*” and sends the X coordinates, Y coordinates and

orientation of the neighbor module (S). Note that in this message format the coordinate

system is limited to a 199 by 199 cells and can be easily expanded if required.

This process is done through refereeing to the look-up table shown in Table �4-1.

Table �4-1 Relative Coordinates and Orientations

Module (x,y) Side s Neighbor: X Neighbor: Y Neighbor Side: S

1 X = x - 1 Y = y+1 S = 4 (s+3)

2 X = x Y = y+1 S = 5 (s+3)

3 X = x+1 Y = y S = 6 (s+3)

4 X = x+1 Y = y-1 S = 1 (s-3)

5 X = x Y = y-1 S = 2 (s-3)

6 X = x-1 Y = y S = 3 (s-3)

For example in Figure �4-13, the localized module at (0,0) will process as follow:

• Switch to side 1 and send: * - 0 1 + 0 1 4

• Switch to side 3 and send: * + 0 1 + 0 0 6

• Switch to side 6 and send: * - 0 1 + 0 0 3

After this stage the localization status will become as depicted in Figure �4-14.

Figure �4-14 Localization Process (1)

4
5

6
(0,0)

1
2

3
4

5
6

1
2

3

4
5

6

1
2

3

4
5

6

1
2

3

(-1,0)

(-1,1) (1,0)

Chapter 4 – Reconfiguration Planning 97

Using optical switches at this stage, modules (-1,1) and (-1,0) and (0,0) will find

their neighbors fully localized and therefore will not send any messages. However, mod-

ule (1,0) will find a non-localized module at side 3 and tries to localized it. The next two

steps of localization are shown in Figure �4-15.

a) Second localization step

b) Third localization step

Figure �4-15 Localization Process (2, 3)

Let’s now look at localization timing in our platform. MSG1 consists of 8 bytes

and each byte requires 10 bits in UART (1 start bit, 8 data bits, 1 stop bit). Therefore

MSG1 requires 80 bits to be transferred.

Using the internal 1MHz clock of the Atmega162, the circuit allows a maximum

transmission rate of 62500 b/s. Therefore the transmission of each MSG1 through each

side would take:

����	
���
 � ������� � ��������� � ������ (4.1)

Let’s allow a gap of 0.38ms after each MSG1for safely switching the multiplexer

to the next channel. Therefore the transmission of MSG1 to all six sides of the module

would take:

����	
�����
 � ������ � ����� � ���� (4.2)

Note that the delay of 0.38ms is mainly due to the limitation imposed by the mul-

tiplexer (CD4051) requiring 240ns for switching while the microcontroller requires only

2 clock cycles = 2*8 = 16ns

As can be seen from (4.2) it will take each localized module maximum of 10ms to

send MSG1 to all its neighbors.

4
5

6
(0,0)

1
2

3
4

5
6

1
2

3

4
5

6

1
2

3

4
5

6

1
2

3

(-1,0)

(-1,1) (1,0)

4
5

6

1
2

3
(2,0)

4
5

6
(0,0)

1
2

34
5

6

1
2

3

4
5

6

1
2

3

4
5

6

1
2

3

(-1,0)

(-1,1) (1,0)

4
5

6

1
2

3
(2,0)

4
5

6

1
2

3
(3,0)

Chapter 4 – Reconfiguration Planning 98

Non-localized modules should listen to each of their existing neighbors for at least

10ms to ensure the reception of the message. Similarly, a gap of 0.38ms is allocated for

the multiplexer to switch to the next channel after each receptions is over. Therefore, for

non-localized module with a localized neighbor, it will take a maximum of:

����	
�
�
�
 � ���� � ����� � ������ (4.3)

As can be seen from (4.3) it will take each non-localized module maximum of

62.3ms to receive MSG1 from any of its neighbors.

For example the maximum localization timing for Figure �4-13 can be calculated

as follow:

• Time step 1: 62.3ms for modules (-1,1), (1,0) and (-1,0)

• Time step 2: 62.3ms for module (2,0)

• Time step 3: 62.3ms for module (3,0)

As can be seen the configuration requires 3 time steps which is nearly 187ms to

get localized.

4.3.5 Layer 2 – Potential Voids and Mobile Electrons

Now that the desired goal configuration is obtained and the location of all mod-

ules and therefore the current configuration is known, it is possible to proceed to the next

layer.

Electrons are modules which exist in the current configuration but do not belong

to the goal configuration. In contrast, voids are modules which exist in the goal configu-

ration but are not available in the current configuration. Figure �4-16 illustrates these defi-

nitions.

Electrons and voids can be easily found by subtracting the two (current and goal)

configurations as done in code “FindVE” attached in appendices. Now the task is to fill

the voids with electrons.

Chapter 4 – Reconfiguration Planning 99

a) Current configuration

b) Desired goal configuration

c) Electrons

d) Voids

Figure �4-16 Electrons and Voids

However, at this point not all electrons can move since they may violate connec-

tivity constraint. At the same time, not all voids can be filled since they may not be con-

nected to the current configuration. Therefore, we have to find out which electrons

should be first moved and which voids should be first filled.

• Mobile electrons are electrons which can move without violating the connectivity

constraint (disconnecting the structure) or collision avoidance constraint.

• Potential voids are voids that can be filled immediately with mobile electrons of

the current configuration.

Figure �4-17 illustrates mobile electrons (left) and potential voids (right) in our ex-

ample.

Chapter 4 – Reconfiguration Planning 100

a) Mobile electrons

b) Potential Voids

Figure �4-17 Mobile Electrons and Potential Voids

In Figure �4-17 the left figure displays mobile electrons in green at locations (-1,0)

and (3,0) and an immobile electron in yellow at location (2,0). It’s clear that the yellow

electron in this configuration cannot move since by moving it the module at location (3,0)

will be disconnected from the configuration which violates the connectivity constraint.

Likewise, in Figure �4-17 the right figure displays potential voids (in green) at lo-

cations (-1,2) and (1,2). It’s also clear that the yellow void at location (0,2) in this confi-

guration cannot be filled directly before a potential void is filled.

The following point shall be noted at this stage:

• The fix module to the base ensures overlapping of the two configurations (current

with the goal). Therefore, it is not possible to have all the modules as electrons.

• If the two configurations do not overlap and the algorithm is used for locomotion

planning instead of reconfiguration planning (where there is no possibility of hav-

ing a fixed module), the locomotion between two configurations can be divided

into intermediate stages where configurations actually overlap with each other.

• It is not always the case that the number of potential voids and mobile electrons

are the same. For example if we switch current and goal configurations in our ex-

ample, there will be three mobile electrons and two potential voids as shown in

Figure �4-18.

(0,0)
(0,0)

Chapter 4 – Reconfiguration Planning 101

a) Current configuration

b) Goal configuration

c) Electrons – Mobile electrons in green

d) Voids – Potential voids in green

Figure �4-18 Example of ME and PV

Mobile Electrons

For an electron to be mobile two conditions shall be satisfied:

1) There shall be a free location in its neighborhood that the electron can move with-

out collision

2) The motion of the electron shall not cause disconnection in the whole system

As explained in 4.2.1, free locations with more than three neighboring modules

cannot be filled without violating the collision avoidance constraint. Therefore, the first

criterion can be easily checked accordingly.

The second criterion is thoroughly examined below. In fact, this part will provide

us with a tool to check the connectivity constraint.

Mobility of an electron can be checked through graph operations while moving

one module at a time, i.e. the configuration is fixed elsewhere. The connectivity graph for

MSRRS can be constructed by dedicating a node for each module and an edge for each of

its neighbors. Once the graph is constructed, all electrons can be considered mobile un-

less they are articulation points in the connectivity graph.

Chapter 4 – Reconfiguration Planning 102

8

9

10

14

17

20

21

22

23

26

29 34

35

39

40

41

Articulation points (or cut vertices), are nodes that their removal will cause their

neighbors to be no longer connected. In other words, the removal of articulation point in

a graph will increase the number of connected components by breaking the graph into

separate parts. In MSRRS, articulating points correspond to immobile electrons. A simple

illustration is provided in Figure �4-19, Figure �4-21 and Figure �4-20.

Figure �4-19 Graph Representation

Figure �4-21 Articulating Nodes
Figure �4-20 Connectivity Graph

Chapter 4 – Reconfiguration Planning 103

In Figure �4-19, the nodes' IDs are assigned in a linear indexing format starting

from 1 the upper left module and ending with 48 on the lower right module. As can be

seen in Figure �4-20, each module is assigned to a corresponding node in the connectivity

graph and each neighbor is considered as an edge.

As can be seen in Figure �4-21, in this configuration, all modules are mobile ex-

cept those red modules at articulating nodes 20, 29, 35 and 40 which are immobile.

Note that the codes HexCG and HexCGT attached in the appendices are used to construct

and draw the connectivity graph in addition to finding the articulating nodes. For a good

introduction to graphs theory, the reader is referred to (Kocay & Kreher, 2005) and

(Buckley & Lewinter, 2003). However, for the sake of completeness, a simple method of

finding articulating nodes is briefly presented below.

The algorithm to find articulating nodes is divided into two stages:

a) Given a graph, find the number of connected components

b) Given a graph, find articulated nodes.

Part a - Number of connected components in the graph

The number of connected components in a graph is equal to the number of zero

eigenvalues of the Laplacian matrix of the graph. Once again for additional information

the reader is referred to (Kocay & Kreher, 2005).

Laplacian (or Kirochhoff or Admittance) matrix L for a graph G with n nodes is a

square n*n matrix representation of G that with indices li,j as follow:

!"#$ � % &'(�)"� ��������* " � $��+����������������������* " , $�-).�)"�"��-.$-/0)���1�)$��������������������������* 2�3045"�0�������������������������������������
6 (4.4)

Figure �4-22 presents a simple demonstration for Laplacian matrix. As can be seen

in this figure the eigenvalue of L has only one zero, meaning that there is 1 connected

component in this system.

Chapter 4 – Reconfiguration Planning 104

7 � 8 � +� +�+� � �+� � � 9

0":�7� � 8���9

Figure �4-22 Laplacian Matrix Representation

Part b – Find articulated nodes of a graph

This is done simply using Part a. First a node is chosen, and then there is a check

to see if the node removal increases the number of connected components, i.e. the node is

articulated.

Just to illustrate a combinational example for Part a and Part b, Figure �4-23 dis-

plays the same graph discussed in Figure �4-19 but an immobile electron at location 29 is

removed. It can be seen that the number of connected components is now increased from

1 to 2. A code Mobile used to mark electrons as mobile is also attached in appendices.

Figure �4-23 Example of a Disconnected Configuration

6

7 10

8

9

10

14

17

20

21

22

23

26

34

35

39

40

41

1(6)

2(7)

3(10)

Chapter 4 – Reconfiguration Planning 105

Potential Voids

Potential voids are much easier to find. In fact, in order to investigate wheatear a

void is a potential void or not, all its six sides are checked. If there exists at least one im-

mobile module in the neighborhood of the void module, then the void is marked as a po-

tential void and can therefore be filled immediately. The code PV that finds potential vo-

ids is also attached in appendices and Figure �4-18 illustrates and example of potential vo-

ids.

4.3.6 Layer 3 – Void Propagation

Since the MSRRS is considered to be homogeneous, it is not really clear which

mobile electron should fill which potential void. Therefore, void propagation provides a

simple heuristic technique to find a corresponding mobile electron for each void.

Void propagation technique works as follow:

1) Mark voids which can be filled as potential voids (PV) in the goal configuration

2) Mark electrons that can move as mobile electrons (ME) in the initial configuration

3) Each potential void (i) in the configuration transmits MSG2(i) to all its neighbors

4) At each time step of reception of MSG2(i), each location transmits MSG2(i) to all

its neighbors, if the location is empty, has an immobile substrate (IS), has not re-

ceived MSG2(i) earlier, and it is not a potential void

5) MSG2(i) will be erased from all locations when reaches a mobile electron

Note that MSG2 includes the potential void ID (assigned dynamically to modules

and is the x and y coordinates of the module) in addition to the time step (id,t). The tech-

nique is applied to the previous example in Figure �4-16, and the messages are displayed

in Figure �4-24.

As can be seen in Figure �4-24, the potential void at location 12, i.e. PV(12) forms

a message (12,0) and in the first time step increments the time of the message and trans-

mits the message (12,1) to all its immediate neighbors; however only two of them:

• Are empty locations

• Are not potential voids

• Have immobile substrates

Chapter 4 – Reconfiguration Planning 106

• Have not received a message from PV(12) before

a) Initial configuration

b) Desired configuration

c) Electrons – Mobile electrons in green

d) Voids – Potential voids in cyan

e) Void propagation – IS: yellow, PV: cyan, ME: green

Figure �4-24 Void Propagation

Therefore those two increment the time step in the message and transmit the mes-

sage (12,2) to all their neighbors. This process continues till the message (12,3) reached

the mobile electron at location 14, i.e. ME(14). At this time all messages with i`=12 will

be erased from all locations since PV(12) has found its ME(14). Similarly, PV(23) finds

its corresponding ME(34).

HexVP is a function written for void propagation and is available in appendices.

Now the problem is reduced a motion planning for a ME to a PV and is forwarded to the

next layer.

4.3.7 Layer 4 –Mobile Electron Path Planning

This layer is based on an MDP that can be used for trajectory planning of a single

module (ME) to find a traversable path form an initial location to a goal location (PV).

The complete process mainly consists of two parts:

(12,0)

(12,1)

(12,2)

(12,3)

(12,1)
(23,1)

(23,0)

(23,1)

(23,2)

Chapter 4 – Reconfiguration Planning 107

• Formulating the problem as an MDP

• Implementing a policy search

MDP Formulation

As explained earlier in 4.1.4, MDP is considered as the main framework for stud-

ying planning for sequential decision processes under uncertainty and can be applied to

fully observable environments with Markov properties.

MDP is formulated as 4-tuple <S, A, T, R> and therefore the followings are re-

quired:

a) A set of states: s � S

b) A set of legal actions at each state: a � A(s)

c) A set of transition probabilities: T(s, a, s’)

d) A set of expected rewards: r � R(s)

Let’s proceed with finding S, A, T and R for the MSRRS presented in this work.

Note that in this layer, it is assumed that the environment is fully observable. For scala-

bility issues refer to 4.4.1.

a – Set of states

Each mobile electron or an empty location with at least one and not more than

three immobile substrates is considered as a state (s) of the current configuration. Mobile

electrons are therefore, allowed to be located only in the states. At this stage, fixed physi-

cal structures in the environment such as walls can also be eliminated from the set of

states to avoid collisions.

In order to find available state at each configuration (C), the neighbors of each

module are checked. If the neighbors are not currently occupied and do not have more

than three substrates, they will be marked as states. Figure �4-25 illustrates the states (in

magenta) of a given configuration (C) with mobile electrons (in green). A simple code

(MDP_State) to find the state of an arbitrary configuration is also attached in the appen-

dices.

Chapter 4 – Reconfiguration Planning 108

Figure �4-25 States of MDP

b – Set of legal actions at each state

For each arbitrary s � S, there are mainly three possible actions in our platform:

• Stay in its location

• Rotate clockwise

• Rotate counter clockwise

The first action is pretty clear and the resulting location will be the same as the in-

itial location. However the resulting locations of the rotations depend on the center of ro-

tations which is the pivot point or the joint of the module.

In order to find the resulting locations of the rotations, first the neighboring mod-

ules are considered and those of which that are unoccupied (avoid collision) and have

immobile substrate (maintain connectivity) will be chosen as the resulting locations.

Figure �4-26 illustrates all available actions (in black) of the mobile module lo-

cated in states (s). The centers of rotations are marked with red dots and the blue dot is an

example of a wrong center of rotation that violates the constraints.

As can be noticed the three actions of a mobile module located in state (s) are

simply the rotations in addition to staying in its location. A simple code MDP_Action to

find possible actions of a state is provided in appendices.

State (C)

Chapter 4 – Reconfiguration Planning 109

Figure �4-26 Available Actions of an State

d – Set of transition probabilities

Transition model T(s, a, s’) specifies the outcome probabilities for each action at

each state (i.e. probability of reaching state s’ if action a is taken at state s). This work as-

sumes no module failure and therefore considers all probabilities 1.

d – Set of expected rewards

Each state in the configuration should be correlated to a reward value. In this

work the following rewards criteria is considered:

a) Reward of 1 for the potential void (goal location)

b) Reward of -1 for other mobile electrons (avoid collision)

c) Reward of -0.04 for all other states (penalty for not moving)

Note that the second criterion can also be used to avoid collisions with dynamical-

ly moving obstacles in the environment

A simple code MDP_Reward is attached in appendices that can form the reward

function for each state. Figure �4-27 illustrates the reward function for moving a mobile

electron form (s1) to the potential void (s2). As can be seen the reward function has a val-

ue associated to each state.

Actions(s)

s

Chapter 4 – Reconfiguration Planning 110

a) Current configuration – ME in

green

b) Goal configuration – PV in green

c) Immobile substrate – States in

magenta

;

�
<=
==
=>

� � � � � � �+���? � � � � � �+���? � +���? +���? +���? � �� +���? � � � +� �� � +���? +���? +���? +���? �� � � � � � �@A
AA
AB

d) Formulated reward function

Figure �4-27 States Reward Function

Policy Search

Policy is a solution of an MDP problem, i.e. given an MDP, each module objec-

tive is to learn a policy �(s) which specifies what action shall be taken at each state s. In

other words, a policy associates a decision with every location that the module may

reach.

An optimal policy �*
(s) is a policy that its execution will maximize the expected

sum of future rewards during the sequence.

s1

s2

Chapter 4 – Reconfiguration Planning 111

Reader is referred to (Russell & Norving, 2003) for an elaborative explanation

and different techniques used to find optimal policies. Below, only the concepts needed

toward the requirement of this work are summarized.

Utility of a sequence

Let’s say a mobile electron chooses a path to reach its corresponding potential

void that passes through the following states sequence: {s0, s1, s2, …,sn}. There could be

another path that will also take the mobile electron from its location to its goal location

and passes through other states {s’0, s’1, s’2, …,s’n}. Which path shall the mobile electron

take?

In order to answer such a question a performance measurement tool for a se-

quence of actions needs to be defined. Let’s define the utility of a sequence of states as

follow:

C�
D � �E�F# �	# �G# H # �IJ� � ;��F� � ;��	� � ;��G� �K� ;��I� (4.5)

As can be seen in equation (4.5), the utility of the sequence is the sum of all its

states’ rewards. Also it can be noted that in such a definition the performance of the

module is considered to be stationary and has no time dimension.

The fact that the utility of the sequence is simply the additive rewards of each

state of the sequence can be problematic in many cases. Especially the problem arises

when the number of states increases and Useq tends to grow rapidly and may even tend to

infinity if the policy is improper i.e. does not guarantee reaching the goal state. Therefore

a better representation for those cases is to use discounted rewards as follow:

C�
D � �E�F# �	# �G# H J� � ;��F� � L;��	� � LG;��G� � K (4.6)

where L is the discount factor and it is a real number in the range of [0 1]. In this

case, the utility of the sequence will be bounded as shown below:

C�
D � �E�F# �	# �G# H J� �MLN;��N�
�

NOF
P ;�QR� + L (4.7)

where Rmax is the maximum reward value of the states. Note that the discount fac-

tor L comes with some other interesting advantages, similar to the interest rate S	T + �Uas

follow:

Chapter 4 – Reconfiguration Planning 112

a) It specifies the diminishing value of the future rewards; in other words, it weighs

more the current state and in weights less the future states

b) Similarly it can sometimes be used to determine how far the module is willing to

see and value the future rewards

c) It is also similar to the diminishing preferences of human and animal overtime

Optimal policy

Given the utility of the sequence definition and its equation (4.7), the optimal pol-

icy should satisfy the following:

VW �X �-4:�-YV �Z �MLN;��N�
�

NOF
[V�

X
 (4.8)

This can be read as follow: Optimal policy is a policy that its execution will max-

imize the expected sum of discounted rewards of its sequence.

Value function

Value function (also called utility function or cost-to-go function) is associated

with each policy and its value at each state is the expected utility of the state sequence

encountered when a policy is executed starting from that state. Therefore the value func-

tion definition is based on the utility of state sequences as shown below:

C\��� � Z �MLN;��N�
�

NOF
[��F � �� (4.9)

Note that in this definition U(s) is actually the long-term total reward from s on-

wards. This is in opposition to R(s) which is the short-term reward for being in state s.

Just to illustrate the concept, let’s refer back to our example in Figure �4-28 where

the mobile electron in state s1 is planning its path towards its corresponding potential void

in state s2 and it should not collide with the other mobile electron in state s3 acting in the

same environment. The normalized value function is calculated for 0.7 discount rate us-

ing the value iteration technique which will be explained shortly and the result is dis-

played in Figure �4-28.

Chapter 4 – Reconfiguration Planning 113

;��� �
<=
==
=>

� � � � � � �+���? � � � � � �+���? � +���? +���? +���? � �� +���? � � � +� �� � +���? +���? +���? +���? �� � � � � � �@A
AA
AB
 ����	

<=
==
=>

��
 �

���

��

���
���

���

 �
�

���
���
�

�
�

@A
AA
AB

Figure �4-28 Value Function of States

Note that the more the states are close to s2 and far from s3, the cost-to-go value is

less and therefore the value function is more. Having the value function, the agent can se-

lect an action that maximizes its state value function. In other words:

VW��� �X �-4:�-Y- �M]^�# -# � �_C�� ���

�� X
 (4.10)

The definition of the value function presented in equation (4.9), and the optimal

policy presented in equation (4.10), will imply the following: if a module is following an

optimal policy, then the value function at its state is the immediate reward for that state in

addition to the maximum expected (discounted) value of the next state. This is known as

the Bellman equation as follow:

C��� � ;��� � LX ��-Y- �M]^�# -# � �_C�� ���

�� X
 (4.11)

Value iteration

Several techniques can be used to compute an optimal policy given an MDP prob-

lem. Value iteration as one of dynamic programming (DP) techniques is used in this work

s1

s2 s3

Chapter 4 – Reconfiguration Planning 114

to find the optimal policy for each module. This algorithm simply works based on solving

the Bellman equation in an iterative manner. Note that the Bellman equation is a non-

linear equation. For n states, there will be n equations and n unknown to be solved for.

In other words, the value iteration algorithm iteratively solves equations relating

the utilities of each state to that of its neighbors simultaneously, as follow:

a) Star with an arbitrary initial values for the states

b) Calculate the right hand side of the equation

c) Update the left hand side

d) Repeat b and c till the error is minimized to a threshold

The code for the algorithm (MDP_VI) is also attached in the appendices.

Convergence of value iteration

One main question remains to be answered is weather this algorithm will con-

verge to the unique solutions of the Bellman equation or not. The proof of convergence is

based on the concept of contraction. The detailed proof is provided in (Russell &

Norving, 2003) and the basic idea is as follow.

A contraction function is basically a function that when applied to two inputs, it

makes their difference less.

Let’s go back to the value iteration algorithm. The ith iteration would be:

C�`	��� �a �;��� � LX ��-Y- �M]^�# -# � �_C�����
�

�� X
 (4.12)

Consider the Bellman update as an operator B (C"�� a bC") and max norm, as a

function to measure the distances between utility vectors i.e. the maximum distance be-

tween corresponding elements (cCc � �-Y�[C���[�, therefore,

cbC" + bC�"c P LcC" + C�"c (4.13)

As can be seen from (4.13), the Bellman update is a contraction function by the

factor of � and therefore the value iteration always converges to the unique solution of the

Bellman equations. It can be seen that the error also converges exponentially to zero.

It can be shown that N iteration is required to reach an error of �:

Chapter 4 – Reconfiguration Planning 115

d � !1: �;�QRe�� + L� f!1: �L (4.14)

The equation (4.14) is plotted in Figure �4-29 for different values of c= � /Rmax.

The Y-axis is the number of iteration required to achieve c and it is plotted in log scale to

magnify the differences between the graphs. The X-axis has different values of the dis-

count factor plotted in linear scale.

Figure �4-29 Convergence of VI

Important observations from the graph in Figure �4-29:

• Number of iterations does not depend heavily on the value of c because of the ex-

ponential nature of convergence

• For small values of discount factor very few iterations are required; however the

module will have very limited horizon and will miss the long-term rewards

• For large values of discount factor N grows rapidly and so many iterations are re-

quired

Using this algorithm, Table �4-2 shows the value function for our earlier example

in Figure �4-27 for different discount factors.

As can be seen for small discount factor the algorithm works very quickly and the

number of iterations is low. However, the modules in states which are far from their goal

are reluctant to move into a better state since they have short-horizon and do not value the

long-term rewards.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

Discount Factor

N
u
m

b
e

r
o
f

It
e
ra

ti
o
n

c=0.1

c=0.01

c=0.001

c=0.0001

Chapter 4 – Reconfiguration Planning 116

Table �4-2 Discount Factor and Number of Iterations

�=0.1, �=0.001

����	

<=
==
=>

�
� �

�
�
�

�
� �
�
� �
�
�

 �
�
�

 �
��

 �
�
� �
�
� �
�
� �
�
�

@A
AA
AB

�=0.5, �=0.001

����	

<=
==
=>

��
 �

���
 ��?�
���
�
�

�
�

 �
���

�
� �
�
� �
�
� �
�
�

@A
AA
AB

�=0.9, �=0.001

����	

<=
==
=>

��
 �

�

 ��g�
�

���

���

���

���
���
���
���

@A
AA
AB

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of Iteration

M
a
x
im

u
m

 E
rr

o
r

State Convergence

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Number of Iteration

M
a
x
im

u
m

 E
rr

o
r

State Convergence

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Number of Iteration

M
a
x
im

u
m

 E
rr

o
r

State Convergence

Chapter 4 – Reconfiguration Planning 117

On the other hand for large discount factor the algorithm requires more number of

iterations and modules will value long-term rewards. For example, at 0.9 discount factor,

the module with state value of 0.49 is even willing to collide with the other mobile mod-

ule at state s3, just because it can see that in that path it will reach its goal state faster.

It can be noted that there is a trade-off in choosing the discount factor. The code

(MDP_NRL) attached in appendices uses 0.7 discount factor that is found suitable for this

work and based on that this code recommends the next move for each module.

4.3.8 Layer 5 – Mobile Electron Motion

This layer is based on a predefined feed-forward controller and provides the mo-

tion for the mobile electron from one location into another neighborhood location by

transforming the movement into the 6-axial rotations of the platform.

 In addition to that, before actuating any of the magnets, this layer will also ensure

that there is no collision during the rotations.

Considering the immobile configurations and collision avoidance constraints dis-

cussed earlier in this section, this layer will

a) Ensure that there are no collisions during the movement (empty states required)

b) Ensure there is an immobile substrate to perform each rotation

c) Transform the required motion to 6-axial rotations of the platform

Figure �4-30 illustrates a mobile module and a possible motion to one of its imme-

diate neighbor location (A, B, C, D, E, F).

Figure �4-30 Motion of a Mobile Electron

Chapter 4 – Reconfiguration Planning 118

The required look-up table is formed and tabulated in Table �4-3. For example, it

can be seen in this table that there are two moves that end in location A. One by rotating

around joint 2 clockwise and the other by rotating around joint 1 counterclockwise. How-

ever, only one will be possible and this is checked by the immobile substrates and empty

locations around the module. After this check the solenoids of the joints and magnets will

be energized accordingly.

Table �4-3 Module Actuation

J
o
in

t

D
irectio

n

Im
m

o
b

ile S
u

b
stra

te

E
m

p
ty

 L
o
c
a
tio

n
s

G
o
a
l

1 CW A D E K F

2 CW B E F L A

3 CW C F A G B

4 CW D A B H C

5 CW E B C I D

6 CW F C D J E

1 CCW F C B G A

2 CCW A D C H B

3 CCW B E D I C

4 CCW C F E J D

5 CCW D A F K E

6 CCW E B A L F

Note that the mobile electron always has negative fields and the immobile sub-

strate will have a positive and a negative filed to provide the rotations as shown in Figure

�4-31. There will be repulsion between the two negative (green) fields and attraction be-

tween the negative (green) and the positive (red) field and the rotation will be performed

around the fixed joint (red).

Chapter 4 – Reconfiguration Planning 119

Actuate

Figure �4-31 Mobile Electron Actuation

4.3.9 Simulation

The code HexMove attached in appendices will simulate the motion of the mobile

electrons by providing the joint and side forces. This function is extremely useful since

the exact same inputs going from the microcontroller into the physical platform (Actua-

tion of magnets and solenoids) are also the inputs to this function and the resulting confi-

guration is displayed.

4.4 Key Issues

4.4.1 Scalability

The first and perhaps most important question that comes to mind when evaluat-

ing a MSRRS algorithm is whether it is scalable and can be applied to systems with large

number of modules.

As discussed by several researchers such as (Fitch & Butler, 2007), for large

MSRRS any algorithm that requires linear space per module or linear time computation is

undesirable. One of the main advantages of dynamic programming used in this work is

their efficiency. It can be shown that the computational requirement for them is approx-

imately a polynomial in the number of actions and states.

Moreover, algorithms are generally considered to be scalable if they are running

in a decentralized manner on each module. In other words, decision making of each mod-

ule running the algorithm does not require a complete knowledge of all other modules in-

cluding their locations, actions, and etc. Accordingly, decision making in these systems is

done through only local information and not the global knowledge of the system.

Chapter 4 – Reconfiguration Planning 120

However, as a starting point, the approach presented in this work does require a

centralized stage (global knowledge of the complete system) especially for layers 2 and 4.

Other layers can be easily performed in a decentralized manner.

In layer 2 the connectivity test requires a centralized knowledge of the system and

to the best of my knowledge there is still no decentralized method to overcome this prob-

lem. In layer 4 the motion planning for each module requires a centralized knowledge of

the system for the MDP solver. This can be overcome using POMDP; although, learning

techniques in POMDPs, such as Q-learning are no longer guaranteed to converge to a so-

lution and therefore, more caution should be taken in to considerations with the solver of

POMDPs. Another method proposed to overcome the limitation of the centralized stage

in layer 4 is function approximation that is based on supervised learning (Sutton & Barto,

1998). Other techniques such as Gradient Ascent in Policy Space (GAPS) or Distributed

GAPS are also used to provide a decentralized approach (Varshavskaya, 2007) to address

the same issue.

4.4.2 Energy Consumption

Referring to Figure �4-31, the total energy required for each single rotation can be

roughly calculated as follow:

• Four magnets (2 on each module) and each magnet requires a 24V, 2A and stays

on for nearly 100ms.

• Eight solenoids (5 on the mobile module and 3 on the three neighbors) and each

solenoid requires 5V, 0.5A and stays on an average for nearly 100ms.

• Drive circuit, microcontroller and communication require 5V, 3A for also 100ms.

(Microcontroller and communication will always stay on but their power con-

sumption is neglected at this stage)

Therefore, the total power / energy required for a single motion is approximately:

P = 4*(24*2)+8*(5*0.5)+(5*3) = 227 W and E = 227*0.1 = 22.7 J

Note the calculated E is actually the maximum energy required if all neighbor

modules are available; however, since the major part of the energy is related to the Mag-

Chapter 4 – Reconfiguration Planning 121

nets the overall energy consumption will not depend a lot on the neighboring modules

and will be very close to the maximum E.

Therefore, since the approach presented has minimized the number of moves to

transform the shape of the system from an initial configuration to a goal configuration,

the total energy consumed will be very close to the multiple of maximum energy that

could be required for the reconfiguration.

4.4.3 Discussion

As explained by (Nguyen, Guibas, & Yim, 2001) the optimal policy can be found

in theory by searching the graph of all possible configurations; however, such search ap-

proaches are not practical since the number of possible configurations grows exponential-

ly with the number of modules in the configuration.

As showed by (Chirikjian G. , 1994) in a simplified case dealt with hexagonal

modules, the number of available configurations (N) is asymptotic to:

d � ��) + ��h�) + ��h �) � �� ��i�? � (4.15)

where n is the number of modules in the system. If each configuration is consi-

dered as a state to search for the optimal path, as the number of modules (n) increases, the

total number of available configurations (N) grows even faster and therefore the approach

would not be practical for large n.

Therefore, techniques relying on such a representation such as MMDPs require

space and computation proportional to the product of the size of all the state and action

variables, leading to intractable space (storage) and time complexity as discussed by

(Fitch, Hengst, Suc, Calbert, & Scholz, 2005).

Conclusively, optimal policies for motion planning cannot be achieved by simple

algorithmic search methods for a large number of modules (Chirikjian G. , 1994) that

come with extreme computational cost and other scalable and decentralized methods like

the one explained in this work shall be considered. The algorithm presented in this work

is designed for limited number of modules to start with and to move towards a totally de-

centralized path planning for MSRRS in a near optimal manner for large number of mod-

ules later on.

Chapter 4 – Reconfiguration Planning 122

4.5 Summary

Several works addressed the reconfiguration planning for MSRRS and still a solu-

tion of a totally decentralized technique is not found since most algorithms require a cen-

tralized stage. Also finding an optimal sequence of moves from I to G becomes intracta-

ble due to the fact that large number of modules comes with a large possible number of

configurations which requires a computation time that is exponential in the number of

modules.

This chapter described the algorithm used for transformation of the global shape

of a MSRRS by determining the sequence of individual module movements that morphs

the shape of the system from an initial configuration to a desired goal configuration.

The problem was formulated assuming module interchangeability and a hierar-

chical multilayer approach was recommended to solve the problem.

In the first layer, the initial configuration was obtained through localization and

the goal configuration was assumed to be entered manually by the user. Second layer

could separate mobile electrons and potential voids from the rest of the modules and each

potential void was linked to a mobile electron in the third layer. Forth layer planned the

path for electrons to fill the voids and finally last and fifth layer transformed the required

motion into actuation for each module

It was shown that iterations converge all the time and the number of iterations

does not depend heavily on the resolution but depends heavily on the value of the dis-

count factor. It was also shown that large discount factors provide longer horizon for

modules but requires more computations as oppose to small discount factors providing

short horizon and quick computations.

Chapter 5 – Evaluation 123

 Chapter 5

 5 Evaluation

This chapter is aimed to evaluate the performance of the physical platform and the

reconfiguration algorithm through several experiments and simulations.

5.1 Experimental Setup

The experimental setup is shown in Figure �5-1.

Figure �5-1 Experimental Setup

Chapter 5 – Evaluation 124

As illustrated in Figure �5-1, the system is equipped with a Graphical User Inter-

face (GUI) communicating with modules through serial port of the computer using an

RS232 Converter and an IR Transceiver. The modules can be quickly and easily repro-

grammed if necessary without removing the microcontrollers using In-System-

Programming (ISP) feature through STK500 Programming Board.

5.2 Examples and Experiments

Availability of only two physical modules at the time restricted the experiments to

be more on the simulation side rather than the practical one; however, the practical expe-

riments could sufficiently prove the basic concept and the design of the universal mod-

ules and the system is planned to be expanded to work with several modules in future.

5.2.1 Physical Platform Performance

This section aims to validate the two main requirements of the designed modules:

Localization and Rotation.

First all boards including power, drive, control and communication were tested

and their proper functionalities were ensured. Then control and communication micro-

controllers were programmed with all required functions (program codes and functions

are attached in appendices). Communication ports were also configured as shown in Fig-

ure �5-2.

Figure �5-2 Port Configuration

Chapter 5 – Evaluation 125

Note that UART1 is a temporary connection providing direct access to control

board of any given module and is designed for testing purposes only. IR (InfraRed) on

the other hand is the main communication channel providing direct access to all modules’

functionalities through their communication boards.

Each module was turn on to check the handshaking status between the control and

communication microcontrollers and the result of one test is shown in Figure �5-3.

Figure �5-3 Handshaking

All joints (solenoids), sides (magnets), LEDs, IRs and all functions were tested

for each module.

Once both modules were fully tested and all hardware and software components

proved to be functional, they were placed on the power base as shown in Figure �5-4 to

test localization and motion functions.

Chapter 5 – Evaluation 126

Figure �5-4 Localization Test

Before conducting the localization experiment, one module was chosen to be the

reference module (localized with known coordinates and orientation) by running the Ref()

function as shown in Figure �5-5.

Figure �5-5 Reference Module

Chapter 5 – Evaluation 127

This function returned the correct acknowledgement code of 65 and set the mod-

ule as a substrate (S) module as well.

In order to localize the other module, the Localize() function was called and ex-

ecuted. At this time the localized module sent the localization message (MSG1) discussed

in Chapter 4 to the other module and the other module was localized accordingly. The

acknowledgment codes were sent from both modules as shown in Figure �5-6.

Figure �5-6 Localization

Similarly the Clockwise and Counterclockwise functions were tested by calling

CW() and CCW() functions and steps are shown in Figure �5-7.

Chapter 5 – Evaluation 128

Figure �5-7 Rotation Test

5.2.2 Reconfiguration Algorithm Performance

The physical platform performance test was followed by the reconfiguration algo-

rithm performance test. This test was no longer limited to two modules and the simulator

could provide an excellent chance to test the algorithm.

The two main functions used for the simulations were HexAll_P() and HexAll_S()

attached in appendices. These functions require only the initial and goal configurations as

their input arguments. By combining all layers of the reconfiguration algorithm, these

funcitons directly provide the actuation required both for side magnets and joint solenoids

at each time step. HexAll_P() is designed to provide parallel motion for more than one

module and HexAll_S() is designed to provide a serial motion for only one module at a

time.

Let’s start examining the algorithm by running the familiar example discussed

throughout Chapter 4. The code for this example is attached in appendices as

Test_All_P01 and the results are shown in Figure �5-8.

Chapter 5 – Evaluation 129

a) Initial and goal configurations

b) Electrons and voids

c) Time step 1

Initial Configuration Goal Configuration

Electrons Voids

Configuration at time step:1Module Configuration, Available States and Actuation

Chapter 5 – Evaluation 130

d) Time step 2

e) Time step 3

f) Time step 4

Configuration at time step:2Module Configuration, Available States and Actuation

Configuration at time step:3Module Configuration, Available States and Actuation

Configuration at time step:4Module Configuration, Available States and Actuation

Chapter 5 – Evaluation 131

g) Time step 5

h) Time step 6

i) Time step 7
Figure �5-8 Simulation Test 1

Configuration at time step:5Module Configuration, Available States and Actuation

Configuration at time step:6Module Configuration, Available States and Actuation

Module Configuration, Available States Configuration at time step:7

Chapter 5 – Evaluation 132

As can be seen in this simple example, the initial configuration in time step 1 was

transformed into the desired goal configuration in six time steps using parallel module

motions.

The same example was tested by Test_All_S01 (code attached in appendices) for

serial motion execution and the results are shown in Figure �5-9.

a) Initial and goal configuration

b) Electrons and voids

Initial Configuration Goal Configuration

Electrons Voids

Chapter 5 – Evaluation 133

c) Time step 1

d) Time step 2

e) Time step 3

Configuration at time step:1Module Configuration, Available States and Actuation

Configuration at time step:2Module Configuration, Available States and Actuation

Configuration at time step:3Module Configuration, Available States and Actuation

Chapter 5 – Evaluation 134

f) Time step 4

g) Time step 5

h) Time step 6

Configuration at time step:4Module Configuration, Available States and Actuation

Configuration at time step:5Module Configuration, Available States and Actuation

Configuration at time step:6Module Configuration, Available States and Actuation

Chapter 5 – Evaluation 135

i) Time step 7

j) Time step 8

k) time step 9

Figure �5-9 Simulation Test 2

Configuration at time step:7Module Configuration, Available States and Actuation

Configuration at time step:8Module Configuration, Available States and Actuation

Module Configuration, Available States Configuration at time step:9

Chapter 5 – Evaluation 136

As expected the serial motion requires more time steps; however, number of

module movements (which is considered to be minimized by the algorithm) is exactly the

same as the parallel module movements.

The next example in Figure �5-10 illustrates a case where the parallel motion faces

a problem and the reconfiguration can be performed through serial motion.

a) Initial and goal configurations

b) Electrons and voids

Initial Configuration Goal Configuration

Electrons Voids

Configuration at time step:1Module Configuration, Available States and Actuation

Chapter 5 – Evaluation 137

c) Time step 1

d) Time step 2 - Failure

Figure �5-10 Simulation Test 3

As can be seen, in the first time step, two electrons check the connectivity at the

same time and find themselves as mobile electrons and start their motion. However, by

doing so they leave a third module disconnected from the rest of the system.

This example illustrates a potential advantage of a serial motion planning com-

pared to a parallel motion planning in the developed algorithm. However, since the em-

phasis was to minimize the number of module movements which is irrespective to paral-

lel or serial motion execution, HexAll_S() function is sufficient to plan such a reconfigu-

ration.

The last example is planned for a larger system consisting of 12 modules. In this

example the central computer required much more time to process the reconfiguration

path as the number of modules was increased to twice the previous examples.

a) Initial and goal configurations

Configuration at time step:2Module Configuration, Available States and Actuation

Initial Configuration Goal Configuration

Chapter 5 – Evaluation 138

b) Electrons and voids

c) Time steps 1-3

d) Time steps 4-6

Electrons Voids

Configuration at time step:1 Configuration at time step:2 Configuration at time step:3

Configuration at time step:4 Configuration at time step:5 Configuration at time step:6

Chapter 5 – Evaluation 139

e) Time steps 7-9

f) Time steps 10-12

g) Time steps 13-15

Configuration at time step:7 Configuration at time step:8 Configuration at time step:9

Configuration at time step:10 Configuration at time step:11 Configuration at time step:12

Configuration at time step:13 Configuration at time step:14 Configuration at time step:15

Chapter 5 – Evaluation 140

h) Time steps 16-18

i) Time steps 19-21

Figure �5-11 Simulation Test 4

As can be seen the reconfiguration took place in 20 time steps with a serial execu-

tion path planner. This example illustrated one of the main drawbacks of a centralized

processing compared to a decentralized processing in terms of execution time.

5.3 Discussions

Evaluating the overall performance of a MSRRS by comparing to other MSRRSs

is a relatively difficult challenge because of the following reasons.

Most systems designed so far are addressing only a specific area from the ex-

pected features of an ideal MSRRS. For example, some address locomotion or reconfigu-

ration while others realize self-replication or self-repair. Clearly such systems would per-

form well for one area and poor in other areas. Still a complete system featuring all ex-

pected functionalities is yet to come.

Configuration at time step:16 Configuration at time step:17 Configuration at time step:18

Configuration at time step:19 Configuration at time step:20 Configuration at time step:21

Chapter 5 – Evaluation 141

Most algorithms developed are custom made for a specific class. For example

some 2D algorithms cannot be easy expanded to 3D or some algorithms for rectangular

modules cannot be realized for hexagonal modules and etc. To make the situation worse

many developed algorithms rely heavily on specific platform features. For example, exis-

tence of push bottom switches on the side as an indication of the existence on a neighbor-

ing module.

To the best of my knowledge, there is still no well developed method or analysis

that can be applied generally to all MSRRSs.

5.3.1 HexBot Evaluation Criteria and Performance

The following metrics and evaluation criteria are used in this section to sumamr-

ize and address the performance evaluation of the HexBot.

5.3.1.1 HexBot Physical Platform

• Scalability: HexBot platform can be easily scaled down in size as the required

actuation relies only on electromagnetic forces. The platform can also be extended

to 3D using the similar actuators and connectors. In terms of quantity, HexBot can

also be scaled up since the module can be mass-manufactured in an extremely

cost effective manner as there are no expensive sensors or actuators involved.

• Robustness: Handshaking between the two microcontrollers of the modules and

sending the status to the main processor (PC in this case) can be used as an indica-

tion of module failure; however, more work needs to be done to implement real

time failure detection.

• Speed of Response: Magnetic actuators provide fast motion and do not require

precise alignment between two modules since the alignment is done mechanical-

ly. Joint connectors are quick with low power consumption and they do not re-

quire power once the modules are connected

• Power Consumption: This is considered the main drawback in HexBot design.

Quick and strong magnetic force comes at a cost of high power consumption.

• Cost-effectiveness: HexBot can be mass-produced relatively chip since there are

no expensive sensors or actuators in the design.

Chapter 5 – Evaluation 142

• Physical: In terms of geometric shape, HexBot modules have the advantage of

filling any required structure densely with no gaps; however these modules are

primarily developed for research and are not strong enough for real world applica-

tions.

5.3.1.2 HexBot Control Algorithm

• Robustness: The algorithm is not designed to detect failure in the module move-

ments or perform a self-repair action. The only indication of a proper function ex-

ecution is the acknowledgement message sent from the modules to the central

controller. Moreover the overall system is not robust to work in different envi-

ronment as there are no sensory feedback and technique implemented for obstacle

avoidance or etc.

• Scalability: In terms of scalability to different platforms, the algorithm is per-

fectly scalable and requires only slight modification in specific layers; however

the algorithm is not considered to be an architecture independent since all the

modifications need to be done manually. Besides, the current version cannot be

scaled up in quantity as well since it relies on a centralized controller with limit-

ing factors: processing power, communication bandwidth and etc.

• Stability: Convergence property of MDP is well understood and therefore the al-

gorithm will ensure converging to a solution and there are no dead locks.

• Optimality: The heuristic function used in layer 4 (void propagation) along with

the optimization method performed in layer 5 (MDP) result a near optimum solu-

tion. Therefore the optimality of the overall algorithm would depend on the com-

bination of these two factors. For example, in situations where heuristic function

works well the solution will be very close to the global optimum solution and if

the heuristic function does not perform well then the solution will not be very op-

timum.

• Adaptability: Reconfiguration algorithm developed can support adaptation to dif-

ferent tasks or working environment; however, more work needs to be done in

this field.

Chapter 6 – Concluding Remarks 143

 Chapter 6

 6 Concluding Remarks

Finally a MSRRS project was established in the AUS Mechatronics Center and

hopefully this project would continue and contribute to the growing field of modular self-

reconfigurable robotic system.

6.1 Summary

We have motivated, introduced and established the MSRRS project both from

hardware and software aspects in this work. We have deeply reviewed, organized and

presented the relevant literature along with the most successful platforms and algorithms.

We have demonstrated the main criteria behind HexBot as our universal module

in terms of design and implementation. We have also provided a comprehensive back-

ground including preliminaries needed for the reconfiguration algorithm and explained in

details how the algorithm was developed.

Finally we have evaluated the performance of both platform and algorithm

through several examples and discussed the results.

Chapter 6 – Concluding Remarks 144

6.2 Conclusions

HexBot was successfully implemented and a reconfiguration algorithm for a pla-

nar hexagonal MSRRS was developed.

The design of the universal module required a well understanding of the ultimate

common goals in the area and we specifically focused on the two dimensional, homoge-

neous systems. We have developed an extremely fast actuation which is exceptionally

competitive to other designs where other kinds of actuators are utilized. Inter-module

connections are designed to be quick and powerful without requiring precise alignment.

All electronics boards were designed in a multilayered manner where each board has spe-

cific task and can be modified or replaced separately.

The control algorithm was successfully designed and implemented to transform

the global shape of the system form an arbitrary initial configuration to a desired goal

configuration. The approach incorporated the development of a hierarchical multilayer

framework for lattice based modular systems to optimize and plan paths for the minimum

number of module movements. The overall problem was successfully formulated as a

Markov Decision Process (MDP) that could be easily adopted for other platforms. In the

policy search collision avoidance and connectivity constraints were implemented. Multi-

layered nature of the framework provides openness, flexibility and ease of modification

and improvement for each individual layer.

6.3 Limitations and Directions for Future Research

Clearly this work was just planned to pave the way for others to continue and con-

tribute more to this exciting field.

The physical platform can be improved in the following ways:

1. Friction with the environment shall be minimized through:

a. An air-table can be used to reduce the normal force

b. Ball transfer-table can be used to reduce the weight, since bal transfers

will not be mounted on the modules

c. Battery instead of power based to eliminate the need and friction of the

power pins

Chapter 6 – Concluding Remarks 145

d. Mechanical parts shall be designed with a more strength to weight ration

to reduce the weight

2. Better magnets (in terms of size and magnetic force) can be replaced

3. Size can be reduced

4. Eventually we should also move toward a 3D environment

The control algorithm can also be improved in the following ways:

1. Parallel actuation problem shall be overcome

2. Reward function should be upgraded to allow motion for fixed modules which are

blocking the way for other modules to move

3. MDP can be replaced with POMDP or other distributed ways of path planning for

scalability

4. There should be a distributed way of testing the connectivity constraint to move

towards a totally distributed controller

Bibliography 146

Bibliography

Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., et al. (2005).

Programmable parts: a demonstration of the grammatical approach to self-organization.

International Conference on Intelligent Robots and Systems, (pp. 3684-3691).

Bojinov, H., Casal, A., & Hoag, T. (2000). Emergernt structures in modular. Proceedings

of IEEE International Conference on Robotics and Automation, (pp. 1734-1741). San

Francisco.

Buckley, F., & Lewinter, M. (2003). A Friendly Introduction to Graph Tehory. New

Jersey: Prentice Hall.

Butler, Z., & Rus, D. (2003). Distributed Planning and Control for Modular Robots with

Unit-Compressible Modules. The International Journal of Robotics Research , 22 (9),

699-715.

Butler, Z., Byrnes, S., & Rus, D. (2001). Distributed motion planning for modular robots

with unit-compressible modules. Proceedings of the 2001 IEEE/RSJ International

Conference on Intelligent Robots and Systems, (pp. 790-796). Hawaii, USA.

Butler, Z., Fitch, R., & Rus, D. (2002). Distributed control for unit-compressible robots:

Goal-recognition, locomotion and splitting. 7 (4), 418-430.

Bibliography 147

Butler, Z., Kotay, K., Rus, D., & Tomita, K. (2002). Generic decentralized control for a

class of self-reconfigurable robots. Proceedings ofIEEE ICRA02.

Casal, A., & Yim, M. (1999). Self-Reconfiguration Planning for a Class of Modular

Robots. Proceedings of SPIE, Sensor Fusion and Decentralized Control in Robotic

Systems, (pp. 246-257).

Cassandra, T., Littman, M., & Kaelbling, L. (2003, November 6). Partially Observable

Markov Decision Process. Retrieved September 12, 2008, from POMDP:

http://www.pomdp.org

Castano, A., & Will, P. (2000). Mechanical design of a module for autonomous

reconfigurable robots. Proceedings of IEEE/RSJ Int. Conf. Intelligent Robots and

Systems, (pp. 2203–2209).

Castano, A., Behar, A., & Will, P. M. (2002). The Conro modules for reconfigurable

robots. IEEE/ASME Transaction of Mechatronics , 7 (4), 403-409.

Castano, A., Chokkaingam, R., & Will, P. (2000). Autonomous and selfsufficient conro

modules for reconfigurable robots. Proceedings, 5th International Symposium on

Distributed Autonomous Robotic Systems (DARS’00), (pp. 155-164). Knoxville, Texas,

USA.

Castano, A., Shen, W. M., & Will, P. (2000). CONRO: Towards Deployable Robots with

Inter-Robots Metamorphic Capabilities. Autonomous Robots , 8 (3), 309-324.

Chiang, C. H., & Chirikjian, G. (2001). Modular robot motion planning using similarity

metrics. Autonomous Robots , 10 (1), 91-106.

Chiang, C. J., & Chirikjian, G. (2001). Similarity metrics with applications to modular

robot motion planning. Autonomous Robots , 10 (1), 91-106.

Chirikjian, G. (1994). Kinematics of a metamorphic robot system. IEEE International

Conference of Robotics and Automation, (pp. 449-455). San Diego.

Bibliography 148

Chirikjian, G., Pamecha, A., & Ebert-Uphoff, I. (1996). Evaluating efficiency of self-

reconfiguration in a class of modular robots. Robot System , 13 (5), 317-338.

Christensen, D. J., & Stoy, K. (2006). Selecting a Meta-Module to Shape-Change the

ATRON Self-Reconfigurable Robot. Proceedings of the 2006 IEEE International

Conference on Robotics and Automation, (pp. 2534-2538). Orlando, Florida.

Christensen, D. J., Ostergaard, E., & Lund, H. (2004). Metamodule control for the

ATRON self-reconfigurable robotic system. Proceedings of the The 8th Conference on

Intelligent Autonomous Systems (IAS-8), (pp. 685-692).

Dumitrescu, A., Suzuki, I., & Yamasashita, M. (2002). High speed formations of

reconfigurable modular robotic systems. Proceedings of IEEE Internatinal Conference of

Robotics and Automation, (pp. 123-128). Washington, DC.

Fitch, R., & Butler, Z. (2007). Scalable Locomotion for Large Self-Reconfiguring

Robots. IEEE Inernational Conference on Robotics and Automation, (pp. 10-14). Rome.

Fitch, R., butler, Z., & Rus, D. (2005). Reconfiguration Planning Among Obstacles for

Heterogeneous Self-Reconfiguring Robots. Proceedings of the 2005 IEEE International

Conference on Robotics and Automation, (pp. 117-124). Barcelona, Spain.

Fitch, R., Butler, Z., & Rus, D. (2003). Reconfiguration Planning for Heterogeneous Self-

Reconfiguring Robots. Proceedings of the 2003 IEEWRSJ International Conference on

Intelligent Robots and Systems, (pp. 2460-2467). Las Vegas, Nevada.

Fitch, R., Hengst, B., Suc, D., Calbert, G., & Scholz, J. (2005). Structural Abstraction

Experiments in Reinforcement Learning. In AI 2005: Advances in Artificial Intelligence

(Vol. 3809/2005, pp. 164 - 175). Sydney, Australia: Springer Berlin / Heidelberg.

Fitch, R., Rus, D., & Vona, M. (2000). A basis for self-repair using crystaline modules.

Proceedings of Intelligent Autonomous Systems Conference (IAS-6), (pp. 903-909).

Fukuda, T., & Kawakuchi, Y. (1990). Cellular robotic system (CEBOT) as one of the

realization of self-organizing intelligent universal manipulator. In Proceedings of IEEE

Conference on Robotics and Automation (ICRA), (pp. 662-667).

Bibliography 149

Fukuda, T., & Nakagawa, S. (1987). A Dynamically Reconfigurable Robotic System

(concept of a system and optimal configurations). Proceedings of IEEE International

Conference on Industrial Electronics, Control, and Instrumentation (pp. 588-595). Los

Alamitos, CA: IEEE Computer Society Press.

Fukuda, T., & Nakagawa, S. (1988). Approach to the Dynamically Reconfigurable

Robotic System. Journal of Intelligent and Robot Systems , 55-72.

Fukuda, T., & Nakagawa, S. (1988). Dynamically reconfigurable robotic system.

Proceedings of the 1988 IEEE International Conference on Robotics and Automation. 3,

pp. 1581–1586. Los Alamitos, CA: IEEE Computer Society Press.

Fukuda, T., & Nakagawa, S. (1990). Method of autonomous approach, docking and

detaching between cells for dynamically reconfigurable robotic system CEBOT. JSME

International J. III-VIB. C. , 33 (2), 263-268.

Fukuda, T., & Ueyama, T. (1994). Cellular robotics and micro robotic systems. London:

World Scientific Publishing.

Fukuda, T., Buss, M., Hosokai, H., & Kawauchi, Y. (1991). Cell structured robotic

system CEBOT: Control, planning and communication. 7 (2-3), 239-248.

Fukuda, T., Nakagawa, S., Kawauchi, Y., & Buss, M. (1988). Self organizing robots

based on cell structures—CEBOT. Proceedings of the 1988 IEEE International

Workshop on Intelligent Robots (pp. 145-150). Los Alamitos, CA: IEEE Computer

Society Press.

Fukuda, T., Sekiyama, K., Ueyama, T., & Arai, F. (1993). Efficient communication

method in the cellular robotic system. Proceedings of the 1993 IEEE/RSJ Internatioanl

Conference on Intelligent Robots and Systems. 2, pp. 1091-1096. Los Alamitos, CA:

IEEE Computer Society Press.

Fukuda, T., Ueyama, T., & Kawauchi, Y. (1990). Self-organization in cellular robotic

system (CEBOT) for space application with knowledge allocation method. Proceedings

Bibliography 150

of the 1990 International Symposium on Artificial Intelligence, Robotics and Automation

in Space, (pp. 101-104). Kobe, Japan.

Fukuda, T., Ueyama, T., & Sekiyama, K. (1995). Distributed intelligent systems in

cellular robotics. Artificial Intelligence in Industrial Decision Making, Control and

Automation , 225-246.

Gilpin, K., Kotay, K., & Rus, D. (2007). Miche: Modular Shape Formation by Self-

Dissasembly. IEEE International Conference on Robotics and Automation (ICRA07),

(pp. 2241-2247). Roma, Italy.

Goldstein, S., Mowry, T., Gibbons, P., Pillai, P., Rister, B., & Lee, P. (2006). Ensembles

of Millions of Microbots. Proceedings of the 2006 IEEE Internatonal Conference on

Robotics and Automation. Orlando, FL.

Hamlin, G., & Sanderson, A. (1998). A Modular Approach to Reconfigurable Parallel

Robotics. Boston: Kluwer Academic Publishers.

Hosokawa, K., Tsujimori, T., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y., et al. (1998).

Self-organizing collective robots with morphogenesis in a vertical plane. In Proceedings

of IEEE International Conference on Robotics & Automation (ICRA’98), (pp. 2858-

2863). Leuven, Belgium.

Inou, N., Kobayashi, H., & Koseki, M. (2002). Development of pneumatic cellular robots

forming a mechanical structure. Proceedings of International Conference of Control,

Automation, Robotics and Vision, (pp. 63-68).

Inou, N., Minami, K., & Koskei, M. (2003). Group robots forming a mechanical

structure-development of slide motion mechanism and estimation of energy consumption

of the structural formation. IEEE International Symposium on Computational Intelligence

in Robotics and Automation, (pp. 874-879).

Jennifer E. Walter, E. M. (2002). Choosing Good Paths for Fast Distributed

Reconfiguratiom of Hexagonal Metamorphic Robots. International Conference on

Robotics & Automation, (pp. 102 - 109). Washington.

Bibliography 151

Jorgensen, M., Ostergaard, E., & Lund, H. (2004). Modular ATRON: Modules for a self-

reconfigurable robot. In proceedings of IEEE/RSJ International Conference on Intelligent

Robots, (pp. 2068–2073). Sendai, Japan.

Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., & Kokaji, S. (2005).

Automatic locomotion design and experiments for a modular robotic system.

IEEE/ASME Transaction on Mechatronics , 10 (3), 314-325.

Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S., & Murata, S. (2004).

Distributed Adaptive Locomotion by a Modular Robotic System, M-TRAN II From

Local Adaptation to Global Coodinated Motion Using CPG Controllers. Proceedings of

2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 2370-

2377). Sendai, Japan.

Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Murata, S., & Kolaji, S. (2003).

Automatic Locomotion Pattern Generation forModular Robots. Proceedings of the 2003

IEEE International Conference on Robotics & Automation, (pp. 714-720). Taipei,

Taiwan.

Khoshnevis, B., Kovac, B., Shen, W. M., & Will, P. (2001). Reconnectable joints for

self-reconfigurable robots. Proceedings, IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’01), 1, pp. 584-589. Hawaii, USA.

Klavins, E., Burden, S., & Napp, N. (2006). Optimal rules for programmed stochastic

self-assembly. Proceedings of Robotics Science Systems ’06.

Klavins, E., Ghrist, R., & Lipsky, D. (2006). A Grammatical Approach to Self-

Organizing Robotic Systems. IEEE Transactions on Automatic Control , 51 (6), 949-962.

Kocay, W., & Kreher, D. L. (2005). Graphs, Algorithms, and Optimization. Florida:

Chapman & Hall/CRC Press.

Kotay, K. (2003). Self-Recon guring Robots: Designs, Algorithms, and Applications,

Ph.D Thesis. Dartmouth College, Computer Science Department.

Bibliography 152

Kotay, K., & Rus, D. (2000). Algorithms for selfreconfiguring molecule motion planning.

Proceedings of the International Conference on Intelligent Robots and Systems, (pp.

2184-2193).

Kotay, K., & Rus, D. (2005). Efficient Locomotion for a Self-Reconfiguring Robot.

Proceedings of the IEEE International Conference on Robotics and Automation, (pp.

2963-2969).

Kotay, K., & Rus, D. L. (1998). Motion Synthesis for the Self-Reconfiguring Robotic

Molecule. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2, pp. 843-851.

Kotay, K., & Rus, D. (1999). Locomotion versatility through selfreconfiguration.

Robotics and Autonomous Systems , 26, 217-232.

Kotay, K., & Rus, D. (2000). Scalable parallel algorithm for configuration planning for

self-reconfiguring robots. In Proceedings of the Society of Photo-Optical Instrumentation

Engineers. Boston.

Kotay, K., Rus, D., Vona, M., & McGray, C. (1998). The self-reconfiguring robotic

molecule. In Proceedings of the IEEE International Conference on Robotics and

Automation, (pp. 424-431). Leuven, Belgium.

Kotay, K., Rus, D., Vona, M., & McGray, C. (1998). The selfreconfiguring robotic

Molecule: design and control algorithms. Proceedings of the Workshop on the

Algorithmic Foundations of Robotics. Houston,.

Kubica, J., Casal, A., & Hogg, T. (2001). Complex behaviors from local rules in modular

self-reconfigurable robots. Proceedings IEEE International Conference on Robotics and

Automation (ICRA), (pp. 360-367).

Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Kokaji, S., & Murata, S. (2003).

M-TRAN II: Metamorphosis from a Four-Legged Walker to a Caterpillar. Proceedings of

the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, (pp. 2454-2459).

Las Vegas, Nevada.

Bibliography 153

Kurokawa, H., Murata, S., Yoshida, E., Tomita, K., & Kokaji, S. (2000). A three-

dimensional self-reconfigurable system. Adv. Robot , 13 (6), 591-602.

Lee, W. H., & Sanderson, A. (2001). Dynamic analysis and distributed control of the

tetrabot modular reconfigurable robot system. Autonomous Robots , 10 (1), 67-82.

Murata, S., & Haruhisa, K. (2007). Self-Reconfigurable Robots: Shape-Changing

Cellular Robots Can Exceed Conventional Robot Flexibility. IEEE Robotics &

Automation Magazine , 71-78.

Murata, S., Kakomura, K., & Kurrokawa, H. (2006). Docking experiments of a modular

robot by visual feedback. Proceedings of the 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems (pp. 625-630). Los Alamitos, CA: IEEE Computer

Society Press.

Murata, S., Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., & Kokaji, S. (2004).

Self-Reconfigurable Robots: Platforms for Emerging Functionality. Embodied Artificial

Intelligence , 312-330.

Murata, S., Kurokawa, H., & Kokaji, S. (1994). Self-assembling machine. IEEE

International Conference on Robotics & Automation, (pp. 441-448). San Diego.

Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., & Kokaji, S. (1998). A 3-D Self-

Reconfigurable Structure. IEEE International Conference on Robotics & Automation,

(pp. 432-439). Leuven.

Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., & Kokaji, S. (2002).

M-TRAN: Selfreconfigurable modular robotic system. IEEE/ASME Transactions on

Mechatronics , 7 (4), 431-441.

Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., & Kokaji, S. (2001). Concept of self-

reconfigurable modular robotic system. J. AI Eng , 15 (4), 383-387.

Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., & Kokaji, S. (2001). Selfrepairing

mechanical system. Autonomous Robots , 7-21.

Bibliography 154

Murata, S., Yoshida, E., Tomita, K., Kurokawa, H., Kamimura, A., & Kokaji, S. (2000).

Hardware design of modular robotic system. Proceedings, IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS’00), (pp. 2210-2217). Takamatsu, Japan.

Mytilinaios, E., Desnoyer, M., Marcus, D., & Lipson, H. (2004). Designed and evolved

blueprints for physical self-replicating machines. Proceedins of the 9th International

Conference on the Simulation and Synthesis of Living Systems (Artificial Life IX) (pp. 15-

20). Cambridge, MA: MIT Press.

Neumann, J. V. (1966). Theory of Self-Reproducing Automata. Urbana: University of

Illinois Press.

Nguyen, A., Guibas, L., & Yim, M. (2001). Controlled module density helps

reconfiguration planning. Proceedings of the 4th International Workshop on Algorithmic

Foundations of Robotics, New Directions in Algorithmic and Computational Robotics

(pp. 23-36). Hanover: A.K. Peters.

Pamecha, A., Chiang, C. J., Stein, D., & Chirikjian, G. (1996). Design and

implementation of metamorphic robots. Design Engineering Technical Conf. and

Computers in Engineering Conference.

Pamecha, A., Ebert-Uphoff, I., & Chirikjian, G. (1997). Useful metrics for modular robot

motion planning. IEEE Transactions on Robotics and Automation , 13 (4), 531-545.

Payne, K., Salemi, B., Will, P., & Shen, W. M. (2004). Sensor-based distributed control

for chain-typed self-reconfiguration. Proceedins of the 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems. 2, pp. 2074-2080. Los Alamitos, CA:

IEEE Computer Society Press.

Prevas, K. C., Unsal, C., Efe, M. O., & Khosla, P. K. (2002). A Hierarchical Motion

Planning Strategy for a Uniform Self-Reconfigurable Modular Robotic System.

Proceedings of the 2002 IEEE International Conference on Robotics & Automation, (pp.

787-792). Washington, DC.

Bibliography 155

Rosa, M. D., Goldstein, S., Lee, P., Campbell, J., & Pillai, P. (2006). Scalable shape

sculpting via hole motion: Motion planning in lattice-constrained modular robots.

Proceedings of IEEE International Conference on Robotics and Automation.

Rubenstein, M., Payne, K., Will, P., & Shen, W. M. (2004). Docking among independent

and autonomous CONRO self-reconfigurable robots. Proceedings of the 2004 IEEE

International Conference on Robotics and Automation. 3, pp. 2877-2882. Los Alamitos,

CA: IEEE Computer Society Press.

Rus, D., & Vona, M. (2001). Crystalline robots: Self-configuration with compressible

unit modules. Autonomous Robots , 10 (1), 107-124.

Rus, D., & Vona, M. (1999). Self-reconfiguration planning with compressible unit

modules. Proceedings of IEEE International Conference Robotics and Automation, (pp.

2513-2530).

Russell, S. J., & Norving, P. (2003). Artificial Intelligence A Modenr Approach. New

Jersey: Prentice Hall.

Salemi, B., Moll, M., & Shen, W. M. (2006). SUPERBOT: A deployable, multi-

functional, and modular self-reconfigurable robotic system. Proceedings of 2006

IEEE/RSJ International Conference of Intelligent Robots Systems, (pp. 3636-3641).

Salemi, B., Shen, W. M., & Will, P. (2004). Hormone-controlled metamorphic robots. In

Proceedings of IEEE ICRA, (pp. 4194-4199).

Shen, W. M., & Will, P. (2001). Docking in Self-Recon gurable Robots. Proceedins of

IEEE International Conference on Intelligent Robots and Systems. Maui, USA.

Shen, W. M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., & Venkatesh, J.

(2006). Multimode locomotion via SuperBot reconfigurable robots. Autonomous Robots ,

20, 165-177.

Shen, W. M., Will, P., & Castano, A. (1999). Robot modularity for self-reconfiguration.

In SPIE Conference on Sensor Fusion and Decentralized Control in Robotic Systems.

Bibliography 156

Shen, W., Salemi, B., & Will, P. (2002). Hormone-inspired adaptive communication and

distributed control for CONRO self-reconfigurable robots. IEEE Transaction on Robot.

and Automat. , 18, 700-712.

Stoy, K., Shen, W. M., & Will, P. (2002). Global Locomotion from Local Interaction in

Self-Reconfigurable Robots. Proceedings of Intelligent Autonomous Systems.

Stoy, K., Shen, W., & Will, P. (2002). Using role based control to produce locomotion in

chain-type self-reconfigurable robot. IEEE/ASME Transaction on Mechatronics , 7, 410-

417.

Suh, J., Homans, S., & Yim, M. (2002). Telecubes: Mechanical Design of a Module for

Self-Reconfigurable Robotics. Proceedings, IEEE International Conference on Robotics

and Automation (ICRA’02), 4, pp. 4095-4101. Washington, DC, USA.

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An Introduction. Cambridge:

MIT Press.

Tomita, K., Murata, S., Kurokawa, H., Yoshida, E., & Kokaji, S. (1999). A selfassembly

and self-repair method for a distributed mechanical system. IEEE Transaction on

Robotics and Automation , 1035-1045.

Unsal, C., & Khosla, P. K. (2001). A Multi-Layered Planner for Self-Reconfiguration of

a Uniform Group of I-Cube. Proceedings of 2001 IEEE/RSJ International Conference on

Intelligent Robots and Systems.

Unsal, C., & Khosla, P. (2000). Mechatronic design of a modular self-reconfiguring

robotic system. Proceedings, IEEE International Conference on Robotics & Automation

(ICRA’00), (pp. 1742-1747). San Francisco, USA.

Unsal, C., & Khosla, P. (2000). Solutions for 3-d self-reconfiguration in a modular

robotic system: Implementation and motion planning. Proceedings, SPIE Sensor Fusion

and Decentralized Control in Robotic Systems III, (pp. 388-401).

Bibliography 157

Unsal, C., Kiliccote, H., & Khosla, P. K. (1999). I(CES)-cubes: a Modular Self-

Reconfigurable Bipartite Robotic System. Proceedins SPIE, Sensor Fusion and

Decentralized Control in Robotic Systems II, (pp. 246-257).

Varshavskaya, P. (2007). Phd Thesis: Distributed Reinforcement Learning for Self-

Reconfiguring Modular Robots. Massachusetts: MIT University.

Vassilvitskii, S., Kubica, J., & Rieffel, E. (2002). On the General Reconfiguratino

Problem for Expanding Cube Style Modular Robots. Proceedings of the 2002 IEEE

International Conference on Robotics & Automation, (pp. 801-808). Washington, DC.

Vassilvitskii, S., Yim, M., & Suh, J. (2002). A complete, local and parallel

reconfiguration algorithm for cube style modular. In Proceedings of IEEE ICRA, (pp.

117-122).

Walter, J. E., Tsai, E. M., & Amato, N. M. (2005). Algorithms for Fast Concurrent

Reconfiguration of Hexagonal Metamorphic Robots. IEEE Transactions of Robotics , 21

(4), 621-631.

Walter, J. E., Tsai, E. M., & Amato, N. M. (2002). Choosing good paths for fast

distributed reconfiguration of hexagonal metamorphic robots. Proceedings of IEEE

ICRA, (pp. 102-109).

Walter, J. E., Welch, J. L., & Amato, N. M. (2002). Concurrent metamorphosis of

hexagonal robot chains into simple connected configurations. IEEE Transactions on

Robotics and Automation , 18 (6), 945-956.

Walter, J. E., Welch, J. L., & Amato, N. M. (2000). Distributed Reconfiguration of

Hexagonal Metamorphic Robots in Two Dimensions. Proc. SPIE, Sensor Fusion and

Decentralized Control in Robotic Systems III, (pp. 441-453).

Walter, J., Welch, J., & Amato, N. (2000). Distributed reconfiguration of metamorphic

robot chains. Proceedins of ACM Symposium Principles of Distributed Computing, (pp.

171-180). Portland, OR.

Bibliography 158

White, P. J., & Yim, M. (2007). Scalable Modular Self-reconfigurable Robots Using

External Actuation. Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, (pp. 2773-2778). San Diego, CA, USA.

White, P. J., Kopanski, K., & Lipson, H. (2004). Stochastic Self-Reconfigurable Cellular

Robotics. Proeeedinp d the 2004 IEEE International Conference on Robotics &

Automation, (pp. 2888-2893). Now Weans. LA.

White, P., Zykov, V., Bongard, J., & Lipson, H. (2005). Three Dimensional Stochastic

Reconfiguration of Modular Robots. Robotics: Science and Systems , 161-168.

Yim, M. (1993). A reconfigurable modular robot with multiple modes of locomotion.

Proceedings of JSME International Conference of Advanced Mechatronics, (pp. 283-

288). Tokyo, Japan.

Yim, M. (1994). Locomotion with a unit-modular reconfigurable robot. PhD thesis.

Department of Mechanical Engineering, Stanford University.

Yim, M. (1994). New locomotion gaits. Proceedings, International Conference on

Robotics & Automation (ICRA’94), (pp. 2508-2514). San Diego, California, USA.

Yim, M., Duff, D. G., & Roufas, K. D. (2002). Walk on the wild side. IEEE Robot.

Automat. , 9 (4), 49-53.

Yim, M., Duff, D., & Roufas, K. (2000). Polybot: A modular reconfigurable robot. IEEE

International Conference on Robotics & Automation, (pp. 514-520). San Francisco.

Yim, M., Goldberg, D., & Casal, A. (2000). Connectivity Planning for Closed-Chain

Reconfiguration. Proceedings SPIE, Sensor Fusion and Decentralized Control in Robotic

Systems III, (pp. 402-412).

Yim, M., Lamping, J., Mao, E., & Chase, J. G. (1997). Rhombic dodecahedron shape for

self-assembling robots. Xerox PARC SPL, Tech. Rep.

Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., & Homans, S. B. (2003).

Modular reconfigurable robots in space applications. Auton. Robots , 14 (2-3), 225-327.

Bibliography 159

Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007).

ModularSelf-Reconfigurable Robot Systems - Challenges and Opportunities for the

Future. IEEE Robotics & Automation Magazine , 43-52.

Yim, M., Zhang, Y., & Duff, D. G. (2002). Modular Robots. IEEE Spectr. , 39 (2), 30-34.

Yim, M., Zhang, Y., Lamping, J., & Mao, E. (2001). Distributed control for 3D

metamorphisis. Auton. Robot. , 10 (1), 41-56.

Yim, M., Zhang, Y., Roufas, K., Duff, D., & Eldershaw, C. (2002). Connecting and

disconnecting for chain self-reconfiguration with Polybot. Proceedings of IEEE/ASME

Transaction of Mechatronics, 7, pp. 442-451.

Yoshida, E., Kokaji, S., & Murata, S. (2000). Miniaturization of Self-Reconfigurable

Robotic System using Shape Memory Alloy. Robotics and Mechatronics , 1579-1585.

Yoshida, E., Kurokawa, H., Kamimura, A., Tomita, K., Kokaji, S., & Murata, S. (2004).

Planning Behaviors of a Modular Robot: an Approach Applying a Randomized Planner

to Coherent Structure. Proceedings of 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems, (pp. 2056-2061). Sendai, Japan.

Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., & Kokaji, S. (2001).

A Motion Planning Method for a Self-Reconfigurable Modular Robot. IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS2001).

Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., & Kokaji, S. (2003).

A self-reconfigurable modular robot: reconfiguration planning and experiments. Int. J.

Robot. Res. , 21 (10), 903-916.

Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., & Kokaji, S. (2003).

Evolutionary Synthesis of Dynamic Motion and Reconfiguration Process for a Modular

Robot M-TRAN. Proceedings 2003 IEEE International Symposium on Computational

Intelligence in Robotics and Automation, (pp. 1004-1010). Kobe, Japan.

Bibliography 160

Yoshida, E., Murata, S., Kaminura, A., Tomita, K., Korokawa, H., & Kokaji, S. (2000).

Motion Planning of Selfreconfigurable Modular Robot. Proceedings of the 7th

International Symposium on Experimental Robotics, (pp. 375-384).

Yoshida, E., Murata, S., Kokaji, S., Kamimura, A., Tomita, K., & Kurokawa, H. (2002).

Get back in shape! a hardware prototype self-reconfigurable modular. IEEE Robotics &

Automation Magazine , 9 (4), 54-60.

Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., & Kokaji, S. (1998). A distributed

reconfiguration method for 3D homogeneous structure. Proceedings of IEEE

International Conference on Intelligent Robots and Systems, (pp. 852-859). Victoria, BC,

Canada.

Yoshida, E., Murata, S., Tomita, K., Kurokawa, H., & Kokaji, S. (1998). Experiment of

self-repairing modular machine. Distributed Autonomous Robotic Systems 3 , 119-128.

Zhang, Y., Roufas, K., Eldershaw, C., Yim, M., & Duff, D. (2003). Sensor computations

in modular self reconfigurable robots. In Proceedings of the 8th International Symposium

on Experimental Robotics, volume 5 of Springer Tracts in Advanced Robotics (pp. 276-

286). Berlin, Germany: Springer.

Zykov, V., Mytilinaios, E., Adams, B., & Lipson, H. (2005). Self-reproducing machines.

Nature , 163-164.

Zykov, V., Mytilinaios, E., Desnoyer, M., & Lipson, H. (2007). Evolved and Designed

Self-Reproducing Modular Robotics. IEEE Transactions on Robotics , 23 (2), 308-319.

 Appendices 161

 Appendices

 APPENDIX A

A. Microcontroller Codes

 Appendices 162

These codes are developed for the HexBot modules based on two ATmega162

microcontrollers. The first code is written for the control board including 16 functions for

actuators. The second code is developed for the communication board allowing inter-

modules communication and central communication with the computer including 30 gen-

eral purpose functions. The final code is developed for the wireless board based on SPI

communication which is part of the communication board that is planned to be integrated

in the next stage of the project.

Control Board Program

//****************************** MAIN PROGRAM FOR CONTROL BOARDS

//ICC-AVR application builder : 1/1/2009 12:48:09 AM

// Target : M162

// Crystal: 1.0000Mhz

#include <iom162v.h>

#include <macros.h>

int ts; //time step, increased every 10ms

//****************************** PORT INITIALIZATION ******************************

void port_init(void)

{

 PORTA = 0x00;

 PORTB = 0x00;

 PORTC = 0x00;

 PORTD = 0x00;

 PORTE = 0x00;

 DDRA = 0b11111111; //Joint Actuators

 DDRB = 0b11111011; //Side Actuators - UART1

 DDRC = 0b00000000; //DIP Switches

 DDRD = 0b11111110; //Communication Board UART0 - Side Actuators

 DDRE = 0b11111111; //Currently Not Used

}

//****************************** TIMER INITIALIZATION ******************************

//TIMER0 initialize - prescale:64

// WGM: Normal

// desired value: 10mSec

// actual value: 9.984mSec (0.2%)

void timer0_init(void)

{

 TCCR0= 0x00; //stop

 TCNT0= 0x64; //set count

 OCR0= 0x9C; //set compare value

 TCCR0= 0x03; //start timer

}

#pragma interrupt_handler timer0_ovf_isr:iv_TIM0_OVF

void timer0_ovf_isr(void)

{

 TCNT0= 0x64; //reload counter value

 ts++; //increase ts every 10ms

}

//Delay of multiple of ts (10ms)

void DelayXts (int i)

{

 ts=0;while (ts<i) {;}

}

//****************************** UART INITIALIZATION ******************************

//UART0 initialize

 Appendices 163

// desired baud rate: 4800

// actual: baud rate:4808 (0.2%)

// char size: 8 bit

// parity: Disabled

void uart0_init(void)

{

 UCSR0B = 0x00; //disable while setting baud rate

 UCSR0A = 0x00; //disable while setting baud rate

 UBRR0L =0x0C; //set baud rate

 UBRR0H = 0x00;

 UCSR0C = BIT(URSEL0) | 0x06;

 UCSR0A = 0x00; //enable

 UCSR0B = 0x18; //enable

}

// Transmite0

void TransmitByte0(unsigned char data)

{while (!(UCSR0A & (1<<UDRE0)));UDR0 = data;}

// Receive0

unsigned char ReceiveByte0(void)

{while (!(UCSR0A & (1<<RXC0))) {;} return UDR0;}

// Receive0TL :time limited listening to the port (t: time stpes)

unsigned char ReceiveByte0TL(int t)

{

 ts=0;

 while ((!(UCSR0A&(1<<RXC0))) && (ts<t)){;}

 if (ts>=t) {return '~';} else {return UDR0;} //~: time exceeded

}

//UART1 initialize

// desired baud rate:4800

// actual baud rate:4808 (0.2%)

// char size: 8 bit

// parity: Disabled

void uart1_init(void)

{

 UCSR1B = 0x00; //disable while setting baud rate

 UCSR1A = 0x00; //disable while setting baud rate

 UBRR1L =0x0C; //set baud rate

 UBRR1H = 0x00;

 UCSR1C = BIT(URSEL1) | 0x06;

 UCSR1A = 0x00; //enable

 UCSR1B = 0x18; //enable

}

// Transmite1

void TransmitByte1(unsigned char data)

{while (!(UCSR1A & (1<<UDRE1)));UDR1 = data;DelayXts(2);} //Keep a delay after each

transmition

// Receive1

unsigned char ReceiveByte1(void)

{while (!(UCSR1A & (1<<RXC1))) {;} return UDR1;}

// Preamble

void PRE (void)

{

 unsigned char txt[20]={10,13,10,13,'#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

}

// Control Board Ready

void CTR_Ready (void)

{

 unsigned char txt[20]={'C','T','R','.',' ','B','O','A','R','D','

','R','E','A','D','Y','#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

 TransmitByte1(10);TransmitByte1(13);

}

// Communication Board Ready

void COMM_Ready (void)

{

 unsigned char txt[20]={'C','O','M','M','.',' ','B','O','A','R','D','

','R','E','A','D','Y','#'};

 Appendices 164

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

 TransmitByte1(10);TransmitByte1(13);

}

// Control Board Listening

void CTR_LST (void)

{

 unsigned char txt[20]={'C','T','R','.','

','L','I','S','T','E','N','I','N','G',10,13,'#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

}

// Communication Board Listening

void COMM_LST (void)

{

 unsigned char txt[20]={'C','O','M','M','.','

','L','I','S','T','E','N','I','N','G',10,13,'#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

}

// Package Received

void RCV (void)

{

 unsigned char txt[20]={'R','E','C','E','I','V','E','D',10,13,'#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

}

//****************************** ALL DEVICES INITIALIZATION

//call this routine to initialize all peripherals

void init_devices(void)

{

 //stop errant interrupts until set up

 CLI(); //disable all interrupts

 port_init();

 timer0_init();

 uart0_init();

 uart1_init();

 MCUCR= 0x00;

 EMCUCR = 0x00;

 TIMSK= 0x02; //timer interrupt sources

 ETIMSK=0x00;

 GICR= 0x00;

 PCMSK0=0x00;

 PCMSK1=0x00;

 SEI(); //re-enable interrupts

 //all peripherals are now initialized

}

//****************************** JOINT ACTUATION FUNCTIONS ******************************

//Joint Actuation Functions (without direction - only on/off)

void JxOpen (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Actuate accordingly

 if (i==1) {PORTA = PORTA|0b00000100;}

 if (i==2) {PORTA = PORTA|0b00001000;}

 if (i==3) {PORTA = PORTA|0b00100000;}

 if (i==4) {PORTA = PORTA|0b00010000;}

 if (i==5) {PORTA = PORTA|0b00000001;}

 if (i==6) {PORTA = PORTA|0b00000010;}

}

void JxClose (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 Appendices 165

 while (i>6) {i=i-6;}

 //Actuate accordingly

 if (i==1) {PORTA = PORTA&0b11111011;}

 if (i==2) {PORTA = PORTA&0b11110111;}

 if (i==3) {PORTA = PORTA&0b11011111;}

 if (i==4) {PORTA = PORTA&0b11101111;}

 if (i==5) {PORTA = PORTA&0b11111110;}

 if (i==6) {PORTA = PORTA&0b11111101;}

}

void JxOpenAll (void)

{

 PORTA = PORTA|0b00111111;

}

void JxCloseAll (void)

{

 PORTA = PORTA&0b11000000;

}

//Joint Test

void JTest (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 {

 for (i=1;i<7;i++) {JxOpen(i);DelayXts(t);JxClose(i);DelayXts(t);}

 }

}

//****************************** SIDE ACTUATION FUNCTIONS ******************************

//Side Actuation Functions (with direction - on(positive or negative)/off

void SxP (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Actuate accordingly

 if (i==1) {PORTB = PORTB|0b00000001;}

 if (i==2) {PORTD = PORTD|0b00001000;}

 if (i==3) {PORTB = PORTB|0b01000000;}

 if (i==4) {PORTD = PORTD|0b00010000;}

 if (i==5) {PORTB = PORTB|0b00000010;}

 if (i==6) {PORTB = PORTB|0b10000000;}

}

void SxN (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Actuate accordingly

 if (i==1) {PORTD = PORTD|0b01000000;}

 if (i==2) {PORTD = PORTD|0b00100000;}

 if (i==3) {PORTD = PORTD|0b10000000;}

 if (i==4) {PORTB = PORTB|0b00010000;}

 if (i==5) {PORTB = PORTB|0b00100000;}

 if (i==6) {PORTD = PORTD|0b00000100;}

}

void SxOff (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Actuate accordingly

 if (i==1) {PORTB = PORTB&0b11111110;PORTD = PORTD&0b10111111;}

 if (i==2) {PORTD = PORTD&0b11110111;PORTD = PORTD&0b11011111;}

 if (i==3) {PORTB = PORTB&0b10111111;PORTD = PORTD&0b01111111;}

 if (i==4) {PORTD = PORTD&0b11101111;PORTB = PORTB&0b11101111;}

 if (i==5) {PORTB = PORTB&0b11111101;PORTB = PORTB&0b11011111;}

 if (i==6) {PORTB = PORTB&0b01111111;PORTD = PORTD&0b11111011;}

}

void SxOffAll (void)

{

 Appendices 166

PORTB = PORTB&0b00001100;

PORTD = PORTD&0b00000011;

}

//Side (Magnet) Test - Positive

void SPTest (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 { for (i=1;i<7;i++) {SxP(i);DelayXts(t);SxOff(i);DelayXts(t);}}

}

//Side (Magnet) Test - Negative

void SNTest (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 { for (i=1;i<7;i++) {SxN(i);DelayXts(t);SxOff(i);DelayXts(t);}}

}

//****************************** ROTATION FUNCTIONS ******************************

// Trund off all actuators

void TurnOffAll (void)

{

 SxOffAll();JxCloseAll();

}

//Mobile Module Rotation (CW)

void MCW (int i,int t1,int t2, int t3)

{

 JxOpen(i);JxOpen(i+1); //1 - Ji, Ji+1 Open

 DelayXts(t1); //2 - Delay t1

 SxN(i);SxN(i-1); //3 - Si, Si-1 Negative

 DelayXts(t2); //4 - Delay t2

 JxCloseAll(); //5 - All Jx Close

 DelayXts(t3); //6 - Delay t3

 //7 - No action

 SxOffAll(); //8 - All Sx Off

}

//Mobile Module Rotation (CCW)

void MCCW (int i,int t1,int t2, int t3)

{

 JxOpen(i+1); //1 - Ji+1 Open

 DelayXts(t1); //2 - Delay t1

 SxN(i);SxN(i-1); //3 - Si, Si-1 Negative

 DelayXts(t2); //4 - Delay t2

 JxOpen(i); //5 - Ji Open

 DelayXts(t3); //6 - Delay t3

 JxCloseAll(); //7 - All Jx Close

 SxOffAll(); //8 - All Sx Off

}

//Substrate (CW)

void SCW (int i,int t1,int t2, int t3)

{

 JxOpen(i-1); //1 - Ji-1 Open

 DelayXts(t1); //2 - Delay t1

 SxN(i-3);SxP(i-2); //3 - Si-3 Negative, Si-2 Positive

 DelayXts(t2); //4 - Delay t2

 JxOpen(i-2); //5 - Ji-2 Open

 DelayXts(t3); //6 - Delay t3

 JxCloseAll(); //7 - All Jx Close

 SxOffAll(); //8 - All Sx Off

}

//Substrate (CCW)

void SCCW (int i,int t1,int t2, int t3)

{

 JxOpen(i-3);JxOpen(i-4); //1 - Ji-3, Ji-4 Open

 DelayXts(t1); //2 - Delay t1

 SxN(i-4);SxN(i-5); //3 - Si-4 Negative, Si-5 Positive

 DelayXts(t2); //4 - Delay t2

 JxCloseAll(); //5 - All Jx Close

 DelayXts(t3); //6 - Delay t3

 //7 - No action

 Appendices 167

 SxOffAll(); //8 - All Sx Off

}

//****************************** FUNCTIONS CALLED FROM COMMUNICATION BOARD

//Listening to the Communication Board for Actuation

void Listen (void)

{

 unsigned char R; //Received Character

 int MSG[6]; //Received Message

 int i;

 while (ReceiveByte0()!='*') {;} //Wait for the start of message

 for (i=1;i<6;i++) {MSG[i] = ReceiveByte0();} //Read the 5 bytes of the message

 //Confirm receiving instruction from communication board - Comm

 TransmitByte0(MSG[1]);

 //Command Received PC

 PRE(); //Preamble - PC

 // RCV(); //Received

 //Acknowledgement (with the command code going to be executed) - PC

 TransmitByte1('A');

 TransmitByte1('C');

 TransmitByte1('K');

 TransmitByte1(MSG[1]);

 TransmitByte1(10);

 TransmitByte1(13);

 //Message Received - PC

 TransmitByte1('M');

 TransmitByte1('S');

 TransmitByte1('G');

 TransmitByte1(MSG[1]);

 TransmitByte1(MSG[2]);

 TransmitByte1(MSG[3]);

 TransmitByte1(MSG[4]);

 TransmitByte1(MSG[5]);

 TransmitByte1(10);

 TransmitByte1(13);

 //Run the required functaion based on "Control Board Functions Table"

 if (MSG[1]==1) {JxOpen(MSG[2]);}

 if (MSG[1]==2) {JxClose(MSG[2]);}

 if (MSG[1]==3) {JxOpenAll();}

 if (MSG[1]==4) {JxCloseAll();}

 if (MSG[1]==5) {JTest(MSG[2],MSG[3]);}

 if (MSG[1]==11) {SxP(MSG[2]);}

 if (MSG[1]==12) {SxN(MSG[2]);}

 if (MSG[1]==13) {SxOff(MSG[2]);}

 if (MSG[1]==14) {SxOffAll();}

 if (MSG[1]==15) {SPTest(MSG[2],MSG[3]);}

 if (MSG[1]==16) {SNTest(MSG[2],MSG[3]);}

 if (MSG[1]==20) {TurnOffAll();}

 if (MSG[1]==21) {MCW(MSG[2],MSG[3],MSG[4],MSG[5]);}

 if (MSG[1]==22) {MCCW(MSG[2],MSG[3],MSG[4],MSG[5]);}

 if (MSG[1]==23) {SCW(MSG[2],MSG[3],MSG[4],MSG[5]);}

 if (MSG[1]==24) {SCCW(MSG[2],MSG[3],MSG[4],MSG[5]);}

}

//****************************** MAIN PROGRAM ******************************

void main(void)

{

 init_devices();

 DelayXts(10); //wait for voltages to sta-

bilize

 Appendices 168

 TurnOffAll();

 JTest(1,5); //Joint test (indicating

ready)

 PRE(); //Preamble - PC

 CTR_Ready(); //Control Board Ready - PC

 TransmitByte0('R'); //Control Board Ready - Com-

munication

 while (ReceiveByte0TL(10)!='R') {TransmitByte0('R');} //Wait for the communication

board ready signal

 COMM_Ready(); //Control Board Ready - PC

 TransmitByte0('L'); //Listening

 CTR_LST(); //Control Board Listening -

PC

 while (1) {Listen();} //Execute the required func-

tion

}

Communication Board Program

//****************************** MAIN PROGRAM FOR COMMUNICATION BOARDS

//ICC-AVR application builder : 1/1/2009 12:48:09 AM

// Target : M162

// Crystal: 1.0000Mhz

#include <iom162v.h>

#include <macros.h>

int ts; //time step, increased every 10ms

int M=1;S=0; //Assuming the module is Mobile not Substrate

int L=0; //Assuming the module is not initially localized

int X=0,Y=0; //Assuming the initial location of the module

int Yref=0; //Rotation Transformation (Difference between the body and

global frame)

//****************************** PORT INITIALIZATION ******************************

void port_init(void)

{

 PORTA = 0x00;

 PORTB = 0x00;

 PORTC = 0x00;

 PORTD = 0x00;

 PORTE = 0x00;

 DDRA = 0b11111111; //Selectors - Side LEDs

 DDRB = 0b11111011; //IR Communication

 DDRC = 0b11111111; //Side LEDs - Joint LEDs

 DDRD = 0b11111110; //Control Communication - Side LEDs - Joint LEDs

 DDRE = 0b11111111; //Side LEDs - Joint LEDs

}

//****************************** TIMER INITIALIZATION ******************************

//TIMER0 initialize - prescale:64

// WGM: Normal

// desired value: 10mSec

// actual value: 9.984mSec (0.2%)

void timer0_init(void)

{

 TCCR0= 0x00; //stop

 TCNT0= 0x64; //set count

 OCR0= 0x9C; //set compare value

 TCCR0= 0x03; //start timer

}

#pragma interrupt_handler timer0_ovf_isr:iv_TIM0_OVF

void timer0_ovf_isr(void)

{

 TCNT0= 0x64; //reload counter value

 ts++; //increase ts every 10ms

}

//Delay of multiple of ts (10ms)

void DelayXts (int i)

 Appendices 169

{

 ts=0;while (ts<i) {;}

}

//****************************** UART INITIALIZATION ******************************

//UART0 initialize

// desired baud rate: 4800

// actual: baud rate:4808 (0.2%)

// char size: 8 bit

// parity: Disabled

void uart0_init(void)

{

 UCSR0B = 0x00; //disable while setting baud rate

 UCSR0A = 0x00; //disable while setting baud rate

 UBRR0L =0x0C; //set baud rate

 UBRR0H = 0x00;

 UCSR0C = BIT(URSEL0) | 0x06;

 UCSR0A = 0x00; //enable

 UCSR0B = 0x18; //enable

}

// Transmite0

void TransmitByte0(unsigned char data)

{while (!(UCSR0A & (1<<UDRE0)));UDR0 = data;}

// Receive0

unsigned char ReceiveByte0(void)

{while (!(UCSR0A & (1<<RXC0))) {;} return UDR0;}

// Receive0TL :time limited listening to the port (t: time stpes)

unsigned char ReceiveByte0TL(int t)

{

 ts=0;

 while ((!(UCSR0A&(1<<RXC0))) && (ts<t)){;}

 if (ts>=t) {return '~';} else {return UDR0;} //'~': time exceeded

}

// Contorl Message Format

int MSG(int a,int b,int c,int d,int e)

{

 TransmitByte0('*');

 TransmitByte0(a);

 TransmitByte0(b);

 TransmitByte0(c);

 TransmitByte0(d);

 TransmitByte0(e);

 TransmitByte0('#');

 return ReceiveByte0TL(250); //Wait for acknowledgment (max of 2.5sec)

}

//UART1 initialize

// desired baud rate:300

// actual baud rate:300 (0.2%)

// char size: 8 bit

// parity: Disabled

void uart1_init(void)

{

 UCSR1B = 0x00; //disable while setting baud rate

 UCSR1A = 0x00; //disable while setting baud rate

 UBRR1L =0xCF; //set baud rate

 UBRR1H = 0x00;

 UCSR1C = BIT(URSEL1) | 0x06;

 UCSR1A = 0x00; //enable

 UCSR1B = 0x18; //enable

}

// Transmite1

void TransmitByte1(unsigned char data)

{while (!(UCSR1A & (1<<UDRE1)));UDR1 = data;DelayXts(5);} //Keep a delay after

each transmition

// Receive1

unsigned char ReceiveByte1(void)

{while (!(UCSR1A & (1<<RXC1))) {;} return UDR1;}

// Receive1TL :time limited listening to the port (t: time steps)

unsigned char ReceiveByte1TL(int t)

{

 Appendices 170

 ts=0;

 while ((!(UCSR1A&(1<<RXC1))) && (ts<t)){;}

 if (ts>=t) {return '~';} else {return UDR1;} //'~': time exceeded

}

// Localization Message Format: +xx+yyS

void LOCMSG1(int a,int b,int c,int d,int e, int f, int g)

{

 TransmitByte1('*');

 TransmitByte1(a);

 TransmitByte1(b);

 TransmitByte1(c);

 TransmitByte1(d);

 TransmitByte1(e);

 TransmitByte1(f);

 TransmitByte1(g);

}

// Preamble

void PRE (void)

{

 unsigned char txt[20]={10,13,10,13,'#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

 if (S==1) {TransmitByte1('S');TransmitByte1(':');TransmitByte1(' ');}

 if (M==1) {TransmitByte1('M');TransmitByte1(':');TransmitByte1(' ');}

}

// Control Board Ready

void CTR_Ready (void)

{

 unsigned char txt[20]={'C','T','R','.',' ','B','O','A','R','D','

','R','E','A','D','Y','#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

 TransmitByte1(10);TransmitByte1(13);

}

// Communication Board Ready

void COMM_Ready (void)

{

 unsigned char txt[20]={'C','O','M','M','.',' ','B','O','A','R','D','

','R','E','A','D','Y','#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

 TransmitByte1(10);TransmitByte1(13);

}

// Control Board Listening

void CTR_LST (void)

{

 unsigned char txt[20]={'C','T','R','.','

','L','I','S','T','E','N','I','N','G',10,13,'#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

}

// Communication Board Listening

void COMM_LST (void)

{

 unsigned char txt[20]={'C','O','M','M','.','

','L','I','S','T','E','N','I','N','G',10,13,'#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

}

// Localized

void LOC (void)

{

 unsigned char txt[20]={'L','O','C','A','L','I','Z','E','D',10,13,'#'};

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

}

// Package Received

void RCV (void)

{

 unsigned char txt[20]={'R','E','C','E','I','V','E','D',10,13,'#'};

 Appendices 171

 int i=0;

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;}

}

//****************************** ALL DEVICES INITIALIZATION

//call this routine to initialize all peripherals

void init_devices(void)

{

 //stop errant interrupts until set up

 CLI(); //disable all interrupts

 port_init();

 timer0_init();

 uart0_init();

 uart1_init();

 MCUCR= 0x00;

 EMCUCR = 0x00;

 TIMSK= 0x02; //timer interrupt sources

 ETIMSK=0x00;

 GICR= 0x00;

 PCMSK0=0x00;

 PCMSK1=0x00;

 SEI(); //re-enable interrupts

 //all peripherals are now initialized

}

//****************************** CONTROL FUNCTIONS ******************************

int JxOpen (int i) {int a; a=MSG(1,i,'N','N','N');return a;}

int JxClose (int i) {int a; a=MSG(2,i,'N','N','N');return a;}

int JxOpenAll (void) {int a; a=MSG(3,0,'N','N','N');return a;}

int JxCloseAll (void) {int a; a=MSG(4,0,'N','N','N');return a;}

int JTest (int n,int t) {int a; a=MSG(5,n,t,'N','N');return a;}

int SxP (int i) {int a; a=MSG(11,i,'N','N','N');return a;}

int SxN (int i) {int a; a=MSG(12,i,'N','N','N');return a;}

int SxOff (int i) {int a; a=MSG(13,i,'N','N','N');return a;}

int SxOffAll (void) {int a; a=MSG(14,'N','N','N','N');return a;}

int SPTest (int n,int t) {int a; a=MSG(15,n,t,'N','N');return a;}

int SNTest (int n,int t) {int a; a=MSG(16,n,t,'N','N');return a;}

int TurnOffAll (void) {int a; a=MSG(20,'N','N','N','N');return a;}

int MCW (int i,int t1,int t2, int t3) {int a; a=MSG(21,i,t1,t2,t3);return a;}

int MCCW (int i,int t1,int t2, int t3) {int a; a=MSG(22,i,t1,t2,t3);return a;}

int SCW (int i,int t1,int t2, int t3) {int a; a=MSG(23,i,t1,t2,t3);return a;}

int SCCW (int i,int t1,int t2, int t3) {int a; a=MSG(24,i,t1,t2,t3);return a;}

//****************************** IR SELECTOR ******************************

void IrSel (int i)

{

 //(MUX, DEMUX Selector (C,B,A)

 if (i==1){PORTA = PORTA & 0b11111000;PORTA = PORTA | 0b00000000;} //Y0: SIDE 1

 if (i==6){PORTA = PORTA & 0b11111100;PORTA = PORTA | 0b00000100;} //Y1: SIDE 6

 if (i==0){PORTA = PORTA & 0b11111010;PORTA = PORTA | 0b00000010;} //Y2: CENTER

 if (i==2){PORTA = PORTA & 0b11111110;PORTA = PORTA | 0b00000110;} //Y3: SIDE 2

 if (i==5){PORTA = PORTA & 0b11111001;PORTA = PORTA | 0b00000001;} //Y4: SIDE 5

 if (i==3){PORTA = PORTA & 0b11111101;PORTA = PORTA | 0b00000101;} //Y5: SIDE 3

 if (i==4){PORTA = PORTA & 0b11111011;PORTA = PORTA | 0b00000011;} //Y6: SIDE 4

}

//****************************** SIDE LEDs ******************************

void SideOnP (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Turn On LED

 if (i==1){PORTA = PORTA & 0b10111111;}

 if (i==2){PORTE = PORTE & 0b11111101;}

 if (i==3){PORTC = PORTC & 0b10111111;}

 if (i==4){PORTC = PORTC & 0b11110111;}

 if (i==5){PORTC = PORTC & 0b11111101;}

 if (i==6){PORTD = PORTD & 0b10111111;}

 Appendices 172

}

void SideOffP (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Turn Off LED

 if (i==1){PORTA = PORTA | 0b01000000;}

 if (i==2){PORTE = PORTE | 0b00000010;}

 if (i==3){PORTC = PORTC | 0b01000000;}

 if (i==4){PORTC = PORTC | 0b00001000;}

 if (i==5){PORTC = PORTC | 0b00000010;}

 if (i==6){PORTD = PORTD | 0b01000000;}

}

void SideOnAllP (void)

{

 //Turn On LED

 PORTA = PORTA & 0b10111111;

 PORTC = PORTC & 0b10110101;

 PORTD = PORTD & 0b10111111;

 PORTE = PORTE & 0b11111101;

}

void SideOffAllP (void)

{

 //Turn Off LED

 PORTA = PORTA | 0b01000000;

 PORTE = PORTE | 0b00000010;

 PORTC = PORTC | 0b01001010;

 PORTD = PORTD | 0b01000000;

}

void SideOnN (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Turn On LED

 if (i==1){PORTA = PORTA & 0b11011111;}

 if (i==2){PORTE = PORTE & 0b11111110;}

 if (i==3){PORTC = PORTC & 0b01111111;}

 if (i==4){PORTC = PORTC & 0b11101111;}

 if (i==5){PORTC = PORTC & 0b11111110;}

 if (i==6){PORTD = PORTD & 0b11011111;}

}

void SideOffN (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Turn Off LED

 if (i==1){PORTA = PORTA | 0b00100000;}

 if (i==2){PORTE = PORTE | 0b00000001;}

 if (i==3){PORTC = PORTC | 0b10000000;}

 if (i==4){PORTC = PORTC | 0b00010000;}

 if (i==5){PORTC = PORTC | 0b00000001;}

 if (i==6){PORTD = PORTD | 0b00100000;}

}

void SideOnAllN (void)

{

 //Turn On LED

 PORTA = PORTA & 0b11011111;

 PORTC = PORTC & 0b01101110;

 PORTD = PORTD & 0b11011111;

 PORTE = PORTE & 0b11111110;

}

void SideOffAllN (void)

{

 //Turn Off LED

 PORTA = PORTA | 0b00100000;

 PORTC = PORTC | 0b10010001;

 PORTD = PORTD | 0b00100000;

 Appendices 173

 PORTE = PORTE | 0b00000001;

}

//Side (Magnet) Test - Positive

void SidePTest (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 { for (i=1;i<7;i++) {SideOnP(i);DelayXts(t);SideOffP(i);DelayXts(t);}}

}

//Side (Magnet) Test - Negative

void SideNTest (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 { for (i=1;i<7;i++) {SideOnN(i);DelayXts(t);SideOffN(i);DelayXts(t);}}

}

//****************************** JOINT LEDs ******************************

void JointOn (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Turn On LED

 if (i==1){PORTD = PORTD & 0b01111111;}

 if (i==2){PORTA = PORTA & 0b01111111;}

 if (i==3){PORTE = PORTE & 0b11111011;}

 if (i==4){PORTC = PORTC & 0b11011111;}

 if (i==5){PORTC = PORTC & 0b11111011;}

 if (i==6){PORTD = PORTD & 0b11101111;}

}

void JointOff (int i)

{

 //Place i in the required range

 while (i<1) {i=i+6;}

 while (i>6) {i=i-6;}

 //Turn Off LED

 if (i==1){PORTD = PORTD | 0b10000000;}

 if (i==2){PORTA = PORTA | 0b10000000;}

 if (i==3){PORTE = PORTE | 0b00000100;}

 if (i==4){PORTC = PORTC | 0b00100000;}

 if (i==5){PORTC = PORTC | 0b00000100;}

 if (i==6){PORTD = PORTD | 0b00010000;}

}

void JointOnAll (void)

{

 //Turn On LED

 PORTA = PORTA & 0b01111111;

 PORTC = PORTC & 0b11011011;

 PORTD = PORTD & 0b01101111;

 PORTE = PORTE & 0b11111011;

}

void JointOffAll (void)

{

 //Turn Off LED

 PORTA = PORTA | 0b10000000;

 PORTC = PORTC | 0b00100100;

 PORTD = PORTD | 0b10010000;

 PORTE = PORTE | 0b00000100;

}

//Joint Test LED

void JointTest (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 {

 for (i=1;i<7;i++) {JointOn(i);DelayXts(t);JointOff(i);DelayXts(t);}

 }

}

 Appendices 174

//****************************** LED FUNCTIONS ******************************

//LED All On

void LOn (void)

{SideOnAllP();SideOnAllN();JointOnAll();}

//LED All Off

void LOff (void)

{SideOffAllP();SideOffAllN();JointOffAll();}

//LED Test (Circle)

void LCircle (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 {

 for (i=1;i<7;i++)

 {

 JointOn(i);DelayXts(t);JointOff(i);DelayXts(t);

 IrSel(i);TransmitByte1(255);DelayXts(t);TransmitByte1(0);DelayXts(t);

 SideOnN(i);DelayXts(t);SideOffN(i);DelayXts(t);

 SideOnP(i);DelayXts(t);SideOffP(i);DelayXts(t);

 }

 }

 IrSel(0);

}

//LED Test (Color)

void LColor (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 {

 JointOnAll();DelayXts(t);JointOffAll();DelayXts(t);

 SideOnAllN();DelayXts(t);SideOffAllN();DelayXts(t);

 SideOnAllP();DelayXts(t);SideOffAllP();DelayXts(t);

 }

}

//LED Test (Flash)

void LFlash1 (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 {

 SideOnAllN();SideOffAllP();DelayXts(t);

 SideOffAllN();SideOnAllP();DelayXts(t);

 }

 LOff();

}

//LED Test (Flash)

void LFlash2 (int n,int t)

{

 int i,j;

 for (j=0;j<n;j++)

 {

 LOn();DelayXts(t);LOff();DelayXts(t);

 }

}

//Y Ref. (Flash)

void LYref (int i)

{

 if (i==0) {Yref=Yref;} //Same Orientation: just indicate +Y

 if (i==1) {Yref++;} //CCW Rotation

 if (i==2) {Yref--;} CW Rotation

 if (Yref>5) {Yref=Yref-6;}

 if (Yref<0) {Yref=Yref+6;}

 //indicate the + Y access (on side 2): global orientation

 SideOnP(2-Yref);SideOffN(2-Yref);

 DelayXts(10);

 SideOnN(2-Yref);SideOffP(2-Yref);

 DelayXts(10);

 SideOffN(2-Yref);

 Appendices 175

}

//Mobile Module Rotation (CW) LED

void LMCW (int i,int t1,int t2, int t3)

{

 JointOn(i);JointOn(i+1); //1 - Ji, Ji+1 Open

 DelayXts(t1); //2 - Delay t1

 SideOnN(i);SideOnN(i-1); //3 - Si, Si-1 Negative

 DelayXts(t2); //4 - Delay t2

 JointOffAll(); //5 - All Jx Close

 DelayXts(t3); //6 - Delay t3

 //7 - No action

 SideOffAllP();SideOffAllN(); //8 - All Sx Off

}

//Mobile Module Rotation (CCW) LED

void LMCCW (int i,int t1,int t2, int t3)

{

 JointOn(i+1); //1 - Ji+1 Open

 DelayXts(t1); //2 - Delay t1

 SideOnN(i);SideOnN(i-1); //3 - Si, Si-1 Negative

 DelayXts(t2); //4 - Delay t2

 JointOn(i); //5 - Ji Open

 DelayXts(t3); //6 - Delay t3

 JointOffAll(); //7 - All Jx Close

 SideOffAllP();SideOffAllN(); //8 - All Sx Off

}

//Substrate (CW) LED

void LSCW (int i,int t1,int t2, int t3)

{

 JointOn(i-1); //1 - Ji-1 Open

 DelayXts(t1); //2 - Delay t1

 SideOnN(i-3);SideOnP(i-2); //3 - Si-3 Negative, Si-2 Positive

 DelayXts(t2); //4 - Delay t2

 JointOn(i-2); //5 - Ji-2 Open

 DelayXts(t3); //6 - Delay t3

 JointOffAll(); //7 - All Jx Close

 SideOffAllP();SideOffAllN(); //8 - All Sx Off

}

//Substrate (CCW) LED

void LSCCW (int i,int t1,int t2, int t3)

{

 JointOn(i-3);JointOn(i-4); //1 - Ji-3, Ji-4 Open

 DelayXts(t1); //2 - Delay t1

 SideOnN(i-4);SideOnN(i-5); //3 - Si-4 Negative, Si-5 Positive

 DelayXts(t2); //4 - Delay t2

 JointOffAll(); //5 - All Jx Close

 DelayXts(t3); //6 - Delay t3

 //7 - No action

 SideOffAllP();SideOffAllN(); //8 - All Sx Off

}

//****************************** PRIMARY LOCALIZATION AND MOTION FUNCTIONS

//Set the module as the ref.

void Ref (void)

{

 M=0; //Not a Mobile module

 S=1; //Substrate module

 L=1; //Localized

 X=0; //At X=0

 Y=0; //At Y=0

 Yref=0; //Orientation

 LYref(0); //Indicate the orientation

 LYref(0); //Indicate the orientation

 LYref(0); //Indicate the orientation

}

//Localize Others (for ref. or localized modules)

void Localize (void)

{

 int MSG1[10]; //Localization Message (ref. to thesis)

 int i,j;

 Appendices 176

 //Localized (ref.) modules

 if (L==1)

 {

 for (i=0;i<6;i++) //Send the MSG1 6 times

 {

 SideOnP(2);SideOnN(2); //Indication on side 2

 IrSel(2); //Select side 2

 DelayXts(5);PRE(); //Prepare

 LOCMSG1(0,0,0,0,0,1,5); //Send MSG1

 DelayXts(5);PRE(); //Prepare

 LOCMSG1(0,0,0,0,0,1,5); //Send MSG1

 SideOffP(2);SideOffN(2); //Indication off

 SideOnP(3);SideOnN(3); //Indication on side 3

 IrSel(3); //Select side 3

 DelayXts(5);PRE(); //Prepare

 LOCMSG1(0,0,1,0,0,0,6); //Send MSG1

 DelayXts(5);PRE(); //Prepare

 LOCMSG1(0,0,1,0,0,0,6); //Send MSG1

 SideOffP(3);SideOffN(3); //Indication off

 }

 IrSel(0); //Listen to PC

 }

 //Non localized modules

 if (L==0)

 {

 for (j=1;j<7;j++) //Send the MSG1 6 times

 {

 IrSel(j); //Listen to side j

 SideOnP(j);SideOnN(j); //Indication

 i=ReceiveByte1TL(150);

 while ((i!='*')&&(i!='~')) {i=ReceiveByte1TL(150);} //Wait for the start of mes-

sage for 1 sec

 if (i=='*') //If there is a message (Lo-

calized)

 {

 for (i=1;i<8;i++) {MSG1[i] = ReceiveByte1();} //Read its 7 bytes

 X=MSG1[2];Y=MSG1[6]; //Update location

 Yref=MSG1[7]-j; //Update orientation: amount

of CW rotations (ref-body)

 //Place Yref in the required range [0-5]

 while (Yref<0) {Yref=Yref+6;}

 while (Yref>5) {Yref=Yref-6;}

 L=1;j=7;IrSel(0); //Localized, quit the loop

 LOff(); //Turn off the LEDs

 }

 SideOffP(j);SideOffN(j); //Indication

 }

 if (L==1) //If localized

 {

 IrSel(0);

 PRE();

 LOC();

 //Indicate from which side the module received the localization information

 TransmitByte1('S');TransmitByte1('i');TransmitByte1('d');TransmitByte1('e');

 TransmitByte1(':');TransmitByte1(' ');

 TransmitByte1(MSG1[7]+48);TransmitByte1(10);TransmitByte1(13);

 //Indicate amount of rotation

 TransmitByte1('Y');TransmitByte1('r');TransmitByte1('e');TransmitByte1('f');

 TransmitByte1(':');TransmitByte1(' ');

 TransmitByte1(Yref+48);TransmitByte1(10);TransmitByte1(13);

 //Indicate the orientation

 LYref(0);LYref(0);LYref(0);

 }

 Appendices 177

 else {LCircle(1,5);} //Could not be localized

 }

 IrSel(0); //Listen to PC

}

// CW rotation [substrate, mobile)

int CW (int si,int st1,int st2, int st3, int mi,int mt1,int mt2, int mt3)

{

 int a=0;

 if (M==1) {a=MCW(mi,mt1,mt2,mt3);LMCW(mi,mt1,mt2,mt3);}

 if (S==1) {a=SCW(si,st1,st2,st3);LSCW(si,st1,st2,st3);}

 return a;

}

// CCW rotation

int CCW (int si,int st1,int st2, int st3, int mi,int mt1,int mt2, int mt3)

{

 int a=0;

 if (M==1) {a=MCCW(mi,mt1,mt2,mt3);LMCCW(mi,mt1,mt2,mt3);}

 if (S==1) {a=SCCW(si,st1,st2,st3);LSCCW(si,st1,st2,st3);}

 return a;

}

//****************************** FUNCTIONS CALLED FROM THE PC

//Listening to the PC

void Listen (void)

{

 unsigned char R=0; //Received Character

 int MSG[6]; //Received Message

 int i,a=78; //a: acknowledge (default "N")

 //while (R!='*') {TransmitByte1(R);R=ReceiveByte1();} //temp test

 while (ReceiveByte1()!='*') {;} //Wait for the start

of message

 for (i=1;i<10;i++) {MSG[i] = ReceiveByte1();} //Read the message

 //Run the required functaion based on the "Function Table"

 //Control board functions

 if (MSG[1]==1) {a=JxOpen(MSG[2]);JointOn(MSG[2]);}

 if (MSG[1]==2) {a=JxClose(MSG[2]);JointOff(MSG[2]);}

 if (MSG[1]==3) {a=JxOpenAll();JointOnAll();}

 if (MSG[1]==4) {a=JxCloseAll();JointOffAll();}

 if (MSG[1]==5) {a=JTest(MSG[2],MSG[3]);JointTest(MSG[2],MSG[3]);}

 if (MSG[1]==11) {a=SxP(MSG[2]);SideOnP(MSG[2]);}

 if (MSG[1]==12) {a=SxN(MSG[2]);SideOnN(MSG[2]);}

 if (MSG[1]==13) {a=SxOff(MSG[2]);SideOffP(MSG[2]);SideOffN(MSG[2]);}

 if (MSG[1]==14) {a=SxOffAll();SideOffAllP();SideOffAllN();}

 if (MSG[1]==15) {a=SPTest(MSG[2],MSG[3]);SidePTest(MSG[2],MSG[3]);}

 if (MSG[1]==16) {a=SNTest(MSG[2],MSG[3]);SideNTest(MSG[2],MSG[3]);}

 if (MSG[1]==20) {a=TurnOffAll();LOff();}

 if (MSG[1]==21) {a=MCW(MSG[2],MSG[3],MSG[4],MSG[5]);LMCW(MSG[2],MSG[3],MSG[4],MSG[5]);}

 if (MSG[1]==22)

{a=MCCW(MSG[2],MSG[3],MSG[4],MSG[5]);LMCCW(MSG[2],MSG[3],MSG[4],MSG[5]);}

 if (MSG[1]==23) {a=SCW(MSG[2],MSG[3],MSG[4],MSG[5]);LSCW(MSG[2],MSG[3],MSG[4],MSG[5]);}

 if (MSG[1]==24)

{a=SCCW(MSG[2],MSG[3],MSG[4],MSG[5]);LSCCW(MSG[2],MSG[3],MSG[4],MSG[5]);}

 //Communication board functions

 if (MSG[1]==25) {IrSel(MSG[2]);a=MSG[1];}

 if (MSG[1]==28) {SideOnP(MSG[2]);a=MSG[1];}

 if (MSG[1]==29) {SideOffP(MSG[2]);a=MSG[1];}

 if (MSG[1]==30) {SideOnAllP();a=MSG[1];}

 if (MSG[1]==31) {SideOffAllP();a=MSG[1];}

 if (MSG[1]==32) {SideOnN(MSG[2]);a=MSG[1];}

 Appendices 178

 if (MSG[1]==33) {SideOffN(MSG[2]);a=MSG[1];}

 if (MSG[1]==34) {SideOnAllN();a=MSG[1];}

 if (MSG[1]==35) {SideOffAllN();a=MSG[1];}

 if (MSG[1]==36) {SidePTest(MSG[2],MSG[3]);a=MSG[1];}

 if (MSG[1]==37) {SideNTest(MSG[2],MSG[3]);a=MSG[1];}

 if (MSG[1]==38) {JointOn(MSG[2]);a=MSG[1];}

 if (MSG[1]==39) {JointOff(MSG[2]);a=MSG[1];}

 if (MSG[1]==40) {JointOnAll();a=MSG[1];}

 if (MSG[1]==41) {JointOffAll();a=MSG[1];}

 if (MSG[1]==43) {JointTest(MSG[2],MSG[3]);a=MSG[1];}

 if (MSG[1]==44) {LOn();a=MSG[1];}

 if (MSG[1]==45) {LOff();a=MSG[1];}

 if (MSG[1]==46) {LCircle(MSG[2],MSG[3]);a=MSG[1];}

 if (MSG[1]==47) {LColor(MSG[2],MSG[3]);a=MSG[1];}

 if (MSG[1]==48) {LFlash1(MSG[2],MSG[3]);a=MSG[1];}

 if (MSG[1]==49) {LFlash2(MSG[2],MSG[3]);a=MSG[1];}

 if (MSG[1]==50) {LYref(MSG[2]);a=MSG[1];}

 if (MSG[1]==56) {LMCW(MSG[2],MSG[3],MSG[4],MSG[5]);a=MSG[1];}

 if (MSG[1]==57) {LMCCW(MSG[2],MSG[3],MSG[4],MSG[5]);a=MSG[1];}

 if (MSG[1]==58) {LSCW(MSG[2],MSG[3],MSG[4],MSG[5]);a=MSG[1];}

 if (MSG[1]==59) {LSCCW(MSG[2],MSG[3],MSG[4],MSG[5]);a=MSG[1];}

 if (MSG[1]==65) {Ref();a=MSG[1];}

 if (MSG[1]==66) {Localize();a=MSG[1];}

 if (MSG[1]==67) {a=CW(MSG[2],MSG[3],MSG[4],MSG[5],MSG[6],MSG[7],MSG[8],MSG[9]);}

 if (MSG[1]==68) {a=CCW(MSG[2],MSG[3],MSG[4],MSG[5],MSG[6],MSG[7],MSG[8],MSG[9]);}

 //Command Received

 if (S==1) {DelayXts(100);} //If it's the substrate module wait for 1sec to

avoid interference

 PRE(); //Preamble - IR

 // RCV(); //Received

 //Acknowledgement (with the command code executed)

 TransmitByte1('A');

 TransmitByte1('C');

 TransmitByte1('K');

 TransmitByte1(a);

 TransmitByte1(10);

 TransmitByte1(13);

 //Message Received

// TransmitByte1('M');

// TransmitByte1('S');

// TransmitByte1('G');

// for (i=1;i<10;i++) {TransmitByte1(MSG[i]);}

// TransmitByte1(10);

// TransmitByte1(13);

}

//****************************** MAIN PROGRAM ******************************

void main(void)

{

// int i,a; //Acknowledge

// unsigned char R;

 init_devices();

 LOff(); //Turn off all LEDs

 IrSel(0); //Select the central communication

 PRE(); //Preamble - IR

 COMM_Ready(); //Communication Board Ready - IR

 //Hand shaking between the control and communication microcontrollers

 while (ReceiveByte0()!='R') {;} //Wait for the control board ready signal

 LFlash1(3,10);

 CTR_Ready(); //Control Board Ready - IR

 TransmitByte0('R'); //Communication Ready signal

 Appendices 179

 while (ReceiveByte0TL(10)!='L') {TransmitByte0('R');} //Wait for the control board

to listen

 LFlash2(3,10);

 CTR_LST(); //Control Board Listening -

IR

 //************ Write the localization routine: done manually *********

 LCircle(1,5); //Localization

 Yref=1; //assuming

 IrSel(0); //Select the central communi-

cation

 LOC(); //localized

 //Execute the required function

 IrSel(0); //Select the central communi-

cation

 LColor(3,10); //Listening

 COMM_LST(); //Communication Board Listen-

ing - IR

 while(1) {Listen();} //Start listening to PC

}

Wireless SPI Code

//ICC-AVR application builder : 12/23/2008 12:41:31 PM

// Target : M162

// Crystal: 1.0000Mhz

#include <iom162v.h>

#include <macros.h>

int Counter=0; //incresed every 10ms

int DataTX[]; //SPI TX Data

int DataRX[]; //SPI RX Data

// SPI PORT CONFIGURATION

//PB4 - SLE (SS)

void SEL_OUTPUT (void) {DDRB|=(1<<4);}

void HI_SEL (void) {PORTB|=(1<<4);}

void LOW_SEL (void) {PORTB&=~(1<<4);}

//PB5 - SDI (MOSI)

void SDI_OUTPUT (void) {DDRB|=(1<<5);}

void HI_SDI (void) {PORTB|=(1<<5);}

void LOW_SDI (void) {PORTB&=~(1<<5);}

//PB6 - SDO (MISO)

void SDO_INPUT (void) {DDRB&=~(1<<6);}

int HI_SDO(void) {return PINB&(1<<6);}

void LOW_SDO (void) {PORTB&=~(1<<6);}

//PB7 - SCK (SCK)

void SCK_OUTPUT (void) {DDRB|=(1<<7);}

void HI_SCK (void) {PORTB|=(1<<7);}

void LOW_SCK (void) {PORTB&=~(1<<7);}

//PD4 - DATA

void DATA_OUT (void) {DDRD|=(1<<4);}

void HI_DATA (void) {PORTD|=(1<<4);}

//PD5 - nIRQ (INT0)

void IRQ_IN (void) {DDRD&=~(1<<5);}

void WAIT_IRQ_LOW (void) {while(PIND&(1<<5)){;}}

//PD6 - GREEN LED

void LEDG_OUTPUT (void) {DDRD|=(1<<6);}

void LEDG_ON (void) {PORTD|=(1<<6);}

void LEDG_OFF (void) {PORTD&=~(1<<6);}

//PD7 - RED LED

void LEDR_OUTPUT (void) {DDRD|=(1<<7);}

void LEDR_ON (void) {PORTD|=(1<<7);}

void LEDR_OFF (void) {PORTD&=~(1<<7);}

// RF12 PORT INITIALIZATION

void RF12_PORT_INIT (void)

 Appendices 180

{

 HI_SEL();

 HI_SDI();

 LOW_SCK();

 SEL_OUTPUT();

 SDI_OUTPUT();

 SDO_INPUT();

 SCK_OUTPUT();

 DATA_OUT();

 HI_DATA(); //SEt nFFS pin HI when using FIFO ,TX register

 IRQ_IN(); //PD5(INT0)

}

// RF12 WRITE COMMAND

unsigned int RF12_WRT_CMD (unsigned int aCmd)

{

 unsigned char i;

 unsigned int temp=0;

 LOW_SCK();

 LOW_SEL();

 for (i=0;i<16;i++)

 {

 if(aCmd&0x8000) {HI_SDI();} else {LOW_SDI();}

 HI_SCK();

 aCmd<<=1;

 temp<<=1;

 if(HI_SDO()) {temp|=0x0001;}

 LOW_SCK();

 }

 HI_SEL();

 return (temp);

}

void RF12_INIT(void)

{

 RF12_WRT_CMD(0x80D7);// EL, EF, 433band,12, 0pF

 RF12_WRT_CMD(0x8239);// !er, !ebb, ET, ES, EX, !eb, !ew, DC

 RF12_WRT_CMD(0xA640);// A140=430.8 MHz

 RF12_WRT_CMD(0xC647);// 4.8kbps

 RF12_WRT_CMD(0x94A0);// VDI, FAST, 134kHz, 0dBm, -103dBm

 RF12_WRT_CMD(0xC2AC);// AL, !m1, DIG, DQD4

 RF12_WRT_CMD(0xCA81);// FIFO8, SYNC, !ff, DR

 RF12_WRT_CMD(0xCED4);// SYNC=2DD4

 RF12_WRT_CMD(0xC483);// @PWR, NO RSTRIC, !st, !fi, 0E, EN

 RF12_WRT_CMD(0x9850);// !mp, 9810=30kHz, MAX, OUT

 RF12_WRT_CMD(0xCC67);// OB1, OB0, ! 1px, !ddy, DDIT, BW0

 RF12_WRT_CMD(0xE000);// NOT USE

 RF12_WRT_CMD(0xC800);// NOT USE

 RF12_WRT_CMD(0xC400);// 1.66MHz, 2.2V

}

void RF12_SEND(unsigned char aByte)

{

 while (PIND&(1<<5));//wait for previously TX over

 RF12_WRT_CMD(0xB800+aByte);

}

unsigned char RF12_RECV(void)

{

 unsigned int FIFO_data;

 WAIT_IRQ_LOW();

 RF12_WRT_CMD(0x0000);

 FIFO_data=RF12_WRT_CMD(0xB0000);

 return(FIFO_data&0x00FF);

}

void LED_DELAY(void)

{

 Counter=0;while (Counter<20) {;} //delay of 200ms

 Appendices 181

}

void POWER_ON_LED (void)

{

 int i;

 LEDG_OFF();

 LEDR_OFF();

 LEDG_OUTPUT();

 LEDR_OUTPUT();

 for (i=0;i<3;i++)

 {

 LEDG_ON();LEDR_OFF();LED_DELAY();

 LEDG_OFF();LEDR_ON();LED_DELAY();

 }

 LEDG_OFF();LEDR_OFF();

}

void RF12_TX(void)

{

 unsigned int i;

 unsigned char ChkSum;

 LEDR_ON();LED_DELAY();LEDR_OFF();

 RF12_WRT_CMD(0x0000);//read status register

 RF12_WRT_CMD(0x8239);//!er, !ebb, ET, ES, EX, !eb, !ew, DC

 ChkSum=0;

 RF12_SEND(0xAA);//PREAMBLE

 RF12_SEND(0xAA);//PREAMBLE

 RF12_SEND(0xAA);//PREAMBLE

 RF12_SEND(0x2D);//SYNC HI BYTE

 RF12_SEND(0xD4);//SYNC LOW BYTE

 for (i=1;i<17;i++) {RF12_SEND(DataTX[i]);ChkSum+=DataTX[i];}//Send Data

 RF12_SEND(ChkSum);//Send ChkSum

 RF12_SEND(0xAA);//DUMMY BYTE

 RF12_SEND(0xAA);//DUMMY BYTE

 RF12_SEND(0xAA);//DUMMY BYTE

}

void RF12_RX(void)

{

 unsigned int i;

 unsigned char ChkSum;

 LEDG_ON();LED_DELAY();LEDG_OFF();

 RF12_WRT_CMD(0xCA81);//Initialize FIFO

 RF12_WRT_CMD(0xCA83);//Enable FIFO

 ChkSum=0;

 for (i=1;i<17;i++) {DataRX[i]=RF12_RECV();ChkSum+=DataRX[i];}//Receive Data

 i=RF12_RECV();//Receive ChkSum

 RF12_WRT_CMD(0xCA81);//Disable FIFO

 if(ChkSum==i) {DataRX[17]=1;} else {DataRX[17]=0;}// Package Check

}

//SPI initialize

// clock rate: 250000hz

void spi_init(void)

{

 SPCR= 0x00; //diable spi

 SPSR= 0x01; //2X

 SPCR= 0x43; //setup SPI

}

void port_init(void)

{

 Appendices 182

 DDRA = 0x00;

 DDRB = 0x00;

 DDRC = 0x00;

 DDRD = 0x00;

 DDRE = 0x00;

}

//TIMER0 initialize - prescale:256

// WGM: Normal

// desired value: 10mSec

// actual value: 9.984mSec (0.2%)

void timer0_init(void)

{

 TCCR0= 0x00; //stop

 TCNT0= 0xD9; //set count

 OCR0= 0x27; //set compare value

 TCCR0= 0x04; //start timer

}

#pragma interrupt_handler timer0_ovf_isr:iv_TIM0_OVF

void timer0_ovf_isr(void)

{

 TCNT0= 0xD9; //reload counter value

 Counter++; //increase the counter every 10ms

}

//UART0 initialize

// desired baud rate: 4800

// actual: baud rate:4808 (0.2%)

// char size: 8 bit

// parity: Disabled

void uart0_init(void)

{

 UCSR0B = 0x00; //disable while setting baud rate

 UCSR0A = 0x00; //disable while setting baud rate

 UBRR0L =0x0C; //set baud rate

 UBRR0H = 0x00;

 UCSR0C = BIT(URSEL0) | 0x06;

 UCSR0A = 0x00; //enable

 UCSR0B = 0x18; //enable

}

// Transmite0

void TransmitByte0(unsigned char data)

{while (!(UCSR0A & (1<<UDRE0)));UDR0 = data;}

//UART1 initialize

// desired baud rate:4800

// actual baud rate:4808 (0.2%)

// char size: 8 bit

// parity: Disabled

void uart1_init(void)

{

 UCSR1B = 0x00; //disable while setting baud rate

 UCSR1A = 0x00; //disable while setting baud rate

 UBRR1L =0x0C; //set baud rate

 UBRR1H = 0x00;

 UCSR1C = BIT(URSEL1) | 0x06;

 UCSR1A = 0x00; //enable

 UCSR1B = 0x18; //enable

}

// Transmite1

void TransmitByte1(unsigned char data)

{while (!(UCSR1A & (1<<UDRE1)));UDR1 = data;}

//call this routine to initialize all peripherals

void init_devices(void)

{

 //stop errant interrupts until set up

 Appendices 183

 CLI(); //disable all interrupts

 spi_init();

 port_init();

 timer0_init();

 uart0_init();

 uart1_init();

 RF12_PORT_INIT();

 RF12_INIT();

 MCUCR= 0x00;

 EMCUCR = 0x00;

 //GIMSK= 0x00;

 GICR = 0x00;

 TIMSK= 0x02; //timer interrupt sources

 ETIMSK=0x00;

 GICR= 0x00;

 PCMSK0=0x00;

 PCMSK1=0x00;

 SEI(); //re-enable interrupts

 //all peripherals are now initialized

}

// TEST FUNCTIONS

void RX_TEST(void)

{

 init_devices();

 POWER_ON_LED();

 DataTX[1]=1;

 DataTX[2]=2;

 DataTX[3]=3;

 DataTX[4]=4;

 DataTX[5]=5;

 DataTX[6]=6;

 DataTX[7]=7;

 DataTX[8]=8;

 DataTX[9]=9;

 while (1)

 {

 RF12_TX();

 LED_DELAY();

 LED_DELAY();

 }

}

void TX_TEST(void)

{

 int i;

 init_devices();

 POWER_ON_LED();

 while (1)

 {

 RF12_RX();

 TransmitByte1('S');LED_DELAY();

 TransmitByte1('T');LED_DELAY();

 TransmitByte1('A');LED_DELAY();

 TransmitByte1('R');LED_DELAY();

 TransmitByte1('T');LED_DELAY();

 for (i=1;i<18;i++)

 {

 TransmitByte1(DataRX[i]);LED_DELAY();

 }

 }

}

 Appendices 184

 APPENDIX B

B. Visual basic code

 Appendices 185

This program is primarily developed as a Graphical User Interface (GUI) for the

user to communicate to modules.

Port Configuration

Private Sub ClosePC_Click()

Me.Hide

End Sub

Public Sub MSComm1_OnComm()

On Error Resume Next

 readByte = PortConf.MSComm1.Input

 ' Fix the new line problem

 If readByte = Chr(10) Then

 Form1.Text1.Text = Form1.Text1.Text & vbCrLf

 End If

 If readByte = Chr(13) Then

 Form1.Text1.Text = Form1.Text1.Text

 Else

 If readByte <> Chr(10) Then

 Form1.Text1.Text = Form1.Text1.Text + readByte

 End If

 End If

 ' Ack code:

 S = InStrRev(Form1.Text1.Text, "ACK")

 L = Len(Form1.Text1.Text)

 If S <> 0 Then

 If L > S + 3 Then

 Form1.Ack1.Text = Asc(MID(Form1.Text1.Text, S + 3, 1))

 End If

 End If

 ' Message Received:

 S = InStrRev(Form1.Text1.Text, "MSG")

 L = Len(Form1.Text1.Text)

 If S <> 0 Then

 If L > S + 8 Then

 Form1.FE1.Text = Asc(MID(Form1.Text1.Text, S + 3, 1))

 Form1.FE2.Text = Asc(MID(Form1.Text1.Text, S + 4, 1))

 Form1.FE3.Text = Asc(MID(Form1.Text1.Text, S + 5, 1))

 Form1.FE4.Text = Asc(MID(Form1.Text1.Text, S + 6, 1))

 Form1.FE5.Text = Asc(MID(Form1.Text1.Text, S + 7, 1))

 End If

 End If

End Sub

Private Sub MSComm2_OnComm()

On Error Resume Next

 readByte = PortConf.MSComm2.Input

 ' Fix the new line problem

 If readByte = Chr(10) Then

 Form1.Text2.Text = Form1.Text2.Text & vbCrLf

 End If

 If readByte = Chr(13) Then

 Form1.Text2.Text = Form1.Text2.Text

 Else

 If readByte <> Chr(10) Then

 Form1.Text2.Text = Form1.Text2.Text + readByte

 End If

 End If

 ' Ack code:

 S = InStrRev(Form1.Text2.Text, "ACK")

 L = Len(Form1.Text2.Text)

 Appendices 186

 If S <> 0 Then

 If L > S + 3 Then

 Form1.Ack2.Text = Asc(MID(Form1.Text2.Text, S + 3, 1))

 Form1.MID.Text = MID(Form1.Text2.Text, S - 3, 1)

 End If

 End If

End Sub

Private Sub SetIR_Click()

On Error Resume Next

MSComm2.PortOpen = False

MSComm2.CommPort = PN2.Text

MSComm2.Settings = BR2.Text + "," + P2.Text + "," + DB2 + "," + SB2

MSComm2.PortOpen = True

End Sub

Private Sub SetUART1_Click()

On Error Resume Next

MSComm1.PortOpen = False

MSComm1.CommPort = PN1.Text

MSComm1.Settings = BR1.Text + "," + P1.Text + "," + DB1 + "," + SB1

MSComm1.PortOpen = True

End Sub

Main Window

Private Sub Ack2_Change()

On Error Resume Next

If Chr(Ack2.Text) = "N" Then Ack2.Text = "N"

End Sub

Private Sub ClearIR_Click()

Text2.Text = ""

Ack2.Text = "0"

MID.Text = "N"

RB2.Text = "0"

End Sub

Private Sub ClearMSG_Click()

MSG1.Text = "*"

MSG2.Text = "0"

MSG3.Text = "0"

MSG4.Text = "0"

MSG5.Text = "0"

MSG6.Text = "0"

MSG7.Text = "0"

MSG8.Text = "0"

MSG9.Text = "0"

MSG10.Text = "0"

MSG11.Text = "#"

End Sub

Private Sub ClearUART1_Click()

Text1.Text = ""

Ack1.Text = "0"

FE1.Text = "N"

FE2.Text = "N"

FE3.Text = "N"

FE4.Text = "N"

FE5.Text = "N"

RB1.Text = "0"

End Sub

Private Sub CloseMain_Click()

Unload Form1

Unload PortConf

End Sub

 Appendices 187

Private Sub ConnectIR_Click()

On Error Resume Next

PortConf.MSComm2.PortOpen = True

ConnectIR.Enabled = False

DisconnectIR.Enabled = True

End Sub

Private Sub ConnectUART1_Click()

On Error Resume Next

PortConf.MSComm1.PortOpen = True

ConnectUART1.Enabled = False

DisconnectUART1.Enabled = True

End Sub

Private Sub DisconnectIR_Click()

On Error Resume Next

PortConf.MSComm2.PortOpen = False

ConnectIR.Enabled = True

DisconnectIR.Enabled = False

End Sub

Private Sub DisconnectUART1_Click()

On Error Resume Next

PortConf.MSComm1.PortOpen = False

ConnectUART1.Enabled = True

DisconnectUART1.Enabled = False

End Sub

Private Sub FE1_Change()

On Error Resume Next

If Chr(FE1.Text) = "N" Then FE1.Text = "N"

End Sub

Private Sub FE2_Change()

On Error Resume Next

If Chr(FE2.Text) = "N" Then FE2.Text = "N"

End Sub

Private Sub FE3_Change()

On Error Resume Next

If Chr(FE3.Text) = "N" Then FE3.Text = "N"

End Sub

Private Sub FE4_Change()

On Error Resume Next

If Chr(FE4.Text) = "N" Then FE4.Text = "N"

End Sub

Private Sub FE5_Change()

On Error Resume Next

If Chr(FE5.Text) = "N" Then FE5.Text = "N"

End Sub

Private Sub Form_Unload(Cancel As Integer)

On Error Resume Next

PortConf.MSComm1.PortOpen = False

PortConf.MSComm2.PortOpen = False

End Sub

Private Sub Fun1_Click()

MSG2.Text = 1

SendMSG1() = True

End Sub

Private Sub Fun2_Click()

MSG2.Text = 2

SendMSG1() = True

End Sub

Private Sub Fun3_Click()

 Appendices 188

MSG2.Text = 3

SendMSG1() = True

End Sub

Private Sub Fun4_Click()

MSG2.Text = 4

SendMSG1() = True

End Sub

Private Sub Fun5_Click()

MSG2.Text = 5

SendMSG1() = True

End Sub

Private Sub Fun11_Click()

MSG2.Text = 11

SendMSG1() = True

End Sub

Private Sub Fun12_Click()

MSG2.Text = 12

SendMSG1() = True

End Sub

Private Sub Fun13_Click()

MSG2.Text = 13

SendMSG1() = True

End Sub

Private Sub Fun14_Click()

MSG2.Text = 14

SendMSG1() = True

End Sub

Private Sub Fun15_Click()

MSG2.Text = 15

SendMSG1() = True

End Sub

Private Sub Fun16_Click()

MSG2.Text = 16

SendMSG1() = True

End Sub

Private Sub Fun20_Click()

MSG2.Text = 20

SendMSG1() = True

End Sub

Private Sub Fun21_Click()

MSG2.Text = 21

SendMSG1() = True

End Sub

Private Sub Fun22_Click()

MSG2.Text = 22

SendMSG1() = True

End Sub

Private Sub Fun23_Click()

MSG2.Text = 23

SendMSG1() = True

End Sub

Private Sub Fun24_Click()

MSG2.Text = 24

SendMSG1() = True

End Sub

Private Sub Fun25_Click()

 Appendices 189

MSG2.Text = 25

SendMSG1() = True

End Sub

Private Sub Fun28_Click()

MSG2.Text = 28

SendMSG1() = True

End Sub

Private Sub Fun29_Click()

MSG2.Text = 29

SendMSG1() = True

End Sub

Private Sub Fun30_Click()

MSG2.Text = 30

SendMSG1() = True

End Sub

Private Sub Fun31_Click()

MSG2.Text = 31

SendMSG1() = True

End Sub

Private Sub Fun32_Click()

MSG2.Text = 32

SendMSG1() = True

End Sub

Private Sub Fun33_Click()

MSG2.Text = 33

SendMSG1() = True

End Sub

Private Sub Fun34_Click()

MSG2.Text = 34

SendMSG1() = True

End Sub

Private Sub Fun35_Click()

SendMSG1() = True

MSG2.Text = 35

End Sub

Private Sub Fun36_Click()

MSG2.Text = 36

SendMSG1() = True

End Sub

Private Sub Fun37_Click()

MSG2.Text = 37

SendMSG1() = True

End Sub

Private Sub Fun38_Click()

MSG2.Text = 38

SendMSG1() = True

End Sub

Private Sub Fun39_Click()

MSG2.Text = 39

SendMSG1() = True

End Sub

Private Sub Fun40_Click()

MSG2.Text = 40

SendMSG1() = True

End Sub

Private Sub Fun41_Click()

 Appendices 190

MSG2.Text = 41

SendMSG1() = True

End Sub

Private Sub Fun43_Click()

MSG2.Text = 43

SendMSG1() = True

End Sub

Private Sub Fun44_Click()

MSG2.Text = 44

SendMSG1() = True

End Sub

Private Sub Fun45_Click()

MSG2.Text = 45

SendMSG1() = True

End Sub

Private Sub Fun46_Click()

MSG2.Text = 46

SendMSG1() = True

End Sub

Private Sub Fun47_Click()

MSG2.Text = 47

SendMSG1() = True

End Sub

Private Sub Fun48_Click()

MSG2.Text = 48

SendMSG1() = True

End Sub

Private Sub Fun49_Click()

MSG2.Text = 49

SendMSG1() = True

End Sub

Private Sub Fun50_Click()

MSG2.Text = 50

SendMSG1() = True

End Sub

Private Sub Fun56_Click()

MSG2.Text = 56

SendMSG1() = True

End Sub

Private Sub Fun57_Click()

MSG2.Text = 57

SendMSG1() = True

End Sub

Private Sub Fun58_Click()

MSG2.Text = 58

SendMSG1() = True

End Sub

Private Sub Fun59_Click()

MSG2.Text = 59

SendMSG1() = True

End Sub

Private Sub Fun65_Click()

MSG2.Text = 65

SendMSG1() = True

End Sub

Private Sub Fun66_Click()

 Appendices 191

MSG2.Text = 66

SendMSG1() = True

End Sub

Private Sub Fun67_Click()

MSG2.Text = 67

SendMSG1() = True

End Sub

Private Sub Fun68_Click()

MSG2.Text = 68

SendMSG1() = True

End Sub

Private Sub Fun69_Click()

MSG2.Text = 69

SendMSG1() = True

End Sub

Private Sub PortConfig_Click()

On Error Resume Next

PortConf.Show

End Sub

Private Sub SendMSG1_Click()

On Error Resume Next

PortConf.MSComm2.Output = MSG1.Text

PortConf.MSComm2.Output = Chr(MSG2.Text)

PortConf.MSComm2.Output = Chr(MSG3.Text)

PortConf.MSComm2.Output = Chr(MSG4.Text)

PortConf.MSComm2.Output = Chr(MSG5.Text)

PortConf.MSComm2.Output = Chr(MSG6.Text)

PortConf.MSComm2.Output = Chr(MSG7.Text)

PortConf.MSComm2.Output = Chr(MSG8.Text)

PortConf.MSComm2.Output = Chr(MSG9.Text)

PortConf.MSComm2.Output = Chr(MSG10.Text)

PortConf.MSComm2.Output = MSG11.Text

End Sub

Private Sub SendMSG2_Click()

On Error Resume Next

PortConf.MSComm2.Output = MSG1.Text

PortConf.MSComm2.Output = Chr(MSG2.Text)

PortConf.MSComm2.Output = Chr(MSG3.Text)

PortConf.MSComm2.Output = Chr(MSG4.Text)

PortConf.MSComm2.Output = Chr(MSG5.Text)

PortConf.MSComm2.Output = Chr(MSG6.Text)

PortConf.MSComm2.Output = Chr(MSG7.Text)

PortConf.MSComm2.Output = Chr(MSG8.Text)

PortConf.MSComm2.Output = Chr(MSG9.Text)

PortConf.MSComm2.Output = Chr(MSG10.Text)

PortConf.MSComm2.Output = MSG11.Text

End Sub

Private Sub Text1_Change()

' Number of Bytes Received

RB1.Text = Len(Form1.Text1.Text)

End Sub

Private Sub Text2_Change()

' Number of Bytes Received

RB2.Text = Len(Form1.Text2.Text)

End Sub

 Appendices 192

 APPENDIX C

C. Matlab Functions

 Appendices 193

These functions were primarily developed to be utilized for the algorithm and si-

mulation in Matlab. Moreover there are few test codes attached illustrating the use of dif-

ferent functions and the complete algorithm as well.

Function 1: FindVE

% [V,E] = FindVE(I, G)

%

% Given

% I: initial state

% G: goal state

%

% Find

% V: voids

% E: electrons

function [V,E] = FindVE(I, G)

V = zeros(size(I));

E = zeros(size(I));

A = G - I;

X = find(A==-1);

E(X)=1;

X = find(A==1);

V(X)=1;

end

Function 2: Hex

% [Vx Vy] = Hex(C)

%

% Given

% C: center of a hexagon

%

% Find

% Vx: six x coordinates of vertices

% Vy: six y coordinates of vertices

%

% Notes:

% Using this function you can enter the center of the hexagon (in Hex

% Coordinates) and it will give you the vertex (in Cartesian Coordinates)

% C: [x y]

% Vx: [px1 px2 px3 px4 px5 px6]

% Vy: [py1 py2 py3 py4 py5 py6]

function [Vx Vy] = Hex(C)

a = 1/sin(pi/3);

b = tan(pi/6);

x = C(1,1);

y = C(1,2)*a + x*b;

a = 1/3;

b = 1/(3*tan(pi/6));

px1 = x - 2*a;

py1 = y;

px2 = x - a;

py2 = y + b;

px3 = x + a;

py3 = y + b;

px4 = x + 2*a;

 Appendices 194

py4 = y;

px5 = x + a;

py5 = y - b;

px6 = x - a;

py6 = y - b;

Vx = [px1 px2 px3 px4 px5 px6];

Vy = [py1 py2 py3 py4 py5 py6];

end

Function 3: HexActuate

% [Fj, Fs]=HexActuate(s1,s2,S)

%

% Given

% s1: initial location of the mobile electron

% s2: next location of the mobile electron

% S: current system configuration

%

% Find

% Fj: joint forces

% Fs: side forces

%

% Example

% S =[

% 0 0 0 0 0 0 0 0 0

% 0 0 0 0 0 0 0 0 0

% 0 0 0 0 0 0 0 0 0

% 0 0 1 0 0 0 0 0 0

% 0 0 1 1 1 1 1 0 0

% 0 0 0 0 0 0 0 0 0

% 0 0 0 0 0 0 0 0 0

%];

% s1=[5,7];

% s2=[4,6];

% [Fj, Fs]=HexActuate(s1,s2,S);

% G = Hexmove(S,Fj,Fs);

function [Fj, Fs]=HexActuate(s1,s2,S)

% Refer to Fig 4-29 of thesis (Matlab Coordinates)

A = [-1, -1];

B = [-1, 0];

C = [0, 1];

D = [1, 1];

E = [1, 0];

F= [0, -1];

G = [-2, -1];

H = [-1, 1];

I = [1, 2];

J = [2, 1];

K = [1, -1];

L = [-1, -2];

% Relative relocation

s=s2-s1;

% Absolute locations

a=s1+A;

b=s1+B;

c=s1+C;

d=s1+D;

e=s1+E;

f=s1+F;

g=s1+G;

h=s1+H;

i=s1+I;

 Appendices 195

j=s1+J;

k=s1+K;

l=s1+L;

% Refer to Hexmove function

Fj=zeros(1,3);

Fs=zeros(2,4);

% Refer to Table 4-3 of thesis

m1=a;m2=d;m3=e;m4=k;m5=F;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 1];

 Fs=[s1 1 6

 a 5 4];

% disp('1')

end

m1=b;m2=e;m3=f;m4=l;m5=A;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 2];

 Fs=[s1 2 1

 b 6 5];

% disp('2')

end

m1=c;m2=f;m3=a;m4=g;m5=B;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 3];

 Fs=[s1 3 2

 c 1 6];

% disp('3')

end

m1=d;m2=a;m3=b;m4=h;m5=C;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 4];

 Fs=[s1 4 3

 d 2 1];

% disp('4')

end

m1=e;m2=b;m3=c;m4=i;m5=D;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 5];

 Fs=[s1 5 4

 e 3 2];

% disp('5')

end

m1=f;m2=c;m3=d;m4=j;m5=E;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 6];

 Fs=[s1 6 5

 f 4 3];

% disp('6')

end

m1=f;m2=c;m3=b;m4=g;m5=A;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 1];

 Fs=[s1 1 6

 f 2 3];

 Appendices 196

% disp('11')

end

m1=a;m2=d;m3=c;m4=h;m5=B;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 2];

 Fs=[s1 2 1

 a 3 4];

% disp('22')

end

m1=b;m2=e;m3=d;m4=i;m5=C;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 3];

 Fs=[s1 3 2

 b 4 5];

% disp('33')

end

m1=c;m2=f;m3=e;m4=j;m5=D;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 4];

 Fs=[s1 4 3

 c 5 6];

% disp('44')

end

m1=d;m2=a;m3=f;m4=k;m5=E;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 5];

 Fs=[s1 5 4

 d 6 1];

% disp('55')

end

m1=e;m2=b;m3=a;m4=l;m5=F;

if

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s)

 Fj=[s1 6];

 Fs=[s1 6 5

 e 1 2];

% disp('66')

end

% Conversion to Hex coordinates

s = size(S,1);

mx = Fj(1,2);my = Fj(1,1);

hx = mx-1;hy = s-my;

Fj(1,1)=hx;Fj(1,2)=hy;

Fs(1,1)=hx;Fs(1,2)=hy;

mx = Fs(2,2);my = Fs(2,1);

hx = mx-1;hy = s-my;

Fs(2,1)=hx;Fs(2,2)=hy;

end

Function 4: HexAll_P

% [Joint, Side, S]=HexAll_P(I,G)

%

% Given

% I: Initial Configuration (State)

% G: Goal Configuration (State)

%

 Appendices 197

% Find

% Joint: Required Joint Forces

% Side: Required Side Forces

% S: Parallel Motion, each row: [s1:curren location of the mobile module, s2:NRL, s3:PV]

function [Joint, Side, S]=HexAll_P(I,G)

% ********** Layer 1: Initial and Goal States **********

%Entered Manually at this stage, Ex:

% I = [0 0 0 0 0

% 1 0 0 0 0

% 1 1 1 1 1];

%

% G = [1 1 0 0 0

% 1 0 1 0 0

% 0 1 1 0 0];

%Double Zero Padding

%I = HexZP(I);I = HexZP(I);

%G = HexZP(G);G = HexZP(G);

% ********** Layer 2: Mobile Electrons and Potential Voids **********

[V E] = FindVE(I,G); %Find all voids and electrons

PoV = PV(I,G); %Find potential voids

ME = Mobile(E,I); %Find mobile electrons

if (sum(sum(PoV))==0)||(sum(sum(ME))==0)

 disp('There is no more possible motion');return;

end

% ********** Layer 3: Void Propagation **********

PVME=HexVP(I,G);

s = size (PVME,1); %Number of parallel movements

% ********** Layer 4: MDP **********

for i=1:s

 s1=[PVME(i,3) PVME(i,4)]; %ME

 s2=[PVME(i,1) PVME(i,2)]; %PV

 NRL = MDP_NRL(I,G,s1,s2,0); %Next Recommended Location for ME

 Motion(i,:)=[s1 NRL s2];

end

% ********** Layer 5: Actuation **********

for i=1:s

 s1=[Motion(i,1) Motion(i,2)]; %Current Location

 s2=[Motion(i,3) Motion(i,4)]; %Next Location

 s3=[Motion(i,5) Motion(i,6)]; %Desired Location

 [Fj, Fs]=HexActuate(s1,s2,I); %Required Actuation

 Joint(i,:)=Fj; %Joint Forces

 Side(i,:)=[Fs(1,:), Fs(2,:)]; %Side Forces

 S(i,:)=[s1, s2, s3];

end

end

Function 5: HexAll_S

%[Joint, Side, S]=HexAll_S(I,G)

%

%Given

%I: Initial Configuration (State)

%G: Goal Configuration (State)

%

%Find

%Joint: Required Joint Forces

%Side: Required Side Forces

%S: Serial Motion (One module movement at a time): [s1:curren location of the mobile mod-

ule, s2:NRL, s3:PV]

function [Joint, Side, S]=HexAll_S(I,G)

% ********** Layer 1: Initial and Goal States **********

%Entered Manually at this stage, Ex:

% I = [0 0 0 0 0

 Appendices 198

% 1 0 0 0 0

% 1 1 1 1 1];

%

% G = [1 1 0 0 0

% 1 0 1 0 0

% 0 1 1 0 0];

%Double Zero Padding

%I = HexZP(I);I = HexZP(I);

%G = HexZP(G);G = HexZP(G);

% ********** Layer 2: Mobile Electrons and Potential Voids **********

[V E] = FindVE(I,G); %Find all voids and electrons

PoV = PV(I,G); %Find potential voids

ME = Mobile(E,I); %Find mobile electrons

if (sum(sum(PoV))==0)||(sum(sum(ME))==0)

 disp('There is no more possible motion');return;

end

% ********** Layer 3: Void Propagation **********

PVME=HexVP(I,G);

% ********** Layer 4: MDP **********

s1=[PVME(1,3) PVME(1,4)]; %ME

s2=[PVME(1,1) PVME(1,2)]; %PV

NRL = MDP_NRL(I,G,s1,s2,0); %Next Recommended Location for ME

Motion(1,:)=[s1 NRL s2];

% ********** Layer 5: Actuation **********

s1=[Motion(1,1) Motion(1,2)]; %Current Location

s2=[Motion(1,3) Motion(1,4)]; %Next Location

s3=[Motion(1,5) Motion(1,6)]; %Desired Location

[Fj, Fs]=HexActuate(s1,s2,I); %Required Actuation

Joint(1,:)=Fj; %Joint Forces

Side(1,:)=[Fs(1,:), Fs(2,:)]; %Side Forces

S(1,:)=[s1, s2, s3];

end

Function 6: HexCCW

% C_new = HexCCW(C_old, Joint)

%

% Given

% C_old: current coordinates of the center of a module

% Joint: around which a CCW rotation is happening

%

% Find

% C_new: next coordinates of the center after the rotation

%

%Notes:

% Counter clockwise rotation of module around a joint

% Center (old and new) is a: [x, y]

function C_new = HexCCW(C_old, Joint)

CCW = [1 2 3 4 5 6;

 -1 0 +1 +1 0 -1;

 +1 +1 0 -1 -1 0;];

C_new = [C_old(1,1)+CCW(2,Joint), C_old(1,2)+CCW(3,Joint)];

end

Function 7: HexCG

%HexCG(I)

%

%Given

% I: configuration matrix

%

% Find

 Appendices 199

% plot the connectivity graph

%

% Notes:

% note that all sides of the configuration should be zero padded

% to allow module movements on the sides (Use HexZP)

function HexCG(I)

F = find(I);[X Y] = find(I); %find all modules in the configuration

s = size(F,1); %number of modules in the configuration

for i=1:s

 IDs (1,i) = {num2str(F(i))};

end

%CM = zeros(s(1,1),s(1,1)); %connection matrix (square matrix,

number of nodes)

UG = sparse([],[],true,s,s); %Undirected Graph, same size of the

nodes

%To have undirected-like of graph

for i=1:s-1

 x = X(i);y = Y(i); %Start with one node, check if others

are connected to it

 N = HexNeM(x,y); %find neighbor modules

 for j=i+1:s %check the connection to the remaining

modules

 id = str2num(cell2mat(IDs(1,j))); %get the id of the node

 for k=1:6 %check if this id is in the neighbor-

hood

 nid = (N(k,1)+(N(k,2)-1)*size(I,1));

 if nid==id %if id is found to be in the neighbor-

hood

 UG(i,j) = true; %connect to that module

 end

 end

 end

end

bg = biograph(UG,IDs); %Construct the graph with no connection

set(bg.Nodes, 'Shape', 'Circle')

set(bg, 'ShowArrows', 'off')

Grid = ones(size(I));

figure;axis off;hold on;Hexpm(Grid);Hexplot(I,1);

bg.view;

end

% To display the descendants of a node

% i=1

% desNodes = getdescendants(bg.nodes(i),1);

% set(desNodes,'Color',[1 .7 .7]);

Function 8: HexCGT

% C = HexCGT(I)

%

% Given

% I: configuration matrix

%

% Find

% C = 1 if the graph is connected and returns C = 0 if graph is not connected

%

% Notes:

% note that all sides of the configuration should be zero padded

% to allow module movements on the sides (Use HexZO)

function C = HexCGT(I)

F = find(I);[X Y] = find(I); %find all modules in the configuration

 Appendices 200

s = size(F,1); %number of modules in the configuration

for i=1:s

 IDs (1,i) = {num2str(F(i))};

end

UG = sparse([],[],true,s,s); %Undirected Graph, same size of the

nodes

for i=1:s %[1:S-1]

 x = X(i);y = Y(i); %Start with one node, check if others

are connected to it

 N = HexNeM(x,y); %find neighbor modules

 for j=1:s %[I+1:S] %check the connection to the remaining

modules

 id = str2num(cell2mat(IDs(1,j))); %get the id of the node

 for k=1:6 %check if this id is in the neighbor-

hood

 nid = (N(k,1)+(N(k,2)-1)*size(I,1));

 if nid==id %if id is found to be in the neighbor-

hood

 UG(i,j) = true; %connect to that module

 end

 end

 end

end

P = graphallshortestpaths(UG,'directed',false);

T = sum(sum(P));

if (T==Inf)

 C=0;

else

 C=1;

end

Function 9: HexCW

% C_new = HexCW(C_old, Joint)

%

% Given

% C_old: current coordinates of the center of a module

% Joint: around which a CW rotation is happening

%

% Find

% C_new: next coordinates of the center after the rotation

%

%Notes:

% Counter clockwise rotation of module around a joint

% Center (old and new) is a: [x, y]

function C_new = HexCW(C_old, Joint)

CW = [1 2 3 4 5 6;

 -1 -1 0 +1 +1 0;

 0 +1 +1 0 -1 -1;];

C_new = [C_old(1,1)+CW(2,Joint), C_old(1,2)+CW(3,Joint)];

end

Function 10: Hexgrid

% Hexgrid(min, max)

%

% Given

% (min, max): ranges to grid

%

% Find

% Adds the Hex Axis Grids

 Appendices 201

function Hexgrid(min, max)

min = floor(min);

max = ceil(max);

a = 1/sin(pi/3);

b = tan(pi/6);

% find the grid points

hold on;

for i = min:max

 for j = min:max

 plot(i,j*a+i*b,'bo');

 end

end

min = min*(a+b)-1;

max = max*(a+b)+1;

axis ([min max min max]);

shg;

end

Function 11: HexIMS

% x = HexIMS(I,s)

%

% Given

% I: a configuration matrix

% s: a location in Matlab Coordinates

%

% Find

% x=1 if s has an immobile substrate in I

%

% Example

% I = [0 0 0 0 0

% 1 0 0 0 0

% 1 1 1 1 1

% 0 0 0 0 0];

% s = [1 1];

function x = HexIMS(I,s)

xmax=size(I,1);ymax=size(I,2);

x=0;

N=HexNeM(s(1,1),s(1,2));%check the neighbors

for j=1:6

 xn=N(j,1);yn=N(j,2);

 if (xn>0&&xn<=xmax&&yn>0&&yn<=ymax) && (I(xn,yn)==1)

 x=1;

 end

end

end

Function 12: Hexmove

% G = Hexmove(I, Fj, Fs, p)

%

% Given

% I: Initial State of the modules

% Fj: Joint Forces (the only close joint for the mobile module)

% [could be found from Fs automatically as well, but included to simulate the actual

microcontroller commands]

% Fs: Side Forces (Energized magnets: Mobile and neighbor)

% p: plotting (1:plot, 0:don't plot)

%

% Find

% G: Goal State, next state after the actuation happens

%

% Notes:

% Move from Initial state to Goal state based on Joint and Side forces

 Appendices 202

%

% Example

% I = [1 1 1;

% 1 1 0;

% 0 0 1]

% Fj = [2 0 2] %second joint of the mobile module (2,0)

% Fs = [2 0 1 2; %sides 1 and 2 of mobile (2,0) are -ve

% 1 1 3 4] %side 3 of neighbor (2,1) is +ve and 4 -ve

% G = [1 1 1;

% 1 1 1;

% 0 0 0]

function G = Hexmove(varargin)

I = varargin{1};

Fj = varargin{2};

Fs = varargin{3};

p=0;

if length(varargin) > 3

 p = cell2mat(varargin(4));

end

% FIND DIRECTION OF ROTATION

% (if fixed joint number and repulsion (-ve) side number are the same CW otherwise CCW)

% neighbor repulsion points (N)

[Vx Vy]=Hex([Fs(2,1),Fs(2,2)]);

a = Fs(2,4);b = Fs(2,4)+1;if (b==7) b=1; end

N = [Vx(a) Vy(a);

 Vx(b) Vy(b)];

% mobile module points (M)

[Vx Vy]=Hex([Fj(1,1),Fj(1,2)]);

a = Fj(1,3);b = Fj(1,3)+1;if (b==7) b=1; end

M = [Vx(a) Vy(a)

 Vx(b) Vy(b)];

%round the numbers so that "isequal" works fine

N=round(1000*N)/1000;

M=round(1000*M)/1000;

if isequal(N,M)

 C=HexCW([Fj(1,1), Fj(1,2)],Fj(1,3));

elseif isequal(N,flipdim(M,1))

 C=HexCW([Fj(1,1), Fj(1,2)],Fj(1,3));

else

 C=HexCCW([Fj(1,1), Fj(1,2)],Fj(1,3));

end

% FORM THE GOAL STATE

G = flipdim(I,1);

G(Fj(1,2)+1,Fj(1,1)+1)=0;

G(C(1,2)+1,C(1,1)+1)=1;

G = flipdim(G,1);

if (p==1)

 % PLOT THE GIVEN DATA

 P = 1; % Speed

 Grid = ones(size(I));

 scrsz = get(0,'ScreenSize');

 figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3)

scrsz(4)]);hold on

 subplot(1,2,1);axis off;title('Current Module Configuration + Actua-

tion');Hexpm(Grid);Hexplot(I,1);Jointplot(Fj);Sideplot(Fs);

 subplot(1,2,2);axis off;title('Next Configuration');Hexpm(Grid);Hexplot(G,1);

 pause(P);%close ('Simulation Window')

end

end

 Appendices 203

Function 13: HexNe

% [N] = HexNe(x,y)

%

% Given

% (x,y) coordinates of a module

%

% Find

% N: locations of neighbor modules

%

% Notes:

% This function works with HEX COORDINATES

function [N] = HexNe(x,y)

N = [x-1, y+1; %side 1

 x, y+1; %side 2

 x+1,y; %side 3

 x+1,y-1; %side 4

 x, y-1; %side 5

 x-1, y]; %side 6

end

Function 14: HexNeM

% [N] = HexNeM(i, j)

%

% Given

% (i,j): coordinates of a module (Matlab indices of an array)

%

% Find

% N: locations of neighbor modules

%

% Notes:

% This function works with MATLAB COORDINATES

function [N] = HexNeM(i,j)

N = [i-1, j-1; %side 1

 i-1, j; %side 2

 i,j+1; %side 3

 i+1,j+1; %side 4

 i+1,j; %side 5

 i,j-1]; %side 6

end

Function 15: Hexp

% Hexp(C)

%

% Given

% C: Center of a hexagonal

%

% Find

% draws the hexagonal (used for plotting purposes only)

function Hexp(C)

a = 1/sin(pi/3);

b = tan(pi/6);

x = C(1,1);

y = C(1,2)*a + x*b;

a = 1/3;

b = 1/(3*tan(pi/6));

px1 = x - 2*a;

py1 = y;

 Appendices 204

px2 = x - a;

py2 = y + b;

px3 = x + a;

py3 = y + b;

px4 = x + 2*a;

py4 = y;

px5 = x + a;

py5 = y - b;

px6 = x - a;

py6 = y - b;

Vx = [px1 px2 px3 px4 px5 px6 px1];

Vy = [py1 py2 py3 py4 py5 py6 py1];

hold on

plot (Vx,Vy,'k','LineWidth',2)

end

Function 16: Hexplot

% Hexplot(A,g,c)

%

% Given

% A: configuration matrix

% g: don't add grid if g=1

% c: set color

%

% Find

% draws the hexagonal

%

% Notes:

% Plots Hex for nonzero elements of A (in Hex Coordinates)

% By default adds grid; does not add the grid if g is 1. c is the collor

%

% Example

% |(0,2) (1,2) (2,2)|

% A |(0,1) (1,1) (2,2)|

% |(0,0) (1,0) (2,0)|

function Hexplot(varargin)

A = varargin{1};

g = 0;

c = 'y';

if length(varargin) > 1

 g = cell2mat(varargin(2));

end

if length(varargin) > 2

 c = cell2mat(varargin(3));

end

A = flipdim(A,1);

[b,a] = find(A);

a = a-1;b=b-1;

s = max(size(a));

hold on;

for i=1:s

 [Vx,Vy] = Hex([a(i),b(i)]);

 fill (Vx,Vy,c);

 Hexp([a(i),b(i)]);

end

 Appendices 205

if g ~= 1

 Hexgrid(0,max(size(A))-1)

end

Function 17: Hexpm

% Hexpm(A)

%

% Given

% A: configuration matrix

%

% Find

% plots background Hex for nonzero elements of A (in Hex Coordinates:)

%

% Example

% |(0,2) (1,2) (2,2)|

% A |(0,1) (1,1) (2,2)|

% |(0,0) (1,0) (2,0)|

function Hexpm(A)

A = flipdim(A,1);

[b,a] = find(A);

a = a-1;b=b-1;

s = max(size(a));

hold on;

for i=1:s

 Hexp([a(i),b(i)]);

end

end

Function 18: HexVP

% PVME=HexVP(I,G)

% Given

% I: initial configuration

% G: goal configuration

%

% Find

% PVME: all possible corresponding ME for PV

%

% Notes:

% this function also specifies how many time steps are required

% each row is: [Xpv Ypv Xme Yme T]

%

% Example

% clear all;clc;

% I = [0 0 0 0 0

% 1 0 0 0 0

% 1 1 1 1 1

% 0 0 0 0 0];

% G = [1 1 0 0 0

% 1 0 1 0 0

% 0 1 1 0 0

% 0 0 0 0 0];

% %Double Zero Padding

% I = HexZP(I);I = HexZP(I);

% G = HexZP(G);G = HexZP(G);

% PVME=HexVP(I,G);

function PVME=HexVP(I,G)

 [V,E] = FindVE(I,G);

 PoV = PV(I,G);

 ME = Mobile(E,I);

 nme = size(find(ME),1); %check number of available ME

 npv = size(find(PoV),1); %check number of available PV

 Appendices 206

 n = min(nme,npv); %possible number of connections (ME==>PV)

 if (n<1) %stop if no connection is possible

 disp('There must be at least one ME and one PV for HexVP function')

 return;

 end

 PVME = zeros(n,5); %maximum possible relationship

 a=1;

 while (n>0)

 [X Y]=find(PoV);

 FME=zeros(size(X,1),3);

 for i=1:npv

 x=X(i);y=Y(i);

 T=HexVPT(I,G,[x,y]);

 FME(i,:)=T(1,:);

 end

 %find the first ME found

 FME3=FME(:,3);

 m=min(FME3);

 r=find (FME3<m+1,1);

 %correspond the PV to ME

 PVME (a,:)= [X(r), Y(r), FME(r,1), FME(r,2), m];

 %eliminate the addressed PV and ME

 PoV(X(r),Y(r))=0;ME(FME(r,1),FME(r,2))=0;

 %update

 nme = size(find(ME),1);

 npv = size(find(PoV),1);

 n = min(nme,npv);

 a=a+1;

 end

end

Function 19: HexVPT

% T = HexVPT(I,G,s,p,ps)

%

% Given

% I: initial configuration (double zero padded)

% G: goal configuration (double zero padded)

% s: the required PV to propagate

% p: if 1 the progress will be plotted

% ps: the plotting speed

%

% Find

% T: the time step required to reach each ME, [x y t]

%

% Notes:

% given a PV, this function will specify the time steps required to reach MEs

%

% Example

% clear all;clc;

% I = [0 0 0 0 0

% 1 0 0 0 0

% 1 1 1 1 1

% 0 0 0 0 0];

%

% G = [1 1 0 0 0

% 1 0 1 0 0

% 0 1 1 0 0

% 0 0 0 0 0];

%

%

% %Double Zero Padding

% I = HexZP(I);I = HexZP(I);

% G = HexZP(G);G = HexZP(G);

% s = [3 3]; %required PV

%

% T = HexVPT(I,G,s,1,0.05)

 Appendices 207

function T = HexVPT(varargin)

 I = varargin{1};

 G = varargin{2};

 s = cell2mat(varargin(3));

 p=0;

 ps=0.1;

 if length(varargin) > 3

 p = cell2mat(varargin(4));

 end

 if length(varargin) > 4

 ps = cell2mat(varargin(5));

 end

 xmax=size(I,1);ymax=size(I,2);

 [V,E] = FindVE(I, G);

 ME = Mobile(E,I); %find all ME

 n = size(find(ME),1); %check number of available ME

 %Initiate the time step matrix

 T = zeros(n,3); %each row (x y t):each ME should be filled with a number of time

steps needed

 t=1;

 %stop if no connection is possible

 if (n<1)

 disp('There must be at least one ME and one PV for HexVP function')

 return;

 end

 I=I-ME; %assume MEs as allowable propagation locations

 %Initial propagation matrix (P)

 x=s(1,1);y=s(1,2);

 P = zeros(size(I));P(x,y)=1;

 Found = P; %Mark identified locations

 [XN YN] = find(P); %Locations needs to be propagated

 %just for plotting purposes

 if (p==1)

 figure(1);hold on;axis off;clf;Hexplot(I);Hexplot(P,1,'r');

 end

 %Continue till all time steps are found

 m=1; %the first mobile electron to find its time steps

 MEP = ME+P; %just a mark to check if the propagation is finished

 while (sum(sum(MEP-Found))>0)

 %propagate each node

 NP=P; %propagation matrix at next time step

 for i=1:size(XN,1)

 x=XN(i,1);y=YN(i,1); %set the propagation nodes

 N=HexNeM(x,y); %check the neighbors

 %check each of six neighbors for propagation possibility

 for j=1:6

 xn=N(j,1);yn=N(j,2);

 if (xn>0&&xn<=xmax&&yn>0&&yn<=ymax)

 if (p==1)%plotting

 TTT = ze-

ros(size(P));TTT(xn,yn)=1;pause(ps);clf;Hexplot(I);Hexplot(NP,1,'r');Hexplot(ME,1,'g');He

xplot(Found,1,'m');Hexplot(TTT,1,'b');

 end

 if (I(xn,yn)==0) %is empty?

 %has immobile substrate?

 NP(xn,yn)=HexIMS(I,[xn,yn]);%mark as new propagation node

 if (ME(xn,yn)==1)

 T(m,1)=xn;T(m,2)=yn;T(m,3)=t;m=m+1;

 Found(xn,yn)=1;

 end

 end

 end

 end

 end

 Appendices 208

 [XN YN]=find(NP-P); %Locations needs to be propagated

 t=t+1; %increment the time step

 P=NP; %update P

 if (t>1000) return; end %just to be in the safe side !!!

 end

end

Function 20: HexZP

% [CZ] = HexZP(C)

%

% Given

% C: a configuration matrix

%

% Find

% CZ: zero padded configuration

%

% Notes:

% It will add zeros to the outer layer of the configuration (C)

function Cz = HexZP(C)

V = zeros(size(C,1),1);

C = [V C V];

H = zeros(1,size(C,2));

Cz = [H;C;H];

end

Function 21: Jointplot

% Jointplot(A)

%

% Given

% A: Joint Forces (the only close joint for the mobile module)

% Note that all joints are normally closed except for the mobile

% module that has all joints opened except the pivot joint.

% Joint Numbering:

% 2 3

% 1 4

% 6 5

% ex, A = [1 0 2] %second joint of the mobile module (1,0)

%

% Find

% Plot the joints

function Jointplot(A)

hold on;

[Vx,Vy]=Hex([A(1,1),A(1,2)]);

c = A(1,3); %the only closed joint (pivot)

for i=1:6

 if (i==c)

 plot (Vx(i),Vy(i),'r*');

 else

 plot (Vx(i),Vy(i),'b*');

 end

end

end

Function 22: MDP_Action
% a=MDP_Action(I,G,s,p)

%

% Given

% I: initial configuration

% G: goal configuration

% s: state

% p: p = 1, the result will be plotted

%

 Appendices 209

% Find

% a: all possible actions

%

% Note:

% Configurations should be provided double zero padded on all sides allowing module move-

ments

%

% Example

% I = [0 0 0 0 0

% 1 0 0 0 0

% 1 1 1 1 1

% 0 0 0 0 0];

%

% G = [1 1 0 0 0

% 1 0 1 0 0

% 0 1 1 0 0

% 0 0 0 0 0];

%

% %Double Zero Padding

% I = HexZP(I);I = HexZP(I);

% G = HexZP(G);G = HexZP(G);

% s = [5,3];

% a = MDP_Action(I,G,s,1)

function a=MDP_Action(varargin)

I = varargin{1};

G = varargin{2};

s = varargin{3};

p = 0;

if length(varargin) > 3

 p = cell2mat(varargin(4));

end

a = zeros(2,2); %assume no action is possible (neither CW nor CCW)

i=1; %look for the first action

S = MDP_State(I,G); %look for all possible states of I

x = s(1,1);y=s(1,2);

N = HexNeM(x,y); %find only neighbor modules (Connectivity Constraint)

for j=1:6

 nx = N(j,1);ny=N(j,2);

 if S(nx,ny)==1 %Collision Avoidance Constraint

 a(i,1)=nx;a(i,2)=ny;

 i=i+1;

 end

end

a(i,1)=x;a(i,2)=y; %One possible action is to stay in its location

%Plotting the result

if p==1

 Grid = ones(size(I)); %display the grid

 S = zeros(size(I));S(x,y)=1; %display the chosen state

 A = zeros(size(I)); %display the available actions

 for l = 1:i-1

 A(a(l,1),a(l,2))=1;

 end

 figure;hold on

 subplot(1,2,1);axis off;title('Module Configuration');Hexpm(Grid);Hexplot(I,1);

 subplot(1,2,2);axis off;title('Available Ac-

tions');Hexpm(Grid);Hexplot(I,1);Hexplot(S,1,'b');Hexplot(A,1,'k');

end

Function 23: MDP_NRL

% NRL = MDP_NRL(I,G,s1,s2,p)

%

 Appendices 210

% Given:

% I: initial configuration

% G: goal configuration

% s1: mobile electron

% s2: potential void

% p: p=1, plotting the result

%

% Find

% NRL: Next Recommended Location

%

% Notes:

% that configurations should be provided double zero padded on all sides allowing module

movements

% if p is not entered the result will not be plotted

%

% Example

% I = [0 0 0 0 0

% 1 0 0 0 0

% 1 1 1 1 1

% 0 0 0 0 0];

% G = [1 1 0 0 0

% 1 0 1 0 0

% 0 1 1 0 0

% 0 0 0 0 0];

% %Double Zero Padding

% I = HexZP(I);I = HexZP(I);

% G = HexZP(G);G = HexZP(G);

% s1 = [5,3];

% s2 = [3,3];

% NRL = MDP_NRL(I,G,s1,s2,1)

function NRL = MDP_NRL(varargin)

I = varargin{1};

G = varargin{2};

s1 = varargin{3};

s2 = varargin{4};

p=0;

if length(varargin) > 4

 p = cell2mat(varargin(5));

end

U = MDP_VI(I,G,s1,s2); %Find the utility function

% Look for the best action

x = s1(1,1);y=s1(1,2);

Umax = U(x,y); %Assume the best action is to stay

NRL = [x y]; %Assume the best NRL is to stay

N = HexNeM(x,y); %find all the neighbors

for j=1:6

 nx = N(j,1);ny=N(j,2);

 if U(nx,ny)>Umax %If a better action is found

 Umax = U(nx,ny); %Update the action

 NRL = [nx ny]; %Recommend the next location for ME

 end

end

if p==1

 ME = zeros(size(I));ME(s1(1,1),s1(1,2))=1;

 PV = zeros(size(I));PV(s2(1,1),s2(1,2))=1;

 MA = zeros(size(I));MA(NRL(1,1),NRL(1,2))=1;

 S=MDP_State(I,G);

 Grid = ones(size(I));

 figure;hold on

 subplot(1,2,1);axis off;title('Module Configuration, ME in green, PV in

red');Hexpm(Grid);Hexplot(I,1);Hexplot(ME,1,'g');Hexplot(PV,1,'r');

 subplot(1,2,2);axis off;title('Available States, Next Recommended Location in

green');Hexpm(Grid);Hexplot(I,1);Hexplot(S,1,'m');Hexplot(MA,1,'g');

end

 Appendices 211

Function 24: MDP_Reward

% R=MDP_Reward(I,G,s1,s2)
%
% Given
% I: initial configuration
% G: goal configuration
% s1: ME, start point
% s2: PV, end point
%
% Find
% R: reward function
%
% Example
% I = [0 0 0 0 0
% 1 0 0 0 0
% 1 1 1 1 1
% 0 0 0 0 0];
% G = [1 1 0 0 0
% 1 0 1 0 0
% 0 1 1 0 0
% 0 0 0 0 0];
% %Double Zero Padding
% I = HexZP(I);%I = HexZP(I);
% G = HexZP(G);%G = HexZP(G);
% s1 = [4,2];
% s2 = [2,2];

function R=MDP_Reward(I,G,s1,s2)
R = zeros(size(I));
S = MDP_State(I,G);
[V,E] = FindVE(I,G);
ME = Mobile(E,I);

R = R-0.04*S; %Penalty for staying at their states
R(s2(1,1),s2(1,2))=1; %Reward to reach the goal
ME(s1(1,1),s1(1,2))=0;%exclude this ME from the rest of MEs
R = R-(0.96.*ME); %Penalty for going close to other mobile electrons
end

% Pot = PV(I,G);
% ME = mobile(E,I);
% Grid = ones(size(I));
% figure;hold on
% subplot(1,3,1);axis off;title('Current Configuration, ME in green');
% Hexpm(Grid);Hexplot(I,1);Hexplot(ME,1,'g');
% subplot(1,3,2);axis off;title('Goal Configuration, PV in green');
% Hexpm(Grid);Hexplot(G,1);Hexplot(Pot,1,'g');
% subplot(1,3,3);axis off;title('Immobile Modules, Available states in magenta');
% Hexpm(Grid);Hexplot(I,1);Hexplot(S,1,'m');

Function 25: MDP_State

% S=MDP_State(I,G,p)

%

% Given

% I: initial configuration

% G: goal configuration

% p: p=1 the result will be plotted

%

% Find

% all possible states

%

% Notes:

% configurations should be provided with zero padded on all sides allowing module move-

ments

%

 Appendices 212

% Example

% I = [0 0 0 0 0

% 1 0 0 0 0

% 1 1 1 1 1

% 0 0 0 0 0];

% G = [1 1 0 0 0

% 1 0 1 0 0

% 0 1 1 0 0

% 0 0 0 0 0];

% %Zero Padding

% I = HexZP(I);

% G = HexZP(G);

% S=MDP_State(I,G,p)

function S=MDP_State(varargin)

I = varargin{1};

G = varargin{2};

p = 0;

if length(varargin) > 2

 p = cell2mat(varargin(3));

end

% We have to consider the location of the current ME as available states

% Therefore, we will remove them from the current configuration

[V,E] = FindVE(I, G);

ME = Mobile(E,I);

I = I - ME;

[X Y] = find(I); %find all modules in the configuration

s = size(X,1); %number of modules in the configuration

S = zeros(size(I)); %initially assume there are no states

for i=1:s

 x = X(i);y = Y(i); %Start with one node, check if others are connected to it

 N = HexNeM(x,y); %find neighbor modules

 for k=1:6 %check if this neighbor can be a state

 nx = N(k,1);ny = N(k,2);

 if I(nx,ny)==0

 S(nx,ny)=1;

 end

 end

end

% Test if the location can be filled (Collision Avoidance)

% If there are more than 3 neighbors for an empty location

% that location can not be considered as a state since it

% can not be filled

[X Y] = find(S);

s=size(X,1);

for i = 1 : s

 [N] = HexNeM(X(i),Y(i)); %find the neighbors

 n=0; %number of occupied neighbors

 for j = 1:6

 if (I(N(j,1),N(j,2))==1)

 n=n+1;

 end

 end

 if n>3

 S(X(i),Y(i))=0;

 end

end

if p==1

 Grid = ones(size(I));

 figure;hold on

 subplot(1,2,1);axis off;title('Module Configuration, ME in

green');Hexpm(Grid);Hexplot(I,1);Hexplot(ME,1,'g');

 subplot(1,2,2);axis off;title('Available

States');Hexpm(Grid);Hexplot(I,1);Hexplot(S,1,'m');

end

 Appendices 213

end

Function 26: MDP_VI

% U=MDP_VI(I,G,s1,s2,g,p)

%

% Given

% I: Initial Configuration

% G: Goal Configuration

% s1: Mobile Electron

% s2: Potential Void

% g: Discount Factor

% p: Plotting The Result

%

% Find

% U: Utility Function, using Value Iteration (VI) technique

%

% Notes:

% configurations should be provided double zero padded on all sides allowing module move-

ments

% if g is not entered the default value of 0.7 is used

% if p is not entered the result will not be plotted

% if p = 1, the result will be plotted

%

% Example

% clear all;clc

% I = [0 0 0 0 0

% 1 0 0 0 0

% 1 1 1 1 1

% 0 0 0 0 0];

% G = [1 1 0 0 0

% 1 0 1 0 0

% 0 1 1 0 0

% 0 0 0 0 0];

% %Double Zero Padding

% I = HexZP(I);I = HexZP(I);

% G = HexZP(G);G = HexZP(G);

% ME = [5,3];

% PV = [3,3];

% U = MDP_VI(I,G,ME,PV,0.7,1)

function U=MDP_VI(varargin)

I = varargin{1};

G = varargin{2};

ME = varargin{3};

PV = varargin{4};

g = 0.7;

p = 0;

if length(varargin) > 4

 g = cell2mat(varargin(5));

end

if length(varargin) > 5

 p = cell2mat(varargin(6));

end

S = MDP_State(I,G);

R = MDP_Reward(I,G,ME,PV);

U = zeros(size(I)); %Initial Values

[X Y] = find(S);

i=1;D=1;

while (D(i)>0.001)

 U_Old = U;

 for j=1:size(X,1)

 x=X(j);y=Y(j);

 a = MDP_Action(I,G,[x y]);

 if (size(a,1)>1), A = [U(a(1,1),a(1,2)) U(a(2,1),a(2,2))]; end

 if (size(a,1)>2), A = [U(a(1,1),a(1,2)) U(a(2,1),a(2,2)) U(a(3,1),a(3,2))];

end

 Appendices 214

 U(x,y)=R(x,y)+g*max(A);

 end

 i = i+1; %Number of Iterations

 D(i) = abs(max(max(U - U_Old))); %Converges

 if (i>500) %Stop After 500 Iteration, even if error is still

big

 D(i)=0;

 end

end

% Normalize the values

U = U/max(max(U));

if p==1

 %Remove the first element (Was set to 1 manually)

 D = D(2:size(D,2));

 plot(D);xlabel('Number of Iteration');ylabel('Maximum Error');title('State Conver-

gence');

end

end

Function 27: Mobile

% ME = Mobile(E,S)

%

% Given

% E: an electron

% S: a configuration state

%

% Find

% ME: mobile electrons

function ME = Mobile(E,S)

 ME = zeros(size(E));

 % Test Mobility (Collision Avoidance)

 [X Y] = find(E);

 s=size(X,1);

 for i = 1 : s

 [N] = HexNeM(X(i),Y(i)); %find the neighbors

 n=0; %number of occupied neighbors

 for j = 1:6

 if (S(N(j,1),N(j,2))==1)

 n=n+1;

 end

 end

 if n<4

 ME(X(i),Y(i))=1;

 end

 end

 % Test Connectivity

 [X Y] = find(ME);

 s=size(X,1);

 for i = 1 : s

 I_test = S;

 I_test(X(i),Y(i))=0;

 C = HexCGT(I_test);

 if C~=1

 ME(X(i),Y(i))=0;

 end

 end

end

Function 28: PV

% PV = PV(I,G)

%

 Appendices 215

% Given:

% I: Initial Configuration

% G: Goal Configuration

%

% Find

% PV: Potentisl voids

function PV = PV(I,G)

[V,E] = FindVE(I, G);

ME = Mobile(E,I);

C = I-ME; %remove mobile electrons to find immobile modules

[X Y] = find(V); %find all voids

PV = zeros(size(V)); %initially assume there is no PV

s = size(X,1);

for i = 1 : s %check all voids

 N = HexNeM(X(i),Y(i));

 for j = 1:6 %check their 6 sides

 if C(N(j,1),N(j,2))==1

 PV(X(i),Y(i))=1;

 end

 end

end

end

Function 29: Sideplot

% Sideplot (A)

%

% Given

% A: location + side forces (Check below notes)

%

% Find

% Plots side forces

%

% Notes:

% Sideplot(A), plots the side forces of A

% A: Side Forces (Energized magnets: Mobile and neighbor)

% Note that all magnets are normally off

% Mobile modules have -ve field (both sides of the fixed joint, electron)

% Neighbor module should have a +ve (attraction) and -ve (repulsion)

% Side 1 is between joints 1,2 and so on.

% ex, A = [2 0 1 2; %sides 1 and 2 of mobile (2,0) are -ve

% 2 1 3 4] %side 3 of neighbor (2,1) is +ve and 4 -ve

function Sideplot(A)

hold on;

% Plot the sides

[Vx,Vy]=Hex([A(1,1),A(1,2)]);

a = A(1,3);b = A(1,3)+1;if (b==7) b=1; end

x = (Vx(a)+Vx(b))/2;y = (Vy(a)+Vy(b))/2;

plot (x,y,'b^','MarkerSize',5,'LineWidth',7);

a = A(1,4);b = A(1,4)+1;if (b==7) b=1; end

x = (Vx(a)+Vx(b))/2;y = (Vy(a)+Vy(b))/2;

plot (x,y,'b^','MarkerSize',5,'LineWidth',7);

[Vx,Vy]=Hex([A(2,1),A(2,2)]);

a = A(2,3);b = A(2,3)+1;if (b==7) b=1; end

x = (Vx(a)+Vx(b))/2;y = (Vy(a)+Vy(b))/2;

plot (x,y,'r+','MarkerSize',15,'LineWidth',5);

a = A(2,4);b = A(2,4)+1;if (b==7) b=1; end

x = (Vx(a)+Vx(b))/2;y = (Vy(a)+Vy(b))/2;

plot (x,y,'b^','MarkerSize',5,'LineWidth',7);

end

 Appendices 216

Test 1: TestAll_P01

% This code is an example to illustrate parallel reconfiguration planning

clear all;clc

% Initial Configuration

I = [0 0 0 0 0

 1 0 0 0 0

 1 1 1 1 1];

% Goal Configuration

G = [1 1 0 0 0

 1 0 1 0 0

 0 1 1 0 0];

%Double Zero Padding

I = HexZP(I);I = HexZP(I);I = HexZP(I);

G = HexZP(G);G = HexZP(G);G = HexZP(G);

%Simulation Figure

Grid = ones(size(I));

scrsz = get(0,'ScreenSize');

figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3)

scrsz(4)]);hold on

subplot(1,2,1);axis off;title('Initial Configuration');Hexpm(Grid);Hexplot(I,1);

subplot(1,2,2);axis off;title('Goal Configuration');Hexpm(Grid);Hexplot(G,1);

pause();[V E] = FindVE(I,G); %Find all voids and electrons

subplot(1,2,1);axis off;title('Electrons');Hexpm(Grid);Hexplot(E,1,'g');

subplot(1,2,2);axis off;title('Voids');Hexpm(Grid);Hexplot(V,1,'r');

pause(1);

C = I; %initialize the current configuration

t=0;

while (isequal(C,G)<1)

 t=t+1;

 %Start Reconfiguration

 [Joint, Side, S]=HexAll_P(C,G); %Move from current to goal

 s = size (Joint,1); %Number of parallel movements

 %Plotting the motion

 St=MDP_State(C,G);

 clf;

 subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]);

 Hexpm(Grid);Hexplot(C,1);

 subplot(1,2,1);axis off;title('Module Configuration, Available States and Actua-

tion');

 Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m');

 for i=1:s %Move the MEs

 Fj=Joint(i,:);

 Fs=[Side(i,[1 2 3 4]);Side(i,[5 6 7 8])];

 s1 = S(i,[1 2]); %current location

 s2 = S(i,[3 4]); %next location

 s3 = S(i,[5 6]); %desired location

 if (sum(sum(Fs))==0)||(sum(Fj)==0)

 disp('There is no more possible actuation');break;

 end

 %Plot the ME and its PV pluse forces

 ME = zeros(size(I));ME(s1(1,1),s1(1,2))=1;

 PoV = zeros(size(I));PoV(s3(1,1),s3(1,2))=1;

 Hexplot(ME,1,'g');Hexplot(PoV,1,'r');Jointplot(Fj);Sideplot(Fs);

 C = Hexmove(C,Fj,Fs,0); %Update the configuration

 end

pause(0.5)

end

t=t+1;St=MDP_State(C,G);clf;

subplot(1,2,1);axis off;title('Module Configuration, Available States');

Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m');

subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]);

 Appendices 217

Hexpm(Grid);Hexplot(C,1);

Test 2: Test_All_P02

% This code is an example to illustrate parallel reconfiguration planning

clear all;clc

% Initial Configuration

I = [1 1 0 0 0

 1 0 1 0 0

 0 1 1 0 0];

% Goal Configuration

G = [0 0 0 0 0

 1 0 0 0 0

 1 1 1 1 1];

 %Double Zero Padding

I = HexZP(I);I = HexZP(I);I = HexZP(I);

G = HexZP(G);G = HexZP(G);G = HexZP(G);

%Simulation Figure

Grid = ones(size(I));

scrsz = get(0,'ScreenSize');

%figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3)

scrsz(4)]);hold on

subplot(1,2,1);axis off;title('Initial Configuration');Hexpm(Grid);Hexplot(I,1);

subplot(1,2,2);axis off;title('Goal Configuration');Hexpm(Grid);Hexplot(G,1);

pause();[V E] = FindVE(I,G); %Find all voids and electrons

subplot(1,2,1);axis off;title('Electrons');Hexpm(Grid);Hexplot(E,1,'g');

subplot(1,2,2);axis off;title('Voids');Hexpm(Grid);Hexplot(V,1,'r');

pause(1);

C = I; %initialize the current configuration

t=0;

while (isequal(C,G)<1)

 t=t+1;

 %Start Reconfiguration

 [Joint, Side, S]=HexAll_P(C,G); %Move from current to goal

 s = size (Joint,1); %Number of parallel movements

 %Plotting the motion

 St=MDP_State(C,G);

 clf;

 subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]);

 Hexpm(Grid);Hexplot(C,1);

 subplot(1,2,1);axis off;title('Module Configuration, Available States and Actua-

tion');

 Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m');

 for i=1:s %Move the MEs

 Fj=Joint(i,:);

 Fs=[Side(i,[1 2 3 4]);Side(i,[5 6 7 8])];

 s1 = S(i,[1 2]); %current location

 s2 = S(i,[3 4]); %next location

 s3 = S(i,[5 6]); %desired location

 if (sum(sum(Fs))==0)||(sum(Fj)==0)

 disp('There is no more possible actuation');break;

 end

 %Plot the ME and its PV pluse forces

 ME = zeros(size(I));ME(s1(1,1),s1(1,2))=1;

 PoV = zeros(size(I));PoV(s3(1,1),s3(1,2))=1;

 Hexplot(ME,1,'g');Hexplot(PoV,1,'r');Jointplot(Fj);Sideplot(Fs);

 C = Hexmove(C,Fj,Fs,0); %Update the configuration

 end

pause(0.5)

end

t=t+1;St=MDP_State(C,G);clf;

 Appendices 218

subplot(1,2,1);axis off;title('Module Configuration, Available States');

Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m');

subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]);

Hexpm(Grid);Hexplot(C,1);

Test 3: Test_All_S01

% This code is an example to illustrate serial reconfiguration planning

clear all;clc

% Initial Configuration

I = [0 0 0 0 0

 1 0 0 0 0

 1 1 1 1 1];

% Goal Configuration

G = [1 1 0 0 0

 1 0 1 0 0

 0 1 1 0 0];

%Double Zero Padding

I = HexZP(I);I = HexZP(I);I = HexZP(I);

G = HexZP(G);G = HexZP(G);G = HexZP(G);

%Simulation Figure

Grid = ones(size(I));

scrsz = get(0,'ScreenSize');

figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3)

scrsz(4)]);hold on

subplot(1,2,1);axis off;title('Initial Configuration');Hexpm(Grid);Hexplot(I,1);

subplot(1,2,2);axis off;title('Goal Configuration');Hexpm(Grid);Hexplot(G,1);

pause();[V E] = FindVE(I,G); %Find all voids and electrons

subplot(1,2,1);axis off;title('Electrons');Hexpm(Grid);Hexplot(E,1,'g');

subplot(1,2,2);axis off;title('Voids');Hexpm(Grid);Hexplot(V,1,'r');

pause(1);

C = I; %initialize the current configuration

t=0;

while (isequal(C,G)<1)

 t=t+1;

 %Start Reconfiguration

 [Joint, Side, S]=HexAll_S(C,G); %Move from current to goal

 %Plotting the motion

 St=MDP_State(C,G);

 clf;

 subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]);

 Hexpm(Grid);Hexplot(C,1);

 subplot(1,2,1);axis off;title('Module Configuration, Available States and Actua-

tion');

 Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m');

 Fj=Joint(1,:);

 Fs=[Side(1,[1 2 3 4]);Side(1,[5 6 7 8])];

 s1 = S(1,[1 2]); %current location

 s2 = S(1,[3 4]); %next location

 s3 = S(1,[5 6]); %desired location

 if (sum(sum(Fs))==0)||(sum(Fj)==0)

 disp('There is no more possible actuation');break;

 end

 %Plot the ME and its PV pluse forces

 ME = zeros(size(I));ME(s1(1,1),s1(1,2))=1;

 PoV = zeros(size(I));PoV(s3(1,1),s3(1,2))=1;

 Hexplot(ME,1,'g');Hexplot(PoV,1,'r');Jointplot(Fj);Sideplot(Fs);

 C = Hexmove(C,Fj,Fs,0); %Update the configuration

 pause(10)

end

t=t+1;St=MDP_State(C,G);clf;

subplot(1,2,1);axis off;title('Module Configuration, Available States');

 Appendices 219

Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m');

subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]);

Hexpm(Grid);Hexplot(C,1);

Test 4: Test_All_S02

% This code is an example to illustrate serial reconfiguration planning

clear all;clc

% Initial Configuration

I = [1 1 1 1 0

 1 1 1 1 0

 1 1 1 1 0

 0 0 0 0 0

 0 0 0 0 0];

% Goal Configuration

G = [0 0 0 0 0

 1 1 1 1 0

 1 1 1 1 0

 1 0 0 1 0

 1 0 0 1 0];

%Double Zero Padding

I = HexZP(I);I = HexZP(I);I = HexZP(I);

G = HexZP(G);G = HexZP(G);G = HexZP(G);

%Simulation Figure

Grid = ones(size(I));

scrsz = get(0,'ScreenSize');

figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3)

scrsz(4)]);hold on

subplot(1,2,1);axis off;title('Initial Configuration');Hexpm(Grid);Hexplot(I,1);

subplot(1,2,2);axis off;title('Goal Configuration');Hexpm(Grid);Hexplot(G,1);

pause();[V E] = FindVE(I,G); %Find all voids and electrons

subplot(1,2,1);axis off;title('Electrons');Hexpm(Grid);Hexplot(E,1,'g');

subplot(1,2,2);axis off;title('Voids');Hexpm(Grid);Hexplot(V,1,'r');

pause(10);

C = I; %initialize the current configuration

t=0;

while (isequal(C,G)<1)

 t=t+1;

 %Start Reconfiguration

 [Joint, Side, S]=HexAll_S(C,G); %Move from current to goal

 %Plotting the motion

 St=MDP_State(C,G);

 clf;

 subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]);

 Hexpm(Grid);Hexplot(C,1);

 subplot(1,2,1);axis off;title('Module Configuration, Available States and Actua-

tion');

 Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m');

 Fj=Joint(1,:);

 Fs=[Side(1,[1 2 3 4]);Side(1,[5 6 7 8])];

 s1 = S(1,[1 2]); %current location

 s2 = S(1,[3 4]); %next location

 s3 = S(1,[5 6]); %desired location

 if (sum(sum(Fs))==0)||(sum(Fj)==0)

 disp('There is no more possible actuation');break;

 end

 %Plot the ME and its PV pluse forces

 ME = zeros(size(I));ME(s1(1,1),s1(1,2))=1;

 PoV = zeros(size(I));PoV(s3(1,1),s3(1,2))=1;

 Hexplot(ME,1,'g');Hexplot(PoV,1,'r');Jointplot(Fj);Sideplot(Fs);

 C = Hexmove(C,Fj,Fs,0); %Update the configuration

 Appendices 220

 pause(1)

end

t=t+1;St=MDP_State(C,G);clf;

subplot(1,2,1);axis off;title('Module Configuration, Available States');

Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m');

subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]);

Hexpm(Grid);Hexplot(C,1);

Test 5: Test_CG

% This code is an example to illustrate the connectivity constraint test

clear all;clc;close all;

% Always keep zeros around the matrices to allow module movement

I = [0 0 0 0 0 0 0 0

 0 1 1 1 1 0 0 0

 0 1 0 1 0 0 1 0

 0 1 0 1 0 1 1 0

 0 0 1 1 1 1 1 0

 0 0 0 0 0 0 0 0];

%Plot the connectivity graph for the current configuration

HexCG(I)

%Let's do the connectivity test for all modules (assuming all modules to be electrons)

E = I;

%Find mobile electrons

ME = Mobile(E,I);

Grid = ones(size(I));

figure;axis off;hold on;Hexpm(Grid);Hexplot(I,1,'r');Hexplot(ME,1,'g');

Test 6: Test_Constraints1

% Example of a collision avoidance constraint

% Background Grid

Grid = [1 0 0 0 0 0 0;

 1 1 1 0 0 0 0;

 1 1 1 1 1 0 0;

 1 1 1 1 1 1 1;

 1 1 1 1 1 1 1;

 1 1 1 1 1 1 1;

 0 1 1 1 1 1 1;

 0 0 0 1 1 1 1;

 0 0 0 0 0 1 1;

 0 0 0 0 0 0 0;];

Hexpm(Grid);

% Immobile Config

IC = [0 0 0 0 0 0 0;

 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0;

 0 0 1 1 0 0 0;

 0 0 1 0 1 0 0;

 0 0 0 1 0 0 0;

 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0;];

Hexplot(IC,1);

% Fixed Module

[Vx,Vy] = Hex([2,4]);fill (Vx,Vy,'b');

% Mobile Module

[Vx,Vy] = Hex([4,5]);fill (Vx,Vy,'g');

% Plot properties

 Appendices 221

axis off;

title('Example of a constrained motion');

Test 7: Test_Constraints2

% Example of a connectivity constraint

% Background Grid
Grid = [1 0 0 0 0 0 0;
 1 1 1 0 0 0 0;
 1 1 1 1 1 0 0;
 1 1 1 1 1 1 1;
 1 1 1 1 1 1 1;
 1 1 1 1 1 1 1;
 0 1 1 1 1 1 1;
 0 0 0 1 1 1 1;
 0 0 0 0 0 1 1;
 0 0 0 0 0 0 0;];
Hexpm(Grid);

% Immobile Config
IC = [0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;
 0 0 1 1 0 0 0;
 0 0 1 0 1 0 0;
 0 0 0 1 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;];
Hexplot(IC,1);

% Fixed Module
[Vx,Vy] = Hex([2,4]);fill (Vx,Vy,'b');

% Mobile Module
[Vx,Vy] = Hex([2,6]);fill (Vx,Vy,'g');

% Plot properties
axis off;
title('Example of a constrained motion');

Test 8: Test_Immobile

% Example of an Immobile Configuration

% Background Grid
Grid = [1 0 0 0 0 0 0;
 1 1 1 0 0 0 0;
 1 1 1 1 1 0 0;
 1 1 1 1 1 1 1;
 1 1 1 1 1 1 1;
 1 1 1 1 1 1 1;
 1 1 1 1 1 1 1;
 1 1 1 1 1 1 1;
 1 1 1 1 1 1 1;
 1 1 1 1 1 1 1;
 0 1 1 1 1 1 1;
 0 0 0 1 1 1 1;
 0 0 0 0 0 1 1;
 0 0 0 0 0 0 0;]
Hexpm(Grid);

% Immobile Config
IC = [0 0 0 0 0 0 0;

 Appendices 222

 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;
 0 1 1 1 0 0 0;
 0 1 0 0 1 0 0;
 0 0 1 1 0 1 0;
 0 0 0 0 0 1 0;
 0 0 0 1 1 1 0;
 0 0 0 1 0 0 0;
 0 0 0 1 0 0 0;
 0 0 0 1 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;]
Hexplot(IC,1);

% Fixed Module
[Vx,Vy] = Hex([3,3]);fill (Vx,Vy,'b');

% Plot properties
axis off;
title('Example of an immobile configuration');

Test 9: Test_IR_Simulation

% Illustrate the modulated IR transceiver signal

clear all;clc
a=0;
data=[1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0];
for i=1:20001 %Move the MEs
 if a==0
 P(i)=0;a=1;
 else
 P(i)=1;a=0;
 end
 I = round(i/1000);
 D(i) = data(I+1);
 S(i) = P(i).*D(i);
end

figure;
subplot(3,1,1);plot(P);title('38kHz Pulse');axis([0 20000 -1 2]);axis off;
subplot(3,1,2);plot(D);title('Serial Data');axis([0 20000 -1 2]);axis off;
subplot(3,1,3);plot(S);title('Modulated Pulse Being Transmitted');axis([0 20000 -1

2]);axis off;

Test 10: Test_Layer5

% To draw a module an its neighbors required for actuation: layer 5

clear all;clc;

C = [0 1 0 0 0

 1 1 1 1 0

 0 1 1 1 0

 0 1 1 1 1

 0 0 0 1 0];

M = zeros(size(C));

M(3,3)=1;

figure;hold on;axis off;

Hexpm(C);Hexplot(M,1);

Test 11: Test_Localization

% Localization example discussed in thesis

 Appendices 223

% Background Grid

Grid = [1 0 0 0 0 0 0 0;

 1 1 1 0 0 0 0 0;

 1 1 1 1 1 0 0 0;

 1 1 1 1 1 1 1 0;

 0 1 1 1 1 1 1 1;

 0 0 0 1 1 1 1 1;

 0 0 0 0 0 1 1 1;

 0 0 0 0 0 0 0 1;];

Hexpm(Grid);

I = [0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0

 0 0 1 1 1 1 1 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0];

Hexplot (I,1);

 % Fixed Module

[Vx,Vy] = Hex([3,3]);fill (Vx,Vy,'b');

% Plot properties

axis off;

%title('Localization');

Test 12: Test_MDP

% Test of MDP: Next Recommended Location

clear all;clc
I = [0 0 0 0 0
 1 0 0 0 0
 1 1 1 1 1
 0 0 0 0 0];

G = [1 1 0 0 0
 1 0 1 0 0
 0 1 1 0 0
 0 0 0 0 0];
%Double Zero Padding
I = HexZP(I);I = HexZP(I);
G = HexZP(G);G = HexZP(G);

s1 = [5,3];
s2 = [3,3];

while sum(abs(s1-s2))>0
 s1 = MDP_NRL(I,G,s1,s2,1);
end

Test 13: Test_MDP_Convergence

% This code is developed to evaluate MDP Convergence
clear all;clc;
g = 0:0.001:1;
figure;hold on;

c = 0.1; %e/Rmax
N = log10(2./(c.*(1-g)))./log10(1./g);
plot (g,N,'b')

c = 0.01; %e/Rmax
N = log10(2./(c.*(1-g)))./log10(1./g);

 Appendices 224

plot (g,N,'c')

c = 0.001; %e/Rmax
N = log10(2./(c.*(1-g)))./log10(1./g);
plot (g,N,'g')

c = 0.0001; %e/Rmax
N = log10(2./(c.*(1-g)))./log10(1./g);
plot (g,N,'r')

axis([0 1 0 1000]);xlabel('Discount Factor');ylabel('Number of Iteration');

Test 14: Test_Simulator

% An example to test the simulator

clear all;clc;close all;
% Always keep zeros around the matrices to allow module movement
I = [0 0 0 0 0 0
 0 0 0 0 0 0
 1 1 1 1 1 1];

G = [0 0 0 1 1 0
 0 0 0 1 0 1
 0 0 0 0 1 1];

figure(1);clf;
Grid = ones(size(I));
subplot(1,2,1);axis off;hold on;title('Initial State (Configuration) of the Mod-

ules');Hexpm(Grid);Hexplot(I,1);
subplot(1,2,2);axis off;hold on;title('Desired Goal State (Configuration) of the Mod-

ules');Hexpm(Grid);Hexplot(G,1);pause();

% First Move
I = I;
Fj = [0 0 3];
Fs = [0 0 2 3;
 1 0 1 6];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [0 1 4];
Fs = [0 1 3 4;
 1 0 2 1];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [1 1 4];
Fs = [1 1 3 4;
 2 0 2 1];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [2 1 4];
Fs = [2 1 3 4;
 3 0 2 1];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [3 1 4];
Fs = [3 1 3 4;
 4 0 2 1];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [4 1 4];
Fs = [4 1 3 4;

 Appendices 225

 5 0 2 1];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [1 0 3];
Fs = [1 0 2 3;
 2 0 1 6];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [1 1 4];
Fs = [1 1 3 4;
 2 0 2 1];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [2 1 4];
Fs = [2 1 3 4;
 3 0 2 1];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [3 1 4];
Fs = [3 1 3 4;
 4 0 2 1];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [4 1 3];
Fs = [4 1 2 3;
 5 1 1 6];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [2 0 3];
Fs = [2 0 2 3;
 3 0 1 6];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [2 1 4];
Fs = [2 1 3 4;
 3 0 2 1];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [3 0 2];
Fs = [3 0 1 2;
 3 1 6 5];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [2 1 3];
Fs = [2 1 2 3;
 3 1 1 6];
G = Hexmove(I,Fj,Fs,1);
% Next Move
I = G;
Fj = [2 2 4];
Fs = [2 2 3 4;
 3 1 2 1];
G = Hexmove(I,Fj,Fs,1);

Test 15: Test_VP

% Void Propagation example discussed in thesis
% The actual VP algorithm is accomplished in the lower levels
% through the use of microcontrollers installed on the modules.

 Appendices 226

clear all;clc;
I = [0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0
 0 0 1 1 1 1 1 0
 0 0 0 0 0 0 0 0];

G = [0 0 0 0 0 0 0 0
 0 0 1 1 0 0 0 0
 0 0 1 0 1 0 0 0
 0 0 0 1 1 0 0 0
 0 0 0 0 0 0 0 0];

[V E] = FindVE(I,G); %Find all voids and electrons
PV = PV(I,G); %Find potential voids
ME = Mobile(E,I); %Find mobile electrons

% plot the results
Grid = ones(size(I));
clf;
% subplot (2,2,1);axis off;Hexpm(Grid);Hexplot(I,1);title('Current Configuration');
% subplot (2,2,2);axis off;Hexpm(Grid);Hexplot(G,1);title('Goal Configuration');
% subplot (2,2,3);axis off;Hexpm(Grid);Hexplot(E,1);title('Electrons - Mobile electrons

in green');Hexplot(ME,1,'g');
% subplot (2,2,4);axis off;Hexpm(Grid);Hexplot(V,1);title('Voids - Potential Voids in

green');Hexplot(PV,1,'g');
% plot the connectivity graph
%HexCG(I);
clf;Hexpm(Grid);axis off;Hexplot(I,1);Hexplot(ME,1,'g');Hexplot(PV,1,'c');

 Vita 227

VITA

Hossein Sadjadi was born on August 14, 1980, in Tehran, Iran. Having finished

the primary and secondary schools in Iran, he moved to the United Arab Emirates (UAE)

in 2001 where he started a Bachelor of Science degree in electrical and electronics engi-

neering at the American University of Sharjah (AUS). Mr. Sadjadi was ranked the first in

the final Comprehensive Assessment Examination (CAE) of the department and graduat-

ed with honor (Cum Laude) in 2005. He then joined Odasco Automation where he acted

as a senior automation engineer for two years and managed to successfully implement

several industrial projects.

Mr. Sadjadi began a Master of Scienece degree in Mechatronics at AUS in 2006

and awarded the Master of Science degree in 2009 with a 4.0 GPA. Since November,

2006 he has been acting as a senior Mechatronics laboratory specialist at AUS.

