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ABSTRACT 

In the past few years, there have been remarkable developments in wireless 

communication technology, leading to a rapid growth in wireless applications. 

However, this dramatic increase in wireless applications is severely limited by 

bandwidth scarcity; a fundamental resource for communications. Traditionally, fixed 

spectrum assignments are used in which frequency bands are statically assigned to 

licensed users. The static spectrum allocation fails to provide vacant spectrum bands 

to new coming users and services. Hence, a new communications and networking 

paradigm based on dynamic spectrum allocation has emerged, namely cognitive radio 

system. 

 In cognitive radio networks, spectral utilization is improved by allowing 

unauthorized (secondary) users to regularly sense the radio spectrum and 

opportunistically use frequency bands not utilized by licensed (primary) users. 

Primary users have higher priority than secondary users; therefore, secondary users 

need to utilize idle spectrum holes without causing harmful interference to primary 

users. In order to achieve minimum level of interference to primary users, efficient 

spectrum sensing techniques need to be implemented. 

Spectrum sensing is one of the main challenges in opportunistic spectrum usage, 

since it is responsible for providing efficient and fair spectrum access and scheduling  
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among licensed and unlicensed users. Cooperation between cognitive radio users has 

been proposed in the literature to overcome spectrum sensing challenges by providing 

spatial diversity. Both centralized and decentralized cooperative spectrum sensing 

systems have been implemented to enhance detection capability of cognitive radio 

networks. 

In this work, we formulate the cooperative spectrum sensing process as a pattern 

recognition problem, where a centralized node classifies the target spectrum into two 

classes:  busy (presence of signal) or vacant (absence of signal). The classifier is 

designed to identify white spaces in the spectrum while minimizing interference with 

licensed primary users and maximizing spectral utilization in environments exhibiting 

shadowing and fading effects. Polynomial classifiers were proposed in this work as 

classifier models, in which first and second order expansions are investigated.  

Feature extraction stage consists of two spectrum sensing techniques: parametric 

and non-parametric. In nonparametric detection algorithms, such as energy detection 

and autocorrelation, the cognitive network does not have a priori knowledge on the 

primary users' signals. On the other hand, in parametric detection, cyclic features 

characterizing primary signals and prior knowledge of synchronizing preamble 

patterns are utilized. The parametric detection schemes include coherent detection and 

cyclostationary feature detection. 

Extensive simulations were performed to design, model, and evaluate the 

cooperative classifier system, when both parametric and nonparametric features are 

used. In nonparametric spectrum sensing, simulations demonstrate the superior 

performance of autocorrelation detection scheme over energy detection. Moreover, 

simulations of parametric spectrum sensing indicate that cyclostationary feature 

detection outperforms coherent detection. Finally, it was shown that parametric 

sensing schemes yields a superior performance over nonparametric sensing schemes 

when implemented under same conditions. 
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CHAPTER   1 

INTRODUCTION 

There has been a rapid development in wireless communication applications due 

to significant technological advancements in the field. The explosion of wireless 

applications can be envisioned in mobile communications, wireless 

PANs/LANs/MANs, Wi-Fi, TV broadcast services, etc. This enormous growth in the 

telecommunication field resulted in severe shortage in the available radio frequency 

spectrum. In traditional spectrum allocation schemes, fixed frequency bands are 

statically assigned to licensed users. Having most of the available spectrum statically 

allocated, frequency regulation bodies fall short to provide vacant bands to newly 

developed wireless services. On the other hand, spectrum occupancy measurements 

have shown that some licensed bands are significantly underutilized. For example, the 

Spectral Policy Task Force reported that radio channels are typically occupied 15% of 

the time with a peak occupancy reaching 85% ‎[1]. This indicates that spectrum 

limitations occur due to the inefficient static allocation techniques, rather than 

physical spectrum scarcity. Therefore, the underutilization of available spectrum 

resources has led regularity bodies to urge the development of dynamic spectrum 

allocation paradigms, called cognitive radio (CR) networks.  

 CR networks utilize dynamic spectral allocation to overcome spectrum scarcity. 

In CR technology, unauthorized (secondary) users are allowed to share the spectrum 

originally assigned to authorized (primary) users.  In other words, frequency bands 

that are legally assigned to primary users are exploited by secondary users when the 

primary users are idle. However, primary users have the right to occupy their assigned 

bands whenever needed. Consequently, a CR network should be aware of the 

variations in the surrounding environment and adjust its operating parameters 

accordingly. In order to standardize the deployment of CR networks, the IEEE 802.22 
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Working Group was formed in 2004. The working group has been developing a 

standard for a wireless regional area network (WRAN) with CR based radio interface 

for operation in licensed bands. The operating bands to be exploited by WRANs are 

the ones currently licensed for analog and digital television broadcasting and wireless 

microphones ‎[2].  

Secondary users in CR networks are restrained by the condition of causing no 

harmful interference to primary users. Hence, they need to employ efficient spectrum 

sensing techniques that ensure the quality of service for primary users and exploit all 

dynamic spectrum sharing chances. That is to say, in order to facilitate dynamic 

spectrum access in licensed bands, effective spectrum sensing algorithm needs to be 

developed whereby high reliability along with effective utilization is achieved. 

According to the decision made by the spectrum sensing method, CR devices will 

dynamically alter their operating frequency, transmission power, modulation, etc. By 

being able to successfully identify spectrum holes and efficiently allocate the available 

spectral resources, CR network can provide different services to its users. However, it 

needs to achieve high detection probability to keep a minimum level of interference to 

coexistent primary users. For example, Table ‎1.1 illustrates the requirements for 

cognitive users for the WRAN standard ‎[1]‎[2] . The requirements are provided for the 

different signal types targeted by the standard, which are analog and digital TV and 

wireless microphones. Moreover, the standard identifies the channel detection time to 

be less than 2s; and the CR is required to achieve a detection probability of 0.9 with 

false alarm rate of 0.1. It can be noted that sensing cognitive user needs to operate 

under very low SNR values, which is an expected scenario in CR networks to provide 

protection to primary network.  

Table ‎1.1. Receiver parameters for IEEE 802.22 WRAN. 

Parameter Analog TV Digital TV Wireless Microphone 

Detection probability 0.9 0.9 0.9 

False alarm probability 0.1 0.1 0.1 

Channel detection time ≤ 2𝑠 ≤ 2𝑠 ≤ 2𝑠 

SNR 1 dB -21dB -12dB 
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CR users sense the primary users' licensed channel, if a frequency band is 

occupied by primary user; it is called an active band. Otherwise, it is called an idle 

band. We also refer to the inactive bands by spectrum holes or white space, while the 

active bands are referred to by black spaces ‎[3]. The spectrum sensing algorithm 

needs to classify the target frequency band into white or black spaces, where white 

spaces are proper candidates for spectrum allocation to CR users, and vice versa. 

Several spectrum sensing methods have been proposed in literature so far such as 

energy detection, coherent detection, cyclostationary feature detection, and 

autocorrelation detection ‎[1]‎[3]‎[4]‎[5]‎[6]‎[7]‎[8]‎[9]‎[10]‎[11]‎[12]. Each secondary user 

senses the surrounding environment and uses one of the spectrum sensing methods to 

decide on spectrum vacancy. However, the received signal is usually affected by 

fading and shadowing effects, making it hard to obtain a reliable decision at a single 

receiver.  To reduce the shadowing and fading impacts, cooperation between several 

CR users in making the spectrum availability decision has been proposed to exploit 

spatial diversity gain. Most of the prior works implement cooperative spectrum 

sensing via cooperative techniques such a maximum ratio combining, likelihood ratio 

test, or hard decision rules, such as AND logic operation and one-out-of-𝑛 rule. 

 In this work, we propose a novel cooperative spectrum sensing approach in CR 

applications. Specifically, we propose to utilize classification techniques used in 

pattern recognition applications to identify the white and black spaces in the spectrum. 

The proposed pattern recognition scheme represents a centralized cooperative CR 

network whereby the decision of spectrum availability is made at a central node (e.g. 

network base station) after collecting sensing information from all collaborating users. 

Sensing information is subjected to a classifier model that outputs a global decision. 

In this work, first and second order polynomial classifiers are used. 

Various spectrum sensing techniques are implemented to provide informative 

features to the classifier about the surrounding environment. We categorize spectrum 

sensing methods into nonparametric (energy and autocorrelation detection) and 

parametric (coherent and cyclostationary). In nonparametric schemes, we investigate 

the performance of the simplest sensing technique with least computational 

complexity, namely energy detection. Features extracted via energy detection are 

attractive since they provide good performance when received signal level is high, 

while requiring no prior knowledge on primary signal parameters and have simple 



 

 

4 

implementation. When no prior information is available at the CR network and the 

received signal level is low, more discriminative features are needed for proper 

classification. This is achieved by adopting a nonparametric autocorrelation detection 

scheme. In this thesis, we compare the performance of the two nonparametric 

detection techniques as they are applied to the designed classifier. 

 Additionally, in parametric sensing we consider scenarios in which prior 

information about licensed users is available to the CR network. Knowledge of 

synchronizing preamble patterns is used in coherent detection. Moreover, modulation 

parameters of primary user's signals are utilized through cyclostationary feature 

detection. Once again, the extracted features by parametric sensing schemes are 

applied to the polynomial classifier for decision making. 

This thesis is aimed to meet the following objectives: 

 To design a cooperative spectrum sensing algorithm for cognitive radio 

networks using a polynomial classifier model to identify white spaces in 

the spectrum in a fading environment.  

 To evaluate and compare the performance of parametric and 

nonparametric feature extraction techniques when applied to the 

classification system. 

The intellectual contributions presented in this thesis can be summed up in the 

following points. 

1. Pattern recognition in signal identification: We have addressed the 

problem of cooperative spectrum sensing in CR networks from a new 

perspective. White space identification was modeled as pattern 

recognition system, where the classifier's output score provides a 

centralized decision on spectrum vacancy. We performed the design, 

validation and evaluation of first and second polynomial classifiers as a 

classifier model. 

2. Nonparametric sensing: We provided a comprehensive performance 

evaluation of nonparametric spectrum sensing schemes as they are applied 

in feature extraction. Received energy and autocorrelation were used to 

provide discriminative features to the classifier models. The system 
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performance was investigated under various operating conditions and in 

environments exhibiting shadowing and fading effects. 

3. Parametric sensing: Extensive simulations were also performed to 

evaluate the performance of parametric spectrum sensing schemes, where 

carrier frequency and synchronization preamble patterns are assumed to 

be known at the CR network. Cyclostationary feature detection and 

coherent detection approaches were examined as feature extraction 

techniques. The overall parametric system performance was investigated. 

Thereafter, the performance of parametric and nonparametric schemes 

was compared. 

4. In this thesis, we have applied a weighted soft decision rule, provided by 

the proposed classifier to both parametric and nonparametric feature 

extraction schemes. The model's weighting parameters are designed so 

that the contribution of cognitive users with lower reliability is suppressed 

and vice versa. The performance in terms of false alarm rate and detection 

probability under low SNR regimes has been thoroughly examined and 

analyzed.  

The remainder of the thesis is outlined as follows. The background behind CR 

networks along with a review of current literature is presented in Chapter 2. A general 

background of pattern recognition systems and classifier models is also explained. In 

Chapter 3, the system model of the proposed classification algorithm is described, 

including the adopted network architecture, the performance metrics to be considered 

and the model design and estimation.  Nonparametric spectrum sensing schemes are 

applied to the classifier model and their performance is evaluated in Chapter 4. 

Parametric sensing schemes are introduced and their performance is assessed in 

Chapter 5. Finally, conclusions are drawn and future work is discussed in Chapter 6. 
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CHAPTER   2 

BACKGROUND 

The background concepts of cognitive radio (CR) networks are presented in this 

chapter. Literature survey of different spectrum sensing techniques is presented, 

followed by the main challenges facing spectrum sensing in cognitive radio networks. 

An overview of radio propagation mechanisms in wireless environments and 

multipath fading channels is illustrated. Thereafter, a general background on the main 

considerations and steps of designing pattern recognition systems is given. Finally, 

some pattern recognition tools are presented including artificial neural networks and 

polynomial classifiers. 

2.1 Cognitive Radios (CR) 

Due to the increasing popularity of various wireless technologies, varying from 

voice only applications to multimedia type applications, the demand for more band 

width and higher data rates has increased. Most of the available wireless frequency 

spectrum is already assigned by spectrum regulation bodies, such as the Federal 

Communications Commission (FCC), to licensed primary users ‎[4]. Although few 

unlicensed bands were allocated, commonly known as the industrial scientific and 

medical (ISM) bands, most of the frequency spectrum is licensed. Additionally, the 

available unlicensed band is already being filled up rapidly as the use of wireless 

devices in different applications increases. This has motivated innovative techniques 

to overcome the scarcity of the spectrum and enhance spectrum utilization rather than 

the current static spectrum allocation techniques.  

Within the last decade, deployment of dynamic spectrum allocation systems was 

considered to address the spectrum scarcity problem, through the use of CR 

technology. CR is a radio system that is capable of sensing its operating environment 
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and dynamically utilizing the available radio resources ‎[5]‎[6]. The CR network should 

adapt to changing frequency usage within the target frequency band in order to make a 

productive usage of the spectrum. CR systems ultimately perform continuous spectral 

sensing in order to dynamically identify the unused spectrum holes, at which the 

primary users are idle, and utilize them. To understand the operation of cognitive 

radios, we define two types of spectrum users. Users of high priority or legacy rights 

to use the spectrum are called primary users. On the other hand, users with lower 

priority, who are not assigned a specific frequency band to operate at, are called 

secondary users. Secondary users also referred to as CRs, can only use the spectrum 

such that they do not cause interference to primary users. Consequently, whenever an 

activation of primary users is monitored, secondary users should vacate the occupied 

spectral segments, and hence the spectrum will be used conservatively in the favor of 

the primary user ‎[7]. 

2.1.1 Cooperative Spectrum Sensing  

A major requirement of CRs is the ability to successfully sense the surrounding 

environment and maximally utilize available bands. Further, secondary users should 

provide careful protection to primary users from interference resulting from the CR 

network operation. One approach of signal detection is based on local decisions made 

at each secondary user. If a priori information on primary user's signal is known by 

secondary users, coherent detection can be utilized to maximize the ability of the CR 

to detect the primary user. Coherent detection utilizes features such as synchronization 

messages, pilots, preambles, midambles, spectrum spreading sequences, etc. 

Preambles are synchronization patterns that are transmitted before each burst of bits, 

while midambles are transmitted in the middle of the time slot. When these patterns 

are known at the CR network, sensing is performed by correlating the incoming signal 

with the known patterns ‎[8]. Coherent sensing based on pilot detection was 

implemented experimentally in ‎[9]. Measurements indicate that coherent detection 

shows considerable reduction on sensing time required to achieve a certain detection 

level as compared to energy detection. However, it was shown that coherent detection 

is susceptible to synchronization error.  

Another approach is based on cyclostationary detection which exploits 

cyclostationary features exhibited by the statistics of the primary signal. 
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Cyclostationary features are caused by the periodicity of the signal's statistics or may 

be induced intentionally to facilitate spectrum sensing ‎[8]. In cyclostationary 

detection, the spectral correlation function (SCF) of the modulated signal is analyzed 

to differentiate between the case when signal is present and when noise only is present 

‎[10]. Cyclostationary feature detection is further discussed in Chapter 5. In orthogonal 

frequency division multiplexing (OFDM) systems, guard intervals are utilized to 

exploit cyclostationarity in spectrum sensing ‎[11]. The cyclic prefix is not inserted in 

the OFDM guard interval which is used for detecting the incumbent primary signals. 

In this case, inter carrier interference (ICI) is avoided and circulant convolution is 

preserved using a scheme developed in ‎[12]. Further, the OFDM waveform is 

modified in order to generate specific signatures at certain frequencies ‎[13]. The 

cyclic features created by these signatures are then extracted via cyclostationary 

detection to achieve effective signal identification mechanism. 

Although the above mentioned techniques provide good performance with 

accurate detection of primary signals, they require a priori information about the 

primary users. If this information is not available, energy and autocorrelation 

detection methods are considered as good alternatives. In this scenario, secondary 

users estimate the energy of the received signal and compare it to a threshold to decide 

if a signal is present of not. Although this is a simple technique, energy detector's 

performance is highly compromised due to noise uncertainty ‎[7]‎[14]‎[15]. 

Experimental studies were performed to investigate spectrum sensing of weak signals 

in CR networks using energy detection ‎[14]. The energy detection was both simulated 

and experimentally implemented in an indoor non-fading environment, in which three 

types of signals were sensed, purely noise, single tone and QPSK signals. The 

threshold was set based on the knowledge of noise variance and assuming a constant 

false alarm rate. 

The detection performance of CR sensing is often compromised with destructive 

channel conditions like shadowing and fading, which are discussed in the next section. 

Under these conditions, it becomes difficult to differentiate between the existing weak 

primary signal attenuated by deep fading and the noise. This may cause the CR to 

decide to use the channel due to miss detecting the primary signal. Recently, 

collaborative sensing in CR networks has been proposed to exploit the spectrum 

efficiently while minimizing interference with primary signals ‎[6]‎[7]‎[8]‎[17]‎[18]‎[15]. 
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In this case, several CR nodes utilize the spatial diversity provided by cooperative 

spectrum sensing to achieve better performance in fading environments. Moreover, 

cooperation between cognitive users can effectively solve the hidden primary problem 

‎[8]. 

Collaborative spectrum sensing is proposed in which each CR utilizes energy 

detection in making a decision on spectrum availability based on the noise level 

sensed at that receiver ‎[6]‎[14]‎[17]. Thereafter, the decisions made by various CRs are 

exchanged among them, where a hard decision based on majority vote is performed at 

each CR. In ‎[7], cooperation of cognitive users is performed utilizing a soft decision 

rule, in which a linear combination of received energies is used to make a decision. 

There are two approaches to collaborative sensing, which are centralized and 

decentralized sensing. In centralized sensing, a global decision is made at a centralized 

fusion center and broadcasted to all users in the network. Alternatively, in 

decentralized sensing, each CR makes a local decision, combines all received local 

decisions to make a global decision, and act accordingly ‎[8].  

Cooperative sensing with five users has shown an improvement of 36% in 

detection probability over single CR decision ‎[11]‎[9]. The impact of physical 

separation between CRs on cooperative multiuser network was also investigated ‎[9]. It 

was found that as the level of correlation between cognitive users increases, the less 

the cooperation between them is effective. The performance of cyclostationary based 

spectrum sensing in multiple-antenna CR system was considered in ‎[17]. Fusion rules 

such as maximum ratio combining, 1-out-of-n-rule, and comparison detection were 

compared for cooperative cyclostationary detection. It was found that maximum ratio 

combination performs the best among the three fusion rules studied.   

Energy detection over fading channels was investigated in ‎[15]‎[13]‎[16]. The false 

alarm and detection probabilities were derived, assuming the received signal follows a 

Nakagami distribution. Both square law combining (SLC) and square law selection 

(SLS) diversity methods were studied for independent and identically distributed 

(i.i.d.) fading channels as well as correlated channels. Spatial diversity provided by 

cooperative sensing has effectively improved systems performance. Moreover, when 

the correlation between the CRs diversity system decreases, detection probability for 

the same false alarm level increases.  
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2.1.2 Challenges of Spectrum Sensing  

A key component in the operation of a CR network is spectrum sensing and being 

aware of the existence of primary signals in the target frequency band. Some of the 

challenges facing spectrum sensing in CR networks are discussed below. 

2.1.2.1. Multidimensional Spectrum Sensing 

There are different dimensions over which spectrum sharing can be 

implemented. Conventionally, spectrum sharing dimensions include 

frequency, time, space, and code ‎[8]. In frequency sharing, the spectrum is 

divided into narrower bands that are not used simultaneously and hence some 

bands might be available for opportunistic sharing. However, the availability 

of certain parts of spectrum in time represents an opportunity in the time 

dimension. The space dimension is utilized when primary and secondary 

users share the same band at the same instant in time, taking advantage of 

propagation loss in space. Further, the code dimension is used when spread 

spectrum techniques are deployed. In these cases, the conventional energy 

detection techniques fail, since the energy of the received signal is being 

spread all over the spectrum. However, if the code dimension is implemented 

as part of spectrum sensing process, it could provide higher utilization 

opportunities.  

Another dimension that can be added is the angle dimension, which is 

different from the space dimension. So far, most of the studies in the 

literature assumes that all users are transmitting everywhere in all directions 

‎[8]. However, advances in antenna designs enable primary and secondary 

users to send the signal in a narrow direction, considering the angle of arrival 

(AOA) of the received signal as additional dimension in spectral utilization. 

By utilizing AOA as additional dimension, a CR user can decide that a 

channel is idle at a specific instant of time in a known geographical area for a 

receiver with certain AOA.  

2.1.2.2. Hardware Architecture 

The sensing process can be performed using two architectures, namely 

single-radio and dual-radio. In the case of single-radio, each secondary user 
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uses the same radio chain for both spectrum sensing and signal transmission, 

i.e. part of the time is allocated for sensing and the rest for actual 

transmission ‎[19]‎[20]. On the other hand, the dual-radio structure uses two 

different radio chains, one for continuous spectral monitoring while the other 

one is dedicated for transmission and reception. The main disadvantage of 

the single-radio architecture is the decrease in the spectrum efficiency since 

part of the time slot is being used for sensing. Its main advantage, though, is 

its simplicity and the low complexity of the system as opposed to the dual-

radio architecture. Although dual-radio architecture increases the power 

consumption and hardware cost, it offers high spectrum efficiency and 

sensing accuracy. 

2.1.2.3. Spread Spectrum Primary Users 

Primary users can send their messages over either fixed narrowband 

frequency channels or as spread spectrum signals. In spread spectrum, the 

signal energy is either spread over a very wide frequency band as in Direct 

Sequence Spread Spectrum (DS-SS) or sent over a narrow frequency that 

alters between different frequency channels as in Frequency Hopping Spread 

Spectrum (FH-SS). In FH-SS, the center frequency changes according to a 

pseudo random (PN) code. In this case, it becomes hard to detect the 

presence of the primary signal using energy detectors as the signal's power is 

distributed among a wide range of frequencies. On the other hand, if a priori 

information is known about the primary signal such as the PN code, energy 

detection can be used ‎[18]. 

2.2 Wireless Propagation 

The quality of wireless and mobile radio systems is affected by many factors 

including signal dispersion, operating frequency, attenuation, path obstructions, etc. 

Hence, in order for a realistic mobile system design and deployment, it is very 

important to distinguish the different features of mobile signal propagation in wireless 

environments. As opposed to reliable wired communication channels that are 

predictable and stationary, modeling of a radio channel is based on statistical and 

measurement characterization. An ideal radio propagation situation is a line of sight 
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(LOS) propagation in free space without any obstacles between transmitter and 

receiver. In reality, obstacles exist in the radio channel, resulting in different 

propagation mechanisms and losses to the radio waves. 

2.2.1 Propagation Mechanisms 

There are three propagation mechanisms that are used to describe radio  

propagation ‎[21]‎[23]: 

2.2.1.1. Reflection  

Reflection occurs when propagating electromagnetic waves impinge on 

obstructing objects that are larger than their wavelength. Such objects include 

the surface of the earth, walls of tall buildings, the ceiling, and the floor. 

Reflections of incident radio waves result in attenuation of the waves' 

strength, which depends on the frequency of operation, angle of incidence 

and the nature of the medium.  

2.2.1.2. Diffraction 

Diffraction of electromagnetic waves occurs more frequently and has 

higher impact on the incident wave in indoor applications than outdoors. 

Incident waves on sharp irregular edges of buildings, walls and other large 

objects act as a secondary source, which results in diffracted fields 

propagating into shadowed regions in which no LOS exists. 

2.2.1.3. Scattering 

Scattering of incident waves is caused by irregular objects with 

dimensions that are close to or smaller than the wavelength of the 

propagating wave, such as walls with rough surfaces, furniture, and vehicles. 

The incoming signal is hence scattered in all directions into several weaker 

signals reducing its power levels.  

2.2.2 Propagation Loss 

Another way to characterize radio propagation mechanism is by identifying the 

propagation loss in a channel which characterized by path loss, large scale fading and 

small scale fading. The path loss represents the average loss in the signal's strength 
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based on the distance between the two communicating terminals.  The wireless signal 

variations within short transmitter- receiver distance are characterized by small-scale 

fading. On the other hand, large scale fading characterizes changes in the transmitter 

signal over large distance between transmitter and receiver. A discussion of the three 

mechanisms of propagation loss in a channel is given as follows: 

2.2.2.1. Path Loss 

The pass loss corresponds to the average signal's level loss over a wide 

range and is usually used to determine signal coverage in wireless networks. 

Path loss modeling relates the deterioration in signal strength to the 

macroscopic parameters, such as distance between two terminals, the carrier 

frequency, and the land profile. There is no unique path loss to describe radio 

propagation in all environments, since wireless communications span 

different environments. The simplest formula for the path loss propagation 

between two communicating ends separated by distance 𝑑 is ‎[21]‎[22].  

𝐿𝑝 = 𝐴 + 𝛾 log 𝑑    (dB) (2.1) 

where 𝐴 and 𝛾 are referred to as propagation constants. Propagation constants 

are estimated empirically via propagation measurements and vary based on 

the considered environment. For example, Okumara-Hata models are 

developed for urban areas and other models are developed for suburban and 

open areas.  

2.2.2.2. Large Scale Fading 

 The path loss determines the deterioration in the signal level due to 

travelling a distance 𝑑 ; however, practically the received signal strength at 

the same distance from the transmitter varies because of the environment and 

surroundings. Hence, the value of the path loss determined by (2.1) represents 

the mean or average value of the signal strength estimated at a receiver 

located at distance d from the transmitter. This long term spatial and temporal 

variations of the signal's strength are referred to as large scale fading or 

shadow fading. The fluctuations of the received signal level around the mean 

value are caused by variation in propagation conditions, due to buildings, 

walls and other obstacles in a relatively small area. In this case, the path loss 
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defined earlier needs to be modified to include this effect by adding a random 

variable 𝑋 with a distribution that depends on the fading component: 

𝐿𝑝 = 𝐴 + 𝛾 log 𝑑 + 𝑋    (dB) (2.2) 

 Experiments and simulations indicate that path loss obeys a log-normal 

distribution with a mean 𝑥 = 𝐴 + 𝛾 log⁡(𝑑) in decibels; representing the 

average received signal level. The random variable 𝑋 has a variance 𝜎𝑥
2 that 

statistically describes the path loss model for an arbitrary location with a 

specific distance d. The variance 𝜎𝑥
2 takes values between 4 and 12 dB 

according to the propagation environment ‎[21].   

2.2.2.3. Small Scale Fading 

Small scale fading represents the fast fluctuation in the signal strength 

due to the scattering of the signal by objects near the transmitter. It also 

occurs as a result of the movement of the transmitter, receiver or objects 

surrounding them. Two factors contribute to the presence of such fading in 

the transmission channel.  

    Multipath and Delay Spread: it describes the dispersive nature of the 

channel. Usually, there is no LOS path between transmitter and receiver 

and hence the incoming signal is received from different directions and 

with different delays. This multipath propagation results in signal 

smearing or spreading in time. The spreading out effect of the multipath 

propagation is called delay this delay spread in the received signal leads 

to inter symbol interference, consequently limiting the maximum data 

rate supported by the multipath channel.  Another characteristic measure 

of a multipath channel that is closely related to delay spread is the 

coherence bandwidth 𝐵𝑐 . Coherence bandwidth represents the range of 

frequencies over which the channel's response is considered flat (spectral 

components have equal gain and linear phase). Consequently, frequency 

components that are separated by more than the coherence bandwidth 

will be affected differently by the channel ‎[21]‎[23].     

      Doppler Spread: it describes the time varying nature of the channel. As 

the receiver is moving with respect to the transmitter, the received 
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signal will have different frequency from that of the source due to 

Doppler Effect. For instance, if a single tone signal of frequency 𝑓1 is 

transmitted, the received signal's spectrum or the Doppler spectrum 

will have components in the range (𝑓1 ± 𝑓𝑑 ), where 𝑓𝑑 =
𝑣

𝜆
 . The effect 

of spectral spreading is called the Doppler spread. Furthermore, a dual 

parameter to the Doppler spread is called the coherence time. The 

coherence time 𝑇𝑐  is defined as the time duration over which the 

channel impulse response is essentially constant and is estimated using 

the maximum Doppler spread of the channel.  

According to the relationship between the channel parameters, such as delay 

spread and coherence bandwidth, and signal parameters (symbol rate and bandwidth), 

the signal may undergo different types of fading. For example, multipath delay spread 

causes dispersion of signal in time and leads to frequency selective fading of the 

channel. On the other hand, Doppler spread leads to frequency dispersion and time 

selective fading of the channel. The different types of channel fading are summarized 

in Figure ‎2.1 depending on the signal as well as channel parameters ‎[23].  

  

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.1. Small Scale fading classification based on multipath delay spread and Doppler 

spread. 

𝑇𝑐: Coherence time of channel 

𝐵𝑐: Coherence bandwidth of channel 

𝜏𝑑 : Average delay spread 

𝑇𝑠: Symbol duration of travelling signal 

𝐵𝑠: Bandwidth of travelling signal 

Based on multipath time delay spread 

Flat fading if  

𝐵𝑠 < 𝐵𝑐  and 𝜏𝑑 < 𝑇𝑠  

 

Frequency Selective fading if 

𝐵𝑠 > 𝐵𝑐  and 𝜏𝑑 > 𝑇𝑠  

 Based on Doppler spread 

Fast fading if  

- high Doppler speed  

- channel variations faster than signal variations      

-  𝑇𝑐 < 𝑇𝑠 

Slow fading if  

- high Doppler speed  

- channel variations slower than signal variations      

-  𝑇𝑐 > 𝑇𝑠 
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2.3 Pattern Recognition  

As will be discussed later in this thesis, spectrum sensing in CR networks can be 

thought of as a pattern recognition problem. Generally speaking, pattern recognition 

examines tools to classify a given set of data into several different categories. Typical 

problems addressed by pattern recognition include speech recognition and face 

recognition where an image is categorized 'person's face' or 'not'. Pattern recognition 

was utilized mainly in signal classification rather than spectrum sensing. For instance, 

various pattern recognition techniques were utilized to classify an incoming received 

signal into different modulation types ‎[24]‎[25].   

2.3.1 General Overview of Pattern Recognition 

Pattern recognition is a very broad area that has various applications in different 

fields including engineering and science. As humans, we develop different recognition 

capabilities including recognizing faces, understanding spoken words, reading 

handwriting, and distinguishing fresh food from its smell and so on. In pattern 

recognition systems, these recognition capabilities are given to machines in order to 

recognize different features from given signals and match them to a known set of 

classes. Hence, the main aim of pattern recognition is assigning a signal to one of a 

number of known categories based on features derived to emphasize commonalities 

between those signals. A generic term that is used to describe signals that need to be 

classified in a recognition system is patterns. Usually, the patterns may not be useful 

for classification process, and hence they need to be processed in order to acquire 

more useful input to the process ‎[26]‎[27]. This processed information is called 

features, and the process involving acquiring them is called feature extraction.  The 

various stages followed for the design of a classification system are shown in Figure 

‎2.2, and are described as follows: 
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Figure ‎2.2. Basic stages involved in the design of a pattern recognition system. 

 Sensing: input patterns to the system are acquired using a suitable sensing 

technique; usually a transducer is used to capture the data, like a camera for 

images, microphone for voice, and antenna for RF signals. Transducer sensing 

characteristics such as bandwidth, resolution, sensitivity and distortion may 

affect the performance of the system. 

 Feature selection and generation: A feature represents the set of data that are 

useful in classification and discrimination between different outputs. While 

using raw received signals directly may be a bad choice for classification, a 

function of the signals may carry discriminative features that are easier to 

classify. Feature extraction stage may reduce the dimensionality of the 

received patterns without losing useful information, by discarding redundant 

data. In other words, feature selection can be considered as a transformation 

(linear or nonlinear) of incoming data in order to generate class representative 

feature vectors. 

 Classifier design: when designing a classifier, an important stage is to select 

the statistical model that fits the statistics of the extracted features. Different 

parameters are taken into consideration when designing a classifier, such as 

the dimensionality of the feature space (number of input features) and the 

nature of the decision boundaries in the feature space (linear or non-linear). 

For instance, low dimensionality of feature space may not be sufficient for 

classification; yet, very large feature space can lead to a very slow training, 

without adding to system's performance. 

- One of the issues to be considered when designing a classifier is to avoid 

model over-fitting ‎[28]. Over-fitting occurs when the designed model 

adjusts very much to the training data such that it cannot generalize to 

other testing data. In other words, the classification loses its capability to 

classify unknown data based on what it has learnt from the training set. 
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Usually, this problem arises when complex models are chosen for 

classification, since they have large parameter space. Hence, it becomes 

easy for the model to find a parameter combination that fits the training 

data perfectly; yet fails to generalize to other unseen input data.  

 System evaluation and validation: the final stage is to evaluate the 

performance of the designed classifier based on classification error rate. 

It is important to note that the design stages in Figure ‎2.2 are not independent; 

however, they are interrelated. Therefore, depending on the results, we may redesign 

earlier stages in order to improve the overall performance of the recognition system.  

Pattern recognition models can be classified into two classes based on the 

availability of training data, used in classifier modeling. In some models, a set of 

training is available and the classifier is designed by exploiting this a priori known 

information. Once the model parameters are estimated, the model can be used to 

classify new unknown data. Alternatively, training data set, of known class labels, 

may not be available for classifier design. In this type of problem, the classifier is 

given a set of features and it is required to unravel the underlying similarities and 

cluster similar vectors together. The former way of training is known as supervised 

pattern recognition, while the latter is called unsupervised pattern recognition or 

clustering ‎[26]. 

2.3.2 Pattern Recognition Models 

In this section, two of the supervised pattern recognition models, namely artificial 

neural networks and polynomial classifiers, are described. 

2.3.2.1. Artificial Neural Networks (ANN) 

2.3.2.1.1.  Definition 

Artificial neural network (ANN) model was first developed by McCulloch 

and Pittes in the 1940’s as a system for logic computations. ANNs are 

information processing paradigms that emulate the behavior of the biological 

neural system in learning attitude. The human brain consists of millions of 

neurons that transmit signals to and from the brain at a speed of around 

200mph ‎[27]. These neurons are interconnected in very complicated 
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networks that provide intercommunication path for the signal from the brain 

to other neurons, muscle cells, glands etc. In a similar fashion, ANNs are 

composed of layers built from large number of interconnected processing 

elements working in union to solve a specific problem. Each processing 

element receives connections from other processing elements and/or from 

itself.  The signals flowing on the connections are scaled by adjustable 

parameters called weights. The sum of the scaled processing input elements 

is used to obtain intermediate hidden processing elements that contribute to 

the ANN final output. ANNs are like the human brains, learn by examples 

and hence they are configured for a specific application, such as pattern 

recognition, through learning process.  

2.3.2.1.2. Neuron Model 

A neuron is the basic building block of a neural network, which is shown 

in Figure ‎2.3. A neuron consists of the following elements: a sequence of 

input data 𝑥 =  𝑥0,𝑥1, 𝑥2,… ,𝑥𝑁   and the weights, 𝑤𝑖   for 𝑖 = 0…𝑁, that 

connect the input to the neuron. Conventionally, 𝑥0 = 1 and its 

corresponding weight is called the bias. Hence, the neuron consists of 𝑁 

independent inputs and a bias weight that is added to the scaled input 

summation. In order to transform the summation into an output, an activation 

function 𝑓(. ) is applied to the input summation as follows: 

𝑦 = 𝑓[( 𝑥𝑖𝑤𝑖) +  𝑤0] 

𝑁

𝑖=1

                                              (2.3) 

 

 

 

 

 

 

Figure ‎2.3. A neuron: a fundamental building block of a neural network. 
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Equation (2.3) justifies the bias term 𝑤0  as an additive constant that 

moves the sum to the input region of the activation function.  The activation 

function can be linear or non-linear and its type characterizes the neural 

network. Different activation/transfer functions are used for different 

applications. The three mostly used functions are: 

 Unit step function 

 Linear transfer function, which is utilized when the classes are linearly 

separable.  

 Sigmoid transfer function, which is usually used to capture the 

nonlinearities in the decision boundaries. 

It should be noted that ANN follows a non-parametric training, where 

the weights are adjusted directly from the training data without any 

assumptions about the statistical distributions of the data. In other words, 

ANN models utilize training algorithms to modify the weights such that an 

accurate classification is achieved.  

2.3.2.1.3. Network structure 

Arbitrary networks of neurons can be very complex; therefore it is 

desirable to control their complexity and limit their structure. Neurons are 

thus grouped together to from layers. Each layer has multiple inputs and 

multiple outputs as shown in Figure ‎2.4. All inputs to one layer are connected 

to all its neurons with different weight coefficients. Additionally, all neurons 

forming one layer will have the same activation function and they are also 

connected to the neurons in the previous and next layers through a set of 

weights. The first layer in the network represents the input and last layer is 

the output at which the number of neurons is equal to the target data 

dimension. Layers connecting input and output layers are called hidden 

layers. 
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Figure ‎2.4. a) A multiple- input-multiple output layer of neurons b)A neural network 

consisting of two layers of neurons. 

Starting with a single layer network model with 𝑁 neurons, presented 

in Figure ‎2.4a, we can define the following layer parameters:  

 

𝐱 =  𝑥1,𝑥2, 𝑥3,… ,𝑥𝑁 
𝑇 (2.4) 

 𝐖 =  𝐰1 ,𝐰2 ,𝐰3 ,… ,𝐰𝑘   (2.5) 

𝐲 =  𝑦1, 𝑦2 , 𝑦3 ,… , 𝑦𝑘  
𝑇 (2.6) 

where 𝐱,𝐖, 𝐲 are the inputs, weights, and outputs for a single layer, 

respectively. 𝑥𝑖 ,𝑤𝑖 ,𝑎𝑛𝑑 𝑦𝑖  are the single input, weight and output for a single 

layer respectively, 𝑇 is the transpose of a matrix,𝑁 is the number of input 

features and 𝑘 is the number of neurons in a layer. Hence, the layer output 

can be represented by: 

𝒚 = 𝑓 𝐰𝐱  (2.7) 
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  This single layer modeling can be extended to a complete network by 

cascading layers that are interconnected through a set of weights. If the 

network has 𝐶 layers, then each layer can be described by an input 𝑥𝑐 , a 

weight matrix 𝑤𝑐 , an output 𝑦𝑐and activation function𝑓(. )𝑐 , such that the 

input to each hidden layer is the output of the previous layer 𝑥𝑐 = 𝑦𝑐−1. 

2.3.2.2. Polynomial Classifier (PC) 

In this section, a special case of neural networks, namely polynomial 

classifiers (PCs), which represents the essence of this research, is discussed 

in details. A description of the basic classifier structure is given, followed by 

the classifier modeling algorithm ‎[29]‎[30]‎[31].  

2.3.2.2.1. Classifier's Structure 

Polynomial classifier can be considered as a single-hidden layer neural 

network that not only uses the features of the input pattern as input to the 

recognition system, but also uses polynomial terms of the input. Polynomial 

classifiers have been introduced in ‎[32] and have shown several advantages 

over other recognitions methods (e.g. neural network, hidden Markov 

models, etc) in speech and speaker recognition applications. These 

advantages include identification efficiency and better recognition 

performance. Furthermore, polynomial classifiers deal with simple 

mathematical operations such as multiplication and summation that fits 

modern digital signal processing (DSP) circuits and hence result in less 

computational and storage requirements.  

The principle of polynomial classifier is that it expands the input 

feature space into a higher dimensional space. The basic embodiment of a 

polynomial classifier can be realized with the block diagram given in Figure 

‎2.5.  
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Figure ‎2.5. Block diagram of a polynomial network. 

Consider an input pattern to the network 𝐱 = [𝑥1, 𝑥2,𝑥3,… , 𝑥𝑁]𝑇, where 

𝑁 is the number of features. The input data 𝐱 is directly observed by second 

block with unity weights that are not changed during the estimation process. 

The second block consists of the vectorial mapping form the 𝑁- dimensional 

feature vector, 𝐱 into an 𝑙-dimensional vector 𝛗 𝐱 . The elements of 𝛗 𝐱  

are monomials of the form ‎[31]: 

 

𝛗 𝐱 = [ 1   𝑥1  𝑥2  𝑥3  𝑥4 …𝑥𝑁    𝑥1
2  𝑥1𝑥2  𝑥1𝑥3  …  𝑥1

3   𝑥1
2𝑥2 … ]𝑇       (2.8) 

 

Finally, the output score 𝑓𝑘  is obtained at the output block after linearly 

combining the expansion terms 𝛗 𝐱 .  

 

𝑓𝑖 = 𝐰𝑖
𝑇𝛗 𝐱                                                                           (2.9) 

 

where 𝐰𝐢 is the  model of class 𝑖. For example, for second order polynomial 

expansion, 𝛗 𝐱  will consist of the second order polynomial terms in (2.8) 

and 𝑓𝑖  becomes:  

𝑓𝑖 =   𝑤𝑚𝑥𝑚+

𝑁

𝑚=1

  𝑤𝑚𝑗

𝑁

𝑚=1

𝑥𝑚𝑥𝑗

𝑁

𝑗=1

+ 𝑤𝑜                (2.10)  

  

The dimensionality of the expanded vector 𝛗 𝐱  can be expressed in terms of 

the polynomial order and the dimensionality of the input vector 𝐱. Table ‎2.1 

shows the polynomial expansion length for different polynomial expansion 

orders ‎[29].  
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Table ‎2.1. Length of polynomial expansion. 

Order Polynomial Expansion Length 

1
st
 𝑙𝑝1 = 𝑁 + 1 

2
nd

 𝑙𝑝2 = 𝑙𝑝1 +  𝑖

𝑁

𝑖=1

 

3
rd

 𝑙𝑝3 = 𝑙𝑝2 + 𝑁2 +
𝑁!

3!  𝑁 − 3 !
 

4
th

 

𝑙𝑝4 = 𝑙𝑝3 + 𝑁2 + 2
𝑁!

2!  𝑁 − 2 !
+ 3

𝑁!

3!  𝑁 − 3 !

+
𝑁!

4!  𝑁 − 4 !
 

 

2.3.2.2.2. Classifier's Modeling Algorithm 

  Consider a multiclass classification problem for which the classifier is 

required to differentiate between 𝑁classes  possible classes within a 

multidimensional observation sequence,  𝐗 such that ‎[29]‎[30]: 

 

𝐗 =  𝐱𝟏 𝐱𝟐  …  𝐱𝑄  
𝑇                                                           (2.11) 

and 

𝐱𝐢 = [𝑥𝑖1, 𝑥𝑖2,𝑥𝑖3 ,… , 𝑥𝑖𝑁] 𝑇                                              (2.12) 

 where 𝐱𝐢 is an 𝑁 dimentional feature vector, matrix 𝐗 is a sequence of 𝑄 𝑁-  

dimensional feature vectors available for classification, 𝑄 =  𝑞𝑖
𝑁classes
𝑖=1  

represents the total count of feature vectors in the training data set, and 𝑞𝑖  is 

the number of feature vectors belonging to class 𝑖. Our goal is to solve for the 

best model parameters {𝐰𝑖 } that minimizes the Euclidian distance between 

𝑓𝑖(𝐗) in (2.9) and the desired ideal output {𝐭𝑖} for class 𝑖 . The ideal output 𝐭𝑖  

is a column vector of length 𝑄 consisting of elements equal to ones for the 

indices corresponding to class 𝑖 and zeros otherwise. When the input 𝐗 is 
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applied to the classifier, its columns, representing feature vectors, will be 

expanded by 𝛗 𝐗  as in (2.8) resulting in a model training data set 𝐌 of 

size (𝑄 × 𝑙) that is defined by: 

𝐌 = [𝛗(𝐱1)   𝛗( 𝐱2)…𝛗(𝐱𝑄)]𝑇                                (2.13) 

  Once training feature vectors are expanded into their polynomial basis 

terms, the classifier needs to be trained to match the output target 𝐭𝑖  for 

class 𝑖. Hence the resulting problem using mean-squared error criterion can 

be formulated as: 

𝐰𝑖
opt

=
argmin
𝐰

 𝐌𝐰− 𝐭𝑖 𝟐                                          (2.14) 

The problem of (2.13) can be solved using the method of normal 

equation ‎[32] ‎[33]: 

𝐌𝑇𝐌𝐰𝑖
opt

= 𝐌𝑇𝐭𝑖                                                             (2.15) 

which is used to compute class models  𝐰𝑖  , 𝑖 = 1,2… ,𝑁classes . After 

training, the estimated class models  𝐰𝑖   are used for classification of novel 

data sets. 
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CHAPTER   3 

PROBLEM FORMULATION AND METHODOLOGY  

In this chapter, we formulate the problem of spectrum sensing in CR networks. 

The network structure, in which the spectrum sensing problem is formed, is discussed 

and illustrated. Following that is a definition of the main performance metrics that 

need to be optimized by the proposed methodology.  Later in the chapter, we propose 

a cooperative approach for spectrum sensing in CR networks with soft decision rule. 

In the proposed system, more reliable secondary users are given higher weight in 

making the decision about spectrum vacancy.  Specifically, we propose to utilize 

classification capability of pattern recognition models, discussed in Chapter 2, to 

identify the available spectrum bands for unlicensed users. A detailed description of 

the proposed classification scheme as applied to the problem of spectrum sensing is 

explained.   

3.1 Network Structure 

We consider dynamic resource allocation in a multiple secondary user CR 

network with the structure illustrated in Figure ‎3.1. The CR network consists of 𝑁 

cognitive users with a central node (e.g. base station) that detects the presence of 

primary signals, decides on the channel availability, and allocates the available bands 

to CRs. Primary users' network and CR network are assumed to coexist within the 

same geographical area. CRs temporarily access the under-utilized licensed frequency 

bands, without harmful conflict with primary spectrum holders' usage. 
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Figure ‎3.1. Illustration of centralized CR network coexisting within primary network's 

geographical area. 

The above scenario can be envisioned in applications, where heavy spectrum 

demands often take place in unlicensed bands while licensed bands experience low or 

medium utilization ‎[33]. Such primary applications include TV broadcasting and 

cellular systems' bands in rural areas where there is a little demand on cellular 

communications. For example, IEEE 802.22 standard proposes reusing inactive TV 

channels without causing interference to the incumbent TV receivers. The unused 

spectrum can be utilized by WLAN users to efficiently increase their data rates ‎[2]. 

In the proposed system, secondary users are constantly sensing the target 

spectrum band for primary signal presence. Within a secondary user receiver, 

discriminative features are extracted from the observed signal in order to detect 

inactivity of primary users' network. The extracted features are transmitted to the CR 

base station through a relatively low data rate control channel. The network control 

channel is allocated for exchanging network information between CRs and CR base 

station, in addition to broadcasting channel allocation information to CRs. Decision is 

made by CR base station based on a pattern recognition classifier that is adequately 

trained to detect the activation of target frequency bands.  

When dual-radio architecture is deployed, CRs monitor the target spectrum in a 

given area while simultaneously transmitting data. Alternatively, secondary users 

observe the spectrum for a given sensing time, wait for the global decision made by 

CR base station, and then start transmission. The latter sensing algorithm is applied 
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when single-radio architecture is implemented. In this research, CRs are assumed to 

implement dual-radio architecture, where a separate radio chain is employed for 

spectrum monitoring, feature transmission, and channel allocation. The CR network 

sensing algorithm can be deployed as illustrated in Figure ‎3.2.  

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.2. Block diagram of CR monitoring spectrum and communicating with centralized 

CR base station. 

3.2 Performance Metrics 

In this section, we introduce the metrics used to evaluate the performance of the 

resource sharing system in a CR network, in addition to its impact on the primary 

users' network. These metrics include level of interference to primary users and 

spectral utilization efficiency. We identify two quantities that are closely related to 

interference level and spectral utilization efficiency, namely detection probability 

(𝑃𝑑)  and false alarm probability( 𝑃𝑓). Detection probability refers to the probability 

that a CR correctly decides the target spectrum is busy, when primary transmission is 

taking place. If primary transmission is correctly detected by CR users, the target 

spectrum will not be utilized by the CR network. Hence, a high detection probability 

corresponds to a low level of interference with primary users when the spectrum is 

occupied. False alarm probability; on the other hand, is the probability that the CR 

makes a wrong decision that the spectrum is occupied while it is actually not. Having 

a high false alarm probability lowers the spectral utilization, since spectral 

opportunities are missed due to falsely detecting primary transmissions. The 
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requirements of maximum detection probability and minimum false alarm are highly 

desirable, but contradicting. Hence, our aim is to design a spectrum sensing algorithm 

that maximizes detection probability, while keeping the false alarm below a given 

design constraint. The two performance metrics, mentioned above, will be used to 

evaluate the performance of the proposed system. 

3.3 System Model 

In this research, we utilize supervised pattern recognition techniques (explained in 

section 2.3) at the CR base station as a mean to classify available spectrum holes, such 

that maximum detection is achieved with a desired false alarm rate. Collaborative 

secondary users monitor the spectrum and then provide discriminative features to the 

CR base station. In supervised learning, a training data sequence is available and the 

classifier is designed by exploiting this sequence. Once the model parameters are 

estimated, the model is used to classify novel data.  

The CR base station applies the received features from different users to a trained 

classifier, where a decision is made about the existence of primary transmission. The 

general stages of pattern recognition system design, depicted in Figure ‎3.3, are 

discussed as follows:  

3.3.1 Sensing 

CRs perform spectrum sensing of the received signal at a rate of 𝑓𝑠  

samples/second. The binary hypothesis test for spectrum sensing is formulated as 

follows: 

𝑥𝑗  𝑛 =  

 𝑔𝑗  𝑠 [𝑛] + 𝑛𝑗 [𝑛] ∶            𝐻1

𝑛𝑗 [𝑛]                      ∶           𝐻0

     for 𝑗 = 1,2,…𝑁   (3.1) 

 

where 𝑥𝑗 [𝑛] represents the received signal by the 𝑗𝑡𝑕  user at the 𝑛𝑡𝑕  instant of time, 

and  𝑠 [𝑛] denotes the primary signal. Further, 𝐻1  represents received hypothesis of an 

occupied spectrum, while 𝐻0  corresponds to an idle spectrum. The received signal at 

the 𝑗𝑡𝑕  user is corrupted by a zero-mean additive white Gaussian noise (AWGN), 

𝑛𝑗  𝑛  with variance 𝜎2. The primary signal passes through a wireless channel with 

channel gain equivalent to 𝑔𝑗 . The channel is modeled as a flat channel with slow 
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fading. Each cognitive user receives a single path with channel coefficient whose 

magnitude is Rayleigh distributed and its phase is uniformly distributed in [0,2𝜋). 

Additionally, different CRs in the network are assumed to have independent and 

identically distributed (i.i.d.) channel coefficients. Since a slow fading channel is 

considered, the channel coefficients are assumed to be constant over a number of 

received signal symbols. Therefore, the coherence time of the channel, 𝑇𝑐  is set to be 

much larger than primary signal's symbol duration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.3. Proposed CR system model for spectrum sensing. 
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3.3.2 Feature Extraction 

At each CR, the received signal is applied to the feature extraction block, where a 

local decision variable 𝑑𝑗  is computed based on a fixed window. Size of the chosen 

window corresponds to  𝑀 samples or equivalently a sensing time interval of ∆𝑡 =

𝑀𝑇𝑠 , where 𝑇𝑠 = 1/𝑓𝑠 . The local decision variable is computed based on the type of 

information available at the secondary user. Consequently, spectrum sensing is 

classified into non-parametric or parametric spectrum sensing based on the prior 

knowledge of the primary signal. 

In non-parametric spectrum sensing, secondary users in a CR network have no 

prior information about the transmitted primary signal. The feature extraction stage 

will include schemes like energy and autocorrelation based detection. Energy 

detection algorithm involves utilizing the energy of the received signal at the classifier 

to discriminate between noise only and primary signal. However, in autocorrelation 

detection, the differences in the autocorrelation characteristics between the noise and 

licensed users' signals are utilized to identify the vacant spectrum by the classifier.  

Alternatively, in parametric sensing, prior information including carrier frequency and 

synchronizing patterns are assumed to be known about the primary user's signal. In 

this case, feature extraction will be achieved by either exploiting cyclic features 

present in the signal or through coherent detection. 

Features extracted by any of the above detection schemes will follow a certain 

pattern when the spectrum is occupied by a primary user. The pattern extracted would 

be different when only noise is present in the spectrum. The difference between these 

two patterns will be exploited as discriminative input data to the classifier for decision 

making. 

3.3.3  Classifier Design 

The classifier model to be implemented for spectrum sensing in CR network is 

the polynomial classifier discussed in section 2.3.2. The problem of spectrum sensing 

can be formulated as a multi-input single-output (MISO) polynomial classifier. 

Features extracted by different receivers, 𝐝= [𝑑1 …  𝑑𝑁], form an 𝑁-dimensional input 

vector to the classifier. The classifier is required to provide a single output score 𝑌𝑑 , 

representing the decision of whether or not a primary signal is present.  
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The classifier model design comprises of two stages: 

 Model Training 

 The training process involves finding the optimal model parameters that best 

map a multidimensional input sequence to a corresponding one dimensional target 

sequence. The model is designed to classify between two different classes, 𝐻𝑖  

for 𝑖 = {0,1} , corresponding to the binary hypothesis in (3.1). The multidimensional 

input sequence  𝐃train  is a 𝑄 × 𝑁 matrix, where  𝑁 is the dimensionality of the input 

feature vectors (provided by 𝑁 CR users) and 𝑄 is the number of feature vectors used 

in the training process. The training matrix 𝐃train  is given by:  

 

  𝐃train =  

𝑑1,1 𝑑1,2 ⋯ 𝑑1,𝑁

⋮ ⋱ ⋮
𝑑𝑄,1 𝑑𝑄 ,2 ⋯ 𝑑𝑄,𝑁

                                                 (3.2) 

 

The one dimensional target vector 𝐭𝒊 is given by: 

𝐭𝒊 =  

𝑡𝑖1
⋮
𝑡𝑖𝑄

                                                                                        (3.3) 

and consists of  𝑄 elements where: 

 𝑡𝑖𝑧 = 1 , for 𝑧 = 1,2…𝑄, if the corresponding 𝑧𝑡𝑕  feature 

vector belongs to class 𝑖. 

 𝑡𝑖𝑧 = 0 , for 𝑧 = 1,2…𝑄, if the corresponding 𝑧𝑡𝑕  feature 

vector does not belongs to class 𝑖. 

The training vectors in  𝐃train  are expanded into their polynomial terms defined 

in (2.8), resulting in a training matrix 𝐌 of size(𝑄 × 𝑙), where 𝑄 is the number of 

training feature vectors and 𝑙 is the number of expansion terms. Thereafter, the 

polynomial classifier is trained to find an optimum set of weights, w that minimizes 

the Euclidian distance between the ideal target vector 𝐭𝒊 and the training matrix 𝐌 

using mean-squared error as objective criterion, by solving the problem in (2.14). As a 
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reminder, the optimal model weights if solved such that it satisfies 𝐰𝐢
𝐨𝐩𝐭

=

argmin
𝐰

 𝐌𝐰− 𝐭𝐢 𝟐. 

The optimum model weights are obtained explicitly by applying the normal 

equations method in (2.15), which can be modified for the two classes case considered 

in spectrum sensing: 

𝐌𝑇𝐌𝐰1
opt

= 𝐌𝑇𝐭𝟏              ∶ 𝐻1

𝐌𝑇𝐌𝐰0
opt

= 𝐌𝑇𝐭𝟎               ∶ 𝐻0

                                      (3.4) 

 

A block diagram illustrating the training stage in the polynomial classifier is 

presented in Figure ‎3.4.  

 

 

 

 

 

 

 

 

 

Figure ‎3.4. Block diagram of classifier training stage. 

 Model testing 

In the testing stage, novel feature vectors 𝐝test  are used to represent the testing 

data set. The features are initially expanded into their basis terms 𝛗( 𝐝test ) and then 

presented to the trained models {𝐰0
opt

,𝐰1
opt

} to obtain the corresponding set of 

scores 𝑦𝑖 . 

 𝑦𝑖 = 𝛗 𝒙  𝐰i
opt

               for 𝑖 = 0,1                                    (3.5) 

Accordingly, we assign the testing feature vector to hypothesis 𝐻𝑖  that satisfies 

(3.6) ‎[29]: 
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𝑌𝑑 =
argmax

𝑖
{𝑦𝑖}                                                                        (3.6) 

The block diagram for the model testing of polynomial classifier is depicted in 

Figure ‎3.5.  

 

 

 

 

 

 

Figure ‎3.5. Block diagram of classifier testing stage. 

3.3.4 Validation and Evaluation 

Ideally, the classifier model 𝐰1
opt

is expected to output a score of one when 

spectrum is occupied and zero when spectrum is idle. Similarly, an output score of 

one is expected when spectrum is idle and zero when spectrum is occupied on testing 

the classifier model 𝐰0
opt

. However, when testing data are fed to the classifier, scores 

varying around one and zero are obtained. By comparing the output score obtained 

from both models, a decision is made about the input feature vector, that it belongs to 

the class with maximum output score as in (3.6). 

However, in order to achieve a desired level of constant false alarm rate, a 

threshold needs to be defined to separate the two classes instead of just comparing 

different models' output scores. The threshold setting is done during the validation 

stage, as a post-processing operation in order to obtain meaningful output at the 

classifier.  

For this purpose, a validation data sequence 𝐃valid  , similar to the training 

sequence, is used. The validation data consists of 𝑄 𝑁-dimensional feature vectors. 

The ideal outputs 𝐭1 for the model 𝐰1
opt

, corresponding to validation feature vectors 

are known (i.e. zeros for empty spectrum and ones for an occupied spectrum). First, 

the following algorithm was followed: 

 Validation data are subjected to the classifier model 𝐰1
opt

.  
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 Since classifier is designed to give an output 𝑦1  altering between 1 and 0, the 

threshold is initialized to 𝜆 = 0.5. Hence, the global decision variable 𝑌𝑑 = 1 

if  𝑦1  > 𝜆 and vice versa.  

 The resultant false alarm rate is then estimated, by comparing the output 

decisions of all validation feature vectors to the ideal output 𝐭1. The ratio 

between the number of times the classifier falsely decides the spectrum is 

available (𝑌𝑑𝑧 = 1), to the total number of times the spectrum is actually 

available represents the false alarm probability(𝑡1𝑧 = 0).   

The above algorithm was found to result in a varying false alarm rate that is not 

controlled, especially with different input signal to-noise ratio. Hence, an iterative 

algorithm is applied to set a threshold for different SNR levels that achieves a specific 

false alarm rate. The algorithm is implemented as follows: 

 The output score is computed, by subjecting validation data to the 

model 𝐰1
opt

.  

 The threshold is initialized to 𝜆 = 0.5, such that the global decision 

variable 𝑌𝑑 = 1 if  𝑦1  > 𝜆 and vice versa.  

 The resultant false alarm rate is then estimated, by comparing the output 

decisions of all validation feature vectors to the ideal output 𝐭1.  

 The threshold 𝜆 is incremented or decremented such that the desired false 

alarm rate is achieved with a mean-squared error of 1%. 

 The above steps are repeated for many validation data with different received 

SNR levels. 

Note that the above threshold setting operation, in addition to the training process 

is performed offline. The training and validation data sequences are retrieved from a 

database that is maintained at the CR base station for offline training and validation. 

Finally, the trained classifier models and the pre-calculated thresholds are later used to 

separate output classes for novel input data to the classifier. 
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CHAPTER   4 

NONPARAMETRIC SPECTRUM SENSING 

In this chapter, the proposed classification and recognition system is applied to 

cooperative CR networks to detect the ongoing primary transmission, when secondary 

users have limited information on the primary signal. In nonparametric sensing, we 

propose to identify the presence of primary signal based on energy and autocorrelation 

features. In this chapter, the nonparametric sensing schemes, are first described and 

analyzed. Thereafter, simulation results representing the performance of each of the 

nonparametric sensing schemes are presented, when applied to the proposed 

classification system. Further, a comparison between the two nonparametric schemes 

is illustrated. Finally, concluding remarks are presented.    

4.1 Energy Based Feature Extraction  

Energy detection is one of the most commonly used techniques in spectrum 

sensing as it is characterized with low computational and implementation complexity. 

It is a nonparametric sensing scheme, as it does not require any prior knowledge of the 

primary users' signal as opposed to other sensing techniques. In this section, the 

modeled classification system identifies spectrum holes relying on the energy content 

of the received signal. However, the task of detecting the signal becomes very 

challenging as the incoming signal level is very low compared noise level ‎[8]‎[14]. The 

proposed cooperative sensing and classification algorithm facilitates detection with 

small received signal levels. A block diagram of energy detection is depicted in Figure 

‎4.1.  
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Figure ‎4.1. Block diagram of energy based feature extraction. 

Considering the binary hypothesis defined in (3.1), the received signal 𝑥𝑖(𝑡) by 

the 𝑖𝑡𝑕  secondary user is pre-filtered for the desired frequency band. The local 

decision variable, corresponding to extracted feature by the 𝑖𝑡𝑕  secondary user to the 

classifier model, is hence defined by: 

 𝑑𝑖 =
1

𝑀
  𝑥𝑓𝑖 [𝑛] 

2
                                                                   (4.1)

𝑀

𝑛=1

 

where 𝑀 is the number of received signal samples during one observation period. For 

a fixed channel gain, the received signal samples can be modeled as independent and 

identically distributed (i.i.d.) Gaussian random variables with variance 𝜎𝑥
2 . When the 

primary signal is absent, the decision variable 𝑑𝑖  will be the sum of the square of 𝑀 

Gaussian random variables with zero mean. Hence the decision variable will have a 

central Chi-square distribution with 𝑀 degrees of freedom. Whereas, when the 

primary signal is present the decision variable will have a non-central Chi-square 

distribution with 𝑀 degrees of freedom ‎[7]. If the number 𝑀 is large enough, the 

central limit theorem can apply and the decision variable is approximated by a non-

zero mean Gaussian random variable. Therefore, the local decision variable 𝑑𝑖  will 

have different statistical distributions for different hypothesis representing distinct 

features for signal identification. 

An alternative scheme to realize energy detection is by using the fast Fourier 

Transform (FFT) computation of the received signal as shown in Figure ‎4.2 ‎[6] . In 

this approach, the received signal is sampled in a time window and passed through an 

FFT device to compute the spectrum 𝑋[𝑘]. The signal energy is then computed in 

frequency domain to produce a local decision variable 𝑑𝑖 . 
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Figure ‎4.2. Block diagram of energy based feature extraction using FFT computations. 

4.2 Autocorrelation Based Feature Extraction 

Correlation techniques are utilized in signal detection and hypothesis testing in 

many fields such as radars and communication systems ‎[1]. Such correlation 

techniques include spectral correlation in cyclostationary detection, which requires 

knowledge of primary signal parameters. Moreover, signal detection is performed by 

exploiting the differences in the envelope of the autocorrelation between existing 

noise and primary signal. Autocorrelation base detection has been proposed recently 

as a spectrum sensing technique in CR networks, as an alternative to energy detection 

‎[1]. Let us consider the binary hypothesis, defined in (3.1), corresponding to a 

spectrum sensing scenario, in which a CR makes decision about the availability of the 

spectrum. Assuming a bandpass linearly modulated primary signal 𝑠𝑃𝐵 , i.e. phase shift 

keying (PSK) and pulse amplitude modulation (PAM), it is down converted into its 

baseband equivalent 𝑠𝑙 𝑡 . The baseband equivalent 𝑠𝑙 𝑡 , which is a zero mean wide 

sense stationary process, has the following form: 

𝑠𝑙 𝑡 =   𝐸𝑠𝑑𝑛𝑕 𝑡 − 𝑛𝑇                                                    (4.2)

𝑛

 

where 𝐸𝑠  is the energy per symbol, transmission rate is 
1

𝑇
 symbols/second, 𝑕(𝑡) is a 

real valued signal pulse representing a signal symbol, and {𝑑𝑛 } represents the 

sequence of symbols that results from mapping 𝑘- bits into the corresponding signal 

space diagram. In binary phase shift keying (BPSK), the sequence 𝑑𝑛  is real valued 

and takes a value of ±1. The autocorrelation function of the received signal by the 𝑖𝑡𝑕  

user is given by: 

𝑅𝑥 𝑡 + 𝜏, 𝑡 = 𝐸 𝑥∗ 𝑡 𝑥 𝑡 + 𝜏                                                (4.3) 
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where 𝐸[. ] is the expectation operator. Assuming that the primary signal is 

independent from the envelope of the channel and 𝑅𝑥  is estimated for the different 

hypothesis by (4.4): 

 

𝑅𝑥 𝑡 + 𝜏, 𝑡 =  
𝐸  𝑔 2 𝑅𝑠 𝜏 + 𝑅𝑛 𝜏 ∶     𝐻1

          𝑅𝑛 𝜏                    ∶       𝐻0

                    (4.4) 

where 

𝑅𝑠(𝜏) = 𝐸 𝑠∗ 𝑡 𝑠 𝑡 + 𝜏  =   𝐸 𝑑∗𝑚𝑑𝑛 𝑕 𝑡 − 𝑛𝑇 𝑕 𝑡 + 𝜏 −𝑚𝑇 

∞

𝑚=−∞

(4.5)

∞

𝑛=−∞

 

 Assuming that the data sequence 𝑑𝑛  is a zero mean wide-sense stationary with an 

autocorrelation 

 𝑅𝑑 𝑚, 𝑛 = 𝐸 𝑑∗𝑚𝑑𝑛                                                                  (4.6) 

and the autocorrelation function of 𝑕(𝑡) defined as 

 𝑅𝑕 𝜏 =  𝑕 𝑡 𝑕 𝑡 + 𝜏 𝑑𝑡
∞

−∞

                                                    (4.7) 

Then, (4.5) reduces to ‎[34], pp. 204-206]: 

𝑅𝑠 𝜏 =
1

𝑇
  𝑅𝑑 𝑚 

∞

𝑚=−∞

 𝑅𝑕 𝜏 −𝑚𝑇                                    (4.8) 

The autocorrelation of the pulse signal is an even function of 𝜏 , and hence 

 𝑅𝑕 𝜏 −𝑚𝑇 =   𝑅𝑕 𝑚𝑇 − 𝜏  ‎[34]‎ [31]. By substituting  𝑅𝑕 𝑚𝑇 − 𝜏  in (4.8), 𝑅s 𝜏  

can be interpreted as the convolution of  𝑅𝑑  with 𝑅𝑕 : 

𝑅𝑠 𝜏 =  𝑅𝑑 𝑚 ∗  𝑅𝑕 𝜏                                                           (4.9)   

Therefore, the characteristics of the autocorrelation of the primary signal are 

determined by two factors. The first factor is the shape of the basic pulse used for 

shaping and the second is the correlation properties of the transmitted data sequence. 

Moreover, assuming a BPSK primary signal with information symbols {𝑑𝑛 } that are 

uncorrelated zero-mean random variables, each with a unit variance, its 

autocorrelation function is defined as in (4.10) ‎[34]. 
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𝑅𝑑 𝑚 =  
1       𝑓𝑜𝑟 𝑚 = 0
0     𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

                                                      (4.10) 

 

Substitution of (4.10) into (4.9) yields a convolution of an impulse with the 

autocorrelation of pulse shaping function, resulting on the autocorrelation function 

of 𝑕 𝑡 : 

𝑅𝑠 𝜏 = 𝛿 𝜏 ∗  𝑅𝑕 𝜏 =  𝑅𝑕 𝜏                                            (4.11) 

Utilizing the duality between the power spectral density and the autocorrelation of 

a random process, the AWGN process with power spectral density of 𝑁0/2 W/Hz will 

have an autocorrelation of 𝑅𝑛 =
𝑁0

2
𝛿 𝜏 . Assuming channel gains are constant during 

the estimation of autocorrelation, (4.4) can be rewritten as: 

 

𝑅𝑥(𝑡 + 𝜏, 𝑡) =  
 𝑔 2 𝑅𝑕 𝜏 +

𝑁0

2
𝛿 𝜏       ∶       𝐻1

𝑁0

2
𝛿 𝜏                               ∶       𝐻0

           (4.12)  

 

Hence, by estimating the autocorrelation of the received signal over an 

observation window, we can distinguish between the presence and absence of the 

primary signal. However, due to fading, the primary signal autocorrelation will be 

scaled by channel gains as in (4.12). For an illustration, let us consider a rectangular 

pulse shaping function 𝑕(𝑡) of width 𝑇, it will have a triangular autocorrelation 

function cantered around a delay 𝜏 = 0 of width 2𝑇, as illustrated in Figure ‎4.3.  

 

 

 

 

Figure ‎4.3. ‎Rectangular pulse and its autocorrelation  𝑅𝑕(𝜏). 

𝜏 
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By integrating the estimated autocorrelation of the received signal over the delay 

interval 𝜏 ∈  −𝑇,𝑇 , we can obtain a discriminative decision variable 𝑑𝑖  between 

noise only and the primary signal. This is possible, since the autocorrelation of noise 

is theoretically concentrated around zero, unlike the primary signal's autocorrelation 

that is distributed within a wider range. 

However, (4.12) is only valid when channel gains are constant during the 

observation window, over which the autocorrelation is calculated. Since the primary 

signal is assumed to have undergone slow flat fading, the channel gain is constant for 

a number of symbol durations represented by the channel coherence time 𝑇𝑐 . 

However, if the observation window length exceeds the coherence time of the 

channel, the channel gain will vary, and hence 𝐸[ 𝑔 2] ≠  𝑔 2.  Accordingly, we 

propose dividing observation window into subsections over which the autocorrelation 

is computed. The subsection duration is chosen such that the channel gains are 

approximately constant over it.  

The estimation of autocorrelation based on subsection-averaging will serve two 

purposes. The first is to utilize diversity, provided by different subsections of the 

received signal affected by different channel gains. The second is to reduce the erratic 

behaviour of received signal's autocorrelation, since the added noise variance is 

reduced by averaging. To illustrate, assume 𝐵 independent random variables with the 

same mean 𝜇 and same variance 𝜎2. The sample mean of these random variables is 𝜇 

and their variance is equal to 𝜎2/𝐵. Hence, the effect of noise is inhibited 

considerably due to subsection averaging.  

Autocorrelation based detection is conducted through the following steps: 

1) The received signal by the CR is down converted and sampled to 

obtain 𝑥𝑖[𝑛], in which every 𝑀 bits are used in producing a local decision 

variable 𝑑𝑖 . The input time series 𝑥𝑖 𝑛  is divided into 𝐵 subsections, each 

of 𝐶 bits-length 𝑥𝑖𝑗 [𝑛], where 𝑀 = 𝐵𝐶. 

2) Then, the autocorrelation is estimated for each subsection: 

𝑅𝑥𝑗  𝑘 =
1

𝐶
  𝑥𝑖𝑗  𝑛 𝑥𝑖𝑗  𝑛 − 𝑘 

𝐶−1

𝑛=0

, for  𝑘 =  0, ±1, ±2, . .  , 𝑖 = {1,2…𝑁}𝑎𝑛𝑑  𝑗 ∈  1,𝐵  (4.13) 
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3) After computing the autocorrelation of different subsections, an average 

autocorrelation function 𝑅avg [𝑘] is acquired by averaging subsection 

autocorrelations 𝑅𝑥𝑗 [𝑘]: 

𝑅avg  𝑘 =
1

𝐵
  𝑅𝑥𝑗  𝑘 

𝐵

𝑗=1

                                                          (4.14) 

4) The estimated autocorrelation 𝑅avg [𝑘] is then summed over delays 

𝑘 ∈ [−𝑁sym ,𝑁sym ], for which 𝑁sym  represent the number of samples in 

one primary symbol, in order to obtain a local decision variable: 

𝑑𝑖 =  𝑅avg  𝑘 

𝑁sym

𝑘=−𝑁sym

            𝑖 =  1,2…𝑁                          (4.15) 

4.3      Numerical Results  

In this section, first order polynomial classifier, also known as linear classifiers 

(LC), and second order polynomial classifier, known as binomial classifier (BC), were 

designed and their performance was evaluated with nonparametric detection. 

4.3.1 System Parameters 

 The simulation setup of the CR network including primary transmitted signal, 

channel, CR receivers, and the base station parameters are specified as follows. The 

network consists of 𝑁 cognitive users who contribute in making the global decision at 

the CR base station, where 𝑁 ∈ {1,3,5} users. Each CR extracts a local decision 

variable 𝑑𝑖 , based on the detection scheme implemented. Both linear classifier and 

second order polynomial classifier models were developed for deciding on the 

vacancy of the spectrum at the frequency band of interest.  

The primary signal is assumed to follow a linearly modulated signal model 

described in (3.1). Specifically, the primary signal is modeled as a BPSK signal which 

is down converted into baseband, over which the features are extracted. The signal's 

data rate considered is 𝑅𝑏 = 100kbps. A flat slow Rayleigh fading channel is 

considered for the channel model with a coherence time 𝑇𝑐 = 20𝑇𝑏 , where 𝑇𝑏 =
1

 𝑅𝑏
. 

CRs are assumed to experience AWGN channel with variance 𝜎𝑛
2 = 1. The 𝑖𝑡𝑕  CR 
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receives a signal with signal-to-noise ratios SNRi that differs according to the CR's 

proximity from the primary user. The SNRi follows a normal distribution with a 

variance 𝜎2 = 4 dB and mean equivalent to SNRavg  , emulating a log normally 

distributed loss path, to account for the large scale fading. The detector's structures 

based on energy and autocorrelation are implemented with the following parameters. 

The sampling frequency at the receivers is 𝑓𝑠 = 4𝑓max , where 𝑓max = 𝑅𝑏  for the down 

converted signal satisfying the Nyquest condition to recover an alias-free signal. The 

observation window size for is varied for energy detection to investigate the tradeoff 

in performance between fast decision making and more reliable performance over a 

longer decision interval. The simulation environment was developed using the above 

settings to generate classifier's training and testing data sets.  

4.3.2 Simulation Results 

The performance of the designed classifiers is evaluated as novel input data is 

subjected to the models. Energy detection is performed at the various secondary users 

and the extracted decision variables are provided to the recognition model at the CR 

base station. The probability of detection achieved by the recognition system at 

different average received signals levels is presented in Figure ‎4.4 for different 

numbers of users cooperating in decision making at the base station. The results are 

obtained such that a target false alarm (𝑃𝑓) of 10% is achieved.   

 

Figure ‎4.4. Detection performance of the proposed cooperative LC and 2
nd

  order PC with 

energy based feature extraction at 𝑃𝑓=10% and observation window 𝑀=200 bits. 
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 As observed, the second order polynomial classifier does not improve the 

detection probability performance as compared to the first order linear classifier. 

However, the second order polynomial classifier requires more memory and 

computational complexity to perform the expansion operation as opposed to the linear 

classifier. Hence, the linear classifier is chosen as the optimal model since an 

appropriate performance is obtained with the minimum required memory space and 

computational cost resulting in faster decision speed. Moreover, the advantage of 

cooperative sensing compared to single radio based sensing is observed in the 

detection performance improvement as the number of secondary users contributing to 

signal classification is increased. A received SNR of around -9 dB is appropriate to 

reach a detection probability of 90% with 3 CRs, while a received signal with an 

average SNR of around -6.5 dB is required to achieve the same detection rate with 1 

CR, resulting in gain of 2.5 dB. As the number of receiver collaborating in global 

decision increases, the enhancement in performance diminishes, posing an upper limit 

on the possible gain by increasing cooperating nodes.  

Further, performance improvements can be realized through increasing the 

observation window size. The results of energy detection for a received signal 

with SNRavg = −5 dB, 𝑁 = 3 users, and 𝑃𝑓 = 10%, are depicted in Figure ‎4.5 for 

both linear and second order polynomial models. It is evident that almost a 100% 

detection rate is possible with energy detection at SNRavg = −5 dB, with a window 

size greater than 100 bits. Hence, longer observation windows may result in higher 

detection rates with smaller SNRs at the expense of decision making speed.   

A very informative performance measure in CR networks is the receiver 

operational characteristics (ROC) curve. ROC curves represent the probability of 

detection as the target false alarm varies at certain operational parameters. Typically, 

ROC curves of a system are generated through off-line calibration processes, where 

the threshold is varied to achieve different false alarm rates.  Thereupon, the 

probability of detection is measured at each false alarm probability. To further 

illustrate detection performance of linear classifier, the ROC is obtained when primary 

signal is received with SNRavg = −14 dB and observation window size of 𝑀 =

200 bits. The ROC curves are shown in Figure ‎4.6. 
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Figure ‎4.5. Detection performance of cooperative LC and 2
nd

 order PC with energy based 

feature extraction as 𝑀 is varied at  SNRavg = −5dB, 𝑁 = 3 users, and 𝑃𝑓 = 10%. 

 

Figure ‎4.6. The ROC curves of the proposed LC with energy based feature extraction at 

SNRavg = −14dB and 𝑀 = 200 bits. 

   From Figure ‎4.6, it is seen that the detection probability deteriorates for low 
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class, may lead to miss detecting primary signal's presence; and consequently causing  

more interference to the primary network's users . It can be noted that higher detection 

is accomplished with higher number of cooperating CRs. Achieving maximum 

spectral utilization corresponding to 0% false alarm rate at  SNRavg = −14 dB will 

lead to miss detecting any received signal and hence constantly causing interference to 

primary users. A 90% detection probability is possible for energy detection with 50% 

spectral utilization when the number of cooperating users is 5. Additionally, to 

maintain detection rate above 90%, false alarm rate cannot be lower than 60% and 

80% when the number of CRs is 3 and 1, respectively. 

The performance of the classification system is then tested with the 

autocorrelation based detection technique to extract features from novel testing data. 

Figure ‎4.7 represents the performance of linear classifier against second order 

polynomial classifier as the received average SNR is varied, while keeping a target 

false alarm probability of 10%. The decision variable in the autocorrelation detector is 

estimated over a sensing window with 𝑀 = 200bits, which is divided into 𝐵 = 10 

subsections, over which autocorrelation is calculated as discussed earlier in this 

chapter. It is noticeable that still the linear classifier performs comparable to the 

second order polynomial classifier with lower complexity when the autocorrelation 

detection is implemented. The achievable gain, as the cooperative CRs increase from 

3 to 5 users, is smaller than that obtained as we move from 1 to 3. The improvement 

gain decreases from around 2.5 dB to 1 dB as the number of receivers increases.  

Moreover, Figure ‎4.8 shows the ROC curves for autocorrelation detection with 

different number of CRs at a received signal level of –14 dB. It is apparent that there 

is a performance enhancement as different number of CRs collaborates in making the 

decision increases. Finally, Figure ‎4.9 shows the detection performance with 

observation window size of 𝑀 = 140 bits as the number of subsections, over which 

the autocorrelation is computed, varies. It is clear that increasing the number of 

subsections decreases the detection performance since the number of samples used in 

the estimation of autocorrelation decrease. Hence, smaller number of subsections, that 

satisfies the condition of constant channel gains over one window, is preferable. 
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Figure ‎4.7. Detection performance of the proposed cooperative LC and 2nd order PC with 

autocorrelation based feature extraction at 𝑃𝑓=10% and observation window 𝑀=200 bits. 

 

Figure ‎4.8.The ROC curves of the proposed LC with autocorrelation  based feature extraction 

at SNRavg = −14dB and 𝑀 = 200 bits. 
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Figure ‎4.9. Detection performance of the proposed cooperative LC with autocorrelation based 

feature extraction at 𝑃𝑓=10% and observation window 𝑀=140 bits. 

4.4 Discussion of Results 

In light of presented results, it is evident that energy detection is capable of 

providing a 100% detection rate at SNRavg  above -7 dB, and can be maintained above 

90% for smaller values of SNRavg  . However, we compare the performance of energy 

detection and autocorrelation detection in terms of probability of detecting spectrum 

holes, while satisfying a condition on spectral utilization. Our results indicate that 

adopting autocorrelation detection yields superior performance over energy detection 

under same conditions. A comparison of energy and autocorrelation approaches in the 

classifier model is demonstrated in Table ‎4.1 and  

Table ‎4.2. For instance, a detection probability of 100% can be achieved by 

autocorrelation detector at SNRavg = − 12dB, while a signal level of -7 dB is required 

to achieve the same performance by energy detector with 𝑁 = 5. Moreover, 

autocorrelation detection performs much better than energy detection, when high 

spectral utilization is required (small false alarm rate). In order to achieve 1% false 

alarm rate, a detection performance of 74% is obtained using autocorrelation scheme 

whereas energy scheme can detect primary signal up to 15%  of the time only, under 

the same conditions. The higher and more reliable performance of autocorrelation 

comes at the expense of higher receiver complexity required in autocorrelation 

estimation, as opposed to the simple energy detector.   
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The performance is also highly affected by the window size over which the local 

decision variables are estimated. As the window size increases, the data used for 

training and testing becomes more representative to the present signal in the spectrum, 

and hence the classifier's output score is more accurate. However, the larger the 

window size is, the longer it takes for decision making of spectrum availability by the 

classifier at the base station. This yields a delay in spectral allocation when the 

spectrum is available; hence, resulting in lower spectral utilization.  

The demonstrated results show that there is an optimal window size with a 

specific constraint on false alarm rate and received signal level at which the detection 

probability is maximized. In other words, increasing sensing window size above that 

value no longer improves detection probability. Consequently, sensing time can be 

varied to optimize detection probability according to the received signal SNR level. As 

a high signal level is received, smaller window size is adopted such that faster 

decisions are made with high detection rate, and vice versa.  

Table ‎4.1. Detection probability of energy and autocorrelation detectors at  SNR = −14dB 

with various number of receivers and different 𝑃𝑓 . 

 

 

𝑃𝑓 = 1% 𝑃𝑓 = 10% 𝑃𝑓 = 20% 

 𝑁 = 3 𝑁 = 5 𝑁 = 3 𝑁 = 5 𝑁 = 3 𝑁 = 5 

Detection 

probability 
Energy 8.2% 15% 38.7% 48% 55.6% 70% 

 Autocorrelation 55.6% 74.4% 89.5% 96.4% 95% 98.1% 

 

Table ‎4.2. Detection probability of energy and autocorrelation 𝑃𝑓 = 10% with various 

number of receivers and different  SNR.  

  SNR = 0dB SNR = −10dB SNR = −20dB 

  𝑁 = 3 𝑁 = 5 𝑁 = 3 𝑁 = 5 𝑁 = 3 𝑁 = 5 

Detection 

probability 
Energy 100% 100% 82% 92.1% 16% 20% 

 Autocorrelation 100% 100% 99.9% 100% 29.6% 35% 
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The tradeoff between spectral utilization and interference avoidance with 

coexisting primary network can be visualized from the ROC curves of both schemes. 

At high false alarm rates, a high detection probability is achieved, repressing low 

spectral utilization as well as less interference with primary users. In other words, the 

number of times the system decides in favor of the hypothesis 𝐻1  , while the null 

hypothesis 𝐻0 is true is large; denying the secondary users from utilizing the available 

channel. However, large false alarm rates reduce the interference with primary users, 

resulting in high detection probabilities.  

4.5 Conclusions 

Nonparametric spectrum sensing was considered as the practical signal detection 

approach when information on primary users is not accessible. The performance of 

nonparametric detection schemes was evaluated, when they are utilized in extracting 

input features to the proposed classification system. The presented results justified the 

capability of the proposed pattern recognition system to detect the presence of primary 

signals as nonparametric features are subjected to it. Moreover, we illustrated the 

impact of utilizing spatial diversity, via cooperative sensing, in enhancing the 

detection probability at a fixed false alarm rate. Both linear and second order 

polynomial classifiers were implemented for detecting spectral availability. It was 

shown that the linear classifier performs comparably to the second order polynomial 

classifier. Therefore, linear classifier represents an optimal classifier model as it 

requires less computational cost compared to second order polynomial classifier with 

equal number of receivers. Finally, results indicated that autocorrelation based feature 

extraction outperforms energy based feature extraction. 
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CHAPTER   5 

 PARAMETRIC SPECTRUM SENSING 

In this chapter, parametric spectrum sensing detectors are described and analyzed. 

In section 5.1, principles of cyclostationary feature detection are discussed and the 

cyclic spectrum periodogram is outlined, followed by a brief review of coherent based 

detection as it is utilized in spectrum sensing in section 5.2. In section 5.3, a generic 

system model is developed where the parametric feature extraction schemes are 

applied to the trained classifier models. Finally, simulation results of the first and 

second order polynomial classifiers' performances, as parametric features are 

subjected to them are discussed.  

5.1 Cyclostationary Feature Detection 

Most of the work analyzing the significance of spectral redundancy present in 

cyclostationary communications signals was first developed by Gardner and his 

colleagues ‎[35]‎[36]. Thereafter, cyclostationary feature detection has been adopted for 

different purposes including spectrum sensing, classification ‎[37], synchronization, 

signal detection ‎[13] and equalization ‎[38]‎[13]. In this section, analysis of 

cyclostationary feature detection is provided, including a discussion of cyclic 

autocorrelation function (CAF) and spectral correlation density (SCD) computations. 

5.1.1 Cyclic Autocorrelation Function (CAF) 

Most communication signals can be modeled as cyclostationary random 

processes, as they are usually characterized by built-in periodicities in their mean and 

autocorrelation. These underlying periodicities arise as a result of coupling stationary 

message signals with sinusoidal carriers, repeating spreading codes, pulse trains or 

cyclic prefixes. These periodicities may also take place due to sampling and 

multiplexing of the message signal during the generation process. A zero-mean 
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process 𝑥(𝑡) is said to be cyclostationary in the wide sense if both its mean and 

autocorrelation exhibit periodicity in time ‎[17]: 

𝑚𝑥 𝑡 + 𝑇0 = 𝑚𝑥 𝑡                                                           (5.1)  

     𝑅𝑥 𝑡 +
𝜏

2
, 𝑡 −

𝜏

2
+ 𝑇0 = 𝑅𝑥  𝑡 −

𝜏

2
, 𝑡 +

𝜏

2
                     (5.2) 

where the period of the mean and autocorrelation is 𝑇0. Moreover, 𝑚𝑥 𝑡  and 𝑅𝑥 𝑡  

are defined as: 

𝑚𝑥 𝑡 = E[𝑥 𝑡 ]                                                                   (5.3) 

𝑅𝑥  𝑡 −
𝜏

2
, 𝑡 +

𝜏

2
 =  𝑥  𝑡 +

𝜏

2
 𝑥∗  𝑡 −

𝜏

2
                    (5.4) 

where  .   is the time averaging operation  .  = lim𝑇0→∞
1

𝑇0
  .  𝑑𝑡
𝑇0/2

−𝑇0/2
. Another 

definition of second order periodicity is given as follows: A signal 𝑥(𝑡) contains 

second order periodicity if and only if the Fourier transform of its autocorrelation has 

discrete spectral lines at non-zero frequencies  𝛼 ≠ 0 ‎[36][35]: 

 

𝑅𝑥
𝛼 τ ≜   𝑥  𝑡 +

𝜏

2
 𝑥∗  𝑡 −

𝜏

2
 𝑒−𝑗2𝜋𝛼𝑡  ≠ 0              (5.5)  

where 𝜶 ∈ {0, ±1/ 𝑇0, ±2/ 𝑇0,...}. 𝑅𝑥
𝛼(τ) is considered as the second order periodicity 

fundamental parameter, which represents the Fourier coefficients of additive sine 

wave components contained in the delay product 𝑥  𝑡 +
𝜏

2
 𝑥∗  𝑡 −

𝜏

2
  at frequencies 

𝜶. The notation 𝑅𝑥
𝛼(𝜏) is chosen to denote this parameter, since it reduces to the 

conventional autocorrelation function 𝑅𝑥(𝜏), defined in (5.2), at frequency 𝛼 = 0. 

𝑅𝑥
𝛼  is called the cyclic autocorrelation function(CAF), since it is the 

generalization of the autocorrelation function in which sinusoidal (cyclic) weighting 

coefficients are included before the time averaging is carried out. The autocorrelation 

of a signal and the CAF are used to distinguish between two types of signals, namely 

stationary and cyclostationary. Signals whose CAF exist and has non-zero values only 

at 𝛼 = 0 (𝑅𝑥
𝛼(τ) = 0 for any 𝛼 ≠ 0) are said to be purely stationary signals. However, 

signals with CAF existing at frequencies other than zero (𝑅𝑥
𝛼 ≠ 0 for any 𝛼 ≠ 0) are 

called cyclostationary signals of second order ‎[35]‎[36]. Any non-zero value for the 
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frequency parameters 𝛼, at which the CAF is non-zero, is called a cycle frequency. 

Furthermore, the cycle spectrum is the discrete set of cycle frequencies.  

Another interpretation of CAF can be realized by factoring 𝑒−𝑗2𝜋𝛼𝑡  in (5.3) and 

rewriting it as follows: 

𝑅𝑥
𝛼(τ) =    𝑥  𝑡 +

𝜏

2
 𝑒−𝑗𝜋𝛼  𝑡+

𝜏
2
   𝑥  𝑡 −

𝜏

2
 𝑒 𝑗𝜋𝛼  𝑡−

𝜏
2
  
∗

  (5.6) 

       As shown in (5.6), the CAF can be considered as the conventional cross-

correlation function between two signals 𝑣 𝑡  and 𝑢 𝑡 : 

𝑅𝑥
𝛼 𝑡;𝛼 = 𝑅𝑢𝑣  𝜏 =   𝑣  𝑡 −

𝜏

2
 𝑢∗  𝑡 +

𝜏

2
               (5.7) 

where  

𝑢 𝑡 = 𝑥 𝑡 𝑒−𝑗𝜋𝛼𝑡                                                             (5.8𝑎) 

                                                   

𝑣 𝑡 = 𝑥 𝑡 𝑒+𝑗𝜋𝛼𝑡                                                              (5.8𝑏) 

 

where 𝑢 𝑡  and 𝑣 𝑡  represent frequency shifted versions of the signal 𝑥 𝑡  by ±𝛼/2. 

Therefore, a signal 𝑥 𝑡  exhibits second order cyclostationarity if and only if its 

frequency translates 𝑢 𝑡  and 𝑣 𝑡  are correlated for some 𝛼 ≠ 0. 

5.1.2 Spectral Correlation Density (SCD) 

As it is useful in many applications to determine the spectral characteristics of 

stationary signals, localizing the cyclic autocorrelation (CAF) in frequency provide 

comprehensive means of examining cyclostationarity of a signal. Cyclostationarity of 

a signal leads to the presence of specific patterns in the spectrum of the signal, which 

can be examined using the so called spectral correlation density function (SCD) 

‎[36]‎[38]. By analogy to computing the power spectral density of a stationary signal 

using its autocorrelation, the SCD of a cyclostationary signal is the Fourier transform 

of its CAF ‎[36]: 

𝑆𝑥
𝛼 𝑓;𝛼 =  𝑅𝑥

𝛼 𝜏 𝑒−𝑗2𝜋𝑓𝜏 𝑑𝜏
∞

−∞

                                     (5.9) 
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Another way of expressing SCD can be interpreted from (5.6) as follows [7]: 

𝑆𝑥
𝛼 𝑓;𝛼 = lim

𝑇→∞
lim
∆𝑡→∞

1

𝑇∆𝑡
 𝑋𝑇  𝑡, 𝑓 +

𝛼

2
 

∆𝑡
2

−
∆𝑡
2

𝑋𝑇
∗  𝑡, 𝑓 −

𝛼

2
 𝑑𝑡                  

(5.10) 

where; 

𝑋𝑇 𝑡, 𝑙 =  𝑥 𝑚 
𝑡+

𝑇
2

𝑡−
𝑇
2

𝑒−𝑗2𝜋𝑚𝑙 𝑑𝑚                                (5.11) 

is the complex envelope of the spectral component of  𝑥 𝑡 , ∆𝑓 = 1/𝑇 represents the  

frequency resolution and ∆𝑡 is the averaging time over which the SCD is estimated. It 

is clear from (5.10) that SCD represents the temporal correlation of the filtered 

frequency translates of 𝑥 𝑡 . In other words, 𝑆𝑥
𝛼  describes the correlation of the 

amplitude and phase fluctuations of the narrow band spectral components of 𝑥(𝑡) 

centered at frequencies 𝑓 ±
𝛼

2
 as the bandwidth ∆𝑓 = 1/𝑇 approaches zero. Therefore, 

an ideal implementation of (5.10) is obtained by allowing the averaging time ∆𝑡  to 

approach infinity and spectral resolving bandwidth ∆𝑓 approaches zero ‎[36]. 

Consequently, in order to have a reliable estimation of SCD with finite parameters, the 

temporal-spectral resolution product is required to greatly exceed unity  ‎[13]: 

∆𝑓∆𝑡 ≫ 1                                                                           (5.12) 

In order to meet the above conditions in practical implementations, discrete 

frequency-smoothing formulation of the above cyclic periodogram is defined  ‎[39]: 

𝑆𝑥
𝛼 [𝑘] =

1

𝑃
 

1

∆𝑡

𝑃−1
2

𝑣=−
𝑃−1

2

𝑋  𝑡, 𝑘 +
𝛼

2
+ 𝑣𝑓𝑠 𝑋

∗  𝑡,𝑘 −
𝛼

2
+ 𝑣𝑓𝑠 𝑊 𝑣   

 (5.13) 

  where 

𝑋 𝑡, 𝑘 =  𝑥[𝑛]𝑒−𝑗2𝜋𝑘𝑛 /𝑀

𝑀−1

𝑛=0

                                       (5.14) 
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𝑀 is the number of samples over which the spectrum of the received signal 𝑥[𝑘] is 

calculated (FFT length), ∆𝑓 = 𝑃/∆𝑡 is the spectral smoothing interval's width, 𝑇𝑠  is 

the time sampling increment, 𝑓𝑠 = 1/𝑇𝑠  is the sampling rate, ∆𝑡 = 𝑀𝑇𝑠  , and 𝑃 is the 

number of frequency bins that are averaged together using a frequency smoothing 

window 𝑊 𝑣 , such as rectangular  and hamming smoothing windows.  In order to 

satisfy the condition in (5.12), the resolution product ∆𝑓∆𝑡 =
𝑃

∆𝑡
∆𝑡 = 𝑃 ≫ 1. Hence, 

for a given averaging time ∆𝑡, a larger number of frequency averaging bins is required 

for reliable SCD estimation. Moreover, it is clear from  ∆𝑓 = 𝑃/∆𝑡 that greater 

observation time is required for smaller spectral resolution and consequently better 

SCD estimation.   

5.2  Coherent Detection 

Another parametric based sensing scheme investigated in this work is the 

coherent detection. Coherent detection maximizes the received signal-to-noise ratio by 

using match filtering, resulting in high detection probability. Optimally, coherent 

detection is performed by demodulating primary user's signal, which requires a priori 

information of the primary signal including modulation type, pulse shaping, packet 

format, control and synchronization preambles ‎[40]. Preamble patterns can be utilized 

by mobile terminals within a given mobile network to identify transmitting base 

stations within their area.  Moreover, control information provides commands and 

other instructions for decoding received signals.  

If the synchronizing preamble patterns are known at the cognitive network end, 

coherent sensing can be exploited by correlating the incoming signal with the known 

patterns. This is effectively correlating the signal with itself resulting in an 

autocorrelation function that peaks at a delay 𝑘 = 0, in the presence of signal ‎[18]. 

However, when only noise is present the correlation will be equivalent to cross-

correlation between a stationary signal with the preamble pattern which are 

uncorrelated and hence will result in no peak at a delay 𝑘 = 0. Therefore correlating 

the received signal with a known preamble pattern will result in discriminative 

features for the classifier model. The decision variable of correlation is given by: 
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𝑦 𝑘 = 𝑅𝑒   𝑥 𝑛 𝑠∗[𝑛 − 𝑘]

𝑀−1

𝑛=0

  for 𝑘 = 0, ±1, ±2,…      (5.15) 

 

where 𝑠∗[𝑛] is the conjugate of the known signal pattern,  𝑥[𝑛] is the received signal, 

and 𝑀 is the number of samples over which the correlation is performed. The 

structure of the coherent detector is further discussed in the following section. 

5.3 Proposed Parametric Cooperative System Model 

We present a model for a cooperative CR network where secondary users are 

assumed to have prior information about the primary users. Prior information includes 

knowledge of primary user’s carrier frequency and preamble synchronizing patterns. 

We therefore examine both cyclostationary feature detection and coherent detection 

techniques to extract discriminative feature as input to the classifiers. The block 

diagram in Figure ‎5.1  shows the proposed parametric based spectrum sensing 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5.1. Parametric spectrum sensing algorithm. 
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The steps of the algorithm are as follow: 

1) The received signal at each CR is measured over a period of time at a 

sampling rate of 𝑓𝑠  samples/second. 

2) A parametric feature extraction is performed at each cooperative secondary 

user. The input to the feature extraction block 𝐗 consists of 𝑁 data 

sequences, 𝐱𝐢 each of length 𝑀 bits. The received sequence  𝐱𝐢 is used to extract 

a feature, also referred to as local decision variable, 𝑑𝑖  by the 𝑖𝑡𝑕  CR. Hence, the 𝑁 

secondary users provide an input feature vector  𝐝 = [𝑑1 …𝑑𝑁] to the CR base 

station.  

3) The local decision variables are then transmitted to the CR base station for 

decision making. The decision variables are fed to a trained polynomial 

classifier with model parameter 𝐰1
op 𝑡

, representing occupied spectrum.  

4) A global decision is then made about the vacancy of the spectrum by 

comparing the classifier's output 𝑦1 to the threshold that was pre-calculated to 

achieve a target false alarm rate (for more details, refer to section 3.3.4) . 

The signal model introduced in (3.1) is adopted in parametric sensing. We 

consider a BPSK primary transmitted signal 𝑠(𝑡). In coherent detection (CD), the 

signal is down converted into its baseband equivalent 𝑠coh  𝑡  modeled by: 

 

𝑠coh  𝑡 =   𝐸𝑏𝑑𝑘𝑕 𝑡 − 𝑘𝑇𝑏 

𝑘

                                         (5.16) 

where 𝐸𝑏  is the average energy per bit, 𝑇𝑏  is the average bit duration, 𝑕(𝑡) is the pulse 

shape, and 𝑑𝑘 ∈   −1,1  . In cyclostationary feature detection (CFD), on the other 

hand, we process the received bandpass primary signal instead of its baseband 

equivalent. The bandpass is used such that we preserve the underlying periodicity in 

the primary signal, caused by the modulating carrier, and exploit them in 

cyclostationary feature detection. The received BPSK bandpass signal 𝑠cyc  𝑡  with 

carrier frequency 𝑓𝑐  is modeled by  

𝑠cyc  𝑡 = 𝑅𝑒    𝐸𝑏𝑑𝑘𝑕 𝑡 − 𝑘𝑇𝑏 

𝑘

. 𝑒−𝑗2𝜋𝑓𝑐𝑡              (5.17) 
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In parametric spectrum sensing, the feature extraction block structure depends on 

the available prior information to the cognitive network. The detectors' structures 

investigated in this research are explained next.  

5.3.1 Cyclostationary Based Feature Extraction  

In this research, when cyclostationary detection is adopted as the feature 

extraction technique in spectrum sensing, the cyclic periodogram introduced in 5.1.2 

is applied. The transmitted signal is assumed to be a BPSK signal 𝑠cyc  𝑡  as defined in 

(5.17).  The SCD can be thought of a cross-correlation function between the spectral 

translates of the signal at 𝑓 ±
𝛼

2
, for some cyclic frequency 𝛼. The SCD estimation 

periodogram is implemented to obtain the cyclic feature extraction receiver structure 

as shown in Figure ‎5.2. 

 

 

 

 

 

 

 

 

Figure ‎5.2. Block diagram of cyclostationary based feature extraction. 

Based on Figure ‎5.2, cyclostationary detection can be conducted through the 

following steps:  

1) Given a received signal 𝑥(𝑡), it is sampled at a rate of  𝑓𝑠  to obtain the 

received signal described in (3.1). Thereafter, each 𝑀 samples, 𝑥𝑖 𝑛 =

 𝑥𝑖1 …𝑥𝑖𝑀  , are fed to the detector at the 𝑖𝑡𝑕  receiver.  

2) The input 𝑥𝑖 𝑛  is then multiplied by 𝑒±𝑗𝜋𝛼𝑛  in order to produce the frequency 

translates of 𝑥𝑖 𝑛 , namely 𝑣[𝑛] and 𝑢 𝑛 . 

3) The 𝑀-point FFT is next calculated for the frequency shifted versions of 𝑥𝑖[𝑛] 

in order to obtain their frequency spectrum as follow: 

𝑈[𝑘] 

𝑒+𝑗𝜋𝛼𝑛  

Frequency 

smoothing over 

𝑃 frequency 

bins 

𝑢(𝑛) 

𝑒−𝑗𝜋𝛼𝑛  

𝑥𝑖 𝑛 = [𝑥1 …𝑥𝑀] 

𝑀-point 

FFT 

𝑣(𝑛) 

𝑉∗[𝑘] 

𝑀-point 

FFT ∗ 

 𝑆𝑥
𝛼  
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𝑈 𝑘 =
1

 𝑀
  𝑥𝑖[𝑛]𝑒−𝑗𝜋𝛼𝑛 𝑒−

𝑗2𝜋𝑘𝑛
𝑀

𝑀−1

𝑛=0

  = 𝑋𝑖  𝑘 +
𝛼

2
       (5.18) 

𝑉 𝑘 =
1

 𝑀
  𝑥𝑖 𝑛 𝑒

+𝑗𝜋𝛼𝑛 𝑒−
𝑗2𝜋𝑘𝑛
𝑀

𝑀−1

𝑛=0

  = 𝑋𝑖  𝑘 −
𝛼

2
        5.19  

4) The SCD is computed by first finding the spectral correlation of the input's 

frequency translates. The output of correlation is then spectrally smoothed 

using a frequency smoothing window 𝑊 with 𝑃 frequency averaging bins. 

The SCD is then given by: 

𝑆𝑥
𝛼 [𝑘] =

1

𝑃
 

1

M

𝑃−1
2

𝑣=−
𝑃−1

2

𝑈 𝑘 + 𝑣 𝑉∗ 𝑘 + 𝑣 𝑊 𝑣  

              =
1

𝑃
 

1

M

𝑃−1
2

𝑣=−
𝑃−1

2

𝑋𝑖  𝑘 +
𝛼

2
+ 𝑣 𝑋𝑖

∗  𝑘 −
𝛼

2
+ 𝑣 𝑊 𝑣    (5.20) 

5) The process is repeated for each 𝑀 received samples.  

The decision variable 𝑑𝑖  is then defined as the value of SCD at 𝑘 = 0 

representing the peak of cyclic frequency spectrum when a primary signal is present. 

After the SCD estimation, the received signal model changes from that given by (3.1) 

depending on the received hypothesis, for constant channel gains: 

 

𝑆𝑥
𝛼0 𝑘 =  

 𝑔 2 𝑆𝑠
𝛼0 𝑘 + 𝑆𝑛

𝛼0 𝑘  ∶                 𝐻1

𝑆𝑛
𝛼0 [𝑘]                              ∶                 𝐻0

               (5.21) 

 

where  𝑆𝑛
𝛼0 [𝑘] represents the SCD of the AWGN at some cyclic frequency 𝛼 =

𝛼0when no signal present; while 𝑆𝑠
𝛼0 [𝑘] is the SCD of the transmitted primary signal. 

Since the AWGN is a wide sense stationary process and does not possess second order 

cyclostationarity, it will not have a peak at any cyclic frequency 𝛼 = 𝛼0 . On the other 

hand, the bandpass BPSK signal exhibits second-order cycle frequencies at 
𝛼0

2
= 𝑓𝑐 +

𝑚

𝑇symbol
  [2][9], for some integer 𝑚 = 0, ±1, ±2,… . 𝑇symbol  represents the symbol 
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duration and for BPSK is equivalent to the bit duration 𝑇b . Since the strongest spectral 

lines of a BPSK signal appear at 𝑓 = ±𝑓𝑐  , the strongest cyclic components are 

observed at 
𝛼0

2
= ±𝑓𝑐   [9].  For illustration, the PSD of a BPSK signal's frequency 

translates are given in Figure ‎5.3 and Figure ‎5.4, respectively, where the sampling 

frequency for this example is 𝑓𝑠 = 10𝑓𝑐  Further, the SCD of both the BPSK signal and 

AWGN are presented in Figure ‎5.5 and Figure ‎5.6, respectively. 

Figure ‎5.3. Power spectral density of the frequency translate 𝑢 𝑡  at  
𝛼0

2
= 𝑓𝑐 . 

Figure ‎5.4. Power spectral density of the frequency translate 𝑣 t  at  
𝛼0

2
= 𝑓𝑐 . 
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Figure ‎5.5. SCD of BPSK signal at cycle frequency 
𝛼0

2
= 𝑓𝑐 . 

 

Figure ‎5.6. SCD of AWGN at cycle frequency 
𝛼0

2
= 𝑓𝑐 .   
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As shown in the above figures, the SCD of BPSK signal for 
𝛼0

2
= 𝑓𝑐  contains a clear 

peak at spectral frequency 
𝑓

𝑓𝑠
= 0, which does not occur in the SCD of AWGN. 

Therefore, the local decision variable for cyclostationary detection can be chosen to 

be 𝑆𝑥
𝛼0 [0], representing a discriminative feature as input to the classifier: 

𝑑𝑖 =  𝑆𝑥
𝛼0  0 =  

 𝑔 2 𝑆𝑠
𝛼0  0 + 𝑆𝑛

𝛼0 0  ∶               𝐻1

𝑆𝑛
𝛼0 [0]                            ∶              𝐻0

           (5.23) 

Finally, similar to the case of autocorrelation, the SCD is estimated over multiple 

subsections of the observation window. The length of the subsections is chosen to be 

close to the estimated coherence time of the channel, such that (5.23) is valid; i.e. 

𝐸  𝑔 2 =  𝑔 2. 

5.3.2 Coherent Based Feature Extraction 

In coherent detection, the transmitted primary signal 𝑠coh  𝑡  was defined in 

(5.16). Primary users are assumed to be using time division multiple access (TDMA), 

with a frame size 𝑀 bits and a synchronizing preamble at the beginning of each frame 

with length 𝐿 bits. The preamble sequence is pre-known at secondary receivers. The 

cognitive users will be acquiring data for 𝐿 bits, or equivalently a sensing 

duration ∆𝑡 = 𝐿𝑇𝑠 , every 𝑀 bits. Thus, the transmitted primary signal available for 

coherent sensing is shown in Figure ‎5.7, where the dashed blocks represent the 

segment of the incoming frame at which CRs acquire sensing data.  

 

 

 

 

 

 

Figure ‎5.7. Sensing data blocks within a segment of the incoming signal frames. 
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The coherent based detection algorithm assuming 𝐿 bits-length preamble is 

outlined as follows: 

1) The received signal 𝑥𝑖 𝑡  , illustrated by Figure ‎5.7, is applied to a gating 

function, where signal is acquired only for the pre-known preamble 

duration. The acquired gated data is sampled at 𝑓𝑠  samples/second to 

obtain the preamble sampled signal 𝑥g 𝑛 = {𝑥 1 … 𝑥[𝐿]}. 

2) Thereafter, the  acquired gated signal is correlated with the preamble 

sequence 𝑠p  as follows: 

𝑅𝑥𝑠  𝑘 = 𝑅𝑒   𝑥g 𝑛 s
∗

p 𝑛 − 𝑘 

𝐿

𝑛=1

  for 𝑘 = 0, ±1, ±2,… (5.24) 

3) The cross-correlation 𝑅𝑥𝑠  𝑘  based on the received hypothesis, is given by 

(5.25). Under  𝐻1  (signal present), the cross-correlation becomes an 

autocorrelation of the transmitted preamble with a peak at  𝑘 = 0. 

Alternatively, when the primary signal is idle and the gated signal 

represents only noise, it is cross-correlated with a preamble sequence 

resulting on no peaks. The overall detection procedure is illustrated in 

Figure ‎5.8.  
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which reduces to, 
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Figure ‎5.8. Coherent based feature extraction structure. 

5.4 Numerical Results  

Simulations were conducted to investigate the performance of parametric feature 

extraction techniques when applied to the proposed classifier model. Once again, the 

simulations are performed for both first and second order polynomial classifiers. 

5.4.1 System Parameters 

The simulation parameters considered for the primary signal, the fading channel, 

CR receivers and classifier parameters at the base station are presented as follows.  

The CR network consists of 𝑁 CRs who provide the base station with features 𝐝 in 

which a global decision is made, where 𝑁 ∈ {1,3,5} users. Signal models described in 

(5.16) and (5.17) are used to generate the transmitted primary signal. Due to 

simulation limitations in generating training and testing sequences, we considered a 

down scaled parameters for the primary signal that does not reflect practical 

applications. However, these parameters can be scaled up without affecting the 

performance if practical data are available. The simulated transmitted signal is a band-

pass BPSK with data rate 𝑅𝑏 = 100Kbps, carrier frequency 𝑓𝑐 = 5MHz, and cyclic 

frequency 𝛼 = 2𝑓𝑐 = 10MHz. Whereas, the primary signal for coherent detection is a 

baseband BPSK with data rat𝑒 𝑅𝑏 = 100Kpbs, frame length 𝑀 = 200bits, and 

preamble sequence length 𝐿 ∈ {16,32,40,48} bits representing overhead percentages 

of  
𝐿

𝑀
∈  8%, 16%, 20%, 24% .  

 A flat slow Rayleigh fading channel is considered with coherence time 𝑇𝑐 =

20𝑇𝑏 . The 𝑖𝑡𝑕  CR receives a signal with signal-to-noise ratios SNR𝑖  that follows a 

normal distribution with a variance 𝜎2 = 4 dB and mean equivalent to SNRavg , 

emulating a log normally distributed loss path. The receiver's detector structure 

described in section 5.3 is used in the system simulation with the following 

parameters. The sampling frequency at the receivers is 𝑓𝑠 = 4𝑓𝑚𝑎𝑥  , where  𝑓max =

𝒙𝐠[𝒏] = [𝒙𝟏…𝒙𝑳] 

𝑅𝑥𝑠 [𝑘] 
𝒙[𝒏] = [𝒙𝟏…𝒙𝑴] 
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𝑓𝑐 + 𝑅𝑏   satisfying the Nyquest sampling criterion. The observation window size for 

cyclostationary detector takes values of 𝑀 ∈ {20,60,100,160,200} bits. The spectral 

smoothing window 𝑊 𝑘  is chosen to be a central rectangular window. As per 

coherent detection, the receiver is assumed to acquire the gated signal based on the 

transmitted signal parameters mentioned above. 

5.4.2 Simulation Results 

In this section, we illustrate the results for the proposed classification system 

when cyclostationary features are fed to the CR base station for white spaces 

identification. In Figure ‎5.9, the achieved detection probability 𝑃𝑑  is illustrated as the 

average received SNR at the secondary users' end is varied. We assume the distance 

between the CR network and the primary transmitted is very large; hence, the received 

SNRavg  is in the low SNR regime, i.e. SNRavg ≤ 0 dB. The decision threshold 𝜆 was 

computed during the validation stage of the classifier's design such that a target false 

alarm rate of 10% is achieved. The estimation of cyclostationary features was realized 

over an observation window with 𝑀 = 200 bits. Note that we refer to cyclostationary 

feature detection with CFD and coherent detection with CD, in the obtained results. 

The results obtained in Figure ‎5.9 present the performance improvement as the 

number of CRs cooperating in making the decision 𝑁 increases. As 𝑁 is increased 

from 1 receiver to 3 receivers, a gain of 4 dB is achieved at 𝑃𝑑 = 90%. However, 

performance improvements due to increasing cooperative CRs saturate for higher 

number of users. For instance, SNRavg  gain as 𝑁 is raised from 1 to 3 is 4 dB and 

deteriorates to only 2 dB as 𝑁 is raised from 3 to 5, at 𝑃𝑑 = 90%. Moreover, the 

results indicate that cyclostationary feature detection can be used for achieving at least 

90% detection of received signals with SNRavg  of -18 dB with 𝑁 =5. The 

performance of both linear and second order polynomial classifiers for different 

number of cooperating users is also shown in Figure ‎5.9. As in the case of 

nonparametric spectrum sensing, it is clear that as the order of classifier increases 

from first order to second order, no significant performance improvement is achieved.  
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Figure ‎5.9. Detection performance of the proposed cooperative LC and 2
nd

 order PC with CFD 

at 𝑃𝑓 = 10% and observation window 𝑀 = 200 bits. 

Once again, the performance is improved by increasing the observation window 

size. The results of cyclostationary detection are illustrated in Figure ‎5.10, for linear 

and binomial classifiers at SNRavg = −14 dB, 𝑁 = 3 users, and 𝑃𝑓 = 10%.  Further, 

to achieve at least 90% detection, a window of length 100 bits is needed. The 

performance can be improved to almost 99% detection if window size increases to 

100 bits. Moreover, as the observation window size increases from 𝑀 = 20 to 𝑀 =

200 bits, probability of detecting received primary signal with SNRavg = −14 dB 

increases from 73% to 98%.  

To further illustrate detection performance of linear classifier, the ROC curve is 

obtained when primary signal is received with SNRavg = −14 dB  and observation 

window size of 𝑀 = 200 bits. The ROC curves, given in Figure ‎5.11, show that the 

higher the number of cooperating radios is, the better the detection performance. For 

instance, maximum spectral utilization is achieved at  SNRavg = −14 dB with 

detection probabilities of 42%, 51%, and 86% when the number of cooperative CRs is 

1, 3, and 5, respectively. Additionally, in order to maintain a minimum interference 

level with primary users, it is necessary to obtain high detection rate. A detection rate 

of 90% can be achieved at SNRavg = −14 dB, while keeping a false alarm probability 

of 30%, 3%, and 0.9% with  𝑁=1, 3 and 5, respectively.  
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Figure ‎5.10. Detection performance of cooperative LC and 2
nd

 order PC with CFD as 𝑀 is 

varied at  SNRavg = −14 dB, 𝑁 = 3 users, and 𝑃𝑓 = 10%. 

 

Figure ‎5.11. The ROC curves of the proposed LC with CFD at SNRavg = −14 dB and 𝑀 =

200 bits. 
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Simulations were conducted using coherent detection to provide features to the 

designed classification system. Figure ‎5.12 shows the obtained detection probability 

𝑃𝑑  as the received primary signal's level is varied. The system is evaluated after 

training the designed classifier to achieve false alarm probability of 10%. Coherent 

detection was implemented for primary signal with preamble size of 𝐿 = 16bits and 

frame length of 𝑀 = 200bits. At a detection rate of  𝑃𝑑 = 90% , a gain of around 6 

dB can be realized as 𝑁 increases from 1 to 3. The achieved gain; however, becomes 

around 1.5 dB as 𝑁 increases from 3 to 5. It is evident from Figure ‎5.12 that coherent 

detection provides reliable signal identification with 𝑃𝑑 > 98%, when the received 

signal level is above -10 dB and 𝑁 = 5. Moreover, both linear and second order 

polynomial classifier perform comparably as coherent detection is utilized in feature 

extraction. 

 

Figure ‎5.12.  Detection performance of the proposed cooperative LC and 2
nd

 order PC with 

CD at 𝑃𝑓 = 10% and 𝐿 = 16 bits.  

The ROC curve for coherent detection based sensing for various numbers of 

cooperative CRs and a received signal level of -14 dB is demonstrated in Figure ‎5.13. 

We consider a primary signal with same parameter of 𝑀 = 200 and 𝐿 = 16 bits. It is 

apparent that there is a performance variation as different number of CRs collaborates 

in making the decision. The performance gap between various numbers of CRs 

shrinks, as the false alarm probability increases. 
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Figure ‎5.13. The ROC curves of the proposed LC with CD at SNRavg = −14 dB and 

𝐿 = 16 bits. 

Finally, we investigate the performance gain achieved as the length of preamble 

sequence, utilized in coherent detection, increases. The effect of increasing the 

preamble length on the classification system performance can be examined by the aid 

of Figure ‎5.14. The figure presents the SNRavg  required to obtain a specific detection 

probability and false alarm rate, as the preamble length increases. Longer preamble 

sequences result in higher gain in SNRavg . In other words, a lower level of received 

primary signal is sufficient to achieve a certain detection rate as preamble length is 

increased. For example, a signal level of -16 dB is sufficient to obtain 𝑃𝑑 = 90% 

for 𝐿 = 40, while a signal level of -17 dB is required for 𝐿 = 50. This results in a 

SNR gain of around 1 dB.  
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Figure ‎5.14. SNR gain as received preamble lengths varies. 

5.5 Discussion of Results 

In this section, the obtained results of parametric sensing schemes are discussed. 

The results demonstrate the reliable performance of cyclostationary detection. For 

instance, it provides a 100% detection rate at SNRavg  above -12 dB, and can be 

maintained above 90% for smaller values of SNRavg  . A reliable detection of primary 

transmission is very useful in CR networks as the level of the received signal by a CR 

could be very low due to physical proximity or shadowing effect. Hence, having a 

relatively high detection probability provides better performance in terms of 

interference avoidance with primary users for a specific false alarm probability.  

A comparison of the performance of cyclostationary and coherent based feature 

extraction techniques is shown in Table ‎5.1 and Table ‎5.2. Results indicate the 

superior performance of cyclostationary detection over coherent detection in terms of 

detection probability at a given false alarm rate. This suggests that detection of cyclic 

features present in a signal is more reliable than coherent detection of synchronization 

preamble sequences. However, the number of samples used to coherently detect 

preamble transmission, i.e. preamble sequence length 𝐿, is relatively short when 

compared to a full frame 𝑀 used to estimate the cyclic features. Note that in both 

detection schemes secondary users need to wait for a full frame of 𝑀 bits to make a 
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decision; however, in coherent detection only 𝐿 bits are utilized in making the 

decision. Consequently, the longer the preamble sequence is, a better performance is 

achieved; however, a longer transmission overhead is needed, lowering the spectral 

efficiency of primary users. Moreover, cyclostationary detection is capable of 

providing high detection probability with higher spectral utilization, when compared 

to coherent detection. As high spectral utilization is required, referring to low false 

alarm rate, a considerable degradation in detection probability is observed in coherent 

detection as shown in Table ‎5.2. 

 

Table ‎5.1. Detection probability of CD and CFD at  𝑃𝑓 = 10% with various number of 

receivers and different  SNR. 

 

Table ‎5.2. Detection probability of CD and CFD at  SNR = −14 dB with various number of 

receivers and different 𝑃𝑓 . 

 

𝑃𝑓 = 1% 𝑃𝑓 = 10% 𝑃𝑓 = 20% 

𝑁 = 3 𝑁 = 5 𝑁 = 3 𝑁 = 5 𝑁 = 3 𝑁 = 5 

Detection 

probability 

Cyclostationary 70.97% 92.56% 98.4% 99.86% 100% 100% 

Coherent 41% 63.5% 85.7% 93.2% 82.7% 95.2% 

 

The effect of window size used in cyclostationary detection is studied. The 

performance improvement achieved by varying observation window size is illustrated 

in Figure ‎5.10. However, there is an upper limit on the improvement in detection rate 

at which increasing observation window length no longer improves detection 

probability with a specific constraint on false alarm rate and SNRavg  level. 

Observation window length can be optimized to achieve maximum detection 

 
SNR = 0 dB SNR = −10 dB SNR = −20 dB 

𝑁 = 3 𝑁 = 5 𝑁 = 3 𝑁 = 5 𝑁 = 3 𝑁 = 5 

Detection 

Probability 

Cyclostationary 100% 100% 100% 100% 60% 72% 

Coherent 100% 100% 97.5% 99.6% 29.5% 44.5% 
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probability at a received signal SNRavg  level. This suggests utilizing shorter sensing 

windows, as a high signal level is received so that faster decisions are made with high 

detection probability, and vice versa.  

Furthermore, having the nonparametric schemes analyzed and evaluated, we 

provide a comprehensive performance evaluation of parametric feature extraction 

techniques as compared to nonparametric ones in terms of different performance 

metrics as follows: 

 In terms of detection performance at different SNR values, parametric 

sensing provides high detection probabilities at very small SNR values as 

compared to nonparametric schemes. Moreover, the detection 

performance of parametric schemes at very small false alarm rates is 

considerably enhanced, relative to nonparametric schemes. 

  Among all schemes, cyclostationary feature detection provides the best 

performance in terms of both detection and false alarm rates. On the other 

hand, coherent detection with preamble overhead of 8%, provides slightly 

lower performance than that of autocorrelation detection. Energy detection 

constitutes the poorest performance among all studied techniques. 

 Cyclostationary feature detection represents the optimal feature extraction 

scheme, if information on primary signal is available. The implementation 

of cyclostationary feature detection relies on the knowledge of carrier 

frequency and modulation type of the primary signal. The obvious 

drawback of cyclostationary detection is the high computational 

complexity required to extract cyclic features at CRs, as compared to 

other techniques. On the other hand, it provides high reliability to the CR 

network under low SNR conditions.  

 Coherent and autocorrelation based feature extraction perform comparably 

in terms of detection at different SNR levels. However, the fairness of this 

comparison is doubtful since the correlation computations are performed 

over small number of samples in coherent detection, represented by the 

preamble length. On the other hand, autocorrelation estimation is 

performed over the length of a full frame, providing longer estimation 

time and higher complexity. Once again, coherent detection requires 
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knowledge of preamble sequences utilized by primary users, relative to 

autocorrelation detection that does not rely on any prior information. 

 Finally, energy detection represents the feature extraction scheme with 

least detection capability under very low SNR, since the energy content of 

the received signal is highly susceptible to noise and fading conditions. 

However, energy detection represents an attractive detection technique 

under high SNR regimes for its simplicity and minimum a prior 

information requirements.  

A comparison of the studied feature extraction techniques is illustrated in Table 

‎5.3.  

Table ‎5.3. Comparison of parametric and nonparametric feature extraction schemes. 

 Prior information Complexity Detection Performance 

Energy Not required Low Poor 

Autocorrelation Not required Medium Good 

Cyclostationary 
Modulation type and carrier 

frequency 
High Excellent 

Coherent 
Preamble or other 

synchronization sequences 
Medium Good 

5.6 Conclusions 

In this chapter, the problem of parametric based signal detection and 

classification has been tackled.  The performance of both cyclostationary and coherent 

based feature extraction techniques is simulated and analyzed. The presented results 

justify the capability of the proposed pattern recognition system to detect presence of 

primary signals. We also illustrated the power of cooperative spectrum sensing as 

opposed to sensing based on single CR.  

The performance of parametric and nonparametric spectrum sensing schemes was 

also compared. The potential of the proposed classification scheme is supported with 

the great performance in detection probabilities at very low average SNR values for 
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both schemes. Simulation results have demonstrated the substantial improvement 

provided by parametric spectrum sensing techniques, especially cyclostationary 

detection, over the nonparametric in terms of different performance measures. 
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CHAPTER   6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The deployment of cognitive radio networks has been proposed to overcome the 

radio spectrum scarcity problem that poses a limitation to the development of wireless 

communication applications. Dynamic spectrum allocation is facilitated through CR 

networks in which spectrum holes are detected and opportunistically utilized by the 

CR users. However, secondary users in a CR network are required to maximally 

exploit frequency bands when licensed users are idle, yet keeping a minimum 

interference level to the primary network. Consequently, spectrum sensing has 

become an essential functionality of CRs, in order to inhibit harmful interference to 

primary users and utilize available spectral opportunities. This fact has motivated the 

research in developing efficient and reliable spectrum sensing techniques. 

Pattern recognition models were proposed in this work to tackle the problem of 

spectrum sensing in CR networks. The proposed classifier model is based on 

cooperative sensing, in which secondary users monitor channel usage in a given area 

and cooperate through a centralized node to provide the channel information. 

Collaborative spectrum sensing provides spatial diversity to overcome shadowing and 

fading impacts of the surrounding environment. The cooperation between secondary 

users was achieved through a classification model that utilizes input features by 

collaborative users to provide an output decision on the availability of the spectrum. 

First and second order polynomial classifiers were modeled, trained, validated and 

evaluated as the classifier models. Our simulation results indicate that first order 

polynomial classifier is an attractive model since it provides the same performance as 

second order classifiers with reduced complexity.  
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Various spectrum sensing techniques were adopted for the feature extraction 

stage of the proposed classification system. Nonparametric spectrum sensing schemes 

were implemented including energy based and autocorrelation based feature 

extraction, in which secondary users require no a priori knowledge of primary signal 

characteristics. Furthermore, parametric spectrum sensing schemes, such as 

cyclostationary based and coherent based feature extraction were investigated where 

signal detection is dependent on available information on primary user signal, 

including carrier frequency and synchronization preambles.   

The performance of the above feature extraction schemes was evaluated in terms 

of detection probability under different received SNR levels and various target false 

alarm rates. Results demonstrated that cyclostationary detection constitutes a 

prominent candidate for feature extraction when information on primary signal is 

available, since it outperforms coherent detection substantially. However, the 

remarkable detection capability of cyclostationary detection is achieved at the expense 

of higher implementation complexity. Additionally, autocorrelation detection yields a 

superior performance over energy detection, especially for small received signal 

levels. However, the basic advantage of energy detection over autocorrelation 

detection is its lower computational complexity. Furthermore, the advantages of 

utilizing spatial diversity, via cooperative sensing, in enhancing the detection 

probability were illustrated.  

The impact of observation window size over which features are extracted has 

been studied. It has been shown that, longer sensing time can improve the detection 

performance considerably for energy based and cyclostationary based feature 

extraction. Detection improvement due to increasing sensing time is achieved at the 

expense of lowering the network's agility, since longer time is required to decide on 

the vacancy of the spectrum. The performance of coherent based feature extraction 

has shown susceptibility to synchronizing sequence length. Though longer preamble 

sequence results in a high detection performance at the CR network end, it 

considerably lowers transmission efficiency of primary user due to the large 

transmission overhead. 
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6.2 Future Work   

In this thesis, a solution for the problem of cooperative spectrum sensing in CR 

networks is attempted through the design of a pattern recognition model, which 

effectively offers a soft fusing rule. We have implemented several detection 

techniques utilized in spectrum sensing in a single cell CR network; where we mainly 

assumed simple modulation schemes for the primary signal model. Moreover, the 

designed system assumed each secondary user receives a single path from the primary 

user under flat fading conditions. This basically suggests that there is definitely a 

room to further improve the classification based spectrum sensing system in 

environments with frequency selective fading, in which a multiple cellular CR 

network is operating. In this section, various areas that could be addressed to improve 

the classification spectrum sensing are highlighted: 

Spectrum sensing for different modulation schemes for the primary signal model 

needs to be investigated. As specified by the IEEE802.22 Working Group, CR 

networks are envisioned to be operating in VHF and UHF (54–862 MHz) bands that 

are currently allocated for analog and digital television (TV) broadcasting and low-

power licensed devices like wireless microphones ‎[2]. Moreover, spectrum sensing of 

primary signals employing adaptive modulation schemes could also be investigated. 

 It is also suggested to examine the performance of the developed polynomial 

classifier system under frequency selective fading channels. We can overcome the 

effect of frequency selective fading channel through the use of frequency diversity, in 

which sensing is performed over a number of discrete spectral frequencies. The 

decision may be then performed via combining features at the selected frequencies. 

Furthermore, different models for large scale fading could be examined where larger 

variations of SNR at different cognitive are assumed. In this case, the diversity gain 

may be more noticeable due to the larger spread in SNR distribution for different 

users.     

Multiple cellular CR networks could be studied in which spectrum sensing would 

be designed for the whole network. The information from different CR cells may be 

combined using the proposed classifier model to decide on the vacant spectrum. In 

such scenarios, channel and power allocation needs to be addressed for providing 

efficient network resource allocation.  
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