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ABSTRACT 

This thesis primarily covers the design and implementation of a planar hexagonal 

Modular Self-Reconfigurable Robotic System (MSRRS) along with the construction of 

its reconfiguration path planner and control algorithm. Both platform and algorithm are 

designed based on a multilayer approach where each layer is dedicated to perform a spe-

cific task; in other words, the design itself is considered to be modular. In the first part a 

universal module is carefully designed to maintain certain criteria that seem to be in line 

with the common goals of this promising field including homogeneity, cost-effectiveness, 

fast actuation and quick and strong connections. In the second part, a reconfiguration path 

planner and a control algorithm is developed to determine the required sequence of indi-

vidual module movements that transforms the shape of the system from an arbitrary ini-

tial configuration to a desired goal configuration in an optimal manner while enforcing 

several constraints and taking into account the kinematic model of the system.  

The shape of the physical platform was inspired form natural structures such as 

bees’ nest and crystal molecules, where homogeneous hexagonal modules are capable of 

forming variety of structures. Electromagnets installed on six sides serve as the required 

actuating force providing fast and cost effective motion for the module. In this case, each 

module is not able to perform any motion alone; however, a combination of two or more 

modules makes the motion possible. Moreover, pull type solenoids located on six corners 

of the module provide quick and strong inter-module connections.  Although the imple-



 

iv 

mented working prototype is both large and restricted to a planar geometry, it is designed 

such that its hardware and software can be scaled up in the number of units and down in 

unit size; similarly, the platform has the potential to be extended for 3D applications. The 

software infrastructure of this platform is designed in a way that different hierarchies for 

distributed control and communication can be implemented.  

The path planner is designed to minimize the number of module movements dur-

ing reconfiguration while enforcing collision avoidance and connectivity constraints. The 

algorithm is based on a hierarchical multilayer approach, where upper layers decompose 

the problem into sub-problems solvable by lower layers. The core of the algorithm relies 

on a heuristic function and a Markov Decision Process (MDP) optimization to generate a 

centralized near-optimal reconfiguration path planner and a control algorithm for a lat-

tice, homogenous, rigid, planar hexagonal MSRRS. In this approach the connectivity test 

and MDP formulation require a centralized stage, yet the scalability issues required to 

move towards a truly decentralized approach are discussed in this thesis as well. 

Among several novel approaches incorporated in this system, multilayer nature of 

both hardware and software design provides openness, flexibility and ease of modifica-

tion or adaptation for other platforms. In this approach each layer is dedicated to perform 

a specific task and can be modified or enhanced separately while keeping the remaining 

layers untouched. 
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   Chapter 1 

 1 Introduction 

 

This thesis primarily aims to explain the physical implementation of HexBot, a 

two dimensional Modular Self-Reconfigurable Robotic System (MSRRS) built in the 

AUS Mechatronics Center, along with its developed reconfiguration planning and control 

algorithm. The idea behind the proposed design both for the platform and the algorithm 

will be clearly addressed in this thesis. 

1.1 Problem Statement 

The work includes the construction of a centralized near-optimal reconfiguration 

path planner and a control algorithm for a lattice, homogenous, rigid, planar hexagonal 

MSRRS in addition to the implementation of HexBot as a universal module for such an 

algorithm. 

To clarify and explain more details about the above statement regarding the pro-

posed algorithm and the implemented platform, this chapter will be continued by a brief 

background about MSRRS. Moreover, to position this work, next chapter will thoroughly 

explore similar related works. 
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1.2 Background 

1.2.1 Modular Self-Reconfigurable Robotic Systems (MSRRSs) 

A conventional robot with a fixed architecture is usually designed for a limited 

task and works in a particular environment. Therefore, it can no more perform well when 

either its task or environment is changed. On the contrary, MSRRSs gained popularity 

since their functionalities were no longer restricted to a specific task or a certain envi-

ronment. 

MSRRSs are aimed to mimic the infrastructural principle of life and matter, 

where every element is composed of its fundamental components such as cells or atoms. 

Although each fundamental component is quite simple in its shape, intelligence and etc, a 

huge combination of them can form a powerful and complex living creature or object. 

There are several examples of such formations in our real life. One given by (Bishop, et 

al., 2005), is the ribosome that seem to be built out of large numbers of simple compo-

nents. “This seems to occur when simple components self-organize via local interactions 

into more complex aggregates which, in turn, self-organize into larger aggregates and 

processes”. 

Likewise, MSRRS implement the same concept by being composed of several 

simple robotic modules where each module has the ability to move around its neighbor 

modules to change its location using its primitive actuators, sensors, processors and 

communication. Therefore, the complete system would be capable of changing its shape 

autonomously and transforming into other shapes by moving its modules. Having such a 

feature, MSRRSs can reconfigure themselves to form structures that best fit the operating 

environment as well as the required functionality. 

Overall similarities of a living biological organism and a MSRRS are summarized 

by (Murata & Haruhisa, 2007), as follow: 

• Both consist of small components, living cells for the former and robotic modules 

for the latter 

• Communication among the components is achieved by the diffusion of chemical 

substances in the former and by the exchange of digital information through mod-

ule-to-module communication in the latter 
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• In both cases, the components cooperate with one another to adjust their configu-

ration to the environment 

• The mechanism of cooperation is embedded as the genomic information in the 

living cell and as a distributed program for each processor in the module 

In MSRRSs the main concept that needs to be heeded is the “global formation” of 

the entire system out of “local interactions” among its individual modules which requires 

the coordination of a very large number of modules with a high degree of freedom. 

As can be seen, the key feature of MSRRSs is versatility. For example, such a 

system composed of numerous small and simple modules can reconfigure itself to: 

• form a locomotion gait that best fits the existing terrain 

• avoid obstacles in highly constrained and unstructured environments 

• envelope objects for protection or recovery  

• form a manipulator that best fits the object needs to be handled 

• optimize the measurement of sensory information  

• grow structures such as bridges in times of emergency 

Significant technological advances are expected from MSRRSs. An illustrative 

example of a potential application of such a versatile system is as follow: “A modular 

platform could carry a collection of self-reconfiguring modules to a site. The modules 

could then grow into a tower, enter the site through a small opening (such as a window) 

and reconfigure to survey the site. The modules could carry different sensors and collabo-

rate to deploy these within their environment” (Butler & Rus, 2003). 

The main difference in the design of a MSRRS and a conventional robot is ex-

plained by (Murata & Haruhisa, 2007). Many successful conventional robots are de-

signed by mimicking the dynamical function of living creatures; however, MSRRSs are 

designed by mimicking the structural formation of living creatures. Conventional robots 

are designed top-down, i.e. based on the required performance and functionality, funda-

mental components are selected. In contrast, MSRRSs are designed down-top, i.e. initial 

module specifications will eventually determine the potential functionality of the com-

plete system. As a result, modules should be designed in a way that the overall system 

would deliver the desired functionality. The point is that a MSRRS “is not a robot de-
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signed to perform a specific task but a system that develops into various types of robots 

and executes a variety of tasks” (Murata & Haruhisa, 2007). 

Figure �1-1 illustrates an artist’s rendition of a space application of a MSRRS re-

configured in various morphologies for a variety of tasks (Zykov, Mytilinaios, Desnoyer, 

& Lipson, 2007). 

 

Figure �1-1 Artist's rendition of a space application 

However, as discussed by (Yim, Duff, & Roufas, 2000) and (Murata & Haruhisa, 

2007), it should be noted that the need of such versatile MSRRSs will be felt more in 

places where their unique functionalities are required; otherwise, fixed-architecture con-

ventional robots designed for a particular task always perform better than MSRRSs for 

the same task and are also more cost effective and efficient. 

As mentioned by (Yim, et al., 2007), there are few other types of robotic systems 

that share similar design and control challenges, but they are not MSRRSs. For example: 

• Modular Robots: Built form modules, but cannot reconfigure themselves  

• Self-assembling systems: Composed of multiple modules and can take different 

configuration, but cannot dynamically control or reconfigure their target shape 
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• Tensegrity robots: Composed of multiple interchangeable modules, but cannot 

self-reconfigure 

• Multi-robot cooperating systems such as swarm robots: Composed of multiple 

units, but do not typically connect to form more complex physical structures 

• Industrial robots with tool changers: Can be considered modular, but the degree to 

which they self-reconfigure is very limited 

Unfortunately, conventional robotics methods are not able to address the field of 

MSRRSs and realization of the potential applications for MSRRSs based on the latest 

mechatronics designs is still beyond the current state-of-the-art. 

Consequently, the growing field of MSRRS poses a distinct set of engineering 

challenges including: design of a universal module, implementation of the module in a 

relatively small scale, inter-module connections, communications, motion planning and 

control. 

These challenges are mainly classified into two categories:  

• Physical Implementation 

• Algorithmic Development 

Physical implementation focuses more on providing modules with a relatively 

small size, enough strength, robust inter-module connections, reliable communication, 

proper actuators, required processing power and of course a cost-effective solution which 

enables mass production of potentially numerous modules. 

Apart from physical implementation difficulties, algorithmic issues are even more 

challenging to deal with. Path planning for a large number of modules in a potentially pa-

rallel and distributed manner considering the limited functionality of each simple indi-

vidual module in terms of its computational and communicational power seems to be ex-

tremely demanding. 

1.2.2 Research Motivation and Challenges 

This section will address research motivation, potential application and challenges 

of the field of MSRRSs. 
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Motivation 

The unique self-reconfiguration capability of MSRRSs provides this new field of 

robotics with a bright and promising future. The main incentives behind the development 

and design of MSRRSs are summarized below and an example (Inou, Minami, & Koskei, 

2003) is illustrated in Figure �1-2: 

 

Figure �1-2 Self-Assembly and Self-Repair 

• Versatility – (Through: Morphology, Shape changing / shifting, Self-assembling / 

organizing): 

As discussed so far the diverse behavior of MSRRSs has been a fundamental mo-

tivation factor behind the ongoing research. 

The self-reconfiguration capability enables multi functionality for these robots by 

making them potentially more adaptive to new tasks and thus performing a wide range of 

activities. 

Not only that, but such a robotic system can also dynamically reconfigure itself 

and continue its mission in a changing, unstructured or even uncertain environment.  A 

MSRRS can switch between different locomotion gaits such as: crawling, walking, roll-

ing, climbing, jumping, shrinking, climbing stairs and etc. 

Examples of such versatility can be seen in several works done in this field such 

as: (Fukuda & Nakagawa, 1987), (Murata, Kurokawa, Yoshida, Tomita, & Kokaji, 1998), 

(Yim, Duff, & Roufas, 2000), (Castano, Shen, & Will, 2000) and (Murata & Haruhisa, 

2007). 

• Robustness – (Through: Self-Repair):  

Since the complete robotic system is basically composed of a large number of in-

terchangeable modules, a malfunctioning module can be autonomously replaced with 

another one. 

Self-repair was studied in several works such as: (Murata, Kurokawa, & Kokaji, 

1994), (Yoshida E. , Murata, Tomita, Kurokawa, & Kokaji, 1998), (Tomita, Murata, 
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Kurokawa, Yoshida, & Kokaji, 1999), (Fitch, Rus, & Vona, 2000) and (Murata, Yoshida, 

Kurokawa, Tomita, & Kokaji, 2001). An illustration is also depicted in Figure �1-2. 

• Self-Reproduction:  

The modularity of MSRRSs transforms them to potential candidates for self-

reproduction. Self-reproduction refers to the process where a system has the ability to au-

tonomously produce another functional system as explained by (Zykov, Mytilinaios, 

Adams, & Lipson, 2005). 

If the produced system is identical to the original system, this process is called 

self-replication. In self-replication, the produced copy can as well make a copy of itself 

and such a process can proceed till enough number of the required system is available. 

Such a process tends to duplicate the fundamental nature of biological life. 

As explained by (Zykov, Mytilinaios, Desnoyer, & Lipson, 2007) conventional 

robots achieve long-term sustainability and adaptation by the use of durable hardware and 

adaptive controllers which is totally in contrast with the way biological systems behave. 

In biological systems, long-term sustainability and evolutionary adaptation are provided 

through the process of self-repair and, ultimately, self-reproduction. 

• Scalability: 

Another interesting feature of MSRRs is scalability. Having modular building 

blocks, these robotic systems can be scaled relatively easily compared to conventional 

robots. Note that it is generally difficult to realize complete scalability in robotic systems, 

i.e. scalable mechanical platform, scalable distributed controller, scalable communication 

and etc. In practice there is normally a tradeoff between scalability and response time of 

systems; the more the number of modules, the less the speed of response. This issue is 

addressed in (White & Yim, 2007).  

• Cost-Effectiveness:  

MSRRS are eventually cost effective. Once a single module or few types of mod-

ules are designed, the overall system can be formed by mass-production of the same 

modules. Not only that, but once modules are mass produced, huge variety of robots can 

be built from them as well. 

As explained earlier in the in 1.2.1, it should be always noted that the need of 

such versatile MSRRSs will be felt more in places where their unique functionalities are 
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required; otherwise, fixed-architecture conventional robots designed for a particular task 

always perform better than MSRRSs for the same task and are also more cost effective 

and efficient. Moreover, the current mechatronics state-of-the-art is still not capable of 

realizing all these features and more research needs to be done in this growing field. 

Application 

The current ideas behind the applications for MSRRSs rely primarily on versatili-

ty and fault tolerance rather than quick or optimal response. Potential applications for 

such robotic systems are classified into three main categories: locomotion, manipulation 

and structure formation. 

• Locomotion: 

MSRRSs can form different locomotion gaits and move in various environments. 

The importance of such locomotion gaits becomes extremely attractive when the envi-

ronment is unstructured, uncertain or dynamically changing. 

Typical application in this category would be: Search and rescue missions (fire 

fighting, earthquake, etc.), Sea or space exploration (undersea mining, planetary search 

and data collections, etc.), Hazardous or remote environment operations (chemical plants, 

desert sites, etc.), Surveillance (monitoring, etc.), General locomotion (climbing stairs, 

obstacle avoidance, etc.) and Sensory network monitoring (Optimize the measurement of 

a sensory network, etc.) 

As an illustrative example, let’s look at “Space Exploration”, where perhaps the 

most attention is paid to MSRRS. (Yim, et al., 2007) describe the situation as follow: 

“Long-term space missions require a self-sustaining robotic ecology that can handle un-

foreseen situations and may require self-repair. Self-reconfigurable systems are better 

able to handle tasks that are not known a priori, especially compared to fixed-

configuration systems. In addition, space missions are highly volume and mass con-

strained. Sending a robot system that can reconfigure to achieve many tasks saves ship-

ping mass and volume as compared to sending many robots that each can accomplish one 

task.” 

• Manipulation: 
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As MSRRS are modular, they can change their shape to form the most suitable 

manipulator needed to handle objects. Such a feature enables forming several different 

manipulators from a collection of simple modules. 

• Structure Formation: 

There are also interests in using MSRRSs to form structures. As an example, a 

MSRRS can be utilized to form a physical 3D simulation of a part or a graph. Other 

examples are growing structures to form bridges or buttresses in times of emergency 

as explained by (Walter, Tsai, & Amato, 2005) or envelopment of objects, (such as 

satellites in space) for protection or recovery purposes. 

Challenges 

The fast growing field of MSRRS with unique capabilities poses many fundamen-

tal engineering challenges. Few of those challenges have been addressed and especially 

during the last decade, there has been a huge advancement in this field. Nevertheless, 

there still exist many more challenges to be overcome in future.  

These challenges are essentially classified in three categories. First is to design a 

physical platform composed of universal modules to achieve the goal of MSRRS in terms 

of small size, fast actuation, enough strength and etc, all at a reasonable cost. The second 

challenge refers to algorithmic issues regarding reconfiguration, locomotion, manipula-

tion, intelligence, control and etc, all in an optimal manner. The last category is to find 

suitable application for such systems where such capabilities can be utilized considering 

the overall performance of the system. These three challenges are explained briefly be-

low: 

• Physical Implementation 

Performance of a MSRRS depends directly on the design of its individual mod-

ules and the performance of each individual module in turn depends on a number of fac-

tors such as: space filling geometric shape, robustness to failure, physical strength, light 

weight, scalable in size and quantity, fast actuation, quick and reliable connection, low 

power consumption and cost-effectiveness. 

Consider designing a universal module, where the task and environment of a ver-

satile system composed of a huge number of it, are not known before hand during the de-

sign stage while all the above factors are meant to be taken into consideration. 
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So far, there have been several designs proposed by different researchers in this 

field and each tried to address some of the above factors. Though, there has not been a 

single design addressing all those factors efficiently. Those fundamental challenges are 

briefed as follow: 

o Shape: Different geometrical shapes have been proposed and tested which in-

cludes, spherical, cubical and hexagonal modules. The main criterion for the 

physical shape is to be able to fill the required structure densely with minimum 

gaps. However, in some designs these gaps are utilized to provide the complete 

system with a degree of flexibility. 

o Robustness: Modules shall be designed such that the overall system shall be able 

to recover itself from any kind of failure (mechanical, electrical, control, commu-

nication, power, etc). In other words, ideally modules shall be able to understand 

if there is a failure in them or their neighbors and the system shall be able to re-

move the faulty module when it is not responding.  

o Strength: Modules shall be made from materials that have enough strength to 

provide the system with the ability of performing different tasks. The down side 

of this is usually either the weight or the cost if a composite material is chosen. In 

general it is preferred to use material with high strength to weight ratio. 

o Weight: To increase the overall performance and efficiency of the system, every 

single part of the module shall be designed to be as light as possible so that the 

overall module can move with the minimum amount of energy. However, some-

times for stability purposes this condition is overlooked. 

o Scalability: (Scale down the size, scale up the quantity) Size: the smaller the 

modules the finer the resolution of the complete system. Some researchers are 

now thinking of MEMs to manufacture smaller modules. Quantity: Most of cur-

rent available systems are made of less than 100 modules which is just enough for 

the research purposes and demonstration of the conceptual design.  

o Actuation: It’s preferred to have fast actuation; however, most designs lack this 

factor which is considered as one of the most important properties of a module. 

Once the quantity of modules increased, the need of fast actuation will be felt 

more.  
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o Connection: Inter-module connection plays an important rule as well. Ideal con-

nections shall be strong and shall not require precise alignment between two 

modules. Moreover, the connection shall be performed quickly with minimum 

power consumption. Preferably, once modules are connected no more power shall 

be consumed to maintain the connection. 

o Power Consumption: Clearly, it is preferred to keep the system working for a 

long period and the overall power consumption of the system depends directly on 

the power consumption of its modules. Therefore, ideally, it is proffered to have 

very high efficiency for module actuators. 

o Cost-effectiveness: Since the goal is to make huge collection of modules, each 

single module should be implemented with a minimum cost. Mass production 

would hopefully reduce the overall cost of these systems, once an ideal universal 

module is designed. 

• Algorithmic Issues 

The unique nature of MSRRS requires the coordination of a large number of 

modules in an optimal manner in terms of time or energy. This leads to the development 

of challenging algorithms. The ultimate goal for these algorithms is to be decentralized 

(acting in a distributed manner), unsupervised (no global feedback) and architecture in-

dependent (can be applied to different systems). Furthermore, they shall incorporate pa-

rallel actuation and cooperative actions. The primarily requirements for such algorithms 

are summarized below: 

o Intelligence: A high level algorithm is required to specify the optimal configura-

tion or locomotion gait, based on the current state of the environment and as-

signed task. 

o Robustness: A high level algorithm is required to detect failure (in modules or 

the overall system) and rearrange to recover from failure and continue the mis-

sion. 

o Reconfiguration: A low level algorithm is required to plan paths for modules to 

transform the shape of the system from one configuration into another configura-

tion. 
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o Locomotion: A low level algorithm is required to provide motion for the com-

plete system. Reconfiguration algorithm may be used for this purpose while en-

forcing constraints for the intermediate configurations. 

Several methods proposed have not been very successful since they are computation-

ally very expensive for the current state-of-the-art. Therefore, hierarchical multilayer 

approaches (like the one in this work) are preferred to distribute the load into different 

levels. 

• Application 

Apart from the mentioned engineering challenges, there still one uncommon chal-

lenge remains which deals with an appropriate application for MSRRS. Many researchers 

in this field such as (Yim, et al., 2007) agree that identifying a truly demanding applica-

tion for MSRRSs where all capabilities and advantages are required is still a key chal-

lenge. 

1.3 Contribution 

The thesis in general contributes to the growing field of modular self-

reconfigurable robotic systems. Specific contributions of this thesis are mainly those ad-

dressing the first two sets of challenges: physical implementation and algorithmic devel-

opment. Listed below are the detailed contributions:  

• Platform 

1. Design of a universal two dimensional hexagonal module towards the promis-

ing goals of the field of MSRRS 

2. Homogeneity in all aspects, such as actuation, connection, computation and 

etc 

3. Fast actuation and motion with no moving parts through magnetic fields, in 

line with the ultimate goals and possible scalability issues in terms of size re-

duction and cost effectiveness.  

4. Quick and strong connection without requiring precise alignment 

5. Multilayered electronics circuits and possibility of replacement, modification 

or improvement for every individual layer separately 
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6. Experimental performance evaluation for the functionality of the entire plat-

form 

• Algorithm 

1. Development of a hierarchical multilayer framework for lattice based modular 

systems 

2. Optimization and path planning for minimum module movement  

3. Problem formulation as a Markov Decision Process (MDP) that can be easily 

adopted for other platforms 

4. Implementation of an optimal policy search method enforcing the required 

constraints using dynamic programming in MDP 

5. Multilayered nature of the framework, providing openness, flexibility and 

ease of modification and improvement for each individual layer to move to-

wards the essential goals 

6. Modeling, testing and simulation of the complete algorithm with access to 

every single function using Matlab 

1.4 Thesis Outline 

Having introduced the topic in this chapter, we will continue with a literature re-

view to look at related works in this field in chapter 2. This chapter will briefly review li-

terature in terms of available physical and algorithmic platforms for MSRRS. Next we 

move on to chapter 3 where we explain about our universal module implementation and 

our design criteria are explained. In chapter 4, the control algorithm will be introduced in 

details using a simple example that is followed throughout the chapter. Chapter 5 is dedi-

cated to several examples to illustrate and evaluate the performance of the proposed sys-

tem and continues with results and discussions. Finally, chapter 6 concludes the work by 

a summary along with the limitations and directions for future research. 
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   Chapter 2 

 2 Related Work 

 

There has been great advancement in the field of MSRRS over the past decade. 

Achieving the ultimate goal in this promising field has pushed researchers forward to at-

tempt overcoming the challenges by proposing several hardware implementations along 

with algorithmic developments. 

The overall performance of a MSRRS is a combination of hardware as well as 

software functionalities. Furthermore, the hardware and software performances are di-

rectly linked together; in other words, the physical platform imposes its possible actua-

tions and limitations to the algorithm and at the same time the algorithm imposes its 

computational and communicational needs to the platform. As a result optimization of the 

overall system depends heavily on the development and functionally of both hardware 

and software. 

The new field of MSRRS has been attracting significant attention during the re-

cent years and there has been incredible improvement in this filed. Therefore, this chapter 

is dedicated to review the literature in order to position and motivate this work. The chap-

ter will continue by introducing a brief history and the overall infrastructure of MSRRSs 

in terms of different methods implemented in hardware and software. Majority of suc-
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cessful implemented platforms will be introduced and several developed control algo-

rithms will be presented. 

2.1 History 

According to (Murata & Haruhisa, 2007), the basic idea of having systems com-

posed of homogeneous building blocks dates back to 1966 by (Neumann, 1966). Howev-

er, as a new trend in robotics, the idea of MSRRS was first introduced in 1987 by 

(Fukuda & Nakagawa, 1987) with CEBOT (cellular robot) where each module was in 

fact a complete mobile robot that could work individually and independent from other 

modules. The design was based on heterogeneous modules (locomotion module, rotation 

joint module, prismatic joint module and end-effecter module) and it was demonstrated 

that a system composed of all these individual modules is capable of performing several 

tasks.  

Later on the concept was geared towards simulating the behavior of living biolog-

ical organisms and modules became simpler (like atoms and cells) which could perform 

tasks only in groups and eventually leading towards MSRRSs. 

2.2 Choices for Physical Platform  

Clearly performance of the overall MSRRS depends directly on the design of its 

individual modules and so far there have several types of physical platforms proposed by 

different researchers in this field. Figure �2-1 illustrates the main characteristics of any 

physical platform and each of these categories is briefly explained. 

2.2.1 Architectural Topology 

MSRRSs are classified into four categories based on their architectural topolo-

gies: mobile, lattice, chain, and hybrid. Figure �2-2 illustrates the main topologies. 

In mobile architecture, modules have the ability to move in the environment inde-

pendently from other modules. A universal module in this category shall be equipped 

with all necessary components required for motion which is considered to be a disadvan-

tage. Modules can disconnect, move around and reconnect to each other and form a chain 

or lattice type of configuration. The best example for this class is the work done by 
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(Fukuda & Nakagawa, 1988) for CEBOT. Not all researchers agree that this type can be 

considered as a MSRRS since modules will be disconnected during the reconfiguration 

and therefore other categories gained more popularity. 

 

 

 

In lattice architecture modules are more similar to biological cells. In this configu-

ration, modules can fill discrete positions in a grid structure. This architecture offers: pa-

rallel and open-loop control, simple reconfiguration, high potential for scalability, and 

relatively easy collision detection (only locally). In general, the lattice configuration per-

forms very well for reconfiguration but not for locomotion. Many platforms have been 

designed based on lattice architecture, such as: (Murata, Kurokawa, Yoshida, Tomita, & 

Kokaji, 1998) for 3D Fracta robots, (Christensen & Stoy, 2006) for ATRON robots, 

(Goldstein, Mowry, Gibbons, Pillai, Rister, & Lee, 2006) for Catom robots, (Rus & 

Vona, 2001) for Crystaline robots, (Yoshida E. , Murata, Kurokawa, Tomita, & Kokaji, 

1998) for Fracta robots, (Unsal, Kiliccote, & Khosla, 1999) for I-Cube robots, (Gilpin, 

Kotay, & Rus, 2007) for Miche robots, (Yoshida E. , Murata, Kokaji, Kamimura, Tomita, 

Platforms 

Architectural Topology 

Homogeneity 

Rigidity 

Mobile 

Lattice 

Chain 

Hybrid 

Homogeneous 

Heterogene-
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Deformable 

Compressible 
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Circular 

Cubical 

Rhombic Dodecahedron 

Spherical 

Shape 

Figure �2-1 Basic Characteristics of Physical Platforms 
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& Kurokawa, 2002) for Mico Unit robots, (Kotay K. , Rus, Vona, & McGray, 1998) for 

Molecule robots, (Inou, Minami, & Koskei, 2003) for Pneumatic robots, (Klavins, 

Burden, & Napp, 2006) for Programmable Parts robots, (Hosokawa, et al., 1998) for RI-

KEN Vertical robots and (Suh, Homans, & Yim, 2002) for Telecube robots. Moreover, 

some researchers developed lattice based algorithms such as: (Walter, Tsai, & Amato, 

2002) for Hexagonal modules, (Fitch, Rus, & Vona, 2000) for Cubical modules, 

(Pamecha, Ebert-Uphoff, & Chirikjian, 1997) for Metamorphic hexagonal modules. 

 

 

a) Lattice (Gilpin, 

Kotay, & Rus, 

2007) 

 

b) Chain (Yim M. , 1994) 

 

c) Hybrid (Kurokawa, 

Kamimura, Yoshida, 

Tomita, Kokaji, & 

Murata, 2003) 

Figure �2-2 Primarily Architectural Topologies 

In chain architecture, modules are connected to each other in a serial manner 

forming tree (open) or loop (closed) structures. Chain architecture is primarily successful 

for motion generation and locomotion. Although modules can also fold and form space 

filling structures, self-reconfiguration is computationally very demanding and cannot be 

easily performed as it is done in lattice architectures. The chain architecture usually re-

quires a closed loop control for locomotion and is considered to be more versatile as it 

can reach continuous locations in the space. Collision detection is relatively more diffi-

cult in this category since global collision detection technique is required, compared to 

local collision detection methods used in lattice architecture. The first work in chain ar-

chitecture started by (Yim, Lamping, Mao, & Chase, 1997) for Polypod robots although 

it was not considered to be a totally MSRRS since inter-module connections were not au-

tomatic but the newer version (Yim, Goldberg, & Casal, 2000) for PolyBot robots had 

automatic connections between modules. Other works in this area include: (Hamlin & 

Sanderson, 1998) for Tetrobot modules, (Bojinov, Casal, & Hoag, 2000) for Proteo ro-
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bots, (Stoy, Shen, & Will, 2002) for CONRO robots, (Mytilinaios, Desnoyer, Marcus, & 

Lipson, 2004) for Molecubes robots and (Casal & Yim, 1999) for self-reconfiguration 

planning.  

In hybrid architecture, designs are combining both lattice and chain configura-

tions to take advantage of their potential benefits and eliminate their drawbacks. There-

fore, hybrid systems are capable of performing remarkable motion generation needed for 

locomotion and are also capable to reconfigure into different configurations. The best ex-

amples of hybrid systems can be seen in the work of (Yoshida E. , Murata, Kamimura, 

Tomita, Kurokawa, & Kokaji, 2003) for MTRAN modules and (Salemi, Moll, & Shen, 

2006) for SuperBot robots. 

2.2.2 Homogeneity 

MSRRSs are classified into two major categories: homogeneous and heterogene-

ous as described below. 

Homogeneous systems (also known as metamorphic) are composed of identical 

modules where all modules have the exact same physical shape, computational power 

and communicational capabilities. The main advantage in these systems is referred to as 

“module interchangeability” that increases the overall robustness of the system by the 

means of redundancy that helps self-repair and self-replication. Another advantage in this 

category referrers to simplified control algorithms as it is not necessary to move a specif-

ic module to a specific location as long as all modules are the same. Homogeneous sys-

tems are given a lot of attention in this field such as the work of (Murata, Kurokawa, & 

Kokaji, 1994) for Fracta robots, (Pamecha, Ebert-Uphoff, & Chirikjian, 1997) for Meta-

morphic robots, (Yim, Lamping, Mao, & Chase, 1997) for Polypod robots, (Kotay & 

Rus, 1998) for Molecule robots, (Hosokawa, et al., 1998) for RIKEN Vertical robots, 

(Walter, Welch, & Amato, 2000) for hexagonal modules, (Yoshida, Kokaji, & Murata, 

2000) for Micro Unit robots, (Rus & Vona, 2001) for Crystalline robots, (Castano, Behar, 

& Will, 2002) for CONRO modules, (Murata, Yoshida, Kamimura, Kurokawa, Tomita, 

& Kokaji, 2002) for MTRAN robots, (Suh, Homans, & Yim, 2002) for Telecube robots, 

(Mytilinaios, Desnoyer, Marcus, & Lipson, 2004) for Molecubes robots and (Klavins, 

Burden, & Napp, 2006) for Programmable Parts robots. 
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Heterogeneous systems on the other hand provide the freedom of having different 

types of modules in the system. The primary advantage of these systems relies on specific 

modules functionality. For example, there can be sensor modules, communication mod-

ules, locomotion modules, power modules and etc. in the same system which reduces the 

cost of each module as long as all modules are not supposed to be equipped with all these 

features. The main drawback in these systems is the loss of redundancy and also more 

complex software requirements. Less work has been done on this category which includ-

ing the work of (Fukuda & Ueyama, 1994) for CEBOT robots, (Fitch, Butler, & Rus, 

2003) and (Fitch, butler, & Rus, 2005) addressing the reconfiguration planning. 

2.2.3 Rigidity 

In terms of rigidity there have been three types modules proposed: rigid, deform-

able and compressible as shown in Figure �2-3. 

 
a) Rigid (Zykov, 

Mytilinaios, Desnoyer, 

& Lipson, 2007) 

 
b) Deformable (Pamecha, 

Chiang, Stein, & Chirikjian, 
1996) 

 
c) Compressible 

(Butler, Fitch, & 
Rus, 2002) 

Figure �2-3 Rigid, Deformable and Compressible Modules 

Most systems developed in this field are based on rigid modules such as the work 

of (Fukuda, Ueyama, & Kawauchi, 1990) for CEBOT robots, (Murata, Kurokawa, & 

Kokaji, 1994) for Fracta robots, (Hosokawa, et al., 1998) for RIKEN Vertical robots, 

(Walter, Welch, & Amato, 2000) for hexagonal modules, (Bojinov, Casal, & Hoag, 2000) 

for Proteo robots, (Yim, Duff, & Roufas, 2002) for PolyBot robots, (White, Kopanski, & 

Lipson, 2004) for 2D stochastic robots and (White, Zykov, Bongard, & Lipson, 2005) for 

3D stochastic robots. 
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Deformable and compressible modules make the reconfiguration planning easier 

by allowing modules to change their shape or size and help other modules to pass among 

them and therefore reduce the collision constraint. Work on these modules include, 

(Pamecha, Chiang, Stein, & Chirikjian, 1996) for deformable Metamorphic robots, (Rus 

& Vona, 2001) for compressible Crystalline robots and (Suh, Homans, & Yim, 2002) for 

compressible Telecube robots. 

2.2.4 Shape 

Two Dimensional Platforms 

Work was primarily started with two dimensional modules such as: (Hosokawa, et 

al., 1998) for RIKEN Vertical robots, (Casal & Yim, 1999) for reconfiguration planning, 

(Tomita, Murata, Kurokawa, Yoshida, & Kokaji, 1999) for Fracta robots, (Chiang & 

Chirikjian, 2001) for Metamorphic robots, (Rus & Vona, 2001) for Crystalline robots, 

(Inou, Kobayashi, & Koseki, 2002) for Pneumatic robots, (Walter, Welch, & Amato, 

2002) for reconfiguration planning of hexagonal modules, (Yoshida E. , Murata, Kokaji, 

Kamimura, Tomita, & Kurokawa, 2002) for Micro Unit robots, (White, Kopanski, & 

Lipson, 2004) for 2D stochastic robots, (Goldstein, Mowry, Gibbons, Pillai, Rister, & 

Lee, 2006) for Catom robots and (Klavins, Burden, & Napp, 2006) for Programmable 

Parts robots.  

These robots were mainly built in triangular, cubical, hexagonal or circular shapes 

as shown in Figure �2-4. 

Three Dimensional Platforms 

MSRRSs are not limited only to two dimensional planar robots since several three 

dimensional robots were proposed afterwards such as the work of (Yim, Lamping, Mao, 

& Chase, 1997) for Polypod robots, (Murata, Kurokawa, Yoshida, Tomita, & Kokaji, 

1998) for 3D Fracta robots, (Hamlin & Sanderson, 1998) for Tetrobot robots, (Kotay & 

Rus, 1999) for Molecule robots, (Kurokawa, Murata, Yoshida, Tomita, & Kokaji, 2000) 

for MTRAN robots, (Castano & Will, 2000) for CONRO robots, (Unsal & Khosla, 2000) 

for I-Cubes robots, (Yoshida, Kokaji, & Murata, 2000) for Micro Unit robots, (Yim, 

Zhang, Lamping, & Mao, 2001) for Proteo robots, (Suh, Homans, & Yim, 2002) for Te-
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lecube robots, (Yim, Roufas, Duff, Zhang, Eldershaw, & Homans, 2003) for PolyBot ro-

bots, (Jorgensen, Ostergaard, & Lund, 2004) for ATRON robots, (Zykov, Mytilinaios, 

Adams, & Lipson, 2005) for Molecubes robots, (White, Zykov, Bongard, & Lipson, 

2005) for 3D Stochastic robots, (Salemi, Moll, & Shen, 2006) for SuperBot robots and 

(Gilpin, Kotay, & Rus, 2007) for Miche robots. 

 

a) Programmable Parts (Bishop, et al., 2005) 

 

b) Crystalline (Butler, Fitch, & Rus, 2002) 

 

c) Fracta (Murata, Kurokawa, & Kokaji, 

1994) 

 

d) Catom (Goldstein, Mowry, Gibbons, Pillai, 

Rister, & Lee, 2006) 

Figure �2-4 Two Dimensional Triangular, Cubical, Hexagonal and Circular Platforms 

These robots were mainly built in cubical, rhombic dodecahedron and spherical 

shapes as shown in Figure �2-5. 

Cubical platforms are constructed for MTRAN (Murata, Yoshida, Kurokawa, 

Tomita, & Kokaji, 2001), Molecubes (Mytilinaios, Desnoyer, Marcus, & Lipson, 2004) 

and 3D stochastic (White, Zykov, Bongard, & Lipson, 2005). Rhombic dodecahedron 

shape is used in Polypod (Yim, Lamping, Mao, & Chase, 1997) and Proteo (Bojinov, 

Casal, & Hoag, 2000). Finally spherical platforms are built for Molecule (Kotay K. , Rus, 

Vona, & McGray, 1998) and ATRON (Jorgensen, Ostergaard, & Lund, 2004). 



Chapter 2 – Related Work 22 

 

 

 

a) Telecube (Suh, Homans, & 

Yim, 2002) 

 

b) Polypod (Yim M. , 1994) 

 

c) Molecule (Kotay 

& Rus, 2005) 

Figure �2-5 Three Dimensional Cubical, Rhombic Dodecahedron and Spherical Platforms 

2.3 Range of Control Algorithms 

Effective use of MSRRSs requires a method powerful enough to deal with a pos-

sibly large number of modules so that the combination of the modules will perform the 

required action. This is generally referred to as a path planner and controller design and 

considered to be one of the key challenges of this field. 

The controller can be generally designed for different purposes in different ways 

and can have several properties as illustrated in Figure �1-2. 

2.3.1 Reconfiguration vs. Locomotion 

The planning algorithms are mainly designed for either reconfiguration or loco-

motion.  

• Reconfiguration (also referred to as morphology) algorithms generate a sequence 

of module movements that transforms the overall shape of the system from an ar-

bitrarily initial configuration to a desired goal configuration. In other words, these 

algorithms specify how modules shall rearrange themselves to form different 

structures. 

• On the other hand, locomotion algorithms are primarily designed to generate mo-

tion for the overall system through different locomotion gaits. 

 



Chapter 2 – Related Work 23 

 

 

 

Generally speaking locomotion may seem to be a subset of reconfiguration when 

a group of module reconfigure themselves into different intermediate configurations to 

move form a starting location towards a goal location. However, it should be noted that 

reconfiguration algorithms are only interested in the initial configuration and the goal 

configuration; therefore, the shape of the system during reconfiguration is unspecified 

and not restricted to any boundaries. While locomotion algorithms take into account the 

initial, intermediate and goal configuration of the overall system. 

Reconfiguration problem is addressed in several works such as: (Chirikjian, 

Pamecha, & Ebert-Uphoff, 1996) for Metamorphic robots, (Murata, Kurokawa, Yoshida, 

Tomita, & Kokaji, 1998) for 3D Fracta robots, (Casal & Yim, 1999) for chain modules, 

(Shen, Will, & Castano, 1999) for CONRO robots, (Bojinov, Casal, & Hoag, 2000) for 

Proteo robots, (Kotay & Rus, 2000) for Molecule robots, (Walter, Welch, & Amato, 

2002) for hexagonal modules and (Vassilvitskii, Kubica, & Rieffel, 2002) for Telecube 

robots. 

Controller 

Reconfiguration Locomotion 

Stochastic Deterministic 

Optimality Processing Execution 

Optimal Near Op-

timal 

Centralized Hybrid Distributed Serial Parallel 

Figure �2-6 Controller Design Hierarchy 



Chapter 2 – Related Work 24 

 

Locomotion algorithms are also presented in several works such as: (Yim M. , 

1994) for Polypod robots, (Kotay & Rus, 1999) for Molecule robots, (Stoy, Shen, & Will, 

2002) for CONRO robots, (Yoshida E. , Murata, Kamimura, Tomita, Kurokawa, & 

Kokaji, 2003) for MTRAN robots, (Kamimura A. , Kurokawa, Yoshida, Tomita, Kokaji, 

& Murata, 2004) for MTRAN robots, (Kamimura A. , Kurokawa, Yoshida, Murata, 

Tomita, & Kokaji, 2005) for MTRAN robots and (Shen, Krivokon, Chiu, Everist, 

Rubenstein, & Venkatesh, 2006) for SuperBot robots. 

2.3.2 Deterministic vs. Stochastic  

Deterministic reconfiguration algorithms require path planning for every individ-

ual module to be moved from one location into another. Therefore, control algorithm dic-

tates a sequence of module movements. In this type of reconfiguration, the exact loca-

tions of modules need to be known for the algorithm and the time takes for the reconfigu-

ration can be guaranteed.  

On the contrary, in stochastic reconfiguration, modules are moved randomly in 

the environment and collide with each other. The task of the control algorithm in this case 

is to determine whether the collided modules should stay connected after the collision or 

not. In this type of reconfiguration, the locations of modules are unknown unless they 

collide with the substrate and the reconfiguration time can be statistically guaranteed. It 

should be noted that stochastic reconfiguration can help reduce the size of modules since 

the required movement actuation can be provided externally from the environment and 

does not need to be implemented in the modules. 

Deterministic planners are the common controllers designed for MSRRSs and ex-

tensively studied in literature, such as the work of: (Fukuda & Nakagawa, 1988) for CE-

BOT robots, (Fukuda, Buss, Hosokai, & Kawauchi, 1991) for CEBOT robots, (Yim M. , 

1994) for Polypod robots, (Yoshida E. , Murata, Kurokawa, Tomita, & Kokaji, 1998) for 

Fracta robots, (Casal & Yim, 1999) for chain robots, (Rus & Vona, 1999) for Crystalline 

robots, (Kotay & Rus, 2000) for Molecule robots, (Salemi, Shen, & Will, 2004) for CO-

NRO robots, (Unsal & Khosla, 2001) for I-Cube robots, (Butler, Fitch, & Rus, 2002) for 

Crystalline robots, (Walter, Tsai, & Amato, 2002) for hexagonal modules, (Yim, Zhang, 

& Duff, 2002) for PolyBot robots, (Vassilvitskii, Kubica, & Rieffel, 2002) for Telecube 



Chapter 2 – Related Work 25 

 

robots(Christensen, Ostergaard, & Lund, 2004) for ATRON robots and (Yoshida, 

Kurokawa, Kamimura, Tomita, Kokaji, & Murata, 2004) for MTRAN robots.  

Stochastic reconfiguration was addressed in few works such as: (White, 

Kopanski, & Lipson, 2004) for 2D stochastic robots, (White, Zykov, Bongard, & Lipson, 

2005) for 3D stochastic robots and (Klavins, Burden, & Napp, 2006) for Programmable 

Parts robots. 

2.3.3 Optimal vs. Near Optimal 

Optimal sequence of moves from an arbitrary initial configuration to a desired 

goal configuration can be found in theory by searching the graph of all possible configu-

rations; however, such search approaches become intractable due to the fact that the 

number of possible configurations grows exponentially with the number of modules in 

the configuration. Therefore, techniques relying on such a representation require space 

and computation proportional to the number of modules, leading to intractable space (sto-

rage) and time complexity.  

As a result, near optimal reconfiguration algorithms are gaining more popularity 

where heuristics and optimization come together to perform the required reconfiguration. 

2.3.4 Centralized vs. Distributed  

In the centralized control method, modules are given instructions from a central 

unit. This unit needs to have complete global information of all modules and decide on 

what motion is required for each module to perform the reconfiguration. This method can 

be suitable for MSRRSs that have small number of modules and more optimal reconfigu-

rations paths can be computed since global information is available. The main problem 

with this type of controller is the single point of failure; once the controller fails all mod-

ules will fail. Another problem is that this method requires huge communication band-

width once the system is scaled up and in most cases modules require to have fixed ID to 

communicate with the central unit. Another problem in this method is that all the compu-

tation is done in one unit and therefore the processing takes more time. Such controllers 

are addressed in (Yim M. , 1994) for Polypod robots, (Kotay K. , Rus, Vona, & McGray, 

1998) for Molecule robots, (Yoshida E. , Murata, Kaminura, Tomita, Korokawa, & 
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Kokaji, 2000) for MTRAN robots, (Chiang & Chirikjian, 2001) for Metamorphic robots 

and (Nguyen, Guibas, & Yim, 2001) for PolyBot robots. 

In the distributed control method, the global reconfiguration of the system is 

achieved through the decision and motion of each individual module based on its local 

neighborhood information. Distributed controllers are more robust since they do not rely 

on a centralized unit and they can be easily scaled up. Moreover, parallel processing 

makes the reconfiguration faster in these systems. The absence of a centralized controller 

eliminates the need of very high bandwidth communication and the ID’s can be assigned 

dynamically. All these come at accost of near-optimal solutions where the reconfigura-

tion cannot be performed as optimal as it’s done in the centralized controllers. There are 

many researchers in this field trying to address the distributed controllers design such as: 

(Fukuda, Ueyama, & Sekiyama, 1995) for CEBOT robots, (Yoshida E. , Murata, Tomita, 

Kurokawa, & Kokaji, 1998) for Fracta robots, (Hosokawa, et al., 1998) for RIKEN Ver-

tical robots, (Casal & Yim, 1999) for chain robots, (Walter, Welch, & Amato, 2000) for 

hexagonal modules, (Butler, Byrnes, & Rus, 2001) for Crystalline robots, (Yim, Zhang, 

Lamping, & Mao, 2001) for Proteo robots, (Kubica, Casal, & Hogg, 2001), (Lee & 

Sanderson, 2001) for Tetrabot robots, (Vassilvitskii, Yim, & Suh, 2002) for Telecube ro-

bots, (Butler, Kotay, Rus, & Tomita, 2002) for Crystalline robots, (Shen, Salemi, & Will, 

2002) for CONRO robots, (Yim, Zhang, & Duff, 2002) for PolyBot robots, (Payne, 

Salemi, Will, & Shen, 2004) for CONRO robots and (Rosa, Goldstein, Lee, Campbell, & 

Pillai, 2006) for lattice based robots. 

Many successful controllers designed are considered to be hybrid. In other words, 

to provide an optimal reconfiguration plan they are composed of both a centralized part 

and a distributed part. These algorithms are usually multiphase or multilayer. In an initial 

processing phase they require a global knowledge of the system and the remaining 

processing can be done in a distributed manner. For example (Yoshida E. , Murata, 

Kamimura, Tomita, Kurokawa, & Kokaji, 2001) proposed a two-layered motion planning 

for MTRAN. The first layer is a global flow planner to provide the possible paths and 

motion orders and the second layer is a local motion scheme selector based on a rule da-

tabase to make the flow. Another example is (Prevas, Unsal, Efe, & Khosla, 2002) where 
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a hierarchical motion planning strategy for a distributed bipartite robotic system, I-Cubes 

is presented.  

2.3.5 Serial vs. Parallel 

Depending on the design of the algorithm either single module can move at a time 

(serial motion) or several modules can move at a time (parallel motion). When the recon-

figuration time is being minimized by the algorithm, parallel motion has definitely an ad-

vantage over serial motion. On the contrast, when total energy consumption or numbers 

of moves are being minimized, parallel motion do not usually have an advantage over 

serial motion. 

2.4 Modular Self-Reconfiguring Robots 

2.4.1 ATRON 

ATRON is shown in Figure �2-7 and is developed by (Christensen & Stoy, 2006). 

This platform is based on a lattice, spherical, 3D, one degree of freedom module. The 

modules are composed of two hemispheres where one can rotate with respect to the other 

one. This module weighs around 850g and has a diameter of 11cm.  

Each module can connect to other modules through four strong actuated connec-

tors positioned at four sides of the module. The power can also be transmitted through the 

same connectors. There are also four infrared communication channels below each of 

these connectors to allow local communication among modules.  

There are 100 ATRON modules constructed mainly to explore the idea of using 

meta-modules to perform reconfiguration. 
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Figure �2-7 ATRON (Christensen & Stoy, 2006) 

2.4.2 Catom 

Catom is shown in Figure �2-8 and is developed by (Goldstein, Mowry, Gibbons, 

Pillai, Rister, & Lee, 2006). This platform is based on a lattice, circular 2D modules. In 

this platform gravity holds the individual modules to a surface and there is no connectors 

connecting the modules together. The actuation force is provided by electromagnets. Ca-

tom weighs 105g (50g for the magnets, 55g for everything else) and has a diameter of 

44mm and a height of 60mm. 
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Figure �2-8 Catom (Goldstein, Mowry, Gibbons, Pillai, Rister, & Lee, 2006) 

2.4.3 CEBOT 

CEBOT stands for Cellular Robot is shown in Figure �2-9 and developed by 

(Fukuda & Kawakuchi, 1990). CEBOT is a mobile platform composed of heterogeneous 

modules and works in a 2D plane. Each module is designed for a simple function such as 

move, bend, rotate and slide.  

Several prototypes were developed for this project. In the first prototype Mark I 

the modules were cubical and had passive connectors on opposite sides. Latching was 

performed using shape memory ally (SMA) actuators. In the other prototypes Mark II and 

Mark IV, the connection was performed using a mechanical hook and also a cone shape 

mechanical alignment mechanism was added to modules. In Mark III, modules were hex-

agonal shaped and each side had a connector.  

a) Mark II b) Mark III 
c) Mark IV 

Figure �2-9 CEBOT (Fukuda & Kawakuchi, 1990) 
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2.4.4 CONRO 

The CONRO (CONfigurable RObot) is shown in Figure �2-10 and is developed by 

(Castano, Behar, & Will, 2002). This platform is based on chain, homogeneous, 3D mod-

ules.  

Each module is equipped with a female connector on one side and three male 

connectors on the other side. Shape memory alloys are used to lath the connectors. Each 

of these connectors has also an infrared transceiver used for local communication. These 

connectors can rotate with respect to the body in two orthogonal orientations.  

The rectangular bounding box of each module is around 10cm x 4.5cmx 4.5cm 

and the module weighs around 100grams.  

 

  

Figure �2-10 CONRO (Castano, Behar, & Will, 2002) 

2.4.5 Crystalline 

Crystalline robots are shown in Figure �2-11 and developed by (Rus & Vona, 

2001). This platform is based on lattice, homogeneous, compressible, cubical, 2D mod-

ules. 

The main advantage in this platform is that modules are not restricted to move on-

ly on the surface of the platform but they can also move through the structure. This is 

done using an inch-worm method when two neighboring modules scrunch into a single 

grid space and leave a free space behind for the moving module to pass through it. This 

mechanism has lead to a Melt-Grow type of algorithm where the modules will first Melt 

to provide space for the moving modules and then Grow. 
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Figure �2-11 Crystalline (Rus & Vona, 2001) 

2.4.6 Fracta / 3D Fracta 

Fracta is shown in Figure �2-12 and developed by (Murata, Kurokawa, & Kokaji, 

1994). This platform is based on lattice, homogeneous, rigid, hexagonal, 2D modules.  

  

Figure �2-12 Fracta (Murata, Kurokawa, & Kokaji, 1994) 

The platform was later modified to work in a three dimensional environment as 

shown in Figure �2-13. 

 

Figure �2-13 3D Fracta (Murata, Kurokawa, Yoshida, Tomita, & Kokaji, 1998) 
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2.4.7 I-Cubes 

I-Cubes platform is shown in Figure �2-14 and developed by (Unsal & Khosla, 

2000). This platform is based on three dimensional lattice modules and consists of pas-

sive cubes and active links. The links have two male connectors that can connect to cubes 

and relocate them. 

  

Figure �2-14 I-Cubes (Unsal & Khosla, 2000) 

2.4.8 Metamorphic 

Metamorphic robots are shown in Figure �2-15 and developed by (Chirikjian G. , 

1994). The platform is based on lattice, homogeneous, deformable, hexagonal, 2D mod-

ules.  

 

Figure �2-15 Metamorphic (Chirikjian G. , 1994) 
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2.4.9 Miche 

Miche is shown in Figure �2-16 and developed by (Gilpin, Kotay, & Rus, 2007). 

This platform is based on lattice 3D modules and has demonstrated robust performance 

for over hundreds of experiments for self-assembly and disassembly. Modules are 

equipped with magnetic switch connectors and can communicate locally via infrared.  

 

Figure �2-16 Miche (Gilpin, Kotay, & Rus, 2007) 

2.4.10 Micro Unit 

Micro unit is shown in Figure �2-17 and developed by (Yoshida E. , Murata, 

Kokaji, Kamimura, Tomita, & Kurokawa, 2002). This platform is based on lattice, ho-

mogeneous, 2D modules. The main concept of the design is the miniaturization using 

shape memory alloy for both actuations and connections. A 3D module can also be im-

plemented combining two of the 2D modules.  
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Figure �2-17 Micro Unit (Yoshida E. , Murata, Kokaji, Kamimura, Tomita, & Kurokawa, 2002) 

2.4.11 Molecube 

Molecube is shown in Figure �2-18 and developed by (Zykov, Mytilinaios, Adams, 

& Lipson, 2005). This platform is based on chain, homogeneous, cubical, 3D modules. 

Each module has one degree of freedom normal to its longest diagonal. The inter-module 

connection is based on electromagnets. Main power is supplied from a power base and it 

is passed through the face of modules. Each module is around 650g and 10cm long edge. 

The platform was primarily tested for self-replication algorithms.  

  

Figure �2-18 Molecube (Zykov, Mytilinaios, Adams, & Lipson, 2005) 
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2.4.12 Molecule 

The Molecule is shown in Figure �2-19 and developed by (Kotay K. , Rus, Vona, 

& McGray, 1998). This platform is based on lattice, homogeneous, spherical, 3D mod-

ules. Each Molecule is composed of two spherical atoms linked by a rigid bond connec-

tion. Atoms can rotate 180 degrees relative to the bond.  

 

Figure �2-19 Molecule (Kotay & Rus, 2005) 

2.4.13 MTRAN 

MTRAN (Modular Transformer) is shown in Figure �2-20 and developed by 

(Murata, Yoshida, Kamimura, Kurokawa, Tomita, & Kokaji, 2002). This platform is 

based on hybrid, homogeneous, cubical, 3D modules. There are both local and global 

communication capabilities available in these modules.  

2.4.14  Polypod / PolyBot 

Polypod is shown in Figure �2-21 and developed by (Yim M. , 1993). The platform 

is based on chain, rigid, rhombic dodecahedron, 3D modules. There are basically two 

types of modules in the system: segment and node. Segments have two connections and 

two degrees of freedom while nodes have six connections and no degrees of freedom.  



Chapter 2 – Related Work 36 

 

 

 

Figure �2-20 MTRAN (Kamimura A. , Kurokawa, Yoshida, Tomita, Murata, & Kolaji, 2003), (Kurokawa, 

Kamimura, Yoshida, Tomita, Kokaji, & Murata, 2003) 

The designed was not considered completely a MSRRS since the connections 

were not automated and therefore it was followed by its successor PolyBot shown in Fig-

ure �2-22 developed by (Yim, Duff, & Roufas, 2000).  

 

Figure �2-21 Polypod(Yim M. , 1993) 
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This platform is based on chain, rigid, 3D modules. Each module has one rota-

tional degree of freedom and the inter-module connections are performed using shape 

memory alloy. Communication is done through IR transceivers. This platform was very 

successful in demonstrating several locomotion gaits including a rolling type with a 

1.6m/s speed. 

 

Figure �2-22 PolyBot (Yim, Duff, & Roufas, 2000) 

2.4.15 Programmable Parts 

Programmable Parts platform is based on lattice, homogeneous, triangular, 2D 

modules and is shown in Figure �2-23. This platform is developed by (Klavins, Burden, & 

Napp, 2006) to basically understand how to program stochastic self-assembly. Modules 

are moved randomly on an air-table and when they collide with each other they decide 

whether to stay connected or not based on their local communication and decisions.  

 

Figure �2-23 Programmable Parts(Klavins, Burden, & Napp, 2006) 
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2.4.16 RIKEN Vertical 

RIKEN Vertical is shown in Figure �2-24 and developed by (Hosokawa, et al., 

1998). This platform is based on lattice, homogeneous, rigid, cubical, 2D modules. Each 

module has two degrees of freedom one prismatic and one revolute and the bonding sides 

are covered with magnetic sheets.  

 
 

Figure �2-24 RIKEN Vertical (Hosokawa, et al., 1998) 

2.4.17 Stochastic (2D/3D) 

Stochastic platforms are shown in Figure �2-25 and developed by (White, 

Kopanski, & Lipson, 2004) for two dimensional and (White, Zykov, Bongard, & Lipson, 

2005) for three dimensional. These platforms are based on rigid, triangular/cubical, 2/3D 

modules. 

 

Figure �2-25 Stochastic (White, Kopanski, & Lipson, 2004), (White, Zykov, Bongard, & Lipson, 2005) 
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2.4.18 SuperBot 

SuperBot is shown in Figure �2-26 and developed by (Shen, Krivokon, Chiu, 

Everist, Rubenstein, & Venkatesh, 2006). This platform is based on hybrid, homogene-

ous, 3D modules. The modules have three degree of freedom (pitch, yaw and roll) and the 

inter-module connection is based on six identical dock connectors which are also used for 

communication. This platform is primarily developed for real world applications and 

demonstrated an excellent performance.  

 

Figure �2-26 SuperBot (Shen, Krivokon, Chiu, Everist, Rubenstein, & Venkatesh, 2006) 

2.4.19 Telecube 

Telecube is shown in Figure �2-27 and developed by (Suh, Homans, & Yim, 

2002). This platform is based on lattice, homogeneous, cubical, 3D modules. It is consi-

dered as the 3D version of the Crystalline platform and it uses permanent magnets for 

connections. 
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Figure �2-27 Telecube (Suh, Homans, & Yim, 2002) 
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   Chapter 3 

 3 HexBot: Physical Platform 

 

Designing a universal module for a MSRRS requires a deep understanding of the 

ultimate goals in the research area. In 3.4 physical implementation challenges were brief-

ly introduced. In my point of view the main implementation challenge to be overcome is 

the scalability which in turn enforces other challenges as well. There are primarily two 

scalability issues 1) reduce the size 2) increase the quantity. Eventually the size of each 

module should be scaled down to a level that a complete system composed of such mod-

ules can form structures with a reasonable resolution. Meanwhile, the number of modules 

in the system shall be scaled up to fill the required structure. 

3.1 Design Criteria 

Considering scalability issues and imagining a huge collection of tiny modules 

working together, the following design criteria were considered:  

1) Extremely fast actuation for modules so that a large number of them can be 

moved in an acceptable amount of time 

2) Quick and strong inter-module connection 

3) Mass production of the universal module shall be extremely cost effective 
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4) Power consumption shall be as low as possible to keep the system working for a 

long period of time. Ideally no motion for a module should result in no power re-

quired for its actuators or connectors to maintain its status 

5) Suitable shape to form an arbitrary structure with minimum gaps 

6) Homogeneity offers module interchangeability which is preferred for serf-repair 

and helps reconfiguration algorithms to perform faster  

Taking the above criteria into considerations immediately eliminates the idea of 

having a regular robot with DC motors and wheels as an individual module to move 

around its neighbors. Perhaps, ultimately each module should look like a charged particle 

that can be moved quickly in a magnetic field to fulfill the above requirements. 

3.2 Mechanical Design  

The module is primarily designed to satisfy the above requirements and the sys-

tem is developed for two dimensional environments. 

3.2.1 Universal Module 

Inspiring form natural structures such as bees nest, crystal molecule structures and 

etc, it was decided to have hexagonal shaped modules. The main reason behind having 

hexagons as building blocks of the complete MSRRS is their ability of densely filling 

structures as shown in Figure �3-1. 

Furthermore, the system is designed to be homogenous allowing module inter-

changeability to make reconfiguration or auto repair faster and easier. Figure �3-2 illu-

strates the designed and the implemented HexBot module. 

 

 

a) Bees nest 

 

b) Crystal structure of hexagonal RMnO3 
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c) Hexagonal ice 

 

d) Hexagonal water 6 H2O 

 

Figure �3-1 Natural Hexagonal Structures 

 

a) Designed module – bottom view 
 

b) Designed module – top view 

 

c) Implemented HexBot module 

Figure �3-2 HexBot Structure 
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As shown in Figure �3-3 the edges of the HexBot modules were further modified to 

provide a mechanical self-aligning mechanism.  

 

a) Designed sine-shape curve 

 

b) Implemented mechanical self-aligning mechanism 

Figure �3-3 Self-Aligning Mechanism 

3.2.2 Actuators 

Electromagnets are chosen to provide the required actuation for the modules. This 

choice provides quick actuation at a relatively cost effective manner.  

As shown in Figure �3-3, each side of the module is equipped with an electromag-

net E-05-125 from Magnetic Sensor Systems with a holding force plotted as a function of 

input power in Figure �3-4:  

 

Figure �3-4 Hold Force vs. Input Power 
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One module by itself is not able to perform any motion; however, a combination 

of two modules with their magnetic forces makes the motion possible. In order to per-

form any rotation there will be an initial repulsion between two adjacent sides of the 

modules, followed by an attraction between the other two sides of the modules as shown 

in Figure �3-5. 

 

Figure �3-5 HexBot Actuators 

As shown in Figure �3-6, each module is equipped with three ball transfer units 

(passive elements) providing an omni-directional motion the module. 

 

a) Ball transfer units on the module 

 

b) Ball transfer units – bottom view 

Figure �3-6 Ball Transfer Units 

3.2.3 Inter-Module Connections 

One of the most limiting factors for fast module movements is related to inter-

module connections. Most designs are suffering from either slow or weak connection 
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mechanisms. In HexBot, in order to provide a strong as well as quick connection between 

two modules, pull type solenoids are utilized. Each edge of the module is equipped with a 

solenoid S-69-38 (active actuated male connector) from Magnetic Sensor Systems in ad-

dition to a passive female connector as shown in Figure �3-7 

 

Figure �3-7 Inter-module Connections 

3.2.4 Motion through Rotation 

The relocation of a module is provided by its rotation around its neighboring 

modules. As mentioned before, one module by itself is not able to perform any motion; 

however, a combination of two modules with their magnetic forces makes the motion 

possible. Moreover, there should be some precise delays and timings for the actuation of 

the electromagnets and solenoids in order to perform a consistent and complete rotation. 

The embedded microcontroller of HexBot specifies these delays and controls the actua-

tors accordingly. These timings are sent manually to the modules and were calculated 

based on the dynamic model of the system.  

Table �3-1 specifies the required steps for the mobile module to rotate around its 

substrate when there are no other modules in their neighborhood. In this platform one 

complete rotation takes nearly 220 ms with an angular speed of 9.52 rad/s. This speed is 

considered to be relatively fast compared to other platforms. 
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Table �3-1 Required Rotation Steps (Only 2 modules with no other neighbors) 

 

Steps 

Rotation CW 

(around joint i=4) 

Rotation CCW 

(around joint i=5) 

Mobile Substrate 

No  

Neighbors 

Mobile Substrate 

No  

Neighbors 

- All Jx Close All Jx Close All Jx Close All Jx Close 

- All Sx Off All Sx Off All Sx Off All Sx Off 

1 Ji+1 Open Ji-3,Ji-2 Open Ji, Ji-1 Open - 

2 
Delay  

t1 = 80 ms 

Delay  

t1 = 80 ms 

Delay  

t1 = 80 ms 

Delay  

t1 = 80 ms 

3 Si-1, Si -ve Si-3 -ve, Si-2 +ve Si-1, Si -ve Si+2 –ve, Si+1 +ve 

4 
Delay  

t2= 45 ms 

Delay  

t2= 40 ms 

Delay  

t2= 40 ms 

Delay  

t2= 45 ms 

5 Ji Open All Jx Close Ji Close Ji+1,Ji+2 Open 

6 
Delay  

t3= 90  ms 

Delay  

t3= 95  ms 

Delay  

t3= 95 ms 

Delay  

t3= 90  ms 

7 All Jx Close - All Jx Close All Jx Close 

8 All Sx Off All Sx Off All Sx Off All Sx Off 

 

Note that before any module movements all actuators (sides and joints) are off 

and after completing the rotation they will be switched off as well. This will ensure min-

imum power consumption for modules when the system is not changing. The delay tim-

ings (t1, t2 and t3) are set such that the required actuations take place precisely. These tim-

ings are sent manually to the modules as will be explained at the end of this chapter. 
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Table �3-2 specifies the same rotation steps required to be taken if there exist other 

modules in the neighborhood apart from the substrate. 

Table �3-2 Required Rotation Steps (2 modules with other neighbors) 

 

Steps 

Rotation CW 

(around joint i=4) 

Rotation CCW 

(around joint i=5) 

Mobile Substrate 
Other 

Neighbors 
Mobile Substrate 

Other 

Neighbors 

- All Jx Close All Jx Close All Jx Close All Jx Close All Jx Close All Jx Close 

- All Sx Off All Sx Off All Sx Off All Sx Off All Sx Off All Sx Off 

1 
All Jx except 

Ji Open 
Ji-3,Ji-2 Open Jn Open All Jx Open - Jn Open 

2 
Delay  

t1 = 80 ms 

Delay  

t1 = 80 ms 
- 

Delay  

t1 = 80 ms 

Delay  

t1 = 80 ms 
- 

3 Si-1, Si -ve Si-3 -ve, Si-2 +ve - Si-1, Si -ve Si+2 –ve, Si+1 +ve - 

4 
Delay  

t2= 45 ms 

Delay  

t2= 40 ms 
- 

Delay  

t2= 40 ms 

Delay  

t2= 45 ms 
- 

5 Ji Open All Jx Close - Ji Close Ji+1,Ji+2 Open - 

6 
Delay  

t3= 90  ms 

Delay  

t3= 95  ms 
- 

Delay  

t3= 95 ms 

Delay  

t3= 90  ms 
- 

7 All Jx Close - Jn Close All Jx Close All Jx Close Jn Close 

8 All Sx Off All Sx Off - All Sx Off All Sx Off - 

 

Figure �3-8 illustrates these different steps required to perform a single module ro-

tation. As can be seen in this figure, during each rotation both solenoids (mobile and sub-

strate) are utilized. 
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a) Individual module 

 
b) Initial configuration – Joints 3 and 4 open 

 
c) Joints 1, 3 and 4 open – Rotation around 

joint 2 

 
d) Joints 1 and 4 open – Switching the pivot 

joint from 2 to 3 

 
e) Joints 1, 2 and 4 open – Rotation around 

joint 3 

 
f) Joints 1 and 2 open – Fixing the module 

by joints 3 and 4 
Figure �3-8 HexBot Motion 

1
2

3
4
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3.3 Electrical System 

The electrical system is designed based on the mechanical platform requirements. 

This system is basically responsible to get the power from a power base and switch on 

and off the required actuator or joint based on the control algorithm. The design is based 

on a modular multilayer approach as shown in Figure �3-9. Such an approach is extremely 

open and flexible, since each module (or layer) can be modified individually. At the same 

time, when there is a failure in the system, only the faulty module needs to be replaced.  

 

 

The first layer is primarily responsible to provide the module with the main power 

supply, and it also acts as a mechanical support for joints and actuators. The second layer 

receives the main power from layer 1 and regulates it into different voltages required for 

the system. Upon receiving a control signal from layer 4, layer 3 will drive required actu-

ators and solenoids. Layer 5 is mainly dedicated for both inter-module and centralized 

user-module communication. Each of these layers is briefly discussed below. 

Layer 5: Communication 

Layer 4: Control 

Layer 3: Drive 

Layer 2: Power 

Layer 1: Power Connection & Mechanical Support 

Figure �3-9 Multilayer Electrical System Design for HexBot 
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3.3.1 Design 

The required circuits to be designed were the followings: 

a) Power 

b) Drive 

c) Control 

d) Communication 

A proper power circuit design plays an important role in the electrical system 

since all actuators are inductive loads and therefore generate huge noise during transi-

tions. If the noise is not filtered properly it can damage other components of the system 

and it may also cause the complete system fail by restarting the microcontrollers during 

the transitions. The circuit was designed as illustrated in Figure �3-10. 

 

Figure �3-10 Power Circuit Schematic 

Next a simple drive circuit was designed as shown in Figure �3-11.  As can be 

seen, electromagnets are switched on and off with different polarities using relays and the 

coils of the relays are actuated through transistor arrays. Solenoids are switched on and 

off through the use of a transistor array directly. Each solenoid uses three channels of a 

transistor array to obtain sufficient current for actuation. 
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Figure �3-11 Drive Circuit Schematic 

The control and communication microcontrollers were designed as shown in Fig-

ure �3-12. 

 

Figure �3-12 Microcontroller Design Schematic 
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More details about the microcontrollers are provided in the 3.4. 

Finally the communication board (based on infrared) was designed as illustrated 

in Figure �3-13. 

 

Figure �3-13 IR Communication Schematic 

In this design a single serial port of the communication microcontroller with a 

transmit (TX) and a receive (RX) pins is connected to seven infrared transceivers using a 

multiplexer and a demultiplexer. The signals are modulated (38kHz) to eliminate the en-

vironment noise. 

All these designs were tested on bread boards as shown in Figure �3-14 before pro-

ceeding to the printed circuit board (PCB) design. 

 

Figure �3-14 Breadboard Verification 
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In the remaining of this chapter all different components of the electrical system 

are explained in details. 

3.3.2 Power Base 

In order to provide power to the modules a power base is designed as shown in 

Figure �3-15. 

 

Figure �3-15 Power Base 

The based is composed of strips of aluminum connected alternatively to positive and 

negative of the main supply. Modules can freely move on the base using their ball trans-

fer units and get the required power from the base. Providing power form the base helps 

the modules to be lighter by not carrying a separate battery. Moreover, the base can also 

be used to illustrate the coordinate system in addition to location and orientation of mod-

ules as shown in Figure �3-16. 

+26V 

Ground 
Isolation 
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Figure �3-16 Grids and Coordinate System 

3.3.3 Layer 1 – Power Connection & Mechanical Support 

This layer is a single sided printed circuit board (PCB) dedicated to transfer the 

main power supply from the base to the power unit. The shape of this PCB is also de-

signed to match the physical module shape to act as a mechanical support for module 

components. This layer is designed in AutoCAD as illustrated in Figure �3-17. 

 

Figure �3-17 Base Layer Design 

As can be seen in Figure �3-17, the outer shape of the PCB forms the base of the 

module and the holes (specified by crosses) are drilled to mount the components such as 

ball transfer units, electromagnets and solenoids. The six holes located at the edges of the 

board are also the passive female connectors for solenoids as can be seen in Figure �3-18. 
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Figure �3-18 Manufactured Base Layer 

Figure �3-19 illustrates the spring-loaded pins located at the edges of the module 

transferring the main power supply to the power unit. 

 

Figure �3-19 Power Transfer to the Module 

The width of the power strips on the ground and their spacing is designed in a 

way to ensure that at each location and orientation at least one of the six spring-loaded 

pins contacts the negative supply and at least another one contacts the positive supply.  
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3.3.4 Layer 2 – Power Unit 

Each spring-loaded pin is either connected to the positive supply or negative 

supply or neither of them (if connected to the isolating material). The power unit is 

equipped with three full bridges connected to these pins and provides a positive and nega-

tive supply. This supply is further divided for the following resources:   

1) Electromagnet Supply: 24V, 4A 

2) Solenoid Supply: 6V, 500mA 

3) Drive Circuit Supply: 12V, 500mA 

4) Microcontroller and Communication Supply: 9V, 1A 

Only the drive circuit supply is permanently fixed to 12V. Other supplies are de-

signed such that they can be manually adjusted if required using trimmers. The supply for 

the electromagnets is the main supply minus the power dissipation of the full bridges 

(around 1.7V) and the supplies for the solenoid and microcontroller can be adjusted using 

two trim potentiometers.  

The PCB is designed as shown in Figure �3-20. 

 

Figure �3-20 Power Circuit Design 

The circuit is manufactured as shown in Figure �3-21. All supplies are perfectly fil-

tered because of the inductive nature of the actuators and their corresponding transition 

noises.  
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a) Power unit 

 

b) Power unit installed on the module 

Figure �3-21 Manufactured Power Unit 

3.3.5 Layer 3 – Drive Circuit 

In order to switch on each electromagnet that requires high current, a pair of re-

lays each with two parallel form C contacts is used. The control signals coming from the 

control board are switching the relays through a transistor array. The PCB is designed as 

shown in Figure �3-22. 
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Figure �3-22 Drive Circuit Design 

Note that the drive circuit is designed to drive only the electromagnets not the so-

lenoids. The solenoids do not require high power and can be switched directly from the 

microcontroller through a transistor array. The PCB is manufactured in a double sided 

board as shown in Figure �3-23. 

 
a) Drive circuit 

 
b) Drive circuit installed on the power unit 

 
c) Drive circuit installed on the module 

Figure �3-23 Manufactured Drive Circuit 
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3.3.6 Layer 4 – Control Board 

ATMEGA 162 of the AVR family from Atmel is chosen to send control signals to 

the drive circuit and actuate the required solenoids and magnets. This microcontroller 

comes with two serial ports, one port is linked to the other microcontroller on the com-

munication board to receive and execute the commanded functions. The other port is pre-

served for testing and debugging purposes. The PCB was designed as shown in Figure 

�3-24. 

 

Figure �3-24 Control Board Design 

The PCB is manufactured as shown in Figure �3-25. There are eight configuration 

micro switches incorporated into this board that can be used to configure different func-

tionality of the board such as timings, operation modes and etc. 

3.3.7 Layer 5 – Communication 

The last layer is dedicated to provide both inter-module communication and cen-

tral communication to the PC. This layer is equipped with seven infrared transceivers; six 

of them are located on the sides of the hexagonal module and one is located in the center 

of the module for central communication. One serial port of the ATMEGA 162 micro-

controller on this board is connected to all the seven infrared transceivers through a set of 

multiplexer and demultiplexer. The other serial port of the microcontroller is linked to the 

control board microcontroller to send the required control commands.  
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a) Control board 

 

b) Control board installed on drive circuit 

 

c) Control board installed on the module 

Figure �3-25 Manufactured Control Board 

The communication board comes also with two Serial Peripheral Interface (SPI) 

ports; one for the control board microcontroller and the other for the communication 

board microcontroller. Both microcontrollers can be easily reprogrammed by In-System 

Programming (ISP) feature through these ports. One of the SPI ports can also be utilized 

for wireless communication which is planned to be added in the next stage of the project. 

The board was designed as shown in Figure �3-26. 
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Figure �3-26 Communication Board Design 

The PCB is manufactured as shown in Figure �3-27.  

 

a) Communication board 
 

Communication board installed 

Figure �3-27 Manufactured Communication Board 

As can be noticed the communication board is sized to be exactly the same size as 

the power base grids. 

As shown in Figure �3-28 all these different layers are connected through male 

headers and can easily be disconnected or replaced for maintenance and future modifica-

tions. 
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Figure �3-28 Multilayer PCBs 

3.4 Processing Unit 

The processing unit in the HexBot is primarily responsible to provide: 

1. Inter-module communication  

2. Centralized communication with the PC 

3. Activate the solenoids to open or close the joints 

4. Actuate the magnets to provide motion 

5. Indicate the status of the module using several LEDs 

3.4.1 Microcontrollers 

Two ATMEGA 162 microcontrollers from Atmel form the core for control and 

communication of HexBot. One is located in the control board and the other one in the 

communication board. These microcontrollers are responsible for actuation and commu-

nication (inter-module and centralized) and have the following features: 

• High-performance, Low-power AVR® 8-bit Microcontroller 

• Advanced RISC Architecture 

o 131 Powerful Instructions – Most Single-clock Cycle Execution 

o 32 x 8 General Purpose Working Registers 

o Fully Static Operation 

o Up to 16 MIPS Throughput at 16 MHz 

• High Endurance Non-volatile Memory segments 

o 16K Bytes of In-System Self-programmable Flash program memory 
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o 512 Bytes EEPROM 

o 1K Bytes Internal SRAM 

o In-System Programming by On-chip Boot Program 

• JTAG (IEEE std. 1149.1 Compliant) Interface 

• Peripheral Features 

o Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes 

o Two 16-bit Timer/Counters with Separate Prescalers, Compare Modes, and 

Capture Modes 

o Real Time Counter with Separate Oscillator 

o Six PWM Channels 

o Dual Programmable Serial USARTs 

o Master/Slave SPI Serial Interface 

• Special Microcontroller Features 

o Power-on Reset and Programmable Brown-out Detection 

o Internal Calibrated RC Oscillator 

• I/O and Packages 

o 35 Programmable I/O Lines 

More details about Atmega162 microcontrollers are available in the datasheets 

available on Atmel website.  

Table �3-3 shows the port configuration for the communication microcontroller. 

The first column is the microcontroller pin number and second column corresponds to the 

port number. Column three indicates connections between this layer (communication 

layer) and other layers which in this case is only the control layer. The last column speci-

fies the assigned functionality of each pin. 

Table �3-3 Port Configuration (Communication Microcontroller) 

Microcontroller 
Communication Board 

Connections Functions 

Pin Port Control   

1 PB0   COM SPI (4) 

2 PB1     

3 PB2 (RX1)   IR - RX 
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4 PB3 (TX1)   IR - TX 

5 PB4 (SS)   COM SPI (8)  

6 PB5 (MOSI)   COM SPI (3) 

7 PB6 (MISO)   COM SPI (9) 

8 PB7 (SCK)   COM SPI (2) 

9  - (RST)   COM RST 

10 PD0 (RX0) Control 9 UART - CONTROL BOARD 

11 PD1 (TX 0) Control 8 UART - CONTROL BOARD 

12 PD2     

13 PD3     

14 PD4   Joint 6 LED 

15 PD5   Side 6 (2) LED 

16 PD6   Side 6 (1) LED 

17 PD7   Joint 1 LED 

18  - (XTAL1)     

19  -(XTAL2)     

20  -(GND)     

21 PC0   Side 5 (2) LED 

22 PC1   Side 5 (1) LED 

23 PC2   Joint 5 LED 

24 PC3   Side 4 (1) LED 

25 PC4   Side 4 (2) LED 

26 PC5   Joint 4 LED 

27 PC6   Side 3 (1) LED 

28 PC7   Side 3 (2) LED 

29 PE2   Joint 3 LED 

30 PE1   Side 2 (1) LED 

31 PE0   Side 2 (2) LED 

32 PA7   Joint 2 LED 

33 PA6   Side 1 (1) LED 

34 PA5   Side 1 (2) LED 

35 PA4     

36 PA3     

37 PA2   Selector A 

38 PA1   Selector B 

39 PA0   Selector C 
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40  -(VCC)     

    
Similarly Table �3-4 shows the port configuration for the control microcontroller. 

Note that this layer is interfaced to both drive and communication layers. 

Table �3-4 Port Configuration (Control Microcontroller) 

Microcontroller 
Control Board 

Connections Functions 

Pin Port Communication Drive   

1 PB0   Drive 7 Side 1 (1) 

2 PB1   Drive 6 Side 5 (1) 

3 PB2 (RX1) Comm 1   UART RX 

4 PB3 (TX1) Comm 2    UART TX 

5 PB4 (SS) Comm 3 Drive 5 Side 4 (2) 

6 PB5 (MOSI) Comm 4  Drive 4 Side 5 (2) - CTR SPI (3) - MOSI 

7 PB6 (MISO) Comm 5  Drive 3 Side 3 (1) - CTR SPI (9) - MISO 

8 PB7 (SCK) Comm 6  Drive 2 Side 6 (1) - CTR SPI (2) - SCK 

9  - (RST) Comm 7    CTR RST 

10 PD0 (RX0) Comm 8    UART - COMM BOARD 

11 PD1 (TX 0) Comm 9    UART - COMM BOARD 

12 PD2   Drive 14 Side 6 (2) 

13 PD3   Drive 13 Side 2 (1) 

14 PD4   Drive 12 Side 4 (1) 

15 PD5   Drive 11 Side 2 (2) 

16 PD6   Drive 10 Side 1 (2) 

17 PD7   Drive 9 Side 3 (2) 

18  - (XTAL1)       

19  -(XTAL2)       

20  -(GND)       

21 PC0     DIP 1 

22 PC1     DIP 2 

23 PC2     DIP 3 

24 PC3     DIP 4 

25 PC4     DIP 5 

26 PC5     DIP 6 

27 PC6     DIP 7 
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28 PC7     DIP 8 

29 PE2       

30 PE1       

31 PE0       

32 PA7       

33 PA6       

34 PA5     Joint 3 

35 PA4     Joint 4 

36 PA3     Joint 2 

37 PA2     Joint 1 

38 PA1     Joint 6 

39 PA0     Joint 5 

40  -(VCC)       

 

3.4.2 Internal Module Connections 

The primary communication functionalities of each module are listed below and 

illustrated in Figure �3-29.  

 

1. IR transceivers  

2. Communication between the two microcontrollers 

Control  

Microcontroller 

Communication  
Microcontroller 

IR  

Transceivers 

UART1 

3 

2 

1 

SPI1 

SPI2 

4 

Figure �3-29 Internal Module Connections 
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3. UART1 connection  

4. SPI connection  

3.4.3 IR Transceivers 

As mentioned earlier in layer 5, infrared (IR) transceivers are used for both inter-

module and centralized communication. The infrared emitter is transmitting a 38 kHz 

modulated signal to reduce the effect of the environmental noise. Similarly the receiver is 

equipped with band pass filter centered at 38 kHz to reject any other unfavorable signals 

as illustrated in Figure �3-30. 

 

Figure �3-30 Modulated IR Signal 

The serial port of the communication microcontroller is connected through a set 

of multiplexer and demultiplexer to the seven IR transceivers as shown in Table �3-5 

38kHz Pulse

Serial Data

Modulated Pulse Being Transmitted
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Table �3-5 IR Channel Selector 

IR TRANSCEIVER 

Selector RX TX 

C B A MUX PIN SIDE DEMUX PIN TA (PIN) SIDE 

L L L Y0 13 1 Y0 15 16 1 

L L H Y1 14 6 Y1 14 15 6 

L H L Y2 15 Center Y2 13 14 Center 

L H H Y3 12 2 Y3 12 13 2 

H L L Y4 1 5 Y4 11 12 5 

H L H Y5 5 3 Y5 10 11 3 

H H L Y6 2 4 Y6 9 10 4 

 

In this table the first three columns are the outputs from the microcontroller to 

specify which channel needs to be selected. The channel shall be either one of the six 

sides or the center. It is clear that it is not possible to connect the serial port of the micro-

controller to more than one channel at a time in this configuration. The next three col-

umns represent the seven IR receivers connection to the microcontroller RX pin through 

the multiplexer which its pin numbers are listed. The last four columns correspond to the 

connection of the TX pin of the microcontroller to the demultiplexer which is further 

connected to the seven IR emitters through a transistor array (TA). 

3.4.4 Handshaking 

The serial communication between the two microcontrollers is required to provide 

the transmission of data from the communication layer to the control board to achieve the 

required actuation. To ensure that this connection is available and active, once the mod-

ule is switched on, both microcontrollers start the process of handshaking by transmitting 

specific packets to each other and respond accordingly. If the process is successful the 

user will find a new module on the graphical user interface mentioning that the module’s 

microcontrollers are ready. 
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3.4.5 Testing and Debugging 

UART1 provides direct access to control board for testing and debugging purpos-

es. It can also be used to send control commands directly to the module without the use of 

the communication layer. 

3.4.6 Reprogramming 

SPI1 and SPI2 are used to reprogram the microcontrollers through the In-System 

Programming (ISP) feature and they can also be used for wireless communication 

planned to be added in the next stage. 

The fuse bits of both microcontrollers shall be set as shown in Table �3-6 before 

programming. Note that JTAG is not enabled in this configuration since the JTAG pins 

are used for other purposes. 

Table �3-6 Microcontrollers Fuse Bits Settings 

Fuse bits: 0XFF, 0XD9, 0X62 

Brown-out detection disabled BODLEVEL=111 

Boot flash size = 1024 words and start address = $1C00 BOOTSZ=00 

Divide clock by 8 internally CKDIV8=0 

Int RC Osc. Start up time: 6CK + 65ms CKSEL=0010 SUT=10 

 

Reprogramming of the microcontrollers can be done following these steps: 

1. Switch off the module by placing it outside the power base 

2. Set the programming jumper for the corresponding microcontroller (Figure �3-31 

a) 

3. Connect the ISP cable from the STK500 to the corresponding SPI port of the 

module 

4. Connect the power cable from the STK500 to the UART1 port of the module 

5. Turn on STK500 board 

6. Download the program (Ctr+F9) 

7. Turn off STK500 board 

8. Set the programming jumper back (Figure �3-31 b) 
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9. Switch on the module by placing it in the power base 

Figure �3-31 illustrates an example of how to set the programming jumper to re-

program the control microcontroller. 

 

a) Set for programming the control board 

 

b) Set for running the module 

Figure �3-31 Setting the Programming Jumper 

3.5 Graphical User Interface 

A simple Graphical User Interface (GUI) is developed using Visual Basic (VB). 

This interface is basically used to send different messages to the modules and receive 

their status.  

3.5.1 Communication with the MSRRS 

All modules are interfaced to the computer through their IR transceivers as illu-

strated in Figure �3-29. For testing or debugging purposes one module can also be inter-

faced to the GUI using its UART1 connection. 

From the computer side, two boards were designed to provide communication to 

modules. One is an IR transceiver (Figure �3-32 a) and the other one is an RS232 conver-

ter (Figure �3-32 b). 
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a) Central IR transceiver 
 

b) RS232 converter 

Figure �3-32 PC-MSRRS Communication Components 

In order to have the centralized communication, modules shall first switch to their 

center IR transceivers based on Table �3-5 and then start communicating to the central IR 

transceiver. The central IR transceiver is also connected to the PC through the RS232 

converter as illustrated in Figure �3-33.  

 

 

Any message sent to a module will receive an acknowledgement from the same 

module to ensure that the proper function was executed. 

HexBot 

IR  
Transceiver 

RS 232 
Converter 

PC with 
GUI 

UART1 

IR 

Figure �3-33 PC-MSRRS Communication 
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3.5.2 Interface 

The VB interface is shown in Figure �3-34: 

 

Figure �3-34 Graphical User Interface 

The GUI is basically divided into five parts: 

1. Communication (upper left) 

2. Message Transmition (upper right) 

3. UART1 Terminal (center left) 

4. IR Terminal (center right) 
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5. Function Code Table (down) 

The communication frame provides a port configuration window for setting the 

ports as shown in Figure �3-35  along with connect / disconnect buttons. 

 

Figure �3-35 Port Configuration Window 

Message transmition is used to send different commands to the modules. The 

command codes are listed in the “Function Code Table” at the bottom of the same win-

dow providing an easy access to all functions. These functions are listed and explained in 

the next section. 

If UART1 is connected, the UART1 terminal displays all messages coming from 

the control board. All functions executed in the control layer with their corresponding pa-

rameters and acknowledgment codes are displayed in the same frame as well. 

The IR terminal is the main terminal communicating with all modules. Any mes-

sage sent from modules will be immediately displayed on this terminal with the module 

ID number. Also all executed functions will be acknowledged form the module by trans-

mitting the executed function code. 

3.5.3 Functions 

There have been several useful functions implemented within the HexBot includ-

ing configuration settings, testing, localization and rotation. These functions are listed in 

Table �3-7 below: 
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Table �3-7 HexBot Functions 

Control Board Functions 

Code Function Arguments Comment 

1 JxOpen(i) i: Joint Number (1 to 6) Open a solenoid 

2 JxClose(i) i: Joint Number (1 to 6) Close a solenoid 

3 JxOpenAll() - Open all solenoids 

4 JxCloseAll() - Close all solenoids 

5 JTest(n,t) 
n: number of test 
t:delay between actuations 

Open all solenoids alternatively 

6 - - Not Used 

7 - - Not Used 

8 - - Not Used 

9 - - Not Used 

10 - - Not Used 

11 SxP(i) i: Side Number (1 to 6) 
Turn on a magnet (Positive 
pole) 

12 SxN(i) i: Side Number (1 to 6) 
Turn on a magnet (Negative 
pole) 

13 SxOff(i) i: Side Number (1 to 6) Turn off a magnet 

14 SxOffAll() - Turn off all magnets 

15 SPTest(n,t) 
n: number of test 
t:delay between actuations 

Turn on all magnets alternative-
ly (Positive pole) 

16 SNTest(n,t) 
n: number of test 
t:delay between actuations 

Turn off all magnets alterna-
tively (negative pole) 

17 - - Not Used 

18 - - Not Used 

19 - - Not Used 

20 TurnOffAll() - Turn off all actuators 

21 MCW(i,t1,t2,t3) 

i: rotation joint 
t1:delay before magnets start 
t2: delay before joints are ex-
changed 
t3: delay before magnets stop 

Mobile module Clockwise rota-
tion 

22 MCCW(i,t1,t2,t3) 

i: rotation joint 
t1:delay before magnets start 
t2: delay before joints are ex-
changed 
t3: delay before magnets stop 

Mobile module Counterclock-
wise rotation 

23 SCW(i,t1,t2,t3) 

i: rotation joint 
t1:delay before magnets start 
t2: delay before joints are ex-
changed 
t3: delay before magnets stop 

Substrate Clockwise support 

24 SCCW(i,t1,t2,t3) 

i: rotation joint 
t1:delay before magnets start 
t2: delay before joints are ex-
changed 
t3: delay before magnets stop 

Substrate Counterclockwise 
support 
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Communication Board Functions 

Code Function Arguments Comment 

25 IrSel (i) Side number (0-6), 0:center UART1 (IR) Channel Selection 

26 - - Not Used 

27 - - Not Used 

28 SideOnP (i) Side number (1-6) Positive Magnet On LED 

29 SideOffP (i) Side number (1-6) Positive Magnet Off LED 

30 SideOnAllP () - All Positive On LEDs 

31 SideOffAllP () - All Positive Off LEDs 

32 SideOnN (i) Side number (1-6) Negative Magnet On LED 

33 SideOffN (i) Side number (1-6) Negative Magnet Off LED 

34 SideOnAllN () - All Negative On LEDs 

35 SideOffAllN () - All Negative Off LEDs 

36 SidePTest(n,t) 
n: number of test 
t:delay between actuations 

Turn on all magnets alternative-
ly (Positive pole) 

37 SideNTest(n,t) 
n: number of test 
t:delay between actuations 

Turn off all magnets alterna-
tively (negative pole) 

38 JointOn (i) Joint number (1-6) Joint On LED 

39 JointOff (i) Joint number (1-6) Joint Off LED 

40 JointOnAll () - All Joint On LEDs 

41 JointOffAll () - All Joint Off LEDs 

42 RESERVED "*" Beginning of MSG - 

43 JointTest(n,t) 
n: number of test 
t:delay between actuations 

Open all solenoids alternatively 

44 LOn ()   All LEDs On 

45 LOff ()   All LEDs Off 

46 LCircle (n,t) 
n: number of test 
t:delay between lights 

Rotating LEDs 

47 LColor (n,t) 
n: number of test 
t:delay between lights 

Rotating LEDs 

48 LFlash1 (n,t) 
n: number of test 
t:delay between lights 

Flashing LEDS 

49 LFlash2 (n,t) 
n: number of test 
t:delay between lights 

Flashing LEDS 

50 LYref (i) i: CCW=1, CW=-1 Ref. Indicating LEDs 

51 - - Not Used 

52 - - Not Used 

53 - - Not Used 

54 - - Not Used 

55 - - Not Used 

56 LMCW(i,t1,t2,t3) 

i: rotation joint 
t1:delay before magnets start 
t2: delay before joints are ex-
changed 
t3: delay before magnets stop 

Mobile module Clockwise rota-
tion LEDs 

57 LMCCW(i,t1,t2,t3) 

i: rotation joint 
t1:delay before magnets start 
t2: delay before joints are ex-
changed 
t3: delay before magnets stop 

Mobile module Counterclock-
wise rotation LEDs 
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58 LSCW(i,t1,t2,t3) 

i: rotation joint 
t1:delay before magnets start 
t2: delay before joints are ex-
changed 
t3: delay before magnets stop 

Substrate Clockwise support 
LEDs 

59 LSCCW(i,t1,t2,t3) 

i: rotation joint 
t1:delay before magnets start 
t2: delay before joints are ex-
changed 
t3: delay before magnets stop 

Substrate Counterclockwise 
support LEDs 

60 - - Not Used 

61 - - Not Used 

62 - - Not Used 

63 - - Not Used 

64 - - Not Used 

65 Ref() - Set the module as the reference 

66 Localize() - Start a localization process 

67 CW(si,st1,st2,stt,mi,mt1,mt2,mt3) 
Similar to CW 
both for Substrate and Mobile 

One message for both modules 

68 CCW(si,st1,st2,stt,mi,mt1,mt2,mt3) 
Similar to CCW 
both for Substrate and Mobile 

One message for both modules 

69 - - Not Used 

70 - - Not Used 

71 - - Not Used 

72 - - Not Used 

73 - - Not Used 

74 - - Not Used 

75 - - Not Used 

126 RESERVED 
"~" UART Receive time exceeded 
time out indication 

- 

 

The message format to call and execute a function is shown in Table �3-8. 

Table �3-8 Message Format 

* B1 B2 B3 B4 B5 B6 B7 B8 B9 # 

Arguments 

B1 Message Code Number 

B2 si or i or n 

B3 st1 or t1 or t 

B4 st2 or t2 

B5 st3 or t3 

B6 mi 

B7 mt1 

B8 mt2 

B9 mt3 
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Each message starts with “*” and ends with “#”. B1 is the code number of the 

message and B2 to B9 are the arguments of the functions. 

3.6 Summary 

The implementation of HexBot was discussed in details in this chapter. Mechani-

cal design, electrical system, processing unit and the graphical user interface were ex-

plained. Physical specification of the implemented module is as follow:  

Each HexBot is a hexagonal module with a side of 78mm and a height of 110mm. 

The weight of each part and the module is measured and tabulated in Table �3-9. 

Table �3-9 Weight of HexBot Components 

Item Qty Weight (g) Total (g) 

Magnet + Support 6 56 336 

Solenoid + Support 6 23 138 

Power Pins 6 2 12 

Ball Transfer Units 3 42 126 

Mechanical Layer 1 4 4 

Power Board 1 79 79 

Drive Board 1 99 99 

Control Board 1 53 53 

Communication Board 1 100 100 

Total 947 



Chapter 4 – Reconfiguration Planning 79 

 

 

   Chapter 4 

 4 Reconfiguration Planning 

 

This chapter details the control algorithm used for the transformation of the global 

shape of the system form an arbitrary initial configuration to a desired goal configuration. 

Although each module of the system may have very limited motion, a huge col-

lection of these modules causes the overall system to have numerous degrees of freedom. 

Consequently, to achieve the unique potential of MSRRS, the distinct and complicated 

challenge of path planning for a large number of independent modules shall be overcome. 

The reconfiguration planning should determine the sequence of individual module 

movements that transforms the shape of the system from an initial configuration to a de-

sired goal configuration in a preferably optimal manner while enforcing several con-

straints and considering the kinematic model of the modules. 

1. Optimality in MSRRS may be: 

• Minimizing the number of module movements 

• Minimizing the overall reconfiguration time 

• Minimizing the energy consumption during reconfiguration 
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In this work the effort has been done to minimize the number of module move-

ments and as will be explained in section 4.4.2, approximately, this choice will as well 

minimize the total energy consumption during reconfiguration. 

2. The following primary constraints are considered for the reconfiguration planning 

which are further explained in section 4.2.1: 

• Avoid collision 

• Maintain connectivity 

3. Assumptions of the kinematic model are also specified in section 4.2.3. 

In this work the reconfiguration planning problem is considered for a limited 

number of modules as the algorithm incorporates a centralized path planner; however, the 

scalability issues and techniques to move towards a decentralized path planning are ex-

plained and discussed in section 4.4.1. 

4.1 Preliminaries 

4.1.1 Environment 

In order to plan the paths for modules to move and reconfigure the shape of the 

system, the environment in which this motion is taking place has to be studied. The main 

environmental properties are as follow: 

• Discrete vs. Continuous 

• Static vs. Dynamic 

• Deterministic vs. Stochastic 

• Fully observable vs. Partially observable 

• Episodic vs. Sequential 

Let’s briefly examine the environmental properties of MSRRS.  

Discrete or continuous: Finite number of actions and discrete states leads to a dis-

crete environment. 

Static or dynamic: Parallel actuation of several modules at a time means a dynam-

ic environment; in other words, the environment will not remain unchanged till a specific 

module takes an action. However, it is possible to have serial execution for module 
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movements and consider the environment static which comes at a cost of more reconfigu-

ration time.  

Deterministic or stochastic: The environment can only be considered determinis-

tic, if there are no uncertainties, i.e. full control over the environment, no failures during 

movement and etc. which is not the case in MSRRS. 

Fully or partially observable: Since this work addresses reconfiguration planning 

for limited number of modules, the environment can be considered fully observable. 

However in general case of MSRRS the environment is partially observable. Thus section 

4.1.5 demonstrates an extension of the utilized tool that overcomes this limitation.  

Episodic or sequential: Module movements have long term effects and each 

movement depends on movements performed earlier; therefore, the environment is se-

quential.  

4.1.2 Reinforcement Learning 

There are generally three types of learning:  

• Unsupervised Learning: Decision making based on observations only with no 

feedback 

• Reinforcement Learning: Decision making based on observation and only a scalar 

evaluative feedback such as a reward function 

• Supervised Learning: Decision making based on observation and a detailed feed-

back specifying the exact error 

Considering the environmental properties of MSRRS, reinforcement learning is 

chosen to act as the basic platform for the reconfiguration planning. For a rich and excel-

lent introduction to reinforcement learning, the reader is referred to the textbook (Sutton 

& Barto, 1998). The main ideas and key features are summarized below. 

• Reinforcement leaning tries to optimize the performance of the system in uncer-

tain environments by decision making based on direct interaction with environ-

ment, without relying on external supervision 

• The learner is not told which actions to take, but instead must discover which ac-

tions yield the most (long term) reward 
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• In the most interesting and challenging cases such as MSRRS, actions affect not 

only the immediate reward but also all subsequent rewards 

Looking at MSRRS in the context of reinforcement learning, each module is con-

sidered as an agent who is planning to reach its goal in an optimal manner. Therefore, the 

agent and its environment interact over a sequence of discrete time steps as illustrated in 

Figure �4-1. 

 

 

 

 

 

 

 

At each discrete time step t the agent interacts with the environment based on the 

followings:  

1. Observe the environment    state: st 

2. Make a decision and execute an action action: at 

3. Receive the resulting reinforcement   reward: rt+1 

4. Observe the resulting state    state: st+1 

Consequently, the overall sequence of discrete actions will look as in Figure �4-2. 

 

 

4.1.3 Markov Property 

In causal systems the response of the system at time step t can depend on all the 

actions that has taken place up to time step t-1; therefore, the state of the system can only 

be represented if the complete history of actions is available. 
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(A module) 
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(Complete system: Physical environment + all modules) 
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Figure �4-1 Reinforcement Learning Model 

St St+1 St+2 
at at+1 at+2

rt+1 rt+2 

Figure �4-2 Sequence of Actions in Reinforcement Learning 
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On the other hand, if the state could somehow retain all previous actions, it is 

called a Markov and its environment has a Markov Property; therefore in a Markovian 

World, the response of the system at time step t depends only on the state and action at 

time step t-1. 

This means that knowing the current state and action in an environment with a 

Markov property will enable predication of the next state and its expected reward. As a 

result of iteration, in a Markovian world, all future states and expected rewards can also 

be predicted by knowing only the current state and actions which are being taken. 

The Markov property is a key concept in reinforcement learning since decisions 

are assumed to be a function of the current state only. 

4.1.4 Markov Decision Process (MDP) 

MDP is considered as the main framework for studying planning under uncertain-

ty. It can be applied to fully observable environments with Markov properties which are 

history-independent and stationary; in other words, they have what are so called Marko-

vian Dynamics to be modeled as MDPs.  

Now, considering a transition model T(s, a, s’) which specifies the outcome prob-

abilities for each action at each state (i.e. probability of reaching state s’ if action a is tak-

en at state s), an MDP will be formulated as 4-tuple <S, A, T, R> with:  

• A set of states: S 

• A set of legal actions at each state: A(s) 

• A set of transition probabilities: T(s, a, s’) 

• A set of expected rewards: R(s) 

Given an MDP, an agent objective is to learn a policy �(s) which specifies what 

action shall be taken at state s that maximizes the expected reward. Note that in general 

case for MDPs, policies can also be considered non-deterministic, i.e. �(s, a) meaning the 

probability of choosing action a in state s. 
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4.1.5 Partially Observable MDP (POMDP) 

The main difference between MDP and POMDO is whether the current state is 

fully observable or not. The reader is referred to (Cassandra, Littman, & Kaelbling, 2003) 

for a comprehensive introduction to POMDPs and their solution techniques. 

MDP requires the state to be completely known. However, in some cases, like 

general MSRRS, each agent can observe only part of the state which is available in its lo-

cal neighborhood. In such cases, full observability of the state is not a valid assumption 

and each agent should learn to behave in a partially observable environment. 

In POMDPs we will need to introduce a Belief State that represents the world 

state with uncertainty due to partial or imperfect information, in addition to an observa-

tion model which specifies the probability of each observation at each state: 

• Observation model: O(s’, a, o) 

• Belief state: B(s)  

In this case the fully observable world state is replaced with an observation model 

and a belief state; however, since the world state is still no longer available, the entire his-

tory of the process needs to be stored. Nevertheless, it can be shown that maintaining a 

probability distribution over all of the states provides the same information as maintain-

ing the complete history.  

Therefore, the agent will initially hold an internal belief state b, once an action a 

is taken and an observation o is made, the agent will use a state estimator (SE) to update 

the belief state from b to b’ as shown in Figure �4-3. 
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Figure �4-3 Partially Observable MDP Model 
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4.1.6 Multi-Agent MDP (MMDP) 

As can be implied form the name, MMDP refers to environments in which more 

than one agent is trying to make decisions and such environments are usually modeled as 

multi-agent MDPs. 

In MMDPs, single-agent MDP techniques can no longer be applied since the de-

cision of other agents and their consequent actions are directly affecting the environment 

state and therefore, such an environment cannot be considered static. In effect, the actions 

taken by other agents influence the decision and action taken by the agent. 

In a single-agent MDP, the environment is normally assumed to be fully observa-

ble and the goal is to find an optimal policy that maximizes the agent expected rewards. 

However, in a multi-agent MDP, the environment is usually partially observable 

to each agent and the goal is to find an optimal policy that maximizes the expected global 

rewards for the agent team. 

The idea of a single-agent MDP can be simply (but inefficiently) extended to the 

multi-agent MDPs as follow: 

MMDP will be formulated as 5-tuple <N, S, A, T, R> where:  

• A set of Agents: N 

• A set of states: S 

• A set of legal joint actions at each state: A 

• A set of transition probabilities: T 

• A set of expected rewards: R 

The main drawback with this formulation is that the number of the states and ac-

tions are dramatically increasing as the number of agents in the system increases. 

4.2 Constraints and Assumptions  

In order to proceed with the problem formulation and explain how the algorithm 

works a number of constraints and assumptions which are considered shall be addressed. 

The enforced constraints are the primarily constraints required for any reconfigu-

ration planning algorithm to generate paths for the mobile modules in our MSRRS. How-
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ever, the assumptions are made based on the technique used in this work to attack the 

problem of the reconfiguration planning.  

Note again that in this work the reconfiguration planning problem is addressed for 

only a limited number of modules and scalability issues and techniques are discussed in 

section 4.4.1. 

4.2.1 Constraints 

Constraints which are mainly due to the physical model of the MSRRS need to be 

considered for the motion of each module in the system and include the following: 

1. Maintain Connectivity 

2. Avoid Collision 

The first constraint prevents global disconnection which is imposed based on the 

concept of MSSRS and ensures that every module remains connected to at least one other 

module during its motion.  

Besides, there exists one module physically fixed to ground to specify the initial 

coordinates and orientation of the complete system. The importance of this fix module 

will become more obvious in section 4.3.  

Figure �4-4 illustrates an example for connectivity constraint. In this figure the 

blue module is fixed permanently to ground and the motion of the green module can vi-

olate the connectivity constraint. 

The second constraint ensures that the motion of a module will not cause any col-

lision with other modules. This constraint can also be extended to avoid collision with 

obstacles in the environment as explained in 4.3.  

Figure �4-5 illustrates an example for the collision constraint. As can be seen from 

this figure, motion of the green module to M’ will cause collision with M. In fact, rotation 

of the green module around point O, requires mapping of vertices [a b c d] to new loca-

tions [a’ b’ c’ d’] which violates the collision constraint since during this motion vertex c 

will collide with vertex d’ of M.  
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Figure �4-4 Connectivity Constraint 

 

Figure �4-5 Collision Avoidance Constraint 

4.2.2 Markov Assumptions 

In order to use MDP as the main framework to formulate our problem the follow-

ing assumptions about the nature of the environment shall be made:  

• Stationary Environment 

It is assumed that the environment does not change over time  

• Fully Observability 

 It is assumed that the agent has complete information about the state 

• Markovian Transition 
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 It is assumed that transitions are Markovian, i.e. the next state of the envi-

ronment depends only on the current state and the current action being 

taken by the agent 

4.2.3 Kinematic Model Assumptions 

Modules kinematic assumptions are quite similar to those of the other researchers 

who have considered hexagonal modules as the base of their algorithms, such as (Jennifer 

E. Walter, 2002): 

• Each module is a rigid hexagon of the same size as the cells of the plane and al-

ways occupies exactly one of the cells. 

• One module is connected to the fixed base. 

• Each module can move maximum of one lattice space per time step.  

• Modules can move into spaces which are not occupied by other modules.  

• One module can lift only itself and cannot carry other modules. 

• The only motion allowed for a module is the rigid rotation around a vertex it 

shares with some immobile substrate in the configuration. 

• Modules do not fail during rotation even though a pre-specified rotation timing is 

not guaranteed.  

• After initial localization, each module would know at all times: its location, its 

orientation and also which of its neighboring cells are occupied by other modules. 

4.2.4 Initial and Goal Configuration Assumptions 

There are basically four main assumptions about the initial and goal configura-

tions:  

1. Each module in the configurations is at least connected to one other module. 

2. At least one module is connected to the fix base. 

3. Common modules in both configurations do not need to move. 

4. Configurations are not immobile. 



Chapter 4 – Reconfiguration Planning 89 

 

Assumptions 1 and 2 are pretty clear from the concept of MSRRS. Assumption 3 

indicates that there is no need for path planning for common modules. Assumption 4 is 

explained by (Nguyen, Guibas, & Yim, 2001) as following: 

A configuration is said to be immobile when no module is able to move without 

violating the motion constraints. Therefore, if the initial or final configuration is immo-

bile, it will be impossible to find a motion plan between the two configurations. Figure 

�4-6, illustrates an immobile configuration where any module movement will violate the 

constraints. 

 

Figure �4-6 Immobile Configuration 

4.3 Problem Formulation 

This section explains the details of the reconfiguration planner algorithm.  Since 

we are dealing with a homogeneous MSRRS the algorithm therefore rely on module in-

terchangeability.  

Before moving into details, let’s review the problem once again:  

The reconfiguration planning algorithm requires to determine the sequence of in-

dividual module movements that transforms the shape of the system from an initial con-

figuration to an arbitrary desired goal configuration. Figure �4-7 illustrates an example of 

such a problem. 
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This problem could be formulated directly using an MMDP approach. However 

such a formulation would be an extremely inefficient method since the number of states 

and actions increases tremendously with the number of modules.  

Therefore in this work an alternative method is presented which is based on a hie-

rarchical multilayer approach. 

4.3.1 Reference Frame and Coordinate system 

Let’s first establish the coordinate systems and the reference frame for an individ-

ual universal module.  

As shown in Figure �4-8, the plane is divided into equal hexagons and the coordi-

nate system is chosen to be similar to that of other researchers working with hexagonal 

modules such as (Chirikjian G. , 1994). 

Figure �4-9 illustrates the labeling considered for each individual universal mod-

ule. After each rotation, modules update their status to keep the same orientation and 

labeling for consistency and ease of programming. 

The reference numbering shown in Figure �4-9 is referred to in all relevant codes 

used in either in Matlab or Microcontroller attached in appendices. 

 

 

? 

Figure �4-7 Transformation from an Initial Configuration to a Goal Configuration 
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Figure �4-8 Coordinate System 

 

 

4.3.2 MSRRS Representation 

A complete MSRRS can be represented as a set where each module in the system 

corresponds to an element of this set. In each configuration, coordinates of modules spe-

cify those elements. For example, Figure �4-10 illustrates a system consisting of four 

modules. 

X

Y

(0,0)

(1,0)

(1,1)

(0,1)

Figure �4-9 Reference Joint and Side Numbering 
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Figure �4-10 System Representation 

This configuration can be represented as: C1={(1,0), (2,0), (3,0), (3,1)}. Using 

this representation, set theory can be utilized to provide useful information about differ-

ent configurations. For example, C1�C2 can specify common modules in two configura-

tions. 

The example in Figure �4-10 can also be represented in an array format as:  

C1 = �� � � �� � � �� � � ��  
where in this case modules are represented by one and free locations are the zero 

elements of the array.  

The array format representation is very similar to the set representation and can 

provide the same information. In this work array representation was proffered since it 

was easier to manipulate arrays in Matlab.  

4.3.3 Hierarchical Multilayer Approach 

The ground has now been paved to proceed with the algorithm. The algorithm is 

designed in five layers as depicted in Figure �4-11. In this approach, upper layers decom-

pose the problem into sub-problems solvable by lower layers. The functionality of each 

layer is briefly explained as follow: 

• Layer 1 is responsible to obtain the initial configuration of the modules through 

localization. It is also responsible to obtain the desired goal configuration from 

higher level controllers which in this work is provided manually through user  
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• Layer 2 is responsible to find which gaps shall be first covered and which mod-

ules shall be first moved 

• Layer 3 is based on a heuristic method to find the corresponding module for each 

gap 

• Layer 4 is responsible to plan the path for each individual module 

• Layer 5 is responsible to transfer the required motion into available module actua-

tions 

 

 

Layers 1 to 3 are considered as Global Flow Planners since they are dealing with 

the complete system, while layers 4 and 5 are considered to be Local Motion Planners as 

they are dealing with only an individual module. 

Note that the combination of the heuristic method used in layer four in addition to 

the optimization method used in layer five yields a Near-Optimal solution for the recon-

figuration problem. 

Layer 1: Initial and Goal States (Localization) 

Layer 2: Potential Voids and Mobile Electrons (Constraints) 

Layer 3: Void Propagation (Heuristic) 

Layer 4: Mobile Electron Path Planning (Optimization) 

Layer 5: Mobile Electron Motion (Actuation) 

Figure �4-11 Hierarchical Multilayer Approach 
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4.3.4 Layer 1 – Obtain Initial and Goal States 

Let’s start with the first layer. Figure �4-12 illustrates the importance of the task 

assigned to this layer. 

 

 

 

 

 

 

 

 

 

As can be observed from the general picture in Figure �4-12, this layer interacts 

with the higher level controller to get the desired goal configuration which is feed ma-

nually in our case. At the same time this layer interacts with the physical platform to ob-

tain the current status of the modules in the system. This requires all modules to be loca-

lized and ready to send their location to this layer.  

Note that for the reconfiguration planner, orientation of the modules does not mat-

ter since all modules are symmetrical and following the reference orientation as shown 

earlier in Figure �4-9. However, orientation of each individual module is important for the 

module itself in order to know its corresponding sides and joints to actuate during its mo-

tion. 

As a result a localization routine is essentially considered necessary for all mod-

ules to know the following at all times: 

1. Their location for the reconfiguration planner 

Environment Required Task 

MSRRS 

Configuration Required 
(based on task and environment) 

Reconfiguration Planner 

Physical Platform 

Figure �4-12 MSRRS Task Handling 
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2. Their orientation for the actuation required during their motion 

Localization 

When the system initially starts, no module knows its location and orientation. 

Therefore a localization routine is executed to provide modules with this information.  

The process starts with the module fixed to the base, which is the only module in 

the configuration knowing its location and orientation as shown in Figure �4-13. 

 

Figure �4-13 Localization Process (0) 

This module tries to localize its neighbor modules. Once neighbor modules are 

localized, they similarly try to localize their neighbor modules and this process continues 

till all the modules in the configuration are localized. For example, the configuration 

shown in Figure �4-13 it takes 3 steps for all the modules to be localized as shown in Fig-

ure �4-14 and Figure �4-15 

Now, let’s look at more localization details. The following two main features of 

the physical platform are required for the localization purpose: 

1. Optical Switches (installed on all sides of the modules) 

2. IR (infrared) Communication with Multiplexer (communicating to all sides) 

For example in Figure �4-13, the localize module at location (0,0) would know the 

existence of non-localized neighbors at sides 1, 3 and 6 through the use of its optical 

switches; therefore, it tries to multiplex the serial communication between these sides and 

1
2

3

5

(0,0)
6 4



Chapter 4 – Reconfiguration Planning 96 

 

informs them about their locations and orientations by sending them messages in the 

form of MSG1. MSG1 is an 8 byte message that looks like the following:  

MSG1: * ± X X ± Y Y S 

The message starts with a “*” and sends the X coordinates, Y coordinates and 

orientation of the neighbor module (S). Note that in this message format the coordinate 

system is limited to a 199 by 199 cells and can be easily expanded if required.  

This process is done through refereeing to the look-up table shown in Table �4-1. 

Table �4-1 Relative Coordinates and Orientations 

Module (x,y) Side s Neighbor: X Neighbor: Y Neighbor Side: S 

1 X =  x - 1 Y = y+1 S = 4 (s+3) 

2 X = x Y = y+1 S = 5 (s+3) 

3 X = x+1 Y = y S = 6 (s+3) 

4 X = x+1 Y = y-1 S = 1 (s-3) 

5 X = x Y = y-1 S = 2 (s-3) 

6 X = x-1 Y = y S = 3 (s-3) 

 

For example in Figure �4-13, the localized module at (0,0) will process as follow: 

• Switch to side 1 and send: * - 0 1 + 0 1 4 

• Switch to side 3 and send: * + 0 1 + 0 0 6 

• Switch to side 6 and send: * - 0 1 + 0 0 3 

After this stage the localization status will become as depicted in Figure �4-14. 

 

Figure �4-14 Localization Process (1) 
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Using optical switches at this stage, modules (-1,1) and (-1,0) and (0,0) will find 

their neighbors fully localized and therefore will not send any messages. However, mod-

ule (1,0) will find a non-localized module at side 3 and tries to localized it. The next two 

steps of localization are shown in Figure �4-15.  

 

 

a) Second localization step 

 

 

b) Third localization step 

Figure �4-15 Localization Process (2, 3) 

Let’s now look at localization timing in our platform. MSG1 consists of 8 bytes 

and each byte requires 10 bits in UART (1 start bit, 8 data bits, 1 stop bit). Therefore 

MSG1 requires 80 bits to be transferred.  

Using the internal 1MHz clock of the Atmega162, the circuit allows a maximum 

transmission rate of 62500 b/s. Therefore the transmission of each MSG1 through each 

side would take: 

����	
���
 � ������� � ��������� � ������ (4.1) 

Let’s allow a gap of 0.38ms after each MSG1for safely switching the multiplexer 

to the next channel. Therefore the transmission of MSG1 to all six sides of the module 

would take:  

����	
�����
 � ������ � ����� � ���� (4.2) 

Note that the delay of 0.38ms is mainly due to the limitation imposed by the mul-

tiplexer (CD4051) requiring 240ns for switching while the microcontroller requires only 

2 clock cycles = 2*8 = 16ns 

As can be seen from (4.2) it will take each localized module maximum of 10ms to 

send MSG1 to all its neighbors.  
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Non-localized modules should listen to each of their existing neighbors for at least 

10ms to ensure the reception of the message. Similarly, a gap of 0.38ms is allocated for 

the multiplexer to switch to the next channel after each receptions is over. Therefore, for 

non-localized module with a localized neighbor, it will take a maximum of: 

����	
�
�
� 
 � ���� � ����� � ������ (4.3) 

As can be seen from (4.3) it will take each non-localized module maximum of 

62.3ms to receive MSG1 from any of its neighbors.  

For example the maximum localization timing for Figure �4-13 can be calculated 

as follow: 

• Time step 1: 62.3ms for modules (-1,1), (1,0) and (-1,0) 

• Time step 2: 62.3ms for module (2,0) 

• Time step 3: 62.3ms for module (3,0) 

As can be seen the configuration requires 3 time steps which is nearly 187ms to 

get localized.  

4.3.5 Layer 2 – Potential Voids and Mobile Electrons 

Now that the desired goal configuration is obtained and the location of all mod-

ules and therefore the current configuration is known, it is possible to proceed to the next 

layer.  

Electrons are modules which exist in the current configuration but do not belong 

to the goal configuration. In contrast, voids are modules which exist in the goal configu-

ration but are not available in the current configuration. Figure �4-16 illustrates these defi-

nitions. 

Electrons and voids can be easily found by subtracting the two (current and goal) 

configurations as done in code “FindVE” attached in appendices. Now the task is to fill 

the voids with electrons.  
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a) Current configuration 

 

b) Desired goal configuration 

 

c) Electrons 

 

d) Voids 

Figure �4-16 Electrons and Voids 

However, at this point not all electrons can move since they may violate connec-

tivity constraint. At the same time, not all voids can be filled since they may not be con-

nected to the current configuration.  Therefore, we have to find out which electrons 

should be first moved and which voids should be first filled. 

• Mobile electrons are electrons which can move without violating the connectivity 

constraint (disconnecting the structure) or collision avoidance constraint.  

• Potential voids are voids that can be filled immediately with mobile electrons of 

the current configuration. 

Figure �4-17 illustrates mobile electrons (left) and potential voids (right) in our ex-

ample. 
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a) Mobile electrons 

 

 

b) Potential Voids 

Figure �4-17 Mobile Electrons and Potential Voids 

In Figure �4-17 the left figure displays mobile electrons in green at locations (-1,0) 

and (3,0) and an immobile electron in yellow at location (2,0). It’s clear that the yellow 

electron in this configuration cannot move since by moving it the module at location (3,0) 

will be disconnected from the configuration which violates the connectivity constraint. 

Likewise, in Figure �4-17 the right figure displays potential voids (in green) at lo-

cations (-1,2) and (1,2). It’s also clear that the yellow void at location (0,2) in this confi-

guration cannot be filled directly before a potential void is filled. 

The following point shall be noted at this stage:  

• The fix module to the base ensures overlapping of the two configurations (current 

with the goal). Therefore, it is not possible to have all the modules as electrons.  

• If the two configurations do not overlap and the algorithm is used for locomotion 

planning instead of reconfiguration planning (where there is no possibility of hav-

ing a fixed module), the locomotion between two configurations can be divided 

into intermediate stages where configurations actually overlap with each other. 

• It is not always the case that the number of potential voids and mobile electrons 

are the same. For example if we switch current and goal configurations in our ex-

ample, there will be three mobile electrons and two potential voids as shown in 

Figure �4-18. 

(0,0) 
(0,0) 
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a) Current configuration 

 

b) Goal configuration 

 

c) Electrons – Mobile electrons in green 

 

d) Voids – Potential voids in green 

Figure �4-18 Example of ME and PV 

Mobile Electrons 

For an electron to be mobile two conditions shall be satisfied:  

1) There shall be a free location in its neighborhood that the electron can move with-

out collision 

2) The motion of the electron shall not cause disconnection in the whole system 

As explained in 4.2.1, free locations with more than three neighboring modules 

cannot be filled without violating the collision avoidance constraint.  Therefore, the first 

criterion can be easily checked accordingly. 

The second criterion is thoroughly examined below. In fact, this part will provide 

us with a tool to check the connectivity constraint.  

Mobility of an electron can be checked through graph operations while moving 

one module at a time, i.e. the configuration is fixed elsewhere. The connectivity graph for 

MSRRS can be constructed by dedicating a node for each module and an edge for each of 

its neighbors.  Once the graph is constructed, all electrons can be considered mobile un-

less they are articulation points in the connectivity graph.  
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Articulation points (or cut vertices), are nodes that their removal will cause their 

neighbors to be no longer connected. In other words, the removal of articulation point in 

a graph will increase the number of connected components by breaking the graph into 

separate parts. In MSRRS, articulating points correspond to immobile electrons. A simple 

illustration is provided in Figure �4-19, Figure �4-21 and Figure �4-20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure �4-19 Graph Representation 

Figure �4-21 Articulating Nodes 
Figure �4-20 Connectivity Graph 
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In Figure �4-19, the nodes' IDs are assigned in a linear indexing format starting 

from 1 the upper left module and ending with 48 on the lower right module. As can be 

seen in Figure �4-20, each module is assigned to a corresponding node in the connectivity 

graph and each neighbor is considered as an edge.  

As can be seen in Figure �4-21, in this configuration, all modules are mobile ex-

cept those red modules at articulating nodes 20, 29, 35 and 40 which are immobile.  

Note that the codes HexCG and HexCGT attached in the appendices are used to construct 

and draw the connectivity graph in addition to finding the articulating nodes. For a good 

introduction to graphs theory, the reader is referred to (Kocay & Kreher, 2005) and 

(Buckley & Lewinter, 2003). However, for the sake of completeness, a simple method of 

finding articulating nodes is briefly presented below. 

The algorithm to find articulating nodes is divided into two stages: 

a) Given a graph, find the number of connected components 

b) Given a graph, find articulated nodes. 

Part a - Number of connected components in the graph 

The number of connected components in a graph is equal to the number of zero 

eigenvalues of the Laplacian matrix of the graph. Once again for additional information 

the reader is referred to (Kocay & Kreher, 2005). 

Laplacian (or Kirochhoff or Admittance) matrix L for a graph G with n nodes is a 

square n*n matrix representation of G that with indices li,j as follow: 

!"#$ � % &'(�)"� ��������* " � $������������������������������������������������+����������������������* " , $�-).�)"�"��-.$-/0)���1�)$��������������������������* 2�3045"�0�������������������������������������
6 (4.4) 

Figure �4-22 presents a simple demonstration for Laplacian matrix. As can be seen 

in this figure the eigenvalue of L has only one zero, meaning that there is 1 connected 

component in this system. 
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Figure �4-22 Laplacian Matrix Representation 

Part b – Find articulated nodes of a graph 

This is done simply using Part a. First a node is chosen, and then there is a check 

to see if the node removal increases the number of connected components, i.e. the node is 

articulated. 

Just to illustrate a combinational example for Part a and Part b, Figure �4-23 dis-

plays the same graph discussed in Figure �4-19 but an immobile electron at location 29 is 

removed. It can be seen that the number of connected components is now increased from 

1 to 2. A code Mobile used to mark electrons as mobile is also attached in appendices. 

 
 

Figure �4-23 Example of a Disconnected Configuration 

6

7 10

8

9

10

14

17

20

21

22

23

26

34

35

39

40

41

1(6) 

2(7) 

3(10) 



Chapter 4 – Reconfiguration Planning 105 

 

Potential Voids 

Potential voids are much easier to find. In fact, in order to investigate wheatear a 

void is a potential void or not, all its six sides are checked. If there exists at least one im-

mobile module in the neighborhood of the void module, then the void is marked as a po-

tential void and can therefore be filled immediately. The code PV that finds potential vo-

ids is also attached in appendices and Figure �4-18 illustrates and example of potential vo-

ids. 

4.3.6 Layer 3 – Void Propagation 

Since the MSRRS is considered to be homogeneous, it is not really clear which 

mobile electron should fill which potential void. Therefore, void propagation provides a 

simple heuristic technique to find a corresponding mobile electron for each void.  

Void propagation technique works as follow: 

1) Mark voids which can be filled as potential voids (PV) in the goal configuration 

2) Mark electrons that can move as mobile electrons (ME) in the initial configuration 

3) Each potential void (i) in the configuration transmits MSG2(i) to all its neighbors 

4) At each time step of reception of MSG2(i), each location transmits MSG2(i) to all 

its neighbors, if the location is empty, has an immobile substrate (IS), has not re-

ceived MSG2(i) earlier, and it is not a potential void 

5) MSG2(i) will be erased from all locations when reaches a mobile electron  

Note that MSG2 includes the potential void ID (assigned dynamically to modules 

and is the x and y coordinates of the module) in addition to the time step (id,t). The tech-

nique is applied to the previous example in Figure �4-16, and the messages are displayed 

in Figure �4-24.  

As can be seen in Figure �4-24, the potential void at location 12, i.e. PV(12) forms 

a message (12,0) and in the first time step increments the time of the message and trans-

mits the message (12,1) to all its immediate neighbors; however only two of them:  

• Are empty locations 

• Are not potential voids 

• Have immobile substrates 
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• Have not received a message from PV(12) before 

 

a) Initial configuration 

 

b) Desired configuration 

 

c) Electrons – Mobile electrons in green 

 

d) Voids – Potential voids in cyan 

 

e) Void propagation – IS: yellow, PV: cyan, ME: green 

Figure �4-24 Void Propagation 

Therefore those two increment the time step in the message and transmit the mes-

sage (12,2) to all their neighbors. This process continues till the message (12,3) reached 

the mobile electron at location 14, i.e. ME(14). At this time all messages with i`=12 will 

be erased from all locations since PV(12) has found its ME(14). Similarly, PV(23) finds 

its corresponding ME(34). 

HexVP is a function written for void propagation and is available in appendices. 

Now the problem is reduced a motion planning for a ME to a PV and is forwarded to the 

next layer. 

4.3.7 Layer 4 –Mobile Electron Path Planning 

This layer is based on an MDP that can be used for trajectory planning of a single 

module (ME) to find a traversable path form an initial location to a goal location (PV).  

The complete process mainly consists of two parts:  

(12,0)

(12,1)

(12,2)

(12,3)

(12,1)
(23,1)

(23,0)

(23,1)

(23,2)
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• Formulating the problem as an MDP 

• Implementing a policy search  

MDP Formulation 

As explained earlier in 4.1.4, MDP is considered as the main framework for stud-

ying planning for sequential decision processes under uncertainty and can be applied to 

fully observable environments with Markov properties.  

MDP is formulated as 4-tuple <S, A, T, R> and therefore the followings are re-

quired:  

a) A set of states: s � S 

b) A set of legal actions at each state: a � A(s) 

c) A set of transition probabilities: T(s, a, s’) 

d) A set of expected rewards: r � R(s) 

Let’s proceed with finding S, A, T and R for the MSRRS presented in this work. 

Note that in this layer, it is assumed that the environment is fully observable. For scala-

bility issues refer to 4.4.1. 

a – Set of states 

Each mobile electron or an empty location with at least one and not more than 

three immobile substrates is considered as a state (s) of the current configuration. Mobile 

electrons are therefore, allowed to be located only in the states. At this stage, fixed physi-

cal structures in the environment such as walls can also be eliminated from the set of 

states to avoid collisions. 

In order to find available state at each configuration (C), the neighbors of each 

module are checked. If the neighbors are not currently occupied and do not have more 

than three substrates, they will be marked as states. Figure �4-25 illustrates the states (in 

magenta) of a given configuration (C) with mobile electrons (in green). A simple code 

(MDP_State) to find the state of an arbitrary configuration is also attached in the appen-

dices. 
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Figure �4-25 States of MDP 

b – Set of legal actions at each state 

For each arbitrary s � S, there are mainly three possible actions in our platform: 

• Stay in its location 

• Rotate clockwise 

• Rotate counter clockwise 

The first action is pretty clear and the resulting location will be the same as the in-

itial location. However the resulting locations of the rotations depend on the center of ro-

tations which is the pivot point or the joint of the module.  

In order to find the resulting locations of the rotations, first the neighboring mod-

ules are considered and those of which that are unoccupied (avoid collision) and have 

immobile substrate (maintain connectivity) will be chosen as the resulting locations. 

Figure �4-26 illustrates all available actions (in black) of the mobile module lo-

cated in states (s). The centers of rotations are marked with red dots and the blue dot is an 

example of a wrong center of rotation that violates the constraints. 

As can be noticed the three actions of a mobile module located in state (s) are 

simply the rotations in addition to staying in its location. A simple code MDP_Action to 

find possible actions of a state is provided in appendices. 

 

State (C) 
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Figure �4-26 Available Actions of an State 

d – Set of transition probabilities 

Transition model T(s, a, s’) specifies the outcome probabilities for each action at 

each state (i.e. probability of reaching state s’ if action a is taken at state s). This work as-

sumes no module failure and therefore considers all probabilities 1. 

d – Set of expected rewards 

Each state in the configuration should be correlated to a reward value. In this 

work the following rewards criteria is considered: 

a) Reward of 1 for the potential void (goal location) 

b) Reward of -1 for other mobile electrons (avoid collision) 

c) Reward of -0.04 for all other states (penalty for not moving) 

Note that the second criterion can also be used to avoid collisions with dynamical-

ly moving obstacles in the environment 

A simple code MDP_Reward is attached in appendices that can form the reward 

function for each state. Figure �4-27 illustrates the reward function for moving a mobile 

electron form (s1) to the potential void (s2). As can be seen the reward function has a val-

ue associated to each state.  

Actions(s) 

s 
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a) Current configuration – ME in 

green 

 

b) Goal configuration – PV in green 

 

c) Immobile substrate – States in 

magenta 
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d) Formulated reward function 

Figure �4-27 States Reward Function 

Policy Search 

Policy is a solution of an MDP problem, i.e. given an MDP, each module objec-

tive is to learn a policy �(s) which specifies what action shall be taken at each state s. In 

other words, a policy associates a decision with every location that the module may 

reach.  

An optimal policy �*
(s) is a policy that its execution will maximize the expected 

sum of future rewards during the sequence. 

s1 

s2 
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Reader is referred to (Russell & Norving, 2003) for an elaborative explanation 

and different techniques used to find optimal policies. Below, only the concepts needed 

toward the requirement of this work are summarized. 

Utility of a sequence 

Let’s say a mobile electron chooses a path to reach its corresponding potential 

void that passes through the following states sequence: {s0, s1, s2, …,sn}. There could be 

another path that will also take the mobile electron from its location to its goal location 

and passes through other states {s’0, s’1, s’2, …,s’n}. Which path shall the mobile electron 

take?  

In order to answer such a question a performance measurement tool for a se-

quence of actions needs to be defined. Let’s define the utility of a sequence of states as 

follow: 

C�
D � �E�F# �	# �G# H # �IJ� � ;��F� � ;��	� � ;��G� �K� ;��I� (4.5) 

As can be seen in equation (4.5), the utility of the sequence is the sum of all its 

states’ rewards. Also it can be noted that in such a definition the performance of the 

module is considered to be stationary and has no time dimension. 

The fact that the utility of the sequence is simply the additive rewards of each 

state of the sequence can be problematic in many cases. Especially the problem arises 

when the number of states increases and Useq tends to grow rapidly and may even tend to 

infinity if the policy is improper i.e. does not guarantee reaching the goal state. Therefore 

a better representation for those cases is to use discounted rewards as follow:  

C�
D � �E�F# �	# �G# H J� � ;��F� � L;��	� � LG;��G� � K (4.6) 

where L is the discount factor and it is a real number in the range of [0 1]. In this 

case, the utility of the sequence will be bounded as shown below: 

C�
D � �E�F# �	# �G# H J� �MLN;��N�
�

NOF
P ;�QR� + L (4.7) 

where Rmax is the maximum reward value of the states. Note that the discount fac-

tor L comes with some other interesting advantages, similar to the interest rate S	T + �Uas 

follow: 
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a) It specifies the diminishing value of the future rewards; in other words, it weighs 

more the current state and in weights less the future states 

b) Similarly it can sometimes be used to determine how far the module is willing to 

see and value the future rewards 

c) It is also similar to the diminishing preferences of human and animal overtime 

Optimal policy 

Given the utility of the sequence definition and its equation (4.7), the optimal pol-

icy should satisfy the following: 

VW �X �-4:�-YV �Z �MLN;��N�
�

NOF
[V�

X
 (4.8) 

This can be read as follow: Optimal policy is a policy that its execution will max-

imize the expected sum of discounted rewards of its sequence. 

Value function 

Value function (also called utility function or cost-to-go function) is associated 

with each policy and its value at each state is the expected utility of the state sequence 

encountered when a policy is executed starting from that state. Therefore the value func-

tion definition is based on the utility of state sequences as shown below: 

C\��� � Z �MLN;��N�
�

NOF
[��F � �� (4.9) 

Note that in this definition U(s) is actually the long-term total reward from s on-

wards. This is in opposition to R(s) which is the short-term reward for being in state s.  

Just to illustrate the concept, let’s refer back to our example in Figure �4-28 where 

the mobile electron in state s1 is planning its path towards its corresponding potential void 

in state s2 and it should not collide with the other mobile electron in state s3 acting in the 

same environment. The normalized value function is calculated for 0.7 discount rate us-

ing the value iteration technique which will be explained shortly and the result is dis-

played in Figure �4-28. 
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Figure �4-28 Value Function of States 

Note that the more the states are close to s2 and far from s3, the cost-to-go value is 

less and therefore the value function is more. Having the value function, the agent can se-

lect an action that maximizes its state value function. In other words:  

VW��� �X �-4:�-Y- �M]^�# -# � �_C�� ���

�� X
 (4.10) 

The definition of the value function presented in equation (4.9), and the optimal 

policy presented in equation (4.10), will imply the following: if a module is following an 

optimal policy, then the value function at its state is the immediate reward for that state in 

addition to the maximum expected (discounted) value of the next state. This is known as 

the Bellman equation as follow: 

C��� � ;��� � LX ��-Y- �M]^�# -# � �_C�� ���

�� X
 (4.11) 

Value iteration 

Several techniques can be used to compute an optimal policy given an MDP prob-

lem. Value iteration as one of dynamic programming (DP) techniques is used in this work 

s1 

s2 s3 
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to find the optimal policy for each module. This algorithm simply works based on solving 

the Bellman equation in an iterative manner. Note that the Bellman equation is a non-

linear equation. For n states, there will be n equations and n unknown to be solved for. 

In other words, the value iteration algorithm iteratively solves equations relating 

the utilities of each state to that of its neighbors simultaneously, as follow: 

a) Star with an arbitrary initial values for the states 

b) Calculate the right hand side of the equation 

c) Update the left hand side 

d) Repeat b and c till the error is minimized to a threshold 

The code for the algorithm (MDP_VI) is also attached in the appendices.  

Convergence of value iteration 

One main question remains to be answered is weather this algorithm will con-

verge to the unique solutions of the Bellman equation or not. The proof of convergence is 

based on the concept of contraction. The detailed proof is provided in (Russell & 

Norving, 2003) and the basic idea is as follow. 

A contraction function is basically a function that when applied to two inputs, it 

makes their difference less.  

Let’s go back to the value iteration algorithm. The ith iteration would be: 

C�`	��� �a �;��� � LX ��-Y- �M]^�# -# � �_C�����
�

�� X
 (4.12) 

Consider the Bellman update as an operator B (C"�� a bC") and max norm, as a 

function to measure the distances between utility vectors i.e. the maximum distance be-

tween corresponding elements (cCc � �-Y�[C���[�, therefore, 

cbC" + bC�"c P LcC" + C�"c (4.13) 

As can be seen from (4.13), the Bellman update is a contraction function by the 

factor of � and therefore the value iteration always converges to the unique solution of the 

Bellman equations. It can be seen that the error also converges exponentially to zero.  

It can be shown that N iteration is required to reach an error of �: 
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d � !1: �;�QRe�� + L� f!1: �L (4.14) 

The equation (4.14) is plotted in Figure �4-29 for different values of c= � /Rmax. 

The Y-axis is the number of iteration required to achieve c and it is plotted in log scale to 

magnify the differences between the graphs. The X-axis has different values of the dis-

count factor plotted in linear scale. 

 

Figure �4-29 Convergence of VI 

Important observations from the graph in Figure �4-29: 

• Number of iterations does not depend heavily on the value of c because of the ex-

ponential nature of convergence 

• For small values of discount factor very few iterations are required; however the 

module will have very limited horizon and will miss the long-term rewards 

• For large values of discount factor N grows rapidly and so many iterations are re-

quired 

Using this algorithm, Table �4-2 shows the value function for our earlier example 

in Figure �4-27 for different discount factors. 

As can be seen for small discount factor the algorithm works very quickly and the 

number of iterations is low. However, the modules in states which are far from their goal 

are reluctant to move into a better state since they have short-horizon and do not value the 

long-term rewards. 
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Table �4-2 Discount Factor and Number of Iterations 
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On the other hand for large discount factor the algorithm requires more number of 

iterations and modules will value long-term rewards. For example, at 0.9 discount factor, 

the module with state value of 0.49 is even willing to collide with the other mobile mod-

ule at state s3, just because it can see that in that path it will reach its goal state faster. 

It can be noted that there is a trade-off in choosing the discount factor. The code 

(MDP_NRL) attached in appendices uses 0.7 discount factor that is found suitable for this 

work and based on that this code recommends the next move for each module. 

4.3.8 Layer 5 – Mobile Electron Motion 

This layer is based on a predefined feed-forward controller and provides the mo-

tion for the mobile electron from one location into another neighborhood location by 

transforming the movement into the 6-axial rotations of the platform.  

 In addition to that, before actuating any of the magnets, this layer will also ensure 

that there is no collision during the rotations.  

Considering the immobile configurations and collision avoidance constraints dis-

cussed earlier in this section, this layer will  

a) Ensure that there are no collisions during the movement (empty states required) 

b) Ensure there is an immobile substrate to perform each rotation 

c) Transform the required motion to 6-axial rotations of the platform 

Figure �4-30 illustrates a mobile module and a possible motion to one of its imme-

diate neighbor location (A, B, C, D, E, F). 

 

 

Figure �4-30 Motion of a Mobile Electron 
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The required look-up table is formed and tabulated in Table �4-3. For example, it 

can be seen in this table that there are two moves that end in location A. One by rotating 

around joint 2 clockwise and the other by rotating around joint 1 counterclockwise. How-

ever, only one will be possible and this is checked by the immobile substrates and empty 

locations around the module. After this check the solenoids of the joints and magnets will 

be energized accordingly.  

Table �4-3 Module Actuation 
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1 CW A D E K F 

2 CW B E F L A 

3 CW C F A G B 

4 CW D A B H C 

5 CW E B C I D 

6 CW F C D J E 

1 CCW F C B G A 

2 CCW A D C H B 

3 CCW B E D I C 

4 CCW C F E J D 

5 CCW D A F K E 

6 CCW E B A L F 

 

Note that the mobile electron always has negative fields and the immobile sub-

strate will have a positive and a negative filed to provide the rotations as shown in Figure 

�4-31. There will be repulsion between the two negative (green) fields and attraction be-

tween the negative (green) and the positive (red) field and the rotation will be performed 

around the fixed joint (red). 
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Figure �4-31 Mobile Electron Actuation 

4.3.9 Simulation 

The code HexMove attached in appendices will simulate the motion of the mobile 

electrons by providing the joint and side forces. This function is extremely useful since 

the exact same inputs going from the microcontroller into the physical platform (Actua-

tion of magnets and solenoids) are also the inputs to this function and the resulting confi-

guration is displayed. 

4.4 Key Issues 

4.4.1 Scalability 

The first and perhaps most important question that comes to mind when evaluat-

ing a MSRRS algorithm is whether it is scalable and can be applied to systems with large 

number of modules.   

As discussed by several researchers such as (Fitch & Butler, 2007), for large 

MSRRS any algorithm that requires linear space per module or linear time computation is 

undesirable. One of the main advantages of dynamic programming used in this work is 

their efficiency. It can be shown that the computational requirement for them is approx-

imately a polynomial in the number of actions and states. 

Moreover, algorithms are generally considered to be scalable if they are running 

in a decentralized manner on each module. In other words, decision making of each mod-

ule running the algorithm does not require a complete knowledge of all other modules in-

cluding their locations, actions, and etc. Accordingly, decision making in these systems is 

done through only local information and not the global knowledge of the system. 
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However, as a starting point, the approach presented in this work does require a 

centralized stage (global knowledge of the complete system) especially for layers 2 and 4. 

Other layers can be easily performed in a decentralized manner.  

In layer 2 the connectivity test requires a centralized knowledge of the system and 

to the best of my knowledge there is still no decentralized method to overcome this prob-

lem. In layer 4 the motion planning for each module requires a centralized knowledge of 

the system for the MDP solver. This can be overcome using POMDP; although, learning 

techniques in POMDPs, such as Q-learning are no longer guaranteed to converge to a so-

lution and therefore, more caution should be taken in to considerations with the solver of 

POMDPs. Another method proposed to overcome the limitation of the centralized stage 

in layer 4 is function approximation that is based on supervised learning (Sutton & Barto, 

1998). Other techniques such as Gradient Ascent in Policy Space (GAPS) or Distributed 

GAPS are also used to provide a decentralized approach (Varshavskaya, 2007) to address 

the same issue. 

4.4.2 Energy Consumption 

Referring to Figure �4-31, the total energy required for each single rotation can be 

roughly calculated as follow: 

• Four magnets (2 on each module) and each magnet requires a 24V, 2A and stays 

on for nearly 100ms.  

• Eight solenoids (5 on the mobile module and 3 on the three neighbors) and each 

solenoid requires 5V, 0.5A and stays on an average for nearly 100ms.  

• Drive circuit, microcontroller and communication require 5V, 3A for also 100ms. 

(Microcontroller and communication will always stay on but their power con-

sumption is neglected at this stage)  

Therefore, the total power / energy required for a single motion is approximately:  

P = 4*(24*2)+8*(5*0.5)+(5*3) = 227 W and E = 227*0.1 = 22.7 J 

Note the calculated E is actually the maximum energy required if all neighbor 

modules are available; however, since the major part of the energy is related to the Mag-
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nets the overall energy consumption will not depend a lot on the neighboring modules 

and will be very close to the maximum E. 

Therefore, since the approach presented has minimized the number of moves to 

transform the shape of the system from an initial configuration to a goal configuration, 

the total energy consumed will be very close to the multiple of maximum energy that 

could be required for the reconfiguration. 

4.4.3 Discussion 

As explained by (Nguyen, Guibas, & Yim, 2001) the optimal policy can be found 

in theory by searching the graph of all possible configurations; however, such search ap-

proaches are not practical since the number of possible configurations grows exponential-

ly with the number of modules in the configuration.  

As showed by (Chirikjian G. , 1994) in a simplified case dealt with hexagonal 

modules, the number of available configurations (N) is asymptotic to:  

d � ��) + ��h�) + ��h �) � �� ��i�? � (4.15) 

where n is the number of modules in the system. If each configuration is consi-

dered as a state to search for the optimal path, as the number of modules (n) increases, the 

total number of available configurations (N) grows even faster and therefore the approach 

would not be practical for large n.  

Therefore, techniques relying on such a representation such as MMDPs require 

space and computation proportional to the product of the size of all the state and action 

variables, leading to intractable space (storage) and time complexity as discussed by 

(Fitch, Hengst, Suc, Calbert, & Scholz, 2005). 

Conclusively, optimal policies for motion planning cannot be achieved by simple 

algorithmic search methods for a large number of modules (Chirikjian G. , 1994) that 

come with extreme computational cost and other scalable and decentralized methods like 

the one explained in this work shall be considered. The algorithm presented in this work 

is designed for limited number of modules to start with and to move towards a totally de-

centralized path planning for MSRRS in a near optimal manner for large number of mod-

ules later on.  
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4.5 Summary 

Several works addressed the reconfiguration planning for MSRRS and still a solu-

tion of a totally decentralized technique is not found since most algorithms require a cen-

tralized stage. Also finding an optimal sequence of moves from I to G becomes intracta-

ble due to the fact that large number of modules comes with a large possible number of 

configurations which requires a computation time that is exponential in the number of 

modules. 

This chapter described the algorithm used for transformation of the global shape 

of a MSRRS by determining the sequence of individual module movements that morphs 

the shape of the system from an initial configuration to a desired goal configuration.  

The problem was formulated assuming module interchangeability and a hierar-

chical multilayer approach was recommended to solve the problem.  

In the first layer, the initial configuration was obtained through localization and 

the goal configuration was assumed to be entered manually by the user. Second layer 

could separate mobile electrons and potential voids from the rest of the modules and each 

potential void was linked to a mobile electron in the third layer. Forth layer planned the 

path for electrons to fill the voids and finally last and fifth layer transformed the required 

motion into actuation for each module 

It was shown that iterations converge all the time and the number of iterations 

does not depend heavily on the resolution but depends heavily on the value of the dis-

count factor. It was also shown that large discount factors provide longer horizon for 

modules but requires more computations as oppose to small discount factors providing 

short horizon and quick computations. 
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   Chapter 5 

 5 Evaluation 

 

This chapter is aimed to evaluate the performance of the physical platform and the 

reconfiguration algorithm through several experiments and simulations.  

5.1 Experimental Setup 

The experimental setup is shown in Figure �5-1.  

 
Figure �5-1 Experimental Setup 
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As illustrated in Figure �5-1, the system is equipped with a Graphical User Inter-

face (GUI) communicating with modules through serial port of the computer using an 

RS232 Converter and an IR Transceiver. The modules can be quickly and easily repro-

grammed if necessary without removing the microcontrollers using In-System-

Programming (ISP) feature through STK500 Programming Board.  

5.2 Examples and Experiments 

Availability of only two physical modules at the time restricted the experiments to 

be more on the simulation side rather than the practical one; however, the practical expe-

riments could sufficiently prove the basic concept and the design of the universal mod-

ules and the system is planned to be expanded to work with several modules in future. 

5.2.1 Physical Platform Performance 

This section aims to validate the two main requirements of the designed modules: 

Localization and Rotation. 

First all boards including power, drive, control and communication were tested 

and their proper functionalities were ensured. Then control and communication micro-

controllers were programmed with all required functions (program codes and functions 

are attached in appendices). Communication ports were also configured as shown in Fig-

ure �5-2.  

 

Figure �5-2 Port Configuration 
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Note that UART1 is a temporary connection providing direct access to control 

board of any given module and is designed for testing purposes only. IR (InfraRed) on 

the other hand is the main communication channel providing direct access to all modules’ 

functionalities through their communication boards. 

Each module was turn on to check the handshaking status between the control and 

communication microcontrollers and the result of one test is shown in Figure �5-3. 

 

Figure �5-3 Handshaking 

All joints (solenoids), sides (magnets), LEDs, IRs and all functions were tested 

for each module.  

Once both modules were fully tested and all hardware and software components 

proved to be functional, they were placed on the power base as shown in Figure �5-4 to 

test localization and motion functions. 
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Figure �5-4 Localization Test 

Before conducting the localization experiment, one module was chosen to be the 

reference module (localized with known coordinates and orientation) by running the Ref() 

function as shown in Figure �5-5. 

 

Figure �5-5 Reference Module 
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This function returned the correct acknowledgement code of 65 and set the mod-

ule as a substrate (S) module as well. 

In order to localize the other module, the Localize() function was called and ex-

ecuted. At this time the localized module sent the localization message (MSG1) discussed 

in Chapter 4 to the other module and the other module was localized accordingly. The 

acknowledgment codes were sent from both modules as shown in Figure �5-6. 

 

Figure �5-6 Localization 

Similarly the Clockwise and Counterclockwise functions were tested by calling 

CW() and CCW() functions and steps are shown in Figure �5-7.  
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Figure �5-7 Rotation Test 

5.2.2 Reconfiguration Algorithm Performance 

The physical platform performance test was followed by the reconfiguration algo-

rithm performance test. This test was no longer limited to two modules and the simulator 

could provide an excellent chance to test the algorithm. 

The two main functions used for the simulations were HexAll_P() and HexAll_S() 

attached in appendices. These functions require only the initial and goal configurations as 

their input arguments. By combining all layers of the reconfiguration algorithm, these 

funcitons directly provide the actuation required both for side magnets and joint solenoids 

at each time step.  HexAll_P() is designed to provide parallel motion for more than one 

module and HexAll_S() is designed to provide a serial motion for only one module at a 

time. 

Let’s start examining the algorithm by running the familiar example discussed 

throughout Chapter 4. The code for this example is attached in appendices as 

Test_All_P01 and the results are shown in Figure �5-8. 
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a) Initial and goal configurations 

 

b) Electrons and voids 

 

c) Time step 1 

Initial Configuration Goal Configuration

Electrons Voids

Configuration at time step:1Module Configuration, Available States and Actuation
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d) Time step 2 

 

e) Time step 3 

 

f) Time step 4 

Configuration at time step:2Module Configuration, Available States and Actuation

Configuration at time step:3Module Configuration, Available States and Actuation

Configuration at time step:4Module Configuration, Available States and Actuation
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g) Time step 5 

 

h) Time step 6 

 

i) Time step 7 
Figure �5-8 Simulation Test 1 

Configuration at time step:5Module Configuration, Available States and Actuation

Configuration at time step:6Module Configuration, Available States and Actuation

Module Configuration, Available States Configuration at time step:7
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As can be seen in this simple example, the initial configuration in time step 1 was 

transformed into the desired goal configuration in six time steps using parallel module 

motions.   

The same example was tested by Test_All_S01 (code attached in appendices) for 

serial motion execution and the results are shown in Figure �5-9. 

 

 
a) Initial and goal configuration 

 
b) Electrons and voids 

Initial Configuration Goal Configuration

Electrons Voids
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c) Time step 1 

 
d) Time step 2 

 
e) Time step 3 

Configuration at time step:1Module Configuration, Available States and Actuation

Configuration at time step:2Module Configuration, Available States and Actuation

Configuration at time step:3Module Configuration, Available States and Actuation
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f) Time step 4 

 
g) Time step 5 

 
h) Time step 6 

Configuration at time step:4Module Configuration, Available States and Actuation

Configuration at time step:5Module Configuration, Available States and Actuation

Configuration at time step:6Module Configuration, Available States and Actuation
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i) Time step 7 

 
j) Time step 8 

 
k) time step 9 

Figure �5-9 Simulation Test 2 

Configuration at time step:7Module Configuration, Available States and Actuation

Configuration at time step:8Module Configuration, Available States and Actuation

Module Configuration, Available States Configuration at time step:9
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As expected the serial motion requires more time steps; however, number of 

module movements (which is considered to be minimized by the algorithm) is exactly the 

same as the parallel module movements. 

The next example in Figure �5-10 illustrates a case where the parallel motion faces 

a problem and the reconfiguration can be performed through serial motion. 

 
a) Initial and goal configurations 

 
b) Electrons and voids 

 

Initial Configuration Goal Configuration

Electrons Voids

Configuration at time step:1Module Configuration, Available States and Actuation
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c) Time step 1 

 
d) Time step 2 - Failure 

Figure �5-10 Simulation Test 3 

As can be seen, in the first time step, two electrons check the connectivity at the 

same time and find themselves as mobile electrons and start their motion. However, by 

doing so they leave a third module disconnected from the rest of the system.  

This example illustrates a potential advantage of a serial motion planning com-

pared to a parallel motion planning in the developed algorithm. However, since the em-

phasis was to minimize the number of module movements which is irrespective to paral-

lel or serial motion execution, HexAll_S() function is sufficient to plan such a reconfigu-

ration. 

The last example is planned for a larger system consisting of 12 modules. In this 

example the central computer required much more time to process the reconfiguration 

path as the number of modules was increased to twice the previous examples. 

 
a) Initial and goal configurations 

Configuration at time step:2Module Configuration, Available States and Actuation

Initial Configuration Goal Configuration
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b) Electrons and voids 

 
c) Time steps 1-3 

 
d) Time steps 4-6 

Electrons Voids

Configuration at time step:1 Configuration at time step:2 Configuration at time step:3

Configuration at time step:4 Configuration at time step:5 Configuration at time step:6
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e) Time steps 7-9 

 
f) Time steps 10-12 

 
g) Time steps 13-15 

Configuration at time step:7 Configuration at time step:8 Configuration at time step:9

Configuration at time step:10 Configuration at time step:11 Configuration at time step:12

Configuration at time step:13 Configuration at time step:14 Configuration at time step:15
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h) Time steps 16-18 

 
i) Time steps 19-21 

Figure �5-11 Simulation Test 4 

As can be seen the reconfiguration took place in 20 time steps with a serial execu-

tion path planner. This example illustrated one of the main drawbacks of a centralized 

processing compared to a decentralized processing in terms of execution time.  

5.3 Discussions 

Evaluating the overall performance of a MSRRS by comparing to other MSRRSs 

is a relatively difficult challenge because of the following reasons. 

Most systems designed so far are addressing only a specific area from the ex-

pected features of an ideal MSRRS. For example, some address locomotion or reconfigu-

ration while others realize self-replication or self-repair. Clearly such systems would per-

form well for one area and poor in other areas. Still a complete system featuring all ex-

pected functionalities is yet to come. 

Configuration at time step:16 Configuration at time step:17 Configuration at time step:18

Configuration at time step:19 Configuration at time step:20 Configuration at time step:21
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Most algorithms developed are custom made for a specific class. For example 

some 2D algorithms cannot be easy expanded to 3D or some algorithms for rectangular 

modules cannot be realized for hexagonal modules and etc. To make the situation worse 

many developed algorithms rely heavily on specific platform features. For example, exis-

tence of push bottom switches on the side as an indication of the existence on a neighbor-

ing module.  

To the best of my knowledge, there is still no well developed method or analysis 

that can be applied generally to all MSRRSs.  

5.3.1 HexBot Evaluation Criteria and Performance 

The following metrics and evaluation criteria are used in this section to sumamr-

ize and address the performance evaluation of the HexBot. 

5.3.1.1 HexBot Physical Platform 

• Scalability: HexBot platform can be easily scaled down in size as the required 

actuation relies only on electromagnetic forces. The platform can also be extended 

to 3D using the similar actuators and connectors. In terms of quantity, HexBot can 

also be scaled up since the module can be mass-manufactured in an extremely 

cost effective manner as there are no expensive sensors or actuators involved. 

• Robustness: Handshaking between the two microcontrollers of the modules and 

sending the status to the main processor (PC in this case) can be used as an indica-

tion of module failure; however, more work needs to be done to implement real 

time failure detection. 

• Speed of Response: Magnetic actuators provide fast motion and do not require 

precise alignment between two modules since the alignment is done mechanical-

ly. Joint connectors are quick with low power consumption and they do not re-

quire power once the modules are connected 

• Power Consumption: This is considered the main drawback in HexBot design. 

Quick and strong magnetic force comes at a cost of high power consumption. 

• Cost-effectiveness: HexBot can be mass-produced relatively chip since there are 

no expensive sensors or actuators in the design. 
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• Physical: In terms of geometric shape, HexBot modules have the advantage of 

filling any required structure densely with no gaps; however these modules are 

primarily developed for research and are not strong enough for real world applica-

tions.  

5.3.1.2 HexBot Control Algorithm 

• Robustness: The algorithm is not designed to detect failure in the module move-

ments or perform a self-repair action. The only indication of a proper function ex-

ecution is the acknowledgement message sent from the modules to the central 

controller. Moreover the overall system is not robust to work in different envi-

ronment as there are no sensory feedback and technique implemented for obstacle 

avoidance or etc. 

• Scalability:  In terms of scalability to different platforms, the algorithm is per-

fectly scalable and requires only slight modification in specific layers; however 

the algorithm is not considered to be an architecture independent since all the 

modifications need to be done manually. Besides, the current version cannot be 

scaled up in quantity as well since it relies on a centralized controller with limit-

ing factors: processing power, communication bandwidth and etc. 

• Stability: Convergence property of MDP is well understood and therefore the al-

gorithm will ensure converging to a solution and there are no dead locks. 

• Optimality: The heuristic function used in layer 4 (void propagation) along with 

the optimization method performed in layer 5 (MDP) result a near optimum solu-

tion. Therefore the optimality of the overall algorithm would depend on the com-

bination of these two factors. For example, in situations where heuristic function 

works well the solution will be very close to the global optimum solution and if 

the heuristic function does not perform well then the solution will not be very op-

timum. 

• Adaptability: Reconfiguration algorithm developed can support adaptation to dif-

ferent tasks or working environment; however, more work needs to be done in 

this field. 
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Finally a MSRRS project was established in the AUS Mechatronics Center and 

hopefully this project would continue and contribute to the growing field of modular self-

reconfigurable robotic system. 

6.1 Summary 

We have motivated, introduced and established the MSRRS project both from 

hardware and software aspects in this work. We have deeply reviewed, organized and 

presented the relevant literature along with the most successful platforms and algorithms.  

We have demonstrated the main criteria behind HexBot as our universal module 

in terms of design and implementation. We have also provided a comprehensive back-

ground including preliminaries needed for the reconfiguration algorithm and explained in 

details how the algorithm was developed.  

Finally we have evaluated the performance of both platform and algorithm 

through several examples and discussed the results.  
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6.2 Conclusions 

HexBot was successfully implemented and a reconfiguration algorithm for a pla-

nar hexagonal MSRRS was developed. 

The design of the universal module required a well understanding of the ultimate 

common goals in the area and we specifically focused on the two dimensional, homoge-

neous systems. We have developed an extremely fast actuation which is exceptionally 

competitive to other designs where other kinds of actuators are utilized. Inter-module 

connections are designed to be quick and powerful without requiring precise alignment. 

All electronics boards were designed in a multilayered manner where each board has spe-

cific task and can be modified or replaced separately.  

The control algorithm was successfully designed and implemented to transform 

the global shape of the system form an arbitrary initial configuration to a desired goal 

configuration. The approach incorporated the development of a hierarchical multilayer 

framework for lattice based modular systems to optimize and plan paths for the minimum 

number of module movements. The overall problem was successfully formulated as a 

Markov Decision Process (MDP) that could be easily adopted for other platforms. In the 

policy search collision avoidance and connectivity constraints were implemented. Multi-

layered nature of the framework provides openness, flexibility and ease of modification 

and improvement for each individual layer. 

6.3 Limitations and Directions for Future Research 

Clearly this work was just planned to pave the way for others to continue and con-

tribute more to this exciting field.  

The physical platform can be improved in the following ways: 

1. Friction with the environment shall be minimized through:  

a. An air-table can be used to reduce the normal force 

b. Ball transfer-table can be used to reduce the weight, since bal transfers 

will not be mounted on the modules 

c. Battery instead of power based to eliminate the need and friction of the 

power pins 
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d. Mechanical parts shall be designed with a more strength to weight ration 

to reduce the weight 

2. Better magnets (in terms of size and magnetic force) can be replaced 

3. Size can be reduced 

4. Eventually we should also move toward a 3D environment 

The control algorithm can also be improved in the following ways: 

1. Parallel actuation problem shall be overcome 

2. Reward function should be upgraded to allow motion for fixed modules which are 

blocking the way for other modules to move 

3. MDP can be replaced with POMDP or other distributed ways of path planning for 

scalability 

4. There should be a distributed way of testing the connectivity constraint to move 

towards a totally distributed controller 
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These codes are developed for the HexBot modules based on two ATmega162 

microcontrollers. The first code is written for the control board including 16 functions for 

actuators. The second code is developed for the communication board allowing inter-

modules communication and central communication with the computer including 30 gen-

eral purpose functions. The final code is developed for the wireless board based on SPI 

communication which is part of the communication board that is planned to be integrated 

in the next stage of the project. 

Control Board Program 

//****************************** MAIN PROGRAM FOR CONTROL BOARDS 

****************************** 

//ICC-AVR application builder : 1/1/2009 12:48:09 AM 

// Target : M162 

// Crystal: 1.0000Mhz 

#include <iom162v.h> 

#include <macros.h> 

int ts;        //time step, increased every 10ms 

 

//****************************** PORT INITIALIZATION ****************************** 

void port_init(void) 

{ 

 PORTA = 0x00; 

 PORTB = 0x00; 

 PORTC = 0x00; 

 PORTD = 0x00; 

 PORTE = 0x00; 

 DDRA  = 0b11111111;   //Joint Actuators 

 DDRB  = 0b11111011;   //Side Actuators - UART1 

 DDRC  = 0b00000000;   //DIP Switches 

 DDRD  = 0b11111110;   //Communication Board UART0 - Side Actuators 

 DDRE  = 0b11111111;   //Currently Not Used 

} 

 

//****************************** TIMER INITIALIZATION ****************************** 

//TIMER0 initialize - prescale:64 

// WGM: Normal 

// desired value: 10mSec 

// actual value:  9.984mSec (0.2%) 

void timer0_init(void) 

{ 

 TCCR0= 0x00;      //stop 

 TCNT0= 0x64;    //set count 

 OCR0= 0x9C;    //set compare value 

 TCCR0= 0x03;    //start timer 

} 

#pragma interrupt_handler timer0_ovf_isr:iv_TIM0_OVF 

void timer0_ovf_isr(void) 

{ 

 TCNT0= 0x64;    //reload counter value 

 ts++;     //increase ts every 10ms  

} 

//Delay of multiple of ts (10ms) 

void DelayXts (int i) 

{  

 ts=0;while (ts<i) {;} 

}  

 

//****************************** UART INITIALIZATION ****************************** 

//UART0 initialize 
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// desired baud rate: 4800 

// actual: baud rate:4808 (0.2%) 

// char size: 8 bit 

// parity: Disabled 

void uart0_init(void) 

{ 

 UCSR0B = 0x00;    //disable while setting baud rate 

 UCSR0A = 0x00;   //disable while setting baud rate 

 UBRR0L  =0x0C;   //set baud rate 

 UBRR0H = 0x00; 

 UCSR0C = BIT(URSEL0) | 0x06; 

 UCSR0A = 0x00;     //enable 

 UCSR0B = 0x18;   //enable 

} 

// Transmite0 

void TransmitByte0( unsigned char data ) 

{while ( !(UCSR0A & (1<<UDRE0)) );UDR0 = data;} 

// Receive0 

unsigned char ReceiveByte0(void) 

{while ( !(UCSR0A & (1<<RXC0)) ) {;} return UDR0;} 

// Receive0TL :time limited listening to the port (t: time stpes) 

unsigned char ReceiveByte0TL(int t)  

{ 

 ts=0; 

 while ((!(UCSR0A&(1<<RXC0))) && (ts<t)){;} 

 if (ts>=t) {return '~';} else {return UDR0;} //~: time exceeded 

} 

//UART1 initialize 

// desired baud rate:4800 

// actual baud rate:4808 (0.2%) 

// char size: 8 bit 

// parity: Disabled 

void uart1_init(void) 

{ 

 UCSR1B = 0x00;    //disable while setting baud rate 

 UCSR1A = 0x00;   //disable while setting baud rate 

 UBRR1L  =0x0C;   //set baud rate 

 UBRR1H = 0x00; 

 UCSR1C = BIT(URSEL1) | 0x06; 

 UCSR1A = 0x00;     //enable 

 UCSR1B = 0x18;   //enable 

} 

// Transmite1 

void TransmitByte1( unsigned char data ) 

{while ( !(UCSR1A & (1<<UDRE1)) );UDR1 = data;DelayXts(2);}   //Keep a delay after each 

transmition 

// Receive1 

unsigned char ReceiveByte1(void) 

{while ( !(UCSR1A & (1<<RXC1)) ) {;} return UDR1;} 

// Preamble 

void PRE (void) 

{ 

 unsigned char txt[20]={10,13,10,13,'#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

} 

// Control Board Ready 

void CTR_Ready (void) 

{ 

 unsigned char txt[20]={'C','T','R','.',' ','B','O','A','R','D',' 

','R','E','A','D','Y','#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

 TransmitByte1(10);TransmitByte1(13); 

} 

// Communication Board Ready 

void COMM_Ready (void) 

{ 

 unsigned char txt[20]={'C','O','M','M','.',' ','B','O','A','R','D',' 

','R','E','A','D','Y','#'}; 
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 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

 TransmitByte1(10);TransmitByte1(13); 

} 

// Control Board Listening 

void CTR_LST (void) 

{ 

 unsigned char txt[20]={'C','T','R','.',' 

','L','I','S','T','E','N','I','N','G',10,13,'#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

} 

// Communication Board Listening 

void COMM_LST (void) 

{ 

 unsigned char txt[20]={'C','O','M','M','.',' 

','L','I','S','T','E','N','I','N','G',10,13,'#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

} 

// Package Received 

void RCV (void) 

{ 

 unsigned char txt[20]={'R','E','C','E','I','V','E','D',10,13,'#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

} 

 

//****************************** ALL DEVICES INITIALIZATION 

****************************** 

//call this routine to initialize all peripherals 

void init_devices(void) 

{ 

 //stop errant interrupts until set up 

 CLI();       //disable all interrupts 

 port_init(); 

 timer0_init(); 

 uart0_init(); 

 uart1_init(); 

 

 MCUCR= 0x00;  

 EMCUCR = 0x00; 

 TIMSK= 0x02;    //timer interrupt sources 

 ETIMSK=0x00; 

 GICR= 0x00; 

 PCMSK0=0x00; 

 PCMSK1=0x00; 

 SEI();     //re-enable interrupts 

 //all peripherals are now initialized 

} 

 

//****************************** JOINT ACTUATION FUNCTIONS ****************************** 

//Joint Actuation Functions (without direction - only on/off) 

void JxOpen (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Actuate accordingly 

 if (i==1) {PORTA = PORTA|0b00000100;}  

 if (i==2) {PORTA = PORTA|0b00001000;} 

 if (i==3) {PORTA = PORTA|0b00100000;} 

 if (i==4) {PORTA = PORTA|0b00010000;} 

 if (i==5) {PORTA = PORTA|0b00000001;} 

 if (i==6) {PORTA = PORTA|0b00000010;} 

} 

void JxClose (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  
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 while (i>6) {i=i-6;}  

 //Actuate accordingly 

 if (i==1) {PORTA = PORTA&0b11111011;}   

 if (i==2) {PORTA = PORTA&0b11110111;}  

 if (i==3) {PORTA = PORTA&0b11011111;}  

 if (i==4) {PORTA = PORTA&0b11101111;}  

 if (i==5) {PORTA = PORTA&0b11111110;}  

 if (i==6) {PORTA = PORTA&0b11111101;}  

} 

void JxOpenAll (void) 

{ 

 PORTA = PORTA|0b00111111;  

} 

void JxCloseAll (void) 

{ 

 PORTA = PORTA&0b11000000;  

} 

//Joint Test 

void JTest (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 {  

   for (i=1;i<7;i++) {JxOpen(i);DelayXts(t);JxClose(i);DelayXts(t);} 

 }   

} 

 

//****************************** SIDE ACTUATION FUNCTIONS ****************************** 

//Side Actuation Functions (with direction - on(positive or negative)/off 

void SxP (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Actuate accordingly 

 if (i==1) {PORTB = PORTB|0b00000001;}  

 if (i==2) {PORTD = PORTD|0b00001000;} 

 if (i==3) {PORTB = PORTB|0b01000000;} 

 if (i==4) {PORTD = PORTD|0b00010000;} 

 if (i==5) {PORTB = PORTB|0b00000010;} 

 if (i==6) {PORTB = PORTB|0b10000000;} 

} 

void SxN (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Actuate accordingly 

 if (i==1) {PORTD = PORTD|0b01000000;} 

 if (i==2) {PORTD = PORTD|0b00100000;} 

 if (i==3) {PORTD = PORTD|0b10000000;} 

 if (i==4) {PORTB = PORTB|0b00010000;} 

 if (i==5) {PORTB = PORTB|0b00100000;} 

 if (i==6) {PORTD = PORTD|0b00000100;} 

} 

void SxOff (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Actuate accordingly 

 if (i==1) {PORTB = PORTB&0b11111110;PORTD = PORTD&0b10111111;} 

 if (i==2) {PORTD = PORTD&0b11110111;PORTD = PORTD&0b11011111;} 

 if (i==3) {PORTB = PORTB&0b10111111;PORTD = PORTD&0b01111111;} 

 if (i==4) {PORTD = PORTD&0b11101111;PORTB = PORTB&0b11101111;} 

 if (i==5) {PORTB = PORTB&0b11111101;PORTB = PORTB&0b11011111;} 

 if (i==6) {PORTB = PORTB&0b01111111;PORTD = PORTD&0b11111011;} 

} 

void SxOffAll (void) 

{ 
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PORTB = PORTB&0b00001100; 

PORTD = PORTD&0b00000011; 

} 

//Side (Magnet) Test - Positive 

void SPTest (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 { for (i=1;i<7;i++) {SxP(i);DelayXts(t);SxOff(i);DelayXts(t);}}   

} 

//Side (Magnet) Test - Negative 

void SNTest (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 { for (i=1;i<7;i++) {SxN(i);DelayXts(t);SxOff(i);DelayXts(t);}}   

} 

 

//****************************** ROTATION FUNCTIONS ****************************** 

// Trund off all actuators 

void TurnOffAll (void) 

{ 

 SxOffAll();JxCloseAll(); 

}    

//Mobile Module Rotation (CW) 

void MCW (int i,int t1,int t2, int t3) 

{ 

 JxOpen(i);JxOpen(i+1);     //1 - Ji, Ji+1 Open 

 DelayXts(t1);   //2 - Delay t1 

 SxN(i);SxN(i-1);  //3 - Si, Si-1 Negative 

 DelayXts(t2);   //4 - Delay t2 

 JxCloseAll();   //5 - All Jx Close 

 DelayXts(t3);   //6 - Delay t3 

       //7 - No action  

 SxOffAll();   //8 - All Sx Off 

} 

//Mobile Module Rotation (CCW) 

void MCCW (int i,int t1,int t2, int t3) 

{ 

 JxOpen(i+1);    //1 - Ji+1 Open 

 DelayXts(t1);   //2 - Delay t1 

 SxN(i);SxN(i-1);  //3 - Si, Si-1 Negative 

 DelayXts(t2);   //4 - Delay t2 

 JxOpen(i);   //5 - Ji Open 

 DelayXts(t3);   //6 - Delay t3 

 JxCloseAll();   //7 - All Jx Close  

 SxOffAll();   //8 - All Sx Off 

} 

//Substrate (CW) 

void SCW (int i,int t1,int t2, int t3) 

{ 

 JxOpen(i-1);    //1 - Ji-1 Open 

 DelayXts(t1);   //2 - Delay t1 

 SxN(i-3);SxP(i-2);  //3 - Si-3 Negative, Si-2 Positive 

 DelayXts(t2);   //4 - Delay t2 

 JxOpen(i-2);   //5 - Ji-2 Open 

 DelayXts(t3);   //6 - Delay t3 

 JxCloseAll();   //7 - All Jx Close  

 SxOffAll();   //8 - All Sx Off 

} 

//Substrate (CCW) 

void SCCW (int i,int t1,int t2, int t3) 

{ 

 JxOpen(i-3);JxOpen(i-4); //1 - Ji-3, Ji-4 Open 

 DelayXts(t1);   //2 - Delay t1 

 SxN(i-4);SxN(i-5);  //3 - Si-4 Negative, Si-5 Positive 

 DelayXts(t2);   //4 - Delay t2 

 JxCloseAll();   //5 - All Jx Close 

 DelayXts(t3);   //6 - Delay t3 

     //7 - No action   
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 SxOffAll();   //8 - All Sx Off 

} 

 

//****************************** FUNCTIONS CALLED FROM COMMUNICATION BOARD 

****************************** 

//Listening to the Communication Board for Actuation 

void Listen (void) 

{ 

 unsigned char R;    //Received Character 

 int MSG[6];     //Received Message 

 int i; 

  

 while (ReceiveByte0()!='*') {;}   //Wait for the start of message 

 for (i=1;i<6;i++) {MSG[i] = ReceiveByte0();} //Read the 5 bytes of the message 

                 

 //Confirm receiving instruction from communication board - Comm 

 TransmitByte0(MSG[1]);  

 //Command Received PC 

 PRE();       //Preamble - PC 

 // RCV();      //Received     

                  

 //Acknowledgement (with the command code going to be executed) - PC 

 TransmitByte1('A'); 

 TransmitByte1('C'); 

 TransmitByte1('K'); 

 TransmitByte1(MSG[1]);  

 TransmitByte1(10); 

 TransmitByte1(13); 

 //Message Received - PC 

 TransmitByte1('M');          

   

 TransmitByte1('S'); 

 TransmitByte1('G'); 

 TransmitByte1(MSG[1]); 

 TransmitByte1(MSG[2]); 

 TransmitByte1(MSG[3]); 

 TransmitByte1(MSG[4]); 

 TransmitByte1(MSG[5]); 

 TransmitByte1(10); 

 TransmitByte1(13); 

 

 //Run the required functaion based on "Control Board Functions Table"   

     

 if (MSG[1]==1) {JxOpen(MSG[2]);}  

 if (MSG[1]==2) {JxClose(MSG[2]);}  

 if (MSG[1]==3) {JxOpenAll();}  

 if (MSG[1]==4) {JxCloseAll();}  

 if (MSG[1]==5) {JTest(MSG[2],MSG[3]);}  

 

 if (MSG[1]==11) {SxP(MSG[2]);}  

 if (MSG[1]==12) {SxN(MSG[2]);}  

 if (MSG[1]==13) {SxOff(MSG[2]);}  

 if (MSG[1]==14) {SxOffAll();}  

 if (MSG[1]==15) {SPTest(MSG[2],MSG[3]);}  

 if (MSG[1]==16) {SNTest(MSG[2],MSG[3]);}  

  

 if (MSG[1]==20) {TurnOffAll();}  

  

 if (MSG[1]==21) {MCW(MSG[2],MSG[3],MSG[4],MSG[5]);}  

 if (MSG[1]==22) {MCCW(MSG[2],MSG[3],MSG[4],MSG[5]);}  

 if (MSG[1]==23) {SCW(MSG[2],MSG[3],MSG[4],MSG[5]);}  

 if (MSG[1]==24) {SCCW(MSG[2],MSG[3],MSG[4],MSG[5]);}  

} 

 

//****************************** MAIN PROGRAM ****************************** 

void main(void) 

{ 

 init_devices(); 

 DelayXts(10);       //wait for voltages to sta-

bilize 
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 TurnOffAll(); 

 JTest(1,5);         //Joint test (indicating 

ready) 

 PRE();        //Preamble - PC 

 CTR_Ready();       //Control Board Ready - PC 

 TransmitByte0('R');      //Control Board Ready - Com-

munication 

 while (ReceiveByte0TL(10)!='R') {TransmitByte0('R');} //Wait for the communication 

board ready signal 

 COMM_Ready();       //Control Board Ready - PC 

 TransmitByte0('L');      //Listening 

 CTR_LST();       //Control Board Listening - 

PC 

 while (1) {Listen();}      //Execute the required func-

tion 

} 

Communication Board Program 

//****************************** MAIN PROGRAM FOR COMMUNICATION BOARDS 

****************************** 

//ICC-AVR application builder : 1/1/2009 12:48:09 AM 

// Target : M162 

// Crystal: 1.0000Mhz 

#include <iom162v.h> 

#include <macros.h> 

int ts;        //time step, increased every 10ms 

int M=1;S=0;   //Assuming the module is Mobile not Substrate 

int L=0;   //Assuming the module is not initially localized 

int X=0,Y=0;   //Assuming the initial location of the module 

int Yref=0;   //Rotation Transformation (Difference between the body and 

global frame) 

            

      

//****************************** PORT INITIALIZATION ****************************** 

void port_init(void) 

{ 

 PORTA = 0x00; 

 PORTB = 0x00; 

 PORTC = 0x00; 

 PORTD = 0x00; 

 PORTE = 0x00; 

 DDRA = 0b11111111;   //Selectors - Side LEDs 

 DDRB = 0b11111011;   //IR Communication 

 DDRC = 0b11111111;   //Side LEDs - Joint LEDs 

 DDRD = 0b11111110;   //Control Communication - Side LEDs - Joint LEDs 

 DDRE = 0b11111111;   //Side LEDs - Joint LEDs 

} 

 

//****************************** TIMER INITIALIZATION ****************************** 

//TIMER0 initialize - prescale:64 

// WGM: Normal 

// desired value: 10mSec 

// actual value:  9.984mSec (0.2%) 

void timer0_init(void) 

{ 

 TCCR0= 0x00;      //stop 

 TCNT0= 0x64;    //set count 

 OCR0= 0x9C;    //set compare value 

 TCCR0= 0x03;    //start timer 

} 

#pragma interrupt_handler timer0_ovf_isr:iv_TIM0_OVF 

void timer0_ovf_isr(void) 

{ 

 TCNT0= 0x64;    //reload counter value 

 ts++;     //increase ts every 10ms  

} 

//Delay of multiple of ts (10ms) 

void DelayXts (int i) 
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{  

 ts=0;while (ts<i) {;} 

}  

 

//****************************** UART INITIALIZATION ****************************** 

//UART0 initialize 

// desired baud rate: 4800 

// actual: baud rate:4808 (0.2%) 

// char size: 8 bit 

// parity: Disabled 

void uart0_init(void) 

{ 

 UCSR0B = 0x00;    //disable while setting baud rate 

 UCSR0A = 0x00;   //disable while setting baud rate 

 UBRR0L  =0x0C;   //set baud rate 

 UBRR0H = 0x00; 

 UCSR0C = BIT(URSEL0) | 0x06; 

 UCSR0A = 0x00;     //enable 

 UCSR0B = 0x18;   //enable 

} 

// Transmite0 

void TransmitByte0( unsigned char data ) 

{while ( !(UCSR0A & (1<<UDRE0)) );UDR0 = data;} 

// Receive0 

unsigned char ReceiveByte0(void) 

{while ( !(UCSR0A & (1<<RXC0)) ) {;} return UDR0;} 

// Receive0TL :time limited listening to the port (t: time stpes) 

unsigned char ReceiveByte0TL(int t)  

{ 

 ts=0; 

 while ((!(UCSR0A&(1<<RXC0))) && (ts<t)){;} 

 if (ts>=t) {return '~';} else {return UDR0;} //'~': time exceeded 

} 

// Contorl Message Format 

int MSG( int a,int b,int c,int d,int e) 

{ 

 TransmitByte0('*'); 

 TransmitByte0(a); 

 TransmitByte0(b); 

 TransmitByte0(c); 

 TransmitByte0(d); 

 TransmitByte0(e); 

 TransmitByte0('#'); 

 return ReceiveByte0TL(250); //Wait for acknowledgment (max of 2.5sec) 

} 

//UART1 initialize 

// desired baud rate:300 

// actual baud rate:300 (0.2%) 

// char size: 8 bit 

// parity: Disabled 

void uart1_init(void) 

{ 

 UCSR1B = 0x00;    //disable while setting baud rate 

 UCSR1A = 0x00;   //disable while setting baud rate 

 UBRR1L  =0xCF;   //set baud rate 

 UBRR1H = 0x00; 

 UCSR1C = BIT(URSEL1) | 0x06; 

 UCSR1A = 0x00;     //enable 

 UCSR1B = 0x18;   //enable 

} 

// Transmite1 

void TransmitByte1( unsigned char data ) 

{while ( !(UCSR1A & (1<<UDRE1)) );UDR1 = data;DelayXts(5);}      //Keep a delay after 

each transmition 

// Receive1 

unsigned char ReceiveByte1(void) 

{while ( !(UCSR1A & (1<<RXC1)) ) {;} return UDR1;} 

// Receive1TL :time limited listening to the port (t: time steps) 

unsigned char ReceiveByte1TL(int t)  

{ 
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 ts=0; 

 while ((!(UCSR1A&(1<<RXC1))) && (ts<t)){;} 

 if (ts>=t) {return '~';} else {return UDR1;}   //'~': time exceeded 

} 

// Localization Message Format: +xx+yyS 

void LOCMSG1( int a,int b,int c,int d,int e, int f, int g) 

{ 

 TransmitByte1('*'); 

 TransmitByte1(a); 

 TransmitByte1(b); 

 TransmitByte1(c); 

 TransmitByte1(d); 

 TransmitByte1(e); 

 TransmitByte1(f); 

 TransmitByte1(g); 

} 

// Preamble 

void PRE (void) 

{ 

 unsigned char txt[20]={10,13,10,13,'#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

 if (S==1) {TransmitByte1('S');TransmitByte1(':');TransmitByte1(' ');} 

 if (M==1) {TransmitByte1('M');TransmitByte1(':');TransmitByte1(' ');} 

} 

// Control Board Ready 

void CTR_Ready (void) 

{ 

 unsigned char txt[20]={'C','T','R','.',' ','B','O','A','R','D',' 

','R','E','A','D','Y','#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

 TransmitByte1(10);TransmitByte1(13); 

} 

// Communication Board Ready 

void COMM_Ready (void) 

{ 

 unsigned char txt[20]={'C','O','M','M','.',' ','B','O','A','R','D',' 

','R','E','A','D','Y','#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

 TransmitByte1(10);TransmitByte1(13); 

} 

// Control Board Listening 

void CTR_LST (void) 

{ 

 unsigned char txt[20]={'C','T','R','.',' 

','L','I','S','T','E','N','I','N','G',10,13,'#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

} 

// Communication Board Listening 

void COMM_LST (void) 

{ 

 unsigned char txt[20]={'C','O','M','M','.',' 

','L','I','S','T','E','N','I','N','G',10,13,'#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

} 

// Localized 

void LOC (void) 

{ 

 unsigned char txt[20]={'L','O','C','A','L','I','Z','E','D',10,13,'#'}; 

 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

} 

// Package Received 

void RCV (void) 

{ 

 unsigned char txt[20]={'R','E','C','E','I','V','E','D',10,13,'#'}; 
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 int i=0; 

 while (txt[i]!='#') {TransmitByte1(txt[i]);i++;} 

} 

 

//****************************** ALL DEVICES INITIALIZATION 

****************************** 

//call this routine to initialize all peripherals 

void init_devices(void) 

{ 

 //stop errant interrupts until set up 

 CLI();      //disable all interrupts 

 port_init(); 

 timer0_init(); 

 uart0_init(); 

 uart1_init(); 

 

 MCUCR= 0x00;  

 EMCUCR = 0x00; 

 TIMSK= 0x02;   //timer interrupt sources 

 ETIMSK=0x00; 

 GICR= 0x00; 

 PCMSK0=0x00; 

 PCMSK1=0x00; 

 SEI();    //re-enable interrupts 

 //all peripherals are now initialized 

} 

 

//****************************** CONTROL FUNCTIONS ****************************** 

int JxOpen (int i)      {int a; a=MSG(1,i,'N','N','N');return a;} 

int JxClose (int i)     {int a; a=MSG(2,i,'N','N','N');return a;} 

int JxOpenAll (void)     {int a; a=MSG(3,0,'N','N','N');return a;} 

int JxCloseAll (void)     {int a; a=MSG(4,0,'N','N','N');return a;} 

int JTest (int n,int t)    {int a; a=MSG(5,n,t,'N','N');return a;} 

int SxP (int i)       {int a; a=MSG(11,i,'N','N','N');return a;} 

int SxN (int i)       {int a; a=MSG(12,i,'N','N','N');return a;} 

int SxOff (int i)       {int a; a=MSG(13,i,'N','N','N');return a;} 

int SxOffAll (void)     {int a; a=MSG(14,'N','N','N','N');return a;} 

int SPTest (int n,int t)    {int a; a=MSG(15,n,t,'N','N');return a;} 

int SNTest (int n,int t)    {int a; a=MSG(16,n,t,'N','N');return a;} 

int TurnOffAll (void)     {int a; a=MSG(20,'N','N','N','N');return a;} 

int MCW (int i,int t1,int t2, int t3)  {int a; a=MSG(21,i,t1,t2,t3);return a;} 

int MCCW (int i,int t1,int t2, int t3)  {int a; a=MSG(22,i,t1,t2,t3);return a;} 

int SCW (int i,int t1,int t2, int t3)  {int a; a=MSG(23,i,t1,t2,t3);return a;} 

int SCCW (int i,int t1,int t2, int t3)  {int a; a=MSG(24,i,t1,t2,t3);return a;} 

 

//****************************** IR SELECTOR ****************************** 

void IrSel (int i) 

{ 

 //(MUX, DEMUX Selector (C,B,A) 

 if (i==1){PORTA = PORTA & 0b11111000;PORTA = PORTA | 0b00000000;}  //Y0: SIDE 1 

 if (i==6){PORTA = PORTA & 0b11111100;PORTA = PORTA | 0b00000100;} //Y1: SIDE 6  

 if (i==0){PORTA = PORTA & 0b11111010;PORTA = PORTA | 0b00000010;} //Y2: CENTER  

 if (i==2){PORTA = PORTA & 0b11111110;PORTA = PORTA | 0b00000110;} //Y3: SIDE 2  

 if (i==5){PORTA = PORTA & 0b11111001;PORTA = PORTA | 0b00000001;} //Y4: SIDE 5  

 if (i==3){PORTA = PORTA & 0b11111101;PORTA = PORTA | 0b00000101;} //Y5: SIDE 3  

 if (i==4){PORTA = PORTA & 0b11111011;PORTA = PORTA | 0b00000011;} //Y6: SIDE 4  

} 

//****************************** SIDE LEDs ****************************** 

void SideOnP (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Turn On LED 

 if (i==1){PORTA = PORTA & 0b10111111;} 

 if (i==2){PORTE = PORTE & 0b11111101;} 

 if (i==3){PORTC = PORTC & 0b10111111;} 

 if (i==4){PORTC = PORTC & 0b11110111;} 

 if (i==5){PORTC = PORTC & 0b11111101;} 

 if (i==6){PORTD = PORTD & 0b10111111;} 
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} 

void SideOffP (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Turn Off LED 

 if (i==1){PORTA = PORTA | 0b01000000;} 

 if (i==2){PORTE = PORTE | 0b00000010;} 

 if (i==3){PORTC = PORTC | 0b01000000;} 

 if (i==4){PORTC = PORTC | 0b00001000;} 

 if (i==5){PORTC = PORTC | 0b00000010;} 

 if (i==6){PORTD = PORTD | 0b01000000;} 

} 

void SideOnAllP (void) 

{ 

 //Turn On LED 

 PORTA = PORTA & 0b10111111; 

 PORTC = PORTC & 0b10110101; 

 PORTD = PORTD & 0b10111111; 

 PORTE = PORTE & 0b11111101; 

} 

void SideOffAllP (void) 

{ 

 //Turn Off LED 

 PORTA = PORTA | 0b01000000; 

 PORTE = PORTE | 0b00000010; 

 PORTC = PORTC | 0b01001010; 

 PORTD = PORTD | 0b01000000; 

} 

void SideOnN (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Turn On LED 

 if (i==1){PORTA = PORTA & 0b11011111;} 

 if (i==2){PORTE = PORTE & 0b11111110;} 

 if (i==3){PORTC = PORTC & 0b01111111;} 

 if (i==4){PORTC = PORTC & 0b11101111;} 

 if (i==5){PORTC = PORTC & 0b11111110;} 

 if (i==6){PORTD = PORTD & 0b11011111;} 

} 

void SideOffN (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Turn Off LED 

 if (i==1){PORTA = PORTA | 0b00100000;} 

 if (i==2){PORTE = PORTE | 0b00000001;} 

 if (i==3){PORTC = PORTC | 0b10000000;} 

 if (i==4){PORTC = PORTC | 0b00010000;} 

 if (i==5){PORTC = PORTC | 0b00000001;} 

 if (i==6){PORTD = PORTD | 0b00100000;} 

} 

void SideOnAllN (void) 

{ 

 //Turn On LED 

 PORTA = PORTA & 0b11011111; 

 PORTC = PORTC & 0b01101110; 

 PORTD = PORTD & 0b11011111; 

 PORTE = PORTE & 0b11111110; 

} 

void SideOffAllN (void) 

{ 

 //Turn Off LED 

 PORTA = PORTA | 0b00100000; 

 PORTC = PORTC | 0b10010001; 

 PORTD = PORTD | 0b00100000; 
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 PORTE = PORTE | 0b00000001; 

} 

//Side (Magnet) Test - Positive 

void SidePTest (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 { for (i=1;i<7;i++) {SideOnP(i);DelayXts(t);SideOffP(i);DelayXts(t);}}   

} 

//Side (Magnet) Test - Negative 

void SideNTest (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 { for (i=1;i<7;i++) {SideOnN(i);DelayXts(t);SideOffN(i);DelayXts(t);}}   

} 

 

//****************************** JOINT LEDs ****************************** 

void JointOn (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Turn On LED 

 if (i==1){PORTD = PORTD & 0b01111111;} 

 if (i==2){PORTA = PORTA & 0b01111111;} 

 if (i==3){PORTE = PORTE & 0b11111011;} 

 if (i==4){PORTC = PORTC & 0b11011111;} 

 if (i==5){PORTC = PORTC & 0b11111011;} 

 if (i==6){PORTD = PORTD & 0b11101111;} 

} 

void JointOff (int i) 

{ 

 //Place i in the required range 

 while (i<1) {i=i+6;}  

 while (i>6) {i=i-6;}  

 //Turn Off LED 

 if (i==1){PORTD = PORTD | 0b10000000;} 

 if (i==2){PORTA = PORTA | 0b10000000;} 

 if (i==3){PORTE = PORTE | 0b00000100;} 

 if (i==4){PORTC = PORTC | 0b00100000;} 

 if (i==5){PORTC = PORTC | 0b00000100;} 

 if (i==6){PORTD = PORTD | 0b00010000;} 

} 

void JointOnAll (void) 

{ 

 //Turn On LED 

 PORTA = PORTA & 0b01111111; 

 PORTC = PORTC & 0b11011011; 

 PORTD = PORTD & 0b01101111; 

 PORTE = PORTE & 0b11111011; 

} 

void JointOffAll (void) 

{ 

 //Turn Off LED 

 PORTA = PORTA | 0b10000000; 

 PORTC = PORTC | 0b00100100; 

 PORTD = PORTD | 0b10010000; 

 PORTE = PORTE | 0b00000100; 

} 

 

//Joint Test LED 

void JointTest (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 {  

   for (i=1;i<7;i++) {JointOn(i);DelayXts(t);JointOff(i);DelayXts(t);} 

 }   

} 
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//****************************** LED FUNCTIONS ****************************** 

//LED All On  

void LOn (void) 

{SideOnAllP();SideOnAllN();JointOnAll();} 

//LED All Off  

void LOff (void) 

{SideOffAllP();SideOffAllN();JointOffAll();} 

//LED Test (Circle) 

void LCircle (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 {  

     for (i=1;i<7;i++) 

     { 

      JointOn(i);DelayXts(t);JointOff(i);DelayXts(t); 

   IrSel(i);TransmitByte1(255);DelayXts(t);TransmitByte1(0);DelayXts(t); 

      SideOnN(i);DelayXts(t);SideOffN(i);DelayXts(t); 

      SideOnP(i);DelayXts(t);SideOffP(i);DelayXts(t); 

     }  

 }   

 IrSel(0); 

} 

//LED Test (Color) 

void LColor (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 {  

      JointOnAll();DelayXts(t);JointOffAll();DelayXts(t); 

      SideOnAllN();DelayXts(t);SideOffAllN();DelayXts(t); 

      SideOnAllP();DelayXts(t);SideOffAllP();DelayXts(t); 

 }   

} 

//LED Test (Flash) 

void LFlash1 (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 {  

      SideOnAllN();SideOffAllP();DelayXts(t); 

   SideOffAllN();SideOnAllP();DelayXts(t); 

 }   

 LOff(); 

} 

//LED Test (Flash) 

void LFlash2 (int n,int t) 

{ 

 int i,j; 

 for (j=0;j<n;j++) 

 {  

      LOn();DelayXts(t);LOff();DelayXts(t); 

 }   

} 

//Y Ref. (Flash) 

void LYref (int i) 

{ 

 if (i==0) {Yref=Yref;}  //Same Orientation: just indicate +Y 

 if (i==1) {Yref++;}   //CCW Rotation 

 if (i==2) {Yref--;}   CW Rotation 

 if (Yref>5) {Yref=Yref-6;} 

 if (Yref<0) {Yref=Yref+6;} 

 //indicate the + Y access (on side 2): global orientation 

 SideOnP(2-Yref);SideOffN(2-Yref);        

  

 DelayXts(10); 

 SideOnN(2-Yref);SideOffP(2-Yref); 

 DelayXts(10); 

 SideOffN(2-Yref); 
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} 

//Mobile Module Rotation (CW) LED 

void LMCW (int i,int t1,int t2, int t3) 

{ 

 JointOn(i);JointOn(i+1);         //1 - Ji, Ji+1 Open 

 DelayXts(t1);    //2 - Delay t1 

 SideOnN(i);SideOnN(i-1);  //3 - Si, Si-1 Negative 

 DelayXts(t2);    //4 - Delay t2 

 JointOffAll();    //5 - All Jx Close 

 DelayXts(t3);    //6 - Delay t3 

        //7 - No action  

 SideOffAllP();SideOffAllN();  //8 - All Sx Off 

} 

//Mobile Module Rotation (CCW) LED 

void LMCCW (int i,int t1,int t2, int t3) 

{ 

 JointOn(i+1);     //1 - Ji+1 Open 

 DelayXts(t1);    //2 - Delay t1 

 SideOnN(i);SideOnN(i-1);  //3 - Si, Si-1 Negative 

 DelayXts(t2);    //4 - Delay t2 

 JointOn(i);    //5 - Ji Open 

 DelayXts(t3);    //6 - Delay t3 

 JointOffAll();   //7 - All Jx Close  

 SideOffAllP();SideOffAllN();  //8 - All Sx Off 

} 

//Substrate (CW) LED 

void LSCW (int i,int t1,int t2, int t3) 

{ 

 JointOn(i-1);    //1 - Ji-1 Open 

 DelayXts(t1);    //2 - Delay t1 

 SideOnN(i-3);SideOnP(i-2);  //3 - Si-3 Negative, Si-2 Positive 

 DelayXts(t2);    //4 - Delay t2 

 JointOn(i-2);    //5 - Ji-2 Open 

 DelayXts(t3);    //6 - Delay t3 

 JointOffAll();   //7 - All Jx Close  

 SideOffAllP();SideOffAllN();  //8 - All Sx Off 

} 

//Substrate (CCW) LED 

void LSCCW (int i,int t1,int t2, int t3) 

{ 

 JointOn(i-3);JointOn(i-4);  //1 - Ji-3, Ji-4 Open 

 DelayXts(t1);    //2 - Delay t1 

 SideOnN(i-4);SideOnN(i-5);  //3 - Si-4 Negative, Si-5 Positive 

 DelayXts(t2);    //4 - Delay t2 

 JointOffAll();   //5 - All Jx Close 

 DelayXts(t3);    //6 - Delay t3 

      //7 - No action   

 SideOffAllP();SideOffAllN();  //8 - All Sx Off 

} 

 

//****************************** PRIMARY LOCALIZATION AND MOTION FUNCTIONS 

****************************** 

//Set the module as the ref. 

void Ref (void) 

{ 

 M=0;          //Not a Mobile module 

 S=1;     //Substrate module 

 L=1;     //Localized 

 X=0;     //At X=0 

 Y=0;     //At Y=0 

 Yref=0;    //Orientation  

 LYref(0);    //Indicate the orientation 

 LYref(0);    //Indicate the orientation 

 LYref(0);    //Indicate the orientation 

} 

//Localize Others (for ref. or localized modules) 

void Localize (void) 

{ 

 int MSG1[10];       //Localization Message (ref. to thesis) 

 int i,j; 
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 //Localized (ref.) modules 

 if (L==1)                      

         

 { 

  for (i=0;i<6;i++)   //Send the MSG1 6 times 

  { 

  SideOnP(2);SideOnN(2);  //Indication on side 2 

  IrSel(2);   //Select side 2 

 DelayXts(5);PRE();  //Prepare      

       

 LOCMSG1(0,0,0,0,0,1,5); //Send MSG1 

 DelayXts(5);PRE();  //Prepare      

       

 LOCMSG1(0,0,0,0,0,1,5); //Send MSG1 

  SideOffP(2);SideOffN(2); //Indication off 

 

  SideOnP(3);SideOnN(3);  //Indication on side 3 

  IrSel(3);   //Select side 3 

 DelayXts(5);PRE();  //Prepare      

       

 LOCMSG1(0,0,1,0,0,0,6); //Send MSG1 

 DelayXts(5);PRE();  //Prepare      

       

 LOCMSG1(0,0,1,0,0,0,6); //Send MSG1 

  SideOffP(3);SideOffN(3); //Indication off 

  } 

  IrSel(0);    //Listen to PC 

 }  

 //Non localized modules 

 if (L==0)                      

        

 { 

  for (j=1;j<7;j++)   //Send the MSG1 6 times 

  { 

 IrSel(j);   //Listen to side j 

  SideOnP(j);SideOnN(j);  //Indication 

 i=ReceiveByte1TL(150); 

   while ((i!='*')&&(i!='~')) {i=ReceiveByte1TL(150);} //Wait for the start of mes-

sage for 1 sec 

 if (i=='*')          //If there is a message (Lo-

calized) 

 { 

  for (i=1;i<8;i++) {MSG1[i] = ReceiveByte1();} //Read its 7 bytes 

     X=MSG1[2];Y=MSG1[6];       //Update location 

  Yref=MSG1[7]-j;     //Update orientation: amount 

of CW rotations (ref-body)         

     //Place Yref in the required range [0-5] 

     while (Yref<0) {Yref=Yref+6;}  

     while (Yref>5) {Yref=Yref-6;}  

  L=1;j=7;IrSel(0);        //Localized, quit the loop 

  LOff();      //Turn off the LEDs 

 } 

  SideOffP(j);SideOffN(j);    //Indication 

  } 

  if (L==1)        //If localized      

  { 

    IrSel(0); 

 PRE(); 

 LOC(); 

 //Indicate from which side the module received the localization information 

 TransmitByte1('S');TransmitByte1('i');TransmitByte1('d');TransmitByte1('e'); 

 TransmitByte1(':');TransmitByte1(' '); 

 TransmitByte1(MSG1[7]+48);TransmitByte1(10);TransmitByte1(13); 

 //Indicate amount of rotation 

 TransmitByte1('Y');TransmitByte1('r');TransmitByte1('e');TransmitByte1('f'); 

 TransmitByte1(':');TransmitByte1(' '); 

 TransmitByte1(Yref+48);TransmitByte1(10);TransmitByte1(13); 

 //Indicate the orientation 

    LYref(0);LYref(0);LYref(0); 

  } 
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  else {LCircle(1,5);}   //Could not be localized 

 }  

 IrSel(0);    //Listen to PC 

} 

// CW rotation [substrate, mobile) 

int CW (int si,int st1,int st2, int st3, int mi,int mt1,int mt2, int mt3)  

{ 

 int a=0; 

 if (M==1) {a=MCW(mi,mt1,mt2,mt3);LMCW(mi,mt1,mt2,mt3);} 

 if (S==1) {a=SCW(si,st1,st2,st3);LSCW(si,st1,st2,st3);} 

 return a; 

} 

// CCW rotation 

int CCW (int si,int st1,int st2, int st3, int mi,int mt1,int mt2, int mt3)  

{ 

 int a=0; 

 if (M==1) {a=MCCW(mi,mt1,mt2,mt3);LMCCW(mi,mt1,mt2,mt3);} 

 if (S==1) {a=SCCW(si,st1,st2,st3);LSCCW(si,st1,st2,st3);} 

 return a; 

} 

 

//****************************** FUNCTIONS CALLED FROM THE PC 

****************************** 

//Listening to the PC 

void Listen (void) 

{ 

 unsigned char R=0;  //Received Character 

 int MSG[6];     //Received Message 

 int i,a=78;   //a: acknowledge (default "N") 

  

  

 //while (R!='*') {TransmitByte1(R);R=ReceiveByte1();}  //temp test 

 while (ReceiveByte1()!='*') {;}     //Wait for the start 

of message 

 for (i=1;i<10;i++) {MSG[i] = ReceiveByte1();}   //Read the message 

                 

 //Run the required functaion based on the "Function Table"     

   

  

 //Control board functions 

 if (MSG[1]==1) {a=JxOpen(MSG[2]);JointOn(MSG[2]);}  

 if (MSG[1]==2) {a=JxClose(MSG[2]);JointOff(MSG[2]);}  

 if (MSG[1]==3) {a=JxOpenAll();JointOnAll();}  

 if (MSG[1]==4) {a=JxCloseAll();JointOffAll();}  

 if (MSG[1]==5) {a=JTest(MSG[2],MSG[3]);JointTest(MSG[2],MSG[3]);}  

 

 if (MSG[1]==11) {a=SxP(MSG[2]);SideOnP(MSG[2]);}  

 if (MSG[1]==12) {a=SxN(MSG[2]);SideOnN(MSG[2]);}  

 if (MSG[1]==13) {a=SxOff(MSG[2]);SideOffP(MSG[2]);SideOffN(MSG[2]);}  

 if (MSG[1]==14) {a=SxOffAll();SideOffAllP();SideOffAllN();}  

 if (MSG[1]==15) {a=SPTest(MSG[2],MSG[3]);SidePTest(MSG[2],MSG[3]);}  

 if (MSG[1]==16) {a=SNTest(MSG[2],MSG[3]);SideNTest(MSG[2],MSG[3]);}  

  

 if (MSG[1]==20) {a=TurnOffAll();LOff();}  

  

 if (MSG[1]==21) {a=MCW(MSG[2],MSG[3],MSG[4],MSG[5]);LMCW(MSG[2],MSG[3],MSG[4],MSG[5]);}  

 if (MSG[1]==22) 

{a=MCCW(MSG[2],MSG[3],MSG[4],MSG[5]);LMCCW(MSG[2],MSG[3],MSG[4],MSG[5]);}  

 if (MSG[1]==23) {a=SCW(MSG[2],MSG[3],MSG[4],MSG[5]);LSCW(MSG[2],MSG[3],MSG[4],MSG[5]);}  

 if (MSG[1]==24) 

{a=SCCW(MSG[2],MSG[3],MSG[4],MSG[5]);LSCCW(MSG[2],MSG[3],MSG[4],MSG[5]);}  

 

 //Communication board functions 

 if (MSG[1]==25) {IrSel(MSG[2]);a=MSG[1];}  

 

 if (MSG[1]==28) {SideOnP(MSG[2]);a=MSG[1];}  

 if (MSG[1]==29) {SideOffP(MSG[2]);a=MSG[1];}  

 if (MSG[1]==30) {SideOnAllP();a=MSG[1];}  

 if (MSG[1]==31) {SideOffAllP();a=MSG[1];}  

 if (MSG[1]==32) {SideOnN(MSG[2]);a=MSG[1];}  
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 if (MSG[1]==33) {SideOffN(MSG[2]);a=MSG[1];}  

 if (MSG[1]==34) {SideOnAllN();a=MSG[1];}  

 if (MSG[1]==35) {SideOffAllN();a=MSG[1];} 

 if (MSG[1]==36) {SidePTest(MSG[2],MSG[3]);a=MSG[1];} 

 if (MSG[1]==37) {SideNTest(MSG[2],MSG[3]);a=MSG[1];} 

 

 if (MSG[1]==38) {JointOn(MSG[2]);a=MSG[1];}  

 if (MSG[1]==39) {JointOff(MSG[2]);a=MSG[1];}  

 if (MSG[1]==40) {JointOnAll();a=MSG[1];}  

 if (MSG[1]==41) {JointOffAll();a=MSG[1];}  

 if (MSG[1]==43) {JointTest(MSG[2],MSG[3]);a=MSG[1];}  

 

 if (MSG[1]==44) {LOn();a=MSG[1];}  

 if (MSG[1]==45) {LOff();a=MSG[1];}  

 if (MSG[1]==46) {LCircle(MSG[2],MSG[3]);a=MSG[1];}  

 if (MSG[1]==47) {LColor(MSG[2],MSG[3]);a=MSG[1];}  

 if (MSG[1]==48) {LFlash1(MSG[2],MSG[3]);a=MSG[1];}  

 if (MSG[1]==49) {LFlash2(MSG[2],MSG[3]);a=MSG[1];}  

 if (MSG[1]==50) {LYref(MSG[2]);a=MSG[1];}  

   

 if (MSG[1]==56) {LMCW(MSG[2],MSG[3],MSG[4],MSG[5]);a=MSG[1];}  

 if (MSG[1]==57) {LMCCW(MSG[2],MSG[3],MSG[4],MSG[5]);a=MSG[1];}  

 if (MSG[1]==58) {LSCW(MSG[2],MSG[3],MSG[4],MSG[5]);a=MSG[1];}  

 if (MSG[1]==59) {LSCCW(MSG[2],MSG[3],MSG[4],MSG[5]);a=MSG[1];}  

  

 if (MSG[1]==65) {Ref();a=MSG[1];}  

 if (MSG[1]==66) {Localize();a=MSG[1];}  

 if (MSG[1]==67) {a=CW(MSG[2],MSG[3],MSG[4],MSG[5],MSG[6],MSG[7],MSG[8],MSG[9]);}  

 if (MSG[1]==68) {a=CCW(MSG[2],MSG[3],MSG[4],MSG[5],MSG[6],MSG[7],MSG[8],MSG[9]);}  

  

 //Command Received 

 if (S==1) {DelayXts(100);}  //If it's the substrate module wait for 1sec to 

avoid interference 

 PRE();     //Preamble - IR 

 // RCV();    //Received       

                

 //Acknowledgement (with the command code executed) 

 TransmitByte1('A'); 

 TransmitByte1('C'); 

 TransmitByte1('K'); 

 TransmitByte1(a);  

 TransmitByte1(10); 

 TransmitByte1(13); 

 //Message Received  

// TransmitByte1('M');          

   

// TransmitByte1('S'); 

// TransmitByte1('G'); 

// for (i=1;i<10;i++) {TransmitByte1(MSG[i]);} 

// TransmitByte1(10); 

// TransmitByte1(13); 

} 

 

//****************************** MAIN PROGRAM ****************************** 

void main(void) 

{ 

// int i,a;       //Acknowledge 

// unsigned char R; 

 init_devices(); 

 LOff();     //Turn off all LEDs 

 IrSel(0);       //Select the central communication 

 PRE();     //Preamble - IR 

 COMM_Ready();    //Communication Board Ready - IR 

  

 //Hand shaking between the control and communication microcontrollers 

 while (ReceiveByte0()!='R') {;}  //Wait for the control board ready signal 

 LFlash1(3,10); 

 CTR_Ready();    //Control Board Ready - IR 

 

 TransmitByte0('R');    //Communication Ready signal  
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 while (ReceiveByte0TL(10)!='L') {TransmitByte0('R');}  //Wait for the control board 

to listen 

 LFlash2(3,10); 

 CTR_LST();       //Control Board Listening - 

IR 

  

  //************ Write the localization routine: done manually ********* 

 LCircle(1,5);        //Localization 

 Yref=1; //assuming 

 IrSel(0);          //Select the central communi-

cation 

 LOC(); //localized 

  

 //Execute the required function 

 IrSel(0);          //Select the central communi-

cation 

 LColor(3,10);        //Listening  

 COMM_LST();       //Communication Board Listen-

ing - IR 

 while(1) {Listen();}      //Start listening to PC 

} 

Wireless SPI Code 

//ICC-AVR application builder : 12/23/2008 12:41:31 PM 

// Target : M162 

// Crystal: 1.0000Mhz 

 

#include <iom162v.h> 

#include <macros.h> 

 

int Counter=0; //incresed every 10ms 

int DataTX[]; //SPI TX Data 

int DataRX[]; //SPI RX Data 

 

// SPI PORT CONFIGURATION  

//PB4 - SLE (SS) 

void SEL_OUTPUT (void)        {DDRB|=(1<<4);} 

void HI_SEL (void)    {PORTB|=(1<<4);} 

void LOW_SEL (void)      {PORTB&=~(1<<4);} 

//PB5 - SDI (MOSI) 

void SDI_OUTPUT (void)      {DDRB|=(1<<5);} 

void HI_SDI (void)      {PORTB|=(1<<5);} 

void LOW_SDI (void)      {PORTB&=~(1<<5);} 

//PB6 - SDO (MISO) 

void SDO_INPUT (void)      {DDRB&=~(1<<6);} 

int HI_SDO(void)      {return PINB&(1<<6);} 

void LOW_SDO (void)      {PORTB&=~(1<<6);} 

//PB7 - SCK (SCK) 

void SCK_OUTPUT (void)      {DDRB|=(1<<7);} 

void HI_SCK (void)      {PORTB|=(1<<7);} 

void LOW_SCK (void)      {PORTB&=~(1<<7);} 

//PD4 - DATA 

void DATA_OUT (void)      {DDRD|=(1<<4);} 

void HI_DATA (void)      {PORTD|=(1<<4);} 

//PD5 - nIRQ (INT0) 

void IRQ_IN (void)       {DDRD&=~(1<<5);} 

void WAIT_IRQ_LOW (void)     {while(PIND&(1<<5)){;}} 

//PD6 - GREEN LED 

void LEDG_OUTPUT (void)     {DDRD|=(1<<6);} 

void LEDG_ON (void)      {PORTD|=(1<<6);} 

void LEDG_OFF (void)      {PORTD&=~(1<<6);} 

//PD7 - RED LED 

void LEDR_OUTPUT (void)     {DDRD|=(1<<7);} 

void LEDR_ON (void)      {PORTD|=(1<<7);} 

void LEDR_OFF (void)      {PORTD&=~(1<<7);} 

 

// RF12 PORT INITIALIZATION 

void RF12_PORT_INIT (void) 
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{ 

 HI_SEL(); 

 HI_SDI(); 

 LOW_SCK(); 

 SEL_OUTPUT(); 

 SDI_OUTPUT(); 

 SDO_INPUT(); 

 SCK_OUTPUT(); 

 DATA_OUT();  

 HI_DATA(); //SEt nFFS pin HI when using FIFO ,TX register 

 IRQ_IN(); //PD5(INT0) 

} 

 

// RF12 WRITE COMMAND 

unsigned int RF12_WRT_CMD (unsigned int aCmd) 

{ 

 unsigned char i; 

 unsigned int temp=0; 

 LOW_SCK(); 

 LOW_SEL(); 

 for (i=0;i<16;i++) 

 { 

  if(aCmd&0x8000) {HI_SDI();} else {LOW_SDI();} 

  HI_SCK(); 

  aCmd<<=1; 

 

  temp<<=1; 

  if(HI_SDO()) {temp|=0x0001;} 

  LOW_SCK(); 

 } 

 HI_SEL(); 

 return (temp); 

} 

  

void RF12_INIT(void) 

{ 

 RF12_WRT_CMD(0x80D7);// EL, EF, 433band,12, 0pF 

 RF12_WRT_CMD(0x8239);// !er, !ebb, ET, ES, EX, !eb, !ew, DC 

 RF12_WRT_CMD(0xA640);// A140=430.8 MHz 

 RF12_WRT_CMD(0xC647);// 4.8kbps 

 RF12_WRT_CMD(0x94A0);// VDI, FAST, 134kHz, 0dBm, -103dBm 

 RF12_WRT_CMD(0xC2AC);// AL, !m1, DIG, DQD4 

 RF12_WRT_CMD(0xCA81);// FIFO8, SYNC, !ff, DR 

 RF12_WRT_CMD(0xCED4);// SYNC=2DD4 

 RF12_WRT_CMD(0xC483);// @PWR, NO RSTRIC, !st, !fi, 0E, EN 

 RF12_WRT_CMD(0x9850);// !mp, 9810=30kHz, MAX, OUT 

 RF12_WRT_CMD(0xCC67);// OB1, OB0, ! 1px, !ddy, DDIT, BW0 

 RF12_WRT_CMD(0xE000);// NOT USE 

 RF12_WRT_CMD(0xC800);// NOT USE 

 RF12_WRT_CMD(0xC400);// 1.66MHz, 2.2V 

}  

 

void RF12_SEND(unsigned char aByte) 

{ 

 while (PIND&(1<<5));//wait for previously TX over 

 RF12_WRT_CMD(0xB800+aByte); 

} 

 

unsigned char RF12_RECV(void) 

{ 

 unsigned int FIFO_data; 

 WAIT_IRQ_LOW(); 

 RF12_WRT_CMD(0x0000); 

 FIFO_data=RF12_WRT_CMD(0xB0000); 

 return(FIFO_data&0x00FF); 

} 

 

void LED_DELAY(void) 

{ 

 Counter=0;while (Counter<20) {;} //delay of 200ms 
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} 

 

void POWER_ON_LED (void) 

{ 

 int i; 

 LEDG_OFF(); 

 LEDR_OFF(); 

 LEDG_OUTPUT(); 

 LEDR_OUTPUT(); 

 for (i=0;i<3;i++) 

 { 

 LEDG_ON();LEDR_OFF();LED_DELAY(); 

 LEDG_OFF();LEDR_ON();LED_DELAY(); 

 } 

 LEDG_OFF();LEDR_OFF(); 

}     

 

void RF12_TX(void)  

{ 

 unsigned int i; 

 unsigned char ChkSum; 

  

 LEDR_ON();LED_DELAY();LEDR_OFF(); 

 

 RF12_WRT_CMD(0x0000);//read status register 

 RF12_WRT_CMD(0x8239);//!er, !ebb, ET, ES, EX, !eb, !ew, DC 

  

 ChkSum=0; 

 RF12_SEND(0xAA);//PREAMBLE 

 RF12_SEND(0xAA);//PREAMBLE 

 RF12_SEND(0xAA);//PREAMBLE 

 RF12_SEND(0x2D);//SYNC HI BYTE 

 RF12_SEND(0xD4);//SYNC LOW BYTE 

 for (i=1;i<17;i++) {RF12_SEND(DataTX[i]);ChkSum+=DataTX[i];}//Send Data 

 RF12_SEND(ChkSum);//Send ChkSum 

 RF12_SEND(0xAA);//DUMMY BYTE 

 RF12_SEND(0xAA);//DUMMY BYTE 

 RF12_SEND(0xAA);//DUMMY BYTE 

} 

 

void RF12_RX(void) 

{ 

 unsigned int i; 

 unsigned char ChkSum; 

 

 LEDG_ON();LED_DELAY();LEDG_OFF(); 

 

 RF12_WRT_CMD(0xCA81);//Initialize FIFO 

 RF12_WRT_CMD(0xCA83);//Enable FIFO 

  

 ChkSum=0; 

 for (i=1;i<17;i++) {DataRX[i]=RF12_RECV();ChkSum+=DataRX[i];}//Receive Data 

 i=RF12_RECV();//Receive ChkSum 

 

 RF12_WRT_CMD(0xCA81);//Disable FIFO 

 

 if(ChkSum==i) {DataRX[17]=1;} else {DataRX[17]=0;}// Package Check   

} 

 

//SPI initialize 

// clock rate: 250000hz 

void spi_init(void) 

{ 

 SPCR= 0x00; //diable spi 

 SPSR= 0x01; //2X 

 SPCR= 0x43; //setup SPI 

} 

 

void port_init(void) 

{ 
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 DDRA  = 0x00; 

 DDRB  = 0x00; 

 DDRC  = 0x00; 

 DDRD  = 0x00; 

 DDRE  = 0x00; 

} 

 

//TIMER0 initialize - prescale:256 

// WGM: Normal 

// desired value: 10mSec 

// actual value:  9.984mSec (0.2%) 

void timer0_init(void) 

{ 

 TCCR0= 0x00; //stop 

 TCNT0= 0xD9; //set count 

 OCR0= 0x27; //set compare value 

 TCCR0= 0x04; //start timer 

} 

 

#pragma interrupt_handler timer0_ovf_isr:iv_TIM0_OVF 

void timer0_ovf_isr(void) 

{ 

 TCNT0= 0xD9; //reload counter value 

 Counter++;   //increase the counter every 10ms 

} 

 

//UART0 initialize 

// desired baud rate: 4800 

// actual: baud rate:4808 (0.2%) 

// char size: 8 bit 

// parity: Disabled 

void uart0_init(void) 

{ 

 UCSR0B = 0x00; //disable while setting baud rate 

 UCSR0A = 0x00; //disable while setting baud rate 

 UBRR0L  =0x0C; //set baud rate 

 UBRR0H = 0x00; 

 UCSR0C = BIT(URSEL0) | 0x06; 

 UCSR0A = 0x00; //enable 

 UCSR0B = 0x18; //enable 

} 

 

// Transmite0 

void TransmitByte0( unsigned char data ) 

{while ( !(UCSR0A & (1<<UDRE0)) );UDR0 = data;} 

 

//UART1 initialize 

// desired baud rate:4800 

// actual baud rate:4808 (0.2%) 

// char size: 8 bit 

// parity: Disabled 

void uart1_init(void) 

{ 

 UCSR1B = 0x00; //disable while setting baud rate 

 UCSR1A = 0x00; //disable while setting baud rate 

 UBRR1L  =0x0C; //set baud rate 

 UBRR1H = 0x00; 

 UCSR1C = BIT(URSEL1) | 0x06; 

 UCSR1A = 0x00; //enable 

 UCSR1B = 0x18; //enable 

} 

 

// Transmite1 

void TransmitByte1( unsigned char data ) 

{while ( !(UCSR1A & (1<<UDRE1)) );UDR1 = data;} 

 

//call this routine to initialize all peripherals 

void init_devices(void) 

{ 

 //stop errant interrupts until set up 
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 CLI(); //disable all interrupts 

 spi_init(); 

 port_init(); 

 timer0_init(); 

 uart0_init(); 

 uart1_init(); 

 

 RF12_PORT_INIT(); 

 RF12_INIT(); 

 

 MCUCR= 0x00;  

 EMCUCR = 0x00; 

 //GIMSK= 0x00; 

 GICR  = 0x00; 

 TIMSK= 0x02; //timer interrupt sources 

 ETIMSK=0x00; 

 GICR= 0x00; 

 PCMSK0=0x00; 

 PCMSK1=0x00; 

 SEI(); //re-enable interrupts 

 //all peripherals are now initialized 

} 

// TEST FUNCTIONS 

void RX_TEST(void) 

{ 

 init_devices(); 

 POWER_ON_LED(); 

 DataTX[1]=1; 

 DataTX[2]=2; 

 DataTX[3]=3; 

 DataTX[4]=4; 

 DataTX[5]=5; 

 DataTX[6]=6; 

 DataTX[7]=7; 

 DataTX[8]=8; 

 DataTX[9]=9; 

 while (1) 

 { 

      RF12_TX(); 

 LED_DELAY(); 

 LED_DELAY(); 

 } 

}  

 

void TX_TEST(void) 

{ 

 

 int i; 

 init_devices(); 

 POWER_ON_LED(); 

 while (1) 

 { 

     RF12_RX(); 

     TransmitByte1('S');LED_DELAY(); 

     TransmitByte1('T');LED_DELAY(); 

     TransmitByte1('A');LED_DELAY(); 

     TransmitByte1('R');LED_DELAY(); 

     TransmitByte1('T');LED_DELAY(); 

     for (i=1;i<18;i++) 

     { 

      TransmitByte1(DataRX[i]);LED_DELAY(); 

     } 

 } 

}   
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   APPENDIX B 

B. Visual basic code 
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This program is primarily developed as a Graphical User Interface (GUI) for the 

user to communicate to modules. 

Port Configuration 

Private Sub ClosePC_Click() 

Me.Hide 

End Sub 

 

Public Sub MSComm1_OnComm() 

On Error Resume Next 

     readByte = PortConf.MSComm1.Input 

     ' Fix the new line problem 

     If readByte = Chr(10) Then 

        Form1.Text1.Text = Form1.Text1.Text & vbCrLf 

     End If 

     If readByte = Chr(13) Then 

        Form1.Text1.Text = Form1.Text1.Text 

     Else 

        If readByte <> Chr(10) Then 

            Form1.Text1.Text = Form1.Text1.Text + readByte 

        End If 

     End If 

     

    ' Ack code: 

    S = InStrRev(Form1.Text1.Text, "ACK") 

    L = Len(Form1.Text1.Text) 

    If S <> 0 Then 

        If L > S + 3 Then 

        Form1.Ack1.Text = Asc(MID(Form1.Text1.Text, S + 3, 1)) 

        End If 

    End If 

 

    ' Message Received: 

    S = InStrRev(Form1.Text1.Text, "MSG") 

    L = Len(Form1.Text1.Text) 

    If S <> 0 Then 

        If L > S + 8 Then 

        Form1.FE1.Text = Asc(MID(Form1.Text1.Text, S + 3, 1)) 

        Form1.FE2.Text = Asc(MID(Form1.Text1.Text, S + 4, 1)) 

        Form1.FE3.Text = Asc(MID(Form1.Text1.Text, S + 5, 1)) 

        Form1.FE4.Text = Asc(MID(Form1.Text1.Text, S + 6, 1)) 

        Form1.FE5.Text = Asc(MID(Form1.Text1.Text, S + 7, 1)) 

        End If 

    End If 

 

End Sub 

 

Private Sub MSComm2_OnComm() 

On Error Resume Next 

     readByte = PortConf.MSComm2.Input 

     ' Fix the new line problem 

     If readByte = Chr(10) Then 

        Form1.Text2.Text = Form1.Text2.Text & vbCrLf 

     End If 

     If readByte = Chr(13) Then 

        Form1.Text2.Text = Form1.Text2.Text 

     Else 

        If readByte <> Chr(10) Then 

            Form1.Text2.Text = Form1.Text2.Text + readByte 

        End If 

     End If 

     

    ' Ack code: 

    S = InStrRev(Form1.Text2.Text, "ACK") 

    L = Len(Form1.Text2.Text) 
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    If S <> 0 Then 

        If L > S + 3 Then 

        Form1.Ack2.Text = Asc(MID(Form1.Text2.Text, S + 3, 1)) 

        Form1.MID.Text = MID(Form1.Text2.Text, S - 3, 1) 

        End If 

    End If 

 

End Sub 

 

Private Sub SetIR_Click() 

On Error Resume Next 

MSComm2.PortOpen = False 

MSComm2.CommPort = PN2.Text 

MSComm2.Settings = BR2.Text + "," + P2.Text + "," + DB2 + "," + SB2 

MSComm2.PortOpen = True 

End Sub 

 

Private Sub SetUART1_Click() 

On Error Resume Next 

MSComm1.PortOpen = False 

MSComm1.CommPort = PN1.Text 

MSComm1.Settings = BR1.Text + "," + P1.Text + "," + DB1 + "," + SB1 

MSComm1.PortOpen = True 

End Sub 

Main Window 

Private Sub Ack2_Change() 

On Error Resume Next 

If Chr(Ack2.Text) = "N" Then Ack2.Text = "N" 

End Sub 

 

Private Sub ClearIR_Click() 

Text2.Text = "" 

Ack2.Text = "0" 

MID.Text = "N" 

RB2.Text = "0" 

End Sub 

 

Private Sub ClearMSG_Click() 

MSG1.Text = "*" 

MSG2.Text = "0" 

MSG3.Text = "0" 

MSG4.Text = "0" 

MSG5.Text = "0" 

MSG6.Text = "0" 

MSG7.Text = "0" 

MSG8.Text = "0" 

MSG9.Text = "0" 

MSG10.Text = "0" 

MSG11.Text = "#" 

End Sub 

 

Private Sub ClearUART1_Click() 

Text1.Text = "" 

Ack1.Text = "0" 

FE1.Text = "N" 

FE2.Text = "N" 

FE3.Text = "N" 

FE4.Text = "N" 

FE5.Text = "N" 

RB1.Text = "0" 

End Sub 

 

Private Sub CloseMain_Click() 

Unload Form1 

Unload PortConf 

End Sub 
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Private Sub ConnectIR_Click() 

On Error Resume Next 

PortConf.MSComm2.PortOpen = True 

ConnectIR.Enabled = False 

DisconnectIR.Enabled = True 

End Sub 

 

Private Sub ConnectUART1_Click() 

On Error Resume Next 

PortConf.MSComm1.PortOpen = True 

ConnectUART1.Enabled = False 

DisconnectUART1.Enabled = True 

End Sub 

 

Private Sub DisconnectIR_Click() 

On Error Resume Next 

PortConf.MSComm2.PortOpen = False 

ConnectIR.Enabled = True 

DisconnectIR.Enabled = False 

End Sub 

 

Private Sub DisconnectUART1_Click() 

On Error Resume Next 

PortConf.MSComm1.PortOpen = False 

ConnectUART1.Enabled = True 

DisconnectUART1.Enabled = False 

End Sub 

 

Private Sub FE1_Change() 

On Error Resume Next 

If Chr(FE1.Text) = "N" Then FE1.Text = "N" 

End Sub 

 

Private Sub FE2_Change() 

On Error Resume Next 

If Chr(FE2.Text) = "N" Then FE2.Text = "N" 

End Sub 

 

Private Sub FE3_Change() 

On Error Resume Next 

If Chr(FE3.Text) = "N" Then FE3.Text = "N" 

End Sub 

 

Private Sub FE4_Change() 

On Error Resume Next 

If Chr(FE4.Text) = "N" Then FE4.Text = "N" 

End Sub 

 

Private Sub FE5_Change() 

On Error Resume Next 

If Chr(FE5.Text) = "N" Then FE5.Text = "N" 

End Sub 

 

Private Sub Form_Unload(Cancel As Integer) 

On Error Resume Next 

PortConf.MSComm1.PortOpen = False 

PortConf.MSComm2.PortOpen = False 

End Sub 

 

Private Sub Fun1_Click() 

MSG2.Text = 1 

SendMSG1() = True 

End Sub 

 

Private Sub Fun2_Click() 

MSG2.Text = 2 

SendMSG1() = True 

End Sub 

 

Private Sub Fun3_Click() 
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MSG2.Text = 3 

SendMSG1() = True 

End Sub 

 

Private Sub Fun4_Click() 

MSG2.Text = 4 

SendMSG1() = True 

End Sub 

 

Private Sub Fun5_Click() 

MSG2.Text = 5 

SendMSG1() = True 

End Sub 

 

Private Sub Fun11_Click() 

MSG2.Text = 11 

SendMSG1() = True 

End Sub 

 

Private Sub Fun12_Click() 

MSG2.Text = 12 

SendMSG1() = True 

End Sub 

 

Private Sub Fun13_Click() 

MSG2.Text = 13 

SendMSG1() = True 

End Sub 

 

Private Sub Fun14_Click() 

MSG2.Text = 14 

SendMSG1() = True 

End Sub 

 

Private Sub Fun15_Click() 

MSG2.Text = 15 

SendMSG1() = True 

End Sub 

 

Private Sub Fun16_Click() 

MSG2.Text = 16 

SendMSG1() = True 

End Sub 

 

Private Sub Fun20_Click() 

MSG2.Text = 20 

SendMSG1() = True 

End Sub 

 

Private Sub Fun21_Click() 

MSG2.Text = 21 

SendMSG1() = True 

End Sub 

 

Private Sub Fun22_Click() 

MSG2.Text = 22 

SendMSG1() = True 

End Sub 

 

Private Sub Fun23_Click() 

MSG2.Text = 23 

SendMSG1() = True 

End Sub 

 

Private Sub Fun24_Click() 

MSG2.Text = 24 

SendMSG1() = True 

End Sub 

 

Private Sub Fun25_Click() 
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MSG2.Text = 25 

SendMSG1() = True 

End Sub 

 

Private Sub Fun28_Click() 

MSG2.Text = 28 

SendMSG1() = True 

End Sub 

 

Private Sub Fun29_Click() 

MSG2.Text = 29 

SendMSG1() = True 

End Sub 

 

Private Sub Fun30_Click() 

MSG2.Text = 30 

SendMSG1() = True 

End Sub 

 

Private Sub Fun31_Click() 

MSG2.Text = 31 

SendMSG1() = True 

End Sub 

 

Private Sub Fun32_Click() 

MSG2.Text = 32 

SendMSG1() = True 

End Sub 

 

Private Sub Fun33_Click() 

MSG2.Text = 33 

SendMSG1() = True 

End Sub 

 

Private Sub Fun34_Click() 

MSG2.Text = 34 

SendMSG1() = True 

End Sub 

 

Private Sub Fun35_Click() 

SendMSG1() = True 

MSG2.Text = 35 

End Sub 

 

Private Sub Fun36_Click() 

MSG2.Text = 36 

SendMSG1() = True 

End Sub 

 

Private Sub Fun37_Click() 

MSG2.Text = 37 

SendMSG1() = True 

End Sub 

 

Private Sub Fun38_Click() 

MSG2.Text = 38 

SendMSG1() = True 

End Sub 

 

Private Sub Fun39_Click() 

MSG2.Text = 39 

SendMSG1() = True 

End Sub 

 

Private Sub Fun40_Click() 

MSG2.Text = 40 

SendMSG1() = True 

End Sub 

 

Private Sub Fun41_Click() 
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MSG2.Text = 41 

SendMSG1() = True 

End Sub 

 

Private Sub Fun43_Click() 

MSG2.Text = 43 

SendMSG1() = True 

End Sub 

 

Private Sub Fun44_Click() 

MSG2.Text = 44 

SendMSG1() = True 

End Sub 

 

Private Sub Fun45_Click() 

MSG2.Text = 45 

SendMSG1() = True 

End Sub 

 

Private Sub Fun46_Click() 

MSG2.Text = 46 

SendMSG1() = True 

End Sub 

 

Private Sub Fun47_Click() 

MSG2.Text = 47 

SendMSG1() = True 

End Sub 

 

Private Sub Fun48_Click() 

MSG2.Text = 48 

SendMSG1() = True 

End Sub 

 

Private Sub Fun49_Click() 

MSG2.Text = 49 

SendMSG1() = True 

End Sub 

 

Private Sub Fun50_Click() 

MSG2.Text = 50 

SendMSG1() = True 

End Sub 

 

Private Sub Fun56_Click() 

MSG2.Text = 56 

SendMSG1() = True 

End Sub 

 

Private Sub Fun57_Click() 

MSG2.Text = 57 

SendMSG1() = True 

End Sub 

 

Private Sub Fun58_Click() 

MSG2.Text = 58 

SendMSG1() = True 

End Sub 

 

Private Sub Fun59_Click() 

MSG2.Text = 59 

SendMSG1() = True 

End Sub 

 

Private Sub Fun65_Click() 

MSG2.Text = 65 

SendMSG1() = True 

End Sub 

 

Private Sub Fun66_Click() 
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MSG2.Text = 66 

SendMSG1() = True 

End Sub 

 

Private Sub Fun67_Click() 

MSG2.Text = 67 

SendMSG1() = True 

End Sub 

 

Private Sub Fun68_Click() 

MSG2.Text = 68 

SendMSG1() = True 

End Sub 

 

Private Sub Fun69_Click() 

MSG2.Text = 69 

SendMSG1() = True 

End Sub 

 

Private Sub PortConfig_Click() 

On Error Resume Next 

PortConf.Show 

End Sub 

 

Private Sub SendMSG1_Click() 

On Error Resume Next 

PortConf.MSComm2.Output = MSG1.Text 

PortConf.MSComm2.Output = Chr(MSG2.Text) 

PortConf.MSComm2.Output = Chr(MSG3.Text) 

PortConf.MSComm2.Output = Chr(MSG4.Text) 

PortConf.MSComm2.Output = Chr(MSG5.Text) 

PortConf.MSComm2.Output = Chr(MSG6.Text) 

PortConf.MSComm2.Output = Chr(MSG7.Text) 

PortConf.MSComm2.Output = Chr(MSG8.Text) 

PortConf.MSComm2.Output = Chr(MSG9.Text) 

PortConf.MSComm2.Output = Chr(MSG10.Text) 

PortConf.MSComm2.Output = MSG11.Text 

End Sub 

 

Private Sub SendMSG2_Click() 

On Error Resume Next 

PortConf.MSComm2.Output = MSG1.Text 

PortConf.MSComm2.Output = Chr(MSG2.Text) 

PortConf.MSComm2.Output = Chr(MSG3.Text) 

PortConf.MSComm2.Output = Chr(MSG4.Text) 

PortConf.MSComm2.Output = Chr(MSG5.Text) 

PortConf.MSComm2.Output = Chr(MSG6.Text) 

PortConf.MSComm2.Output = Chr(MSG7.Text) 

PortConf.MSComm2.Output = Chr(MSG8.Text) 

PortConf.MSComm2.Output = Chr(MSG9.Text) 

PortConf.MSComm2.Output = Chr(MSG10.Text) 

PortConf.MSComm2.Output = MSG11.Text 

End Sub 

 

Private Sub Text1_Change() 

' Number of Bytes Received 

RB1.Text = Len(Form1.Text1.Text) 

End Sub 

 

Private Sub Text2_Change() 

' Number of Bytes Received 

RB2.Text = Len(Form1.Text2.Text) 

End Sub  
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These functions were primarily developed to be utilized for the algorithm and si-

mulation in Matlab. Moreover there are few test codes attached illustrating the use of dif-

ferent functions and the complete algorithm as well. 

Function 1: FindVE 

% [V,E] = FindVE(I, G) 

% 

% Given  

% I: initial state  

% G: goal state 

% 

% Find 

% V: voids 

% E: electrons 

  

function [V,E] = FindVE(I, G) 

V = zeros(size(I)); 

E = zeros(size(I)); 

A = G - I; 

X = find(A==-1); 

E(X)=1; 

X = find(A==1); 

V(X)=1; 

end 

Function 2: Hex 

% [Vx Vy] = Hex(C) 

% 

% Given  

% C: center of a hexagon  

% 

% Find 

% Vx: six x coordinates of vertices 

% Vy: six y coordinates of vertices 

% 

% Notes: 

% Using this function you can enter the center of the hexagon (in Hex 

% Coordinates) and it will give you the vertex (in Cartesian Coordinates) 

% C: [x y] 

% Vx: [px1 px2 px3 px4 px5 px6] 

% Vy: [py1 py2 py3 py4 py5 py6] 

  

function [Vx Vy] = Hex(C) 

a = 1/sin(pi/3); 

b = tan(pi/6); 

  

x = C(1,1); 

y = C(1,2)*a + x*b; 

  

a = 1/3; 

b = 1/(3*tan(pi/6)); 

  

px1 = x - 2*a; 

py1 = y; 

  

px2 = x - a; 

py2 = y + b; 

  

px3 = x + a; 

py3 = y + b; 

  

px4 = x + 2*a; 
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py4 = y; 

  

px5 = x + a; 

py5 = y - b; 

  

px6 = x - a; 

py6 = y - b; 

  

Vx = [px1 px2 px3 px4 px5 px6]; 

Vy = [py1 py2 py3 py4 py5 py6]; 

end 

Function 3: HexActuate 

% [Fj, Fs]=HexActuate(s1,s2,S) 

% 

% Given    

% s1: initial location of the mobile electron 

% s2: next location of the mobile electron 

% S: current system configuration 

% 

% Find 

% Fj: joint forces 

% Fs: side forces 

% 

% Example 

% S =[ 

%      0     0     0     0     0     0     0     0     0 

%      0     0     0     0     0     0     0     0     0 

%      0     0     0     0     0     0     0     0     0 

%      0     0     1     0     0     0     0     0     0 

%      0     0     1     1     1     1     1     0     0 

%      0     0     0     0     0     0     0     0     0 

%      0     0     0     0     0     0     0     0     0 

%     ]; 

% s1=[5,7]; 

% s2=[4,6]; 

% [Fj, Fs]=HexActuate(s1,s2,S); 

% G = Hexmove(S,Fj,Fs); 

  

function [Fj, Fs]=HexActuate(s1,s2,S) 

  

% Refer to Fig 4-29 of thesis (Matlab Coordinates) 

A = [-1, -1]; 

B = [-1, 0]; 

C = [0, 1]; 

D = [1, 1]; 

E = [1, 0]; 

F= [0, -1]; 

G = [-2, -1]; 

H = [-1, 1]; 

I = [1, 2]; 

J = [2, 1]; 

K = [1, -1]; 

L = [-1, -2]; 

  

% Relative relocation 

s=s2-s1; 

  

% Absolute locations 

a=s1+A; 

b=s1+B; 

c=s1+C; 

d=s1+D; 

e=s1+E; 

f=s1+F; 

g=s1+G; 

h=s1+H; 

i=s1+I; 
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j=s1+J; 

k=s1+K; 

l=s1+L; 

  

% Refer to Hexmove function 

Fj=zeros(1,3); 

Fs=zeros(2,4); 

  

% Refer to Table 4-3 of thesis 

m1=a;m2=d;m3=e;m4=k;m5=F; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 1]; 

    Fs=[s1 1 6 

        a 5 4]; 

%    disp('1') 

end 

m1=b;m2=e;m3=f;m4=l;m5=A; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 2]; 

    Fs=[s1 2 1 

        b 6 5]; 

%    disp('2') 

end 

m1=c;m2=f;m3=a;m4=g;m5=B; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 3]; 

    Fs=[s1 3 2 

        c 1 6]; 

%    disp('3') 

end 

m1=d;m2=a;m3=b;m4=h;m5=C; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 4]; 

    Fs=[s1 4 3 

        d 2 1]; 

%    disp('4') 

end 

m1=e;m2=b;m3=c;m4=i;m5=D; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 5]; 

    Fs=[s1 5 4 

        e 3 2]; 

%    disp('5') 

end 

m1=f;m2=c;m3=d;m4=j;m5=E; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 6]; 

    Fs=[s1 6 5 

        f 4 3]; 

%    disp('6') 

end 

m1=f;m2=c;m3=b;m4=g;m5=A; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 1]; 

    Fs=[s1 1 6 

        f 2 3]; 
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%    disp('11') 

end 

m1=a;m2=d;m3=c;m4=h;m5=B; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 2]; 

    Fs=[s1 2 1 

        a 3 4]; 

%    disp('22') 

end 

m1=b;m2=e;m3=d;m4=i;m5=C; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 3]; 

    Fs=[s1 3 2 

        b 4 5]; 

%    disp('33') 

end 

m1=c;m2=f;m3=e;m4=j;m5=D; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 4]; 

    Fs=[s1 4 3 

        c 5 6]; 

%    disp('44') 

end 

m1=d;m2=a;m3=f;m4=k;m5=E; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 5]; 

    Fs=[s1 5 4 

        d 6 1]; 

%    disp('55') 

end 

m1=e;m2=b;m3=a;m4=l;m5=F; 

if 

(S(m1(1,1),m1(1,2))==1)&&(S(m2(1,1),m2(1,2))==0)&&(S(m3(1,1),m3(1,2))==0)&&(S(m4(1,1),m4(

1,2))==0)&&isequal(m5,s) 

    Fj=[s1 6]; 

    Fs=[s1 6 5 

        e 1 2]; 

%    disp('66') 

end 

  

% Conversion to Hex coordinates 

s = size(S,1); 

  

mx = Fj(1,2);my = Fj(1,1); 

hx = mx-1;hy = s-my; 

Fj(1,1)=hx;Fj(1,2)=hy; 

Fs(1,1)=hx;Fs(1,2)=hy; 

  

mx = Fs(2,2);my = Fs(2,1); 

hx = mx-1;hy = s-my; 

Fs(2,1)=hx;Fs(2,2)=hy;  

end 

Function 4: HexAll_P 

% [Joint, Side, S]=HexAll_P(I,G) 

% 

% Given 

% I: Initial Configuration (State) 

% G: Goal Configuration (State) 

% 



 Appendices  197 
 

 

% Find 

% Joint: Required Joint Forces 

% Side: Required Side Forces 

% S: Parallel Motion, each row: [s1:curren location of the mobile module, s2:NRL, s3:PV] 

  

function [Joint, Side, S]=HexAll_P(I,G) 

% ********** Layer 1: Initial and Goal States ********** 

%Entered Manually at this stage, Ex: 

% I  = [0 0 0 0 0 

%       1 0 0 0 0 

%       1 1 1 1 1]; 

%  

% G  = [1 1 0 0 0 

%       1 0 1 0 0 

%       0 1 1 0 0]; 

%Double Zero Padding 

%I = HexZP(I);I = HexZP(I); 

%G = HexZP(G);G = HexZP(G); 

  

% ********** Layer 2: Mobile Electrons and Potential Voids ********** 

[V E] = FindVE(I,G);    %Find all voids and electrons 

PoV = PV(I,G);          %Find potential voids 

ME = Mobile(E,I);       %Find mobile electrons 

if (sum(sum(PoV))==0)||(sum(sum(ME))==0) 

     disp('There is no more possible motion');return;    

end 

  

% ********** Layer 3: Void Propagation ********** 

PVME=HexVP(I,G); 

s = size (PVME,1);  %Number of parallel movements 

  

% ********** Layer 4: MDP ********** 

for i=1:s 

   s1=[PVME(i,3) PVME(i,4)];    %ME 

   s2=[PVME(i,1) PVME(i,2)];    %PV 

   NRL = MDP_NRL(I,G,s1,s2,0);  %Next Recommended Location for ME 

   Motion(i,:)=[s1 NRL s2]; 

end 

  

% ********** Layer 5: Actuation ********** 

for i=1:s 

   s1=[Motion(i,1) Motion(i,2)];    %Current Location 

   s2=[Motion(i,3) Motion(i,4)];    %Next Location 

   s3=[Motion(i,5) Motion(i,6)];    %Desired Location 

   [Fj, Fs]=HexActuate(s1,s2,I);    %Required Actuation 

   Joint(i,:)=Fj;                   %Joint Forces 

   Side(i,:)=[Fs(1,:), Fs(2,:)];    %Side Forces 

   S(i,:)=[s1, s2, s3]; 

end 

end 

Function 5: HexAll_S 

%[Joint, Side, S]=HexAll_S(I,G) 

% 

%Given 

%I: Initial Configuration (State) 

%G: Goal Configuration (State) 

% 

%Find 

%Joint: Required Joint Forces 

%Side: Required Side Forces 

%S: Serial Motion (One module movement at a time): [s1:curren location of the mobile mod-

ule, s2:NRL, s3:PV] 

  

function [Joint, Side, S]=HexAll_S(I,G) 

% ********** Layer 1: Initial and Goal States ********** 

%Entered Manually at this stage, Ex: 

% I  = [0 0 0 0 0 
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%       1 0 0 0 0 

%       1 1 1 1 1]; 

%  

% G  = [1 1 0 0 0 

%       1 0 1 0 0 

%       0 1 1 0 0]; 

%Double Zero Padding 

%I = HexZP(I);I = HexZP(I); 

%G = HexZP(G);G = HexZP(G); 

  

% ********** Layer 2: Mobile Electrons and Potential Voids ********** 

[V E] = FindVE(I,G);    %Find all voids and electrons 

PoV = PV(I,G);          %Find potential voids 

ME = Mobile(E,I);       %Find mobile electrons 

if (sum(sum(PoV))==0)||(sum(sum(ME))==0) 

     disp('There is no more possible motion');return;    

end 

  

% ********** Layer 3: Void Propagation ********** 

PVME=HexVP(I,G); 

  

% ********** Layer 4: MDP ********** 

s1=[PVME(1,3) PVME(1,4)];    %ME 

s2=[PVME(1,1) PVME(1,2)];    %PV 

NRL = MDP_NRL(I,G,s1,s2,0);  %Next Recommended Location for ME 

Motion(1,:)=[s1 NRL s2]; 

  

% ********** Layer 5: Actuation ********** 

s1=[Motion(1,1) Motion(1,2)];    %Current Location 

s2=[Motion(1,3) Motion(1,4)];    %Next Location 

s3=[Motion(1,5) Motion(1,6)];    %Desired Location 

[Fj, Fs]=HexActuate(s1,s2,I);    %Required Actuation 

Joint(1,:)=Fj;                   %Joint Forces 

Side(1,:)=[Fs(1,:), Fs(2,:)];    %Side Forces 

S(1,:)=[s1, s2, s3]; 

end 

Function 6: HexCCW 

% C_new = HexCCW(C_old, Joint) 

% 

% Given 

% C_old: current coordinates of the center of a module 

% Joint: around which a CCW rotation is happening 

% 

% Find 

% C_new: next coordinates of the center after the rotation 

% 

%Notes: 

% Counter clockwise rotation of module around a joint 

% Center (old and new) is a: [x, y] 

  

function C_new = HexCCW(C_old, Joint) 

CCW = [1  2  3  4  5  6; 

      -1  0 +1 +1  0 -1; 

      +1 +1  0 -1 -1  0;]; 

  

C_new = [C_old(1,1)+CCW(2,Joint), C_old(1,2)+CCW(3,Joint)]; 

end 

Function 7: HexCG 

%HexCG(I) 

% 

%Given 

% I: configuration matrix 

% 

% Find  
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% plot the connectivity graph 

% 

% Notes: 

% note that all sides of the configuration should be zero padded 

% to allow module movements on the sides (Use HexZP) 

  

function HexCG(I) 

  

F = find(I);[X Y] = find(I);   %find all modules in the configuration 

s = size(F,1);                 %number of modules in the configuration 

  

for i=1:s 

    IDs (1,i) = {num2str(F(i))}; 

end 

  

%CM = zeros(s(1,1),s(1,1));                         %connection matrix (square matrix, 

number of nodes) 

UG = sparse([ ],[ ],true,s,s);                      %Undirected Graph, same size of the 

nodes 

  

%To have undirected-like of graph 

for i=1:s-1  

    x = X(i);y = Y(i);                             %Start with one node, check if others 

are connected to it 

    N = HexNeM(x,y);                               %find neighbor modules 

    for j=i+1:s                                    %check the connection to the remaining 

modules  

        id = str2num(cell2mat(IDs(1,j)));          %get the id of the node 

        for k=1:6                                  %check if this id is in the neighbor-

hood 

            nid = (N(k,1)+(N(k,2)-1)*size(I,1)); 

            if nid==id                             %if id is found to be in the neighbor-

hood 

                UG(i,j) = true;                    %connect to that module 

            end 

        end 

    end 

end 

  

bg = biograph(UG,IDs);                      %Construct the graph with no connection 

set(bg.Nodes, 'Shape', 'Circle') 

set(bg, 'ShowArrows', 'off') 

Grid = ones(size(I)); 

figure;axis off;hold on;Hexpm(Grid);Hexplot(I,1);         

bg.view; 

end 

  

% To display the descendants of a node 

% i=1 

% desNodes = getdescendants(bg.nodes(i),1); 

% set(desNodes,'Color',[1 .7 .7]); 

Function 8: HexCGT 

% C = HexCGT(I) 

% 

% Given 

% I: configuration matrix 

% 

% Find 

% C = 1 if the graph is connected and returns C = 0 if graph is not connected 

% 

% Notes: 

% note that all sides of the configuration should be zero padded 

% to allow module movements on the sides (Use HexZO) 

  

function C = HexCGT(I) 

  

F = find(I);[X Y] = find(I);   %find all modules in the configuration 
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s = size(F,1);                 %number of modules in the configuration 

  

for i=1:s 

    IDs (1,i) = {num2str(F(i))}; 

end 

  

UG = sparse([ ],[ ],true,s,s);                      %Undirected Graph, same size of the 

nodes 

  

for i=1:s %[1:S-1] 

    x = X(i);y = Y(i);                             %Start with one node, check if others 

are connected to it 

    N = HexNeM(x,y);                               %find neighbor modules 

    for j=1:s   %[I+1:S]                           %check the connection to the remaining 

modules  

        id = str2num(cell2mat(IDs(1,j)));          %get the id of the node 

        for k=1:6                                  %check if this id is in the neighbor-

hood 

            nid = (N(k,1)+(N(k,2)-1)*size(I,1)); 

            if nid==id                             %if id is found to be in the neighbor-

hood 

                UG(i,j) = true;                    %connect to that module 

            end 

        end 

    end 

end 

  

P = graphallshortestpaths(UG,'directed',false); 

  

T = sum(sum(P)); 

if (T==Inf)  

    C=0; 

else 

    C=1; 

end 

Function 9: HexCW 

% C_new = HexCW(C_old, Joint) 

% 

% Given 

% C_old: current coordinates of the center of a module 

% Joint: around which a CW rotation is happening 

% 

% Find 

% C_new: next coordinates of the center after the rotation 

% 

%Notes: 

% Counter clockwise rotation of module around a joint 

% Center (old and new) is a: [x, y] 

  

function C_new = HexCW(C_old, Joint) 

CW = [1  2  3  4  5  6; 

     -1 -1  0 +1 +1  0; 

      0 +1 +1  0 -1 -1;]; 

  

C_new = [C_old(1,1)+CW(2,Joint), C_old(1,2)+CW(3,Joint)]; 

end 

Function 10: Hexgrid 

% Hexgrid(min, max) 

% 

% Given 

% (min, max): ranges to grid 

% 

% Find 

% Adds the Hex Axis Grids 
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function Hexgrid(min, max) 

  

min = floor(min); 

max = ceil(max); 

a = 1/sin(pi/3); 

b = tan(pi/6); 

  

% find the grid points 

hold on; 

for i = min:max 

    for j = min:max 

        plot(i,j*a+i*b,'bo'); 

    end 

end 

min = min*(a+b)-1; 

max = max*(a+b)+1; 

axis ([min max min max]); 

shg; 

end 

Function 11: HexIMS 

% x = HexIMS(I,s) 

% 

% Given 

% I: a configuration matrix 

% s: a location in Matlab Coordinates 

% 

% Find 

% x=1 if s has an immobile substrate in I 

% 

% Example 

% I  = [0 0 0 0 0 

%       1 0 0 0 0 

%       1 1 1 1 1 

%       0 0 0 0 0]; 

% s = [1 1];  

  

function x = HexIMS(I,s) 

xmax=size(I,1);ymax=size(I,2); 

x=0; 

N=HexNeM(s(1,1),s(1,2));%check the neighbors 

for j=1:6  

    xn=N(j,1);yn=N(j,2); 

    if (xn>0&&xn<=xmax&&yn>0&&yn<=ymax) && (I(xn,yn)==1)  

        x=1; 

    end 

end 

end 

Function 12: Hexmove 

% G = Hexmove(I, Fj, Fs, p) 

% 

% Given 

% I: Initial State of the modules 

% Fj: Joint Forces (the only close joint for the mobile module)  

%     [could be found from Fs automatically as well, but included to simulate the actual 

microcontroller commands] 

% Fs: Side Forces (Energized magnets: Mobile and neighbor) 

% p: plotting (1:plot, 0:don't plot) 

% 

% Find 

% G: Goal State, next state after the actuation happens 

% 

% Notes:  

% Move from Initial state to Goal state based on Joint and Side forces 
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% 

% Example 

% I  = [1 1 1; 

%       1 1 0; 

%       0 0 1] 

% Fj = [2 0 2]    %second joint of the mobile module (2,0) 

% Fs = [2 0 1 2;  %sides 1 and 2 of mobile (2,0) are -ve 

%       1 1 3 4]  %side 3 of neighbor (2,1) is +ve and 4 -ve 

% G  = [1 1 1; 

%       1 1 1; 

%       0 0 0] 

  

function G = Hexmove(varargin) 

I = varargin{1}; 

Fj = varargin{2}; 

Fs = varargin{3}; 

p=0; 

if length(varargin) > 3 

    p = cell2mat(varargin(4)); 

end 

  

% FIND DIRECTION OF ROTATION 

% (if fixed joint number and repulsion (-ve) side number are the same CW otherwise CCW) 

% neighbor repulsion points (N) 

[Vx Vy]=Hex([Fs(2,1),Fs(2,2)]); 

a = Fs(2,4);b = Fs(2,4)+1;if (b==7) b=1; end 

N = [Vx(a) Vy(a); 

     Vx(b) Vy(b)]; 

  

% mobile module points (M) 

[Vx Vy]=Hex([Fj(1,1),Fj(1,2)]); 

a = Fj(1,3);b = Fj(1,3)+1;if (b==7) b=1; end 

M = [Vx(a) Vy(a) 

     Vx(b) Vy(b)]; 

  

%round the numbers so that "isequal" works fine 

N=round(1000*N)/1000; 

M=round(1000*M)/1000; 

  

if isequal(N,M)    

    C=HexCW([Fj(1,1), Fj(1,2)],Fj(1,3)); 

elseif isequal(N,flipdim(M,1)) 

    C=HexCW([Fj(1,1), Fj(1,2)],Fj(1,3)); 

else 

    C=HexCCW([Fj(1,1), Fj(1,2)],Fj(1,3)); 

end 

  

% FORM THE GOAL STATE 

G = flipdim(I,1); 

G(Fj(1,2)+1,Fj(1,1)+1)=0; 

G(C(1,2)+1,C(1,1)+1)=1; 

G = flipdim(G,1); 

  

if (p==1) 

    % PLOT THE GIVEN DATA 

    P = 1;          % Speed 

    Grid = ones(size(I)); 

    scrsz = get(0,'ScreenSize'); 

    figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3) 

scrsz(4)]);hold on 

    subplot(1,2,1);axis off;title('Current Module Configuration + Actua-

tion');Hexpm(Grid);Hexplot(I,1);Jointplot(Fj);Sideplot(Fs); 

    subplot(1,2,2);axis off;title('Next Configuration');Hexpm(Grid);Hexplot(G,1); 

    pause(P);%close ('Simulation Window') 

end 

end 
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Function 13: HexNe 

% [N] = HexNe(x,y) 

%  

% Given 

% (x,y) coordinates of a module 

%  

% Find 

% N: locations of neighbor modules 

% 

% Notes: 

% This function works with HEX COORDINATES 

  

function [N] = HexNe(x,y) 

N = [x-1, y+1;  %side 1 

    x, y+1;     %side 2 

    x+1,y;      %side 3 

    x+1,y-1;    %side 4 

    x, y-1;     %side 5 

    x-1, y];    %side 6 

end 

Function 14: HexNeM 

% [N] = HexNeM(i, j) 

%  

% Given 

% (i,j): coordinates of a module (Matlab indices of an array) 

%  

% Find 

% N: locations of neighbor modules 

% 

% Notes: 

% This function works with MATLAB COORDINATES 

  

function [N] = HexNeM(i,j) 

N = [i-1, j-1;  %side 1 

    i-1, j;     %side 2 

    i,j+1;      %side 3 

    i+1,j+1;    %side 4 

    i+1,j;      %side 5 

    i,j-1];     %side 6 

end 

Function 15: Hexp 

% Hexp(C) 

% 

% Given 

% C: Center of a hexagonal 

% 

% Find 

% draws the hexagonal (used for plotting purposes only) 

  

function Hexp(C) 

a = 1/sin(pi/3); 

b = tan(pi/6); 

  

x = C(1,1); 

y = C(1,2)*a + x*b; 

  

a = 1/3; 

b = 1/(3*tan(pi/6)); 

  

px1 = x - 2*a; 

py1 = y; 
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px2 = x - a; 

py2 = y + b; 

  

px3 = x + a; 

py3 = y + b; 

  

px4 = x + 2*a; 

py4 = y; 

  

px5 = x + a; 

py5 = y - b; 

  

px6 = x - a; 

py6 = y - b; 

  

Vx = [px1 px2 px3 px4 px5 px6 px1]; 

Vy = [py1 py2 py3 py4 py5 py6 py1]; 

  

hold on 

plot (Vx,Vy,'k','LineWidth',2) 

end 

Function 16: Hexplot 

% Hexplot(A,g,c) 

% 

% Given 

% A: configuration matrix 

% g: don't add grid if g=1 

% c: set color 

% 

% Find 

% draws the hexagonal 

% 

% Notes: 

% Plots Hex for nonzero elements of A (in Hex Coordinates) 

% By default adds grid; does not add the grid if g is 1. c is the collor 

% 

% Example 

%   |(0,2)  (1,2)   (2,2)| 

% A |(0,1)  (1,1)   (2,2)| 

%   |(0,0)  (1,0)   (2,0)| 

  

function Hexplot(varargin) 

  

A = varargin{1}; 

g = 0; 

c = 'y'; 

  

if length(varargin) > 1 

    g = cell2mat(varargin(2)); 

end 

  

if length(varargin) > 2 

    c = cell2mat(varargin(3)); 

end 

  

A = flipdim(A,1); 

[b,a] = find(A); 

a = a-1;b=b-1; 

  

s = max(size(a)); 

hold on; 

for i=1:s 

    [Vx,Vy] = Hex([a(i),b(i)]); 

    fill (Vx,Vy,c); 

    Hexp([a(i),b(i)]); 

end 
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if g ~= 1  

    Hexgrid(0,max(size(A))-1) 

end 

Function 17: Hexpm 

% Hexpm(A) 

% 

% Given 

% A: configuration matrix 

% 

% Find 

% plots background Hex for nonzero elements of A (in Hex Coordinates:) 

% 

% Example 

%   |(0,2)  (1,2)   (2,2)| 

% A |(0,1)  (1,1)   (2,2)| 

%   |(0,0)  (1,0)   (2,0)| 

  

function Hexpm(A) 

A = flipdim(A,1); 

[b,a] = find(A); 

a = a-1;b=b-1; 

  

s = max(size(a)); 

hold on; 

for i=1:s 

    Hexp([a(i),b(i)]); 

end 

end 

Function 18: HexVP 

% PVME=HexVP(I,G) 

% Given 

% I: initial configuration 

% G: goal configuration 

% 

% Find 

% PVME: all possible corresponding ME for PV 

% 

% Notes: 

% this function also specifies how many time steps are required 

% each row is: [Xpv Ypv Xme Yme T] 

% 

% Example 

% clear all;clc; 

% I  = [0 0 0 0 0 

%       1 0 0 0 0 

%       1 1 1 1 1 

%       0 0 0 0 0]; 

% G  = [1 1 0 0 0 

%       1 0 1 0 0 

%       0 1 1 0 0 

%       0 0 0 0 0]; 

% %Double Zero Padding 

% I = HexZP(I);I = HexZP(I); 

% G = HexZP(G);G = HexZP(G); 

% PVME=HexVP(I,G); 

  

function PVME=HexVP(I,G) 

  

    [V,E] = FindVE(I,G);    

    PoV = PV(I,G); 

    ME = Mobile(E,I); 

  

    nme = size(find(ME),1);   %check number of available ME 

    npv = size(find(PoV),1);  %check number of available PV 
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    n = min(nme,npv);         %possible number of connections (ME==>PV) 

    if (n<1)                  %stop if no connection is possible 

        disp('There must be at least one ME and one PV for HexVP function') 

        return;  

    end        

  

    PVME = zeros(n,5);        %maximum possible relationship 

    a=1; 

    while (n>0) 

        [X Y]=find(PoV); 

        FME=zeros(size(X,1),3); 

        for i=1:npv 

            x=X(i);y=Y(i); 

            T=HexVPT(I,G,[x,y]); 

            FME(i,:)=T(1,:); 

        end 

        %find the first ME found 

        FME3=FME(:,3); 

        m=min(FME3); 

        r=find (FME3<m+1,1); 

        %correspond the PV to ME 

        PVME (a,:)= [X(r), Y(r), FME(r,1), FME(r,2), m]; 

        %eliminate the addressed PV and ME 

        PoV(X(r),Y(r))=0;ME(FME(r,1),FME(r,2))=0; 

        %update 

        nme = size(find(ME),1);  

        npv = size(find(PoV),1);  

        n = min(nme,npv); 

        a=a+1; 

    end 

end 

Function 19: HexVPT 

% T = HexVPT(I,G,s,p,ps) 

% 

% Given 

% I: initial configuration (double zero padded) 

% G: goal configuration (double zero padded) 

% s: the required PV to propagate 

% p: if 1 the progress will be plotted 

% ps: the plotting speed 

% 

% Find 

% T: the time step required to reach each ME, [x y t] 

% 

% Notes:  

% given a PV, this function will specify the time steps required to reach MEs  

% 

% Example 

% clear all;clc; 

% I  = [0 0 0 0 0 

%       1 0 0 0 0 

%       1 1 1 1 1 

%       0 0 0 0 0]; 

%  

% G  = [1 1 0 0 0 

%       1 0 1 0 0 

%       0 1 1 0 0 

%       0 0 0 0 0]; 

%  

%    

% %Double Zero Padding 

% I = HexZP(I);I = HexZP(I); 

% G = HexZP(G);G = HexZP(G); 

% s = [3 3];  %required PV 

%  

% T = HexVPT(I,G,s,1,0.05) 
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function T = HexVPT(varargin) 

  

    I = varargin{1}; 

    G = varargin{2}; 

    s = cell2mat(varargin(3)); 

    p=0; 

    ps=0.1; 

    if length(varargin) > 3 

        p = cell2mat(varargin(4)); 

    end 

    if length(varargin) > 4 

        ps = cell2mat(varargin(5)); 

    end 

  

    xmax=size(I,1);ymax=size(I,2); 

    [V,E] = FindVE(I, G); 

    ME = Mobile(E,I);       %find all ME 

    n = size(find(ME),1);   %check number of available ME 

    %Initiate the time step matrix 

    T = zeros(n,3); %each row (x y t):each ME should be filled with a number of time 

steps needed 

    t=1; 

    %stop if no connection is possible 

    if (n<1) 

        disp('There must be at least one ME and one PV for HexVP function') 

        return;  

    end        

  

    I=I-ME;                 %assume MEs as allowable propagation locations 

  

    %Initial propagation matrix (P) 

    x=s(1,1);y=s(1,2); 

    P = zeros(size(I));P(x,y)=1; 

    Found = P;         %Mark identified locations 

    [XN YN] = find(P); %Locations needs to be propagated 

  

    %just for plotting purposes 

    if (p==1) 

        figure(1);hold on;axis off;clf;Hexplot(I);Hexplot(P,1,'r'); 

    end 

  

    %Continue till all time steps are found 

    m=1; %the first mobile electron to find its time steps 

    MEP = ME+P;     %just a mark to check if the propagation is finished 

    while (sum(sum(MEP-Found))>0)        

        %propagate each node 

        NP=P;                           %propagation matrix at next time step 

        for i=1:size(XN,1) 

            x=XN(i,1);y=YN(i,1);        %set the propagation nodes 

            N=HexNeM(x,y);              %check the neighbors 

            %check each of six neighbors for propagation possibility 

            for j=1:6  

                xn=N(j,1);yn=N(j,2); 

                if (xn>0&&xn<=xmax&&yn>0&&yn<=ymax) 

                    if (p==1)%plotting 

                        TTT = ze-

ros(size(P));TTT(xn,yn)=1;pause(ps);clf;Hexplot(I);Hexplot(NP,1,'r');Hexplot(ME,1,'g');He

xplot(Found,1,'m');Hexplot(TTT,1,'b'); 

                    end 

                    if (I(xn,yn)==0) %is empty?  

                        %has immobile substrate? 

                        NP(xn,yn)=HexIMS(I,[xn,yn]);%mark as new propagation node 

                        if (ME(xn,yn)==1) 

                            T(m,1)=xn;T(m,2)=yn;T(m,3)=t;m=m+1; 

                            Found(xn,yn)=1; 

                        end 

                    end 

                end 

            end 

        end 
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        [XN YN]=find(NP-P); %Locations needs to be propagated 

        t=t+1;      %increment the time step 

        P=NP;       %update P 

        if (t>1000) return; end    %just to be in the safe side !!! 

    end 

end 

Function 20: HexZP 

% [CZ] = HexZP(C) 

%  

% Given 

% C: a configuration matrix 

% 

% Find 

% CZ: zero padded configuration 

% 

% Notes: 

% It will add zeros to the outer layer of the configuration (C) 

  

function Cz = HexZP(C) 

V = zeros(size(C,1),1); 

C = [V C V]; 

H = zeros(1,size(C,2)); 

Cz = [H;C;H]; 

end 

Function 21: Jointplot 

% Jointplot(A) 

%  

% Given 

%   A:  Joint Forces (the only close joint for the mobile module) 

%       Note that all joints are normally closed except for the mobile 

%       module that has all joints opened except the pivot joint. 

%       Joint Numbering: 

%              2  3 

%            1      4 

%              6  5 

%       ex, A = [1 0 2] %second joint of the mobile module (1,0) 

% 

% Find 

% Plot the joints 

  

function Jointplot(A) 

hold on; 

  

[Vx,Vy]=Hex([A(1,1),A(1,2)]); 

c = A(1,3); %the only closed joint (pivot) 

for i=1:6 

    if (i==c) 

        plot (Vx(i),Vy(i),'r*'); 

    else 

        plot (Vx(i),Vy(i),'b*'); 

    end 

end 

end 

Function 22: MDP_Action 
% a=MDP_Action(I,G,s,p) 

% 

% Given 

% I: initial configuration 

% G: goal configuration 

% s: state 

% p: p = 1, the result will be plotted  

% 
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% Find 

% a: all possible actions 

% 

% Note: 

% Configurations should be provided double zero padded on all sides allowing module move-

ments 

% 

% Example 

% I  = [0 0 0 0 0 

%       1 0 0 0 0 

%       1 1 1 1 1 

%       0 0 0 0 0]; 

%  

% G  = [1 1 0 0 0 

%       1 0 1 0 0 

%       0 1 1 0 0 

%       0 0 0 0 0]; 

% 

% %Double Zero Padding 

% I = HexZP(I);I = HexZP(I); 

% G = HexZP(G);G = HexZP(G); 

% s = [5,3]; 

% a = MDP_Action(I,G,s,1) 

  

function a=MDP_Action(varargin) 

I = varargin{1}; 

G = varargin{2}; 

s = varargin{3}; 

p = 0; 

if length(varargin) > 3 

    p = cell2mat(varargin(4)); 

end 

  

a = zeros(2,2);             %assume no action is possible (neither CW nor CCW) 

i=1;                        %look for the first action 

  

S = MDP_State(I,G);         %look for all possible states of I 

x = s(1,1);y=s(1,2); 

  

N = HexNeM(x,y);            %find only neighbor modules (Connectivity Constraint) 

for j=1:6 

    nx = N(j,1);ny=N(j,2); 

    if S(nx,ny)==1          %Collision Avoidance Constraint 

        a(i,1)=nx;a(i,2)=ny; 

        i=i+1; 

    end 

end 

  

a(i,1)=x;a(i,2)=y;          %One possible action is to stay in its location 

  

  

%Plotting the result 

if p==1 

    Grid = ones(size(I));           %display the grid 

    S = zeros(size(I));S(x,y)=1;    %display the chosen state 

    A = zeros(size(I));             %display the available actions 

    for l = 1:i-1 

        A(a(l,1),a(l,2))=1; 

    end 

    figure;hold on 

    subplot(1,2,1);axis off;title('Module Configuration');Hexpm(Grid);Hexplot(I,1); 

    subplot(1,2,2);axis off;title('Available Ac-

tions');Hexpm(Grid);Hexplot(I,1);Hexplot(S,1,'b');Hexplot(A,1,'k'); 

end 

Function 23: MDP_NRL 

% NRL = MDP_NRL(I,G,s1,s2,p) 

% 
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% Given: 

% I: initial configuration 

% G: goal configuration 

% s1: mobile electron 

% s2: potential void 

% p: p=1, plotting the result 

% 

% Find 

% NRL: Next Recommended Location 

% 

% Notes: 

% that configurations should be provided double zero padded on all sides allowing module 

movements 

% if p is not entered the result will not be plotted 

% 

% Example 

% I  = [0 0 0 0 0 

%       1 0 0 0 0 

%       1 1 1 1 1 

%       0 0 0 0 0]; 

% G  = [1 1 0 0 0 

%       1 0 1 0 0 

%       0 1 1 0 0 

%       0 0 0 0 0]; 

% %Double Zero Padding 

% I = HexZP(I);I = HexZP(I); 

% G = HexZP(G);G = HexZP(G); 

% s1 = [5,3];  

% s2 = [3,3]; 

% NRL = MDP_NRL(I,G,s1,s2,1) 

  

function NRL = MDP_NRL(varargin) 

I = varargin{1}; 

G = varargin{2}; 

s1 = varargin{3}; 

s2 = varargin{4}; 

p=0; 

  

if length(varargin) > 4 

    p = cell2mat(varargin(5)); 

end 

  

U = MDP_VI(I,G,s1,s2);      %Find the utility function 

  

% Look for the best action 

x = s1(1,1);y=s1(1,2); 

Umax = U(x,y);              %Assume the best action is to stay 

NRL = [x y];                %Assume the best NRL is to stay 

  

N = HexNeM(x,y);            %find all the neighbors 

for j=1:6 

    nx = N(j,1);ny=N(j,2); 

    if U(nx,ny)>Umax        %If a better action is found 

        Umax = U(nx,ny);    %Update the action 

        NRL = [nx ny];      %Recommend the next location for ME 

    end 

end 

 

if p==1 

    ME = zeros(size(I));ME(s1(1,1),s1(1,2))=1; 

    PV = zeros(size(I));PV(s2(1,1),s2(1,2))=1; 

    MA = zeros(size(I));MA(NRL(1,1),NRL(1,2))=1; 

    S=MDP_State(I,G);            

    Grid = ones(size(I)); 

    figure;hold on 

    subplot(1,2,1);axis off;title('Module Configuration, ME in green, PV in 

red');Hexpm(Grid);Hexplot(I,1);Hexplot(ME,1,'g');Hexplot(PV,1,'r'); 

    subplot(1,2,2);axis off;title('Available States, Next Recommended Location in 

green');Hexpm(Grid);Hexplot(I,1);Hexplot(S,1,'m');Hexplot(MA,1,'g'); 

end 
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Function 24: MDP_Reward 

% R=MDP_Reward(I,G,s1,s2) 
% 
% Given 
% I: initial configuration 
% G: goal configuration 
% s1: ME, start point 
% s2: PV, end point 
% 
% Find 
% R: reward function 
% 
% Example 
% I  = [0 0 0 0 0 
%       1 0 0 0 0 
%       1 1 1 1 1 
%       0 0 0 0 0]; 
% G  = [1 1 0 0 0 
%       1 0 1 0 0 
%       0 1 1 0 0 
%       0 0 0 0 0]; 
% %Double Zero Padding 
% I = HexZP(I);%I = HexZP(I); 
% G = HexZP(G);%G = HexZP(G); 
% s1 = [4,2];  
% s2 = [2,2]; 

  
function R=MDP_Reward(I,G,s1,s2) 
R = zeros(size(I)); 
S = MDP_State(I,G); 
[V,E] = FindVE(I,G); 
ME = Mobile(E,I); 

  
R = R-0.04*S;         %Penalty for staying at their states 
R(s2(1,1),s2(1,2))=1; %Reward to reach the goal 
ME(s1(1,1),s1(1,2))=0;%exclude this ME from the rest of MEs 
R = R-(0.96.*ME);      %Penalty for going close to other mobile electrons 
end 

  
% Pot = PV(I,G); 
% ME = mobile(E,I); 
% Grid = ones(size(I)); 
% figure;hold on 
% subplot(1,3,1);axis off;title('Current Configuration, ME in green'); 
% Hexpm(Grid);Hexplot(I,1);Hexplot(ME,1,'g'); 
% subplot(1,3,2);axis off;title('Goal Configuration, PV in green'); 
% Hexpm(Grid);Hexplot(G,1);Hexplot(Pot,1,'g'); 
% subplot(1,3,3);axis off;title('Immobile Modules, Available states in magenta'); 
% Hexpm(Grid);Hexplot(I,1);Hexplot(S,1,'m'); 

Function 25: MDP_State 

% S=MDP_State(I,G,p) 

% 

% Given 

% I: initial configuration 

% G: goal configuration 

% p: p=1 the result will be plotted  

% 

% Find 

% all possible states 

% 

% Notes: 

% configurations should be provided with zero padded on all sides allowing module move-

ments 

% 
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% Example 

% I  = [0 0 0 0 0 

%       1 0 0 0 0 

%       1 1 1 1 1 

%       0 0 0 0 0]; 

% G  = [1 1 0 0 0 

%       1 0 1 0 0 

%       0 1 1 0 0 

%       0 0 0 0 0]; 

% %Zero Padding 

% I = HexZP(I); 

% G = HexZP(G); 

% S=MDP_State(I,G,p) 

  

function S=MDP_State(varargin) 

I = varargin{1}; 

G = varargin{2}; 

p = 0; 

if length(varargin) > 2 

    p = cell2mat(varargin(3)); 

end 

  

% We have to consider the location of the current ME as available states 

% Therefore, we will remove them from the current configuration 

[V,E] = FindVE(I, G); 

ME = Mobile(E,I); 

I = I - ME; 

  

[X Y] = find(I);                %find all modules in the configuration 

s = size(X,1);                  %number of modules in the configuration 

S = zeros(size(I));             %initially assume there are no states 

  

for i=1:s  

    x = X(i);y = Y(i);          %Start with one node, check if others are connected to it 

    N = HexNeM(x,y);            %find neighbor modules 

    for k=1:6                   %check if this neighbor can be a state 

        nx = N(k,1);ny = N(k,2);     

        if I(nx,ny)==0           

            S(nx,ny)=1; 

        end 

    end 

end 

     

% Test if the location can be filled (Collision Avoidance) 

% If there are more than 3 neighbors for an empty location 

% that location can not be considered as a state since it 

% can not be filled 

[X Y] = find(S); 

s=size(X,1); 

for i = 1 : s    

    [N] = HexNeM(X(i),Y(i));    %find the neighbors 

    n=0;    %number of occupied neighbors 

    for j = 1:6 

        if (I(N(j,1),N(j,2))==1) 

            n=n+1; 

        end 

    end 

    if n>3  

        S(X(i),Y(i))=0; 

    end 

end 

  

if p==1 

    Grid = ones(size(I)); 

    figure;hold on 

    subplot(1,2,1);axis off;title('Module Configuration, ME in 

green');Hexpm(Grid);Hexplot(I,1);Hexplot(ME,1,'g'); 

    subplot(1,2,2);axis off;title('Available 

States');Hexpm(Grid);Hexplot(I,1);Hexplot(S,1,'m'); 

end 
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end 

Function 26: MDP_VI 

% U=MDP_VI(I,G,s1,s2,g,p) 

% 

% Given 

% I: Initial Configuration 

% G: Goal Configuration 

% s1: Mobile Electron 

% s2: Potential Void 

% g: Discount Factor 

% p: Plotting The Result 

% 

% Find 

% U: Utility Function, using Value Iteration (VI) technique 

% 

% Notes: 

% configurations should be provided double zero padded on all sides allowing module move-

ments 

% if g is not entered the default value of 0.7 is used 

% if p is not entered the result will not be plotted 

% if p = 1, the result will be plotted 

% 

% Example 

% clear all;clc 

% I  = [0 0 0 0 0 

%       1 0 0 0 0 

%       1 1 1 1 1 

%       0 0 0 0 0]; 

% G  = [1 1 0 0 0 

%       1 0 1 0 0 

%       0 1 1 0 0 

%       0 0 0 0 0]; 

% %Double Zero Padding 

% I = HexZP(I);I = HexZP(I); 

% G = HexZP(G);G = HexZP(G); 

% ME = [5,3];  

% PV = [3,3]; 

% U = MDP_VI(I,G,ME,PV,0.7,1) 

  

function U=MDP_VI(varargin) 

I = varargin{1}; 

G = varargin{2}; 

ME = varargin{3}; 

PV = varargin{4}; 

g = 0.7; 

p = 0; 

if length(varargin) > 4 

    g = cell2mat(varargin(5)); 

end 

if length(varargin) > 5 

    p = cell2mat(varargin(6)); 

end 

  

S = MDP_State(I,G); 

R = MDP_Reward(I,G,ME,PV); 

U = zeros(size(I));          %Initial Values 

[X Y] = find(S); 

  

i=1;D=1; 

while (D(i)>0.001)  

    U_Old = U; 

        for j=1:size(X,1) 

            x=X(j);y=Y(j); 

            a = MDP_Action(I,G,[x y]); 

            if (size(a,1)>1), A = [U(a(1,1),a(1,2)) U(a(2,1),a(2,2))]; end 

            if (size(a,1)>2), A = [U(a(1,1),a(1,2)) U(a(2,1),a(2,2)) U(a(3,1),a(3,2))]; 

end 
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            U(x,y)=R(x,y)+g*max(A); 

        end 

  

    i = i+1;                         %Number of Iterations 

    D(i) = abs(max(max(U - U_Old))); %Converges  

    if (i>500)                       %Stop After 500 Iteration, even if error is still 

big 

        D(i)=0; 

    end 

end 

  

% Normalize the values 

U = U/max(max(U)); 

  

if p==1 

    %Remove the first element (Was set to 1 manually) 

    D = D(2:size(D,2)); 

    plot(D);xlabel('Number of Iteration');ylabel('Maximum Error');title('State Conver-

gence'); 

end 

end 

Function 27: Mobile 

% ME = Mobile(E,S) 

% 

% Given 

% E: an electron 

% S: a configuration state 

% 

% Find 

% ME: mobile electrons 

  

function ME = Mobile(E,S) 

    ME = zeros(size(E)); 

    % Test Mobility (Collision Avoidance) 

    [X Y] = find(E); 

    s=size(X,1); 

    for i = 1 : s    

        [N] = HexNeM(X(i),Y(i));    %find the neighbors 

        n=0;    %number of occupied neighbors 

        for j = 1:6 

            if (S(N(j,1),N(j,2))==1) 

                n=n+1; 

            end 

        end 

        if n<4  

            ME(X(i),Y(i))=1; 

        end 

    end 

  

    % Test Connectivity 

    [X Y] = find(ME); 

    s=size(X,1); 

    for i = 1 : s    

        I_test = S; 

        I_test(X(i),Y(i))=0; 

        C = HexCGT(I_test); 

        if C~=1  

            ME(X(i),Y(i))=0; 

        end 

    end 

end 

Function 28: PV 

% PV = PV(I,G) 

% 
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% Given: 

% I: Initial Configuration 

% G: Goal Configuration 

% 

% Find 

% PV: Potentisl voids 

  

function PV = PV(I,G) 

[V,E] = FindVE(I, G); 

ME = Mobile(E,I); 

C = I-ME;               %remove mobile electrons to find immobile modules 

  

[X Y] = find(V);        %find all voids 

PV = zeros(size(V));    %initially assume there is no PV 

             

s = size(X,1); 

for i = 1 : s       %check all voids 

    N = HexNeM(X(i),Y(i)); 

    for j = 1:6     %check their 6 sides 

        if C(N(j,1),N(j,2))==1 

            PV(X(i),Y(i))=1; 

        end 

    end 

end 

end 

Function 29: Sideplot 

% Sideplot (A) 

% 

% Given 

% A: location + side forces (Check below notes) 

% 

% Find 

% Plots side forces 

% 

% Notes: 

%       Sideplot(A), plots the side forces of A 

%    A: Side Forces (Energized magnets: Mobile and neighbor) 

%       Note that all magnets are normally off 

%       Mobile modules have -ve field (both sides of the fixed joint, electron) 

%       Neighbor module should have a +ve (attraction) and -ve (repulsion) 

%       Side 1 is between joints 1,2 and so on. 

%       ex,  A = [2 0 1 2;  %sides 1 and 2 of mobile (2,0) are -ve 

%                 2 1 3 4]  %side 3 of neighbor (2,1) is +ve and 4 -ve 

 

function Sideplot(A) 

hold on; 

  

% Plot the sides 

[Vx,Vy]=Hex([A(1,1),A(1,2)]); 

a = A(1,3);b = A(1,3)+1;if (b==7) b=1; end 

x = (Vx(a)+Vx(b))/2;y = (Vy(a)+Vy(b))/2; 

plot (x,y,'b^','MarkerSize',5,'LineWidth',7); 

a = A(1,4);b = A(1,4)+1;if (b==7) b=1; end 

x = (Vx(a)+Vx(b))/2;y = (Vy(a)+Vy(b))/2; 

plot (x,y,'b^','MarkerSize',5,'LineWidth',7); 

[Vx,Vy]=Hex([A(2,1),A(2,2)]); 

a = A(2,3);b = A(2,3)+1;if (b==7) b=1; end 

x = (Vx(a)+Vx(b))/2;y = (Vy(a)+Vy(b))/2; 

plot (x,y,'r+','MarkerSize',15,'LineWidth',5); 

a = A(2,4);b = A(2,4)+1;if (b==7) b=1; end 

x = (Vx(a)+Vx(b))/2;y = (Vy(a)+Vy(b))/2; 

plot (x,y,'b^','MarkerSize',5,'LineWidth',7); 

end 
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Test 1: TestAll_P01 

% This code is an example to illustrate parallel reconfiguration planning 

  

clear all;clc 

% Initial Configuration 

I  = [0 0 0 0 0 

      1 0 0 0 0 

      1 1 1 1 1]; 

  

% Goal Configuration 

G  = [1 1 0 0 0 

      1 0 1 0 0 

      0 1 1 0 0]; 

%Double Zero Padding 

I = HexZP(I);I = HexZP(I);I = HexZP(I); 

G = HexZP(G);G = HexZP(G);G = HexZP(G); 

  

%Simulation Figure 

Grid = ones(size(I)); 

scrsz = get(0,'ScreenSize'); 

figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3) 

scrsz(4)]);hold on 

subplot(1,2,1);axis off;title('Initial Configuration');Hexpm(Grid);Hexplot(I,1); 

subplot(1,2,2);axis off;title('Goal Configuration');Hexpm(Grid);Hexplot(G,1); 

  

pause();[V E] = FindVE(I,G);    %Find all voids and electrons 

subplot(1,2,1);axis off;title('Electrons');Hexpm(Grid);Hexplot(E,1,'g'); 

subplot(1,2,2);axis off;title('Voids');Hexpm(Grid);Hexplot(V,1,'r'); 

  

pause(1); 

C = I;  %initialize the current configuration 

t=0; 

while (isequal(C,G)<1) 

    t=t+1; 

    %Start Reconfiguration 

    [Joint, Side, S]=HexAll_P(C,G); %Move from current to goal 

    s = size (Joint,1);             %Number of parallel movements 

  

    %Plotting the motion 

    St=MDP_State(C,G);            

    clf;                        

    subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]); 

    Hexpm(Grid);Hexplot(C,1); 

    subplot(1,2,1);axis off;title('Module Configuration, Available States and Actua-

tion'); 

    Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m'); 

  

    for i=1:s                       %Move the MEs 

        Fj=Joint(i,:); 

        Fs=[Side(i,[1 2 3 4]);Side(i,[5 6 7 8])]; 

        s1 = S(i,[1 2]);    %current location 

        s2 = S(i,[3 4]);    %next location 

        s3 = S(i,[5 6]);    %desired location 

        if (sum(sum(Fs))==0)||(sum(Fj)==0) 

           disp('There is no more possible actuation');break; 

        end 

        %Plot the ME and its PV pluse forces 

        ME  = zeros(size(I));ME(s1(1,1),s1(1,2))=1; 

        PoV = zeros(size(I));PoV(s3(1,1),s3(1,2))=1; 

        Hexplot(ME,1,'g');Hexplot(PoV,1,'r');Jointplot(Fj);Sideplot(Fs); 

        C = Hexmove(C,Fj,Fs,0); %Update the configuration 

    end 

pause(0.5) 

end 

t=t+1;St=MDP_State(C,G);clf;                        

subplot(1,2,1);axis off;title('Module Configuration, Available States'); 

Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m'); 

subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]); 
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Hexpm(Grid);Hexplot(C,1); 

Test 2: Test_All_P02 

% This code is an example to illustrate parallel reconfiguration planning 

  

clear all;clc 

% Initial Configuration 

I  = [1 1 0 0 0 

      1 0 1 0 0 

      0 1 1 0 0]; 

  

% Goal Configuration 

G  = [0 0 0 0 0 

      1 0 0 0 0 

      1 1 1 1 1]; 

  

  %Double Zero Padding 

I = HexZP(I);I = HexZP(I);I = HexZP(I); 

G = HexZP(G);G = HexZP(G);G = HexZP(G); 

  

%Simulation Figure 

Grid = ones(size(I)); 

scrsz = get(0,'ScreenSize'); 

%figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3) 

scrsz(4)]);hold on 

subplot(1,2,1);axis off;title('Initial Configuration');Hexpm(Grid);Hexplot(I,1); 

subplot(1,2,2);axis off;title('Goal Configuration');Hexpm(Grid);Hexplot(G,1); 

  

pause();[V E] = FindVE(I,G);    %Find all voids and electrons 

subplot(1,2,1);axis off;title('Electrons');Hexpm(Grid);Hexplot(E,1,'g'); 

subplot(1,2,2);axis off;title('Voids');Hexpm(Grid);Hexplot(V,1,'r'); 

  

pause(1); 

C = I;  %initialize the current configuration 

t=0; 

while (isequal(C,G)<1) 

    t=t+1; 

    %Start Reconfiguration 

    [Joint, Side, S]=HexAll_P(C,G); %Move from current to goal 

    s = size (Joint,1);             %Number of parallel movements 

  

    %Plotting the motion 

    St=MDP_State(C,G);            

    clf;                        

    subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]); 

    Hexpm(Grid);Hexplot(C,1); 

    subplot(1,2,1);axis off;title('Module Configuration, Available States and Actua-

tion'); 

    Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m'); 

  

    for i=1:s                       %Move the MEs 

        Fj=Joint(i,:); 

        Fs=[Side(i,[1 2 3 4]);Side(i,[5 6 7 8])]; 

        s1 = S(i,[1 2]);    %current location 

        s2 = S(i,[3 4]);    %next location 

        s3 = S(i,[5 6]);    %desired location 

        if (sum(sum(Fs))==0)||(sum(Fj)==0) 

           disp('There is no more possible actuation');break; 

        end 

        %Plot the ME and its PV pluse forces 

        ME  = zeros(size(I));ME(s1(1,1),s1(1,2))=1; 

        PoV = zeros(size(I));PoV(s3(1,1),s3(1,2))=1; 

        Hexplot(ME,1,'g');Hexplot(PoV,1,'r');Jointplot(Fj);Sideplot(Fs); 

        C = Hexmove(C,Fj,Fs,0); %Update the configuration 

    end 

pause(0.5) 

end 

t=t+1;St=MDP_State(C,G);clf;                        
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subplot(1,2,1);axis off;title('Module Configuration, Available States'); 

Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m'); 

subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]); 

Hexpm(Grid);Hexplot(C,1); 

Test 3: Test_All_S01 
 

% This code is an example to illustrate serial reconfiguration planning 

  

clear all;clc 

% Initial Configuration 

I  = [0 0 0 0 0 

      1 0 0 0 0 

      1 1 1 1 1]; 

  

% Goal Configuration 

G  = [1 1 0 0 0 

      1 0 1 0 0 

      0 1 1 0 0]; 

%Double Zero Padding 

I = HexZP(I);I = HexZP(I);I = HexZP(I); 

G = HexZP(G);G = HexZP(G);G = HexZP(G); 

  

%Simulation Figure 

Grid = ones(size(I)); 

scrsz = get(0,'ScreenSize'); 

figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3) 

scrsz(4)]);hold on 

subplot(1,2,1);axis off;title('Initial Configuration');Hexpm(Grid);Hexplot(I,1); 

subplot(1,2,2);axis off;title('Goal Configuration');Hexpm(Grid);Hexplot(G,1); 

  

pause();[V E] = FindVE(I,G);    %Find all voids and electrons 

subplot(1,2,1);axis off;title('Electrons');Hexpm(Grid);Hexplot(E,1,'g'); 

subplot(1,2,2);axis off;title('Voids');Hexpm(Grid);Hexplot(V,1,'r'); 

  

pause(1); 

C = I;  %initialize the current configuration 

t=0; 

while (isequal(C,G)<1) 

    t=t+1; 

    %Start Reconfiguration 

    [Joint, Side, S]=HexAll_S(C,G); %Move from current to goal 

  

    %Plotting the motion 

    St=MDP_State(C,G);            

    clf;                        

    subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]); 

    Hexpm(Grid);Hexplot(C,1); 

    subplot(1,2,1);axis off;title('Module Configuration, Available States and Actua-

tion'); 

    Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m'); 

  

    Fj=Joint(1,:); 

    Fs=[Side(1,[1 2 3 4]);Side(1,[5 6 7 8])]; 

    s1 = S(1,[1 2]);    %current location 

    s2 = S(1,[3 4]);    %next location 

    s3 = S(1,[5 6]);    %desired location 

    if (sum(sum(Fs))==0)||(sum(Fj)==0) 

       disp('There is no more possible actuation');break; 

    end 

    %Plot the ME and its PV pluse forces 

    ME  = zeros(size(I));ME(s1(1,1),s1(1,2))=1; 

    PoV = zeros(size(I));PoV(s3(1,1),s3(1,2))=1; 

    Hexplot(ME,1,'g');Hexplot(PoV,1,'r');Jointplot(Fj);Sideplot(Fs); 

    C = Hexmove(C,Fj,Fs,0); %Update the configuration 

    pause(10) 

end 

t=t+1;St=MDP_State(C,G);clf;                        

subplot(1,2,1);axis off;title('Module Configuration, Available States'); 
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Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m'); 

subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]); 

Hexpm(Grid);Hexplot(C,1); 

Test 4: Test_All_S02 

% This code is an example to illustrate serial reconfiguration planning 

  

clear all;clc 

% Initial Configuration 

I  = [1 1 1 1 0 

      1 1 1 1 0 

      1 1 1 1 0 

      0 0 0 0 0 

      0 0 0 0 0]; 

  

% Goal Configuration 

G  = [0 0 0 0 0 

      1 1 1 1 0 

      1 1 1 1 0 

      1 0 0 1 0 

      1 0 0 1 0]; 

  

%Double Zero Padding 

I = HexZP(I);I = HexZP(I);I = HexZP(I); 

G = HexZP(G);G = HexZP(G);G = HexZP(G); 

  

%Simulation Figure 

Grid = ones(size(I)); 

scrsz = get(0,'ScreenSize'); 

figure('Name','Simulation Window','NumberTitle','off','Position',[1 1 scrsz(3) 

scrsz(4)]);hold on 

subplot(1,2,1);axis off;title('Initial Configuration');Hexpm(Grid);Hexplot(I,1); 

subplot(1,2,2);axis off;title('Goal Configuration');Hexpm(Grid);Hexplot(G,1); 

  

pause();[V E] = FindVE(I,G);    %Find all voids and electrons 

subplot(1,2,1);axis off;title('Electrons');Hexpm(Grid);Hexplot(E,1,'g'); 

subplot(1,2,2);axis off;title('Voids');Hexpm(Grid);Hexplot(V,1,'r'); 

  

pause(10); 

C = I;  %initialize the current configuration 

t=0; 

while (isequal(C,G)<1) 

    t=t+1; 

    %Start Reconfiguration 

    [Joint, Side, S]=HexAll_S(C,G); %Move from current to goal 

  

    %Plotting the motion 

    St=MDP_State(C,G);            

    clf;                        

    subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]); 

    Hexpm(Grid);Hexplot(C,1); 

    subplot(1,2,1);axis off;title('Module Configuration, Available States and Actua-

tion'); 

    Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m'); 

  

    Fj=Joint(1,:); 

    Fs=[Side(1,[1 2 3 4]);Side(1,[5 6 7 8])]; 

    s1 = S(1,[1 2]);    %current location 

    s2 = S(1,[3 4]);    %next location 

    s3 = S(1,[5 6]);    %desired location 

    if (sum(sum(Fs))==0)||(sum(Fj)==0) 

       disp('There is no more possible actuation');break; 

    end 

    %Plot the ME and its PV pluse forces 

    ME  = zeros(size(I));ME(s1(1,1),s1(1,2))=1; 

    PoV = zeros(size(I));PoV(s3(1,1),s3(1,2))=1; 

    Hexplot(ME,1,'g');Hexplot(PoV,1,'r');Jointplot(Fj);Sideplot(Fs); 

    C = Hexmove(C,Fj,Fs,0); %Update the configuration 
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    pause(1) 

end 

t=t+1;St=MDP_State(C,G);clf;                        

subplot(1,2,1);axis off;title('Module Configuration, Available States'); 

Hexpm(Grid);Hexplot(C,1);Hexplot(St,1,'m'); 

subplot(1,2,2);axis off;title(['Configuration at time step:', int2str(t)]); 

Hexpm(Grid);Hexplot(C,1); 

Test 5: Test_CG 

% This code is an example to illustrate the connectivity constraint test 

  

clear all;clc;close all; 

% Always keep zeros around the matrices to allow module movement 

I  = [ 0 0 0 0 0 0 0 0  

       0 1 1 1 1 0 0 0  

       0 1 0 1 0 0 1 0  

       0 1 0 1 0 1 1 0  

       0 0 1 1 1 1 1 0  

       0 0 0 0 0 0 0 0]; 

    

%Plot the connectivity graph for the current configuration 

HexCG(I) 

%Let's do the connectivity test for all modules (assuming all modules to be electrons) 

E = I;   

%Find mobile electrons 

ME = Mobile(E,I); 

  

Grid = ones(size(I)); 

figure;axis off;hold on;Hexpm(Grid);Hexplot(I,1,'r');Hexplot(ME,1,'g'); 

Test 6: Test_Constraints1 

% Example of a collision avoidance constraint 

  

% Background Grid 

Grid = [1 0 0 0 0 0 0; 

        1 1 1 0 0 0 0; 

        1 1 1 1 1 0 0; 

        1 1 1 1 1 1 1; 

        1 1 1 1 1 1 1; 

        1 1 1 1 1 1 1; 

        0 1 1 1 1 1 1; 

        0 0 0 1 1 1 1; 

        0 0 0 0 0 1 1; 

        0 0 0 0 0 0 0;]; 

Hexpm(Grid); 

  

% Immobile Config 

IC = [0 0 0 0 0 0 0; 

      0 0 0 0 0 0 0; 

      0 0 0 0 0 0 0; 

      0 0 1 1 0 0 0; 

      0 0 1 0 1 0 0; 

      0 0 0 1 0 0 0; 

      0 0 0 0 0 0 0; 

      0 0 0 0 0 0 0; 

      0 0 0 0 0 0 0; 

      0 0 0 0 0 0 0;]; 

Hexplot(IC,1); 

  

% Fixed Module 

[Vx,Vy] = Hex([2,4]);fill (Vx,Vy,'b'); 

  

% Mobile Module 

[Vx,Vy] = Hex([4,5]);fill (Vx,Vy,'g'); 

  

% Plot properties 
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axis off; 

title('Example of a constrained motion');       

Test 7: Test_Constraints2 

% Example of a connectivity constraint 

  
% Background Grid 
Grid = [1 0 0 0 0 0 0; 
        1 1 1 0 0 0 0; 
        1 1 1 1 1 0 0; 
        1 1 1 1 1 1 1; 
        1 1 1 1 1 1 1; 
        1 1 1 1 1 1 1; 
        0 1 1 1 1 1 1; 
        0 0 0 1 1 1 1; 
        0 0 0 0 0 1 1; 
        0 0 0 0 0 0 0;]; 
Hexpm(Grid); 

  
% Immobile Config 
IC = [0 0 0 0 0 0 0; 
      0 0 0 0 0 0 0; 
      0 0 0 0 0 0 0; 
      0 0 1 1 0 0 0; 
      0 0 1 0 1 0 0; 
      0 0 0 1 0 0 0; 
      0 0 0 0 0 0 0; 
      0 0 0 0 0 0 0; 
      0 0 0 0 0 0 0; 
      0 0 0 0 0 0 0;]; 
Hexplot(IC,1); 

  
% Fixed Module 
[Vx,Vy] = Hex([2,4]);fill (Vx,Vy,'b'); 

  
% Mobile Module 
[Vx,Vy] = Hex([2,6]);fill (Vx,Vy,'g'); 

  
% Plot properties 
axis off; 
title('Example of a constrained motion');       

Test 8: Test_Immobile 

% Example of an Immobile Configuration 

  
% Background Grid 
Grid = [1 0 0 0 0 0 0; 
        1 1 1 0 0 0 0; 
        1 1 1 1 1 0 0; 
        1 1 1 1 1 1 1; 
        1 1 1 1 1 1 1; 
        1 1 1 1 1 1 1; 
        1 1 1 1 1 1 1; 
        1 1 1 1 1 1 1; 
        1 1 1 1 1 1 1; 
        1 1 1 1 1 1 1; 
        0 1 1 1 1 1 1; 
        0 0 0 1 1 1 1; 
        0 0 0 0 0 1 1; 
        0 0 0 0 0 0 0;] 
Hexpm(Grid); 

  
% Immobile Config 
IC = [0 0 0 0 0 0 0; 
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      0 0 0 0 0 0 0; 
      0 0 0 0 0 0 0; 
      0 1 1 1 0 0 0; 
      0 1 0 0 1 0 0; 
      0 0 1 1 0 1 0; 
      0 0 0 0 0 1 0; 
      0 0 0 1 1 1 0; 
      0 0 0 1 0 0 0; 
      0 0 0 1 0 0 0; 
      0 0 0 1 0 0 0; 
      0 0 0 0 0 0 0; 
      0 0 0 0 0 0 0; 
      0 0 0 0 0 0 0;] 
Hexplot(IC,1); 

  
% Fixed Module 
[Vx,Vy] = Hex([3,3]);fill (Vx,Vy,'b'); 

  
% Plot properties 
axis off; 
title('Example of an immobile configuration');       

Test 9: Test_IR_Simulation 

% Illustrate the modulated IR transceiver signal 

  
clear all;clc 
a=0; 
data=[1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0]; 
for i=1:20001                       %Move the MEs 
    if a==0  
        P(i)=0;a=1; 
    else 
        P(i)=1;a=0; 
    end 
    I = round(i/1000); 
    D(i) = data(I+1); 
    S(i) = P(i).*D(i); 
end 

  
figure; 
subplot(3,1,1);plot(P);title('38kHz Pulse');axis([0 20000 -1 2]);axis off; 
subplot(3,1,2);plot(D);title('Serial Data');axis([0 20000 -1 2]);axis off; 
subplot(3,1,3);plot(S);title('Modulated Pulse Being Transmitted');axis([0 20000 -1 

2]);axis off; 

Test 10: Test_Layer5 

% To draw a module an its neighbors required for actuation: layer 5 

  

clear all;clc; 

C = [0 1 0 0 0 

     1 1 1 1 0  

     0 1 1 1 0  

     0 1 1 1 1  

     0 0 0 1 0]; 

M = zeros(size(C)); 

M(3,3)=1; 

figure;hold on;axis off;  

Hexpm(C);Hexplot(M,1); 

Test 11: Test_Localization 

% Localization example discussed in thesis 
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% Background Grid 

Grid = [1 0 0 0 0 0 0 0; 

        1 1 1 0 0 0 0 0; 

        1 1 1 1 1 0 0 0; 

        1 1 1 1 1 1 1 0; 

        0 1 1 1 1 1 1 1; 

        0 0 0 1 1 1 1 1; 

        0 0 0 0 0 1 1 1; 

        0 0 0 0 0 0 0 1;]; 

Hexpm(Grid); 

  

I  = [0 0 0 0 0 0 0 0 

      0 0 0 0 0 0 0 0 

      0 0 0 0 0 0 0 0 

      0 0 1 0 0 0 0 0 

      0 0 1 1 1 1 1 0 

      0 0 0 0 0 0 0 0 

      0 0 0 0 0 0 0 0 

      0 0 0 0 0 0 0 0]; 

   

Hexplot (I,1); 

  % Fixed Module 

[Vx,Vy] = Hex([3,3]);fill (Vx,Vy,'b'); 

  

% Plot properties 

axis off; 

%title('Localization');       

Test 12: Test_MDP 

% Test of MDP: Next Recommended Location 

  
clear all;clc 
I  = [0 0 0 0 0 
      1 0 0 0 0 
      1 1 1 1 1 
      0 0 0 0 0]; 

  
G  = [1 1 0 0 0 
      1 0 1 0 0 
      0 1 1 0 0 
      0 0 0 0 0]; 
%Double Zero Padding 
I = HexZP(I);I = HexZP(I); 
G = HexZP(G);G = HexZP(G); 

  
s1 = [5,3];  
s2 = [3,3]; 

  
while sum(abs(s1-s2))>0 
    s1 = MDP_NRL(I,G,s1,s2,1); 
end 

Test 13: Test_MDP_Convergence 

% This code is developed to evaluate MDP Convergence 
clear all;clc; 
g = 0:0.001:1; 
figure;hold on; 

  
c = 0.1; %e/Rmax 
N = log10(2./(c.*(1-g)))./log10(1./g); 
plot (g,N,'b') 

  
c = 0.01; %e/Rmax 
N = log10(2./(c.*(1-g)))./log10(1./g); 
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plot (g,N,'c') 

  
c = 0.001; %e/Rmax 
N = log10(2./(c.*(1-g)))./log10(1./g); 
plot (g,N,'g') 

  
c = 0.0001; %e/Rmax 
N = log10(2./(c.*(1-g)))./log10(1./g); 
plot (g,N,'r') 

  
axis([0  1  0  1000]);xlabel('Discount Factor');ylabel('Number of Iteration'); 

Test 14: Test_Simulator 

% An example to test the simulator 

  
clear all;clc;close all; 
% Always keep zeros around the matrices to allow module movement 
I  = [ 0 0 0 0 0 0  
       0 0 0 0 0 0  
       1 1 1 1 1 1]; 

  
G  = [0 0 0 1 1 0 
      0 0 0 1 0 1 
      0 0 0 0 1 1]; 

       
figure(1);clf; 
Grid = ones(size(I)); 
subplot(1,2,1);axis off;hold on;title('Initial State (Configuration) of the Mod-

ules');Hexpm(Grid);Hexplot(I,1); 
subplot(1,2,2);axis off;hold on;title('Desired Goal State (Configuration) of the Mod-

ules');Hexpm(Grid);Hexplot(G,1);pause(); 

  
% First Move 
I  = I; 
Fj = [0 0 3]; 
Fs = [0 0 2 3;  
      1 0 1 6]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [0 1 4]; 
Fs = [0 1 3 4;  
      1 0 2 1]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [1 1 4]; 
Fs = [1 1 3 4;  
      2 0 2 1]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [2 1 4]; 
Fs = [2 1 3 4;  
      3 0 2 1]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [3 1 4]; 
Fs = [3 1 3 4;  
      4 0 2 1]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [4 1 4]; 
Fs = [4 1 3 4;  
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      5 0 2 1]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [1 0 3]; 
Fs = [1 0 2 3;  
      2 0 1 6]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [1 1 4]; 
Fs = [1 1 3 4;  
      2 0 2 1]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [2 1 4]; 
Fs = [2 1 3 4;  
      3 0 2 1]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [3 1 4]; 
Fs = [3 1 3 4;  
      4 0 2 1]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [4 1 3]; 
Fs = [4 1 2 3;  
      5 1 1 6]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [2 0 3]; 
Fs = [2 0 2 3;  
      3 0 1 6]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [2 1 4]; 
Fs = [2 1 3 4;  
      3 0 2 1]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [3 0 2]; 
Fs = [3 0 1 2;  
      3 1 6 5]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [2 1 3]; 
Fs = [2 1 2 3;  
      3 1 1 6]; 
G = Hexmove(I,Fj,Fs,1); 
% Next Move 
I  = G; 
Fj = [2 2 4]; 
Fs = [2 2 3 4;  
      3 1 2 1]; 
G = Hexmove(I,Fj,Fs,1); 

Test 15: Test_VP 

% Void Propagation example discussed in thesis 
% The actual VP algorithm is accomplished in the lower levels  
% through the use of microcontrollers installed on the modules. 
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clear all;clc; 
I  = [0 0 0 0 0 0 0 0 
      0 0 0 0 0 0 0 0 
      0 0 1 0 0 0 0 0 
      0 0 1 1 1 1 1 0 
      0 0 0 0 0 0 0 0]; 

  
G  = [0 0 0 0 0 0 0 0 
      0 0 1 1 0 0 0 0 
      0 0 1 0 1 0 0 0 
      0 0 0 1 1 0 0 0 
      0 0 0 0 0 0 0 0]; 

  
[V E] = FindVE(I,G);    %Find all voids and electrons 
PV = PV(I,G);           %Find potential voids 
ME = Mobile(E,I);       %Find mobile electrons 

  
% plot the results 
Grid = ones(size(I)); 
clf; 
% subplot (2,2,1);axis off;Hexpm(Grid);Hexplot(I,1);title('Current Configuration'); 
% subplot (2,2,2);axis off;Hexpm(Grid);Hexplot(G,1);title('Goal Configuration'); 
% subplot (2,2,3);axis off;Hexpm(Grid);Hexplot(E,1);title('Electrons - Mobile electrons 

in green');Hexplot(ME,1,'g'); 
% subplot (2,2,4);axis off;Hexpm(Grid);Hexplot(V,1);title('Voids - Potential Voids in 

green');Hexplot(PV,1,'g'); 
% plot the connectivity graph 
%HexCG(I); 
clf;Hexpm(Grid);axis off;Hexplot(I,1);Hexplot(ME,1,'g');Hexplot(PV,1,'c'); 
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