
MODELING AND ANALYSIS OF A WAVELET NETWORK
BASED OPTICAL SENSOR FOR VIBRATION

MONITORING

A THESIS IN MECHATRONICS

Presented to the faculty of the American University of Sharjah
School of Engineering
in partial fulfillment of

the requirements for the degree

MASTER OF SCIENCE

by
YASMINE AHMED EL-ASHI

B.S. 2006

Sharjah, UAE

©2010

YASMINE AHMED EL-ASHI

ALL RIGHTS RESERVED

We approve the thesis of Yasmine Ahmed El-Ashi

Date of signature

__________________________ __________________

Dr. Rached Dhaouadi

Associate Professor, Electrical Engineering, AUS

Thesis Advisor

Dr. Taha Landolsi

Assistant Professor, Computer Engineering, AUS

Thesis Co-Advisor

Dr. Khaled Assaleh

Associate Professor, Electrical Engineering, AUS

Graduate Committee

Dr. Ameen El-Sinawi

Associate Professor, Mechanical Engineering, AUS

Graduate Committee

Dr. Rached Dhaouadi

Associate Professor,

Coordinator, Mechatronics Engineering Graduate Program

Dr. Hany El-Kadi

Associate Dean, College of Engineering

_______________________ __________________

Dr. Yousef Al Assaf

Dean, College of Engineering

Mr. Kevin Lewis Mitchell

Director, Graduate & Undergraduate Programs & Research

MODELING AND ANALYSIS OF A WAVELET NETWORK
BASED OPTICAL SENSOR FOR VIBRATION MONITORING

Yasmine Ahmed El-Ashi, Candidate for Master of Science in Mechatronics
Engineering

American University of Sharjah, 2010

ABSTRACT

The main objective of this research is to present a wavelet network based
optical lateral position sensor for vibration monitoring using a 2×2 photodetector
array. In our approach, the power distribution of the light spot is measured taking
into consideration the radial symmetry of the spot and its Gaussian intensity profile.
The proposed system uses a He-Ne laser source whose Gaussian beam impinges on
the photodetector array. The normalized optical power for each photocell is obtained
theoretically by deriving the optical power equations as the beam scans the plane of
photodetectors. The position detection is based on finding a relationship between the
power distribution of the photodetector array and the position of the beam center.
An experimental setup of the system is developed to validate the theoretical results.
Furthermore, a wavelet network function approximation technique is used to estimate
the x–y position of the beam center corresponding to the measured optical powers.

iii

Contents

Abstract iii

List of Figures vi

List of Tables x

Acknowledgements xi

1 Introduction 1

2 Beam Optics 5

2.1 The Wave Equation . 5

2.2 Monochromatic waves . 10

2.2.1 Complex wavefunction . 10

2.2.2 Complex Amplitude . 10

2.2.3 The Helmholtz Equation . 11

2.2.4 Intensity, Power and Energy 12

2.3 Wavefronts . 13

2.3.1 The Plane Wave . 13

2.3.2 Paraxial Waves . 15

2.3.3 The Gaussian Beam . 17

3 Functional Approximation with Wavelet Networks 23

3.1 Function Approximation . 23

3.2 Neural networks . 25

3.3 Wavelet Transforms . 27

3.3.1 The Continuous Wavelet Transform (CWT) 27

3.3.2 Inverse Wavelet Transform . 30

3.3.3 Wavelet bases and frames . 30

3.4 Wavelet Networks (WN) . 31

3.4.1 Adaptive Discretization . 31

3.4.2 Wavelet Network Structure . 32

3.4.3 WN Learning . 33

iv

Muna
Text Box
7

Muna
Typewritten Text

Muna
Text Box
7

Muna
Text Box
14

Muna
Text Box
14

Muna
Text Box
14

Muna
Text Box
15

Muna
Text Box
16

Muna
Text Box
17

Muna
Text Box
18

Muna
Text Box
20

Muna
Text Box
23

Muna
Text Box
29

Muna
Text Box
29

Muna
Text Box
31

Muna
Text Box
34

Muna
Text Box
34

Muna
Text Box
37

Muna
Text Box
37

Muna
Text Box
39

Muna
Text Box
39

Muna
Text Box
40

Muna
Text Box
41

4 Optical System Modeling and Design 35

4.1 System Architecture . 35

4.2 Theoretical Optical Acquisition Model 35

4.2.1 Modeling Optical Apodization 43

4.2.2 Modeling System Imperfections 53

4.3 Experimental Study of the Position Detector 60

4.3.1 Experimental Setup . 60

4.3.2 Optical Model Validation . 63

5 Position Detection using Wavelet Network 70

5.1 Network Initialization . 71

5.2 Training and Testing of Wavelet Network 72

5.3 Vibration Monitoring . 87

6 Conclusions 88

Bibliography 89

Appendix A: Matlab Codes 92

Appendix B: User Manual for Wavelet Network Code 139

.1 WN Initialization . 139

.1.1 Initializing Woh and Woi . 140

.1.2 Dyadic Initialization . 143

.2 Feedforward Algorithm . 150

.3 Backpropagation Algorithm . 154

.3.1 Updating the parameters of Woi 154

.3.2 Updating the parameters of Woh 157

.3.3 Updating the parameters of m and d 159

Appendix C: DAQ Code 166

Appendix D: Microcontroller Code 170

v

Muna
Text Box
VITA 219

Muna
Text Box
 43

Muna
Text Box
43

Muna
Text Box
44

Muna
Text Box
53

Muna
Text Box
64

Muna
Text Box
69

Muna
Text Box
 69

Muna
Text Box
 74

Muna
Text Box
81

Muna
Text Box

Muna
Text Box
83

Muna
Text Box
84

Muna
Text Box
99

Muna
Text Box
101

Muna
Text Box
102

Muna
Text Box
105

Muna
Text Box
152

Muna
Text Box
152

Muna
Text Box
153

Muna
Text Box
157

Muna
Text Box
167

Muna
Text Box
173

Muna
Text Box
174

Muna
Text Box
178

Muna
Text Box
180

Muna
Text Box
190

Muna
Text Box
194

List of Figures

2.1 A vibrating string at an instant of time, the quantities shown are used
in the derivation of the classical one-dimensional Wave equation [15]. 6

2.2 Representation of a monochromatic wave at a fixed position r: (a)
the wavefunction u (t) is a harmonic function of time; (b) the complex
amplitude U = a exp (jϕ) is a fixed phasor; (c) the complex wavefunc-
tion U (t) = U exp (j2πft) is a phasor rotating with angular velocity
ω = 2πf radians/s [13]. 11

2.3 (a) The magnitude of a paraxial wave as a function of the axial distance
z. (b) The wavefronts and wavefront normals of a paraxial wave [13]. 15

2.4 Gaussian beam model for the laser source used in the proposed system. 20

2.5 The normalized Gaussian intensity profile. 20

3.1 (a) Single neuron model. (b) Simplified schematic of single neuron [25]. 25

3.2 Feedforward neural network [25]. 26

3.3 Graph of ψ1,0 (x) = ψ (x) = xe−x
2

[26]. 29

3.4 Graph of ψ1/2,0 [26]. 29

3.5 Function approximation using wavelet networks. 33

4.1 Hardware architecture of the proposed position detection system. . . 36

4.2 Parameters definition for area Ax. 37

4.3 Parameters definition for area Ay. 39

4.4 Parameters definition for area Axy. 41

4.5 (a) Case 1: x ≥ x0, (b) Case 2: x ≤ x0, (c) Case 3: 0 ≤ x ≤ x0, (d)
Case 4: −x0 ≤ x ≤ 0, (e) Case 5: x = 0, (f) Case 6: x = x ≥ x0 + ρ0. 48

4.6 (a) Case 7: y ≥ y0, (b) Case 8: y ≤ y0, (c) Case 9: 0 ≤ y ≤ y0, (d)
Case 10: −y0 ≤ y ≤ 0, (e) Case 11: y = 0, (f) Case 12: y = y ≥ y0 + ρ0. 48

4.7 Example of beam center position as it scans the photocell’s regions. . 52

4.8 Quadcell array of photodetectors. 54

4.9 The normalized power obtained by photocell 1, as the beam center
scans the quadcell plane. 56

4.10 The normalized power obtained by photocell 2, as the beam center
scans the quadcell plane. 56

4.11 The normalized power obtained by photocell 3, as the beam center
scans the quadcell plane. 57

4.12 The normalized power obtained by photocell 4, as the beam center
scans the quadcell plane. 57

vi

Muna
Text Box
9

Muna
Text Box
15

Muna
Text Box
21

Muna
Text Box
26

Muna
Text Box
27

Muna
Text Box
32

Muna
Text Box
33

Muna
Text Box
36

Muna
Text Box
36

Muna
Text Box
41

Muna
Text Box
44

Muna
Text Box
45

Muna
Text Box
48

Muna
Text Box
50

Muna
Text Box
58

Muna
Text Box
58

Muna
Text Box
62

Muna
Text Box
65

Muna
Text Box
66

Muna
Text Box
66

Muna
Text Box
67

Muna
Text Box
67

4.13 Quadcell arrangement for the experimental setup showing different ε,
and δ. 58

4.14 Variation of the optical power detected by all four photodetectors as
the beam is moved along y = x line for different values of ε, and δ. . . 58

4.15 Plot of the normalized power for photocell 1 vs. ε, when the beam
center is at the origin of the quadcell plane. ε and δ are assumed to be
equal. 59

4.16 Plot of normalized power for photocell 1 vs. ε and δ, when the beam
centroid is at the origin of the quadcell plane. 60

4.17 Experimental prototype of the optical power acquisition system. . . . 61

4.18 Block diagram for photo-voltage acquisiton and position measurement
system (HBX: H-bridge for motor X; HBY: H-bridge for motor Y; MX:
motor X; MY: motor Y; PWM1: pulse width modulated signal fed in
to motor X; PWM2: pulse width modulated signal fed in to motor Y;
COM1: communication port 1; COM2: communication port 2; CLK:
clock to synchronize photo-voltage acquisition, position measurement;
DIO: digital input/output channels; PC: personal computer). 61

4.19 Optical setup of the system. 62

4.20 (a)Transmission optics.(b)Reception optics. 63

4.21 Signal conditioning circuitry for photodiode, involving amplification,
and noise removal. 63

4.22 Plot of photocell output voltage in darkness. 64

4.23 Plot of photocell output voltage in ambient light, when no laser beam
is applied. 64

4.24 Plot of photocell output voltage vs. y position of the center of the
beam while setting the x position at 1.05 cm. 66

4.25 Plot of photocell output voltage vs. y position of the center of the
beam while setting the x position at − 1.05 cm. 66

4.26 Plot of photocell output voltage vs. y position of the center of the
beam while setting the x position at 0.55 cm. 67

4.27 Plot of photocell output voltage vs. y position of the center of the
beam while setting the x position at −0.55 cm. 67

4.28 Plot of photocell output voltage vs. y position of the center of the
beam while setting the x position at 0 cm. 68

4.29 Uncertainity region when initializing the position of the beam center. 69

5.1 Position detection system block diagram. 70

5.2 Wavelet network structure for the position detection problem. 71

5.3 Dyadic grid for wavelet network Initialization. 72

5.4 Plot of MSE vs. Iterations for different values of Nw, where the the-
oretical model without gaps is used for training the WN, µ= 0.0001,
γ= 0.9999, no preprocessing condition is applied on the data. 74

5.5 Plot of MSE vs. Iterations for different values of Nw, where the the-
oretical model without gaps is used for training the WN, µ= 0.1, γ=
0.9, preprocessing condition in equation 5.5 applied on the data. . . . 74

vii

Muna
Text Box
68

Muna
Text Box
68

Muna
Text Box
70

Muna
Text Box
70

Muna
Text Box
71

Muna
Text Box
71

Muna
Text Box
72

Muna
Text Box
73

Muna
Text Box
73

Muna
Text Box
74

Muna
Text Box
74

Muna
Text Box
77

Muna
Text Box
77

Muna
Text Box
78

Muna
Text Box
78

Muna
Text Box
79

Muna
Text Box
80

Muna
Text Box
82

Muna
Text Box
82

Muna
Text Box
84

Muna
Text Box
86

Muna
Text Box
86

5.6 Plot of MSE vs. Iterations for different values of Nw, where the theo-
retical model without gaps is used for training the WN, µ = 0.1, γ =
0.9. 75

5.7 Plot of MSE vs. Iterations for different values of µ, where the simulated
data without gaps is used for training the wavelet network, Nw = 63 . 75

5.8 Comparing the MSE values vs. Nw after training the theoretical model
with gaps and after testing for the theoretical data set at x = 0 cm.
The resolution for the x data used in the training is 0.1 cm and the
resolution for the y data used in the training is 0.02 cm. 76

5.9 Comparing the WN test output and the theoretical model with gaps
for vertical scanning at x = 0 cm. The resolution for the x data used
in the training is 0.1 cm and the resolution for the y data used in the
training is 0.02 cm. 77

5.10 Comparing the WN test output and the theoretical model with gaps
for vertical scanning at x = 0 cm. The resolution for the x data used
in the training is 0.1 cm and the resolution for the y data used in the
training is 0.02 cm. 78

5.11 Comparing the WN test output and the theoretical model with gaps
for vertical scanning at x = 0 cm. The resolution for the x data used
in the training is 0.1 cm and the resolution for the y data used in the
training is 0.02 cm. 78

5.12 Comparing the WN test output and the experimental data for vertical
scanning at x = −0.55 cm and x = 0.55 cm. The resolution for the x
data used in the training is 0.1 cm and the resolution for the y data
used in the training is 0.02 cm. 79

5.13 Comparing the WN test output and the experimental data for vertical
scanning at x = −0.55 cm as a function of time. The resolution for
the x data used in the training is 0.1 cm and the resolution for the y
data used in the training is 0.02 cm. 79

5.14 Comparing the WN test output and the experimental data for vertical
scanning at x = 0.55 cm as a function of time. The resolution for the
x data used in the training is 0.1 cm and the resolution for the y data
used in the training is 0.02 cm. 80

5.15 Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm. The resolution for the x data used in the training
is 0.1 cm and the resolution for the y data used in the training is 0.02
cm. 80

5.16 Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm as a function of time. The resolution for the x
data used in the training is 0.1 cm and the resolution for the y data
used in the training is 0.02 cm. 81

5.17 Comparing the WN test output and the experimental data for vertical
scanning at x = −0.55 cm. The resolution for the x data used in the
training is 0.1 cm and the resolution for the y data used in the training
is 0.02 cm. 81

viii

Muna
Text Box
87

Muna
Text Box
87

Muna
Text Box
89

Muna
Text Box
89

Muna
Text Box
90

Muna
Text Box
90

Muna
Text Box
91

Muna
Text Box
91

Muna
Text Box
92

Muna
Text Box
92

Muna
Text Box
93

Muna
Text Box
93

5.18 Comparing the WN test output and the experimental data for vertical
scanning at x = 0.55 cm. The resolution for the x data used in the
training is 0.1 cm and the resolution for the y data used in the training
is 0.02 cm. 82

5.19 Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm. The resolution for the x data used in the training
is 0.1 cm and the resolution for the y data used in the training is 0.02
cm. 83

5.20 Comparing the MSE values vs. Nw after training the theoretical model
with gaps and after testing for the theoretical data set at x = 0 cm.
The resolution for the x data used in the training is 0.05 cm and the
resolution for the y data used in the training is 0.02 cm. 84

5.21 Comparing the WN test output and the theoretical model with gaps
for vertical scanning at x = 0 cm. The resolution for the x data used
in the training is 0.05 cm and the resolution for the y data used in the
training is 0.02 cm. 84

5.22 Comparing the WN test output and the theoretical model with gaps
for vertical scanning at x = 0 cm as a function of time. The resolution
for the x data used in the training is 0.05 cm and the resolution for
the y data used in the training is 0.02 cm. 85

5.23 Comparing the MSE values vs. Nw after training the theoretical model
with gaps and after testing for the experimental data set at x = 0 cm.
The resolution for the x data used in the training is 0.05 cm and the
resolution for the y data used in the training is 0.02 cm. 85

5.24 Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm. The resolution for the x data used in the training
is 0.05 cm and the resolution for the y data used in the training is 0.02
cm. 86

5.25 Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm as a function of time. The resolution for the x
data used in the training is 0.05 cm and the resolution for the y data
used in the training is 0.02 cm. 86

5.26 Shaded region indicates the area of detection and × represents the
center of one photocell. 87

ix

Muna
Text Box
95

Muna
Text Box
95

Muna
Text Box
96

Muna
Text Box
96

Muna
Text Box
97

Muna
Text Box
97

Muna
Text Box
98

Muna
Text Box
98

Muna
Text Box
100

List of Tables

4.1 Table showing the range of each region. 52

x

Muna
Text Box
62

Acknowledgements

First and foremost, I thank Allah the Most Gracious, the Most Merciful, for giving me
the will and power to complete my thesis research, and allowing me to pass through
such an experience where not only do you acquire the academic skills of research, but
you also learn other qualities such as patience and perseverance.

Next, I would like to express my sincere gratitude to my research advisors, Dr. Taha
Landolsi and Dr. Rached Dhaouadi, to whom I owe a lot, for their patience, guidance
and encouragement throughout the different stages of the research. I highly appreciate
their vision, novel ideas, and their excitement at every big or small new finding made.
I hope they accept my apologies for any inconveniences or disappointments that I
might have caused.

I am also particularly grateful to my parents for their continuous support. Finally, it
is with pleasure that I express my appreciation to all my friends and colleagues who
supported me and aided me in both the good and hard times.

xi

1
Introduction

There are numerous applications which require accurate, noncontact position mea-

surements, such as vibration monitoring as well as vibration measurement systems

with frequencies ranging from fractions of Hz to kHz and amplitudes varying between

nanometers to meters [1].

Natural vibration is a manifestation of the oscillatory behavior in physical

systems, as a result of a repetitive interchange of two types of energy, such as kinetic

and potential energies among components in mechanical systems [2]. Additional

factors responsible for mechanical vibrations in machines, components and systems,

involve unbalanced inertia, bearing failure in rotating systems, poor kinematic design

resulting in a non-rigid and non-isolating structure, component failure, and operation

outside prescribed load ratings [3]. Such types of vibration are usually categorized as

undesirable or harmful vibration, which also include structural motions generated due

to earthquakes, noise generated by construction equipment, and dynamic interactions

between vehicles and bridges or guide ways. The elimination or suppression of such

Introduction 2

undesirable vibrations will result in a reduction in noise levels and improved work

environment, maintenance of high performance standards and production efficiency,

as well as prolonging the useful life of industrial machinery, thus cutting down the

costs and frequency of maintenance. On the other hand, there are useful forms of

vibration which include those generated by devices used in physical therapy and

medical applications, vibrators used in industrial mixers, part feeders and sorters,

and vibratory material removers such as drills and finishers. For instance, product

alignment for industrial processing or grading can be carried out by means of vibratory

conveyers or shakers [2].

Over the past 50 years, the speeds of operation of machinery have doubled,

and consequently vibration loads generated due to rotational excitation would have

quadrupled if proper actions of design and control were not considered. As vibra-

tion isolation and reduction techniques have become an integral part of machine

design the need for accurate measurement and analysis of mechanical vibration has

grown significantly [4]. To accomplish this, we should undergo a phase of monitoring

and diagnostic testing of vibration which would require devices such as sensors and

transducers, signal conditioning and modification hardware (such as filters, ampli-

fiers, analog/digital conversion means), and actuators (such as vibration exciters or

shakers) [2].

Vibrations have been mainly detected by contact and noncontact-type sen-

sors for measuring displacement, velocity or acceleration [4]. Conventional vibration

sensors such as potentiometers or linear variable differential transformers (LVDTs),

piezoelectric accelerometers, and strain gauges are common in practice. Contact-type

sensors such as potentiometers and strain gauges are used to sense displacement ei-

ther by making physical contact with or attached to the object of interest. However,

in some cases, physical contact may not be practical, in terms of impeding or altering

the natural behavior of the device, or inability to install them in hard-to-reach places,

or when the object is fragile and prone to damage [5]. Moreover, potentiometers have

the following limitations: (1) High frequency or highly transient measurements are

not feasible because of factors such as slider bounce, friction and inertia resistance,

and induced voltages in the wiper arm and primary coil. (2) Resolution is limited by

the number of turns in the coil and by the coil uniformity. (3) Wear out and heating

Introduction 3

up with associated oxidation in the coil and slider contact cause accelerated degrada-

tion [2]. Another extensively used vibration sensor is the piezoelectric accelerometer,

an electromechanical device where its output voltage is proportional to an applied

vibratory acceleration. Although it is light in weight, exhibits a high frequency re-

sponse (up to about 1 MHz), accurate and sensitive, piezoelectric transducers cover a

relatively small area, and are difficult to electrically isolate making them unsuitable

in applications surrounded by electrical and magnetic fields [6].

In situations where physical contact between the sensor and the device is

inaccessible and undesirable, non-contact type sensors provide a better option. These

sensors operate on capacitive, inductive, magnetic or optical principles. For instance,

capacitive sensors have very high resolution (d <0.01 nm), however they are sensitive

to changes in temperature, humidity and surface irregularities. Inductive sensors

measure displacement by current induction when a ferrous or nonferrous metallic

object passes through the electromagnetic field of a coil wound. Such sensors also have

relatively high-resolution (nanometer) and good bandwidth (tens of kilohertz), with

the added advantage of being immune to dirt, water, and lubricating oil. Capacitive

and inductive sensors are generally expensive and require special signal processing

circuitry for operation [5].

In the recent years, optical non-contact position sensors have received great

attention owing to their immunity to electromagnetic interference, resistance to cor-

rosion, chemical inertness, and light weight. Such sensors include Fabry-Perot inter-

ferometers, fiber Bragg grating (FBG) arrays, Michelson interferometers, and Mach-

Zehnder interferometers (MZI) which are used for measuring mechanical vibrations

at magnetic cores of power transformers [6]. Fabry-Perot interferometers are used

extensively as versatile tools for fast and sensitive vibration analysis in harsh engi-

neering environments. The sensitivity of these sensors is increased by increasing the

length of the sensing area; however, such an approach causes the sensor to be affected

by fluctuations. Not only do these sensors suffer from limitations in signal demodu-

lation caused by phase ambiguity, but the external disturbance aforementioned can

also be observed as a phase drift that is often compensated in order to measure the

dynamic parameters of the system [7],[8]. Furthermore, Bragg gratings have a rela-

tively poor resolution, and are difficult to be located and installed in the structure

Introduction 4

[7]. The conventional Michelson interferometer-based laser vibrometer suffer from

two main drawbacks; limited sensitivity to surface displacement detection and their

intolerance to the presence of optical speckles in the light beams. An abrupt change

in the speckles can lead to a sudden degradation in the optical power reaching the

photodetector, and a misinterpretation of the diminished output [9].

Nevertheless, reflective optical proximity sensors offer comparable performance

to their inductive and capacitive counterparts in terms of resolution and bandwidth.

In an optical sensor, a source impinges light onto a target object, and subsequently

reflects off the object’s surface, which is then projected onto a detector. The sensed

intensity of the light reflected onto the photodiode is related to an object’s distance

from the photodetector. Optical sensors are also relatively inexpensive, unlike the

capacitive and inductive sensors [5].

One feature common to all of the previously mentioned non-contact sensors is

that they are capable of measuring displacement in the direction of the optical axis

of the system. To measure lateral displacement, that is perpendicular to the optical

axis a position-sensitive detector (PSD) is usually used. Makynen, Kostamovaara,

and Myllyla presented in [1] a lateral displacement sensing method based on the

idea of imaging an illuminated cooperative target on a four-quadrant (4Q) PSD. This

arrangement has the advantage of being capable of providing true lateral displacement

instead of angular displacement in large working volume without calibration. This

is possible due to the unique property of a target-focused 4Q detector, in which

the size of the measurement span is determined solely by the size of the cooperative

target, thus providing inherently accurate, constant scaling that is independent of the

target distance. The 4Q detector consists of four photodiodes (quadrants) positioned

symmetrically around the center of the sensor and separated by a narrow gap. The

position information is derived from the signals received by the quadrants as the

image spot moves over the detector surface.

Other analog position-sensitive detectors that have been proposed by Maky-

nen, Kostamovaara, and Myllyla in [10] are the lateral-effect photodiode (LEP) de-

tectors. An LEP is a large-area, single-element photodiode having uniform resistive

layers with two wide edge contacts on both the anode and cathode. The current

carriers generated in the illuminated region are divided between the electrodes in

Introduction 5

proportion to the distance of the current paths between the illuminated region and

the electrodes. The measurement field of the LEP is determined by the size of its

active area and it detects the spot position irrespective of spot size or shape. The

achievable SNR and the resolution of the 4Q detector is better than that of the LEP.

However, LEP provides far better accuracy in a typical outdoor environment because

atmospheric turbulence induced, spatially uncorrelated intensity fluctuations within

the light spot which result from defocusing, derange the measurement resolution of

the 4Q receiver [10].

Furthermore, one of the established non-contact lateral position sensing tech-

niques involve the use of a charge-coupled device (CCD) camera. The CCD sensor

records the light intensity in each pixel by means of charge coupling where the charges

are transferred to a second bank of photosites before analog-to-digital conversion is

made. In this case, position measurment is usually performed by calculating the

center of gravity of the light distribution [11].

The quadcell array for lateral, two dimensional position measurement consists

of square shaped and homogeneous photodetectors (PDs), clustered in a 2×2 config-

uration [12]. The lateral dimensions of standard discrete commercial PSDs extend up

to several millimeters. Using a quadcell array of photodetectors involves several ad-

vantages, such as, large position measurement area, reduced number of direct output

signals, acceptance of a wide range of spot intensity profiles and radii, negligible spa-

tial fluctuation of the signal, immunity to coordinate crosstalk, and possible operation

with modulated or pulsed light [12].

The transfer characteristics of the photodetector depend on the shape and

intensity distribution of the beam spot. In [1], the authors used a perfectly linear

transfer function by assuming a square light spot with uniform intensity distribution

and with its edges parallel to the edges of the quadrants. However, in most practi-

cal conditions, the spot intensity profile exhibits radial symmetry and the resulting

response is non-linear [12].

The purpose of this research is to present a wavelet network based, non-contact

optical position sensor using a photodetector array, which measures the power distri-

bution of the light spot, taking into consideration the nonlinearities involved, that is

the radial symmetry of the spot and its Gaussian intensity profile.

Introduction 6

Since only the optical power of each photodetector can be practically acquired,

we aim to find a relationship between the power distribution of the photodetector

array and the position of the spot center, through a theoretical and experimental

model. In our approach, we account for the nonlinear transfer characteristics, by

using a wavelet network as a function approximation technique to estimate the x–y

position of the light spot center, that corresponds to the acquired optical powers.

Therefore, in order to achieve a more accurate system model and to depict a better

comparison between the theoretical results and experimental measurements, we take

into consideration the circular shape and Gaussian intensity profile of the light spot in

formulating the optical power equations. These equations will be further used, along

with a developed algorithm, to simulate the theoretical model of the proposed position

detection system. In addition, system imperfections such as the gap separations

between the photodetectors, have been accounted for in the simulation and their

effect on the optical power distribution is studied. A potential application of our

proposed system will be on vibration monitoring, where the position information will

be employed to obtain characteristics such as the amplitude, frequency and speed of

vibration.

The rest of the thesis report is organized as follows; in Chapters 2 and 3, we

give an overview of beam optics, wavelets and wavelet networks (WN) and their use in

function approximation. Next, in Chapter 4, we describe the design of our proposed

system, which involves the system architecture of the theoretical optical acquisition

model of the position sensor. We also present the experimental setup and results used

to validate the theoretical optical model. Finally, in Chapter 5, we discuss the results

obtained after training and testing the WN.

2
Beam Optics

The optical signal emanating from the He-Ne laser source is commonly modeled as

a Gaussian beam traveling in free-space whose intensity varies with the propagation

distance z and the radius of the beam ρ, measured from its center. As the laser beam

propagates, its power remains constant but its intensity decreases with an inverse-

square law. This behavior is important to consider in the theoretical model of the

proposed system as well as the design of the experimental setup because the power

intercepted by the photodetector depends on the area of the detector active surface.

In this Chapter, we will discuss the propagation of light in free-space that would lead

us to the derivation of Gaussian beam optics, intensity and power characteristics.

2.1 The Wave Equation

Light propagates in the form of waves. In free space, light waves travel with speed

co. A homogeneous transparent medium such as glass is characterized by a single

constant, its refractive index (n ≥ 1). In a medium of refractive index n, light waves

2.1 The Wave Equation 8

travel with a reduced speed.

c =
co
n
. (2.1)

An optical wave is described mathematically by a real function of position r = (x, y, z)

and time t, denoted by u (r, t) and known as the wavefunction. It satisfies the wave

equation,

∇2u− 1

c2

∂2u

∂t2
= 0, (2.2)

where ∇2 is the Laplacian operator, ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Any function

satisfying (2.2) represents a possible optical wave. Because the wave equation is linear,

the principle of superposition applies, for instance if u1 (r, t) and u2 (r, t) represent

optical waves, then u (r, t) = u1 (r, t)+u2 (r, t) also represents a possible optical wave

[13].

When electric dipoles are forced to oscillate, they induce an electric field that

oscillates at the same frequency. In addition, due to the motion of oscillating charges,

a magnetic field oscillating at the same frequency is also induced. These simultaneous

oscillating fields are the basis for all known modes of electromagnetic radiation. Thus,

X-rays, UV radiation, visible light, and infrared and microwave radiation are all part

of the same physical phenomenon. Although each radiating mode is significantly

different from the others, all modes of electromagnetic radiation can be described by

the same equations, since they all obey the same basic laws.

Oscillation alone is insufficient to account for electromagnetic radiation. The

other important observation is that radiation propagates. It is emitted by a source

and if uninterrupted, can propagate indefinitely in both time and space. Although

there are certain media that can block radiation, we find it more astonishing that

electromagnetic waves can propagate through free space; unlike electrical currents or

sound, conductors are not necessary for the transmission of radiation. Although this

property is unique to radiation, some of its characteristics is analogous to the propaga-

tion of acoustical waves or vibrations in solids. These waves, like the electromagnetic

waves combine propagation with the oscillation of a physical parameter. Thus, by

analogy the description of the propagation of electromagnetic radiation should in-

volve equations similar to those describing the propagation of sound waves or the

vibrational modes of solids. Furthermore, since we anticipate that electromagnetic

2.1 The Wave Equation 9

waves are the result of oscillatory motion of electric charges, we should be able to

derive equations describing their propagation from Maxwell’s equations [14].

First, to demonstrate the analogy between electromagnetic waves propagation

and that of acoustic waves, we shall derive the wave equation for the case of just one

spatial variable, for the physical system represented by a vibrating string. Consider

a perfectly flexible homogeneous string stretched to a uniform tension τ between two

points. Let u (x, t) be the displacement of the string from its horizontal position. The

1θ 2τ
1

P Q

2θ1τ

Figure 2.1: A vibrating string at an instant of time, the quantities shown are used in
the derivation of the classical one-dimensional Wave equation [15].

quantities τ1 and τ2 are the tensions at the points P and Q on the string. Both τ1

and τ2 are tangential to the curve of the string. Assuming that there is only vertical

motion of the string, the horizontal components of the tensions at the points along

the string must be equal. Using the notation provided in Figure 2.1, we have the

following relation,

τ1 cos θ1 = τ2 cos θ2 = τ = constant. (2.3)

There is a net vertical force that causes the vertical motion of the string, which we

find to be,

Fnet = τ2 sin θ2 − τ1 sin θ1. (2.4)

By Newton’s second law (F = ma), this net force is equal to the mass ρ∆x along the

segment PQ times the acceleration of the string, ∂2u/∂t2. Thus, we can state the

following:

τ2 sin θ2 − τ1 sin θ1 = ρ∆x
∂2u

∂t2
. (2.5)

2.1 The Wave Equation 10

Dividing equation (2.5) by equation (2.3) gives:

tan θ2 − tan θ1 =
ρ∆x

τ

∂2u

∂t2
. (2.6)

Since tan θ1 and tan θ2 are the slopes of the curve of the string at x and x+∆x, respec-

tively, they can be written as, tan θ1 = ∂u
∂x

= ux (x) and tan θ2 = ∂u
∂x

= ux (x+ ∆x),

where ux denotes the partial derivative of u with respect to x. Substituting the values

for tan θ1 and tan θ2 into equation (2.6) yields:

ux (x+ ∆x)− ux (x) =
ρ∆x

τ

∂2u

∂t2
. (2.7)

Dividing equation (2.7), by ∆x and setting the limit ∆x→ 0,

lim
∆x→0

ux (x+ ∆x)− ux (x)

∆x
=
ρ

τ

∂2u

∂t2
,

∂ux
∂x

=
ρ

τ

∂2u

∂t2
,

∂2u

∂x2
=
ρ

τ

∂2u

∂t2
. (2.8)

And so equation (2.7) becomes,

∂2u

∂x2
=

1

v2

∂2u

∂t2
, (2.9)

in the limit ∆x → 0, where v = (τ/ρ)1/2 has units of speed [15]. Its extension to

more spatial variables is given by:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
=

1

v2

∂2u

∂t2
,

∇2u =
1

v2

∂2u

∂t2
. (2.10)

Although, equations for the propagation of electromagnetic waves are likely

to be similar to those for acoustic waves, there is an important distinction between

2.1 The Wave Equation 11

the two. Acoustic wave equations describe the propagation of a scalar quantity;

electromagnetic wave equations describe the propagation of electric and magnetic

fields, which are vectorial.

In order to derive the equations that describe the propagation of electromag-

netic waves, we begin with Maxwell’s equations:

∇× E = −∂B

∂t
+ [0] , (2.11)

∇×H = −
[
∂D

∂t

]
+ j, (2.12)

∇ ·D = ρ, (2.13)

∇ ·B = 0. (2.14)

Where, E,D,H,B, j are respectively the electric field, electric displacement, magnetic

field, magnetic induction and current density vectors. To demonstrate the symmetry

between the effects of electricity and magnetism, for each equation describing the

effects of the electric field there is a counterpart describing effects of the magnetic

field. Even the electric charges fit into the symmetric picture, when a term for electric

charge or electric current is present in one equation, a zero term is present in its

magnetic counterpart, representing the absence of magnetic monopoles. Thus, the

zero term in brackets in equation (2.11) is the magnetic analog to the current density

j in equation (2.12). Similarly, the charge density term ρ in equation (2.13) is replaced

by a zero in equation (2.14).

Maxwell’s equations form the basis for the development of the equations that

describe the propagation of electromagnetic waves. Historically, the electromagnetic

wave equations were derived by Maxwell merely to describe the propagation of oscil-

lating electric or magnetic fields in space. Neither Maxwell nor his peers recognized

the relation between the propagation of electromagnetic fields and the propagation

of light. Optics and the propagation of electromagnetic waves were at that time

considered to be separate and unrelated fields of physics. Only after showing that

the propagation velocity of electromagnetic waves was identical to the already mea-

sured speed of light, Maxwell suggested that his results might be more general than

expected and hence applicable to the studies of optics.

2.1 The Wave Equation 12

Inspection of Maxwell’s equations reveals that when the magnets or electric

charges are static, the electric field vector in equation (2.13), does not contain any

terms of the magnetic field, and conversely in equation (2.14) is independent of the

electric field. When in motion however the magnets or electric charges induce fields

that are interdependent. This is apparent in both equations (2.11) and (2.12), where

E depends on the time derivative of B, and where H varies with the magnitude or di-

rection of the current flow or with the time derivative of D. Nevertheless, an equation

that describes the propagation of electric waves is expected to be independent of the

terms that include the magnetic field, and vice versa. Since only two equations (2.11)

and (2.12) describe the dynamic effect of these two fields, we will be using them as

our initial point for deriving the equations describing the propagation of electric or

magnetic waves. We first consider equation (2.11). The simplest way of eliminating

the magnetic field term from this equation is by obtaining the curl of both sides:

∇×∇× E = − ∂

∂t
(∇×B) = −µ ∂

∂t
(∇×H) . (2.15)

Assuming that the magnetic permeability µ is constant, it was placed outside the

derivative operators, thereby leaving only the magnetic field to be operated on. How-

ever, the term ∇ ×H in equation (2.15) can be replaced by the right-hand side of

equation (2.12), thereby eliminating the magnetic field term. The following equation,

∇×∇× E = −µ ∂
∂t

(
−
[
∂D

∂t

]
+ j

)
(2.16)

= µ
∂2D

∂t2
− µ∂j

∂t
, (2.17)

is now in the desired form; it contains only terms of electric field or electric charge.

Furthermore, it includes both time and space derivations of these quantities and so

describes both the temporal and spatial variation of the electric field due to the

motion of electric charges. Although this equation is complete in itself, it can be

further simplified by using the vector identity, ∇×∇×A = ∇ (∇ ·A)−∇2A, where

A is an arbitrary vector and ∇2 = ∇ · ∇ is the Laplacian operator. Thus in the

Cartesian coordinate system, operating on any vector A = Axêx +Ayêy +Az êz with

2.1 The Wave Equation 13

the Laplacian yields,

∇2A =

(
∂2Ax
∂x2

+
∂2Ax
∂y2

+
∂2Ax
∂z2

)
êx +

(
∂2Ay
∂x2

+
∂2Ay
∂y2

+
∂2Ay
∂z2

)
êy

+

(
∂2Az
∂x2

+
∂2Az
∂y2

+
∂2Az
∂z2

)
êz.

Thus, the left hand-side of equation (2.17) can be replaced by:

∇×∇× E = ∇ (∇ · E)−∇2E. (2.18)

However, when the medium in which E propagates is homogeneous (i.e., when all the

spatial derivatives of the electric permeability, vanish), and when the medium does

not contain any free charges (i.e., ρ = 0), the first of these terms is ∇ · E = 0. With

the above vector identities, equation (2.17) can be reduced to:

∇2E = µ
∂2 (εE)

∂t2
+ µ

∂j

∂t
. (2.19)

This is the wave equation that describes the propagation of an electric wave. It does

not specify what caused the field or how the field can be annihilated, but it accurately

predicts the magnitude and direction of E at any point in space or time. Since most

optical elements consist of uniform media, the assumption that ε is constant is always

justified. The second assumption, that is, that the density of unbalanced electric

charges is ρ = 0, is met in free space and in all electrically neutral media, whether

dielectric or conducting. Therefore, by replacing E with the optical wave u (r, t) and

setting µ = µo to the magnetic permeability in free space, and ε = εo to the electric

permeability in free space, and ∂j
∂t

= 0, we end up with the following wave equation

for an optical wave:

∇2u (r, t) = µoεo
∂2u (r, t)

∂t2
. (2.20)

Since, the speed of light c = 1√
µoεo

, we can finally state the wave equation for an

optical signal propagating in free space, as follows [13]:

∇2u (r, t) =
1

c2

∂2u (r, t)

∂t2
. (2.21)

2.2 Monochromatic waves 14

2.2 Monochromatic waves

A mononchromatic wave is represented by a wavefunction with harmonic time depen-

dence,

u (r, t) = a (r) cos [2πft+ ϕ (r)] . (2.22)

Where, a (r) = amplitude, ϕ (r) = phase, f = frequency (cycles/s or Hz) and

ω = 2πf = angular frequency (radians/s). Both the amplitude and the phase are

generally position dependent, but the wavefunction is a harmonic function of time

with frequency f at all positions [13].

2.2.1 Complex wavefunction

It is convenient to represent the real wavefunction u (r, t) in equation (2.22) in terms

of a complex function:

U (r, t) = a (r) exp [jϕ (r)] exp (j2πft) , (2.23)

such that,

u (r, t) = Re {U (r, t)} =
1

2
[U (r, t) + U∗ (r, t)] . (2.24)

The function U (r, t) also known as the complex wavefunction, completely describes

the wave, and the wavefunction u (r, t) is simply its real part. Similar to the wave-

function u (r, t) the complex wavefunction U (r, t) must also satisfy the wave equation:

∇2U − 1

c2

∂2U

∂t2
= 0. (2.25)

2.2.2 Complex Amplitude

Equation (2.25) can be written in the following form:

U (r, t) = U (r) exp (j2πft) . (2.26)

Where the time independent factor U (r) = a (r) exp [jϕ (r)]is referred to as the com-

plex amplitude. The wavefunction u (r, t) is therefore related to the complex ampli-

2.2 Monochromatic waves 15

tude by:

u (r, t) = Re {U (r, t)} = Re {U (r) exp (j2πft)}

=
1

2
[U (r) exp (j2πft) + U∗ (r) exp (−j2πft)] (2.27)

At a given position r, the complex amplitude U (r) is a complex variable as shown

{ }Im U

()u t

ϕ ω 1
f { }R U

a

ϕ

a

f { }Re U

tO
{ }Im U

()b

{ }

a ϕ

ω

{ }Re U

a
()a

()c

Figure 2.2: Representation of a monochromatic wave at a fixed position r: (a) the
wavefunction u (t) is a harmonic function of time; (b) the complex amplitude U =
a exp (jϕ) is a fixed phasor; (c) the complex wavefunction U (t) = U exp (j2πft) is a
phasor rotating with angular velocity ω = 2πf radians/s [13].

in Figure 2.2(b), whose magnitude |U (r) | = a (r) is the amplitude of the wave and

whose arg {U (r)} = ϕ (r) is the phase. The complex wavefunction is represented

graphically by a phasor rotating with angular velocity ω = 2πf radians/s (Figure

2.2(c)). Its initial value at t = 0 is the complex amplitude U (r) [13].

2.2.3 The Helmholtz Equation

If we substitute U (r, t) = U (r) exp (j2πft) into equation (2.25), we get:

∇2U (r) ej2πft − 1

c2

∂2

∂t2
[
U (r) ej2πft

]
= 0. (2.28)

2.2 Monochromatic waves 16

Where, the value of the second derivative ∂2

∂t2

[
U (r) ej2πft

]
= −(2πf)2U (r) ej2πft can

be substituted in the previous equation to arrive at:

∇2U (r) ej2πft +
(2πf)2

c2
U (r) ej2πft = 0(

∇2 + k2
)
U (r) ej2πft = 0.

Thus we can now state the Helmholtz equation as follows:

(
∇2 + k2

)
U (r) = 0, (2.29)

where

k =
2πf

c
=
ω

c

is referred to as the wavenumber [13].

2.2.4 Intensity, Power and Energy

The optical intensity I (r, t), defined as the optical power per unit area (units of

watts/cm2), is proportional to the average of the squared wavefunction,

I (r, t) = 2
〈
u2 (r, t)

〉
. (2.30)

The operation 〈·〉 denotes averaging over a time interval of one optical cycle. Using

equation (2.30) along with equation (2.22), we can determine the optical intensity.

Where,

2u2 (r, t) = 2a2 (r) cos2 [2πft+ ϕ (r)]

= |U (r) |2
(
2cos2 [2πft+ ϕ (r)]

)
.

Using the trigonometric identity, 2cos2θ = 1 + cos (2θ), we have the following repre-

sentation for 2u2 (r, t):

2u2 (r, t) = |U (r) |2 {1 + cos (2 [2πft+ ϕ (r)])} , (2.31)

2.3 Wavefronts 17

is averaged over an optical period, 1/f ,

I (r, t) = 2
〈
u2 (r, t)

〉
=

1

1/f

1/f∫
0

|U (r) |2 {1 + cos (2 [2πft+ ϕ (r)])} dt

=
|U (r) |2

1/f

 1/f∫
0

1dt+

1/f∫
0

cos (2 [2πft+ ϕ (r)]) dt


=
|U (r) |2

1/f

[
t+

1

4πf
sin (2 [2πft+ ϕ (r)])

]1/f

0

=
|U (r) |2

1/f

[
1

f
+ 0

]
= |U (r) |2.

Therefore the optical intensity I (r, t) = |U (r) |2 of a monochromatic wave is the

absolute square of its complex amplitude. And interestingly as we have just shown

the intensity of a monochromatic wave does not vary with time [13]. The optical power

P (t) units of watts) flowing into an area A normal to the direction of propagation of

light is the integrated intensity,

P (t) =

∫
A

I (r, t) dA. (2.32)

The optical energy (units of joules) collected in a given time interval is the time

integral of the optical power over the time interval,

E (t) =

t2∫
t1

P (t) dt. (2.33)

2.3 Wavefronts

The wavefronts are the surfaces of equal phase, ϕ (r) = constant. The constants

are often taken to be multiples of 2π, ϕ (r) = 2πq, where q is an integer. The

wavefront normal at position r is parallel to the gradient vector ∇ϕ (r) (a vector

with components ∂ϕ/∂x, ∂ϕ/∂y, and ∂ϕ/∂z in a Cartesian coordinate system). It

represents the direction at which the rate of change of the phase is maximum [13].

2.3 Wavefronts 18

2.3.1 The Plane Wave

One of the simplest solutions of the Helmholtz equation in a homogeneous medium

is the plane wave. Using (∇2 + k2)U (r) = 0, we have,

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
+ k2U = 0. (2.34)

Let U (r) = f (x) g (y)h (z), substitute this expression into equation (2.34) and divide

by U (r):

g (y)h (z) f ′′ (x)

f (x) g (y)h (z)
+
f (x)h (z) g′′ (y)

f (x) g (y)h (z)
+
f (x) g (y)h′′ (z)

f (x) g (y)h (z)
+
k2f (x) g (y)h (z)

f (x) g (y)h (z)
= 0,

f ′′ (x)

f (x)
+
g′′ (y)

g (y)
+
h′′ (z)

h (z)
+ k2 = 0. (2.35)

Let f ′′/f = −k2
x, g

′′/g = −k2
y, and h′′/h = −k2

z , therefore we can state the following

relations:

k2
x + k2

y + k2
z = k, (2.36)

d2f (x)

dx
+ k2

xf (x) = 0, (2.37)

d2g (y)

dy
+ k2

yg (y) = 0, (2.38)

d2h (z)

dz
+ k2

zh (z) = 0. (2.39)

When solving for the differential equations (2.37), (2.38), and (2.39), we have:

f (x) = f+e−jkxx + f−ejkxx, (2.40)

g (y) = g+e−jkyy + g−ejkyy, (2.41)

h (z) = h+e−jkzz + h−ejkzz. (2.42)

The terms with negative exponentials indicate a wave traveling in the positive x, y

or z direction, while the terms with positive exponentials result in waves traveling in

the negative direction. For our present discussion we will select a wave traveling in

2.3 Wavefronts 19

the positive direction, for each coordinate:

U (r) = f (x) g (y)h (z)

=
(
f+e−jkxx

) (
g+e−jkyy

) (
h+e−jkzz

)
=

(
f+g+h+

)
exp [−j (kxx+ kyy + kzz)]

= A exp [−j (kxx+ kyy + kzz)] .

Let us define a wavenumber vector ~k = kxêx + kyêy + kz êz = kon̂, where ko = |~k| =√
k2
x + k2

y + k2
z and n̂ is a unit vector in the direction of propagation. In addition,

we will define a position vector ~r = xêx + yêy + zêz, such that the dot product

~k · ~r = kxx+ kyy + kzz. Therefore, the plane wave U (r) can be stated as follows:

U (r) = A exp
(
−j~k · ~r

)
, (2.43)

whereA is a complex constant called the complex envelope, and the phase arg {U (r)} =

arg {A} − ~k · ~r. If the plane wave is propagating along the positive z–axis U (r) =

A exp (−jkz) only and assuming arg {A} = 0, the corresponding wavefunction will

be:

u (r, t) = |A| cos (2πft− kz) . (2.44)

To maintain a fixed point on the wave (2πft − kz = constant), one must move in

the positive z direction as time increases, as if following a fixed point on the wave.

The velocity of the wave in this sense is called the phase velocity vp, because it is the

velocity at which a fixed phase point on the wave travels.

d

dt
(arg {U (r)}) =

d

dt
(constant) = 0

d

dt
(2πft− kz) = 0

2πf − kdz
dt

= 0

2πf − kvp = 0

vp =
2πf

k
=

ω

k
.

2.3 Wavefronts 20

Furthermore, the wavelength λ, is defined as the distance between two successive

maxima (or minima or any other reference points) on the wave, at a fixed instant of

time. Thus we can deduce the following:

[ωt− kz]− [ωt− k (z + λ)] = 2π,

kλ = 2π

λ =
2π

k
,

Since

k =
ω

vp

the wavelength λ can also be stated as:

λ =
2π

k
=

2πvp
ω

=
2πvp
2πf

=
vp
f

λ =
vp
f
.

2.3.2 Paraxial Waves

A paraxial wave is a plane wave U (r) = A (r) exp (−jkz), with k = 2π
λ

and wavelength

λ, modulated by a complex envelope A (r) that is a slowly varying function of position.

The envelope is assumed to be approximately constant within a neighborhood of size

λ, so that the wave locally underlies plane wave nature. Since the change of the phase

arg {A (x, y, z)} is small within the distance of a wavelength, the planar wavefronts,

kz = 2πq, of the carrier plane wave bend only slightly, so that their normals are

paraxial rays [13]. For the paraxial wave to satisfy the Helmholtz equation, the

complex envelope A (r) must satisfy another partial differential equation obtained

by substituting U (r) = A (r) exp (−jkz) into equation (2.29). The assumption that

A (r) varies slowly with respect to z signifies that within a distance ∆z = λ, the

change ∆A is much smaller than A itself, i.e., ∆A << A. Since

∆A = (∂A/∂z) ∆z = (∂A/∂z)λ

2.3 Wavefronts 21

| |A

z

Wavefrontsλ

z

()a Paraxial
rays

x

y

z

()b

Figure 2.3: (a) The magnitude of a paraxial wave as a function of the axial distance
z. (b) The wavefronts and wavefront normals of a paraxial wave [13].

it follows that, ∂A
∂z
λ << A which implies ∂A

∂z
<< A

λ
= Ak

2π
. And therefore, ∂A

∂z
<< kA.

Similarly, the derivative ∂A/∂z varies slowly within the distance λ, so that

∂2A
/
∂z2 << k∂A/∂z

and therefore,
∂2A

∂z2
<< k2A

.

Next, we will substitute U (r) = A (r) exp (−jkz) into the Helmholtz equation,

and assume ∂2A/∂z2 to be negligible in comparison with k∂A/∂z or k2A:

(
∇2 + k2

)
U (r) = 0(

∇2 + k2
)
A (r) exp (−jkz) = 0,

exp (−jkz)
∂2A

∂x2
+exp (−jkz) ∂

2A

∂y2
+
∂2

∂z2
[A exp (−jkz)]+k2A exp (−jkz) = 0. (2.45)

2.3 Wavefronts 22

The term ∂2

∂z2 [A exp (−jkz)] is evaluated accordingly,

∂

∂z
[A exp (−jkz)] =

∂A

∂z
exp (−jkz)− jkA exp (−jkz) .

Therefore,

∂2

∂z2
[A exp (−jkz)] =

∂2A

∂z2
exp (−jkz)− jk∂A

∂z
exp (−jkz)

− jk

[
∂A

∂z
exp (−jkz)− jkA exp (−jkz)

]
=

∂2A

∂z2
exp (−jkz)− 2jk

∂A

∂z
exp (−jkz)− k2A exp (−jkz) .

Substituting, the expression for ∂2

∂z2 [A exp (−jkz)] back into equation (2.45) we get:

[
∂2A

∂x2
+
∂2A

∂y2
+
∂2A

∂z2
− 2jk

∂A

∂z
− k2A+ k2A

]
exp (−jkz) = 0.

Since we assumed ∂2A/∂z2 to be relatively very small, we finally obtain the following

Paraxial Helmholtz equation:

∇2
TA− 2jk

∂A

∂z
= 0, (2.46)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian operator. An important

solution of the Paraxial Helmholtz equation that exhibits the characteristics of an

optical beam is a wave known as the Gaussian beam. In principle, the beam power

is concentrated within a small cylinder surrounding the beam axis. The intensity

distribution in any transverse plane is a circularly symmetric Gaussian function cen-

tered about the beam axis. The width of this function is minimum at the beam waist

and grows gradually in both directions. In the next discussion, an expression for the

complex amplitude of the Gaussian beam is derived, as well as a description of its

physical properties such as intensity, power and beam radius will be provided [13].

2.3 Wavefronts 23

2.3.3 The Gaussian Beam

One simple solution to the paraxial Helmholtz equation provides the paraboloidal

wave for which,

A (r) =
A1

z
exp

(
−jk ρ

2

2z

)
, (2.47)

where, ρ2 = x2 + y2 and A1 is a constant. The paraboloidal wave is the paraxial

approximation of the spherical wave U (r) = (A1/r) exp (−jkr) when x and y are

much smaller than z. Another solution of the paraxial Helmholtz equation provides

the Gaussian beam. It is obtained from the paraboloidal wave by use of a simple

transformation. Since the complex envelope of the paraboloidal wave is a solution of

the paraxial Helmholtz equation, a shifted version of it, with z − ξ replacing z where

ξ is a constant,

A (r) =
A1

q (z)
exp

[
−jk ρ2

2q (z)

]
, (2.48)

where q (z) = z − ξ. This provides a paraboloidal wave centered about the point

z = ξ instead of z = 0. When ξ is complex, equation (2.48) remains a solution of

equation (2.46), but it acquires dramatically different properties. In particular, when

ξ is purely imaginary, for instance ξ = −jz0 where z0 is real, equation (2.48) gives rise

to the complex envelope of the Gaussian beam, A (r) = (A1/q (z)) exp [−jkρ2/2q (z)],

with q (z) = z + jz0. In this case, the parameter z0 is known as the Rayleigh range.

To separate the envelope and the phase of this complex envelope, let:

1

q (z)
=

1

z + jz0

· z − jz0

z − jz0

=
z − jz0

z2 + z2
0

. (2.49)

Thus we can write 1/q (z) as:

1

q (z)
=

1

R (z)
− j λ

πW 2 (z)
, (2.50)

where,
1

R (z)
=

z

z2 + z2
0

2.3 Wavefronts 24

and
λ

πW 2 (z)
=

z0

z2 + z2
0

. Thus, R (z) can be expressed as,

R (z) =
z2 + z2

0

z
= z

[
1 +

(z0

z

)2
]
.

While W (z) can also be represented as a function of z and z0 in the following manner:

W 2 (z) =
λ

π

(
z2 + z2

0

z0

)
=
λ

π
z0

(
z2

z2
0

+ 1

)

W (z) =

(
λ

π
z0

)1/2(
z2

z2
0

+ 1

)1/2

= W0

[
1 +

(
z

z0

)2
]1/2

.

Before proceeding further into our derivation, let us define the following:

|q (z) | =
[
z2 + z2

0

]1/2
= z0

[(
z

z0

)2

+ 1

]1/2

arg {q (z)} = tan−1
(z0

z

)
.

Substituting equation (2.50) into equation (2.48) and using U (r) = A (r) exp (−jkz),

we can deduce the following:

U (r) =
A1

q (z)
exp

(
−jk ρ2

2q (z)

)
exp (−jkz)

=
A1

|q (z) | exp (j arg {q (z)}) exp

(
−jkρ

2

2

[
1

R (z)
− j λ

πW 2 (z)

])
exp (−jkz)

=
A1

|q (z) | exp (j arg {q (z)}) exp

(
− jkρ2

2R (z)
− kλρ2

2πW 2 (z)

)
exp (−jkz) .

Since k = 2π
λ

we have, kλ
2π

= 1, and the above expression can be written as:

U (r) =
A1

|q (z) | exp (−j arg {q (z)}) exp

(
− ρ2

W 2 (z)

)
exp

(
−jkz − jkρ2

2R (z)

)
. (2.51)

2.3 Wavefronts 25

Substituting the expression for |q (z) |, and − arg {q (z)} = −π
2

+ ζ (z) into equation

(2.51), then multiplying and dividing by W0, we have the following:

U (r) =
A1 ·W0

z0

[(
z
z0

)2

+ 1

]1/2

·W0

exp
(
j
[
−π

2
+ ζ (z)

])
exp

(
− ρ2

W 2 (z)

)
exp

(
−jkz − jkρ2

2R (z)

)

=
A1

jz0

· W0

W (z)
exp

(
− ρ2

W 2 (z)

)
exp

(
−jkz − jkρ2

2R (z)
+ jζ (z)

)
.

Therefore, the expression for the complex amplitude U (r) of the Gaussian beam can

be stated as:

U (r) = A0
W0

W (z)
exp

(
− ρ2

W 2 (z)

)
exp

(
−jkz − jk ρ2

2R (z)
+ jζ (z)

)
. (2.52)

A new constant A0 = A1/jz0 has been defined for convenience. In addition, the beam

parameters can be stated as follows:

W (z) = W0

[
1 +

(
z

z0

)2
]1/2

, (2.53)

R (z) = z

[
1 +

(z0

z

)2
]
, (2.54)

ζ (z) = tan−1

(
z

z0

)
(2.55)

W0 =

(
λz0

π

)1/2

. (2.56)

Equations (2.52)–(2.56) will be further used to determine the intensity and power

properties of the Gaussian beam.

2.3 Wavefronts 26

2.3.3.1 Intensity:

The optical intensity I (r) = |U (r) |2 is a function of the axial and radial distances z

and ρ = (x2 + y2)
1/2

I (ρ, z) = I0

[
W0

W (z)

]2

exp

[
− 2ρ2

W 2 (z)

]
, (2.57)

where I0 = |A0|2. At each value of z the intensity is a Gaussian function of the radial

distance ρ. Due to this, the wave is called a Gaussian beam. The Gaussian function

has its peak at ρ = 0 (on axis) and decays monotonically as ρ increases. The beam

()W z

Diffracting Gaussian beam

02 2W
2W02W

0
0z

Beam waist at
0=z z

z

Beam minimum
waist

Figure 2.4: Gaussian beam model for the laser source used in the proposed system.

width W (z) of the Gaussian distribution increases with the axial distance. On the

beam axis (ρ = 0) the intensity,

I (0, z) = I0

[
W0

W (z)

]2

=
I0

1 + (z/z0)2 , (2.58)

has its maximum value I0 at z = 0 and drops gradually with increasing z, reaching half

its peak value at z = ±z0 as shown in Figure 2.4. When |z| >> z0, I (0, z) ≈ I0z
2
0/z2,

so that the intensity decreases with the distance in accordance with an inverse-square

law. The overall peak intensity I (0, 0) = I0 occurs at the beam center (z = 0, ρ = 0).

2.3 Wavefronts 27

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
I/I0

z
−z0 z0

Figure 2.5: The normalized Gaussian intensity profile.

2.3.3.2 Power:

The total optical power carried by the beam is the integral of the optical intensity

over a transverse plane (say at a distance z),

P =

∫
A

I (ρ, z) dA, (2.59)

where dA = ρdθdρ, therefore the above integral can be evaluated as follows:

P =

∞∫
0

2π∫
0

I (ρ, z) ρdρdθ

=

∞∫
0

I (ρ, z) ρdρ ·
2π∫

0

dθ

=

∞∫
0

I (ρ, z) 2πρdρ

=

∞∫
0

I0

[
W0

W (z)

]2

exp

[
− 2ρ2

W 2 (z)

]
2πρdρ

= I0

[
W0

W (z)

]2

2π

∞∫
0

exp

[
− 2ρ2

W 2 (z)

]
ρdρ.

2.3 Wavefronts 28

By using a change of variables, u = ρ2 where du/2 = ρdρ, and inserting them into

the above double integral, we attain to the following:

P = I0

[
W0

W (z)

]2
2π

2

∞∫
0

exp

[
− 2u

W 2 (z)

]
du

= I0

[
W0

W (z)

]2
2π

2
· −W

2 (z)

2

(
exp

[
− 2u

W 2 (z)

])∞
0

= −I0

[
W0

W (z)

]2
π

2
W 2 (z) (0− 1)

= I0

[
W0

W (z)

]2
π

2
W 2 (z) =

I0

2

(
πW 2

0

)
.

Therefore the total optical power can be stated as:

PT =
1

2
I0

(
πW 2

0

)
, (2.60)

where the result is independent of z. Thus the beam power is one-half the peak

intensity times the beam area. Since beams are often described by their power P , it

is useful to express I0 in terms of P using equation (2.60) and to rewrite equation

(2.57) in the form:

I (ρ, z) =
2PT

πW 2 (z)
exp

[
− 2ρ2

W 2 (z)

]
. (2.61)

The ratio of the power carried within a circle of radius ρ0 in the transverse plane at

position z to the total power is:

1

PT

ρ0∫
0

I (ρ, z) 2πρdρ = 1− exp

[
− 2ρ2

0

W 2 (z)

]
. (2.62)

The power contained within a circle of radius ρ0 = W (z) is approximately 86% of the

total power. About 99% of the power is contained within a circle of radius 1.5W (z).

Since the radius of the circular spot is ρ0 = 0.5 cm, then to achieve 99% of the total

power W0 was set to 1/3 cm in the theoretical model. Therefore, the minimum beam

waist 2W0 is equal to 2/3 cm.

3
Functional Approximation with Wavelet

Networks

In order to estimate the lateral position of the light spot center corresponding to

the power distribution of the photodetector array, a wavelet network will be used as

a function approximation technique. In this chapter, we will introduce the concept

of function approximation, and neural networks. Next, we will discuss the relation

between the wavelet frames and wavelet networks, as well as the wavelet network

structure, and learning procedure that will be adopted in our research.

3.1 Function Approximation

According to T. Poggio in [16], the problem of learning a mapping between an input

and an output space is similar to the problem of synthesizing an associative memory

that retrieves the appropriate output when presented with the input and generalizes

3.1 Function Approximation 30

when presented with new inputs. A classical framework for this problem is approx-

imation theory which deals with the problem of approximating or interpolating a

continuous, multivariate function f (x) by an approximating function F (w,x) hav-

ing a fixed number of parameters w belonging to some set P. In this case, x and w

are real vectors where x = [x1, x2, . . . , xn] and w = [w1, w2, . . . , wm].

For a choice of a specific F , the problem is to find the set of parameters w

that provides the best possible approximation of f on the given input/output data

set. This can be categorized as the learning stage of our approximation problem.

Therefore, it is important to select an approximating function F that can represent f

as well as possible. It would be pointless to try to learn, if the chosen approximation

function F (w,x) could only give a very poor representation of f (x), even when using

optimal parameter values. Thus, we need to distinguish three main problems invloved

in function approximation; (1) the problem of which approximation to use, that

is which approximating functions F (w,x) would effectively represent the function

f (x); (2) the problem of which algorithm to use for finding the optimal values of the

parameters w for a given choice of F ; (3) the problem of an efficient implementation

of the algorithm either through hardware or software or both [16].

Most approximation schemes can be mapped into a certain network that can

be dubbed as a neural network. In general, networks can be regarded as a graphic

notation for a large class of algorithms. In our discussion, a network is a function

represented by the composition of a number of basic functions.

To measure the quality of the approximation, one introduces a distance func-

tion ρ to determine the distance ρ [f (x) , F (w,x)] of an approximation F (w,x) from

f (x). The distance is usually induced by a norm, such as the standard L2 norm. The

approximation problem can then be stated formally as:

DEFINITION 2.1 If f (x) is a continuous function and F (w,x) is an ap-
proximation function that depends continuously on w ∈ P and x, the approximation
problem is to determine the parameters w∗ such that,

ρ [F (w∗,x) , f (x)] ≤ ρ [F (w,x) , f (x)] , (3.1)

for all w in the set P.

A solution of this problem, if it exists, is said to be a best approximation.

The existence of a best approximation depends ultimately on the class of functions

3.2 Neural networks 31

to whom F (w,x) belongs [16].

Recently, the wavelet theory has received substantial interest in the fields

of numerical analysis and signal processing [17], [18]. Wavelets are a family of basis

functions which exhibit interesting properties such as orthogonality, compact support,

and localization in time and frequency [19]. Owing to wavelet theory, very efficient

and fast algorithms have been developed for analyzing, approximating, and estimating

functions or signals. However, the implementation of such algorithms is only adequate

for problems of a relatively small input dimension. This is due to the excessive cost of

constructing and storing wavelet basis of large dimension. Artificial neural networks

are considered more promising candidates for handling problems of larger dimension

and their complexity is less sensitive to the input dimension [20].

Neural networks have been established as general function approximation tools

for fitting nonlinear models from input/output data and are widely used in applica-

tions which involve system modeling and identification [16]. However, the practi-

cal implementation of neural networks suffers from the lack of efficient constructive

methods, both for determining the parameters of neurons and selection of the net-

work structure. At a different rate, the recently introduced wavelet decomposition is

emerging as a powerful tool for approximation [21], [22]. Due to the similar struc-

ture of wavelet decomposition and one-hidden-layer neural network, Q. Zhang and A.

Benveniste in [23], [20], [24] proposed to combine both wavelets, and neural networks.

This new type of network by the name of wavelet network (WN), is presented in

[23], as a class of feed-forward networks composed of wavelets which act as activation

functions replacing the traditional sigmoidal functions. The basic idea is to use more

powerful computing units obtained by cascading wavelet transform as an alternative

to neurons. The WN merges the good localization properties of wavelets with the

approximation abilities of neural networks. In addition, the wavelet network learning

is performed by the standard back-propagation type algorithm as in the conventional

feed-forward neural network [19].

3.2 Neural networks

In this section a brief overview of neural networks and their structure will be provided.

Let Θ be a set containing pairs of sampled inputs and the corresponding outputs

3.2 Neural networks 32

generated by an unknown map, f : Rm → Rn, m, n <∞, such that:

Θ = {(xp, yp) : yp = f (xp) ;xp ∈ Rm, yp ∈ Rn, i = 1, . . . , Np, Np <∞} .

We call Θ the training set. The task of functional approximation is to use the data

provided in Θ to learn or approximate the map f . Numerous existing schemes to

perfom such a task are based on parametrically fitting a particular functional form to

the given data. Simple examples of such schemes are those which attempt to fit linear

models or polynomials of fixed degree to the data in Θ. More recently, feedforward

neural networks have been used to learn the map f [25].

1u
1k

∑2u ()g i y2k
…

∑

b

()

nu b
3k

()a
u1u

2u y

nu ()b

Figure 3.1: (a) Single neuron model. (b) Simplified schematic of single neuron [25].

The basic component in a feedforward neural network is the single neuron

model as shown in Figure 3.1(a). Where u1, . . . , un are the inputs to the neuron,

k1, . . . , kn are multiplicative weights applied to the inputs, b is a biasing input, g :

R→ R, and y is the output of the neuron. Thus, we have:

y = g

(
n∑
i=1

kiui + b

)

The neuron of Figure 3.1(a) is often depicted as illustrated in Figure 3.1(b), where

3.2 Neural networks 33

the input weights, bias, summation and function g are implicit. Traditinally, the

activation function g has been chosen to be the well known sigmoidal function. This

choice of g was initially based upon the observed firing rate response of biological

neurons. A feedforward neural network is constructed by interconnecting a number

of neurons (such as the one shown in Figure 3.1) so as to form a network in which all

connections are made in the forward direction, that is from input to output without

feedback loops, as shown in Figure 3.2. Neural networks of this form are usually

x
I t LInput Layer

Hidden Layer

Output Layer

y

Figure 3.2: Feedforward neural network [25].

composed of an input layer, a number of hidden layers, and an output layer. The

input layer consists of neurons which accept external inputs to the network. Inputs

and outputs of the hidden layers are internal to the network, and hence the term

hidden. Outputs of neurons in the output layer are the external outputs of the

network. Once the structure of the feedforward network has been decided, that is the

number of hidden layers and the number of nodes in each hidden layer has been set,

a mapping is learned by varying the connection weights wij’s and the biases bj’s so as

to obtain the desired input-output response for the network. One method often used

to vary the weights and biases is known as the backpropagation algorithm in which

3.3 Wavelet Transforms 34

the weights and biases are modified so as to minimize a cost function of the form,

E =
∑

(xp,yp)∈Θ

‖ Op − yp‖2,

where Op is the output vector at the output layer of the network when xp is applied

at the input. In this case, wij denotes the weight applied to the output Oj of the jth

neuron when connecting it to the input of the ith neuron, and bj is the bias input to

the jth neuron. Backpropagation employs gradient descent to minimize E. That is,

the weights and biases are varied in accordance with the rules,

∆wij = −ε ∂E
∂wij

,

and,

∆bj = −ε∂E
∂bj

.

Feedforward neural networks are known to have empirically demonstrated ability to

approximate complicated maps very well using the technique just described.

3.3 Wavelet Transforms

In this section we shortly state some basic concepts about wavelet transforms, which

involve continuous wavelet transform and wavelet bases and frames, that will be useful

in understanding the construction and development of wavelet networks.

3.3.1 The Continuous Wavelet Transform (CWT)

Historically the continuous wavelet transform was the first studied wavelet transform.

To introduce the wavelet transform we assume that a wavelet function ψ (x) is given

that satisfies the following two requirements:

(1) ψ (x) is continuous and has exponential decay, that is ψ (x) 6 Me−C|x| for

some constants C and M .

(2) The integral of ψ is zero, that is
∞∫
−∞

ψ (x) dx = 0 [26].

An example of a suitable wavelet function is ψ (x) = xe−x
2
, whose graph is

given in Figure 3.3. In the following discussion, we assume that ψ (x) equals zero

3.3 Wavelet Transforms 35

outside some fixed interval −A 6 x 6 A, which is a stronger condition than the

first condition just given. We are now ready to state the definition of the wavelet

transform.

DEFINITION 2.2 Given a wavelet ψ satisfying the two requirements just
given, the wavelet transform of a function f ∈ L2 (R) is a function w : R2 7→ R given
by

w (d,m) =
1√
|d|

∞∫
−∞

f (x)ψ

(
x−m
d

)
dx. (3.2)

From the preceding definition, it is not clear how to define the wavelet trans-

form at d = 0. However, the change of variables y = (x−m)/d converts the wavelet

transfrom into the following:

w (d,m) =
√
|d|

∞∫
−∞

f (yd+m)ψ (y) dy. (3.3)

From this representation clearly, w (d,m) = 0 when d = 0.

As d becomes small, the graph of

ψd,m (x) =
1√
|d|
ψ

(
x−m
d

)
,

becomes tall and skinny, as illustrated in the graphs of ψ1,0 and ψ1/2,0 with ψ (x) =

xe−x
2

given in Figures 3.3 and 3.4, respectively. Therefore, the frequency of ψd,m

increases as d decreases. In addition, if most of the support of ψ, that is the nonzero

part of the graph of ψ, is located near the origin, then most of the support of ψd,m

will be located near x = m. So w (d,m) measures the frequency component of f that

vibrates with frequency proportional to 1/d near the point x = m.

3.3 Wavelet Transforms 36

-3 -2 -1 0 1 2 3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 3.3: Graph of ψ1,0 (x) = ψ (x) = xe−x
2

[26].

-3 -2 -1 0 1 2 3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 3.4: Graph of ψ1/2,0 [26].

3.3 Wavelet Transforms 37

3.3.2 Inverse Wavelet Transform

The inversion formula of the wavelet transform is given in the following theorem:

Theorem 2.1 Suppose ψ is a continuous wavelet satisfying the following condi-

tions; ψ has exponential decay at infinity and
∞∫
−∞

ψ (x) dx = 0. Then for any function

f ∈ L2 (R), the following inversion formula holds :

f (x) =
1

Cψ

∞∫
−∞

∞∫
−∞

|d|−1/2w (d,m)

d2
ψ

(
x−m
d

)
dm dd, (3.4)

where, the Fourier transform ψ̂ (ω) of ψ satisfies the following condition in [26], [23]:

Cψ = 2π

∞∫
−∞

|ψ̂ (ω) |2
|ω| dω <∞. (3.5)

Therefore, according to the continuous wavelet decomposition theory, we are

able to decompose any function f (x) ∈ L2 (R) using a family of functions obtained

by dilating and translating a single mother wavelet ψ (x). In addition, the preceding

wavelet inversion theorem states that a function f can be decomposed as a weighted

sum (or integral) of its frequency components, as measured by w (d,m). The wavelet

inversion theorem involves two parameters, namely, the translation m and dialation

d, since the wavelet transform gives a measures of the frequency (using the parameter

d) of f near the point x = m [26].

3.3.3 Wavelet bases and frames

The continuous wavelet transform and its inverse transform are not directly imple-

mentable on digital computers. In practice, they have to be discretized [20]. When

the inverse wavelet transform in equation (3.4) is discretized into:

f (x) =
N∑
j=1

wj
1√
|dj|

ϕj (x). (3.6)

some conditions are required so that this discrete version of the reconstruction of f

holds. The wavelet ϕj (x) is derived from its mother wavelet ψ (x) by the following

relation:

ϕj (x) = ψ

(
x−mj

dj

)
= ψ (zj) , (3.7)

3.3 Wavelet Transforms 38

where mj and dj are the discretized translation and dilation factors.

Let Ωc be a denumerable family of functions generated by ψ of the following

form:

Ωc =

{
1√
dj
ψ

(
x−mj

dj

)
: mj ∈ R, dj ∈ R+, j ∈ Z

}
, (3.8)

which constitute an orthonormal basis of some functional space such as L2 (R). Usu-

ally a regular lattice {(da0, tm0) : a ∈ Z, t ∈ Z} is used for the discretization where

the scalar parameters d0 and m0 define the step sizes of dilation and translation

discretizations.

Wavelet bases have numerous applications in signal processing and numerical

analysis because they offer very efficient algorithms and provide more useful informa-

tion than Fourier transform. However, it is not always possible to build orthonormal

wavelet bases with any wavelet function ψ.

Though there are some well developed techniques for constructing the wavelet

function ψ and its associated orthonormal basis, the wavelet function ψ has to satisfy

strong restrictions. These restrictions lead to conflicts between regularity and com-

pactness of the wavelet function, both being desired properties. Furthermore, if one

gives up the idea that the discrete family in equation (3.8) should be a basis of some

considered functional space and requires only that equation (3.8) constitutes a frame,

then one gains more freedom on the choice of ψ [20].

Wavelet frames are redundant basis, constructed by simple operations of trans-

lation and dilation of the mother Wavelet, which must satisfy conditions less stringent

than their orthonormal counterparts. The frame condition can be stated as follows;

there exist two constants cmin > 0 and cmax < ∞ such that for all f ∈ L2(R), the

following inequalities hold:

cmin ‖ f‖2 ≤
∑
ϕj∈Ωc

|〈ϕj, f〉|2 ≤ cmax ‖ f‖2. (3.9)

In this sum, ‖ f ‖ denotes the norm of function and 〈·, ·〉 is the inner product in L2(R)

and the sum ranges over all the elements of the family Ωc [23], [27]. As mentioned

earlier using wavelet frames rather than orthonormal basis provides more freedom

and flexibility in the choice of the wavelet function ψ, however the tradeoff here is

that the reconstruction of the coefficients wj in equation 3.6 becomes nontrivial [20].

3.4 Wavelet Networks (WN) 39

3.4 Wavelet Networks (WN)

In this section we discuss the connection between wavelet networks and the discrete

inverse wavelet transform. In addition, we give an overview of the structure of the

wavelet network and the process of learning for function approximation.

3.4.1 Adaptive Discretization

Although the wavelet bases and frames have been developed with efficient numeri-

cal algorithms, their applications have been limited to problems of relatively small

input dimension. The main reason behind this is that wavelet bases and frames are

usually constructed with regularly dilated and translated wavelets, independent of

the available measured information or training data. In practice, the construction

and storage of such wavelet basis or frame of large input dimension is of prohibitive

cost. Therefore, it is expected that the wavelet estimator will be more efficient if the

wavelet basis is constructed according to the training data. This inevitably yields the

idea of adaptive discretization of the continuous wavelet transform [20].

To elaborate more on the preceding point, in order for us to obtain a discrete

reconstruction as shown in equation (3.6), instead of using a fixed lattice of (dj,mj),

we can adaptively determine the values of (dj,mj), according to the function f or

the sampled input/output data in the set Θ. By following such a methodology, all

the parameters wj, dj, and mj in equation (3.6) are to be adapted. Thus, equation

(3.6) is very similar to a one hidden layer feedforward neural network. Such adaptive

discrete inverse wavelet transform is called wavelet network.

From this perspective, equation (3.6) can be constructed using techniques

of neural networks. Usually, neural networks used in function approximation are

first randomly initialized and then trained by a backpropagation procedure. The

random initialization makes such learning procedures very inefficient. In contrast,

wavelet networks can be initialized with regular wavelet lattice as will be shown later

in Chapter 5. It is to be remarked that the regular lattices of wavelet frames are

special cases of adaptive discretizations of the continuous inverse wavelet transform.

Consequently, the discrete reconstruction formula in equation (3.6) must hold for

some properly adapted (dj,mj). Furthermore, if the function f has some particular

3.4 Wavelet Networks (WN) 40

property of regularity, better results can be obtained, due to the flexibility of the

adaptive wavelet family [20].

3.4.2 Wavelet Network Structure

Zhang, and Benveniste introduced the general wavelet network structure, based on

the so-called
(
1 + 1

2

)
-layer neural network [23]. In the next discussion we use the

modified version of this network presented by Zhang in [28]. The main difference

between the two approaches is that in [28] a linear term ak = [ak1, ak2, . . . , akNi]

is introduced to help the learning of the linear relation between the input and the

output signals. The WN architecture used is shown in Figure 3.5, and the equation

that defines the network is given by:

ŷk (x) =
Nw∑
j=1

ckjΦj (x) +

Ni∑
i=1

akixi + bk, (3.10)

where i is the index for input nodes, j is the index for hidden nodes, k is the index for

output nodes, Ni is the number of input nodes, Nw is the number of hidden nodes,

and No is the number of output nodes. As shown in Figure 3.5, the wavelet network is

composed of an input layer with Ni inputs, a hidden layer having Nw wavelet neurons

or wavelons, and an output layer having a linear output neuron. The coefficients of

the linear part of the network which consist of the components of the vector ak and

the bias term bk are called direct connections [27]. In addition, xi refers to the ith

input to the network, ŷk (x) is the kth output of the network, and Φj (x) represents

the multidimensional activation function at the jth hidden wavelon. For modeling

multi-variable processes, multidimensional wavelets Φj : RNi 7→ R must be defined.

These are constructed as the product of Ni scalar wavelets:

Φj (x) =
Ni∏
i=1

ψ (zji) =
Ni∏
i=1

ϕji. (3.11)

Here, zji = (xi −mji)/dji, and the array x is given by x = [x1, x2, . . . , xi, . . . , xNi]
T.

Families of multidimensional wavelets generated according to this scheme have been

shown to be frames of L2
(
RNi

)
[23], [24]. In this work, we have selected ψ (zji) =

−zjie−z
2
ji/2 as our scalar mother wavelet, which satisfies condition (3.5), and in the

3.4 Wavelet Networks (WN) 41

1
Φ

1k
c

a

1
x

1k
a

2k
a

2
x

k
b

2
Φ 2k

c
k̂
y∑...

Nwkc

Nika

x

...

NwΦ

Nix

Input nodes Hidden nodes Output nodes

Figure 3.5: Function approximation using wavelet networks.

multidimensional case, direct products of such scalar wavelets have been taken.

3.4.3 WN Learning

The learning algorithm for adjusting the parameters of the WN is based on a sample

of input/output pairs, {x, yk (x)}, where yk (x) is the function to be approximated.

The WN training depends on minimizing the following cost function:

J (θ) =
1

2

Np∑
p=1

No∑
k=1

(epk)
2 =

1

2

Np∑
p=1

No∑
k=1

(ypk − ŷpk)
2, (3.12)

where epk = ypk − ŷpk is the error between the kth target output, ypk, and the corre-

sponding wavelet network output, ŷpk, for training pattern p, while Np is the total

number of elements in the training set. All the parameters of the wavelet network

to be adjusted are collected in a vector θ = [bk, aki, ckj,mji, dji]
T. The minimization

is performed based on the gradient descent algorithm. The partial derivative of the

cost function with respect to θ is:

∂J

∂θ
= −

Np∑
p=1

No∑
k=1

epk
∂ŷpk
∂θ

. (3.13)

3.4 Wavelet Networks (WN) 42

The components of the vector ∂ŷpk/∂θ for the conventional WN can be derived as

follows:

∂ŷpk
∂bn

= δnk (3.14)

∂ŷpk
∂ani

= δnkx
p
i (3.15)

∂ŷpk
∂cnj

= δnkΦ
p
j (3.16)

∂ŷpk
∂mji

= ckj
∂Φp

j

∂zpji

∂zpji
∂mji

(3.17)

∂ŷpk
∂dji

= ckj
∂Φp

j

∂zpji

∂zpji
∂dji

. (3.18)

Here, zpji = (xpi −mji)/dji, for (i = 1, . . . , Ni), (j = 1, . . . , Nw), (k = 1, . . . , No), and

(p = 1, . . . , Np). Notice that we used Kronecker’s symbol delta defined as: δnk = 1

for n = k and δnk = 0 for n 6= k.

The network parameter vector θ is updated every epoch by using θnew =

θold + ∆θ (l) where:

∆θ (l) = − 1

Np

(
µ
∂J

∂θ

)
+ γ∆θ (l − 1) . (3.19)

Here, µ is the learning rate and γ = 1 − µ is the momentum coefficient, where both

are set in the interval (0, 1). The figure of merit used to assess the approximation

results is the mean squared error (MSE), which can be stated as follows:

MSE =
1

Np

Np∑
p=1

No∑
k=1

(ypk − ŷpk)
2 =

2

Np
J (θ) . (3.20)

4
Optical System Modeling and Design

4.1 System Architecture

The hardware architecture of our system, as shown in Figure 4.1, consists of a laser

source mounted on two actuators for azimuthal and vertical motion steering. The

laser source is adjusted to point at a mirror placed on a vibrating platform. The

Gaussian beam emitted from the source is reflected by the mirror onto a photodetector

array, which captures the light intensity distribution of the laser spot. Different

photocurrent outputs generated from each photodiode (PD) depend on the relative

beam area intercepted by the different PDs. Thus, the optical power distribution of

the photodetector array depends on the 2 dimensional position of the spot center.

The design problem at hand involves three major parts as demonstrated in

Figure 4.1. The first part, the optical acquisition system, is concerned with acquiring

the optical power distribution P = [P1 · · ·Pi · · ·Pn]T of the array of n photodetector

cells. Next, the optical power information is fed into a lateral position detection

system. In this stage a WN is used as a function approximation technique to yield an

4.2 Theoretical Optical Acquisition Model 44

estimate x̂ (P, t) and ŷ (P, t) of both x (P, t) and y (P, t), the Cartesian coordinates of

the center of the light spot that correspond to the acquired optical power distribution.

The final stage uses the estimated position of the light spot for vibration monitoring.

In this research, we focus on the first two stages of the proposed system.

Photocell Arrayy

1PiPnP
x Optical Signal

Acquisition
Laser Beam

x
Mirror

Laser Source

Position Detection
System

x̂ ŷVibration Platform

Vibration Monitoring

Gaussian Intensity Profile

Vibration Monitoring
System

Figure 4.1: Hardware architecture of the proposed position detection system.

4.2 Theoretical Optical Acquisition Model

The theoretical model evaluates the optical power distribution as the center of the

beam is scans the plane of photocell array. Since, optical power is directly related to

the incident area of overlap between the photodetector and the beam
(
Pi =

∫
IdA

)
,

closed form equations for the area of intersection for one photodetector cell have been

found for further analytical purposes.

Next, we derive the equations for the optical power covered by the required area

of overlap between the detector active surface and the beam spot, given the beam’s

Gaussian intensity profile. After evaluating the optical power as the beam is scanned

over the active surface of one photodetector cell, the theoretical optical acquisition

system model is extended further to account for an array of four photodiodes with

horizontal and vertical spatial gap separations. The optical power for each photodiode

is calculated as the beam moves about the plane covered by the quadcell.

4.2 Theoretical Optical Acquisition Model 45

The laser beam incident onto a 1 cm×1 cm square photodetector cell is mod-

eled as a circular spot with a radius, ρ0 = 0.5 cm. We developed a code to compute the

interception area between the circular beam spot and the photodetector as the beam

center is moved anywhere outside and inside the boundaries of the square cell. The

position of the beam center is determined with respect to the origin of the Cartesian

coordinate system, located at the center of the photodetector.

To calculate the area through simulation, certain supporting parameters such

as the number of points of intersection between the circular spot and the square cell

Nint, as well as the number of corners Nc of the square that lie within the circle, were

found.

d

y

xd

1α
()1ρ α

(),x y

O xAO

2 0ρ ρ=

xA

0x0x−

Figure 4.2: Parameters definition for area Ax.

Next, we derived the mathematical formulation necessary to obtain the closed

form equations for the overlap area. This will be divided into three categories; (1)

Finding the area of intersection while moving the beam along the x direction only,

(2) Finding the area of intersection while the beam is moved along the y direction

only, and finally (3) Finding the area of intersection as the beam is moved about the

entire x–y plane, along any random path.

As shown in Figure 4.2, (x, y) indicate the coordinates of the center of the

circular spot with respect to the center of the square photodetector cell, and (x0, y0)

represent the coordinates of the top right-most corner of the photocell, which in this

4.2 Theoretical Optical Acquisition Model 46

case x0 = 0.5 cm and y0 = 0.5 cm. Let us first define the following parameters:

dx = x− x0, (4.1)

which is the horizontal distance between the spot center and the side at which the

circular spot intersects the square. In addition, we have:

sinα1 = sinα2 =
x− x0

ρ0

, (4.2)

where, α1 is the angle between the vertical axis crossing through the center of the

beam and the first intersection between the circular spot and the square photocell.

While, α2 is the angle between the vertical axis crossing through the beam center and

the second point of intersection.

Given that α2 = π − α1, ρ1(α) = (x − x0)/ sinα, and ρ2(α) = ρ0, we can

calculate the intersection area Ax by evaluating the following double integral:

Ax =

α2∫
α1

ρ2(α)∫
ρ1(α)

ρdρdα

=

α2∫
α1

[
ρ2

2

]ρ2(α)

ρ1(α)

dα =

α2∫
α1

ρ2
2

2
− ρ1

2

2
dα

=
ρ0

2

2

α2∫
α1

1− (x− x0)2

ρ0
2sin2α

dα

=
ρ0

2

2

α2∫
α1

1− sin2α1

sin2α
dα

=
ρ0

2

2
(π − 2α1)− ρ0

2

2
sin2α1

α2∫
α1

1

sin2α
dα

=
ρ0

2

2
(π − 2α1) +

ρ0
2

2
sin2α1 [cotα]α2

α1

=
ρ0

2

2
(π − 2α1) +

ρ0
2

2
sin2α1 [cotα2 − cotα1] . (4.3)

4.2 Theoretical Optical Acquisition Model 47

The term cotα2 − cotα1 in the preceding integral can be reduced to the following:

cotα2 − cotα1 =
cosα2

sinα2

− cosα1

sinα1

=
sinα1 cosα2 − sinα2 cosα1

sinα1 sinα2

=
sin (α1 − α2)

sinα1 sinα2

.

Since, α2 = π − α1, hence α1 − α2 = α1 − (π − α1) = 2α1 − π, and therefore,

cotα2 − cotα1 =
sin (α1 − α2)

sinα1 sinα2

=
sin (2α1 − π)

sinα1 sinα2

=
− sin (2α1)

sinα1 sinα2

=
−2 sinα1 cosα1

sinα1 sinα2

=
−2 cosα1

sinα2

.

Since sinα2 = sinα1, we can state that:

cotα2 − cotα1 =
−2 cosα1

sinα1

. (4.4)

Substituting equation (4.4) into equation (4.3), we have:

Ax =
ρ0

2

2
(π − 2α1) +

ρ0
2

2
sin2α1

[
−2 cosα1

sinα1

]
=

ρ0
2

2
(π − 2α1) +

ρ0
2

2
sinα1 [−2 cosα1]

=
ρ0

2

2
[π − 2α1 − sin 2α1] .

Therefore, Ax can be stated as:

Ax =
ρ2

0

2
[π − 2α1 − sin 2α1] . (4.5)

Next, to find the intersection area Ay as the beam moves along the y-axis only, as

shown in Figure 4.4, the following parameters were defined:

dy = y − y0, (4.6)

4.2 Theoretical Optical Acquisition Model 48

y

()x y

yd1β

()1ρ β

(),x y

A
0y ()

2 0ρ ρ=
yA

O x

0y−

Figure 4.3: Parameters definition for area Ay.

which is the vertical distance between the spot center and the side at which the

circular spot intersects the square. In addition, we have:

sin β1 = sin β2 =
y − y0

ρ0

, (4.7)

where, β1 is the angle between the horizontal axis crossing through the center of the

beam and the first intersection between the circular spot and the square photocell.

While, β2 is the angle between the horizontal axis crossing through the beam center

and the second point of intersection. Using β2 = π − β1, ρ1(β) = (y − y0)/ sin β, and

4.2 Theoretical Optical Acquisition Model 49

ρ2(β) = ρ0, the intersection area Ay, is evaluated as follows:

Ay =

β2∫
β1

ρ2(β)∫
ρ1(β)

ρdρdβ

=

β2∫
β1

[
ρ2

2

]ρ2(β)

ρ1(β)

dβ =

β2∫
β1

ρ2
2

2
− ρ1

2

2
dβ

=
ρ0

2

2

β2∫
β1

1− (y − y0)2

ρ0
2sin2β

dβ

=
ρ0

2

2

β2∫
β1

1− sin2β1

sin2β
dβ

=
ρ0

2

2
(π − 2β1)− ρ0

2

2
sin2β1

α2∫
α1

1

sin2β
dβ

=
ρ0

2

2
(π − 2β1) +

ρ0
2

2
sin2β1 [cot β]β2

β1

=
ρ0

2

2
(π − 2β1) +

ρ0
2

2
sin2β1 [cot β2 − cot β1]

=
ρ0

2

2
(π − 2β1) +

ρ0
2

2
sin β1 [−2 cos β1]

=
ρ0

2

2
[π − 2β1 − sin 2β1] .

Therefore, the area Ay can be stated as:

Ay =

∫ β2

β1

∫ ρ2(β)

ρ1(β)

ρ dρ dβ

=
ρ2

0

2
[π − 2β1 − sin 2β1] . (4.8)

To derive the area of intersection Axy as the beam is moved along both the x and

y axis of the photodetector plane, the parameters α1, β1, dx = x − x0, dy = y − y0,

φ = tan−1 (dy/dx), ρx = (x−x0)/ sinα, and ρy = (y−y0)/ sin β as shown in Figure 4.4

are first evaluated. The angle φ which is measured from the horizontal axis passing

through the center of the beam spot to the corner of the photocell within the spot

region, bisects the area Axy into A1 and A2. To compute Axy, the expressions for

4.2 Theoretical Optical Acquisition Model 50

xd

1α

φ

1α

(),x y
φ

1β
yd

0y

A
()yρ β

1A
2A

()xρ α

0ρ

0x

Figure 4.4: Parameters definition for area Axy.

areas A1 and A2 are found, then the sum of both is taken.

A1 =

α2∫
φ+π

2

ρ0∫
ρx

ρdρdα

=

α2∫
φ+π

2

[
ρ2

2

]ρ0

ρx

dα =
1

2

α2∫
φ+π

2

ρ0
2 − ρx2dα

=
1

2

α2∫
φ+π

2

ρ0
2 − (x− x0)2

sin2α
dα =

ρ0
2

2

α2∫
φ+π

2

1− (x− x0)2

ρ0
2sin2α

dα

=
ρ0

2

2

α2∫
φ+π

2

1− sin2α1

sin2α
dα =

ρ0
2

2

[
α2 −

(
φ+

π

2

)]
− ρ0

2sin2α1

2

α2∫
φ+π

2

1

sin2α
dα

=
ρ0

2

2

[π
2
− α1 − φ

]
+
ρ0

2sin2α1

2
[cotα]α2

φ+π
2

=
ρ0

2

2

[π
2
− α1 − φ

]
+
ρ0

2sin2α1

2

[cosα

sinα

]α2

φ+π
2

=
ρ0

2

2

[π
2
− (α1 + φ)

]
+
ρ0

2sin2α1

2

[
−cosα2

sinα2

+
sin (φ+ π/2)

cos (φ+ π/2)

]
. (4.9)

Using the trignometric identities, sin (A±B) = sinA cosB±cosA sinB and cos (A±B) =

4.2 Theoretical Optical Acquisition Model 51

cosA cosB ∓ sinA sinB, we have the following relations:

cosα2 = cos (π − α1) = cos π cosα1 + sin π sinα1 = − cosα1 (4.10)

sinα2 = sin (π − α1) = sin π cosα1 − cos π sinα1 = sinα1 (4.11)

cos (φ+ π/2) = cosφ cos (π/2)− sinφ sin (π/2) = − sinφ (4.12)

sin (φ+ π/2) = sinφ cos (π/2) + cosφ sin (π/2) = cosφ. (4.13)

Substituting equations (4.10) to (4.13) into equation (4.9), we get the following:

A1 =
ρ0

2

2

[π
2
− (α1 + φ)

]
+
ρ0

2sin2α1

2

[
−cosα1

sinα1

+
sinφ

cosφ

]
=

ρ0
2

2

[π
2
− (α1 + φ)

]
+
ρ0

2sin2α1

2

[
−cos (α1 + φ)

sinα1 cosφ

]
=

ρ0
2

2

[
π

2
− (α1 + φ)− sinα1

cosφ
cos (α1 + φ)

]
.

Therefore, A1 can be stated as:

A1 =
ρ0

2

2

[
π

2
− (α1 + φ)− sinα1

cosφ
cos (α1 + φ)

]
. (4.14)

4.2 Theoretical Optical Acquisition Model 52

Similarly, area A2 is evaluated as follows:

A2 =

β2∫
π−φ

ρ0∫
ρy

ρdρdβ

=

β2∫
π−φ

[
ρ2

2

]ρo
ρy

dβ =
1

2

β2∫
π−φ

ρ0
2 − ρy2dβ

=
1

2

β2∫
π−φ

ρ0
2 − (y − y0)2

sin2β
dβ =

ρ0
2

2

β2∫
π−φ

1− (y − y0)2

ρ0
2sin2β

dβ

=
ρ0

2

2

β2∫
π−φ

1− sin2β1

sin2β
dβ =

ρ0
2

2
[β2 − (π − φ)]− ρ0

2sin2β1

2

β2∫
π−φ

1

sin2β
dβ

=
ρ0

2

2
[φ− β1] +

ρ0
2sin2β1

2
[cot β]β2

π−φ

=
ρ0

2

2
[φ− β1] +

ρ0
2sin2β1

2

[
cos β

sin β

]β2

π−φ

=
ρ0

2

2
[φ− β1] +

ρ0
2sin2β1

2

[
−cos β2

sin β2

+
cos (π − φ)

sin (π − φ)

]
, (4.15)

where,

cos β2 = cos (π − β1) = − cos β1 (4.16)

sin β2 = sin (π − β1) = sin β1 (4.17)

cos (π − φ) = cos π cosφ+ sin π sinφ = − cosφ (4.18)

sin (π − φ) = sin π cosφ− cosπ sinφ = sinφ (4.19)

Substituting equations (4.16) to (4.19) into equation (4.15) we get the following:

A2 =
ρ0

2

2
[φ− β1] +

ρ0
2sin2β1

2

[
−cos β1

sin β1

+
cosφ

sinφ

]
=

ρ0
2

2
[φ− β1]− ρ0

2sin2β1

2

[
sin (φ− β1)

sin β1 sinφ

]
=

ρ0
2

2

[
φ− β1 −

sin β1

sinφ
sin (φ− β1)

]
.

4.2 Theoretical Optical Acquisition Model 53

Therefore, A2 can be stated as:

A2 =
ρ0

2

2

[
φ− β1 −

sin β1

sinφ
sin (φ− β1)

]
. (4.20)

Hence, Axy the total area of the shaded region can be written in the following closed

form:

Axy = A1 + A2

=

∫ α2

φ+π
2

∫ ρ0

ρx

ρ dρ dα +

∫ β2

π−φ

∫ ρ0

ρy

ρ dρ dβ

=
ρ2

0

2
[
π

2
− (α1 + β1)− sinα1

cosφ
cos(α1 + φ)− sin β1

sinφ
sin(φ− β1)]. (4.21)

4.2.1 Modeling Optical Apodization

The optical power enclosed within a certain area of intersection, is derived for three

different cases, the power as the beam moves along the x direction only, the y direction

only, and both x–y directions. The power for horizontal motion can be evaluated using

the following double integral:

Px =

∫ α2

α1

∫ ρ2(α)

ρ1(α)

I0

[
W0

W (z)

]2

exp

(−2ρ2

W 2(z)

)
ρdρdα (4.22)

Let,

I1 = I0

[
W0

W (z)

]2

(4.23)

ρ2(α) = ρ0 (4.24)

ρ1(α) =
x− x0

sinα
. (4.25)

Therefore, using the above definitions equation (4.22), can be written as:

Px = I1

α2∫
α1

ρ2(α)∫
ρ1(α)

exp

(−2ρ2

W 2(z)

)
ρdρdα. (4.26)

4.2 Theoretical Optical Acquisition Model 54

Let,

u =
2

W 2(z)
ρ2, (4.27)

where,

u2 = u (ρ2 = ρ0) =
2

W 2
ρ0

2

u1 = u

(
ρ1 =

x− x0

sinα

)
=

2

W 2

(
x− x0

sinα

)2

.

Taking the derivative of u with respect to ρ we have:

du =
4

W 2(z)
ρdρ. (4.28)

Substituting equations (4.27) and (4.28) into equation (4.26) and taking the limits u2

and u1, we have the following:

Px = I1

α2∫
α1

u2∫
u1

exp (−u)

(
W

2

)2

dudα

= I1

α2∫
α1

(
W

2

)2

[− exp (−u)]u2

u1
dα

= I1

α2∫
α1

(
W

2

)2

[− exp (−u2) + exp (−u1)] dα

= I1

α2∫
α1

(
W

2

)2
[
− exp

(
− 2

W 2
ρ0

2

)
+ exp

(
− 2

W 2

(
x− x0

sinα

)2
)]

dα

= I1

(
W

2

)2


α2∫
α1

− exp

(
− 2

W 2
ρ0

2

)
dα +

α2∫
α1

exp

(
− 2

W 2

(
x− x0

sinα

)2
)
dα


= κ1

−κ2 (α2 − α1) +

α2∫
α1

exp
(
− κx

sin2α

)
dα



Therefore, Px can be stated as:

Px = −κ1κ2(α2 − α1) + κ1

∫ α2

α1

exp
(
− κx

sin2 α

)
dα, (4.29)

4.2 Theoretical Optical Acquisition Model 55

where,

κx =
2

W 2
(x− x0)2 (4.30)

κ1 = I1

(
W

2

)2

(4.31)

κ2 = exp

(
− 2

W 2
ρ0

2

)
. (4.32)

Next, we investigated how the optical power intercepted by one photocell

changes as the beam center moves along the x direction only. This can be divided

into six different cases as follows:

if Case 1: x ≥ x0 then

dx = x− x0

α1 = sin−1
(
dx
ρ0

)
and the power of the shaded region is P = Px

else if Case 2: x ≤ x0 then

dx = −x0 − x
α1 = sin−1

(
dx
ρ0

)
and the power of the shaded region is P = Px

else if Case 3: 0 ≤ x ≤ x0 then

dx = −x0 − x
α1 = sin−1

(
dx
ρ0

)
P ′ = Px

and the power of the shaded region is P = PT − Px
else if Case 4: −x0 ≤ x ≤ 0 then

dx = x+ x0

α1 = sin−1
(
dx
ρ0

)
P ′ = Px

and the power of the shaded region is P = PT − Px
else if Case 5: x = 0 then

The power of the shaded region is P = PT

else if Case 6: x = x ≥ x0 + ρ0 then

The power is P = 0

4.2 Theoretical Optical Acquisition Model 56

Where, PT = 2πI1

[
W
2

]2
(1− κ2), is the total power of the beam spot with radius

0.5 cm. The power while the beam is moved along the y direction only can be

determined using the following:

Py =

∫ β2

β1

∫ ρ2(β)

ρ1(β)

I0

[
W0

W (z)

]2

exp

(−2ρ2

W 2(z)

)
ρdρdβ. (4.33)

Provided that, ρ2(β) = ρ0, and ρ1(β) = (y − y0) / sin β, a similiar procedure as Px

can be adopted to evaluate the optical power Py as follows:

Py = I1

β2∫
β1

v2∫
v1

exp (−u)

(
W

2

)2

dudβ

= I1

β2∫
β1

(
W

2

)2

[− exp (−u)]v2

v1
dβ

= I1

β2∫
β1

(
W

2

)2

[− exp (−v2) + exp (−v1)] dβ

= I1

β2∫
β1

(
W

2

)2
[
− exp

(
− 2

W 2
ρ0

2

)
+ exp

(
− 2

W 2

(
y − y0

sin β

)2
)]

dβ

= I1

(
W

2

)2


β2∫
β1

− exp

(
− 2

W 2
ρ0

2

)
dβ +

β2∫
β1

exp

(
− 2

W 2

(
y − y0

sin β

)2
)
dβ


= κ1

−κ2 (β2 − β1) +

β2∫
β1

exp

(
− κy

sin2β

)
dβ

 ,

where,

v2 = u (ρ2 = ρ0) =
2

W 2
ρ0

2

v1 = u

(
ρ1 =

y − y0

sin β

)
=

2

W 2

(
y − y0

sin β

)2

.

Therefore, the optical power Py for vertical motion can be stated as:

Py = −κ1κ2(β2 − β1) + κ1

∫ β2

β1

exp

(
− κy

sin2 β

)
dβ, (4.34)

4.2 Theoretical Optical Acquisition Model 57

where κy = 2(y − y0)2/W 2. Similarly, we investigated how the optical power inter-

cepted by one photocell changes as the beam center moves along the y direction

only. This can be divided into six different cases.

if Case 7: y ≥ y0 then

dy = y − y0

β1 = sin−1
(
dy
ρ0

)
and the power of the shaded region is P = Py

else if Case 8: y ≤ y0 then

dy = −y0 − y
β1 = sin−1

(
dy
ρ0

)
and the power of the shaded region is P = Py

else if Case 9: 0 ≤ y ≤ y0 then

dy = −y0 − y
β1 = sin−1

(
dy
ρ0

)
P ′ = Py

and the power of the shaded region is P = PT − Py
else if Case 10: −y0 ≤ y ≤ 0 then

dy = y + y0

β1 = sin−1
(
dy
ρ0

)
P ′ = Py

and the power of the shaded region is P = PT − Py
else if Case 11: y = 0 then

The power of the shaded region is P = PT

else if Case 12: y = y ≥ y0 + ρ0 then

The power is P = 0

4.2 Theoretical Optical Acquisition Model 58

y
xd

y
xd xd

y

xO
P

(),x y

oρ

1α

xO
P

(),x y

oρ

1α

P
(),x y

oρ
1α

P′
xO

oxox− oxox− oxox−

()a ()b ()()a ()b ()c

y
xd

y
y

xO
P

(),x y

oρ
1α

P′
xO

P
xO (),x y

oxox− oxox− oxox−

()d ()e ()f

Figure 4.5: (a) Case 1: x ≥ x0, (b) Case 2: x ≤ x0, (c) Case 3: 0 ≤ x ≤ x0, (d) Case
4: −x0 ≤ x ≤ 0, (e) Case 5: x = 0, (f) Case 6: x = x ≥ x0 + ρ0.

y y
oy y

oy

()x y
oρ
β yd

P′

oy
P

(),x y
oρ

1β
yd x

oy−

O

P
oρ

1β yd

xO

(),x y

P

1β y

x

oy−

O (),x y

1β
oy−

()a ()b ()c

y

y

y

oy

P oy

(),x y

x

oy−

O
P

yd

P′

(),x y
oρ

1β

x

xx−

O

P

xO
P oxox

oy−

()d ()e ()f

Figure 4.6: (a) Case 7: y ≥ y0, (b) Case 8: y ≤ y0, (c) Case 9: 0 ≤ y ≤ y0, (d) Case
10: −y0 ≤ y ≤ 0, (e) Case 11: y = 0, (f) Case 12: y = y ≥ y0 + ρ0.

4.2 Theoretical Optical Acquisition Model 59

Finally, as the beam is moved along both the x, and y directions over the entire

plane of one photocell, the power can be stated as:

Pxy = P1 + P2 (4.35)

=

∫ α2

φ+π
2

∫ ρ0

ρx

I(ρ, z) ρ dρ dα +

∫ β2

π−φ

∫ ρ0

ρy

I(ρ, z) ρ dρ dβ, (4.36)

where, ρx = x− x0/sinα and ρy = y − y0/sin β. To evaluate P1 we proceed in

the following manner:

P1 =

α2∫
φ+π

2

ρ0∫
ρx(α)

I(ρ, z)ρdρdα

=

α2∫
φ+π

2

ρ0∫
ρx(α)

I0

[
W0

W (z)

]2

exp

(−2ρ2

W 2(z)

)
ρdρdα

= I1

α2∫
φ+π

2

ρ0∫
ρx(α)

exp

(−2ρ2

W 2(z)

)
ρdρdα. (4.37)

Substituting equations (4.27) and (4.28) into equation (4.37) and taking the

4.2 Theoretical Optical Acquisition Model 60

limits u2 and u1, we have the following:

P1 = I1

α2∫
φ+π

2

u2∫
u1

exp (−u)

(
W

2

)2

dudα

= I1

α2∫
φ+π

2

(
W

2

)2

[− exp (−u)]u2

u1
dα

= I1

α2∫
φ+π

2

(
W

2

)2

[− exp (−u2) + exp (−u1)] dα

= I1

α2∫
φ+π

2

(
W

2

)2
[
− exp

(
− 2

W 2
ρ0

2

)
+ exp

(
− 2

W 2

(
x− x0

sinα

)2
)]

dα

= I1

(
W

2

)2


α2∫

φ+π
2

− exp

(
− 2

W 2
ρ0

2

)
dα +

α2∫
φ+π

2

exp

(
− 2

W 2

(
x− x0

sinα

)2
)
dα


= κ1

−κ2

(
α2 −

(
φ+

π

2

))
+

α2∫
φ+π

2

exp
(
− κx

sin2α

)
dα

 .

Therefore, P1 can be stated as follows:

P1 = −κ1κ2

(
α2 −

(
φ+

π

2

))
+ κ1

α2∫
φ+π

2

exp
(
− κx

sin2α

)
dα. (4.38)

Next, P2 is evaluated as follows:

P2 =

β2∫
π−φ

ρ0∫
ρy(β)

I(ρ, z)ρdρdβ

=

β2∫
π−φ

ρ0∫
ρy(β)

I0

[
W0

W (z)

]2

exp

(−2ρ2

W 2(z)

)
ρdρdβ

= I1

β2∫
π−φ

ρ0∫
ρy(β)

exp

(−2ρ2

W 2(z)

)
ρdρdβ. (4.39)

Substituting equations (4.27) and (4.28) into equation (4.39) and taking the

4.2 Theoretical Optical Acquisition Model 61

limits v2 and v1, we have the following:

P2 = I1

β2∫
π−φ

v2∫
v1

exp (−u)

(
W

2

)2

dudβ

= I1

β2∫
π−φ

(
W

2

)2

[− exp (−u)]v2

v1
dβ

= I1

β2∫
π−φ

(
W

2

)2

[− exp (−v2) + exp (−v1)] dβ

= I1

β2∫
π−φ

(
W

2

)2
[
− exp

(
− 2

W 2
ρ0

2

)
+ exp

(
− 2

W 2

(
y − y0

sin β

)2
)]

dβ

= I1

(
W

2

)2


β2∫

π−φ

− exp

(
− 2

W 2
ρ0

2

)
dβ +

β2∫
π−φ

exp

(
− 2

W 2

(
y − y0

sin β

)2
)
dβ


= κ1

−κ2 (β2 − (π − φ)) +

β2∫
π−φ

exp

(
− κy

sin2β

)
dβ

 .

Therefore, P2 can be stated as follows:

P2 = −κ1κ2 (β2 − (π − φ)) + κ1

β2∫
π−φ

exp

(
− κy

sin2β

)
dβ. (4.40)

Substituting equations (4.38) and (4.40) into equation (4.36), Pxy can be written

in the following form:

Pxy = −κ1κ2

[
π
2
− (α1 + β1)

]
+ κ1

α2∫
φ+π

2

exp
(
− κx

sin2α

)
dα

+κ1

β2∫
π−φ

exp
(
− κy

sin2β

)
dβ. (4.41)

The integrals in the preceding equations were evaluated numerically.

Using equations (4.29), (4.34), and (4.41) we developed an algorithm to determine

the power P if the center of the circular beam spot is to be moved along any

random path.

4.2 Theoretical Optical Acquisition Model 62

y

oy

1R2R 11R12R

(),x y
oy

5R
7R 13R14R

()0,0
ox− ox

RR R R

x

oy−

6R8R 15R 16R

4R3R 9R 10R

Figure 4.7: Example of beam center position as it scans the photocell’s regions.

Region x y dx dy
R1 x > x0 y > y0 x− x0 y − y0

R2 x < −x0 y > y0 −x− x0 y − y0

R3 x < −x0 y < −y0 −x− x0 −y − y0

R4 x > x0 y < −y0 x− x0 −y − y0

R5 x ≥ x0 0 < y ≤ y0 x− x0 y0 − y
R6 x ≥ x0 −y0 ≤ y < 0 x− x0 y0 + y
R7 x ≤ −x0 0 < y ≤ y0 −x− x0 y0 − y
R8 x ≤ −x0 −y0 ≤ y < 0 −x− x0 y0 + y
R9 0 < x ≤ x0 y ≤ −y0 x0 − x −y − y0

R10 −x0 ≤ x < 0 y ≤ −y0 x0 + x −y − y0

R11 0 < x ≤ x0 y ≥ y0 x0 − x y − y0

R12 −x0 ≤ x < 0 y ≥ y0 x0 + x y − y0

R13 0 < x < x0 0 < y < y0 x0 − x y0 − y
R14 −x0 < x < 0 0 < y < y0 x0 + x y0 − y
R15 −x0 < x < 0 −y0 < y < 0 x0 + x y0 + y
R16 0 < x < x0 −y0 < y < 0 x0 − x y0 + y

Table 4.1: Table showing the range of each region.

4.2 Theoretical Optical Acquisition Model 63

To do this, the plane for one photocell has been divided into 16 different regions

as shown in Figure 4.7. The power is computed depending on the region where

the center of the beam is located.

if (x, y) ∈ R1, R2, R3, or R4 then

The power of the shaded region is P = Pxy

else if (x, y) ∈ R5, R6, R7, or R8 then

Check the following:

if Nc = 1 and Nint = 2 then

Check the following:

if dx 6= 0 and dy 6= 0 or dx 6= 0 and dy = 0 or dx = 0 and dy 6= 0 then

P = Px − Pxy
else if dx = 0 and dy = 0 then

The power of the shaded region is P = 1
4
PT .

else if Nc = 0 and Nint = 2 then

The power of the shaded region is P = Px.

end if

else if (x, y) ∈ R9, R10, R11, or R12 then

Check the following:

if Nc = 1 and Nint = 2 then

Check the following:

if dx 6= 0 and dy 6= 0 or dx 6= 0 and dy = 0 or dx = 0 and dy 6= 0 then

The power of the shaded region is P = Py − Pxy.
else if dx = 0 and dy = 0 then

The power of the shaded region is P = 1
4
PT .

end if

else if Nc = 0 and Nint = 2 then

The power of the shaded region is P = Py.

end if

else if (x, y) ∈ R13, R14, R15, or R16 then

Check the following:

if Nc = 1 and Nint = 2 then

The power of the shaded region is P = PT − (Px + Py − Pxy).

4.2 Theoretical Optical Acquisition Model 64

else if Nc = 0 and Nint = 4 then

The power of the shaded region is P = PT − (Px + Py).

end if

end if

4.2.2 Modeling System Imperfections

The quadcell array of photodetectors has been modeled according to the ori-

entation shown in Figure 4.8. Each photocell is represented as a 1 cm×1 cm

square, with centers S1, S2, S3, and S4. The photocells are separated by a

small horizontal distance ε and a vertical distance δ. In this case, the origin of

the absolute Cartesian coordinate system is located at the center of the array.

The coordinates of S1, S2, S3 and S4 with respect to the origin are:

S1 =

 x1

y1

 =

 0.5 + ε/2

0.5 + δ/2



S2 =

 x2

y2

 =

 −0.5− ε/2
0.5 + δ/2



S3 =

 x3

y3

 =

 −0.5− ε/2
−0.5− δ/2



S4 =

 x4

y4

 =

 0.5 + ε/2

−0.5− δ/2


The main objective of the optical acquisition model is to obtain the optical

power distribution generated at each photodetector while the beam is scanned

throughout the entire quadcell plane, thus an algorithm has been developed

to calculate the optical power for each cell. The minimum resolution that can

be generated using our algorithm is 0.01 cm for both the x and y positions.

The mathematical model mentioned in the previous discussion has been ob-

tained while considering the origin of the x–y coordinate system situated at

the center of one photocell. Therefore, to evaluate the optical power for the

quad-cell using equations (4.29), (4.34), and (4.41), the origin of the absolute

4.2 Theoretical Optical Acquisition Model 65

coordinate system will be translated by a certain vector determined by the

coordinates of the center of the cell. The portion of power captured by each

cell is calculated. To find the power distribution for cell 1 in the array, the

translational operation (x, y) − (x1, y1) is first made. Then the earlier power

calculations are carried out on photocell 1. A similar translation is applied

to the second, third and fourth cell, where the power distribution is evalu-

ated for each cell separately. Figures 4.9 to 4.12 show the normalized power

distributions for each photocell, assuming ε and δ to be negligible.

y

1S2S

()0,0 xδ

3S
4S

ε

Figure 4.8: Quadcell array of photodetectors.

Furthermore, the center of the beam has been simulated to move on the plane

of photodetectors along the trajectory y = x. A plot of the optical power

distribution for the four cells against xc (the x position of the beam center),

following the given trajectory can be shown in Figure 4.14, where ε and δ are

first set to zero. As illustrated, the beam occupies most of the active surface

areas of photocells 1 and 3, and as it moves away from photocell 3 and into

the vicinity of photocell 1, cells 2 and 4 start detecting a portion of the optical

power. All four cells will ideally detect equal powers when the centroid of the

beam is at the origin of the plane. Since the values for ε and δ are technically

not equal to zero, their effect on the overall power distribution was investigated.

4.2 Theoretical Optical Acquisition Model 66

Figure 4.9: The normalized power obtained by photocell 1, as the beam center scans
the quadcell plane.

Figure 4.10: The normalized power obtained by photocell 2, as the beam center scans
the quadcell plane.

4.2 Theoretical Optical Acquisition Model 67

Figure 4.11: The normalized power obtained by photocell 3, as the beam center scans
the quadcell plane.

Figure 4.12: The normalized power obtained by photocell 4, as the beam center scans
the quadcell plane.

4.2 Theoretical Optical Acquisition Model 68

ε

δδ

Figure 4.13: Quadcell arrangement for the experimental setup showing different ε,
and δ.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xc (cm)

N
or

m
al

iz
ed

 P
ow

er

δ=ε=0cm

δ=ε=0.1cm

δ=ε=0.2cm

Photocell 3 Photocell 1

} Photocells
2 and 4

Figure 4.14: Variation of the optical power detected by all four photodetectors as the
beam is moved along y = x line for different values of ε, and δ.

4.3 Experimental Study of the Position Detector 69

Another simulation has been run, when ε = δ = 0.1 cm and 0.2 cm. As shown

in Figure 4.14, the maximas of the normalized power waveforms for the first

and third photocells shifted to their new center positions, at (0.55,0.55) and

(−0.55,−0.55) for ε = δ = 0.1 cm, and at (0.6,0.6) and (−0.6,−0.6) for ε = δ =

0.2 cm. In addition, the power at the origin drops exponentially as ε and δ

become larger. This effect has been demonstrated in Figure 4.15. The value

for ε was varied from 0 to 0.9 cm in steps of 0.1 cm. The normalized power at

one of the photocells has a maximum value of 0.25 at ε = δ = 0 cm. With a

spacing of 0.1 cm, the power at the origin of the plane dropped by 42.0% from

its maximum value. For ε = δ = 0.2 cm, we have a 70.4% power drop.

In the previous discussion, ε and δ were equal, however the design of the exper-

imental setup inevitably defies such an assumption. As shown in Figure 4.13,

the photocells are placed on a metallic plate with substrates of size 1.1 cm×1.3

cm. The spacing between them is 1 mm. Thorlabs FDS1010 photodiodes have

been used, where the Si detector is mounted on a 0.45”×0.52”(1.1 cm×1.3 cm)

ceramic wafer with an anode and a cathode. The active area for the FDS1010

is about 9.7 mm×9.7 mm [33]. Taking into account the width of the inactive

region of the photocell, would add an extra 0.2 cm to the vertical spacing

between the photodiodes. Therefore, the experimental values for ε, and δ can

be approximated to 0.1 cm and 0.3 cm. Using those values in the simulation,

gave us a normalized power of 6.90e−02 at the origin of the quadcell plane.

This is about 72.4% power drop when compared to the ideal case and 52.5%

power drop relative to the case when ε = δ = 0.1 cm.

4.3 Experimental Study of the Position Detector

4.3.1 Experimental Setup

A laboratory prototype of the optical acquisition system has been implemented

to verify the results obtained through simulation and to idenitify the perfor-

mance of the WN with experimental testing data.

4.3 Experimental Study of the Position Detector 70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

ε (cm)

N
or

m
al

iz
ed

 P
ow

er

Figure 4.15: Plot of the normalized power for photocell 1 vs. ε, when the beam center
is at the origin of the quadcell plane. ε and δ are assumed to be equal.

0

0.2

0.4

0.6

0.8
0

0.2
0.4

0.6
0.8

0

0.05

0.1

0.15

0.2

0.25

δ (cm)

ε (cm)

N
or

m
al

iz
ed

 P
ow

er

Figure 4.16: Plot of normalized power for photocell 1 vs. ε and δ, when the beam
centroid is at the origin of the quadcell plane.

4.3 Experimental Study of the Position Detector 71

Signal Conditioning Single mode Signal Conditioning
Circuit Power Supply Beam Expander

g
Fiber Cable

Mirror

XY Stage

Quadcell Detector CollimatorMicrocontroller
68HCS12

DAQ
NI PCI‐6143

Figure 4.17: Experimental prototype of the optical power acquisition system.

MMX

Quad‐cell Detector

PWM1 HBX
4

pu
t

M
Microcontroller

68HCS12

MMX EEncoder X

PC

PWM1 HBX

CLK

A
na
lo
g
in
p

DA
M68HCS12

DAQ
card

PC
MMY EEncoder YPWM2 HBY

6 DIO

CLK

Setting PWM
Duty cycle

COM1
COM2

X, Y positions
Serial 115200baud

Serial 115200baud

Figure 4.18: Block diagram for photo-voltage acquisiton and position measurement
system (HBX: H-bridge for motor X; HBY: H-bridge for motor Y; MX: motor X; MY:
motor Y; PWM1: pulse width modulated signal fed in to motor X; PWM2: pulse
width modulated signal fed in to motor Y; COM1: communication port 1; COM2:
communication port 2; CLK: clock to synchronize photo-voltage acquisition, position
measurement; DIO: digital input/output channels; PC: personal computer).

4.3 Experimental Study of the Position Detector 72

The experimental setup in Figure 4.17 can be divided into three main parts;

the optical setup and XY stage as shown in Figures 4.19 and 4.21 and the data

acquisition system shown in Figure 4.18. The transmitter optics consists of a

single mode optical fiber cable, where one of its ends is connected to a He-Ne

laser source and the other end is coupled to a collimator. The optical fiber cable

acts as a spatial filter at a wavelength of 633 nm, which removes higher modes

so that only the fundamental mode is left. A collimator (F260FC-B, Thorlabs)

is used with a 633 nm alignment wavelength, where the lens is manufactured

to be one focal length away from the output end of the fiber. The laser beam

is then projected into a Galilean Beam Expander (BE03M, Thorlabs) which is

used to adjust the beam diameter to be the same size as one side of a photocell.

On the other hand, the receiver optics is composed of a mirror which reflects

the beam onto the quadcell detector. Each photodiode (FDS1010, Thorlabs) is

connected to an RC noise filter with a cut-off frequency of about 10 kHz, and an

amplification circuitry as shown in Figure 4.21 [33]. The output voltages of the

photodiodes are fed into four simultaneously sampled analog input channels

of a BNC shielded connecter block (NI BNC-2110, National Instruments) for

the Data Acquisition Card (NI PCI-6143, National Instruments), which also

provides a 16-bit resolution, and a sampling rate of up to 250 kS/s per channel.

Spatial FilterBeam Expander

C lli

Mirror

Laser sourceCollimator

Quad‐cell
detector 4detector

From Quad‐cell detector to DAQ

Y Motor

X Motor

Figure 4.19: Optical setup of the system.

The quadcell array has been mounted on XY motorized linear translation stage

(T25XY, Thorlabs) fitted with incremental encoders to measure the x and y

positions of the center of the beam. The T25XY stage provides a travel range of

about 2.5 cm and utilizes two 12 V DC servomotors with a 256:1 gear reduction

4.3 Experimental Study of the Position Detector 73

Collimator
Single Mode
Fiber Cable Mirror

XY Stage

Quad‐cell
Detector

Beam Expander

(a) (b)

Figure 4.20: (a)Transmission optics.(b)Reception optics.

Amplification

R3

Noise Filter R2

R3

+++

+
‐+5V

VoPD
R1

R4

iph

R4

R5C
Popt

Figure 4.21: Signal conditioning circuitry for photodiode, involving amplification, and
noise removal.

head [33]. Since one revolution of the high precision XY stage corresponds to a

linear translation of 0.5 mm, the minimum vibration displacement that can be

achieved is about 4.07e−05 mm which is less than 0.0001 mm. Furthermore,

two PWM signals with a frequency of 330 Hz and 50% duty cycle, generated

by a Dragon 12 (68HCS12) microcontroller by means of a Dual H-bridge, are

used to drive the X and Y motors. The 48 pts/rev rotary encoder signals are

fed back to the microcontroller to obtain the position measurements. The x

and y positions are sent to the PC serially with a baud rate of 115.2 kbits/s.

The power and position measurements are acquired synchronously every 1 s,

for one complete travel range of the Y motor while keeping the X motor fixed

at a certain distance.

4.3 Experimental Study of the Position Detector 74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

4
x 10-3

Time (s)

P
ho

to
-V

ol
ta

ge
 (V

)

Figure 4.22: Plot of photocell output voltage in darkness.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (s)

P
ho

to
−

V
ol

ta
ge

 (
V

)

Figure 4.23: Plot of photocell output voltage in ambient light, when no laser beam is
applied.

4.3.2 Optical Model Validation

Using the data illustrated in Figure 4.22 the calculated RMS (Root Mean

Square) value for the output voltage of a photocell in darkness is about;

4.63e−004 V. To avoid the effect of ambient light on the photocells’ output

voltage as shown in Figure 4.23, the experiment is conducted in a dark room.

Under ambient light conditions, the photodiodes’ readings should be adjusted

to account for additional induced photocurrent. Five different runs were car-

4.3 Experimental Study of the Position Detector 75

ried out, by scanning the beam spot along the y axis of the quadcell plane,

while fixing the x position of the beam center at −1.05 cm, −0.55 cm, 0 cm,

0.55 cm, and 1.05 cm. By referring to Figure 4.8 and given that ε = 0.1 cm,

the beam spot was first scanned vertically along the left sides of photocells

2 and 3, where the x position of the beam center is −1.05 cm. The second

scan was made along the vertical axis passing through the centers S2 and S3 of

photocells 2 and 3, where x = −0.55 cm. Furthermore, a vertical scan at x =

0 cm along the y axis of the array plane was carried out. The last two runs

were made along the vertical line x = 0.55 cm passing through the centers S1

and S4, and along x = 1.05 cm passing through the right sides of photocells 1

and 4. The output photo-voltage is directly proportional to the optical power

sensed by a photocell. The output voltage is derived as:

V0 = AvPopt< (R4 +R5) , (4.42)

where Av is the amplification gain, Popt is the incident optical power, and

R4 + R5 is the load resistance. While <, provides an estimate of the amount

of photocurrent iph expected at a certain wavelength λ.

iph = Popt<. (4.43)

According to typical responsivity curve for photodiode FDS1010 using Thor-

labs calibration services, we have a < ≈ 0.35 A/W for a wavelength of 633 nm

[33]. Therefore, given a linear relation between the photocells’ optical power,

and acquired output voltage, the experimental normalized voltage measure-

ments were compared to the theoretical model obtained through simulation by

setting ε and δ to 0.1 cm and 0.3 cm.

At x = 1.05 cm, theoretically only photocell 1 will be detecting power as the

y position of the beam center y ≥ 0.35 cm and maximum power which is

half of the total normalized power is detected at y = 0.65 cm. Photocell 4

starts to pick up power for y < 0.35 cm and captures half of the power at

y = −0.65 cm. According to Figure 4.24, the maximum normalized voltage

for photocell 1 was reached at y = 0.71 cm with a voltage percentage error of

4.3 Experimental Study of the Position Detector 76

3.72% from the theoretical maximum value. On the other hand, photocell 4

acquired maximum voltage at y = −0.77 cm with a voltage percentage error

of 3.86%.

In the case where x is fixed to −1.05 cm, only photocell 2 will be detecting

power for y ≥ 0.35 cm, while the power reaches its peak value at y = 0.65 cm. In

addition, according to the theoretical results photocell 3 detects optical power

for y < 0.35 cm and acquires half of the power at y = −0.65 cm. Practically,

by referring to Figure 4.25, the peak normalized voltage for photocell 2 was

detected at y = 0.67 cm with a voltage percentage deviation of 8.85%. The

peak normalized voltage for photocell 3 was reached at y = −0.74 cm and a

percentage error of about 5.9% from the theoretical normalized voltage results.

At x = 0.55 cm as shown in Figure 4.26, the maximum optical power detected

for photocell 1 is at y = 0.65 cm, however when compared to the experimental

results, the peak value is detected at y = 0.66 cm, which gives an approximate

percentage error of 2.03% in the y position of the beam center. For photocell

4 maximum optical power is attained theoretically at y = −0.65 cm, while the

measured y position for the beam center was y = −0.74 cm, hence a percentage

error of about 13.3%.

In Figure 4.27, at x = −0.55 cm, the maximum power obtained through exper-

iment for photocell 2 was at y = 0.68 cm, that is a percentage error of 4.60%

in the y position of the beam center and for photocell 3 the maximum power

obtained was at y = −0.77 cm, thus giving us an error of 18.1%.

At x = 0 cm, the maximum theoretical normalized optical power is 0.3811 for

all photocells, where photocells 1 and 2 attain it at y = 0.65 cm, and photocells

3 and 4 reach it at y = −0.65 cm. As can be seen from Figure 4.28, photocells

1 and 2 gained maximum optical power at y = 0.83 cm, and y = 0.70 cm. The

voltage percentage error for the preceding cases was 20.7% for photocell 1 and

26.2% for photocell 2. Photocells 3 and 4 gained maximum optical power at y

= −0.42 cm and y = −0.74 cm, where their relative voltage percentage errors

were evaluated to be 28.8% and 23.3%.

Figures 4.24, 4.25 and 4.28 demonstrate discrepancies between the theoretical

and experimental results in the values of the photo-voltage or optical power

4.3 Experimental Study of the Position Detector 77

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y (cm)

P
ho

to
-V

ol
ta

ge
 V

0 (V
)

P1
P2
P3
P4

Theoretical

Figure 4.24: Plot of photocell output voltage vs. y position of the center of the beam
while setting the x position at 1.05 cm.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

y (cm)

P
ho

to
-V

ol
ta

ge
 V

0 (V
)

P1
P2
P3
P4

Theoretical

Figure 4.25: Plot of photocell output voltage vs. y position of the center of the beam
while setting the x position at − 1.05 cm.

4.3 Experimental Study of the Position Detector 78

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y (cm)

P
ho

to
-V

ol
ta

ge
 V

0 (V
)

P1
P2
P3
P4

Theoretical

Figure 4.26: Plot of photocell output voltage vs. y position of the center of the beam
while setting the x position at 0.55 cm.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y (cm)

P
ho

to
-V

ol
ta

ge
 V

0 (V
)

P1
P2
P3
P4

Theoretical

Figure 4.27: Plot of photocell output voltage vs. y position of the center of the beam
while setting the x position at −0.55 cm.

4.3 Experimental Study of the Position Detector 79

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y (cm)

P
ho

to
-V

ol
ta

ge
 V

0 (V
)

P1
P2
P3
P4

Theoretical

Figure 4.28: Plot of photocell output voltage vs. y position of the center of the beam
while setting the x position at 0 cm.

and the y position of the beam center. However, Figures 4.26 and 4.27 have

only shown a slight shift in the y position. To scan the beam spot along the y

axis of the quadcell detector at a fixed x position, an initialization point has

been selected such that the beam center is located at the upper right corner of

photocell 1. This initial position of the beam center is adjusted manually until

the normalized power acquired by photocell 1 is 0.25 ± 0.1. However, with this

setting, we have a position uncertainty of ∆s =
√

(∆x)2 + (∆y)2, where 0.01

cm 6 ∆s 6 0.1 cm. This leads to inaccuracies in both the x and y positions of

the beam center as can be seen in Figure 4.29. A shift in the x and y positions

of the beam center can cause a deviation between the measured voltage and

the corresponding theoretical normalized spatial optical power distribution.

In theory, the beam diameter is assumed to be exactly equal to the side of the

square photodetector, and 99% of the optical power is contained within a beam

spot of radius 1.5W (z), where W (z) is the beam waist at the photodetector

plane. These parameters are not necessarily guaranteed in the experiment.

Practically, the beam radius was adjusted manually by gradually increasing it

using the beam expander, until the beam spot fits into the active area of one

4.3 Experimental Study of the Position Detector 80

Initial position
y

xΔ
yΔ

Uncertainty region
Initial position

1S2S

()0,0 xδ

3S
4S

ε

Figure 4.29: Uncertainity region when initializing the position of the beam center.

photocell. The radius of the beam spot will be 0.5 cm−∆ρ cm where less than

99% of the optical power is contained, thus causing a reduction in the optical

power obtained in the experiment and that found theoretically.

In addition, the other source of error between the theoretical and practical

results in terms of the shift in the y position and the difference in optical

powers, is due to having ε = 0.1 cm +∆ε cm and δ = 0.3 cm +∆δ cm.

The errors ∆ε cm and ∆δ cm are added distances due to the thickness of the

ceramic wafer surrounding the Si detector, and the fact that the active area for

FDS1010 is about 9.7 mm×9.7 mm which is less than the assumed theoretical

active area of 1 cm×1 cm. Since the quad-cell detector is placed on a metallic

plate, there will be inevitable optical diffraction and reflections which cause

a difference between the theoretical and measured power, especially along the

scan at x = 0 cm where the beam center is passed entirely along the metallic

gap. Moreover, imperfections in the horizontal alignment of the quad-cell

detector plane and slight asymmetry around the center of the sensor at the

receiver optics can be additional sources of error.

5
Position Detection using Wavelet

Network

The proposed position detection system is based on a wavelet network. As

shown in Figure 5.1 the vector P is input to the network and the output is an

estimated position vector Ŷ which is compared to the desired position vector

Y . Accordingly the error between them is used to retune the WN, in order to

achieve a better match. In this chapter, we report the results obtained from

training the developed WN using theoretical model with and without gaps and

using the experimental data for testing. A Matlab code was built to run the

WN training and testing. In order to detect the position of the center of the

laser beam, the WN acts as a function approximation tool where its outputs x̂p

and ŷp are estimates of the desired positions xp and yp, while the corresponding

power distribution obtained from the quadcell P p = [P p
1 , P

p
2 , P

p
3 , P

p
4] are input

to the network. The preceding superscript p represents the training pattern

Position Detection using Wavelet Network 82

Optical Acquisition
System

() [],Y t x y Τ=
()P t

()Ŷ t
+

()e t

+ −

Position Detection
SystemSystem

Figure 5.1: Position detection system block diagram.

1
P

1
Φ

1

1
b

Φ

2
P

x̂∑
2

Φ

2
b

3
P

... ŷ∑

NwΦ4
P

Input nodes Hidden nodes Output nodes

Figure 5.2: Wavelet network structure for the position detection problem.

number as described earlier in Chapter 2. Batch processing is used in off-line

training of a total of Np patterns. The feed-forward matrix equation for our

WN, shown in Figure 5.2 can be stated as follows:

Ŷ p =

 x̂p

ŷp

 = (Woh ∗ Φp) + (Woi ∗ Ip) , (5.1)

where the vectors:

Ip =
[

1 P p
1 P p

2 P p
3 P p

4

]T

,

5.1 Network Initialization 83

and,

Φp =
[

Φp
1 Φp

2 · · · Φp
j · · · Φp

Nw

]T

.

The matrix Woi consists of the direct linear coefficients between the input and

output layers:

Woi =

 b1 a11 a12 a13 a14

b2 a21 a22 a23 a24

 . (5.2)

While the matrix Woh consists of the weights ckj between the hidden and

output layers:

Woh =

 c11 c12 c13 . . . c1Nw

c21 c22 c23 . . . c2Nw

 . (5.3)

5.1 Network Initialization

The initialization procedure adopted in this project is the one proposed by

Zhang and Benveniste in [23]. To initialize the dilation and translation pa-

rameters the input domain of the signal is divided into a dyadic grid of the

form shown in Figure 5.3. This grid has its foundation on the use of the first

derivative of the Gaussian wavelet and it is a non-orthogonal grid, since the

support of the wavelet used at a given dilation is higher than the translation

step at this dilation [19]. The total number of wavelons available in the network

depend on the selected number of levels (different dilations), Nw = 2level − 1.

For the multi-dimensional case we handle the dyadic decomposition method

on each input coordinate separately. Furthermore, the weights of the direct

connections bk and aki are estimated using the standard least squares method:

θ̂LS =
(
XTX

)−1
XTY, (5.4)

where X is the matrix of input vectors and Y is the target output training

sequence over all the patterns. The weights ckj associated with the wavelet

activation functions are initially set to zero. For a more detailed explaination

5.2 Training and Testing of Wavelet Network 84

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

translation

di
la

tio
n

j=6 j=7

j=3

j=5j=4

j=2

j=1

Figure 5.3: Dyadic grid for wavelet network Initialization.

of the least squares method refer to Appendix B.

5.2 Training and Testing of Wavelet Network

First, the theoretical model without gaps has been used to train the wavelet

network for different values of Nw, while both the desired x and y patterns

range between −2 cm and 2 cm. The values of µ and γ were set to 0.0001 and

0.9999. The plot of the MSE vs. number of learning iterations, for Nw = 127,

Nw = 255, and Nw = 511, is shown in Figure 5.4. Due to the availability of

non-unique patterns using this data set (that is input patterns with the same

power values, giving different x and y output patterns) the MSE demonstrated

a chaotic, non-converging behavior as the number of iterations increased. The

MSE at Nw = 127 wavelons, has the lowest drop at 2.595, then suddenly

reaches the highest peak at 2.637 after which it fluctuates around 2.6. We

observe the least fluctuation at Nw = 511, where the MSE saturates to a value

of about 2.619 at 10000 learning iterations.

In an attempt to force the MSE to converge, the training data set has been

reduced by removing the patterns where none of the four photocells is detecting

power as well as removing the patterns where only one photocell is detecting

5.2 Training and Testing of Wavelet Network 85

power, by applying the following condition:



(P1 = 0 ∩ P2 = 0 ∩ P3 = 0 ∩ P4 = 0)

∪ (P1 6= 0 ∩ P2 = 0 ∩ P3 = 0 ∩ P4 = 0)

∪ (P1 = 0 ∩ P2 6= 0 ∩ P3 = 0 ∩ P4 = 0)

∪ (P1 = 0 ∩ P2 = 0 ∩ P3 6= 0 ∩ P4 = 0)

∪ (P1 = 0 ∩ P2 = 0 ∩ P3 = 0 ∩ P4 6= 0)



′

(5.5)

Figure 5.5 shows the plot of the MSE vs. the number of learning iterations

after applying condition 5.5 to the training data, for Nw = 15 and Nw =

127, while setting µ and γ to 0.1 and 0.9. Using these settings the MSE starts

dropping from a value of about 0.530 for both curves, then experiences a highly

fluctuating behavior after reaching a value of 0.446 at iteration number 1151

for Nw = 127, and a value of about 0.473 at iteration number 1729 for Nw =

15.

In order to achieve better results, the number of observations has been re-

stricted to those where all four photocells are detecting power, therefore the

preprocessing uniqueness condition:

P1 6= 0 ∩ P2 6= 0 ∩ P3 6= 0 ∩ P4 6= 0, (5.6)

has been imposed on the input data. After applying such a condition on the

theoretical data without gaps, the MSE demonstrated a much better converg-

ing behavior as the number of learning epochs increased, as shown in Figure

5.6. In addition, the inverse relation between the MSE values and the number

of wavelons Nw is clearly evident, where the MSE is decaying at a faster rate

as Nw is increased. As illustrated in Figure 5.6, after 100,000 iterations the

MSE reached the values 1.86e−03 for Nw = 3, 1.22e−03 for Nw = 7, 7.92e−04

for Nw = 15, and 5.94−04 for both Nw = 63 and Nw = 127.

5.2 Training and Testing of Wavelet Network 86

104

100.414

100.415

100.416

100.417

100.418

100.419

100.42

100.421

No. of iterations

M
S

E

Nw=127

Nw=255

Nw=511

Figure 5.4: Plot of MSE vs. Iterations for different values of Nw, where the theo-
retical model without gaps is used for training the WN, µ= 0.0001, γ= 0.9999, no
preprocessing condition is applied on the data.

102 103 104

10−0.3

10−0.2

No. of iterations

M
S

E

Nw=15

Nw=127

Figure 5.5: Plot of MSE vs. Iterations for different values of Nw, where the theoretical
model without gaps is used for training the WN, µ= 0.1, γ= 0.9, preprocessing
condition in equation 5.5 applied on the data.

5.2 Training and Testing of Wavelet Network 87

104 105

10−3

No. of iterations

M
S

E

Nw=3

Nw=7

Nw=15

Nw=63

Nw=127

Figure 5.6: Plot of MSE vs. Iterations for different values of Nw, where the theoretical
model without gaps is used for training the WN, µ = 0.1, γ = 0.9.

105

10−3.28

10−3.27

10−3.26

10−3.25

10−3.24

10−3.23

10−3.22

10−3.21

No. of iterations

M
S

E

µ=0.1

µ=0.01

µ=0.001

Figure 5.7: Plot of MSE vs. Iterations for different values of µ, where the simulated
data without gaps is used for training the wavelet network, Nw = 63

5.2 Training and Testing of Wavelet Network 88

To investigate the dependency of the MSE on µ, we first set Nw to 63 instead

of 127 wavelons, since both achieve the lowest MSE as shown in Figure 5.6

and to reduce the complexity of the network structure as well as run time of

the code. The WN is trained with µ = 0.1, µ = 0.01, and µ = 0.001. As

shown in Figure 5.7 the lowest MSE equal to 5.78e−04 was achieved at µ =

0.01 for 100,000 iterations. It can be also observed that the slope of the MSE

at µ = 0.001 is relatively similar to that at µ = 0.1, however it encounters a

sudden change at iteration number 9800, thus becoming steeper and closely

interluding the slope of the MSE at µ = 0.01. After 100,000 iterations the

MSE reaches a value of 5.95e−04 for µ = 0.1 and a value of 5.81e−04 for µ =

0.001.

To assess the performance of the WN, the data set at x = 0 cm has been

removed from the training patterns, and preserved as testing data. In this

case, the theoretical model with vertical gap δ = 0.3 cm and horizontal gap

ε = 0.1 cm, has been used for training. The resolution for the x position was

set to 0.1 cm, and that for the y position was set to 0.02 cm. Figure 5.8 shows

the training error and the test error, after training the network for 100,000

iterations, for different values of Nw, while keeping µ and γ fixed at 0.01 and

0.99 respectively. Generally, in this regime, the test error is relatively higher

than the training error. At the other extreme of too few hidden wavelons,

the network does not have enough parameters to fit the training data well

and again the test error is high. Thus, we seek an intermediate number of

wavelons where a low test error will be attained. As can be seen in Figure 5.8,

we have a minimum test MSE of 3.45e−03, at Nw = 15 and the corresponding

training MSE has a value of 2.82e−04. As demonstrated in Figures 5.9 and

5.10, a better match has been achieved between the WN test output ŷ and the

theoretical data, than the WN test output x̂ which is slightly oscillating about

the position x = 0 cm. In addition, Figure 5.11 shows plots of the normalized

optical power measured by the four photocells vs. the theoretical data y, and

the WN test output ŷ, when scanning the beam center vertically along x = 0

cm.

5.2 Training and Testing of Wavelet Network 89

100 101 102 103
10−4

10−3

10−2

No. of Wavelons (N
w
)

M
S

E

MSE
train

MSE
test

Figure 5.8: Comparing the MSE values vs. Nw after training the theoretical model
with gaps and after testing for the theoretical data set at x = 0 cm. The resolution
for the x data used in the training is 0.1 cm and the resolution for the y data used in
the training is 0.02 cm.

−0.2 −0.1 0 0.1 0.2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (cm)

y
(c

m
)

Theoretical model
WN test output

Figure 5.9: Comparing the WN test output and the theoretical model with gaps for
vertical scanning at x = 0 cm. The resolution for the x data used in the training is
0.1 cm and the resolution for the y data used in the training is 0.02 cm.

5.2 Training and Testing of Wavelet Network 90

0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t (s)

x
(c

m
)

Theoretical model
WN test output

0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t (s)
y

(c
m

)

Theoretical model
WN test output

Figure 5.10: Comparing the WN test output and the theoretical model with gaps for
vertical scanning at x = 0 cm. The resolution for the x data used in the training is
0.1 cm and the resolution for the y data used in the training is 0.02 cm.

−0.4 −0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P1 Theoretical model
P1 WN test output

−0.4 −0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P2 Theoretical model
P2 WN test output

−0.4 −0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P3 Theoretical model
P3 WN test output

−0.4 −0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P4 Theoretical model
P4 WN test output

Figure 5.11: Comparing the WN test output and the theoretical model with gaps for
vertical scanning at x = 0 cm. The resolution for the x data used in the training is
0.1 cm and the resolution for the y data used in the training is 0.02 cm.

5.2 Training and Testing of Wavelet Network 91

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x (cm)

y
(c

m
)

Experimental data
WN test output

Figure 5.12: Comparing the WN test output and the experimental data for vertical
scanning at x = −0.55 cm and x = 0.55 cm. The resolution for the x data used in
the training is 0.1 cm and the resolution for the y data used in the training is 0.02
cm.

0 10 20 30

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t (s)

x
(c

m
)

0 10 20 30

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t (s)

y
(c

m
)

Experimental data
WN test output

Experimental data
WN test output

Figure 5.13: Comparing the WN test output and the experimental data for vertical
scanning at x = −0.55 cm as a function of time. The resolution for the x data used
in the training is 0.1 cm and the resolution for the y data used in the training is 0.02
cm.

5.2 Training and Testing of Wavelet Network 92

0 10 20 30

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t (s)

x
(c

m
)

0 10 20 30

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t (s)

 y
 (

cm
)

Experimental data
WN test output

Experimental data
WN test output

Figure 5.14: Comparing the WN test output and the experimental data for vertical
scanning at x = 0.55 cm as a function of time. The resolution for the x data used in
the training is 0.1 cm and the resolution for the y data used in the training is 0.02
cm.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x (cm)

y
(c

m
)

Experimental data
WN test output

Figure 5.15: Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm. The resolution for the x data used in the training is 0.1 cm
and the resolution for the y data used in the training is 0.02 cm.

5.2 Training and Testing of Wavelet Network 93

0 10 20 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t (s)

x
(c

m
)

Experimental data
WN test output

0 10 20 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t (s)
y

(c
m

)

Experimental data
WN test output

Figure 5.16: Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm as a function of time. The resolution for the x data used in the
training is 0.1 cm and the resolution for the y data used in the training is 0.02 cm.

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P1 Experimental data
P1 WN test output

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P2 Experimental data
P2 WN test output

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P3 Experimental data
P3 WN test output

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P4 Experimental data
P4 WN test output

Figure 5.17: Comparing the WN test output and the experimental data for vertical
scanning at x = −0.55 cm. The resolution for the x data used in the training is 0.1
cm and the resolution for the y data used in the training is 0.02 cm.

5.2 Training and Testing of Wavelet Network 94

Next, we studied the performance of the WN when the experimental data sets

at x = − 0.55 cm, x = 0 cm and x = 0.55 cm were used for testing. The

experimental y data used for testing was within the range of −0.5 cm and 0.5

cm. The test errors obtained were 7.91e−02, 7.14e−02, and 2.66e−02 for the

vertical scans at x = −0.55 cm, x = 0.55 cm and x = 0 cm.

The performance of the WN was further investigated by using the data set at

x = 0 cm for testing and the theoretical model with vertical gap δ = 0.3 cm

and horizontal gap ε = 0.1 cm for training. The resolution for the x position

was set to 0.05 cm and that for the y position was set to 0.02 cm. Figure

5.20 shows the training error and the test error, after training the network for

100,000 iterations, for different values of Nw, while keeping µ and γ fixed at

0.01 and 0.99 respectively. As can be seen in Figure 5.20, we have a minimum

test MSE of 7.90e−05, at Nw = 15 and the corresponding training MSE has

a value of 2.48e−04. In this case, at Nw = 15, the test error is lower than the

training error.

We further investigated the performance of the WN when the experimental

data at x = 0 cm was used for testing. The theoretical model with vertical

gap δ = 0.3 cm and horizontal gap ε = 0.1 cm, has been used for training. The

resolution for the x position was set to 0.05 cm and that for the y position was

set to 0.02 cm. The network was trained for 100,000 iterations, for different

values of Nw, while keeping µ and γ fixed at 0.01 and 0.99 respectively. We

obtained a minimum test error of about 1.22e−02 at Nw = 63 for the vertical

scan at x = 0 cm as shown in Figure 5.23.

Using the proposed system and the uniqueness condition given in equation

(5.6), the maximum position detection area Ad for an ideal n photocell array

with no spatial gaps is represented in Figure 5.26 and can be computed as:

Ad =
(√

n− 1
)2
Aph, (5.7)

where Aph is the active area for one photocell and n is the number of photocells

with
√
n an integer.

5.2 Training and Testing of Wavelet Network 95

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P2 Experimental data
P2 WN test output

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P3 Experimental data
P3 WN test output

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P4 Experimental data
P4 WN test output

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P1 Experimental data
P1 WN test output

Figure 5.18: Comparing the WN test output and the experimental data for vertical
scanning at x = 0.55 cm. The resolution for the x data used in the training is 0.1 cm
and the resolution for the y data used in the training is 0.02 cm.

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P1 Experimental data
P1 WN test output

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y (cm)

N
or

m
al

iz
ed

 P
ow

er

P2 Experimental data
P2 WN test output

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y (cm)

N
or

m
al

iz
ed

 P
ow

er

 P3 Experimental data
P3 WN test output

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y (cm)

N
or

m
al

iz
ed

 P
ow

er

 P4 Experimental data
P4 WN test output

Figure 5.19: Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm. The resolution for the x data used in the training is 0.1 cm
and the resolution for the y data used in the training is 0.02 cm.

5.2 Training and Testing of Wavelet Network 96

100 101 102 103

10−4

10−3

No. of Wavelons (N
w
)

M
S

E

MSE
train

MSE
test

Figure 5.20: Comparing the MSE values vs. Nw after training the theoretical model
with gaps and after testing for the theoretical data set at x = 0 cm. The resolution
for the x data used in the training is 0.05 cm and the resolution for the y data used
in the training is 0.02 cm.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (cm)

y
(c

m
)

Theoretical model
WN test output

Figure 5.21: Comparing the WN test output and the theoretical model with gaps for
vertical scanning at x = 0 cm. The resolution for the x data used in the training is
0.05 cm and the resolution for the y data used in the training is 0.02 cm.

5.2 Training and Testing of Wavelet Network 97

0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t (s)

x
(c

m
)

Theoretical model
WN test output

0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t (s)

y
(c

m
)

Theoretical model
WN test output

Figure 5.22: Comparing the WN test output and the theoretical model with gaps for
vertical scanning at x = 0 cm as a function of time. The resolution for the x data
used in the training is 0.05 cm and the resolution for the y data used in the training
is 0.02 cm.

100 101 102 103
10−4

10−3

10−2

No. of Wavelons (N
w
)

M
S

E

MSE
train

MSE
test

Figure 5.23: Comparing the MSE values vs. Nw after training the theoretical model
with gaps and after testing for the experimental data set at x = 0 cm. The resolution
for the x data used in the training is 0.05 cm and the resolution for the y data used
in the training is 0.02 cm.

5.2 Training and Testing of Wavelet Network 98

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (cm)

y
(c

m
)

Experimental data
WN test output

Figure 5.24: Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm. The resolution for the x data used in the training is 0.05 cm
and the resolution for the y data used in the training is 0.02 cm.

0 10 20 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t (s)

x
(c

m
)

Experimental data
WN test output

0 10 20 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t (s)

y
(c

m
)

Experimental data
WN test output

Figure 5.25: Comparing the WN test output and the experimental data for vertical
scanning at x = 0 cm as a function of time. The resolution for the x data used in the
training is 0.05 cm and the resolution for the y data used in the training is 0.02 cm.

5.3 Vibration Monitoring 99

5.3 Vibration Monitoring

In order to achieve a better fitting between the WN test output and the ex-

perimental data as shown in Figure 5.24, further adjustments should be made

to improve the accuracy of the experimental setup. This involves reducing the

vertical and horizontal gaps between the photocells, as well as eliminating any

sources of power loss along the x = 0 cm axis of the photodetector array in the

optical acquisition system. In addition, more vertical scans should be made

within the detection area, with a lower resolution for the x position (≤ 0.05

cm).

One of the additional features of the proposed system is that it allows us to

measure the rate of change of Ŷ using equation (5.8), where dP/dt is the rate

of change of power distribution and ∂Ŷ /∂P is the Jacobian matrix of Ŷ with

respect to P as the beam moves along the plane of photocells.

dŶ

dt
=
∂Ŷ

∂P
· dP
dt
. (5.8)

The Jacobian matrix ∂Ŷ /∂P can be computed using the trained WN by taking

the partial derivative with respect to P of equation (5.1), as stated below:

∂Ŷ p

∂Pi
= Woh ∗

∂Φp

∂Pi
+

 a1i

a2i

 . (5.9)

A potential application for the position detection system, is in vibration moni-

toring. Referring to Figure 4.1, if the mirror is placed on a vibrating platform,

this will induce beam vibration where the position of the beam center will

be changing as a function of time. Future work can be done to utilize the

position information to find certain vibration characteristics such as speed,

acceleration, frequency spectrum, and amplitude.

5.3 Vibration Monitoring 100

×××

dA ××

×××

Figure 5.26: Shaded region indicates the area of detection and × represents the center
of one photocell.

6
Conclusions

In this research, an optical position detection scheme using Gaussian beam

analysis, and wavelet networks has been introduced. The closed form equa-

tions for the optical power covered by a certain area of overlap between the laser

beam spot and one photodetector were derived, as the beam moves through-

out the entire x–y plane. Accordingly, the power distribution acquired by a

quadcell photodetector array was evaluated, taking into consideration the ver-

tical and horizontal spatial gaps, δ and ε. A laboratory setup of the optical

acquisition model was implemented to validate the results from the theoretical

model and to assess the performance of the WN with experimental data. The

input to the WN is the photodetector array power distribution and the output

is an estimate of the x and y position of the laser beam center. The aspects of

practical implementation and experimental limitations on the power distribu-

tion accuracy were discussed and the discrepancies with the theoretical results

were presented.

Bibliography

[1] A. J. Makynen, J. T. Kostamovaara, and R. A. Myllyla, “A high-
resolution lateral displacement sensing method using active illumination
of a cooperative target and a focused four-quadrant position-sensitive de-
tector,” IEEE Transactions on Instrumentation and Measurement, vol.
44, no. 1, pp. 46-47, Feb. 1995.

[2] C. W. de Silva, Vibration monitoring, testing, and instrumentation. New
York: CRC Press, 2007.

[3] K. Z. Tang, K. K. Tan, C. W. de Silva, T. H. Lee, K. C. Tan, and S.
Y. Soh, “Application of vibration sensing in monitoring and control of
machined health,” IEEE/ASME International Conference on Advanced
Intelligent Mechatronics Proceedings, pp. 377-378, July 2001.

[4] J. P. Sebastia, J. A. Lluch, J. R. L. Vizcaino, and J. S. Bellon, “Vibration
detector based on GMR sensors,” IEEE Transactions on Instrumentation
and Measurement, vol. 58, no. 3, p. 707, March 2009.

[5] Y. Shan, J. E. Speich, and K. K. Leang, “Low-cost IR reflective sensors for
submicrolevel position measurement and control,” IEEE/ASME Trans.
Mechatronics, vol. 13, no. 6, pp. 700-701, Dec. 2008.

[6] Z. Zhang and X. Bao, “Continuous and damped vibration detection based
on fiber diversity detection sensor by rayleigh backscattering,” Journal of
Lightwave Technology, vol. 26, no. 7, p. 832, April 2008.

[7] J. A. Garcia-Souto and H. L. Rivera, “Multichannel fiber-optic interfero-
metric sensor for measurments of temperature and vibrations in composite
materials,” IEEE Journal Selected Topics in Quantum Electronics, vol. 6,
no. 5, p. 780, Sep./Oct. 2000.

[8] T. K. Gangopadhyay, S. Chakravorti, S. Chatterjee, and K. Bhattacharya,
“Time-frequency analysis of multiple fringe and nonsinusoidal signals ob-
tained from a fiber-optic vibration sensor using an extrinsic fabry-perot
interferometer,” Journal of Lightwave Technology, vol. 24, no. 5, pp. 2122-
2123, May 2006.

[9] C. Wang, S. B. Trivedi, F. Jin, S. Stepanov, Z. Chen, J. Khurgin, P.
Rodriguez, and N. S. Prasad, “Human life signs detection using high-
sensitivity pulsed laser vibrometer,” IEEE Sensors Journal, vol. 7, no. 9,
p. 1370, Sep. 2007.

BIBLIOGRAPHY 103

[10] A. J. Makynen, J. T. Kostamovaara, and R. A. Myllyla, “Displacement
sensing resolution of position-sensitive detectors in atmospheric turbu-
lence using retroreflected beam,” IEEE Transactions on Instrumentation
and Measurement, vol. 46, no. 5, pp. 1133-1134, Oct. 1997.

[11] J. Jason, H. Nilsson, B. Arvidsson, and A. Larsson, “Experimental Study
of an Intensity Modulated Fiber-Optic Position Sensor with a Novel Read-
out System,” IEEE Sensors Journal, vol. 8, no. 7, July 2008.

[12] L. P. Salles and D. W. de Lima Monteiro, “Designing the Response of an
Optical Quad-Cell as Position-Sensitive Detector,” IEEE Sensors Journal,
vol. 10, no. 2, pp. 286-293, Feb. 2010.

[13] B. E. A. Saleh, Fundamentals of photonics. New York: Wiley, 1991.

[14] G. Laufer, Introduction to optics and lasers in engineering. Cambridge;
New York: Cambridge University Press, 1996.

[15] D. A. McQuarrie, Mathematical methods for scientists and engineers.
Sausalito; California: University Science Books, 2003.

[16] T. Poggio and F. Girosi, “Networks for Approximation and Learning,” in
Proc. IEEE, vol. 78, no. 9, Sept. 1990.

[17] I. Daubechies, Ten Lectures on Wavelets. Philadelphia: CBMS-NSF re-
gional conference series in applied mathematics; 61, 1992.

[18] S. Mallat, A Wavelet Tour of Signal Processing. San Diego: Academic
Press, 1998.

[19] E. S. Garcia-Trevino, V. Alarcon-Aquino, and J. F. Ramirez-Cruz, “Im-
proving Wavelet-Networks Performance with a New Correlation-based Ini-
tialisation Method and Training Algorithm,” in Proc. 15th International
Conf. on Computing, IEEE 2006.

[20] Q. Zhang, “Using Wavelet Network in Nonparametric Estimation,” IEEE
Transactions on Neural Networks, vol. 8, no. 2, pp.227-229, July 1996.

[21] I. Daubechies, “The Wavelet Transform, Time-frequency Localization and
Signal Analysis,” IEEE Trans. Information Theory, vol. 36, no. 5, Sept.
1990.

[22] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation,” IEEE Transactions of Pattern Analysis and Ma-
chine Intelligence, vol. 2, no. 7, July 1989.

[23] Q. Zhang and A. Benveniste, “Wavelet Networks,” IEEE Transactions on
Neural Networks, vol. 3, no. 6, Nov. 1992.

[24] T. Kugarajah and Q. Zhang, “Multidimensional Wavelet Frames,” IEEE
Transactions on Neural Networks, vol. 6, no. 6, Nov. 1995.

BIBLIOGRAPHY 104

[25] Y. C. Pati and P. S. Krishnaprasad, “Analysis and Synthesis of Feedfor-
ward Neural Networks Using Discrete Affine Wavelet Transformations,”
Technical Research Report of the University of Maryland, TR 90-44.

[26] A. Boggess and F. J. Narcowich, A First Course in Wavelets with Fourier
Analysis. New Jersey : Prentice-Hall, 2001.

[27] Y. Oussar and G. Dreyfus, “Initialization by Selection for Wavelet Net-
work Training,” Neurocomputing, vol. 34, pp. 134-143, 2000.

[28] Q. Zhang, “Wavelet Network: The Radial Structure and an Efficient Ini-
tialization Procedure,” in European Control Conference (ECC), Gronin-
gen, Pays-Bas, 1993.

[29] A. E. Siegman, Lasers. University Science Books, 1986.

[30] Y. El-Ashi, R. Dhaouadi, and T. Landolsi, “Design of a novel optical
vibrometer using Gaussian beam analysis,” in Proc. 5th International
Symposium on Mechatronics and its Applications (ISMA08), Amman,
Jordan, May, 27-29 2008.

[31] Y. El-Ashi, R. Dhaouadi, and T. Landolsi, “Accuracy of a Gaussian
Beam Optical Vibrometer with a Quad Photodetector Spatial Separa-
tion,” Proc. of 3rd International Conf. on Modeling, Simulation and Ap-
plied Optimization, Sharjah, UAE, January, 20-22 2009.

[32] D. Haddad, P. Juncar, G. Geneves, and M. Wakim, “Gaussian Beams,
and Spatial Modulation in Nanopositioning,” IEEE Transactions on In-
strumentation and Measurement, Oct. 2008.

[33] http://www.thorlabs.com, retrieved September 2008.

Appenndix A: Matlab Codes

%%%
%%%
%%% Program to calculate the area of overlap between the %%%
%%% circular beam spot and the square photocell as the beam %%%
%%% scans the plane of the photocell. %%%
%%% filename = 'Research22.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%
clear all
clc

xo=0.5; %x−dimension of the square photocell
yo=0.5; %y−dimension of the square photocell
r=0.5; %Radius of the circle
xn=−2:0.01:2; %x−coordinate of the beam spot center
yn=−2:0.01:2; %y−coordinate of the beam spot center
y1=yo; y2=−yo;
x1=xo; x2=−xo;

%***%
%% Evaluating the points of intersection between the %%
%% circlular beam spot and the square photocell. %%
%***%
for s=1:length(xn)
for t=1:length(yn)
%Evaluating yup and ydn at x=x1
[yup(1),ydn(1)]=feval('circy',x1,r,xn(s),yn(t));
%Evaluating yup and ydn at x=x2
[yup(2),ydn(2)]=feval('circy',x2,r,xn(s),yn(t));

%Evaluating xup and xdn at y=y1
[xup(1),xdn(1)]=feval('circx',y1,r,xn(s),yn(t));
%Evaluating xup and xdn at y=y2
[xup(2),xdn(2)]=feval('circx',y2,r,xn(s),yn(t));

xaty1=[xup(1) xdn(1)];
xaty2=[xup(2) xdn(2)];

Appendix A: Matlab Codes 106

yatx1=[yup(1) ydn(1)];
yatx2=[yup(2) ydn(2)];

for k=1:2
%If the elements are real, isreal=1, otherwise isreal=0:

nxy1(k)=isreal(xaty1(k));
nxy2(k)=isreal(xaty2(k));
nyx1(k)=isreal(yatx1(k));
nyx2(k)=isreal(yatx2(k));

end

%Replace the imaginary values by twice the dimensions
%of the square:
xaty1(find(nxy1==0))=2*xo;
xaty2(find(nxy2==0))=2*xo;
yatx1(find(nyx1==0))=2*yo;
yatx2(find(nyx2==0))=2*yo;

%Taking the xaty1 with in the range −xo≤x≤xo
jx1=find(xaty1≤xo & xaty1≥−xo);
%Taking the xaty2 with in the range −xo≤x≤xo
jx2=find(xaty2≤xo & xaty2≥−xo);
%Taking the yatx1 with in the range −yo≤y≤yo
jy1=find(yatx1≤yo & yatx1≥−yo);
%Taking the yatx2 with in the range −yo≤y≤yo
jy2=find(yatx2≤yo & yatx2≥−yo);

%Setting initial values to xa,xb,xc,xd
xa=i;xb=i;xc=x1;xd=x2;
%Setting initial values to ya,yb,yc,yd
ya=y1;yb=y2;yc=i;yd=i;

%************************************%
%% Evaluating xa and xb, ya and yb. %%
%************************************%

%Case: Circle intersects y1 at two different points
if length(jx1)==2 & xaty1(1) 6=xaty1(2)

xa=xaty1(1);
xb=xaty1(2);
ya=y1;
yb=y1;

%Case: Upper and lower part of circle intersect y1
%at the same point
elseif length(jx1)==2 & xaty1(1)==xaty1(2)

jx1=jx1(1);
xa=xaty1(jx1);

%Case: Circle intersects y1 at one and only one point
elseif length(jx1)==1

xa=xaty1(jx1);
%Case: No intersetion between circle and y1
elseif length(jx1)==0 & xa==i

xa=i;
end

%Case: Circle intersects y2 at two different points
if length(jx2)==2 & xaty2(1) 6=xaty2(2)

xa=xaty2(1);

Appendix A: Matlab Codes 107

xb=xaty2(2);
ya=y2;
yb=y2;

%Case: Upper and lower part of circle intersect y2
%at the same point
elseif length(jx2)==2 & xaty2(1)==xaty2(2)

jx2=jx2(1);
xb=xaty2(jx2);

%Case: Circle intersects y2 at one and only one point
elseif length(jx2)==1

xb=xaty2(jx2);
%Case: No intersetion between circle and y2
elseif length(jx2)==0 & xb==i

xb=i;
end

%************************************%
%% Evaluating xc and xd, yc and yd. %%
%************************************%

%Case: Circle intersects x1 at two different points
if length(jy1)==2 & yatx1(1) 6=yatx1(2)

yc=yatx1(1);
yd=yatx1(2);
xc=x1;
xd=x1;

%Case: Upper and lower part of circle intersect x1
%at the same point
elseif length(jy1)==2 & yatx1(1)==yatx1(2)

jy1=jy1(1);
yc=yatx1(jy1);

%Case: Circle intersects x1 at one and only one point
elseif length(jy1)==1

yc=yatx1(jy1);
%Case: No intersetion between circle and x1
elseif length(jy1)==0 & yc==i

yc=i;
end

%Case: Circle intersects x2 at two different points
if length(jy2)==2 & yatx2(1) 6=yatx2(2)

yc=yatx2(1);
yd=yatx2(2);
xc=x2;
xd=x2;

%Case: Upper and lower part of circle intersect x2
%at the same point
elseif length(jy2)==2 & yatx2(1)==yatx2(2)

jy2=jy2(1);
yd=yatx2(jy2);

%Case: Circle intersects x2 at one and only one point
elseif length(jy2)==1

yd=yatx2(jy2);
%Case: No intersetion between circle and x1
elseif length(jy2)==0 & yd==i

yd=i;

Appendix A: Matlab Codes 108

end

%***%
%% x−y coordinates of intersection points: %%
%***%

xint=[xa xb xc xd];
yint=[ya yb yc yd];

A=[xint;yint];
p=isreal(A);

if p==0
[m,n]=find(A==i);
if length(n)==4 %No intersection

B=[i,i;i,i];
xint=B(1,:);
yint=B(2,:);

elseif length(n)==1 %3−points of intersection
if n(1)==1

B=[A(:,2),A(:,3),A(:,4)];
elseif n(1)==2

B=[A(:,1),A(:,3),A(:,4)];
elseif n(1)==3

B=[A(:,1),A(:,2),A(:,4)];
elseif n(1)==4

B=[A(:,1),A(:,2),A(:,3)];
end
xint=B(1,:);
yint=B(2,:);

if (abs(B(:,1)−B(:,2))≤1.0e−015) & (abs(B(:,1)−B(:,2))≥0)
C=[B(:,1),B(:,3)];
xint=C(1,:);
yint=C(2,:);

elseif (abs(B(:,2)−B(:,3))≤1.0e−015) & (abs(B(:,2)−B(:,3))≥0)
C=[B(:,1),B(:,2)];
xint=C(1,:);
yint=C(2,:);

elseif (abs(B(:,1)−B(:,3))≤1.0e−015) & (abs(B(:,1)−B(:,3))≥0)
C=[B(:,1),B(:,2)];
xint=C(1,:);
yint=C(2,:);

end

elseif length(n)==2 %2−points of intersection
if n(1)==1 & n(2)==2

B=[A(:,3),A(:,4)];
elseif n(1)==1 & n(2)==3

B=[A(:,2),A(:,4)];
elseif n(1)==1 & n(2)==4

B=[A(:,2),A(:,3)];
elseif n(1)==2 & n(2)==3

B=[A(:,1),A(:,4)];
elseif n(1)==2 & n(2)==4

B=[A(:,1),A(:,3)];
elseif n(1)==3 & n(2)==4

B=[A(:,1),A(:,2)];

Appendix A: Matlab Codes 109

end

if B(:,1)==B(:,2)
C=B(:,1);
xint=C(1,:);
yint=C(2,:);

else
xint=B(1,:);
yint=B(2,:);

end

elseif length(n)==3 %1−point of intersection
f=10−sum(n);
B=[A(:,f)];
xint=B(1,:);
yint=B(2,:);

end
%2−points of intersection, special case
%(half area of circle inside square)
elseif p 6=0 & sum(sum(A))==2

B=[A(:,1),A(:,2)];
xint=B(1,:);
yint=B(2,:);

elseif p 6=0 %4−points of intersection
xint=A(1,:);
yint=A(2,:);

end

%Distance between corner1 (xo,yo) and centre of circle
D(1)=sqrt((x1−xn(s))ˆ2+(y1−yn(t))ˆ2);
%Distance between corner2 (−xo,yo) and centre of circle
D(2)=sqrt((x2−xn(s))ˆ2+(y1−yn(t))ˆ2);
%Distance between corner3 (−xo,−yo) and centre of circle
D(3)=sqrt((x2−xn(s))ˆ2+(y2−yn(t))ˆ2);
%Distance between corner4 (xo,−yo) and centre of circle
D(4)=sqrt((x1−xn(s))ˆ2+(y2−yn(t))ˆ2);

c=find(D<r); %Corners of square inside the circle

Xn=xn(s);
Yn=yn(t);
Area=feval('AREAXY2',r,Xn,Yn,xint,yint,xo,yo,c);
area(s,t)=Area;

end
end

%Plot of area vs. position of beam spot center along xy−directions
figure
mesh(xn,yn,area)
xlabel('xn (cm)')
ylabel('yn (cm)')
zlabel('Area of overlap (cmˆ2)')

Appendix A: Matlab Codes 110

%%%
%%%
%%% Program to calculate the Power at the area of overlap %%%
%%% overlap between the circular beam spot and the square %%%
%%% photocell as the beam scans the plane of the photocell. %%%
%%% filename = 'Research2POWER.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%
clear all
clc

xo=0.5; %x−dimension of the square photocell
yo=0.5; %y−dimension of the square photocell
r=0.5; %Radius of the circle
xn=−2:0.01:2; %x−coordinate of the beam spot center
yn=−2:0.01:2; %y−coordinate of the beam spot center
y1=yo; y2=−yo;
x1=xo; x2=−xo;

%***%
%% Evaluating the points of intersection between the %%
%% circlular beam spot and the square photocell. %%
%***%
for s=1:length(xn)
for t=1:length(yn)
%Evaluating yup and ydn at x=x1
[yup(1),ydn(1)]=feval('circy',x1,r,xn(s),yn(t));
%Evaluating yup and ydn at x=x2
[yup(2),ydn(2)]=feval('circy',x2,r,xn(s),yn(t));

%Evaluating xup and xdn at y=y1
[xup(1),xdn(1)]=feval('circx',y1,r,xn(s),yn(t));
%Evaluating xup and xdn at y=y2
[xup(2),xdn(2)]=feval('circx',y2,r,xn(s),yn(t));

xaty1=[xup(1) xdn(1)];
xaty2=[xup(2) xdn(2)];

yatx1=[yup(1) ydn(1)];
yatx2=[yup(2) ydn(2)];

for k=1:2
%If the elements are real, isreal=1, otherwise isreal=0:

nxy1(k)=isreal(xaty1(k));
nxy2(k)=isreal(xaty2(k));
nyx1(k)=isreal(yatx1(k));
nyx2(k)=isreal(yatx2(k));

end

%Replace the imaginary values by twice the dimensions
%of the square:
xaty1(find(nxy1==0))=2*xo;
xaty2(find(nxy2==0))=2*xo;
yatx1(find(nyx1==0))=2*yo;
yatx2(find(nyx2==0))=2*yo;

Appendix A: Matlab Codes 111

%Taking the xaty1 with in the range −xo≤x≤xo
jx1=find(xaty1≤xo & xaty1≥−xo);
%Taking the xaty2 with in the range −xo≤x≤xo
jx2=find(xaty2≤xo & xaty2≥−xo);
%Taking the yatx1 with in the range −yo≤y≤yo
jy1=find(yatx1≤yo & yatx1≥−yo);
%Taking the yatx2 with in the range −yo≤y≤yo
jy2=find(yatx2≤yo & yatx2≥−yo);

%Setting initial values to xa,xb,xc,xd
xa=i;xb=i;xc=x1;xd=x2;
%Setting initial values to ya,yb,yc,yd
ya=y1;yb=y2;yc=i;yd=i;

%************************************%
%% Evaluating xa and xb, ya and yb. %%
%************************************%

%Case: Circle intersects y1 at two different points
if length(jx1)==2 & xaty1(1) 6=xaty1(2)

xa=xaty1(1);
xb=xaty1(2);
ya=y1;
yb=y1;

%Case: Upper and lower part of circle intersect y1
%at the same point
elseif length(jx1)==2 & xaty1(1)==xaty1(2)

jx1=jx1(1);
xa=xaty1(jx1);

%Case: Circle intersects y1 at one and only one point
elseif length(jx1)==1

xa=xaty1(jx1);
%Case: No intersetion between circle and y1
elseif length(jx1)==0 & xa==i

xa=i;
end

%Case: Circle intersects y2 at two different points
if length(jx2)==2 & xaty2(1) 6=xaty2(2)

xa=xaty2(1);
xb=xaty2(2);
ya=y2;
yb=y2;

%Case: Upper and lower part of circle intersect y2
%at the same point
elseif length(jx2)==2 & xaty2(1)==xaty2(2)

jx2=jx2(1);
xb=xaty2(jx2);

%Case: Circle intersects y2 at one and only one point
elseif length(jx2)==1

xb=xaty2(jx2);
%Case: No intersetion between circle and y2
elseif length(jx2)==0 & xb==i

xb=i;
end

Appendix A: Matlab Codes 112

%************************************%
%% Evaluating xc and xd, yc and yd. %%
%************************************%

%Case: Circle intersects x1 at two different points
if length(jy1)==2 & yatx1(1) 6=yatx1(2)

yc=yatx1(1);
yd=yatx1(2);
xc=x1;
xd=x1;

%Case: Upper and lower part of circle intersect x1
%at the same point
elseif length(jy1)==2 & yatx1(1)==yatx1(2)

jy1=jy1(1);
yc=yatx1(jy1);

%Case: Circle intersects x1 at one and only one point
elseif length(jy1)==1

yc=yatx1(jy1);
%Case: No intersetion between circle and x1
elseif length(jy1)==0 & yc==i

yc=i;
end

%Case: Circle intersects x2 at two different points
if length(jy2)==2 & yatx2(1) 6=yatx2(2)

yc=yatx2(1);
yd=yatx2(2);
xc=x2;
xd=x2;

%Case: Upper and lower part of circle intersect x2
%at the same point
elseif length(jy2)==2 & yatx2(1)==yatx2(2)

jy2=jy2(1);
yd=yatx2(jy2);

%Case: Circle intersects x2 at one and only one point
elseif length(jy2)==1

yd=yatx2(jy2);
%Case: No intersetion between circle and x1
elseif length(jy2)==0 & yd==i

yd=i;
end

%***%
%% x−y coordinates of intersection points: %%
%***%

xint=[xa xb xc xd];
yint=[ya yb yc yd];

A=[xint;yint];
p=isreal(A);

if p==0
[m,n]=find(A==i);
if length(n)==4 %No intersection

B=[i,i;i,i];
xint=B(1,:);
yint=B(2,:);

Appendix A: Matlab Codes 113

elseif length(n)==1 %3−points of intersection
if n(1)==1

B=[A(:,2),A(:,3),A(:,4)];
elseif n(1)==2

B=[A(:,1),A(:,3),A(:,4)];
elseif n(1)==3

B=[A(:,1),A(:,2),A(:,4)];
elseif n(1)==4

B=[A(:,1),A(:,2),A(:,3)];
end
xint=B(1,:);
yint=B(2,:);

if (abs(B(:,1)−B(:,2))≤1.0e−015) & (abs(B(:,1)−B(:,2))≥0)
C=[B(:,1),B(:,3)];
xint=C(1,:);
yint=C(2,:);

elseif (abs(B(:,2)−B(:,3))≤1.0e−015) & (abs(B(:,2)−B(:,3))≥0)
C=[B(:,1),B(:,2)];
xint=C(1,:);
yint=C(2,:);

elseif (abs(B(:,1)−B(:,3))≤1.0e−015) & (abs(B(:,1)−B(:,3))≥0)
C=[B(:,1),B(:,2)];
xint=C(1,:);
yint=C(2,:);

end

elseif length(n)==2 %2−points of intersection
if n(1)==1 & n(2)==2

B=[A(:,3),A(:,4)];
elseif n(1)==1 & n(2)==3

B=[A(:,2),A(:,4)];
elseif n(1)==1 & n(2)==4

B=[A(:,2),A(:,3)];
elseif n(1)==2 & n(2)==3

B=[A(:,1),A(:,4)];
elseif n(1)==2 & n(2)==4

B=[A(:,1),A(:,3)];
elseif n(1)==3 & n(2)==4

B=[A(:,1),A(:,2)];
end

if B(:,1)==B(:,2)
C=B(:,1);
xint=C(1,:);
yint=C(2,:);

else
xint=B(1,:);
yint=B(2,:);

end

elseif length(n)==3 %1−point of intersection
f=10−sum(n);
B=[A(:,f)];
xint=B(1,:);
yint=B(2,:);

end
%2−points of intersection, special case

Appendix A: Matlab Codes 114

%(half area of circle inside square)
elseif p 6=0 & sum(sum(A))==2

B=[A(:,1),A(:,2)];
xint=B(1,:);
yint=B(2,:);

elseif p 6=0 %4−points of intersection
xint=A(1,:);
yint=A(2,:);

end

%Distance between corner1 (xo,yo) and centre of circle
D(1)=sqrt((x1−xn(s))ˆ2+(y1−yn(t))ˆ2);
%Distance between corner2 (−xo,yo) and centre of circle
D(2)=sqrt((x2−xn(s))ˆ2+(y1−yn(t))ˆ2);
%Distance between corner3 (−xo,−yo) and centre of circle
D(3)=sqrt((x2−xn(s))ˆ2+(y2−yn(t))ˆ2);
%Distance between corner4 (xo,−yo) and centre of circle
D(4)=sqrt((x1−xn(s))ˆ2+(y2−yn(t))ˆ2);

%Corners of square inside the circle
c=find(D<r);
%Wavelength of a He−Ne laser source in cm
lamda=6.33e−05;
%Spot size of the beam 2Wo=2/3cm, to get 99% of Total power
Wo=1/3;
zo=(pi*Woˆ2)/lamda; %Rayleigh range in cm
z=0; %Axial distance z in cm
Io=1; %Maximum intensity value
W=Wo*sqrt(1+(z/zo)ˆ2); %Beam Width
I1=Io*(Wo/W)ˆ2;
AA=I1*(W/2)ˆ2;
BB=exp((−2*rˆ2)/Wˆ2);

Pc=I1*(2*pi)*((W/2)ˆ2)*(1−BB); %Power of spot with radius r
PT=0.5*Io*pi*Woˆ2; %Total Power of the beam

Power=feval('POWERXY2',r,xn(s),yn(t),xint,yint,xo,yo,c);
power(s,t)=Power/Pc;

end
end

%Plot of Normalized Power vs. position of beam
%spot center along xy−directions
figure
mesh(xn,yn,power)
xlabel('xn (cm)')
ylabel('yn (cm)')
zlabel('Normalized Power')

Appendix A: Matlab Codes 115

%%%
%%%
%%% Function to calculate x−coordinates of the intersection %%%
%%% points between the circular beam spot and the upper %%%
%%% or lower side of the square photocell. %%%
%%% filename = 'circx.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

%***%
%* Input to the function: *%
%* r = radius of circular beam spot. *%
%* xn = x−coordinate of the center of the beam spot. *%
%* yn = y−coordinate of the center of the beam spot. *%
%* y = y value of upper or lower side of the *%
%* square photocell. *%
%* Output of the function: *%
%* xup = x−coordinate of the first point of intersection. *%
%* xdn = x−coordinate of the second point of intersection. *%
%***%

function [xup,xdn]=circx(y,r,xn,yn)
xup=sqrt(rˆ2−(y−yn)ˆ2)+xn;
xdn=−sqrt(rˆ2−(y−yn)ˆ2)+xn;

%%%
%%%
%%% Function to calculate y−coordinates of the intersection %%%
%%% points between the circular beam spot and the right or %%%
%%% left side of the square photocell. %%%
%%% filename = 'circy.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

%***%
%* Input to the function: *%
%* r = radius of circular beam spot. *%
%* xn = x−coordinate of the center of the beam spot. *%
%* yn = y−coordinate of the center of the beam spot. *%
%* x = x value of upper or lower side of the *%
%* square photocell. *%
%* Output of the function: *%
%* yup = x−coordinate of the first point of intersection. *%
%* ydn = x−coordinate of the second point of intersection. *%
%***%

function [yup,ydn]=circy(x,r,xn,yn)
yup=sqrt(rˆ2−(x−xn)ˆ2)+yn;
ydn=−sqrt(rˆ2−(x−xn)ˆ2)+yn;

Appendix A: Matlab Codes 116

%%%
%%%
%%% Function to calculate the area of overlap between the %%%
%%% circular beam spot and the square photocell. %%%
%%% Center of circular beam spot is moving along the x−axis %%%
%%% while the square photocell is fixed at the origin of the %%%
%%% coordinate system. %%%
%%% Given, diameter of the circular beam spot is equivalent %%%
%%% to one side of the square photocell. %%%
%%% filename = 'AREAX2.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

%***%
%* Input to the function: *%
%* r = radius of circular beam spot. *%
%* xn = x−coordinate of the center of the beam spot. *%
%* yn = y−coordinate of the center of the beam spot. *%
%* xint = x−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* yint = y−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* xo = x−coordinate of the right side of the square *%
%* photocell. *%
%* yo = y−coordinate of the upper side of the square *%
%* photocell. *%
%* c = cornenrs of the square inside the circular *%
%* beam spot. *%
%* Output of the function: *%
%* Area = Area of intersection between circle and square, *%
%* as circle moves along x−axis. *%
%***%

function Area=AREAX2(r,xn,yn,xint,yint,xo,yo,c)
px=isreal(xint); %Check if there is intersection (x−coordinate)
py=isreal(yint); %Check if there is intersection (y−coordinate)
Ac=pi*(rˆ2); %Area of circle with radius r
%Case 1: No intersection between circle and square OR just touching
if (px==0 & py==0)|(length(xint)==1)

Area=0;
elseif px 6=0 & py 6=0
%Case 2: Centre of circle greater than or equal to xo
%(right−most side of square)

if xn≥xo
d=xn−xo;
alpha=asin(d/r);
Area=((rˆ2)/2)*(pi−2*alpha−sin(2*alpha));

%Case 3: Centre of circle less than or equal to −xo
%(left−most side of square)

elseif xn≤−xo
d=−xo−xn;
alpha=asin(d/r);
Area=((rˆ2)/2)*(pi−2*alpha−sin(2*alpha));

%Case 4: Centre of circle between 0 and xo (right half of square)
elseif xn>0 & xn<xo

d=xo−xn;

Appendix A: Matlab Codes 117

alpha=asin(d/r);
A1=((rˆ2)/2)*(pi−2*alpha−sin(2*alpha));
Area=Ac−A1;

%Case 5: Centre of circle between −xo and 0 (left half of square)
elseif xn<0 & xn>−xo

d=xo+xn;
alpha=asin(d/r);
A1=((rˆ2)/2)*(pi−2*alpha−sin(2*alpha));
Area=Ac−A1;

end
end

Appendix A: Matlab Codes 118

%%%
%%%
%%% Function to calculate the area of overlap between the %%%
%%% circular beam spot and the square photocell. %%%
%%% Center of circular beam spot is moving along the y−axis %%%
%%% while the square photocell is fixed at the origin of the %%%
%%% coordinate system. %%%
%%% Given, diameter of the circular beam spot is equivalent %%%
%%% to one side of the square photocell. %%%
%%% filename = 'AREAY2.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

%***%
%* Input to the function: *%
%* r = radius of circular beam spot. *%
%* xn = x−coordinate of the center of the beam spot. *%
%* yn = y−coordinate of the center of the beam spot. *%
%* xint = x−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* yint = y−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* xo = x−coordinate of the right side of the square *%
%* photocell. *%
%* yo = y−coordinate of the upper side of the square *%
%* photocell. *%
%* c = cornenrs of the square inside the circular *%
%* beam spot. *%
%* Output of the function: *%
%* Area = Area of intersection between circle and square, *%
%* as circle moves along y−axis. *%
%***%

function Area=AREAY2(r,xn,yn,xint,yint,xo,yo,c)
px=isreal(xint); %Check if there is intersection (x−coordinate)
py=isreal(yint); %Check if there is intersection (y−coordinate)
Ac=pi*(rˆ2); %Area of circle with radius r

%Case 1: No intersection between circle and square OR just touching
if (px==0 & py==0)|(length(yint)==1)

Area=0;
elseif px 6=0 & py 6=0
%Case 2: Centre of circle greater than or equal to yo
%(upper side of square)

if yn≥yo
d=yn−yo;
beta=asin(d/r);
Area=((rˆ2)/2)*(pi−2*beta−sin(2*beta));

%Case 3: Centre of circle less than or equal to −yo
%(lower side of square)

elseif yn≤−yo
d=−yo−yn;
beta=asin(d/r);
Area=((rˆ2)/2)*(pi−2*beta−sin(2*beta));

%Case 4: Centre of circle between 0 and yo (upper half of square)
elseif yn>0 & yn<yo

Appendix A: Matlab Codes 119

d=yo−yn;
beta=asin(d/r);
A1=((rˆ2)/2)*(pi−2*beta−sin(2*beta));
Area=Ac−A1;

%Case 5: Centre of circle between −yo and 0 (lower half of square)
elseif yn<0 & yn>−yo

d=yo+yn;
beta=asin(d/r);
A1=((rˆ2)/2)*(pi−2*beta−sin(2*beta));
Area=Ac−A1;

end
end

Appendix A: Matlab Codes 120

%%%
%%%
%%% Function to calculate the area of overlap between the %%%
%%% circular beam spot and the square photocell. %%%
%%% Center of circular beam spot is moving along both the x %%%
%%% and y axis while the square photocell is fixed at the %%%
%%% origin of the coordinate system. %%%
%%% Given, diameter of the circular beam spot is equivalent %%%
%%% to one side of the square photocell. %%%
%%% filename = 'AREAXY2.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

%***%
%* Input to the function: *%
%* r = radius of circular beam spot. *%
%* xn = x−coordinate of the center of the beam spot. *%
%* yn = y−coordinate of the center of the beam spot. *%
%* xint = x−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* yint = y−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* xo = x−coordinate of the right side of the square *%
%* photocell. *%
%* yo = y−coordinate of the upper side of the square *%
%* photocell. *%
%* c = cornenrs of the square inside the circular *%
%* beam spot. *%
%* Output of the function: *%
%* Area = Area of intersection between circle and square, *%
%* as circle moves along both the x and y axis. *%
%***%

function Area=AREAXY2(r,xn,yn,xint,yint,xo,yo,c)
px=isreal(xint); %Check if there is intersection (x−coordinate)
py=isreal(yint); %Check if there is intersection (y−coordinate)
Ac=pi*(rˆ2); %Area of circle with radius r
%Case 1: No intersection between circle and square OR just touching
if (px==0 & py==0)|(length(xint)==1)

Area=0;
elseif px 6=0 & py 6=0
%Case 2: Center of circle at the origin of the coordinate system
if xn==0 & yn==0

Area=Ac;
%Case 3: Center of circle moving along the y−axis only
elseif xn==0 & yn 6=0

Area=feval('AREAY2',r,xn,yn,xint,yint,xo,yo,c);
%Case 4: Center of circle moving along the x−axis only
elseif xn 6=0 & yn==0

Area=feval('AREAX2',r,xn,yn,xint,yint,xo,yo,c);
%Case 5: Center of circle moving along both x and y axis
elseif xn 6=0 & yn 6=0

if xn>xo & yn>yo %Region 1
dx=xn−xo;
dy=yn−yo;

Appendix A: Matlab Codes 121

elseif xn>xo & yn<−yo %Region 4
dx=xn−xo;
dy=−yn−yo;

elseif xn<−xo & yn>yo %Region 2
dx=−xn−xo;
dy=yn−yo;

elseif xn<−xo & yn<−yo %Region 3
dx=−xn−xo;
dy=−yn−yo;

elseif xn≥xo & (yn≤yo & yn>0) %Region 5
dx=xn−xo;
dy=yo−yn;

elseif xn≥xo & (yn≥−yo & yn<0) %Region 6
dx=xn−xo;
dy=yo+yn;

elseif xn≤−xo & (yn≤yo & yn>0) %Region 7
dx=−xn−xo;
dy=yo−yn;

elseif xn≤−xo & (yn≥−yo & yn<0) %Region 8
dx=−xn−xo;
dy=yo+yn;

elseif yn≥yo & (xn≤xo & xn>0) %Region 11
dx=xo−xn;
dy=yn−yo;

elseif yn≥yo & (xn≥−xo & xn<0) %Region 12
dx=xo+xn;
dy=yn−yo;

elseif yn≤−yo & (xn≤xo & xn>0) %Region 9
dx=xo−xn;
dy=−yn−yo;

elseif yn≤−yo & (xn≥−xo & xn<0) %Region 10
dx=xo+xn;
dy=−yn−yo;

elseif (xn<xo & xn>0) & (yn<yo & yn>0) %Region 13
dx=xo−xn;
dy=yo−yn;

elseif (xn>−xo & xn<0) & (yn<yo & yn>0) %Region 14
dx=xo+xn;
dy=yo−yn;

elseif (xn<xo & xn>0) & (yn>−yo & yn<0) %Region 16
dx=xo−xn;
dy=yo+yn;

elseif (xn>−xo & xn<0) & (yn>−yo & yn<0) %Region 15
dx=xo+xn;
dy=yo+yn;

end

alpha=asin(dx/r);
beta=asin(dy/r);
phi=atan(dy/dx);

%% Coordinates of the center of the circle (xn,yn) are located
%% in Region 1, 2, 3 or 4:
if(xn>xo & yn>yo)|(xn>xo & yn<−yo) |

(xn<−xo & yn>yo)|(xn<−xo & yn<−yo)

Appendix A: Matlab Codes 122

Area=((rˆ2)/2)*((pi/2)−(alpha+beta)−
(((sin(alpha))/(cos(phi)))*(cos(phi+alpha)))−
(((sin(beta))/(sin(phi)))*(sin(phi−beta))));

%% Coordinates of the center of the circle (xn,yn) are located
%% in Region 5, 6, 7 or 8:
elseif(xn≥xo & (yn≤yo & yn>0))|(xn≥xo & (yn≥−yo & yn<0))|

(xn≤−xo & (yn≤yo & yn>0))|(xn≤−xo & (yn≥−yo & yn<0))
Ax=((rˆ2)/2)*(pi−2*alpha−sin(2*alpha));

if length(c)==1 & length(xint)==2
if dx 6=0 & dy 6=0

Axy=((rˆ2)/2)*((pi/2)−(alpha+beta)−
(((sin(alpha))/(cos(phi)))*(cos(phi+alpha)))−
(((sin(beta))/(sin(phi)))*(sin(phi−beta))));
Area=Ax−Axy;

elseif dx 6=0 & dy==0
Axy=((rˆ2)/2)*((pi/2)−alpha−(1/2)*sin(2*alpha));
Area=Ax−Axy;

elseif dx==0 & dy 6=0
Axy=((rˆ2)/2)*((pi/2)−beta−(1/2)*sin(2*beta));
Area=Ax−Axy;

elseif dx==0 & dy==0
Area=(pi/4)*(rˆ2);

end
elseif length(c)==0 & length(xint)==2

Area=Ax;
end

%% Coordinates of the center of the circle (xn,yn) are located
%% in Region 9, 10, 11 or 12:
elseif (yn≥yo & (xn≤xo & xn>0))|(yn≥yo & (xn≥−xo & xn<0))|

(yn≤−yo & (xn≤xo & xn>0))|(yn≤−yo & (xn≥−xo & xn<0))
Ay=((rˆ2)/2)*(pi−2*beta−sin(2*beta));
if length(c)==1 & length(xint)==2

if dx 6=0 & dy 6=0
Axy=((rˆ2)/2)*((pi/2)−(alpha+beta)−
(((sin(alpha))/(cos(phi)))*(cos(phi+alpha)))−
(((sin(beta))/(sin(phi)))*(sin(phi−beta))));
Area=Ay−Axy;

elseif dx 6=0 & dy==0
Axy=((rˆ2)/2)*((pi/2)−alpha−(1/2)*sin(2*alpha));
Area=Ay−Axy;

elseif dx==0 & dy 6=0
Axy=((rˆ2)/2)*((pi/2)−beta−(1/2)*sin(2*beta));
Area=Ay−Axy;

elseif dx==0 & dy==0
Area=(pi/4)*(rˆ2);

end
elseif length(c)==0 & length(xint)==2

Area=Ay;
end

%% Coordinates of the center of the circle (xn,yn) are located
%% in Region 13, 14, 15 or 16:
elseif((xn<xo & xn>0) & (yn<yo & yn>0))|

((xn>−xo & xn<0) & (yn<yo & yn>0))|
((xn<xo & xn>0) & (yn>−yo & yn<0))|
((xn>−xo & xn<0) & (yn>−yo & yn<0))

Appendix A: Matlab Codes 123

if length(c)==1 & length(xint)==2
Ay=((rˆ2)/2)*(pi−2*beta−sin(2*beta));
Ax=((rˆ2)/2)*(pi−2*alpha−sin(2*alpha));
Axy=((rˆ2)/2)*((pi/2)−(alpha+beta)−
(((sin(alpha))/(cos(phi)))*(cos(phi+alpha)))−
(((sin(beta))/(sin(phi)))*(sin(phi−beta))));
Area=Ac−(Ay+Ax−Axy);

elseif length(c)==0 & length(xint)==4
Ay=((rˆ2)/2)*(pi−2*beta−sin(2*beta));
Ax=((rˆ2)/2)*(pi−2*alpha−sin(2*alpha));
Area=Ac−(Ay+Ax);

end
end

end
end

Appendix A: Matlab Codes 124

%%%
%%%
%%% Function to calculate the Power at the area of overlap %%%
%%% between circular beam spot and the square photocell. %%%
%%% Center of circular beam spot is moving along the x−axis %%%
%%% while the square photocell is fixed at the origin %%%
%%% of the coordinate system. %%%
%%% Given, diameter of the circular beam spot is equivalent %%%
%%% to one side of the square photocell. %%%
%%% filename = 'POWERX2.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

%***%
%* Input to the function: *%
%* r = radius of circular beam spot. *%
%* xn = x−coordinate of the center of the beam spot. *%
%* yn = y−coordinate of the center of the beam spot. *%
%* xint = x−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* yint = y−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* xo = x−coordinate of the right side of the square *%
%* photocell. *%
%* yo = y−coordinate of the upper side of the square *%
%* photocell. *%
%* c = cornenrs of the square inside the circular *%
%* beam spot. *%
%* Output of the function: *%
%* Power = Power at the area of intersection between *%
%* circlular beam spot and square photocell, as the *%
%* beam spot moves along x−axis. *%
%***%

function Power=POWERX2(r,xn,yn,xint,yint,xo,yo,c)

lamda=6.33e−05; %Wavelength of a He−Ne laser source in cm
%Spot size of the beam 2Wo=2/3cm, to get 99% of Total Power
Wo=1/3;
zo=(pi*Woˆ2)/lamda; %Rayleigh range in cm
z=0; %Axial distance z in cm
Io=1; %Maximum intensity value
W=Wo*sqrt(1+(z/zo)ˆ2); %Beam Width
I1=Io*(Wo/W)ˆ2;
AA=I1*(W/2)ˆ2;
BB=exp((−2*rˆ2)/Wˆ2);

px=isreal(xint); %Check if there is intersection (x−coordinate)
py=isreal(yint); %Check if there is intersection (y−coordinate)
Pc=I1*(2*pi)*((W/2)ˆ2)*(1−BB); %Power of spot with radius r

%Case 1: No intersection between circle and square OR just touching
if (px==0 & py==0)|(length(xint)==1)

Power=0;

Appendix A: Matlab Codes 125

elseif px 6=0 & py 6=0
%Case 2: Centre of circle greater than or equal to xo
%(right−most side of square)

if xn≥xo
d=xn−xo;
kx=(2/Wˆ2)*dˆ2;
Q=@(alpha)exp(−kx./((sin(alpha)).ˆ2));
alpha1=asin(d/r);
alpha2=pi−alpha1;
F= quad(Q,alpha1,alpha2);
Power=AA*(−BB*(alpha2−alpha1)+F);

%Case 3: Centre of circle less than or equal to −xo
%(left−most side of square)

elseif xn≤−xo
d=−xo−xn;
kx=(2/Wˆ2)*dˆ2;
Q=@(alpha)exp(−kx./((sin(alpha)).ˆ2));
alpha1=asin(d/r);
alpha2=pi−alpha1;
F= quad(Q,alpha1,alpha2);
Power=AA*(−BB*(alpha2−alpha1)+F);

%Case 4: Centre of circle between 0 and xo (right half of square)
elseif xn>0 & xn<xo

d=xo−xn;
kx=(2/Wˆ2)*dˆ2;
Q=@(alpha)exp(−kx./((sin(alpha)).ˆ2));
alpha1=asin(d/r);
alpha2=pi−alpha1;
F= quad(Q,alpha1,alpha2);
P1=AA*(−BB*(alpha2−alpha1)+F);
Power=Pc−P1;

%Case 5: Centre of circle between −xo and 0 (left half of square)
elseif xn<0 & xn>−xo

d=xo+xn;
kx=(2/Wˆ2)*dˆ2;
Q=@(alpha)exp(−kx./((sin(alpha)).ˆ2));
alpha1=asin(d/r);
alpha2=pi−alpha1;
F= quad(Q,alpha1,alpha2);
P1=AA*(−BB*(alpha2−alpha1)+F);
Power=Pc−P1;

%Case 6: Centre of circle at the origin of the coordinate system
elseif xn==0

Power=Pc;
end

end

Appendix A: Matlab Codes 126

%%%
%%%
%%% Function to calculate the Power at the area of overlap %%%
%%% between circular beam spot and the square photocell. %%%
%%% Center of circular beam spot is moving along the y−axis %%%
%%% while the square photocell is fixed at the origin %%%
%%% of the coordinate system. %%%
%%% Given, diameter of the circular beam spot is equivalent %%%
%%% to one side of the square photocell. %%%
%%% filename = 'POWERY2.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

%***%
%* Input to the function: *%
%* r = radius of circular beam spot. *%
%* xn = x−coordinate of the center of the beam spot. *%
%* yn = y−coordinate of the center of the beam spot. *%
%* xint = x−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* yint = y−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* xo = x−coordinate of the right side of the square *%
%* photocell. *%
%* yo = y−coordinate of the upper side of the square *%
%* photocell. *%
%* c = cornenrs of the square inside the circular *%
%* beam spot. *%
%* Output of the function: *%
%* Power = Power at the area of intersection between *%
%* circlular beam spot and square photocell, as the *%
%* beam spot moves along y−axis. *%
%***%

function Power=POWERY2(r,xn,yn,xint,yint,xo,yo,c)

lamda=6.33e−05; %Wavelength of a He−Ne laser source in cm
%Spot size of the beam 2Wo=2/3cm, to get 99% of Total Power
Wo=1/3;
zo=(pi*Woˆ2)/lamda; %Rayleigh range in cm
z=0; %Axial distance z in cm
Io=1; %Maximum intensity value
W=Wo*sqrt(1+(z/zo)ˆ2); %Beam Width
I1=Io*(Wo/W)ˆ2;
AA=I1*(W/2)ˆ2;
BB=exp((−2*rˆ2)/Wˆ2);

px=isreal(xint); %Check if there is intersection (x−coordinate)
py=isreal(yint); %Check if there is intersection (y−coordinate)
Pc=I1*(2*pi)*((W/2)ˆ2)*(1−BB); %Power of spot with radius r

%Case 1: No intersection between circle and square OR just touching
if (px==0 & py==0)|(length(xint)==1)

Power=0;

Appendix A: Matlab Codes 127

elseif px 6=0 & py 6=0
%Case 2: Centre of circle greater than or equal to yo
%(upper side of square)

if yn≥yo
d=yn−yo;
ky=(2/Wˆ2)*dˆ2;
Q=@(beta)exp(−ky./((sin(beta)).ˆ2));
beta1=asin(d/r);
beta2=pi−beta1;
F= quad(Q,beta1,beta2);
Power=AA*(−BB*(beta2−beta1)+F);

%Case 3: Centre of circle less than or equal to −yo
%(lower side of square)

elseif yn≤−yo
d=−yo−yn;
ky=(2/Wˆ2)*dˆ2;
Q=@(beta)exp(−ky./((sin(beta)).ˆ2));
beta1=asin(d/r);
beta2=pi−beta1;
F= quad(Q,beta1,beta2);
Power=AA*(−BB*(beta2−beta1)+F);

%Case 4: Centre of circle between 0 and yo (upper half of square)
elseif yn>0 & yn<yo

d=yo−yn;
ky=(2/Wˆ2)*dˆ2;
Q=@(beta)exp(−ky./((sin(beta)).ˆ2));
beta1=asin(d/r);
beta2=pi−beta1;
F= quad(Q,beta1,beta2);
P1=AA*(−BB*(beta2−beta1)+F);
Power=Pc−P1;

%Case 5: Centre of circle between −yo and 0 (lower half of square)
elseif yn<0 & yn>−yo

d=yo+yn;
ky=(2/Wˆ2)*dˆ2;
Q=@(beta)exp(−ky./((sin(beta)).ˆ2));
beta1=asin(d/r);
beta2=pi−beta1;
F= quad(Q,beta1,beta2);
P1=AA*(−BB*(beta2−beta1)+F);
Power=Pc−P1;

%Case 6: Centre of circle at the origin of the coordinate system
elseif yn==0

Power=Pc;
end

end

Appendix A: Matlab Codes 128

%%%
%%%
%%% Function to calculate the Power at the area of overlap %%%
%%% between circular beam spot and the square photocell. %%%
%%% Center of circular beam spot is moving along both the %%%
%%% x and y axis while the square photocell is fixed at the %%%
%%% origin of the coordinate system. %%%
%%% Given, diameter of the circular beam spot is equivalent %%%
%%% to one side of the square photocell. %%%
%%% filename = 'POWERXY2.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

%***%
%* Input to the function: *%
%* r = radius of circular beam spot. *%
%* xn = x−coordinate of the center of the beam spot. *%
%* yn = y−coordinate of the center of the beam spot. *%
%* xint = x−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* yint = y−coordinates of the intersection points between *%
%* the circular beam spot and the square photocell. *%
%* xo = x−coordinate of the right side of the square *%
%* photocell. *%
%* yo = y−coordinate of the upper side of the square *%
%* photocell. *%
%* c = cornenrs of the square inside the circular *%
%* beam spot. *%
%* Output of the function: *%
%* Power = Power at the area of intersection between *%
%* circlular beam spot and square photocell, as the *%
%* beam spot moves along both the x and y axis. *%
%***%

function Power=POWERXY2(r,xn,yn,xint,yint,xo,yo,c)

lamda=6.33e−05; %Wavelength of a He−Ne laser source in cm
%Spot size of the beam 2Wo=2/3cm, to get 99% of Total Power
Wo=1/3;
zo=(pi*Woˆ2)/lamda; %Rayleigh range in cm
z=0; %Axial distance z in cm
Io=1; %Maximum intensity value
W=Wo*sqrt(1+(z/zo)ˆ2); %Beam Width
I1=Io*(Wo/W)ˆ2;
AA=I1*(W/2)ˆ2;
BB=exp((−2*rˆ2)/Wˆ2);

Pc=I1*(2*pi)*((W/2)ˆ2)*(1−BB); %Power of spot with radius r

px=isreal(xint); %Check if there is intersection (x−coordinate)
py=isreal(yint); %Check if there is intersection (y−coordinate)

%Case 1: No intersection between circle and square OR just touching
if (px==0 & py==0)|(length(xint)==1)

Power=0;

Appendix A: Matlab Codes 129

elseif px 6=0 & py 6=0
%Case 2: Center of circle at the origin of the coordinate system

if xn==0 & yn==0
Power=Pc;

%Case 3: Center of circle moving along the y−axis only
elseif xn==0 & yn 6=0

Power=feval('POWERY2',r,xn,yn,xint,yint,xo,yo,c);
%Case 4: Center of circle moving along the x−axis only

elseif xn 6=0 & yn==0
Power=feval('POWERX2',r,xn,yn,xint,yint,xo,yo,c);

%Case 5: Center of circle moving along both x and y axis
elseif xn 6=0 & yn 6=0

if xn>xo & yn>yo %Region 1
dx=xn−xo;
dy=yn−yo;

elseif xn<−xo & yn>yo %Region 2
dx=−xn−xo;
dy=yn−yo;

elseif xn<−xo & yn<−yo %Region 3
dx=−xn−xo;
dy=−yn−yo;

elseif xn>xo & yn<−yo %Region 4
dx=xn−xo;
dy=−yn−yo;

elseif xn≥xo & (yn≤yo & yn>0) %Region 5
dx=xn−xo;
dy=yo−yn;

elseif xn≥xo & (yn≥−yo & yn<0) %Region 6
dx=xn−xo;
dy=yo+yn;

elseif xn≤−xo & (yn≤yo & yn>0) %Region 7
dx=−xn−xo;
dy=yo−yn;

elseif xn≤−xo & (yn≥−yo & yn<0) %Region 8
dx=−xn−xo;
dy=yo+yn;

elseif yn≤−yo & (xn≤xo & xn>0) %Region 9
dx=xo−xn;
dy=−yn−yo;

elseif yn≤−yo & (xn≥−xo & xn<0) %Region 10
dx=xo+xn;
dy=−yn−yo;

elseif yn≥yo & (xn≤xo & xn>0) %Region 11
dx=xo−xn;
dy=yn−yo;

elseif yn≥yo & (xn≥−xo & xn<0) %Region 12
dx=xo+xn;
dy=yn−yo;

elseif (xn<xo & xn>0) & (yn<yo & yn>0) %Region 13
dx=xo−xn;
dy=yo−yn;

elseif (xn>−xo & xn<0) & (yn<yo & yn>0) %Region 14
dx=xo+xn;
dy=yo−yn;

Appendix A: Matlab Codes 130

elseif (xn>−xo & xn<0) & (yn>−yo & yn<0) %Region 15
dx=xo+xn;
dy=yo+yn;

elseif (xn<xo & xn>0) & (yn>−yo & yn<0) %Region 16
dx=xo−xn;
dy=yo+yn;

end

alpha1=asin(dx/r);
alpha2=pi−alpha1;

beta1=asin(dy/r);
beta2=pi−beta1;

phi=atan(dy/dx);

kx=(2/Wˆ2)*dxˆ2;
ky=(2/Wˆ2)*dyˆ2;

Qx=@(alpha)exp(−kx./((sin(alpha)).ˆ2));
Qy=@(beta)exp(−ky./((sin(beta)).ˆ2));

Fx=quad(Qx,(phi+(pi/2)),alpha2);
Fy=quad(Qy,(pi−phi),beta2);
Pxy=AA*(−BB*((pi/2)−(alpha1+beta1))+Fx+Fy);

Fxx=quad(Qx,alpha1,alpha2);
Px=AA*(−BB*(alpha2−alpha1)+Fxx);

Fyy=quad(Qy,beta1,beta2);
Py=AA*(−BB*(beta2−beta1)+Fyy);

%% Coordinates of the center of the circle (xn,yn) are located
%% in Region 1, 2, 3 or 4:
if(xn>xo & yn>yo)|(xn>xo & yn<−yo) |

(xn<−xo & yn>yo)|(xn<−xo & yn<−yo)
Power=Pxy;

%% Coordinates of the center of the circle (xn,yn) are located
%% in Region 5, 6, 7 or 8:
elseif(xn≥xo & (yn≤yo & yn>0))|(xn≥xo & (yn≥−yo & yn<0))|

(xn≤−xo & (yn≤yo & yn>0))|(xn≤−xo & (yn≥−yo & yn<0))
if length(c)==1 & length(xint)==2

if dx==0 & dy==0
Power=Pc/4;

else
Power=Px−Pxy;

end
elseif length(c)==0 & length(xint)==2

Power=Px;
end

%% Coordinates of the center of the circle (xn,yn) are located
%% in Region 9, 10, 11 or 12:
elseif (yn≥yo & (xn≤xo & xn>0))|(yn≥yo & (xn≥−xo & xn<0))|

(yn≤−yo & (xn≤xo & xn>0))|(yn≤−yo & (xn≥−xo & xn<0))
if length(c)==1 & length(xint)==2

if dx==0 & dy==0

Appendix A: Matlab Codes 131

Power=Pc/4;
else

Power=Py−Pxy;
end

elseif length(c)==0 & length(xint)==2
Power=Py;

end

%% Coordinates of the center of the circle (xn,yn) are located
%% in Region 13, 14, 15 or 16:
elseif((xn<xo & xn>0) & (yn<yo & yn>0))|

((xn>−xo & xn<0) & (yn<yo & yn>0))|
((xn<xo & xn>0) & (yn>−yo & yn<0))|
((xn>−xo & xn<0) & (yn>−yo & yn<0))

if length(c)==1 & length(xint)==2
Power=Pc−(Py+Px−Pxy);

elseif length(c)==0 & length(xint)==4
Power=Pc−(Py+Px);

end
end

end
end

Appendix A: Matlab Codes 132

%%%
%%%
%%% Power calculation program for a quad−cell photodetector %%%
%%% array at a certain epsilon and ∆, while moving the %%%
%%% beam spot along both the x and y axis. %%%
%%% filename = 'Quadcell POWER.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%
clc
clear all

epsn=0.1; %Epsilon (horizontal gap)
dlta=0.3; %Delta (vertical gap)

xs1=0.5+(epsn/2);ys1=0.5+(dlta/2); %Centre of photocell 1
xs2=−0.5−(epsn/2);ys2=0.5+(dlta/2); %Centre of photocell 2
xs3=−0.5−(epsn/2);ys3=−0.5−(dlta/2); %Centre of photocell 3
xs4=0.5+(epsn/2);ys4=−0.5−(dlta/2); %Centre of photocell 4

xc=−2:0.01:2; %x−coordinate of the beam spot center
yc=−2:0.01:2; %y−coordinate of the beam spot center
nxc=length(xc);
nyc=length(yc);

Xc(1,:)=xc−xs1;Yc(1,:)=yc−ys1;
Xc(2,:)=xc−xs2;Yc(2,:)=yc−ys2;
Xc(3,:)=xc−xs3;Yc(3,:)=yc−ys3;
Xc(4,:)=xc−xs4;Yc(4,:)=yc−ys4;

load 'Pcentre' %Normalized power for one photocell
V=−3:0.01:3; %Range for the x and y plane for Pcentre
nxV=length(V);
nyV=nxV;

vx(1,1)=find(abs(V−(Xc(1,1)))≥0 & abs(V−(Xc(1,1)))≤0.001);
vx(1,2)=find(abs(V−(Xc(1,nxc)))≥0 & abs(V−(Xc(1,nxc)))≤0.001);

vx(2,1)=find(abs(V−(Xc(2,1)))≥0 & abs(V−(Xc(2,1)))≤0.001);
vx(2,2)=find(abs(V−(Xc(2,nxc)))≥0 & abs(V−(Xc(2,nxc)))≤0.001);

vx(3,1)=find(abs(V−(Xc(3,1)))≥0 & abs(V−(Xc(3,1)))≤0.001);
vx(3,2)=find(abs(V−(Xc(3,nxc)))≥0 & abs(V−(Xc(3,nxc)))≤0.001);

vx(4,1)=find(abs(V−(Xc(4,1)))≥0 & abs(V−(Xc(4,1)))≤0.001);
vx(4,2)=find(abs(V−(Xc(4,nxc)))≥0 & abs(V−(Xc(4,nxc)))≤0.001);

vy(1,1)=find(abs(V−(Yc(1,1)))≥0 & abs(V−(Yc(1,1)))≤0.001);
vy(1,2)=find(abs(V−(Yc(1,nyc)))≥0 & abs(V−(Yc(1,nyc)))≤0.001);

vy(2,1)=find(abs(V−(Yc(2,1)))≥0 & abs(V−(Yc(2,1)))≤0.001);
vy(2,2)=find(abs(V−(Yc(2,nyc)))≥0 & abs(V−(Yc(2,nyc)))≤0.001);

vy(3,1)=find(abs(V−(Yc(3,1)))≥0 & abs(V−(Yc(3,1)))≤0.001);
vy(3,2)=find(abs(V−(Yc(3,nyc)))≥0 & abs(V−(Yc(3,nyc)))≤0.001);

Appendix A: Matlab Codes 133

vy(4,1)=find(abs(V−(Yc(4,1)))≥0 & abs(V−(Yc(4,1)))≤0.001);
vy(4,2)=find(abs(V−(Yc(4,nyc)))≥0 & abs(V−(Yc(4,nyc)))≤0.001);

dx(1,1)=vx(1,1)−1;dx(1,2)=nxV−vx(1,2);
dx(2,1)=vx(2,1)−1;dx(2,2)=nxV−vx(2,2);
dx(3,1)=vx(3,1)−1;dx(3,2)=nxV−vx(3,2);
dx(4,1)=vx(4,1)−1;dx(4,2)=nxV−vx(4,2);

Dx(1,1)=dx(1,1)+1;Dx(1,2)=nxV−dx(1,2);
Dx(2,1)=dx(2,1)+1;Dx(2,2)=nxV−dx(2,2);
Dx(3,1)=dx(3,1)+1;Dx(3,2)=nxV−dx(3,2);
Dx(4,1)=dx(4,1)+1;Dx(4,2)=nxV−dx(4,2);

dy(1,1)=vy(1,1)−1;dy(1,2)=nyV−vy(1,2);
dy(2,1)=vy(2,1)−1;dy(2,2)=nyV−vy(2,2);
dy(3,1)=vy(3,1)−1;dy(3,2)=nyV−vy(3,2);
dy(4,1)=vy(4,1)−1;dy(4,2)=nyV−vy(4,2);

Dy(1,1)=dy(1,1)+1;Dy(1,2)=nyV−dy(1,2);
Dy(2,1)=dy(2,1)+1;Dy(2,2)=nyV−dy(2,2);
Dy(3,1)=dy(3,1)+1;Dy(3,2)=nyV−dy(3,2);
Dy(4,1)=dy(4,1)+1;Dy(4,2)=nyV−dy(4,2);

PS1=Pcentre(Dx(1,1):Dx(1,2),Dy(1,1):Dy(1,2));
PS2=Pcentre(Dx(2,1):Dx(2,2),Dy(2,1):Dy(2,2));
PS3=Pcentre(Dx(3,1):Dx(3,2),Dy(3,1):Dy(3,2));
PS4=Pcentre(Dx(4,1):Dx(4,2),Dy(4,1):Dy(4,2));
figure
%Plot of PS1 vs. position of centre of beam spot
mesh(xc,yc,PS1)
xlabel('x (cm)')
ylabel('y (cm)')
zlabel('Normalized Power')
colorbar

figure
%Plot of PS2 vs. position of centre of beam spot
mesh(xc,yc,PS2)
xlabel('x (cm)')
ylabel('y (cm)')
zlabel('Normalized Power')
colorbar

figure
%Plot of PS3 vs. position of centre of beam spot
mesh(xc,yc,PS3)
xlabel('x (cm)')
ylabel('y (cm)')
zlabel('Normalized Power')
colorbar

figure
%Plot of PS4 vs. position of centre of beam spot
mesh(xc,yc,PS4)
xlabel('x (cm)')
ylabel('y (cm)')
zlabel('Normalized Power')
colorbar

Appendix A: Matlab Codes 134

%%%
%%%
%%% Power calculation program for a quad−cell photodetector %%%
%%% array at different values for epsilon and ∆, while %%%
%%% moving the beam spot along both the x and y axis. %%%
%%% Epsilon and ∆ are assumed to be equal. %%%
%%% filename = 'Quadcell POWER modifiedfurther.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

clc
clear all

for k=1:10
epsn=0.1*(k−1); %Epsilon (horizontal gap)
dlta=0.1*(k−1); %Delta (vertical gap)

xs1=0.5+(epsn/2);ys1=0.5+(dlta/2); %Centre of photocell 1
xs2=−0.5−(epsn/2);ys2=0.5+(dlta/2); %Centre of photocell 2
xs3=−0.5−(epsn/2);ys3=−0.5−(dlta/2); %Centre of photocell 3
xs4=0.5+(epsn/2);ys4=−0.5−(dlta/2); %Centre of photocell 4

xc=−2:0.01:2; %x−coordinate of the beam spot center
yc=−2:0.01:2; %y−coordinate of the beam spot center
nxc=length(xc);
nyc=length(yc);

Xc(1,:)=xc−xs1;Yc(1,:)=yc−ys1;
Xc(2,:)=xc−xs2;Yc(2,:)=yc−ys2;
Xc(3,:)=xc−xs3;Yc(3,:)=yc−ys3;
Xc(4,:)=xc−xs4;Yc(4,:)=yc−ys4;

load 'Pcentre' %Normalized power for one photocell
V=−3:0.01:3; %Range for the x and y plane for Pcentre
nxV=length(V);
nyV=nxV;

vx(1,1)=find(abs(V−(Xc(1,1)))≥0 & abs(V−(Xc(1,1)))≤0.001);
vx(1,2)=find(abs(V−(Xc(1,nxc)))≥0 & abs(V−(Xc(1,nxc)))≤0.001);

vx(2,1)=find(abs(V−(Xc(2,1)))≥0 & abs(V−(Xc(2,1)))≤0.001);
vx(2,2)=find(abs(V−(Xc(2,nxc)))≥0 & abs(V−(Xc(2,nxc)))≤0.001);

vx(3,1)=find(abs(V−(Xc(3,1)))≥0 & abs(V−(Xc(3,1)))≤0.001);
vx(3,2)=find(abs(V−(Xc(3,nxc)))≥0 & abs(V−(Xc(3,nxc)))≤0.001);

vx(4,1)=find(abs(V−(Xc(4,1)))≥0 & abs(V−(Xc(4,1)))≤0.001);
vx(4,2)=find(abs(V−(Xc(4,nxc)))≥0 & abs(V−(Xc(4,nxc)))≤0.001);

vy(1,1)=find(abs(V−(Yc(1,1)))≥0 & abs(V−(Yc(1,1)))≤0.001);
vy(1,2)=find(abs(V−(Yc(1,nyc)))≥0 & abs(V−(Yc(1,nyc)))≤0.001);

vy(2,1)=find(abs(V−(Yc(2,1)))≥0 & abs(V−(Yc(2,1)))≤0.001);
vy(2,2)=find(abs(V−(Yc(2,nyc)))≥0 & abs(V−(Yc(2,nyc)))≤0.001);

Appendix A: Matlab Codes 135

vy(3,1)=find(abs(V−(Yc(3,1)))≥0 & abs(V−(Yc(3,1)))≤0.001);
vy(3,2)=find(abs(V−(Yc(3,nyc)))≥0 & abs(V−(Yc(3,nyc)))≤0.001);

vy(4,1)=find(abs(V−(Yc(4,1)))≥0 & abs(V−(Yc(4,1)))≤0.001);
vy(4,2)=find(abs(V−(Yc(4,nyc)))≥0 & abs(V−(Yc(4,nyc)))≤0.001);

dx(1,1)=vx(1,1)−1;dx(1,2)=nxV−vx(1,2);
dx(2,1)=vx(2,1)−1;dx(2,2)=nxV−vx(2,2);
dx(3,1)=vx(3,1)−1;dx(3,2)=nxV−vx(3,2);
dx(4,1)=vx(4,1)−1;dx(4,2)=nxV−vx(4,2);

Dx(1,1)=dx(1,1)+1;Dx(1,2)=nxV−dx(1,2);
Dx(2,1)=dx(2,1)+1;Dx(2,2)=nxV−dx(2,2);
Dx(3,1)=dx(3,1)+1;Dx(3,2)=nxV−dx(3,2);
Dx(4,1)=dx(4,1)+1;Dx(4,2)=nxV−dx(4,2);

dy(1,1)=vy(1,1)−1;dy(1,2)=nyV−vy(1,2);
dy(2,1)=vy(2,1)−1;dy(2,2)=nyV−vy(2,2);
dy(3,1)=vy(3,1)−1;dy(3,2)=nyV−vy(3,2);
dy(4,1)=vy(4,1)−1;dy(4,2)=nyV−vy(4,2);

Dy(1,1)=dy(1,1)+1;Dy(1,2)=nyV−dy(1,2);
Dy(2,1)=dy(2,1)+1;Dy(2,2)=nyV−dy(2,2);
Dy(3,1)=dy(3,1)+1;Dy(3,2)=nyV−dy(3,2);
Dy(4,1)=dy(4,1)+1;Dy(4,2)=nyV−dy(4,2);

PS1(:,:,k)=Pcentre(Dx(1,1):Dx(1,2),Dy(1,1):Dy(1,2));
PS2(:,:,k)=Pcentre(Dx(2,1):Dx(2,2),Dy(2,1):Dy(2,2));
PS3(:,:,k)=Pcentre(Dx(3,1):Dx(3,2),Dy(3,1):Dy(3,2));
PS4(:,:,k)=Pcentre(Dx(4,1):Dx(4,2),Dy(4,1):Dy(4,2));

ps1(k)=PS1(201,201,k);

end

epsn=0:0.1:0.9;
%Plot of normalized power of photocell 1 at (0,0) vs. Epsilon
plot(epsn,ps1)

Appendix A: Matlab Codes 136

%%%
%%%
%%% Power calculation program for a quad−cell photodetector %%%
%%% array at different values for Epsilon and Delta, while %%%
%%% moving the beam spot along both the x and y axis. %%%
%%% filename = 'Quadcell POWER modifiedfurther2D.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2007 %%%
%%%
%%%

clc
clear all

for k=1:10
for p=1:10

epsn=0.1*(k−1); %Epsilon (horizontal gap)
dlta=0.1*(p−1); %Delta (vertical gap)
xs1=0.5+(epsn/2);ys1=0.5+(dlta/2); %Centre of photocell 1
xs2=−0.5−(epsn/2);ys2=0.5+(dlta/2); %Centre of photocell 2
xs3=−0.5−(epsn/2);ys3=−0.5−(dlta/2); %Centre of photocell 3
xs4=0.5+(epsn/2);ys4=−0.5−(dlta/2); %Centre of photocell 4

xc=−2:0.01:2; %x−coordinate of the beam spot center
yc=−2:0.01:2; %y−coordinate of the beam spot center

nxc=length(xc);
nyc=length(yc);

Xc(1,:)=xc−xs1;Yc(1,:)=yc−ys1;
Xc(2,:)=xc−xs2;Yc(2,:)=yc−ys2;
Xc(3,:)=xc−xs3;Yc(3,:)=yc−ys3;
Xc(4,:)=xc−xs4;Yc(4,:)=yc−ys4;

load 'Pcentre' %Normalized power for one photocell
V=−3:0.01:3; %Range for the x and y plane for Pcentre
nxV=length(V);
nyV=nxV;

vx(1,1)=find(abs(V−(Xc(1,1)))≥0 & abs(V−(Xc(1,1)))≤0.001);
vx(1,2)=find(abs(V−(Xc(1,nxc)))≥0 & abs(V−(Xc(1,nxc)))≤0.001);

vx(2,1)=find(abs(V−(Xc(2,1)))≥0 & abs(V−(Xc(2,1)))≤0.001);
vx(2,2)=find(abs(V−(Xc(2,nxc)))≥0 & abs(V−(Xc(2,nxc)))≤0.001);

vx(3,1)=find(abs(V−(Xc(3,1)))≥0 & abs(V−(Xc(3,1)))≤0.001);
vx(3,2)=find(abs(V−(Xc(3,nxc)))≥0 & abs(V−(Xc(3,nxc)))≤0.001);

vx(4,1)=find(abs(V−(Xc(4,1)))≥0 & abs(V−(Xc(4,1)))≤0.001);
vx(4,2)=find(abs(V−(Xc(4,nxc)))≥0 & abs(V−(Xc(4,nxc)))≤0.001);

vy(1,1)=find(abs(V−(Yc(1,1)))≥0 & abs(V−(Yc(1,1)))≤0.001);
vy(1,2)=find(abs(V−(Yc(1,nyc)))≥0 & abs(V−(Yc(1,nyc)))≤0.001);

vy(2,1)=find(abs(V−(Yc(2,1)))≥0 & abs(V−(Yc(2,1)))≤0.001);
vy(2,2)=find(abs(V−(Yc(2,nyc)))≥0 & abs(V−(Yc(2,nyc)))≤0.001);

vy(3,1)=find(abs(V−(Yc(3,1)))≥0 & abs(V−(Yc(3,1)))≤0.001);

Appendix A: Matlab Codes 137

vy(3,2)=find(abs(V−(Yc(3,nyc)))≥0 & abs(V−(Yc(3,nyc)))≤0.001);

vy(4,1)=find(abs(V−(Yc(4,1)))≥0 & abs(V−(Yc(4,1)))≤0.001);
vy(4,2)=find(abs(V−(Yc(4,nyc)))≥0 & abs(V−(Yc(4,nyc)))≤0.001);

dx(1,1)=vx(1,1)−1;dx(1,2)=nxV−vx(1,2);
dx(2,1)=vx(2,1)−1;dx(2,2)=nxV−vx(2,2);
dx(3,1)=vx(3,1)−1;dx(3,2)=nxV−vx(3,2);
dx(4,1)=vx(4,1)−1;dx(4,2)=nxV−vx(4,2);

Dx(1,1)=dx(1,1)+1;Dx(1,2)=nxV−dx(1,2);
Dx(2,1)=dx(2,1)+1;Dx(2,2)=nxV−dx(2,2);
Dx(3,1)=dx(3,1)+1;Dx(3,2)=nxV−dx(3,2);
Dx(4,1)=dx(4,1)+1;Dx(4,2)=nxV−dx(4,2);

dy(1,1)=vy(1,1)−1;dy(1,2)=nyV−vy(1,2);
dy(2,1)=vy(2,1)−1;dy(2,2)=nyV−vy(2,2);
dy(3,1)=vy(3,1)−1;dy(3,2)=nyV−vy(3,2);
dy(4,1)=vy(4,1)−1;dy(4,2)=nyV−vy(4,2);

Dy(1,1)=dy(1,1)+1;Dy(1,2)=nyV−dy(1,2);
Dy(2,1)=dy(2,1)+1;Dy(2,2)=nyV−dy(2,2);
Dy(3,1)=dy(3,1)+1;Dy(3,2)=nyV−dy(3,2);
Dy(4,1)=dy(4,1)+1;Dy(4,2)=nyV−dy(4,2);

PS1(:,:)=Pcentre(Dx(1,1):Dx(1,2),Dy(1,1):Dy(1,2));
PS2(:,:)=Pcentre(Dx(2,1):Dx(2,2),Dy(2,1):Dy(2,2));
PS3(:,:)=Pcentre(Dx(3,1):Dx(3,2),Dy(3,1):Dy(3,2));
PS4(:,:)=Pcentre(Dx(4,1):Dx(4,2),Dy(4,1):Dy(4,2));

ps1(k,p)=PS1(201,201);
end

end

epsn=0:0.1:0.9;
dlta=0:0.1:0.9;

%2D Plot of normalized power of photocell 1 at (0,0) vs.
%Epsilon and Delta
surf(epsn,dlta,ps1)
colormap winter
axis([0 0.9 0 0.9 0 0.25])
xlabel('Epsilon (cm)')
ylabel('Delta (cm)')
zlabel('Normalized Power')

Appendix A: Matlab Codes 138

%%%
%%%
%%% Wavelet network training for multiple input multiple %%%
%%% output (MIMO) function approximation using dyadic grid %%%
%%% for WN initialization. %%%
%%% filename = 'wavnet52 dyadic initialization.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2009 %%%
%%%
%%%

close all
clear all
clc

load 'inoutzero.txt' %Loading input/output simulated data (no gaps)
% load 'inout.txt' %Loading input/output simulated data (with gaps)
% load 'inoutexp' %Loading input/output experimental data

tic

%−−−%
% WN Initialization %
%−−−%

%Input simulated data (no gaps)
x=[inoutzero(:,3),inoutzero(:,4),inoutzero(:,5),inoutzero(:,6)];
%Desired simulated data (no gaps)
Y=[inoutzero(:,1),inoutzero(:,2)];

%Input simulated data (with gaps)
% x=[inout(:,3),inout(:,4),inout(:,5),inout(:,6)];
%Desired simulated data (with gaps)
% Y=[inout(:,1),inout(:,2)];

%Input experimental data
% x=[inoutexp(:,3),inoutexp(:,4),inoutexp(:,5),inoutexp(:,6)];
%Desired experimental data
% Y=[inoutexp(:,1),inoutexp(:,2)];

%Applying preprocessing condition on data:
nzi1=find((x(:,1) 6=0 & x(:,2) 6=0 & x(:,3) 6=0 & x(:,4) 6=0));
for ni1=1:length(nzi1)

x new1(ni1,:)=x(nzi1(ni1),:);
Y new1(ni1,:)=Y(nzi1(ni1),:);

end
x=x new1; %Input data after condition
Y=Y new1; %Desired output data after condition

tstr=find(Y(:,1)==0);
%Input data used for testing
x test=x(tstr(1):tstr(end),:);
%Desired output data used for testing
Y test=Y(tstr(1):tstr(end),:)';
%Input data used for training
x=[x(1:tstr(1)−1,:);x(tstr(end)+1:end,:)];
%Desired output data used for training

Appendix A: Matlab Codes 139

Y=[Y(1:tstr(1)−1,:);Y(tstr(end)+1:end,:)];

Y=Y';
u=0.01; %Setting the learning rate
gamma=1−u; %Setting the momentum coefficient
Ax=size(x);
Ay=size(Y);
Np=Ax(1,1); %no. of patterns
Ni=Ax(1,2); %no. of input nodes
Nl=3; %no. of levels
Nw=(2ˆNl)−1; %no. of hidden nodes
No=Ay(1,1); %no. of output nodes
I=ones(1,Np);
input=[I; x']; %input matrix
C=input';

%Initializing Woi using Least Squares Method
for k=1:No

Woi1=(inv(C'*C))*C'*Y(k,:)';
Woi1=Woi1';
Woi(k,:)=Woi1;

end

%Initializing Woh to zeros
Woh=zeros(No,Nw);

%Initializing translation and dialation parameters
%using dyadic grid
ak=min(x);
bk=max(x);

for i=1:Ni
for L=1:Nl

div=(bk(i)−ak(i))/(2ˆL);
n=1;
p=0;
while p 6=bk(i)

p=ak(1,i)+(n*div);
M(n)=p;
D(n)=div;
n=n+1;

end

for w=1:(n/2)
f(1,w,L)=M(2*w−1);
g(1,w,L)=D(2*w−1);

end
end
F=squeeze(f);
G=squeeze(g);
[pf,qf]=find(F 6=0);
[pg,qg]=find(G 6=0);

for w=1:length(pf)
s(w)=F(pf(w),qf(w));

end
if F(1,1)==0

m(:,i)=[F(1,1),s];

Appendix A: Matlab Codes 140

elseif F(1,1) 6=0
m(:,i)=s;

end

for w=1:length(pg)
t(w)=G(pg(w),qg(w));

end
if G(1,1)==0

d(:,i)=[G(1,1),t];
elseif G(1,1) 6=0

d(:,i)=t;
end

end

DWoi=zeros(No,Ni+1,Np);
DWoh=zeros(No,Nw,Np);
Dm=zeros(Nw,Ni,Np);
Dd=zeros(Nw,Ni,Np);

DWoh aver=zeros(No,Nw);
DWoi aver=zeros(No,Ni+1);
Dm aver=zeros(Nw,Ni);
Dd aver=zeros(Nw,Ni);

DeltaWoi old=0*Woi;
DeltaWoh old=0*Woh;
Deltam old=0*m;
Deltad old=0*d;

iterations=10ˆ5;

z=zeros(Nw,Ni,Np);

phi=zeros(Nw,Ni,Np);
phi p=zeros(Nw,Ni,Np);
PHI=zeros(1,Nw,Np);
PHI p=zeros(Nw,Ni,Np);

Y hat=zeros(No,Np);
E=zeros(No,Np);
MSE=zeros(1,iterations);

for loops=1:iterations
loops
%−−−%
% Feedforward algorithm %
%−−−%

PHI=ones(1,Nw,Np);
for j=1:Nw

for i=1:Ni
z(j,i,:)=(x(:,i)−m(j,i))./d(j,i);
phi(j,i,:)=(−z(j,i,:)).*exp(−0.5*(z(j,i,:).ˆ2));
phi p(j,i,:)=(((z(j,i,:)).ˆ2)−1).*exp(−0.5*(z(j,i,:).ˆ2));
PHI(1,j,:)=PHI(1,j,:).*phi(j,i,:);

end
end

Appendix A: Matlab Codes 141

%Use squeeze command on PHI to reduce it from a 3D to a 2D matrix
PHI=squeeze(PHI);

%Batch computation of the wavelet network output Y hat
%using the feedforward equation
Y hat=(Woh*PHI) + (Woi*input);

%Computing the error E between the desired output Y
%and the WN output Y hat
E=Y−Y hat;

%Computing the sum of square error (SSE)
SSE=sum(sum(E.*E));

%Computing the mean square error (MSE) for every iteration
MSE(loops)=SSE/Np;

%−−−%
% Backpropagation algorithm %
%−−−%

for k=1:No
DWoi(k,1,:)=E(k,:)*u;

end

for k=1:No
for i=1:Ni
DWoi(k,i+1,:)=E(k,:)*u.*x(:,i)';

end
end

for k=1:No
for j=1:Nw
DWoh(k,j,:)=E(k,:)*u.*PHI(j,:);

end
end

for j=1:Nw
for i=1:Ni

P=phi(j,:,:);
P(1,i,:)=phi p(j,i,:);
PHI p(j,i,:)=prod(P);

end
end

for j=1:Nw
for i=1:Ni
EDmy=zeros(1,1,Np);
EDdy=zeros(1,1,Np);
for k=1:No

p=squeeze(PHI p(j,i,:));
Dmy(k,:)=−(Woh(k,j)/d(j,i)).*p;
zz=squeeze(z(j,i,:));
Ddy(k,:)=Dmy(k,:).*zz';
eDmy(1,1,:)=E(k,:).*Dmy(k,:);
eDdy(1,1,:)=E(k,:).*Ddy(k,:);
EDmy=EDmy+eDmy;
EDdy=EDdy+eDdy;

Appendix A: Matlab Codes 142

end
Dm(j,i,:)=EDmy;
Dd(j,i,:)=EDdy;

end
end

for k=1:No
for j=1:Nw

DWoh aver(k,j)=mean(DWoh(k,j,:));
end

end

for k=1:No
for i=1:Ni+1

DWoi aver(k,i)=mean(DWoi(k,i,:));
end

end

for j=1:Nw
for i=1:Ni

Dm aver(j,i)=mean(Dm(j,i,:));
Dd aver(j,i)=mean(Dd(j,i,:));

end
end

DeltaWoi=DWoi aver+gamma*DeltaWoi old;
DeltaWoh=DWoh aver+gamma*DeltaWoh old;
Deltam=Dm aver+gamma*Deltam old;
Deltad=Dd aver+gamma*Deltad old;

%Updating Woi, Woh, m and d
Woi=Woi+DeltaWoi;
Woh=Woh+DeltaWoh;
m=m+Deltam;
d=d+Deltad;

DeltaWoi old=DeltaWoi;
DeltaWoh old=DeltaWoh;
Deltam old=Deltam;
Deltad old=Deltad;

end

figure(1)
loglog(MSE,'*')
xlabel('Iterations')
ylabel('MSE')
grid on

save 'RP,simulated data no gaps,w=gaussian,Nl=5,Nw=31,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 05'
figure(2)
plot3(Y hat(1,:),Y hat(2,:),x(:,1))
hold on
plot3(Y(1,:),Y(2,:),x(:,1),'r')
xlabel('x')
ylabel('y')
zlabel('P1')

Appendix A: Matlab Codes 143

figure(3)
plot3(Y hat(1,:),Y hat(2,:),x(:,2))
hold on
plot3(Y(1,:),Y(2,:),x(:,2),'r')
xlabel('x')
ylabel('y')
zlabel('P2')

figure(4)
plot3(Y hat(1,:),Y hat(2,:),x(:,3))
hold on
plot3(Y(1,:),Y(2,:),x(:,3),'r')
xlabel('x')
ylabel('y')
zlabel('P3')

figure(5)
plot3(Y hat(1,:),Y hat(2,:),x(:,4))
hold on
plot3(Y(1,:),Y(2,:),x(:,4),'r')
xlabel('x')
ylabel('y')
zlabel('P4')

figure(6)
plot(Y hat(1,:),'LineStyle',':','LineWidth',2,'Color',[0 0 0])
hold on
plot(Y(1,:),'LineWidth',2,'Color',[0 0 0])
xlabel('N p')
ylabel('x')
legend('Network output','Desired output')

figure(7)
plot(Y hat(2,:),'LineStyle',':','LineWidth',2,'Color',[0 0 0])
hold on
plot(Y(2,:),'LineWidth',2,'Color',[0 0 0])
xlabel('N p')
ylabel('y')
legend('Network output','Desired output')

figure(8)
f=find(Y(1,:)==0);
handlevector(1)=plot(Y(2,f(1):f(end)),x(f(1):f(end),1),
'LineWidth',2,'Color',[0 0 0],'DisplayName','P1 Desired Output');
hold on
handlevector(2)=plot(Y hat(2,f(1):f(end)),x(f(1):f(end),1),
'Marker','ˆ','LineStyle','none','Color',[0 0 0],
'DisplayName','P1 WN output');
xlabel('y (cm)')
ylabel('Normalized Power')
legend(handlevector([1 2]))

figure(9)
handlevector(1)=plot(Y(2,f(1):f(end)),x(f(1):f(end),2),
'LineWidth',2,'Color',[0 0 0],'DisplayName','P2 Desired Output');
hold on
handlevector(2)=plot(Y hat(2,f(1):f(end)),x(f(1):f(end),2),
'Marker','o','LineStyle','none','Color',[0 0 0],

Appendix A: Matlab Codes 144

'DisplayName','P2 WN output');
xlabel('y (cm)')
ylabel('Normalized Power')
legend(handlevector([1 2]))

figure(10)
handlevector(1)=plot(Y(2,f(1):f(end)),x(f(1):f(end),3),
'LineWidth',2,'Color',[0 0 0],'DisplayName','P3 Desired Output');
hold on
handlevector(2)=plot(Y hat(2,f(1):f(end)),x(f(1):f(end),3),
'Marker','square','LineStyle','none','Color',[0 0 0],
'DisplayName','P3 WN output');
xlabel('y (cm)')
ylabel('Normalized Power')
legend(handlevector([1 2]))

figure(11)
hold on
handlevector(1)=plot(Y(2,f(1):f(end)),x(f(1):f(end),4),
'LineWidth',2,'Color',[0 0 0],'DisplayName','P4 Desired Output');
hold on
handlevector(2)=plot(Y hat(2,f(1):f(end)),x(f(1):f(end),4),
'Marker','*','LineStyle','none','Color',[0 0 0],
'DisplayName','P4 WN output');
xlabel('y (cm)')
ylabel('Normalized Power')
legend(handlevector([1 2]))

toc

Appendix A: Matlab Codes 145

%%%
%%%
%%% Wavelet network testing for multiple input multiple %%%
%%% output (MIMO) function approximation using dyadic grid %%%
%%% for WN initialization. %%%
%%% filename = 'wavnet52 forward testing.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2009 %%%
%%%
%%%

clear all
clc
load 'simulated data with gaps,w=gaussian,Nl=6,Nw=63,gamma=0 99,u=0 01,
loops=10to4,LS init,Wavelon init,testing neg0 55,divx=0 1,divy=0 02'
load 'x test'
load 'Y test'
N=size(x test);
Np=N(1,1);
I=ones(1,Np);
input tst=[I; x test'];
z=zeros(Nw,Ni,Np);

phi=zeros(Nw,Ni,Np);
phi p=zeros(Nw,Ni,Np);

PHI p=zeros(Nw,Ni,Np);

Y hat tst=zeros(No,Np);
E=zeros(No,Np);

PHI=ones(1,Nw,Np);
for j=1:Nw

for i=1:Ni
z(j,i,:)=(x test(:,i)−m(j,i))./d(j,i);
phi(j,i,:)=(−z(j,i,:)).*exp(−0.5*(z(j,i,:).ˆ2));
phi p(j,i,:)=(((z(j,i,:)).ˆ2)−1).*exp(−0.5*(z(j,i,:).ˆ2));
PHI(1,j,:)=PHI(1,j,:).*phi(j,i,:);

end
end
PHI=squeeze(PHI);
Y hat tst=(Woh*PHI) + (Woi*input tst);
E=Y test−Y hat tst;

SSE=sum(sum(E.*E));

MSE=SSE/Np;
MSE test6=MSE;
save('MSE test,simulated data with gaps,w=gaussian,Nl=6,Nw=63,
gamma=0 99,u=0 01,loops=10to4,LS init,Wavelon init,
testing neg0 55,divx=0 1,divy=0 02', 'MSE test6')

Appendix A: Matlab Codes 146

%%%
%%%
%%% Comparing the MSE values after training simulated data %%%
%%% with gaps and testing for simulated data set at x=0 cm. %%%
%%% filename = 'wavnet52 mse reverse simwithgaps %%%
%%% divx0 05 divy0 02 testing.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2009 %%%
%%%
%%%
clear all
clc

load 'MSE test,RP,simulated data gaps,w=gaussian,Nl=2,Nw=3,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
load 'RP,simulated data gaps,w=gaussian,Nl=2,Nw=3,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
MSE train(1)=MSE(end);
MSE test(1)=MSE RPtest2;

load 'MSE test,RP,simulated data gaps,w=gaussian,Nl=3,Nw=7,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
load 'RP,simulated data gaps,w=gaussian,Nl=3,Nw=7,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
MSE train(2)=MSE(end);
MSE test(2)=MSE RPtest3;

load 'MSE test,RP,simulated data gaps,w=gaussian,Nl=4,Nw=15,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
load 'RP,simulated data gaps,w=gaussian,Nl=4,Nw=15,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
MSE train(3)=MSE(end);
MSE test(3)=MSE RPtest4;

load 'MSE test,RP,simulated data gaps,w=gaussian,Nl=5,Nw=31,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
load 'RP,simulated data gaps,w=gaussian,Nl=5,Nw=31,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
MSE train(4)=MSE(end);
MSE test(4)=MSE RPtest5;

load 'MSE test,RP,simulated data gaps,w=gaussian,Nl=6,Nw=63,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
load 'RP,simulated data gaps,w=gaussian,Nl=6,Nw=63,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
MSE train(5)=MSE(end);
MSE test(5)=MSE RPtest6;

load 'MSE test,RP,simulated data gaps,w=gaussian,Nl=7,Nw=127,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
load 'RP,simulated data gaps,w=gaussian,Nl=7,Nw=127,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
MSE train(6)=MSE(end);
MSE test(6)=MSE RPtest7;
%
load 'MSE test,RP,simulated data gaps,w=gaussian,Nl=8,Nw=255,gamma=0 99,
u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02'
load 'RP,simulated data gaps,w=gaussian,Nl=8,Nw=255,gamma=0 99,

Appendix A: Matlab Codes 147

u=0 01,loops=10to5,testing 0,divx=0 05,divy=0 02';
MSE train(7)=MSE(end);
MSE test(7)=MSE RPtest8;

Nw=[3,7,15,31,63,127,255];
figure
loglog(Nw,MSE train,'−*',Nw,MSE test,'−o');
legend('MSE t r a i n','MSE t e s t');
xlabel('No. of Wavelons (Nw)')
ylabel('MSE')

i trn min=find(MSE train==min(MSE train));
Nw min MSE train=Nw(i trn min)

i tst min=find(MSE test==min(MSE test));
Nw min MSE test=Nw(i tst min)

Appendix A: Matlab Codes 148

%%%
%%%
%%% Finding the MSE value after training simulated data %%%
%%% with gaps and testing for experimental data set at x=0 cm.%%%
%%% filename = 'wavenet52 reverse testing.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2009 %%%
%%%
%%%
clear all
clc

load 'RP,simulated data gaps,w=gaussian,Nl=6,Nw=63,gamma=0 99,u=0 01,
loops=10to5,testing 0,divx=0 05,divy=0 02'

load 'inoutexp'
x test=[inoutexp(:,3),inoutexp(:,4),inoutexp(:,5),inoutexp(:,6)];
Y test=[inoutexp(:,1),inoutexp(:,2)];

nz2=find(Y test(:,1)==−0.55);
for ni2=1:length(nz2)

x 2(ni2,:)=x test(nz2(ni2),:);
Y 2(ni2,:)=Y test(nz2(ni2),:);

end
nz22=find((Y 2(:,2)<0.4) & (Y 2(:,2)>−0.4));
for ni22=1:length(nz22)

x 22(ni22,:)=x 2(nz22(ni22),:);
Y 22(ni22,:)=Y 2(nz22(ni22),:);

end

nz3=find(Y test(:,1)==0);
for ni3=1:length(nz3)

x 3(ni3,:)=x test(nz3(ni3),:);
Y 3(ni3,:)=Y test(nz3(ni3),:);

end
nz32=find((Y 3(:,2)<0.4) & (Y 3(:,2)>−0.4));
for ni32=1:length(nz32)

x 32(ni32,:)=x 3(nz32(ni32),:);
Y 32(ni32,:)=Y 3(nz32(ni32),:);

end

nz4=find(Y test(:,1)==0.55);
for ni4=1:length(nz4)

x 4(ni4,:)=x test(nz4(ni4),:);
Y 4(ni4,:)=Y test(nz4(ni4),:);

end
nz42=find((Y 4(:,2)<0.4) & (Y 4(:,2)>−0.4));
for ni42=1:length(nz42)

x 42(ni42,:)=x 4(nz42(ni42),:);
Y 42(ni42,:)=Y 4(nz42(ni42),:);

end
x test=[x 22];
Y test=[Y 22]';

N=size(x test);
Np=N(1,1);
I=ones(1,Np);
input tst=[I; x test'];

Appendix A: Matlab Codes 149

z=zeros(Nw,Ni,Np);

phi=zeros(Nw,Ni,Np);
phi p=zeros(Nw,Ni,Np);

PHI p=zeros(Nw,Ni,Np);

Y hat tst=zeros(No,Np);
E=zeros(No,Np);

PHI=ones(1,Nw,Np);
for j=1:Nw

for i=1:Ni
z(j,i,:)=(x test(:,i)−m(j,i))./d(j,i);
phi(j,i,:)=(−z(j,i,:)).*exp(−0.5*(z(j,i,:).ˆ2));
phi p(j,i,:)=(((z(j,i,:)).ˆ2)−1).*exp(−0.5*(z(j,i,:).ˆ2));
PHI(1,j,:)=PHI(1,j,:).*phi(j,i,:);

end
end
PHI=squeeze(PHI);
Y hat tst=(Woh*PHI) + (Woi*input tst);
E=Y test−Y hat tst;

SSE=sum(sum(E.*E));

MSE=SSE/Np;

t=0:length(Y test(1,:))−1;

figure(3)
subplot(1,2,1)
handlevector(1)=plot(t,Y test(1,f(1):f(end)),
'LineWidth',2,'Color',[0 0 0],'DisplayName','Experimental data')
hold on
handlevector(2)=plot(t,Y hat tst(1,f(1):f(end)),
'Marker','o','LineStyle','none','Color',[0 0 0],
'DisplayName','WN test output')
axis([0 30 −0.6 0.6])
xlabel('t (s)')
ylabel('x (cm)')
legend(handlevector([1 2]))

subplot(1,2,2)
handlevector(1)=plot(t,Y test(2,f(1):f(end)),
'LineWidth',2,'Color',[0 0 0],'DisplayName','Experimental data')
hold on
handlevector(2)=plot(t,Y hat tst(2,f(1):f(end)),
'Marker','square','LineStyle','none','Color',[0 0 0],
'DisplayName','WN test output')
axis([0 30 −0.6 0.6])
xlabel('t (s)')
ylabel('y (cm)')
legend(handlevector([1 2]))

Appendix A: Matlab Codes 150

%%%
%%%
%%% Saving the input/output simulated data with gaps in the %%%
%%% file 'inout.txt'. %%%
%%% filename = 'powerinout.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2009 %%%
%%%
%%%

clc
clear all

xc=−2:0.01:2; %x−coordinate of beam spot centre
yc=−2:0.01:2; %y−coordiate of beam spot centre

l x=length(xc);
l y=length(yc);
olddiv=0.01;
newdivx=0.05; %Specify resolution for the x position
newdivy=0.02; %Specify resolution for the y position
dvx=newdivx/olddiv;
dvy=newdivy/olddiv;

if rem(l x,dvx) 6=0
nx=((l x−1)/dvx)+1;
else
nx=l x/dvx;
end

if rem(l y,dvy) 6=0
ny=((l y−1)/dvy)+1;
else
ny=l y/dvy;
end

load 'PS1'
load 'PS2'
load 'PS3'
load 'PS4'
fid = fopen('inout.txt', 'wt');
for s=1:nx
for t=1:ny
i=dvx*(s−1)+1;
j=dvy*(t−1)+1;
inout=[xc(i);yc(j);PS1(i,j);PS2(i,j);PS3(i,j);PS4(i,j)];
fprintf(fid, '%6.3f %6.3f %12.6f %12.6f %12.6f %12.6f\n', inout);

end
end

fclose(fid)

Appendix A: Matlab Codes 151

%%%
%%%
%%% Saving the input/output simulated data with no gaps in the%%%
%%% file 'inoutzero.txt.txt'. %%%
%%% filename = 'powerinoutzero.m' %%%
%%% %%%
%%% Written by: Yasmine El−Ashi, Fall 2009 %%%
%%%
%%%

clc
clear all

xc=−2:0.01:2; %x−coordinate of beam spot centre
yc=−2:0.01:2; %y−coordinate of beam spot centre

l x=length(xc);
l y=length(yc);
olddiv=0.01;
newdivx=0.05; %Specify resolution for the x position
newdivy=0.05; %Specify resolution for the y position
dvx=newdivx/olddiv;
dvy=newdivy/olddiv;

if rem(l x,dvx) 6=0
nx=((l x−1)/dvy)+1;
else
nx=l x/dvx;
end

if rem(l y,dvy) 6=0
ny=((l y−1)/dvy)+1;
else
ny=l y/dvy;
end

load 'PS1zero'
load 'PS2zero'
load 'PS3zero'
load 'PS4zero'
fid = fopen('inoutzero.txt', 'wt');
for s=1:nx
for t=1:ny
i=dvx*(s−1)+1;
j=dvy*(t−1)+1;
inoutzero=[xc(i);yc(j);PS1zero(i,j);PS2zero(i,j);
PS3zero(i,j);PS4zero(i,j)];
fprintf(fid, '%6.3f %6.3f %12.6f %12.6f %12.6f %12.6f\n', inoutzero);

end
end

fclose(fid)

Appenndix B: User Manual for Wavelet

Network Code

This is a user manual to explain the command lines for the wavelet network
training code for multiple input, multiple output (MIMO) function approx-
imation. The code can be divided into three main sections, namely; WN
initialization, feedforward algorithm and backpropagation algorithm. Before
running the code, the input/output data should be saved in the same directory
as a .txt or .MAT file. The data should be stored as a 2 dimensional matrix,
where the number of rows indicate the number of patterns or observations
available, and each column represents either an input or output variable.

.1 WN Initialization

First, load the input/output data file:

load 'inoutzero.txt'
%Input data
x=[inoutzero(:,3),inoutzero(:,4),inoutzero(:,5),inoutzero(:,6)];
%Desired output data
Y=[inoutzero(:,1),inoutzero(:,2)];
Y=Y';

Let us define the column vector:

Xi =



x1
i

x2
i
...
xpi
...

x
Np
i


and the row vector:

Yk =
[
y1
k y2

k · · · ypk · · · y
Np
k

]

.1 WN Initialization 153

such that the input matrix,

X =
[
X1 X2 · · · Xi · · · XNi

]
and the output matrix,

Y =



Y1

Y2
...
Yk
...
YNo


In this case, the input/output file 'inoutzero.txt' contains 4 input variables
allocated in columns 3, 4, 5, and 6, as well as 2 output variables in columns
1 and 2. Thus, on the one hand, the matrix x = X consists of the input data
where the number of rows equal the number of patterns Np and the number
of columns equal the number of input variables Ni. On the other hand, the
matrix Y = Y consists of the desired output data that will be used for WN
training where the number of columns equal Np and the number of rows equal
No, the total number of output variables.
Next, the following parameters are defined:

u=0.01; %Setting the learning rate
gamma=1−u; %Setting the momentum coefficient
Ax=size(x);
Ay=size(Y);
Np=Ax(1,1); %no. of patterns
Ni=Ax(1,2); %no. of input nodes
Nl=3; %no. of levels
Nw=(2ˆNl)−1; %no. of hidden nodes
No=Ay(1,1); %no. of output nodes

You only need to manually set the value for the learning rate u and the number

of levels Nl.

.1.1 Initializing Woh and Woi

The matrix Woh which consists of the weights ckj as shown in equation (5.3)

is first initialized to zeros as follows:

Woh=zeros(No,Nw);

The matrix Woi which consists of the direct linear coefficients between the

input and output layers as shown in equation (5.2) is initialized using the least

.1 WN Initialization 154

squares method. First, let us recall the feedforward equation for the kth output

of the WN for a certain pattern p, given by the following equation:

ŷpk =
Nw∑
j=1

ckjΦj+

Ni∑
i=1

akix
p
i + bk. (1)

By only considering the linear part for the feedfoward equation, the WN output

in equation (1) can be reduced to the following:

ỹpk = bk +

Ni∑
i=1

akix
p
i . (2)

Equation (2) can also be written as:

ỹk (p) = bk +

Ni∑
i=1

akixi (p). (3)

By assuming the direct connections only ỹk (p) can be computed as follows:

ỹk (p) = bk + ak1x1 (p) + ak2x2 (p) + . . .+ akNixNi (p) . (4)

Next, let us define the error εk (p) as the difference between the actual desired

output yk (p) and the estimated output ỹk (p):

εk (p) = yk (p)− ỹk (p) = yk (p)− bk − ak1x1 (p)− ak2x2 (p)− . . .− akNixNi (p) .

(5)

Equation (5) can be rewritten as follows:

yk (p) = bk + ak1x1 (p) + ak2x2 (p) + . . .+ akNixNi (p) + εk (p) . (6)

Let us assume that the input and the actual output are measured for 1 6 p 6

Np. By substituting p = n, n+ 1, . . . , Np into equation (6) and combining the

resulting equations into the vector matrix equation, we obtain:

.1 WN Initialization 155



yk (n)

yk (n+ 1)

.

.

.

yk (Np)


=



1 x1 (n) . . . xNi (n)

1 x1 (n+ 1) . . . xNi (n+ 1)

. . . .

. . . .

. . . .

1 x1 (Np) . . . xNi (Np)





bk

ak1

.

.

.

akNi


+



εk (n)

εk (n+ 1)

.

.

.

εk (Np)


.

In addition, let us define:

Yk (Np) =



yk (n)

yk (n+ 1)

.

.

.

yk (Np)


, Ek (Np) =



εk (n)

εk (n+ 1)

.

.

.

εk (Np)


, Uk (Np) =



bk

ak1

.

.

.

akNi


,

and,

C (Np) =



1 x1 (n) . . . xNi (p)

1 x1 (n+ 1) . . . xNi (p+ 1)

. . . .

. . . .

. . . .

1 x1 (Np) . . . xNi (Np)


.

Therefore, the vector matrix equation can be written as follows:

Yk (Np) = C (Np)Uk (Np) + Ek (Np) . (7)

.1 WN Initialization 156

Let us, define the performance index as:

JNp =
1

2

Np∑
p=n

ε2
k (p) =

1

2
ET
k (Np)Ek (Np) . (8)

Thus, our problem becomes that of determining Uk (Np) such that the param-

eter values, bk, ak1, ak2, . . . , akNi will best fit the observed data. Let,

JNp =
1

2
ET
k (Np)Ek (Np)

=
1

2
[Yk (Np)− C (Np)Uk (Np)]

T [Yk (Np)− C (Np)Uk (Np)]

=
1

2

[
Y T
k (Np)− UT

k (Np)C
T (Np)

]
[Yk (Np)− C (Np)Uk (Np)]

=
1

2

{
−UT

k (Np)C
T (Np)Yk (Np) + UT

k (Np)C
T (Np)C (Np)Uk (Np)

}
+

1

2

{
Y T
k (Np)Yk (Np)− Y T

k (Np)C (Np)Uk (Np)
}

(9)

To minimize JNp with respect to Uk (Np), we set:

∂JNp
∂Uk (Np)

= CT (Np)C (Np)Uk (Np)− CT (Np)Yk (Np) = 0. (10)

Let us denote Uk (Np) that satisfies equation (10) as Ũk (Np). Then, we have:

CT (Np)C (Np) Ũk (Np) = CT (Np)Yk (Np) . (11)

In this analysis, we assume that CT (Np)C (Np) is nonsingular, therefore the

inverse of CT (Np)C (Np) exists. Hence, solving equation (11) for Ũk (Np), we

obtain:

Ũk (Np) =
[
CT (Np)C (Np)

]−1
CT (Np)Yk (Np) . (12)

Therefore, the following for loop is used to initialize the matrix Woi:

I=ones(1,Np);

input=[I; x']; %input matrix

C=input';

.1 WN Initialization 157

for k=1:No

Woi1=(inv(C'*C))*C'*Y(k,:)';

Woi1=Woi1';

Woi(k,:)=Woi1;

end

where, C = C (Np), Y(k,:)' = Yk (Np), and Woi1 = Ũk (Np).

.1.2 Dyadic Initialization

In this case, the translation and dialation parameters will be initialized using

the dyadic grid method. On the one hand, the translation matrix, m = m,

having mji as its elements, has Nw rows and Ni columns. On the other hand,

the dilation matrix, d = d, having dji as its elements, is also composed of Nw

rows, and Ni columns.

To be able to explain the steps used in the dyadic initialization algorithm, we

will use the dyadic grid shown in Figure 5.3 as an example. As illustrated

in Figure 5.3 we have 3 levels, that is Nl is set to 3, hence Nw the number

of wavelons is 7. In addition, given such an example, each input variable is

assumed to have a range of [−1,+1]. Therefore, the following parameters ak

and bk can be defined in our code as:

ak=min(x);

bk=max(x);

where ak=[−1 −1 −1 −1] and bk=[1 1 1 1], provided that we have four

input variables, that is Ni = 4. The block of code used for the dyadic initial-

ization is given as follows:

for i=1:Ni

for L=1:Nl

div=(bk(i)−ak(i))/(2ˆL);
n=1;

p=0;

while p 6=bk(i)

p=ak(1,i)+(n*div);

.1 WN Initialization 158

M(n)=p;

D(n)=div;

n=n+1;

end

for w=1:(n/2)

f(1,w,L)=M(2*w−1);
g(1,w,L)=D(2*w−1);

end

end

F=squeeze(f);

G=squeeze(g);

[pf,qf]=find(F 6=0);

[pg,qg]=find(G 6=0);

for w=1:length(pf)

s(w)=F(pf(w),qf(w));

end

if F(1,1)==0

m(:,i)=[F(1,1),s];

elseif F(1,1) 6=0

m(:,i)=s;

end

for w=1:length(pg)

t(w)=G(pg(w),qg(w));

end

if G(1,1)==0

d(:,i)=[G(1,1),t];

elseif G(1,1) 6=0

d(:,i)=t;

end

end

The main for loop is repeated Ni times, such that at every new entry of the

value i, the column vectors m(:,i) = mi and d(:,i) = di are initialized,

.1 WN Initialization 159

where:

mi =



m1i

m2i

.

.

.

mNwi


, di =



d1i

d2i

.

.

.

dNwi


.

First, let us set i = 1, and L = 1. In addition, let div=(bk(i)−ak(i))/(2ˆL)

= ∆x represent the differential distance between each interval, if the transla-

tion scale which ranges between ak(i) = −1 and bk(i) = 1, is to be divided

dyadically, that is in powers of 2.

For the first level at L = 1, ∆x = 1. The parameters n=1 and p=0 are then

initialized to be used in the following while loop:

while p 6=bk(i)

p=ak(1,i)+(n*div);

M(n)=p;

D(n)=div;

n=n+1;

end

p should be initialized to a value less than bk. We exit the while loop once

p = bk(i). The output of the above while loop at L = 1, can be stated as

follows:

>> M

M =

0 1

>> D

.1 WN Initialization 160

D =

1 1

>> n

n =

3

The output of the while loop at L = 2, can be stated as follows:

>> M

M =

−0.5000 0 0.5000 1.0000

>> D

D =

0.5000 0.5000 0.5000 0.5000

>> n

n =

5

The output of the while loop at L = 3, can be stated as follows:

>> M

M =

−0.7500 −0.5000 −0.2500 0 0.2500 0.5000 0.7500

1.0000

.1 WN Initialization 161

>> D

D =

0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

0.2500

>> n

n =

9

It can be realized that as L increments, the size of the row vectors M and D

increases by 2L. The difference between the enteries of M is ∆x which becomes

smaller as L increases. The elements of D are all equal to ∆x which depends

on the value of L.

Next, we enter into the following for loop:

for w=1:(n/2)

f(1,w,L)=M(2*w−1);
g(1,w,L)=D(2*w−1);

end

The above loop generates two 3D arrays f and g. In general, the third dimen-

sion is numbered by pages. Thus, a 3D array has rows, columns, and pages.

Each page contains a 2D array of rows and columns. The for loop will exter-

minate once w=n/2. However, if n is an odd number, as the case beforehand,

the for loop will implicitly stop at w=floor(n/2). Each page for both f and

g indicate the level L. While, at every page we have one row and w columns.

The columns of f at level L are equivalent to the odd numbered indices of

row vector M. Similarly, the columns of g at level L are equivalent to the odd

numbered indicies of row vector D. The end result of f and g for L=1:3, is as

follows:

.1 WN Initialization 162

>> f

f(:,:,1) =

0 0 0 0

f(:,:,2) =

−0.5000 0.5000 0 0

f(:,:,3) =

−0.7500 −0.2500 0.2500 0.7500

>> g

g(:,:,1) =

1 0 0 0

g(:,:,2) =

0.5000 0.5000 0 0

g(:,:,3) =

0.2500 0.2500 0.2500 0.2500

A point to note, is that just as all of the columns of a 2D array must have the

same number of rows and vice versa, all of the pages of a 3D array must have

the same number of rows and columns. Thus for the first level, or first page, it

is easy to observe that 3 additional zeros have been appended to the original

vector, and for the second level or second page we have two additional zeros,

for both f and g.

.1 WN Initialization 163

Next, the matrices F and G are defined as follows:

F=squeeze(f);

G=squeeze(g);

If a 3D array is composed of a single row vector at every page, the squeeze

function will transform the row vectors of such a 3D array into column vectors

of a 2 dimensional matrix. Thus, the pages of the 3D array become the columns

of a 2D matrix, and the columns of the 3D array become the rows of the 2D

matrix. Therefore, for this case we have:

>> F

F =

0 −0.5000 −0.7500
0 0.5000 −0.2500
0 0 0.2500

0 0 0.7500

>> G

G =

1.0000 0.5000 0.2500

0 0.5000 0.2500

0 0 0.2500

0 0 0.2500

Let us further define, the following parameters:

[pf,qf]=find(F 6=0);

[pg,qg]=find(G 6=0);

where pf and qf are the row and column indices where an element of F is not

equal to zero. Moreover, pg and qg are the row and column indices where an

element of G is not equal to zero. For this example we have:

.1 WN Initialization 164

>> [pf,qf]

ans =

1 2

2 2

1 3

2 3

3 3

4 3

>> [pg,qg]

ans =

1 1

1 2

2 2

1 3

2 3

3 3

4 3

Next, we need to extract the initial translation and dilation parameters from

the matrices F and G such that:

m1 =



m11

m21

m31

m41

m51

m61

m71


=



F (1, 1)

F (1, 2)

F (2, 2)

F (1, 3)

F (2, 3)

F (3, 3)

F (4, 3)


,

.1 WN Initialization 165

and,

d1 =



d11

d21

d31

d41

d51

d61

d71


=



G (1, 1)

G (1, 2)

G (2, 2)

G (1, 3)

G (2, 3)

G (3, 3)

G (4, 3)


.

To do that we first run the following for loops, to generate the row vectors s

and t which consist of the nonzero elements of F and G:

for w=1:length(pf)

s(w)=F(pf(w),qf(w));

end

for w=1:length(pg)

t(w)=G(pg(w),qg(w));

end

Since, m11 = F (1, 1) is zero in this example, the following if statements need

to be applied:

if F(1,1)==0

m(:,i)=[F(1,1),s];

elseif F(1,1) 6=0

m(:,i)=s;

end

Using such a dyadic grid the dilation parameters should not be zero, however

just for consistency we apply the same if statements as the code above:

if G(1,1)==0

d(:,i)=[G(1,1),t];

elseif G(1,1) 6=0

.1 WN Initialization 166

d(:,i)=t;

end

The i of the main for loop is then incremented and the preceding procedure

is repeated until i=Ni. The end result of the initial values for the matrices m

= m and d = d is as follows:

>> m

m =

0 0 0 0

−0.5000 −0.5000 −0.5000 −0.5000
0.5000 0.5000 0.5000 0.5000

−0.7500 −0.7500 −0.7500 −0.7500
−0.2500 −0.2500 −0.2500 −0.2500
0.2500 0.2500 0.2500 0.2500

0.7500 0.7500 0.7500 0.7500

>> d

d =

1.0000 1.0000 1.0000 1.0000

0.5000 0.5000 0.5000 0.5000

0.5000 0.5000 0.5000 0.5000

0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500

.2 Feedforward Algorithm 167

where,

m =



m11 m12 · · · m1i · · · m1Ni

m21 m22 · · · m2i · · · m2Ni

...
...

. . .
...

. . .
...

mj1 mj2 · · · mji · · · mjNi

...
...

. . .
...

. . .
...

mNw1 mNw2 · · · mNwi · · · mNwNi


(13)

and,

d =



d11 d12 · · · d1i · · · d1Ni

d21 d22 · · · d2i · · · d2Ni

...
...

. . .
...

. . .
...

dj1 dj2 · · · dji · · · djNi
...

...
. . .

...
. . .

...

dNw1 dNw2 · · · dNwi · · · dNwNi


(14)

The algorithm described for dyadic initialization of the translation and diala-

tion parameters is not necessarily general. However to ensure that it works for

different ranges, it is recommended to have equal absolute values for ak and bk,

if the range extends to the negative scale. In addition, it is also recommended

to have ak and bk as integers or rational numbers rather than irrational values.

Further adjustments can be made to the above dyadic initialization code, to

account for irrational cases.

.2 Feedforward Algorithm

The feedforward matrix equation for the wavelet network for a pattern p can

be stated as follows:

.2 Feedforward Algorithm 168

Ŷ p =



ŷp1

ŷp2
...

ŷpk
...

ŷpNo


= (Woh ∗ Φp) + (Woi ∗ Ip) , (15)

where the vectors:

Ip =
[

1 xp1 · · · xpi · · · xpNi

]T

,

and,

Φp =
[

Φp
1 Φp

2 · · · Φp
j · · · Φp

Nw

]T

.

The symbol ‘*’ in equation (15) represents a matrix multiplication. Since,

batch processing is used in training the wavelet network for a total of Np

patterns, equation (15) can be rewritten in the following form:

Ŷ =
[
Ŷ 1 · · · Ŷ p · · · Ŷ Np

]
= (Woh ∗ Φ) + (Woi ∗ I) , (16)

where the matrices:

I =
[
I1 I2 · · · Ip · · · INp

]
.

and,

Φ =
[

Φ1 Φ2 · · · Φp · · · ΦNp

]
,

In order to compute the No ×Np matrix Y hat = Ŷ, let us first define the 3D

array PHI = Φ with Np pages. Each page of Φ consists of the row vector Φp.

The elements of the 3D array PHI are initialized to ones:

.2 Feedforward Algorithm 169

PHI=ones(1,Nw,Np);

to be used in the following for loops for computing the parameters Φp
j :

for j=1:Nw

for i=1:Ni

z(j,i,:)=(x(:,i)−m(j,i))./d(j,i);
phi(j,i,:)=(−z(j,i,:)).*exp(−0.5*(z(j,i,:).ˆ2));
phi p(j,i,:)=(((z(j,i,:)).ˆ2)−1).*exp(−0.5*(z(j,i,:).ˆ2));
PHI(1,j,:)=PHI(1,j,:).*phi(j,i,:);

end

end

In this case, z = Z is a 3D array with Np pages, where each page constitutes

of the matrix:

Zp =



zp11 zp12 · · · zp1i · · · zp1Ni

zp21 zp22 · · · zp2i · · · zp2Ni
...

...
. . .

...
. . .

...

zpj1 zpj2 · · · zpji · · · zpjNi
...

...
. . .

...
. . .

...

zpNw1 zpNw2 · · · zpNwi · · · zpNwNi


.

Each element zpji is represented by the following equation:

zpji =
(xpi −mji)

dji
. (17)

Therefore, in order to batchly compute the elements of the 3D array Z, we

need to introduce a term known as page vector, which is a vector that extends

across all the pages of a 3D array at a certain row and column. Consequently,

.2 Feedforward Algorithm 170

the page vector z(j,i,:) = Zji can be stated as follows:

Zji =



z1
ji

z2
ji

...

zpji
...

z
Np
ji


=

1

dji
. (Xi −mji) . (18)

The symbol ‘.’ in equation (18) represents an element by element multiplica-

tion. The line of code used to replicate equation (18) is as follows:

z(j,i,:)=(x(:,i)−m(j,i))./d(j,i);

Next, let us define phi = ϕ a 3D array with Np pages, where each page

constitutes of the matrix:

ϕp =



ϕp11 ϕp12 · · · ϕp1i · · · ϕp1Ni

ϕp21 ϕp22 · · · ϕp2i · · · ϕp2Ni
...

...
. . .

...
. . .

...

ϕpj1 ϕpj2 · · · ϕpji · · · ϕpjNi
...

...
. . .

...
. . .

...

ϕpNw1 ϕpNw2 · · · ϕpNwi · · · ϕpNwNi


.

Each element ϕpji is represented by the following equation:

ϕpji = ψ
(
zpji
)

= −zpji exp

(
−
zpjiz

p
ji

2

)
. (19)

.2 Feedforward Algorithm 171

In order, to batchly compute the elements of the 3D array ϕ, we will define

the following page vector:

ϕji =



ϕ1
ji

ϕ2
ji

...

ϕpji
...

ϕ
Np
ji


= −Zji. exp

(
−Zji.Zji

2

)
. (20)

The line of code used to compute phi(j,i,:) = ϕji is as follows:

phi(j,i,:)=(−z(j,i,:)).*exp(−0.5*(z(j,i,:).ˆ2));

Similarly, we will define phi p = ϕ̇ a 3D array with Np pages, where each page

constitutes of the matrix:

ϕ̇p =



ϕ̇p11 ϕ̇p12 · · · ϕ̇p1i · · · ϕ̇p1Ni

ϕ̇p21 ϕ̇p22 · · · ϕ̇p2i · · · ϕ̇p2Ni
...

...
. . .

...
. . .

...

ϕ̇pj1 ϕ̇pj2 · · · ϕ̇pji · · · ϕ̇pjNi
...

...
. . .

...
. . .

...

ϕ̇pNw1 ϕ̇pNw2 · · · ϕ̇pNwi · · · ϕ̇pNwNi


.

Each element ϕ̇pji is represented by the following equation:

ϕ̇pji =
∂ϕpji
∂zpji

=
(
zpjiz

p
ji − 1

)
exp

(
−
zpjiz

p
ji

2

)
. (21)

.2 Feedforward Algorithm 172

To batchly compute the elements of the 3D array ϕ̇, the following page vector

will be defined:

ϕ̇ji =



ϕ̇1
ji

ϕ̇2
ji

...

ϕ̇pji
...

ϕ̇
Np
ji


= (Zji.Zji − 1) . exp

(
−Zji.Zji

2

)
. (22)

The line of code used to compute phi p = ϕ̇ji is as follows:

phi p(j,i,:)=(((z(j,i,:)).ˆ2)−1).*exp(−0.5*(z(j,i,:).ˆ2));

Next, let us define the page vector Φj which can be evaluated as follows:

Φj =



Φ1
j

Φ2
j

...

Φp
j

...

Φ
Np
j


=

Ni∏
n=1

ϕjn =ϕj1.ϕj2.ϕji.ϕjNi . (23)

Equation (23) can be computed using the following code:

PHI(1,j,:)=PHI(1,j,:).*phi(j,i,:);

where, PHI(1,j,:) = Φj. After constructing the 3D array Φ, the command

PHI=squeeze(PHI); is used to transform the 3D array Φ into the 2 dimen-

sional matrix Φ, that will be used to compute Y hat = Ŷ as follows:

Y hat=(Woh*PHI) + (Woi*input);

where, input = I. The error E = Y− Ŷ between the wavelet network output

Ŷ and the desired output Y is evaluated as follows:

.3 Backpropagation Algorithm 173

E=Y−Y hat;

where,

E =



E1

E2

...

Ek
...

ENo


and the row vector,

Ek =
[
e1
k e2

k · · · epk · · · e
Np
k

]
=

[
y1
k − ŷ1

k y2
k − ŷ2

k · · · ypk − ŷpk · · · y
Np
k − ŷ

Np
k

]
Then we compute the sum of square error (SSE) and the mean square error

(MSE) for every iteration as stated below:

%Computing the sum of square error (SSE)

SSE=sum(sum(E.*E));

%Computing the mean square error (MSE) for every iteration

MSE(loops)=SSE/Np;

.3 Backpropagation Algorithm

In this section we will be using equations (3.12) to (3.19) to be able to compute

the parameters of ∆θ (l) for updating the components of the vector θ. The

.3 Backpropagation Algorithm 174

vector ∆θ (l) can be defined as follows:

∆θ (l) =



∆bk (l)

∆aki (l)

∆ckj (l)

∆mji (l)

∆dji (l)


= − µ

Np

∂J

∂θ
+ γ∆θ (l − 1) . (24)

The network parameter vector θ consists of the components of the matrices

Woi, Woh, m and d. Thus, in order to update θ every epoch using θnew =

θold + ∆θ (l), we need to update the components of Woi, Woh, m and d.

.3.1 Updating the parameters of Woi

Let us first, state the following equations for ∆bk (l):

∆bk (l) = − µ

Np

∂J

∂bk
+ γ∆bk (l − 1)

= − µ

Np

(
−

Np∑
p=1

No∑
n=1

epn
∂ŷpn
∂bk

)
+ γ∆bk (l − 1)

=
1

Np

(
Np∑
p=1

No∑
n=1

µepn
∂ŷpn
∂bk

)
+ γ∆bk (l − 1) . (25)

We have,

∂ŷpn
∂bk

= δnk, (26)

where the Kronecker’s symbol delta defined as: δnk = 1 for n = k and δnk = 0

for n 6= k. Therefore, equation (25) can be rewritten as:

∆bk (l) =
1

Np

(
Np∑
p=1

µepk

)
+ γ∆bk (l − 1) . (27)

.3 Backpropagation Algorithm 175

Similarly, let us define ∆aki (l) as follows:

∆aki (l) = − µ

Np

∂J

∂aki
+ γ∆aki (l − 1)

= − µ

Np

(
−

Np∑
p=1

No∑
n=1

epn
∂ŷpn
∂aki

)
+ γ∆aki (l − 1)

=
1

Np

(
Np∑
p=1

No∑
n=1

µepn
∂ŷpn
∂aki

)
+ γ∆aki (l − 1) . (28)

Since,

∂ŷpn
∂aki

= δnkx
p
i , (29)

equation (28) can be rewritten as:

∆aki (l) =
1

Np

(
Np∑
p=1

µepkx
p
i

)
+ γ∆aki (l − 1) . (30)

Let DWoi = DWoi be a 3D array with Np pages, where each page constitutes

of the following matrix:

DWp
oi =



dbp1 dap11 · · · dap1i · · · dap1Ni

dbp2 dap21 · · · dap2i · · · dap2Ni
...

...
. . .

...
. . .

...

dbpk dapk1 · · · dapki · · · dapkNi
...

...
. . .

...
. . .

...

dbpNo dapNo1 · · · dapNoi · · · dapNoNi


. (31)

Next, we can define the page vectors DWoi(k,1,:) = Dbk and DWoi(k,i,:)

= Daki as stated below:

Dbk =
[
db1
k db2

k · · · dbpk · · · db
Np
k

]
= µEk, (32)

and,

Daki =
[
da1

ki da2
ki · · · dapki · · · da

Np
ki

]
= µEk.X

T
i . (33)

.3 Backpropagation Algorithm 176

The components of Dbk and Daki are computed as follows:

for k=1:No

DWoi(k,1,:)=E(k,:)*u;

end

for k=1:No

for i=1:Ni

DWoi(k,i+1,:)=E(k,:)*u.*x(:,i)';

end

end

Let,

db̄k = mean [Dbk] =
1

Np

(
Np∑
p=1

µepk

)
, (34)

and,

dāki = mean [Daki] =
1

Np

(
Np∑
p=1

µepkx
p
i

)
. (35)

Thus we can define the matrix DWoi aver = DW̄oi as follows:

DW̄oi =



db̄1 dā11 · · · dā1i · · · dā1Ni

db̄2 dā21 · · · dā2i · · · dā2Ni

...
...

. . .
...

. . .
...

db̄k dāk1 · · · dāki · · · dākNi
...

...
. . .

...
. . .

...

db̄No dāNo1 · · · dāNoi · · · dāNoNi


. (36)

The matrix DW̄oi is computed using the code:

for k=1:No

for i=1:Ni+1

DWoi aver(k,i)=mean(DWoi(k,i,:));

end

.3 Backpropagation Algorithm 177

end

In matrix form, equations (27) and (30) can be stated as:

∆Woi (l) = DW̄oi + γ∆Woi (l − 1) . (37)

where,

∆Woi (l) =



∆b1 (l) ∆a11 (l) · · · ∆a1i (l) · · · ∆a1Ni (l)

∆b2 (l) ∆a21 (l) · · · ∆a2i (l) · · · ∆a2Ni (l)
...

...
. . .

...
. . .

...

∆bk (l) ∆ak1 (l) · · · ∆aki (l) · · · ∆akNi (l)
...

...
. . .

...
. . .

...

∆bNo (l) ∆aNo1 (l) · · · ∆aNoi (l) · · · ∆aNoNi (l)


. (38)

Using DeltaWoi = ∆Woi (l) and DeltaWoi old = ∆Woi (l − 1), equation (37)

can be computed as follows:

DeltaWoi=DWoi aver+gamma*DeltaWoi old;

The parameters of Woi are then updated as follows:

Woi=Woi+DeltaWoi;

Then for the next epoch we have,

DeltaWoi old=DeltaWoi;

.3 Backpropagation Algorithm 178

.3.2 Updating the parameters of Woh

Let us state the following equations for ∆ckj (l):

∆ckj (l) = − µ

Np

∂J

∂ckj
+ γ∆ckj (l − 1)

= − µ

Np

(
−

Np∑
p=1

No∑
n=1

epn
∂ŷpn
∂ckj

)
+ γ∆ckj (l − 1)

=
1

Np

(
Np∑
p=1

No∑
n=1

µepn
∂ŷpn
∂ckj

)
+ γ∆ckj (l − 1) (39)

Since,

∂ŷpn
∂ckj

= δnkΦ
p
j , (40)

equation (39) can be rewritten as:

∆ckj (l) =
1

Np

(
Np∑
p=1

µepkΦ
p
j

)
+ γ∆ckj (l − 1) . (41)

Let DWoh = DWoh be a 3D array with Np pages, where each page constitutes

of the following matrix:

DWp
oh =



dcp11 dcp12 · · · dcp1i · · · dcp1Nw

dcp21 dcp22 · · · dcp2i · · · dcp2Nw
...

...
. . .

...
. . .

...

dcpk1 dcpk2 · · · dcpki · · · dcpkNw
...

...
. . .

...
. . .

...

dcpNo1 dcpNo2 · · · dcpNoi · · · dcpNoNw


. (42)

Next, let us define the page vector DWoh(k,j,:) = Dckj as stated below:

Dckj =
[
dc1

kj dc2
kj · · · dcpkj · · · dc

Np
kj

]
= µEk.Φj. (43)

The components of Dckj are computed as follows:

.3 Backpropagation Algorithm 179

for k=1:No

for j=1:Nw

DWoh(k,j,:)=E(k,:)*u.*PHI(j,:);

end

end

Let,

dc̄kj = mean [Dckj] =
1

Np

(
Np∑
p=1

µepkΦ
p
j

)
. (44)

Next, define the matrix DWoi aver = DW̄oi as follows:

DW̄oh =



dc̄11 dc̄12 · · · dc̄1i · · · dc̄1Nw

dc̄21 dc̄22 · · · dc̄2i · · · dc̄2Nw

...
...

. . .
...

. . .
...

dc̄k1 dc̄k2 · · · dc̄ki · · · dc̄kNw
...

...
. . .

...
. . .

...

dc̄No1 dc̄No2 · · · dc̄Noi · · · dc̄NoNw


. (45)

The matrix DW̄oi is computed using the code:

for k=1:No

for j=1:Nw

DWoh aver(k,j)=mean(DWoh(k,j,:));

end

end

In matrix form equation (41) can be stated as:

∆Woh (l) = DW̄oh + γ∆Woh (l − 1) , (46)

.3 Backpropagation Algorithm 180

where,

∆Woh (l) =



∆c11 (l) ∆c12 (l) · · · ∆c1i (l) · · · ∆c1Nw (l)

∆c21 (l) ∆c22 (l) · · · ∆c2i (l) · · · ∆c2Nw (l)
...

...
. . .

...
. . .

...

∆ck1 (l) ∆ck2 (l) · · · ∆cki (l) · · · ∆ckNw (l)
...

...
. . .

...
. . .

...

∆cNo1 (l) ∆cNo2 (l) · · · ∆cNoi (l) · · · ∆cNoNw (l)


. (47)

Using DeltaWoh = ∆Woh (l) and DeltaWoh old = Woh (l − 1), equation (46)

can be computed as follows:

DeltaWoh=DWoh aver+gamma*DeltaWoh old;

The parameters of Woh are then updated as follows:

Woh=Woh+DeltaWoh;

Then for the next epoch we have,

DeltaWoh old=DeltaWoh;

.3.3 Updating the parameters of m and d

Let us first state the following equations for ∆mji (l) and ∆dji (l):

∆mji (l) = − µ

Np

∂J

∂mji

+ γ∆mji (l − 1)

= − µ

Np

(
−

Np∑
p=1

No∑
k=1

epk
∂ŷpk
∂mji

)
+ γ∆mji (l − 1)

=
1

Np

(
Np∑
p=1

No∑
k=1

µepk
∂ŷpk
∂mji

)
+ γ∆mji (l − 1) , (48)

.3 Backpropagation Algorithm 181

and,

∆dji (l) = − µ

Np

∂J

∂dji
+ γ∆dji (l − 1)

= − µ

Np

(
−

Np∑
p=1

No∑
k=1

epk
∂ŷpk
∂dji

)
+ γ∆dji (l − 1)

=
1

Np

(
Np∑
p=1

No∑
k=1

µepk
∂ŷpk
∂dji

)
+ γ∆dji (l − 1) . (49)

Since,

∂ŷpk
∂mji

= ckj
∂Φp

j

∂zpji

∂zpji
∂mji

= ckjΦ̇
p
ji

(
− 1

dji

)
=

(
−ckj
dji

)
Φ̇p
ji, (50)

and,

∂ŷpk
∂dji

= ckj
∂Φp

j

∂zpji

∂zpji
∂dji

= ckjΦ̇
p
ji

(
−
zpji
dji

)
=

(
−ckj
dji

)
Φ̇p
jiz

p
ji, (51)

then equations (48) and (49) can be rewritten as:

∆mji (l) =
1

Np

(
Np∑
p=1

No∑
k=1

µepk

[
−ckj
dji

Φ̇p
ji

])
+ γ∆mji (l − 1) , (52)

and,

∆dji (l) =
1

Np

(
Np∑
p=1

No∑
k=1

µepk

[
−ckj
dji

Φ̇p
jiz

p
ji

])
+ γ∆dji (l − 1) . (53)

As can be seen from equations (52) and (53) to evaluate ∆mji (l) and ∆dji (l)

we need to first find Φ̇p
ji. Let PHI p = Φ̇ be a 3D array with Np pages, where

.3 Backpropagation Algorithm 182

each page consists of the following matrix:

Φ̇p =



Φ̇p
11 Φ̇p

12 · · · Φ̇p
1i · · · Φ̇p

1Ni

Φ̇p
21 Φ̇p

22 · · · Φ̇p
2i · · · Φ̇p

2Ni
...

...
. . .

...
. . .

...

Φ̇p
j1 Φ̇p

j2 · · · Φ̇p
ji · · · Φ̇p

jNi
...

...
. . .

...
. . .

...

Φ̇p
Nw1 Φ̇p

Nw2 · · · Φ̇p
Nwi

· · · Φ̇p
NwNi


. (54)

Using equation (23) the page vector Φ̇ji can be evaluated as follows:

Φ̇ji =



Φ̇1
ji

Φ̇2
ji

...

Φ̇p
ji

...

Φ̇
Np
ji


= ϕj1.ϕj2.ϕ̇ji.ϕjNi . (55)

The following block of code is used to evaluate the components of the 3D array

Φ̇:

for j=1:Nw

for i=1:Ni

P=phi(j,:,:);

P(1,i,:)=phi p(j,i,:);

PHI p(j,i,:)=prod(P);

end

end

When entering the for loop at the ith and jth iteration, we first set P=phi(j,:,:)

where P is a 3D array with Np pages where each page consists of the row

vector
[
ϕpj1 ϕpj2 · · · ϕpji · · · ϕpjNi

]
. Next, the page vector of P at the

ith column is replaced by ϕ̇ji using P(1,i,:)=phi p(j,i,:). Therefore,

the new 3D array P has each page consisting of the row vector with the fol-

lowing components;
[
ϕpj1 ϕpj2 · · · ϕ̇pji · · · ϕpjNi

]
. Thus, the command

.3 Backpropagation Algorithm 183

PHI p(j,i,:)=prod(P) computes the product of each row vector for all the

pages of P to produce the single page vector Φ̇ji. For the next iteration, P is

set back to P=phi(j,:,:).

Next, let us state the following block of code:

for j=1:Nw

for i=1:Ni

EDmy=zeros(1,1,Np);

EDdy=zeros(1,1,Np);

for k=1:No

p=squeeze(PHI p(j,i,:));

Dmy(k,:)=−(Woh(k,j)/d(j,i)).*p;
zz=squeeze(z(j,i,:));

Ddy(k,:)=Dmy(k,:).*zz';

eDmy(1,1,:)=E(k,:)*u.*Dmy(k,:);

eDdy(1,1,:)=E(k,:)*u.*Ddy(k,:);

EDmy=EDmy+eDmy;

EDdy=EDdy+eDdy;

end

Dm(j,i,:)=EDmy;

Dd(j,i,:)=EDdy;

end

end

At every kth iteration, for k = 1, 2, . . . , No we do the following:

(1) Use the command p=squeeze(PHI p(j,i,:)) to transform the page vec-

tor Φ̇ji into the column vector p.

(2) Define the row vector Dmy(k,:)=−(Woh(k,j)/d(j,i)).*p = Dmyk as

stated below:

Dmyk =
[
dmy1

k dmy2
k · · · dmypk · · · dmy

Np
k

]
=

[
∂ŷ1
k

∂mji

∂ŷ2
k

∂mji
· · · ∂ŷpk

∂mji
· · · ∂ŷ

Np
k

∂mji

]
=

(
−ckj
dji

)
.Φ̇ji =

(
−ckj
dji

)
.p. (56)

.3 Backpropagation Algorithm 184

(3) Use the command zz=squeeze(z(j,i,:)) to transform the page vec-

tor Zji into a column vector zz. Similarly, let us define the row vector

Ddy(k,:)=Dmy(k,:).*zz' = Ddyk as stated below:

Ddyk =
[
ddy1

k ddy2
k · · · ddypk · · · ddy

Np
k

]
=

[
∂ŷ1
k

∂dji

∂ŷ2
k

∂dji
· · · ∂ŷpk

∂dji
· · · ∂ŷ

Np
k

∂dji

]
=

(
−ckj
dji

)
.Φ̇ji.Z

T
ji =

(
−ckj
dji

)
.p.zzT = Dmyk.zz

T. (57)

In the above equation the column vector zz has been transposed, just to be

consistent with the code, since in Matlab programming, if element by element

multiplication is carried out between two vectors, they must be of the same

dimensions.

(4) Define the following:

eDmy(1,1,:)=E(k,:).*Dmy(k,:);

eDdy(1,1,:)=E(k,:).*Ddy(k,:);

where, eDmy(1,1,:) =eDmy and eDdy(1,1,:) = eDdy are page vectors

that can be stated as:

eDmy =



edmy1

edmy2

...

edmyp

...

edmyNp


=



µe1
kdmy

1
k

µe2
kdmy

2
k

...

µepkdmy
p
k

...

µe
Np
k dmy

Np
k


= µEk.Dmyk, (58)

.3 Backpropagation Algorithm 185

and,

eDdy =



eddy1

eddy2

...

eddyp

...

eddyNp


=



µe1
kddy

1
k

µe2
kddy

2
k

...

µepkddy
p
k

...

µe
Np
k ddy

Np
k


= µEk.Ddyk (59)

In this case, µ has been set to 1 to ensure convergence of the MSE.

(5) Next, define the following page vectors:

EDmy =



No∑
k=1

µe1
kdmy

1
k

No∑
k=1

µe2
kdmy

2
k

...
No∑
k=1

µepkdmy
p
k

...
No∑
k=1

µe
Np
k dmy

Np
k


, EDdy =



No∑
k=1

µe1
kddy

1
k

No∑
k=1

µe2
kddy

2
k

...
No∑
k=1

µepkddy
p
k

...
No∑
k=1

µe
Np
k ddy

Np
k


. (60)

This is done using the following commands:

EDmy=EDmy+eDmy;

EDdy=EDdy+eDdy;

where EDmy and EDdy are fist initialized to zeros, using:

EDmy=zeros(1,1,Np);

EDdy=zeros(1,1,Np);

After exiting the for loop k=1:No, we set the page vectors:

Dm(j,i,:)=EDmy;

Dd(j,i,:)=EDdy;

.3 Backpropagation Algorithm 186

where, Dm(j,i,:) = Dmji and Dd(j,i,:) = Ddji can be stated as:

Dmji =



dm1
ji

dm2
ji

...

dmp
ji

...

dm
Np
ji


, Ddji =



dd1
ji

dd2
ji

...

ddpji
...

dd
Np
ji


. (61)

When we exit the for loop j=1:Nw, we would have constructed the 3D arrays,

Dm and Dd with Np pages where each page consists of the matrices:

Dmp =



dmp
11 dmp

12 · · · dmp
1i · · · dmp

1Ni

dmp
21 dmp

22 · · · dmp
2i · · · dmp

2Ni
...

...
. . .

...
. . .

...

dmp
j1 dmp

j2 · · · dmp
ji · · · dmp

jNi
...

...
. . .

...
. . .

...

dmp
Nw1 dmp

Nw2 · · · dmp
Nwi

· · · dmp
NwNi


, (62)

and,

Ddp =



ddp11 ddp12 · · · ddp1i · · · ddp1Ni

ddp21 ddp22 · · · ddp2i · · · ddp2Ni
...

...
. . .

...
. . .

...

ddpj1 ddpj2 · · · ddpji · · · ddpjNi
...

...
. . .

...
. . .

...

ddpNw1 ddpNw2 · · · ddpNwi · · · ddpNwNi


. (63)

.3 Backpropagation Algorithm 187

Next, let us define the matrices, Dm aver = Dm̄ and Dd aver = Dd̄ as follows:

Dm̄ =



dm̄11 dm̄12 · · · dm̄1i · · · dm̄1Ni

dm̄21 dm̄22 · · · dm̄2i · · · dm̄2Ni

...
...

. . .
...

. . .
...

dm̄j1 dm̄j2 · · · dm̄ji · · · dm̄jNi

...
...

. . .
...

. . .
...

dm̄Nw1 dm̄Nw2 · · · dm̄Nwi · · · dm̄NwNi


, (64)

and,

Dd̄ =



dd̄11 dd̄12 · · · dd̄1i · · · dd̄1Ni

dd̄21 dd̄22 · · · dd̄2i · · · dd̄2Ni

...
...

. . .
...

. . .
...

dd̄j1 dd̄j2 · · · dd̄ji · · · dd̄jNi
...

...
. . .

...
. . .

...

dd̄Nw1 dd̄Nw2 · · · dd̄Nwi · · · dd̄NwNi


. (65)

The matrices Dm̄ and Dd̄ are computed using the following code:

for j=1:Nw

for i=1:Ni

Dm aver(j,i)=mean(Dm(j,i,:));

Dd aver(j,i)=mean(Dd(j,i,:));

end

end

In matrix form equations (52) and (53) can be stated as follows:

∆m (l) = Dm̄ + γ∆m (l − 1) , (66)

and,

∆d (l) = Dd̄ + γ∆d (l − 1) , (67)

.3 Backpropagation Algorithm 188

where,

∆m (l) =



∆m11 (l) ∆m12 (l) · · · ∆m1i (l) · · · ∆m1Ni (l)

∆m21 (l) ∆m22 (l) · · · ∆m2i (l) · · · ∆m2Ni (l)
...

...
. . .

...
. . .

...

∆mj1 (l) ∆mj2 (l) · · · ∆mji (l) · · · ∆mjNi (l)
...

...
. . .

...
. . .

...

∆mNw1 (l) ∆mNw2 (l) · · · ∆mNwi (l) · · · ∆mNwNi (l)


, (68)

and,

∆d (l) =



∆d11 (l) ∆d12 (l) · · · ∆d1i (l) · · · ∆d1Ni (l)

∆d21 (l) ∆d22 (l) · · · ∆d2i (l) · · · ∆d2Ni (l)
...

...
. . .

...
. . .

...

∆dj1 (l) ∆dj2 (l) · · · ∆dji (l) · · · ∆djNi (l)
...

...
. . .

...
. . .

...

∆dNw1 (l) ∆dNw2 (l) · · · ∆dNwi (l) · · · ∆dNwNi (l)


. (69)

Using Deltam = ∆m (l) and Deltam old = ∆m (l − 1), equation (66) can be

computed as follows:

Deltam=Dm aver+gamma*Deltam old

Similarly, using Deltad = ∆d (l) and Deltad old = ∆d (l − 1), equation (67)

can be computed as follows:

Deltad=Dd aver+gamma*Deltad old

The parameter of m and d are then updated as follows:

m=m+Deltam;

d=d+Deltad;

Then for the next epoch we have,

.3 Backpropagation Algorithm 189

Deltam old=Deltam;

Deltad old=Deltad;

After completing the desired number of epochs or iterations, a plot of the MSE

is generated as follows:

loglog(MSE,'*')

xlabel('Iterations')

ylabel('MSE')

grid on

Appenndix C: DAQ Code

/***
*
* ANSI C Example program:

* Acq−IntClk.c
*
* Example Category:

* AI

*
* Description:

* This example demonstrates how to acquire a finite amount of data

* using the DAQ device's internal clock.

*
* Instructions for Running:

* 1. Select the physical channel to correspond to where your

* signal is input on the DAQ device.

* 2. Enter the minimum and maximum voltages.

* Note: For better accuracy try to match the input range to the

* expected voltage level of the measured signal.

* 3. Select the number of samples to acquire.

* 4. Set the rate of the acquisition.

* Note: The rate should be AT LEAST twice as fast as the maximum

* frequency component of the signal being acquired.

*
* Steps:

* 1. Create a task.

* 2. Create an analog input voltage channel.

* 3. Set the rate for the sample clock. Additionally, define the

* sample mode to be finite and set the number of samples to be

* acquired per channel.

* 4. Call the Start function to start the acquisition.

* 5. Read all of the waveform data.

* 6. Call the Clear Task function to clear the task.

* 7. Display an error if any.

*
* I/O Connections Overview:

* Make sure your signal input terminal matches the Physical

* Channel I/O Control. For further connection information, refer

* to your hardware reference manual.

*
***/

Appendix C: DAQ Code 191

#include <C:\Program Files\Microsoft Visual Studio\VC98\Include\stdio.h>
#include <C:\Program Files\Microsoft Visual Studio\VC98\Include\stdlib.h>
#include <C:\Program Files\Microsoft Visual Studio\VC98\Include\string.h>
#include <C:\Program Files\Microsoft Visual Studio\VC98\Include\cstring>
#include <NIDAQmx.h>

#define DAQmxErrChk(functionCall)
if(DAQmxFailed(error=(functionCall))) goto Error; else
int main(void)
{

int32 error=0;
TaskHandle taskHandle=0;
TaskHandle task=0;
float64 a[4];
float64 photo[1000][4];
int32 value;
uInt8 data[8]={0,0,0,0,0,0,0,0};
char errBuff[2048]={'\0'};
int i,k,m,n;
FILE*fin;

/***/
// DAQmx Configure Code (Voltage Acquisition)
/***/
DAQmxErrChk (DAQmxCreateTask("",&taskHandle));
DAQmxErrChk (DAQmxCreateAIVoltageChan(taskHandle,
"Dev2/ai0,Dev2/ai1,Dev2/ai2,Dev2/ai3","",
DAQmx Val Diff,−5.0,5.0,DAQmx Val Volts,NULL));

/***/
// DAQmx Configure Code (Writing Digital)
/***/
DAQmxErrChk (DAQmxCreateTask("",&task));
DAQmxErrChk (DAQmxCreateDOChan(task,"Dev2/port0/line0:7",
"",DAQmx Val ChanForAllLines));

/***/
// DAQmx Start Code (Writing Digital)
/***/
DAQmxErrChk (DAQmxStartTask(task));

/***/
// DAQmx Start Code (Voltage Acquisition)
/***/
DAQmxErrChk (DAQmxStartTask(taskHandle));

/***/
// Create and open file PD.txt
/***/
fin=fopen("PD.txt","w");
/***/
// DAQmx Read Code and Write code
/***/

//Setting Duty cycle to 50% (114 counts) via
//PORTB of the microcontroller
data[7]=0;

Appendix C: DAQ Code 192

data[6]=1;
data[5]=1;
data[4]=1;
data[3]=0;
data[1]=1;
data[0]=1;
DAQmxErrChk (DAQmxWriteDigitalLines(task,1,1,10.0,
DAQmx Val GroupByChannel,data,NULL,NULL));

for(k=0;k<75;k++){

DAQmxErrChk (DAQmxReadAnalogF64(taskHandle,1,10.0,
DAQmx Val GroupByChannel,a,4,&value,NULL));
DAQmxErrChk (DAQmxWriteDigitalLines(task,1,1,10.0,
DAQmx Val GroupByChannel,data,NULL,NULL));
photo[k][0]=a[0];
photo[k][1]=a[1];
photo[k][2]=a[2];
photo[k][3]=a[3];
data[0]=1−data[0];
for(m=0;m<50000;m++){

for(n=0;n<10000;n++){
m=m+0;

}
}

}
data[7]=0;

data[6]=0;
data[5]=0;
data[4]=0;
data[3]=0;
data[1]=0;
DAQmxErrChk (DAQmxWriteDigitalLines(task,1,1,10.0,
DAQmx Val GroupByChannel,data,NULL,NULL));

/***/
// Save results in the file PD
/***/
for(i=0;i<75;i++){

fprintf(fin,"%f %f %f %f\n",
photo[i][0],photo[i][1],photo[i][2],photo[i][3]);

}
/***/
// Close the file
/***/
fclose(fin);

Error:
if(DAQmxFailed(error))

DAQmxGetExtendedErrorInfo(errBuff,2048);
if(taskHandle!=0) {

/***/
// DAQmx Stop Code (Reading function)
/***/
DAQmxStopTask(taskHandle);
DAQmxClearTask(taskHandle);

Appendix C: DAQ Code 193

}
if(task!=0) {

/***/
// DAQmx Stop Code (Writing function)
/***/
DAQmxStopTask(task);
DAQmxClearTask(task);

}

if(DAQmxFailed(error))
printf("DAQmx Error: %s\n",errBuff);

printf("End of program, press Enter key to quit\n");
getchar();
return 0;

}

Appenndix D: Microcontroller Code

///////////////////////////main.c///////////////////////////////

#include <mc9s12dg256.h> /* Derivative information */
#include "lcd.h" /* LCD header */
#include "t2i.h" /* Input Capture header */
#include "pll.h" // Defines BUSCLOCK, sets bus
#include "sci1.h" // frequency to BUSCLOCK MHz */

#pragma LINK INFO DERIVATIVE "mc9s12dg256b"

void show result(void); /*Show result function prototype*/

////////////////////////Declarations////////////////////////////
char x,y;

//////////////////////PWM Initialization////////////////////////
// PWMCTL : PWM Control Register //
// 'CONxy=0': Concatenation Disabled (8−bit PWM) //
// 'PSWAI=0': Continue while in wait mode //
// 'PFRZ =0': PWM will continue while in freeze mode //
// PWMPOL : PWM Polarity Register //
// 'PPOL1=1': PWM channel 1 is high at the beginning //
// PWMPRCLK: PWM Prescale Clock Select Register //
// 'PCKA2=0': Clock A (No Prescaler Division) //
// 'PCKA1=0': Clock A (No Prescaler Division) //
// 'PCKA0=0': Clock A (No Prescaler Division) //
// PWMCLK : PWM Clock Select Register //
// 'PCLK1=1': Clock SA is the clock source for PWM CH1//
// PWMSCLA: PWM Scale A Register //
// PWMCAE : PWM Center Align Enable Register //
// 'CAE1=0':CH1 operates in Left Aligned Output Mode //
// PWMPER1: PWM Channel 1 Period Register //
// PWMDTY1: PWM Channel 1 Duty Register //
// PWME : PWM Enable Register //
// 'PWME1=1': Pulse Width channel 1 is enabled //
//

Appendix D: Microcontroller Code 195

void init PWM(void) {
//PWM signal is generated at PP0 (Motor X) and PP1 (Motor Y) pins

DDRB=0x00;
y=PORTB;
x=y & 0xFA;
PWMCTL = 0x00; /*8−bit mode*/

PWMPOL = 0xFF; /*High polarity mode*/
PWMPRCLK = 0x04;
PWMCLK = 0x03; //clock source is clock SA

PWMSCLA = 10;
PWMCAE = 0x00; //output is left aligned
PWMPER0 = 225; //PWM freq. =330Hz,
PWMPER1 = 225; //PWM freq. =330Hz,
PWMDTY0 = 0; //Duty cycle is 50% of the CW direction
PWMDTY1 = 0; //Duty cycle is 50% of the CW direction
PWME = 0x03; //Enable PWM channel 0 and channel 1

}

///////////////////////////MAIN//////////////////////////////////

void main(void) {

/* set system clock frequency to BUSCLOCK MHz (24 or 4) */
PLL Init();

EnableInterrupts;

t2 Init();

init PWM();

ADC Init();

SCI1 Init(BAUD 115200);

/* initialize LCD display */
initLCD();
//setting PORTA as output,pin 0 BRK for Y, pin 2 DIR for Y,
//pin 4 BRK for X, pin 6 DIR for X
DDRA=0xFF;
PORTA= 0x10;

for(;;){
DDRB=0x00;
y=PORTB;
x=y & 0xFA;
PWMDTY0 = x;
PWMDTY1 = x;
show result();
}

}

Appendix D: Microcontroller Code 196

//////////////////////////Show Result/////////////////////////////

void show result() {

lcd goto(Line1, 0);
lcd puts(" ");
put signed num(countx2);
lcd puts(" ");
put signed num(countx1);
lcd puts(" ");

lcd goto(Line2, 0);
lcd puts(" ");
put signed num(county2);
lcd puts(" ");
put signed num(county1);
lcd puts(" ");

}

////////////////////////////THE END////////////////////////////////

Appendix D: Microcontroller Code 197

////////////////////////isr vectors.c/////////////////////////////

extern void near Startup(void); /* Startup routine */
/* declarations of interrupt service routines */
extern interrupt void OV F ISR(void);
extern interrupt void TIC2ISRX(void);
extern interrupt void TIC2ISRY(void);
extern interrupt void TICISR(void);
extern interrupt void SCI1 isr(void);

#pragma CODE SEG NEAR SEG NON BANKED /* Interrupt section
for this module. Placement will be in NON BANKED area. */
interrupt void UnimplementedISR(void) {

/* Unimplemented ISRs trap.*/
asm BGND;

}

typedef void (*near tIsrFunc)(void);
const tIsrFunc vect[] @0xFF80 = { /* Interrupt table */
UnimplementedISR, /* vector 63 : (reserved) */
UnimplementedISR, /* vector 62 : (reserved) */
UnimplementedISR, /* vector 61 : (reserved) */
UnimplementedISR, /* vector 60 : (reserved) */
UnimplementedISR, /* vector 59 : (reserved) */
UnimplementedISR, /* vector 58 : (reserved) */
UnimplementedISR, /* vector 57 : PWM emergency shutdown */
UnimplementedISR, /* vector 56 : PORT P */
UnimplementedISR, /* vector 55 : MSCAN4 − transmit */
UnimplementedISR, /* vector 54 : MSCAN4 − receive */
UnimplementedISR, /* vector 53 : MSCAN4 − errors */
UnimplementedISR, /* vector 52 : MSCAN4 − wakeup */
UnimplementedISR, /* vector 51 : MSCAN3 − transmit */
UnimplementedISR, /* vector 50 : MSCAN3 − receive */
UnimplementedISR, /* vector 49 : MSCAN3 − errors */
UnimplementedISR, /* vector 48 : MSCAN3 − wakeup */
UnimplementedISR, /* vector 47 : MSCAN2 − transmit */
UnimplementedISR, /* vector 46 : MSCAN2 − receive */
UnimplementedISR, /* vector 45 : MSCAN2 − errors */
UnimplementedISR, /* vector 44 : MSCAN2 − wakeup */
UnimplementedISR, /* vector 43 : MSCAN1 − transmit */
UnimplementedISR, /* vector 42 : MSCAN1 − receive */
UnimplementedISR, /* vector 41 : MSCAN1 − errors */
UnimplementedISR, /* vector 40 : MSCAN1 − wakeup */
UnimplementedISR, /* vector 39 : MSCAN0 − transmit */
UnimplementedISR, /* vector 38 : MSCAN0 − receive */
UnimplementedISR, /* vector 37 : MSCAN0 − errors */
UnimplementedISR, /* vector 36 : MSCAN0 − wakeup */
UnimplementedISR, /* vector 35 : FLASH */
UnimplementedISR, /* vector 34 : EEPROM */
UnimplementedISR, /* vector 33 : SPI2 */
UnimplementedISR, /* vector 32 : SPI1 */
UnimplementedISR, /* vector 31 : IIC bus */
UnimplementedISR, /* vector 30 : DLC */
UnimplementedISR, /* vector 29 : SCME */
UnimplementedISR, /* vector 28 : CRG lock */
UnimplementedISR, /* vector 27 : Pulse accumulator B overflow */

Appendix D: Microcontroller Code 198

UnimplementedISR, /* vector 26 : Modulus down counter underflow */
UnimplementedISR, /* vector 25 : PORT H */
UnimplementedISR, /* vector 24 : PORT J */
UnimplementedISR, /* vector 23 : ATD1 */
UnimplementedISR, /* vector 22 : ATD0 */
SCI1 isr, /* vector 21 : SCI1 (TIE, TCIE, RIE, ILIE) */
UnimplementedISR, /* vector 20 : SCI0 (TIE, TCIE, RIE, ILIE) */
UnimplementedISR, /* vector 19 : SPI0 */
UnimplementedISR, /* vector 18 : Pulse accumulator input edge */
UnimplementedISR, /* vector 17 : Pulse accumulator A overflow */
OV F ISR, /* vector 16 : Timer Overflow (TOF) */
UnimplementedISR, /* vector 15 : Timer channel 7 */
UnimplementedISR, /* vector 14 : Timer channel 6 */
UnimplementedISR, /* vector 13 : Timer channel 5 */
UnimplementedISR, /* vector 12 : Timer channel 4 */
TIC2ISRY, /* vector 11 : Timer channel 3 */
TIC2ISRX, /* vector 10 : Timer channel 2 */
TICISR, /* vector 09 : Timer channel 1 */
UnimplementedISR, /* vector 08 : Timer channel 0 */
UnimplementedISR, /* vector 07 : Real−Time Interrupt (RTI) */
UnimplementedISR, /* vector 06 : IRQ */
UnimplementedISR, /* vector 05 : XIRQ */
UnimplementedISR, /* vector 04 : SWI */
UnimplementedISR, /* vector 03 : Unimplemented Instruction trap */
UnimplementedISR, /* vector 02 : COP failure reset*/
UnimplementedISR, /* vector 01 : Clock monitor fail reset */
Startup /* vector 00 : Reset vector */
};

Appendix D: Microcontroller Code 199

/////////////////////////////pll.h/////////////////////////////////

/***
* boosts the CPU clock to 48 MHz *
***/

// modified to define BUSCLOCK
// PLL now running at 48 MHz to be consistent with HCS12 Serial Monitor
// fw−07−04

#ifndef PPL H
#define PLL H

/* Define the desired bus clock frequency:
no PLL (crystal) −> SYSCLOCK = 4 MHz −> BUSCLOCK = 2 MHz
PLL on −> SYSCLOCK = 48 MHz −> BUSCLOCK = 24 MHz
This is used by sci0.c and/or sci1.c to determine the baud rate divider */
#define BUSCLOCK 24
//********* PLL Init ****************
// Set PLL clock to 48 MHz, and switch 9S12 to run at this rate
// Inputs: none
// Outputs: none
// Errors: will hang if PLL does not stabilize
void PLL Init(void);

#endif /* PLL H */

Appendix D: Microcontroller Code 200

/////////////////////////////pll.c/////////////////////////////////

/***
* boosts the CPU clock to 48 MHz *
***/

// modified to make PLL Init depend on BUSCLOCK (defined in pll.h)
// PLL now running at 48 MHz to be consistent with HCS12 Serial Monitor
// fw−07−04

#include <hidef.h> /* common defines and macros */
#include <mc9s12dp256.h> /* derivative information */
#include "pll.h" /* macro BUSCLOCK */

//********* PLL Init ****************
// Set PLL clock to 48 MHz, and switch 9S12 to run at this rate
// Inputs: none
// Outputs: none
// Errors: will hang if PLL does not stabilize
void PLL Init(void){

/* ensure we're running the controller at an appropriate clock speed */
#if (BUSCLOCK != 24 && BUSCLOCK != 4)
#error pll.h: BUSCLOCK has to be set to 4 (MHz) or 24 (MHz)
#endif

/* set PLL clock speed */
#if BUSCLOCK == 24
SYNR = 0x05; // PLLOSC = 48 MHz
#else
SYNR = 0x00; // PLLOSC = 8 MHz
#endif

REFDV = 0x00;

/* PLLCLK = 2 * OSCCLK * (SYNR + 1) / (REFDV + 1)
Values above give PLLCLK of 48 MHz with 4 MHz crystal.
(OSCCLK is Crystal Clock Frequency) */

CLKSEL = 0x00;

/*Meaning for CLKSEL:
Bit 7: PLLSEL = 0 Keep using OSCCLK until we are

ready to switch to PLLCLK
Bit 6: PSTP = 0 Do not need to go to Pseudo−Stop Mode
Bit 5: SYSWAI = 0 In wait mode system clocks stop.
But 4: ROAWAI = 0 Do not reduce oscillator amplitude in wait mode.
Bit 3: PLLWAI = 0 Do not turn off PLL in wait mode
Bit 2: CWAI = 0 Do not stop the core during wait mode
Bit 1: RTIWAI = 0 Do not stop the RTI in wait mode
Bit 0: COPWAI = 0 Do not stop the COP in wait mode

*/

PLLCTL = 0xD1;

/*Meaning for PLLCTL:

Appendix D: Microcontroller Code 201

Bit 7: CME = 1; Clock monitor enable − reset if
bad clock when set

Bit 6: PLLON = 1; PLL On bit
Bit 5: AUTO = 0; No automatic control of bandwidth,

manual through ACQ
But 4: ACQ = 1; 1 for high bandwidth filter (acquisition);

0 for low (tracking)
Bit 3: (Not Used by 9s12c32)
Bit 2: PRE = 0; RTI stops during Pseudo Stop Mode
Bit 1: PCE = 0; COP diabled during Pseudo STOP mode
Bit 0: SCME = 1; Crystal Clock Failure −> Self Clock mode NOT reset.

*/

while((CRGFLG&0x08) == 0){ // Wait for PLLCLK to stabilize.
}
CLKSEL PLLSEL = 1; // Switch to PLL clock

}

Appendix D: Microcontroller Code 202

/////////////////////////////t2i.h/////////////////////////////////

/**
** In this header file we are using the input capture. **
** Bus Clock = 24 MHz , Prescaler = 1 **
**/

#include <hidef.h> /* common defines and macros */
#include <mc9s12dg256.h> /* derivative information */

#define MAX 4

extern interrupt void OV F ISR(void);
extern interrupt void TIC2ISRX(void);
extern interrupt void TIC2ISRY(void);
extern interrupt void TICISR(void);
//Global variables

float CounterX=0,CounterY=0;
int countx1=0,countx2=0,county1=0,county2=0;

//Initialization function
void t2 Init()
{
//connect emcoder to pt2
//TC7 = 0x0000; //Channel 7 compare register is set to 0
TSCR2 = 0x0A; //TCRE bit is set so that free running counter
// is set to 0000, prescale of 4
TIE = 0x0E; //Channel 1,2,3 interrupt enabled
TSCR2 = 0x80; //TOI inhibited and prescaler factor = 1
TCTL4 = 0x5C; //Captures on rising edges only for pins 2 and 3,
// both edges for pin 1
TIOS = 0x00; //Channel 1,2,3 acts as input capture
TSCR1 = 0x80; //Timer is enabled and normal flag clearing
DDRB = 0x00; //setting PORTB as input,pin 0 UP/DWN for X,
// pin 2 UP/DWN for Y

}

//Interrupt subroutine
#pragma CODE SEG NON BANKED
#pragma TRAP PROC

void TIC2ISRX()

{ if((PORTB & 0x01)==0x00) {
if (countx1==0x00) {

countx1=0xff;
countx2−−;
}
else{

countx1−−;
}
}
if((PORTB & 0x01)==0x01) {

if (countx1==0xff) {
countx1=0x00;
countx2++;
}

Appendix D: Microcontroller Code 203

else{
countx1++;

}
}

TFLG1 |= 0x04; //pin2 CLKX
}

void TIC2ISRY()
{

if((PORTB & 0x04)==0x00) {
if (county1==0x00) {

county1=0xff;
county2−−;
}

else{
county1−−;

}
}
if((PORTB & 0x04)==0x04) {

if (county1==0xff) {
county1=0x00;
county2++;
}
else{

county1++;
}
}

TFLG1 |= 0x08; //pin3 CLKY
}

void TICISR()

{
SCI1 OutChar(0x0d);
//SCI1 OutUDec(countx2);
// SCI1 OutChar(' ');
// SCI1 OutUDec(countx1);
// SCI1 OutChar(' ');
SCI1 OutUDec(county2);
SCI1 OutChar(' ');
SCI1 OutUDec(county1);

TFLG1 |= 0x02; //pin1
}

void OV F ISR() { /*Overflow Interrupt*/

TFLG2 = 0x80;
}
#pragma CODE SEG DEFAULT

Appendix D: Microcontroller Code 204

/////////////////////////////lcd.h/////////////////////////////////

/* Dragon−12 LCD Header file */

#ifndef LCD H
#define LCD H

/* declare public functions */
void initLCD(void); // must be called first to init LCD
void lcd puts(char *string); // write a string to LCD
//write single char as command or data to LCD
lcd write(unsigned char x, unsigned char rs);
void put num(unsigned int no); // write a number to LCD
void put signed num(int num); // write signed nu
//Move cursor to specific Line and offset location
void lcd goto(unsigned char line, unsigned char offset);
#define Line1 0x80 // Line1 address in LCD
#define Line2 0xc0 // Line2 address in LCD
#endif /* LCD H */

Appendix D: Microcontroller Code 205

/////////////////////////////sci1.h/////////////////////////////////

// filename ******************* sci1.h **************************
// Jonathan W. Valvano 1/29/04

// This example accompanies the books
// "Embedded Microcomputer Systems: Real Time Interfacing",
// Brooks−Cole, copyright (c) 2000,
// "Introduction to Embedded Microcomputer Systems:
// Motorola 6811 and 6812 Simulation", Brooks−Cole,
// copyright (c) 2002

// Copyright 2004 by Jonathan W. Valvano, valvano@mail.utexas.edu
// You may use, edit, run or distribute this file
// as long as the above copyright notice remains
// Modified by EE345L students Charlie Gough && Matt Hawk
// Modified by EE345M students Agustinus Darmawan + Mingjie Qiu
//
// adapted to the Dragon12 board using SCI1 −− fw−07−04

// define labels for baudrates
// (necessary 'coz 115200 isn't a 16−bit number anymore −− fw−08−04)
#define BAUD 300 0
#define BAUD 600 1
#define BAUD 1200 2
#define BAUD 2400 3
#define BAUD 4800 4
#define BAUD 9600 5
#define BAUD 19200 6
#define BAUD 38400 7
#define BAUD 57600 8
#define BAUD 115200 9

// standard ASCII symbols
#define CR 0x0D
#define LF 0x0A
#define BS 0x08
#define ESC 0x1B
#define SP 0x20
#define DEL 0x7F

//−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 Init−−−−−−−−−−−−−−−−−−−−−−−−
// Initialize Serial port SCI1
// Input: baudRate is tha baud rate in bits/sec
// Output: none
extern void SCI1 Init(unsigned short baudRate);

//−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 InStatus−−−−−−−−−−−−−−−−−−−−−−−−−−
// Checks if new input is ready, TRUE if new input is ready
// Input: none
// Output: TRUE if a call to InChar will return right away with data
// FALSE if a call to InChar will wait for input
extern char SCI1 InStatus(void);

//−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 InChar−−−−−−−−−−−−−−−−−−−−−−−−
// Wait for new serial port input, busy−waiting synchronization

Appendix D: Microcontroller Code 206

// Input: none
// Output: ASCII code for key typed
extern char SCI1 InChar(void);

// Reads in a String of max length
extern void SCI1 InString(char *, unsigned short);

//−−−−−−−−−−−−−−−−−−−−−−SCI1 InUDec−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// InUDec accepts ASCII input in unsigned decimal format
// and converts to a 16 bit unsigned number
// valid range is 0 to 65535
// Input: none
// Output: 16−bit unsigned number
// If you enter a number above 65535, it will truncate without an error
// Backspace will remove last digit typed
extern unsigned short SCI1 InUDec(void);

//−−−−−−−−−−−−−−−−−−−−−−SCI1 InULDec−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// InUDec accepts ASCII input in unsigned decimal format
// and converts to a 32 bit unsigned number
// valid range is 0 to 4294967296
// Input: none
// Output: 32−bit unsigned number
// If you enter a number above 4294967296, it will truncate
// without an error
// Backspace will remove last digit typed
extern unsigned long SCI1 InULDec(void);

//−−−−−−−−−−−−−−−−−−−−−−SCI1 InSDec−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// InSDec accepts ASCII input in signed decimal format
// and converts to a 16 bit signed number
// valid range is −32768 to +32767
// Input: none
// Output: 16−bit signed number
// If you enter a number outside +/−32767, it will truncate
// without an error
// Backspace will remove last digit typed
extern signed int SCI1 InSDec(void);

//−−−−−−−−−−−−−−−−−−−−−−SCI1 InSLDec−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// InSLDec accepts ASCII input in signed decimal format
// and converts to a 32 bit signed number
// valid range is −2,147,483,648 to +2,147,483,647
// Input: none
// Output: 32−bit signed number
// If you enter a number outside +/−2147483648, it will truncate
// without an error
// Backspace will remove last digit typed
extern signed long SCI1 InSLDec(void);

//−−−−−−−−−−−−−−−−−−−−−SCI1 InUHex−−
// Accepts ASCII input in unsigned hexadecimal (base 16) format
// Input: none
// Output: 16−bit unsigned number
// Just enter the 1 to 4 hex digits
// It will convert lower case a−f to uppercase A−F
// and converts to a 16 bit unsigned number
// value range is 0 to FFFF

Appendix D: Microcontroller Code 207

// If you enter a number above FFFF, it will truncate
// without an error
// Backspace will remove last digit typed
extern unsigned short SCI1 InUHex(void);

//−−−−−−−−−−−−−−−−−−−−−−−SCI1 OutStatus−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Checks if output data buffer is empty, TRUE if empty
// Input: none
// Output: TRUE if a call to OutChar will output and return right away
// FALSE if a call to OutChar will wait for output to be ready
extern char SCI1 OutStatus(void);

//−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 OutChar−−−−−−−−−−−−−−−−−−−−−−−−
// Wait for buffer to be empty, output 8−bit to serial port
// busy−waiting synchronization
// Input: 8−bit data to be transferred
// Output: none
extern void SCI1 OutChar(char);

//−−−−−−−−−−−−−−−−−−−−−−−SCI1 OutUDec−−−−−−−−−−−−−−−−−−−−−−−
// Output a 16−bit number in unsigned decimal format
// Input: 16−bit number to be transferred
// Output: none
// Variable format 1−5 digits with no space before or after
extern void SCI1 OutUDec(unsigned short);

//−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 OutString−−−−−−−−−−−−−−−−−−−−−−−−
// Output String (NULL termination), busy−waiting synchronization
// Input: pointer to a NULL−terminated string to be transferred
// Output: none
extern void SCI1 OutString(char *pt);

//−−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 OutUHex−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Output a 16 bit number in unsigned hexadecimal format
// Input: 16−bit number to be transferred
// Output: none
// Variable format 1 to 4 digits with no space before or after
extern void SCI1 OutUHex(unsigned short);

Appendix D: Microcontroller Code 208

/////////////////////////////sci1.c/////////////////////////////////

/* ***************************** sci1.c ******************************
**
** This module implements interrupt driven background communications

** using SCI1; a single interrupt service routine is used to service

** both incoming as well as outgoing data streams.

**
** fw−02−05
*/

#include <mc9s12dp256.h> /* derivative information */
#include <string.h> /* strlen() */
#include "sci1.h"
#include "pll.h" /* macro SYSCLOCK */
#include "rb .h" /* ring buffer macros */

#define MAX BUFLEN 128
static char outbuf[2*MAX BUFLEN]; /* memory for ring buffer #1 (TXD) */
static char inbuf [2*MAX BUFLEN]; /* memory for ring buffer #2 (RXD) */

/* define o/p and i/p ring buffer control structures */
/* static struct { ... } out; −> global to this file */
static RB CREATE(out, char);
/* static struct { ... } in; −> global to this file */
static RB CREATE(in, char);

/*
** −−
** interrupt handler

** −−
*/

#define RDRF 0x20 // Receive Data Register Full Bit
#define TDRE 0x80 // Transmit Data Register Empty Bit

interrupt void SCI1 isr(void) {

/* determine cause of interrupt */
if((SCI1SR1 & RDRF) != 0) {

/* Receive Data Register Full −> fetch character and store */
if(!RB FULL(&in)) {

/* store the value of SCI1DRL in the ring buffer */

*RB PUSHSLOT(&in) = SCI1DRL;
RB PUSHADVANCE(&in); /* next write location */

}

PORTB ˆ= 0x01;

} else if((SCI1SR1 & TDRE) != 0) {

/* Transmission Data Register Empty −> send... */

Appendix D: Microcontroller Code 209

if(!RB EMPTY(&out)) {

/* start transmission of next character */
SCI1DRL = *RB POPSLOT(&out);

/* remove the sent character from the ring buffer */
RB POPADVANCE(&out);

} else {

/* buffer empty −> disable TX interrupt */
SCI1CR2 &= ¬0x80;

/* ... otherwise the system 'hangs' (continous interrupts) */
}

}

} /* SCI1 isr */

/*
** −−
** communication interface

** −−
*/

/* O/P : send single character */
//−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 OutChar−−−−−−−−−−−−−−−−−−−−−−−−
// Wait for buffer to be empty, output 8−bit to serial port
// busy−waiting synchronization
// Input: 8−bit data to be transferred
// Output: none
void SCI1 OutChar(char data) {

/* wait until there's space in the ring buffer */
while(RB FULL(&out));
/* place character to be sent in the buffer */

*RB PUSHSLOT(&out) = data;
/* set write position for the next character to be sent */
RB PUSHADVANCE(&out);

SCI1CR2 |= 0x80; /* (re−)enable interrupt */

} /* SCI1 OutChar */

/* O/P : send entire string */
void SCI1 OutString(char *pt) {

while(*pt) {

SCI1 OutChar(*pt);
pt++;

}

} /* SCI1 OutString */

Appendix D: Microcontroller Code 210

/* I/P : get single character */
char SCI1 InChar(void) {

char c;

/* wait until there's data in the ring buffer */
while(RB EMPTY(&in));

/* get character off the buffer */
c = *RB POPSLOT(&in);
/* set write position to the next free slot */
RB POPADVANCE(&in);

return c;

} /* SCI1 InChar */

//−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 Init−−−−−−−−−−−−−−−−−−−−−−−−
// Initialize Serial port SCI1
// Input: baudRate is tha baud rate in bits/sec
// Output: none
void SCI1 Init(unsigned short baudRate) {

/* set−up input and output ring buffers */
RB INIT(&out, outbuf, 255); /* set up TX ring buffer */
RB INIT(&in, inbuf, 255); /* set up RX ring buffer */

/* check if bus frequency has been boosted to 24 MHz (fw−07−04) */
#if BUSCLOCK == 24

/* 24 MHz bus frequency (PLL is used, SYNR = 2, REFDV = 0 −> factor 6)
Baud rate generator:
SCI1BDL/H = (24e6/16)/baudrate = 1.5e6/baudrate */

switch(baudRate){
case BAUD 300:

SCI1BDH=19;
SCI1BDL=136;
break;

case BAUD 600:
SCI1BDH=9;
SCI1BDL=196;
break;

case BAUD 1200:
SCI1BDH=4;
SCI1BDL=226;
break;

case BAUD 2400:
SCI1BDH=2;
SCI1BDL=113;
break;

case BAUD 4800:
SCI1BDH=1;
SCI1BDL=56;
break;

case BAUD 9600:

Appendix D: Microcontroller Code 211

SCI1BDH=0;
SCI1BDL=156;
break;

case BAUD 19200:
SCI1BDH=0;
SCI1BDL=78;
break;

case BAUD 38400:
SCI1BDH=0;
SCI1BDL=39;
break;

case BAUD 57600:
SCI1BDH=0;
SCI1BDL=26;
break;

case BAUD 115200:
SCI1BDH=0;
SCI1BDL=13;
break;

}

#else

/* 4 MHz bus frequency (PLL not used, SYNR = REFDV = 0 −> factor 2)
Baud rate generator:
SCI1BDL/H = (4e6/16)/baudrate = 250000/baudrate */

switch(baudRate){
case BAUD 300:
SCI1BDH=3;
SCI1BDL=64;
break;

case BAUD 600:
SCI1BDH=1;
SCI1BDL=160;
break;

case BAUD 1200:
SCI1BDH=0;
SCI1BDL=208;
break;

case BAUD 2400:
SCI1BDH=0;
SCI1BDL=104;
break;

case BAUD 4800:
SCI1BDH=0;
SCI1BDL=52;
break;

case BAUD 9600:
SCI1BDH=0;
SCI1BDL=26;
break;

case BAUD 19200:
SCI1BDH=0;
SCI1BDL=13;
break;

}

#endif /* BUSCLOCK */

Appendix D: Microcontroller Code 212

SCI1CR1 = 0;
/* bit value meaning

7 0 LOOPS, no looping, normal
6 0 WOMS, normal high/low outputs
5 0 RSRC, not appliable with LOOPS=0
4 0 M, 1 start, 8 data, 1 stop
3 0 WAKE, wake by idle (not applicable)
2 0 ILT, short idle time (not applicable)
1 0 PE, no parity
0 0 PT, parity type (not applicable with PE=0) */

SCI1CR2 = 0xAC; /* enable both RX and TX interrupts */
/* bit value meaning

7 0 TIE, transmit interrupts on TDRE
6 0 TCIE, no transmit interrupts on TC
5 1 RIE, receive interrupts on RDRF
4 0 ILIE, no interrupts on idle
3 1 TE, enable transmitter
2 1 RE, enable receiver
1 0 RWU, no receiver wakeup
0 0 SBK, no send break */

}

//−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 InStatus−−−−−−−−−−−−−−−−−−−−−−−−−−
// Checks if new input is ready, TRUE if new input is ready
// Input: none
// Output: TRUE if a call to InChar will return right away with data
// FALSE if a call to InChar will wait for input

char SCI1 InStatus(void) {

return(SCI1SR1 & RDRF);

}

//−−−−−−−−−−−−−−−−−−−−−−−SCI1 OutStatus−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Checks if output data buffer is empty, TRUE if empty
// Input: none
// Output: TRUE if a call to OutChar will output and return right away
// FALSE if a call to OutChar will wait for output to be ready
char SCI1 OutStatus(void) {

return(SCI1SR1 & TDRE);

}

//−−−−−−−−−−−−−−−−−−−−−−−−SCI1 InString−−−−−−−−−−−−−−−−−−−−−−−−
// This function accepts ASCII characters from the serial port
// and adds them to a string until a carriage return is inputted
// or until max length of the string is reached.
// It echoes each character as it is inputted.
// If a backspace is inputted, the string is modified
// and the backspace is echoed
// InString terminates the string with a null character

Appendix D: Microcontroller Code 213

// −− Modified by Agustinus Darmawan + Mingjie Qiu −−
void SCI1 InString(char *string, unsigned short max) {
int length=0;
char character;

character = SCI1 InChar();
while(character!=CR){

if(character==BS){
if(length){

string−−;
length−−;
SCI1 OutChar(BS);

}
}
else if(length<max){
*string++=character;
length++;
SCI1 OutChar(character);

}
character = SCI1 InChar();

}
*string = 0;

}

//#ifdef ERASE

//−−−−−−−−−−−−−−−−−−−−−−SCI1 InUDec−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// InUDec accepts ASCII input in unsigned decimal format
// and converts to a 16 bit unsigned number
// valid range is 0 to 65535
// Input: none
// Output: 16−bit unsigned number
// If you enter a number above 65535, it will truncate
// without an error
// Backspace will remove last digit typed
unsigned short SCI1 InUDec(void) {

unsigned short number=0, length=0;
char character;

character = SCI1 InChar();

while(character!=CR) {

// accepts until carriage return input
// The next line checks that the input is a digit, 0−9.
// If the character is not 0−9, it is ignored and not echoed
if((character≥'0') && (character≤'9')) {

// this line overflows if above 65535
number = 10*number+(character−'0');
length++;
SCI1 OutChar(character);

}

// If the input is a backspace, then the return number is
// changed and a backspace is outputted to the screen

else if((character==BS) && length) {

Appendix D: Microcontroller Code 214

number /= 10;
length−−;
SCI1 OutChar(character);

}

character = SCI1 InChar();

}

return number;

}

//−−−−−−−−−−−−−−−−−−−−−−SCI1 InULDec−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// InULDec accepts ASCII input in unsigned decimal format
// and converts to a 32 bit unsigned number
// valid range is 0 to 4,294,967,296
// Input: none
// Output: 32−bit unsigned number
// If you enter a number above 4294967296, it will truncate
// without an error
// Backspace will remove last digit typed
unsigned long SCI1 InULDec(void) {

unsigned long number=0, length=0;
char character;

character = SCI1 InChar();

while(character!=CR) {

// accepts until carriage return input
// The next line checks that the input is a digit, 0−9.
// If the character is not 0−9, it is ignored and not echoed
if((character≥'0') && (character≤'9')) {

// this line overflows if above 4294967296
number = 10*number+(character−'0');
length++;
SCI1 OutChar(character);

}

// If the input is a backspace, then the return number is
// changed and a backspace is outputted to the screen

else if((character==BS) && length) {

number /= 10;
length−−;
SCI1 OutChar(character);

}

character = SCI1 InChar();

}

return number;

Appendix D: Microcontroller Code 215

}

//−−−−−−−−−−−−−−−−−−−−−−SCI1 InSDec−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// InSDec accepts ASCII input in signed decimal format
// and converts to a 16 bit signed number
// valid range is −32768 to +32767
// Input: none
// Output: 16−bit signed number
// If you enter a number outside +/−32767, it will truncate
// without an error
// Backspace will remove last digit typed
signed int SCI1 InSDec(void) {

signed int number=0, length=0;
char sign = 0; // '0': pos, '1': neg
char character;

character = SCI1 InChar();

while(character!=CR) {

// accepts until carriage return input
// The next lines checks for an optional sign character ('+' or '−')
// and then that the input is a digit, 0−9.
// If the character is not 0−9, it is ignored and not echoed
if(character=='+') {

SCI1 OutChar(character);
} else if(character=='−') {
sign = 1;
SCI1 OutChar(character);

} else if((character≥'0') && (character≤'9')) {
// this line overflows if above 4294967296
number = 10*number+(character−'0');
length++;
SCI1 OutChar(character);

}

// If the input is a backspace, then the return number is
// changed and a backspace is outputted to the screen
else if((character==BS) && length) {

number /= 10;
length−−;
SCI1 OutChar(character);

}

character = SCI1 InChar();

}

if(sign == 1) return −number;
else return number;

}

Appendix D: Microcontroller Code 216

//−−−−−−−−−−−−−−−−−−−−−−SCI1 InSLDec−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// InSLDec accepts ASCII input in signed decimal format
// and converts to a 32 bit signed number
// valid range is −2,147,483,648 to +2,147,483,647
// Input: none
// Output: 32−bit signed number
// If you enter a number outside +/−2147483648, it will truncate
// without an error
// Backspace will remove last digit typed
signed long SCI1 InSLDec(void) {

signed long number=0, length=0;
char sign = 0; // '0': pos, '1': neg
char character;

character = SCI1 InChar();

while(character!=CR) {

// accepts until carriage return input
// The next lines checks for an optional sign character
// ('+' or '−')
// and then that the input is a digit, 0−9.
// If the character is not 0−9, it is ignored and not echoed
if(character=='+') {

SCI1 OutChar(character);
} else if(character=='−') {
sign = 1;
SCI1 OutChar(character);

} else if((character≥'0') && (character≤'9')) {
// this line overflows if above 4294967296
number = 10*number+(character−'0');
length++;
SCI1 OutChar(character);

}

// If the input is a backspace, then the return number is
// changed and a backspace is outputted to the screen
else if((character==BS) && length) {

number /= 10;
length−−;
SCI1 OutChar(character);

}

character = SCI1 InChar();

}

if(sign == 1) return −number;
else return number;

}

//−−−−−−−−−−−−−−−−−−−−−−−SCI1 OutUDec−−−−−−−−−−−−−−−−−−−−−−−
// Output a 16−bit number in unsigned decimal format

Appendix D: Microcontroller Code 217

// Input: 16−bit number to be transferred
// Output: none
// Variable format 1−5 digits with no space before or after

void SCI1 OutUDec(unsigned short n){
// This function uses recursion to convert decimal number
// of unspecified length as an ASCII string

if(n ≥ 10){
SCI1 OutUDec(n/10);
n = n%10;

}
SCI1 OutChar(n+'0'); /* n is between 0 and 9 */

}

//−−−−−−−−−−−−−−−−−−−−−SCI1 InUHex−−−−−−−−−−−−−−−−−−−−−−−−−−
// Accepts ASCII input in unsigned hexadecimal
// (base 16) format
// Input: none
// Output: 16−bit unsigned number
// Just enter the 1 to 4 hex digits
// It will convert lower case a−f to uppercase A−F
// and converts to a 16 bit unsigned number
// value range is 0 to FFFF
// If you enter a number above FFFF, it will truncate
// without an error
// Backspace will remove last digit typed

unsigned short SCI1 InUHex(void){
unsigned short number=0, digit, length=0;
char character;

character = SCI1 InChar();
while(character!=CR){

digit = 0x10; // assume bad
if((character≥'0') && (character≤'9')){

digit = character−'0';
}
else if((character≥'A') && (character≤'F')){

digit = (character−'A')+0xA;
}
else if((character≥'a') && (character≤'f')){

digit = (character−'a')+0xA;
}

// If the character is not 0−9 or A−F,
// it is ignored and not echoed

if(digit≤0xF){
number = number*0x10+digit;
length++;
SCI1 OutChar(character);

}
// Backspace outputted and return value changed
// if a backspace is inputted

else if(character==BS && length){
number /=0x10;
length−−;
SCI1 OutChar(character);

}
character = SCI1 InChar();

}

Appendix D: Microcontroller Code 218

return number;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−SCI1 OutUHex−−−−−−−−−−−−−−−−−−−−
// Output a 16 bit number in unsigned hexadecimal format
// Input: 16−bit number to be transferred
// Output: none
// Variable format 1 to 4 digits with no space before or after

void SCI1 OutUHex(unsigned short number){
// This function uses recursion to convert the number of
// unspecified length as an ASCII string

if(number≥0x10) {
SCI1 OutUHex(number/0x10);
SCI1 OutUHex(number%0x10);

}
else if(number<0xA){

SCI1 OutChar(number+'0');
}
else{

SCI1 OutChar((number−0x0A)+'A');
}

}

//#endif /* ERASE */

Vita__ ____219

VITA

Yasmine Ahmed El-Ashi was born on December 31
st
, 1984, in Khartoum, Sudan. She

completed her IGCSE O-level and A-level examinations in Unity High School, a

missionary private secondary school in Khartoum, in 2001. She earned a Bachelor of

Science degree in Electrical Engineering with a MagnaCumlaude honor (3.8 GPA) from

the American University of Sharjah, in 2006. In addition, she completed a minor in

Applied and Computational Mathematics.

She enrolled in the Mechatronics Masters program in the American University of Sharjah

as a graduate assistant, in 2007. Furthermore, she worked on a project funded by AUS

Research Grant on Modeling and Analysis of a Wavelet Network Based Optical Sensor

for Vibration Monitoring.

 Published conference papers:

 Y. El-Ashi, R. Dhaouadi, and T. Landolsi, Design of a Novel Optical Vibrometer Using

Gaussian Beam Analysis, Proc. of 5th International Symposium on Mechatronics and its

Applications (ISMA08), Amman, Jordan, May 2008.

 Y. El-Ashi, R. Dhaouadi, and T. Landolsi, Accuracy of a Gaussian Beam Optical

Vibrometer with a Quad Photodetector Spatial Separation, Proc. of 3rd International

Conf. on Modeling,Simulation and Applied Optimization, Sharjah, UAE, January 2009.

 Published journal paper:

 Y. El-Ashi, R. Dhaouadi, and T. Landolsi, Position Detection and Vibration Monitoring

System Using Quad-cell Optical Beam Power Distribution, Journal of the Franklin

Institute, April 2010.

Submitted journal paper:

 Y. El-Ashi, R. Dhaouadi, and T. Landolsi, Modeling and Analysis of a Wavelet

Network Based Optical Sensor for Vibration Monitoring, IEEE Transactions on

Sensors, April 2010.

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Beam Optics
	The Wave Equation
	Monochromatic waves
	Complex wavefunction
	Complex Amplitude
	The Helmholtz Equation
	Intensity, Power and Energy

	Wavefronts
	The Plane Wave
	Paraxial Waves
	The Gaussian Beam

	Functional Approximation with Wavelet Networks
	Function Approximation
	Neural networks
	Wavelet Transforms
	The Continuous Wavelet Transform (CWT)
	Inverse Wavelet Transform
	Wavelet bases and frames

	Wavelet Networks (WN)
	Adaptive Discretization
	Wavelet Network Structure
	WN Learning

	Optical System Modeling and Design
	System Architecture
	Theoretical Optical Acquisition Model
	Modeling Optical Apodization
	Modeling System Imperfections

	Experimental Study of the Position Detector
	Experimental Setup
	Optical Model Validation

	Position Detection using Wavelet Network
	Network Initialization
	Training and Testing of Wavelet Network
	Vibration Monitoring

	Conclusions
	Bibliography
	Appendix A: Matlab Codes
	Appendix B: User Manual for Wavelet Network Code
	WN Initialization
	Initializing Woh and Woi
	Dyadic Initialization

	Feedforward Algorithm
	Backpropagation Algorithm
	Updating the parameters of Woi
	Updating the parameters of Woh
	Updating the parameters of m and d

	Appendix C: DAQ Code
	Appendix D: Microcontroller Code

