

RESIDENTIAL AREA ENERGY CONSUMPTION BIG DATA ANALYTICS AND

VISUALIZATION

by

Ragini Gupta

A Thesis presented to the Faculty of the

American University of Sharjah

College of Engineering

In Partial Fulfillment

 of the Requirements

for the Degree of

Master of Science in

Computer Engineering

Sharjah, United Arab Emirates

 June 2018

© 2018 Ragini Gupta. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master’s Thesis of Ragini Gupta.

Thesis Title: Residential Area Energy Consumption Big Data Analytics and

Visualization.

Signature Date of Signature

 (dd/mm/yyyy)

___________________________ _______________

Dr. Abdulrehman Al-Ali

Professor, Department of Computer Science and Engineering

Thesis Advisor

___________________________ _______________

Dr. Imran Zualkernan

Associate Professor, Department of Computer Science and Engineering

Thesis Co-Advisor

___________________________ _______________

Dr. Rana Ejaz Ahmed

Associate Professor, Department of Computer Science and Engineering

Thesis Committee Member

___________________________ _______________

Dr. Lotfi Romdhane

Professor, Department of Mechatronics Engineering Graduate Program

Thesis Committee Member

___________________________ _______________

Dr. Fadi Aloul

Head, Department of Computer Science and Engineering

___________________________ _______________

Dr. Ghaleb A.Husseini

Associate Dean for Graduate Affairs and Research

___________________________ _______________

Dr. Richard Schoephoerster

Dean, College of Engineering

___________________________ _______________

Dr. Mohamed El-Tarhuni

Vice Provost for Graduate Studies

Acknowledgement

 First and foremost, I would like to express my heartfelt gratitude to my

advisor and mentor, Dr. Abdulrehman Al-Ali for his immense guidance, support, and

motivation throughout the course of my thesis. I am truly grateful for his unwavering

support and encouragement. Without his continual enthusiasm in the research interest,

persistent help and guidance, this work would not have been completed.

I would like to extend my thanks to my co-advisor, Dr. Imran Zualkernan for

providing knowledge and assistance whenever I needed help. His guidance into the

world of big data has been a significant input during this work.

I want to thank Dr. Rana Ahmed and Dr. Lotfi Romdhane for serving as the

examinee committee and their informative feedback and guidance.

I would like to thank the professors at the Computer Engineering department

of American University of Sharjah who have taught me during the course of my

undergraduate and graduate program for their dignified advices and help.

I would like to thank the Graduate Program at American University of Sharjah

for offering me the Graduate Teaching Assistantship during the course of my master’s

program.

I must express my profound gratitude to my friend, philosopher, and guide my

father and my mother for believing in me and nurturing me with unconditional love,

support, and motivation throughout the years.

Dedication

To my brother, who is my best friend and pillar of strength through thick and thin..

To my advisor, guide and mentor for the past six years, who has continually motivated

me in my determination to find and realize my potential, and has been a constant

source of knowledge and inspiration..

6

1. Abstract

As Internet of Things (IoT) technology and open source file distributed system

applications are evolving, home appliances can be monitored and controlled via an

IoT-based home gateway. These gateways collect energy consumption from home

appliances and hence create a large amount of data. Due to the large amount of data

being generated, utility companies require platforms that enable them to store,

process, analyze, visualize, and monetize the energy consumption data, and to gain

meaningful insights into load profiles. This thesis proposes a residential area smart

energy management system that enables home owners and utilities to monitor

consumption patterns of each home, community, state, and country. Using an open

source file distributed file system tools, home owners can monitor their home

appliances energy consumption on a periodic basis. Additionally, utilities can also

monitor the neighborhoods, communities, states, and country’s consumption. The

architecture was tested to process data from one million smart meters. This data was

synthetically generated based on one year of real consumption data from a home. The

big data was stored in a Hadoop cluster of four nodes. Dimensional modeling was

used to develop benchmarking queries to create a real time dashboard consisting of

charts, graphs, and reports for home owners and utilities. Both Spark and Hive were

used to implement the benchmarking queries and it was found that Spark

outperformed Hive in terms of latency and processor throughput. Spark’s average

latency was fifteen minutes with an average throughput of 2400 MBps while Hive’s

average latency was thirty-four minutes with an average throughput of 2200 MBps for

processing one million smart meters in a four nodes cluster. To validate the proposed

system outcomes, the results were compared with existing proprietary tools such as

IBM’s TimeSeries and relational database management systems. Spark and Hive have

an intermediate performance in comparison to IBM’s proprietary tool and relational

database management system. The results demonstrate that the proposed solution can

be utilized to provide energy data consumption visualization for consumer and utility

provider stakeholders, while implementing Spark as the backend processing engine

for low latency, performance gain, and a high throughput.

Search Terms: Internet of Things; Big data; Hadoop; Smart energy management

system; Spark; Hive

7

2. Table of Contents

Abstract .. 6

List of Figures .. 9

List of Tables…………………………………………………………………………11

Chapter 1. Introduction .. 12

1.1. Big Data in a Smart Grid.. 12

1.2. Research Problem .. 14
1.3. Thesis Statement .. 16

Chapter 2. Background and Literature Review ... 17

Chapter 3. Methodology .. 25

3.1. Identifying the Functional and Non-Functional Requirements 25
3.2. System Definition .. 26
3.3. Data Generation ... 28
 3.3.1. ARIMA modelling…………..…………………………..…………….…...28
3.4. Identifying the Key Business Processes ... 29

 3.4.1. Energy consumption process for consumers…………………………31

 3.4.2. Energy capacity planning process……………………………………31

3.5. Identifying the Use Cases for Stakeholders ... 32

 3.5.1. Consumer……………………………………………………………..32

 3.5.2. Community energy utility provider…………………………………..32

 3.5.3. State energy utility provider………………………………………….32

 3.5.4. National energy utility provider……………………………………...32

3.6. Dimensional Model Construction .. 33

 3.6.1. Dimensions in a logical cube……………………………………...…34

 3.6.2. Measures in a logical cube…………………………………………...34

 3.6.3. Relational implementation of a cube: star schema…………………...34

3.7. Hadoop Distribution Selection ... 45

 3.7.1. Name node……………………………………………………………46

 3.7.2. Data nodes……………………………………………………………46

 3.7.3. Master slave architecture……………………………………………..47

3.8. Distributed Processing Paradigms on Hadoop……………………………….47

 3.8.1. Parallel processing paradigm on hadoop using map reduce………….48

 3.8.2. SQL engines on top of hadoop facilitating map reduce……………...50

 3.8.2.1. Apache hive………………………………………………....51

 3.8.2.2. Apache spark………………………………………………..53

3.9. SparkSQL vs. Hive ... 56
3.10. Formulation of Queries w.r.t. stakeholders ... 57

Chapter 4. Experimental Design .. 63
4.1. Evaluation Criteria ... 64
4.2. Experiments and Evaluation Use-Cases .. 64

 4.2.1. Experimental objective…………………………………………….....64

 4.2.2. Experimental objective……………………………………………….65

Chapter 5. Results and Discussion………………………………………………….....66
5.1. Quantitative Evaluation…………………………………………………………66

8

 5.1.1. Latency……………………………………………………………….66

 5.1.1.1. 1-node cluster…………………………………………....….68

 5.1.1.2. 2-nodes cluster…………………………………………....…69

 5.1.1.3. 3-nodes cluster…………………………………………........70

 5.1.1.4. 4-nodes cluster………………………………………...….…71

5.1.2. Throughput…...………………………………………………....…….74

5.2. Comparison of Experimental Results with Proprietary Tools and RDMS…............77

Chapter 6. Visualization on Hadoop for Smart Meter Data…………...…………..…..78

 6.1. Consumer……………………………………………...………….…..78

 6.2. Community Utility Provider………………………………………….80

 7.3. State Utility Provider…………………………………………………81

 7.4. National Utility Provider……………………………………………..83

Chapter 7. Conclusion, Limitations and Future Work ... 85

References……………………………………………………………………………………87

Appendix A: Experimentation Results…………………………………………………...….92
 A.1. Latency for query wise execution…………………………………....92

 A.2. Throughput for query wise execution………………………………104
Vita …………………………………………………………………………………...…….116

9

3. List of Figures

Figure 1.1: Lifecycle of smart grid data from data generation to data analytics with a

 learn and response loop ... 13

Figure 3.1: System diagram…………………………………………………….…….26

Figure 3.2: ARIMA flowchart ... 30

Figure 3.3: OLAP Vs. OLTP ... 33

Figure 3.4: Logical dimensional model; relationship among objects 34

Figure 3.5: A standard star schema implementation .. 35

Figure 3.6: A star schema for smart meter data………………………………….......37

Figure 3.7: OLAP cube for smart meter dataset .. 37

Figure 3.8: Roll Up on an OLAP cube on location dimension to aggregate total

 houses’ consumption in a community ………………………………......38

Figure 3.9: Roll Up on an OLAP cube on time dimension to aggregate house MH1

 daily consumption to weekly consumption……………………………...39

Figure 3.10: Roll Up on an OLAP cube on time dimension to aggregate house MH1

 weekly consumption to monthly consumption……………………….…40

Figure 3.11: Roll up on an OLAP cube on location dimension to aggregate house to

 consumption to community consumption to state consumption………. 41

Figure 3.12: Drill Down on an OLAP cube ... 42

Figure 3.13: Slicing on an OLAP cube .. 43

Figure 3.14: Dicing on an OLAP cube .. 44

Figure 3.15: Cloudera taxonomy ... 45

Figure 3.16: Master slave architecture in a hadoop xluster ... 48

Figure 3.17: Map Reduce processing model on hadoop .. 49

Figure 3.18: Hadoop cluster architecture ... 50

Figure 3.19: Hive architecture ... 52

Figure 3.20: Spark components ... 55

Figure 3.21: Spark client-server architecture ... 55

Figure 4.1: One master-four slaves hadoop cluster ... 63

Figure 5.1: Mean latency per query for 1 million smart meters across 1-Node 68

Figure 5.2: Mean latency per query for 1 million smart meters across 4-Nodes 68

Figure 5.3: Mean latency across 1-Node, 2-Nodes, 3-Nodes, and 4-Nodes 72

Figure 5.4: Performance gain in Hive and Spark for a million smart meters 73

Figure 5.5: Performance of Spark and Hive in Iterative Querying 74

Figure 5.6: Mean throughput result for Spark and Hive across 1-Node, 1 million

 smart meters .. 75

Figure 5.7: Mean throughput result for Spark and Hive across 4-Nodes, 1 million

 smart meters .. 76

Figure 5.8: Mean throughput result for Spark and Hive across 1 Node, 2 Nodes, 3

 Nodes, and 4 Nodes…………………………………………………...…77

Figure 6.1: Consumer’s home appliances consumption for each day in a week 79

Figure 6.2: Consumer’s home appliances consumption for each week in a month 79

Figure 6.3: Consumer’s home appliances consumption for each month of the year ... 80

Figure 6.4: Total annual consumption of each home appliance for the consumer 80

file:///G:/g00041619/Downloads/Salsabee_Shapsough%20backup%20(2).docx%23_Toc484458922

10

Figure 6.5: Consumer’s annual consumption percentage with respect to community’s

 total consumption .. 80

Figure 6.6: Total annual consumption for all houses in a community each day 81

Figure 6.7: Appliance consumption for all houses in a community for one week 81

Figure 6.8: Total consumption of each house in a community every week of the

 month………………………………………………………………….…82

Figure 6.9: Total consumption of each house ina community on a monthly basis 82

Figure 6.10: Total annual consumption of each house in a community 82

Figure 6.11: Total consumption of each community of a state every day in a week. ..83

Figure 6.12: Total consumption of each community of a state every day in a week .. 83

Figure 6.13: Total consumption of each community of a state on a monthly basis 83

Figure 6.14: Total annual consumption of each community of a state …. 84

Figure 6.15: Total consumption of each state of a country every day in a week …. ... 84

Figure 6.14: Total consumption of each state of a country every week in a month….84

11

4. List of Tables

Table 1.1: Difference between RDMS and Hadoop HDFS ... 15

Table 3.1: Synthetically generated UAE Smart Meters Data 31

Table 3.2: Comparison between SparkSQL and Hive ... 57

Table 3.3: High-level queries per stakeholder ... 57

Table 3.4: Big Data SQL queries ... 58

Table 4.1: Commodity Hardware Specifications ... 63

Table 4.2: Experimental Variables under study ... 64

Table 5.1: Comparison of Hadoop processing engines with IBM proprietary tool and

 Relational Database Management System ... 78

file:///G:/g00041619/Downloads/Salsabee_Shapsough%20backup%20(2).docx%23_Toc484458879
file:///G:/g00041619/Downloads/Salsabee_Shapsough%20backup%20(2).docx%23_Toc484458880
file:///G:/g00041619/Downloads/Salsabee_Shapsough%20backup%20(2).docx%23_Toc484458881

12

. Chapter 1. Introduction

This chapter provides an overview of big data and its relevance in the growing

Smart Grid energy sector.

1.1. Big Data in a Smart Grid

Electrical energy and environment have been observed as the mainspring for

the growing energy economy. Attaining a better quality of life requires a high quality

electricity generation, transmission, distribution, consumption, and management.

There are many challenges currently faced by the electric power systems such as

increased cost of fossil fuels, increased carbon footprint, aging equipment, energy

resources security, environmental impacts, and inability to accommodate new

trending technologies. Each year very large volumes of data gets collected in the

home energy sector due to continuous application of sensors, wireless networks,

communication networks, and power distribution outlets. Due to these reasons, smart

energy technologies and green environment have been recognized as a fundamental

research priority in many research centers. Motivated by the aforementioned reasons,

the energy sector is deviating towards the era of big data in Smart Grids. In order to

achieve valuable insights of this accumulated energy big data, big data driven smart

energy management technologies have become an increasing trend. The future smart

energy management systems should be able to seamlessly accommodate data from the

renewable and non-renewable energy generation units in residential, business, and

industrial networks. It should optimize energy consumption for air conditioning,

lighting, heating and cooling systems in order to ensure that the electricity is

consumed only when needed. Such smart energy management system will provide a

remote access to the utility providers in order to view their power generation pattern

in close relation to the clients’ electricity consumption behavior. For example, the

streaming data from residential areas will be visually represented in reports that will

enable home owners and utilities to monitor the supply and meet the demand to

ensure that the rapid changes in demand are anticipated beforehand and upgrade the

power network efficiently. Significant research efforts are needed in order to

recognize this vision.

13

Big Data in a smart grid comprises of any complex, diverse form of structured and

unstructured data in large massive volume. There are five distinguished characteristics

of Big Data (5Vs) [1-2]:

 Volume: Increasing volumes of datasets in size of petabytes and terabytes.

 Variety: Different types and formats of datasets

 Velocity: The rate of data generation which is being generated at an

alarming rate.

 Value: Data has the potential to be mined to generate and value and

meaningful results.

 Veracity: The inconsistencies and uncertainties (heterogeneity) in the

data.

 For a Smart Grid system, big data sources are residential, building, factories,

power plants, renewable energy resources, electric vehicles, and environmental events

as shown in Figure 1.1. Figure 1.1 demonstrates a lifecycle for Smart Grid initiating

from Data Generation to Data Analytics at the top layer.

Figure 1.1: Lifecycle of smart grid data from data generation to data analytics with a

learn and response loop [3]

Smart Grid has the potential to capture a massive volume of data through

electrical and communication networks which can be harnessed to make strategic

control decisions. The big data of a smart grid can be acquired, stored, processed,

analyzed, visualized and monetized in different ways. When big data is stored and

processed, additional dimensions come into action, such as management, security,

14

cost and governance. The smart grid data requires effective analytics, management in

order to enhance grid reliability, operational efficiency and meet the increasing

consumer demand with the help of information exchange and monitor in real-time.

The different sources of energy data that contribute to forming big data in a

smart grid are elaborated in [3]. The residential units play a significant role in Smart

Grid. The smart meters installation numbers report smart devices consumption in each

house and its profound impact on the smart grid.

1.2. Research Problem

Each day smart meters collect power consumption data generated from

residential areas home appliances. These produce large volumes of data flow in the

size of petabytes and terabytes. This massive volume of big data cannot be handled by

the conventional Relational Database Management Systems (RDMS) in Utility data

centers. The staggering rate of growth in smart home devices enabled with Internet of

Things (IoT) technology, and the need to perform data analytics on the captured

datasets has challenged the use of utility data centers data management capability

such as RDMS. Open source big data platforms such as Apache Hadoop can be

utilized to assist in storage and parallel processing of this big data utilizing Map

Reduce algorithm (MRA). MRA is a solution that not only helped in the data

aggregation but was also useful in gaining meaningful insights from the collected

information. Hadoop storage popularly known as, Hadoop Distributed File System

Storage (HDFS) and RDMS serve the same roles in terms of collection, storage, and

interpretation of collected datasets. However, the two platforms are very different in

terms of the ‘type’ of data each platform handles. RDMS focuses on small to medium

scale well-structured data by storing tables in the form of rows and columns with

primary keys and foreign keys. Different query languages such as SQL can be used in

a RDMS to access, retrieve, store, process, manipulate, and interpret data. On the

other hand, HDFS concentrates on semi structured and unstructured data such as

videos, audio files, and text files and different file formats such as XML, JSON, etc.

RDMS is not powerful enough when it comes to horizontal scalability and delivers

results with high latency with addition of more storage systems and/or CPUs. On the

contrary, Hadoop’s infrastructure is of distributed file system with clusters of many

systems in horizontal scalability.

15

Thus, there were the following major challenges in using RDMS that gave birth to

Hadoop framework:

 Large amount of unstructured and semi structured data adding to the storage

and replication cost.

 Parallel Processing and horizontal scaling.

 As the data grows vertically, there is an increasing query performance related

problems with RDMS due to high latency with the large number of rows in a

table.

 The traditional RDMS cannot be utilized in processing requests from

customers for monitoring real time usage data.

 Table 1.1 demonstrates the major differences between a RDMS and Hadoop

framework.

Table 1.1: Difference between RDMS and Hadoop HDFS

Characteristics Hadoop Distributed File System

(HDFS)

Relational Database Management

System

(RDMS)

Basic Description Distributed file-based system to store

data across a range of nodes allowing
parallel processing

Traditional column oriented database

for transactional systems, operational
DBs, and archiving

Storage Capability Store TBs and PBs of data Store GBs of data

Processing Type Supports batch processing, in-memory Supports batch processing and
interactive process

Best for Application Does not allow UPDATION, follows

WORM (Write Once Read Many)
paradigm

Allows UPDATION, multiple writes

and reads

Table Schema

Requirement

Schemas not required Schemas must be defined

Type of Data Support Supports multi types of data

(structured and non-structured)

Only structured data

Throughput and Latency High throughput but high latency also
as data is distributed across nodes in a

network

Throughput depends on data size. Low
latency as data is stored in a

centralized server.

Hadoop is a framework that allows distributed processing of huge data sets

across clusters which hosts thousands of computer nodes using simple programming

models. It brings together different components under one umbrella to form a scalable

system. Hadoop provides a platform for storage and analysis on massive scale of data.

The Current Apache Hadoop ecosystem consists of the Hadoop Kernel, MapReduce,

HDFS and various components like Apache Hive, Base, Pig, Sqoop, and Zookeeper

[72]. The core of Hadoop consists of a storage part, known as Hadoop Distributed file

16

system (HDFS), and the processing part is called Map Reduce. Hadoop is not really a

type of database but a software ecosystem that provides a platform for massive

parallel computing.

1.3. Thesis Statement

While there are diverse sources of big data in a smart grid, this research

focuses on the smart meter data in residential areas. This thesis emphasizes on the

performance evaluation of Hadoop with respect to data querying using two distributed

computing frameworks; Apache Spark and Apache Hive [1]. Apache Spark is an in-

memory, open source fast processing engine on top of Hadoop for big data analytics

and machine learning. Spark Queries are executed as individual jobs that runs in

multiple stages, each stage comprising of multiple tasks utilizing Directed Acyclic

Graphs (DAG). Apache Hive is an open source distributed batch processing engine

that facilitates map reduce programming model utilizing the map reduce engine. Both

frameworks will be deployed for the same data querying and data reporting smart

home uses cases in order to analyze which engine outperforms in terms of latency and

throughput. Both processing engines will share a unified data storage logical layer of

Hadoop distributed file system (HDFS) enabling parallel storage and processing

across several Hadoop cluster nodes. To analyze the performance between the two

engines, the cluster will be scaled from one node to four nodes, with each cluster-size

processing logarithmic batch of files from ten to one million smart meters. This thesis

will also provide a solution for storing, processing, analyzing and visualizing smart

meter data that will benefit the consumers and utility providers in gaining insights

from the data and discovering significant consumption patterns for each housing unit.

Additionally, big data and analytics can help the utility providers to uncover

anomalies at energy network that can help to predict and prevent power outages and

help in planning. The proposed solution can help home owners, community owners,

state owner, and country owner to efficiently monitor and manage the energy supply-

demand. This will improve the power consumption, reduce the power outages, reduce

the operational cost, and improve the grid performance at large. Stakeholders can

access the smart meter real time data through a web portal and visualize the

consumption pattern of home appliances and the grid performance.

17

. Chapter 2. Background and Literature Review

This chapter describes the theoretical background and the main motivation that

fostered the current research. A number of applications of Smart Grid in the energy

sector utilizing big data solutions can be found in the literature, wherein the main

objective is to process large volumes of data and estimate the particular load profiles

of consumers depending on different contexts. Smart Grids produce gigabytes of data

which leads to several issues due to storage reasons. Thus, it becomes instrumental to

map this Gigabytes of data into a few Kilobytes or Megabytes, which is enabled by

utilizing the technique of big data for efficient storage. Different researches and

surveys highlight the significance of big data for better energy management and

control decisions in distributed systems of smart grid [4-6].

For instance, in [4] the authors emphasize the different benefits of big data in

power distribution smart grids such as reduced electric grid network losses, large

scale optimization of distributed energy system resources, maintain reliable power

supply during peak load hours and critical loads, and determining the root causes of

failure. However, the authors focus on different criteria that should be adopted in

selecting the best tool for big data management. There are many challenges involved

in power distribution systems to extract relevant information from the huge data

volume and foster online decision making. Some of these challenges include the data

challenges corresponding to data scalability, velocity, veracity, volume, volatility and

data quality. The big data tool should have the ability to handle large volumes of

structured, semi structured and unstructured data. Next are the processing and

analytical challenges since the tool should be able to identify the relevant data sources

to extract useful insights and analyze information in order to satisfy the smart grid

objectives. Other challenges involve the big data security and the cost of deploying a

big data system as it is crucial to use the right and cost effective infrastructure for big

data.

Alternatively, in [6] the authors propose a four layered IoT based architecture

that utilizes big data techniques in the Management layer to obtain energy efficiency

in the buildings of a smart city. The paper focuses on different Big Data analytic

techniques that can be used for intelligent decision making process in energy

management. Big data analytic algorithms such as Artificial Neural Networks, and

18

Support Vector Machines, can be used to predict energy requirements, particularly for

HVAC units. The results obtained after developing the energy consumption predictive

models for buildings showed that with the application of predictive models there was

a 23% of energy savings per month on HVAC units without compromising on the

consumer comfort.

In [6], authors provide a comprehensive study of big data driven smart energy

management. Different sectors of energy management such as power generation side

management, micro grid and renewable energy management, asset management, and

demand side management (DSM) have been taken into study for the application of big

data analytics techniques. The authors emphasize on the issues that need to be

addressed in adoption of big data analytics techniques such as data processing and

analysis. The traditional techniques such as data mining, machine learning, and

statistical analysis may face several complexities in dealing with energy data. To

enable smart energy management tasks, effective and efficient data mining analysis

techniques are required to establish models and obtain simulation results that can be

well interpreted for strategic decision making.

In response to the different requirements to be fulfilled by big data, many

researches have been aligned towards using several big data frameworks such as

Apache Hadoop and Apache Spark in energy domain. Authors in [8], performed an

evaluation of cloud-based log file analysis using Apache Hadoop and Apache Spark.

Both the frameworks were utilized to extend the Map Reduce programming model to

process the log files generated as big data from the HTTP server. The key difference

between the two ecosystems is that Hadoop performs on-the-disk data processing

whereas Spark does that in-memory. Experiments were conducted to compare the two

platforms in terms of parameters such as execution time, scalability, resource

utilization, cost, and power consumption. For Scalability, the mean execution time of

the two frameworks was evaluated with increasing size of log file and increase in

number of node clusters. It was concluded that both Hadoop and Spark showed a

similar pattern and supported great scalability with up to 1000 GB of data within 5

cluster nodes. For other performance indicators such as execution time, resource

utilization and power consumption Apache Spark outperformed Hadoop. However,

Spark needs a large amount of memory for caching the data. Additionally, the

requirement to use the main memory for processing adds to the total cost of

19

infrastructure in case of Spark. Thus, the authors conclude that since Hadoop Map

Reduce is oriented towards batch processing it is a more preferable and cost-effective

framework for any big data processing application.

Several other researches in [8-10] have focused on mass log processing based

on Hadoop Map Reduce model to achieve high scalability, reliability and better

performance. The log files are first stored in HDFS and processed using Map Reduce

model and Hadoop mining system. This provides the administrator to analyze the log

data efficiently and be more decisive in taking decisions. The Map Reduce

programming model provided an administrative monitoring system for problem

identification and future trend prediction of the system.

The utility companies have deployed smart meters that can measure the energy

consumption of water, gas, and electricity at regular intervals. These smart meters

tend to generate a large volume of interval data that requires being stored, processed

and analyzed. The utilities also run large, sophisticated systems that generate power

and each grid comprises of smart sensors that can monitor the current, voltage, and

other operating parameters. To achieve operating efficiency, the organization should

monitor the data delivered by the sensors. Consequently, a big data solution can help

to analyze power generation (demand) and power consumption (supply) data makes

sense [11].

Many researches proposed different programming models using Map Reduce

on Hadoop framework for transforming massive amounts of data on distributed

systems. In [12] and [13], Hadoop Map Reduce framework is utilized where the Big

Data generated as a result of periodic audit files is stored in Hadoop environment

using map reduce. In [12], the audit files or the log files are continuously generated

from Advanced Metering Infrastructure (AMI) installed in Smart Grids that

corresponds to large bulk of data or Big Data. This data is stored in Hadoop Cluster

nodes, called the Data Nodes which are controlled by the Name Node instances.

Additionally, during simulation a Hadoop environment is created with a generator

unit, solar panel unit, processor unit, industrial unit, power plant and industrial wind

turbines which are deployed in the network. The data from each individual unit it

stored on Hadoop HDFS. Each unit sends its log files to a specific allocated node for

storage in HDFS. The log files generated from all units are applied with Map Reduce

algorithm wherein each log file is moved into the mapper function from HDFS line by

20

line. The Mapper maps each entry into the equivalent <key, value> pair and generates

small pieces of data. During the Reduce stage, all the output from the mapper section

is accumulated and the reducer creates a new set of output and stores it in the HDFS.

This solves the storage limitation issue. One of the major advantages of Hadoop Map

Reduce programming model is that the algorithm is performed at the position of the

data and the data storage and computations are synchronized on all nodes in the

cluster, thus decreasing the overhead of network traffic involved in shifting data. This

research was concluded with performance analysis based on parameters such as

latency, packet delivery ratio, throughput, total energy consumption of all nodes in

cluster, overall residual energy present in the nodes of Smart Grid in Hadoop

configuration with respect to the packet size in bytes. Thus, Map Reduce algorithm

proved instrumental in storing large Gigabytes of data efficiently by mapping it into a

few kilobytes or Megabytes as the experimental results also showed great

improvement in Hadoop Map Reduce framework.

In [13], the authors provide a comprehensive overview on using Hadoop Map

Reduce in energy sector for analyzing momentary outage data and power theft. The

authors compare the Hadoop Map Reduce framework with other data storage and

analytics platforms such as Spark and SAP HANA. However, the latter cause an

overhead on the machines as they are all in-memory platforms. Thus, the authors have

recommended on using Hadoop for deploying safety analytics by assessing the meter

temperature data and predicting the transformer or meter mishaps and fire before the

event happens. Other factors that make Hadoop outperform other analytic platforms is

its ability for large data processing on HDFS, processing data on the fly, distributed

performance and faster access. This ensures Hadoop as one of the most cost effective

scalable analytics platform available today.

More researches have been steered in the realm of smart meter data analytics

using Hadoop HDFS in [14-18]. In [18], authors implemented an information

integrated pipeline for collecting data from smart meters periodically and utilizing a

scalable platform like Hadoop for processing and mining big data sets along with a

web portal for end users to visualize analytical results. Additionally, Hive (an open

source SQL-based distributed warehouse system) is used on top of Hadoop

framework for off-line analytic queries in SQL like script language called, Hive –QL.

The analytic queries are internally translated into Map Reduce jobs and the results are

21

stored into a Hive table, which is a data organizational structure in HDFS. From

HDFS, the results are exported into PostgresSQL for interactive analytics and

visualization via web application. Five categories of analytics modules were

considered: load profiling of customers to study monthly and annual consumption

variability of customers, pattern discovery and segmentation to perform k-means

clustering of customers with a similar consumption pattern, load disaggregate to

segregate energy consumption into temperature-dependent and temperature-

independent loads, forecasting to predict the period of peak demands for energy

utilities, and online anomaly detection to allow customers to detect their unusual

consumption compared to their compared to their consumption history and/or

neighborhood consumption. Several off-the-shelf analytics functions (such as

percentile, mean, min, max and median) and algorithms (such as clustering and

regression) were exported from Apache Common Math library and Spark streaming

on top of Hadoop to provide analytic results in the form of graphs, charts and reports.

The effectiveness and efficiency of this solution was tested extensively with real time

data and synthetic data with successful results.

Similarly, [14] presents smart meter data as time series data utilizing open

source tools on Hadoop and HBase for storage and analytics. HBase is an open

source column-oriented store modelled on top of Hadoop framework for read/write

access and storage of very large tables with millions of rows and columns on HDFS

clusters. Smart meter data is tracked as time series data that is collected continuously

but in short intervals of time and stored in HBase. The setup comprised of a fully

distributed mode of Hadoop comprising of several nodes with different requirements

based on scalability, reliability, and availability. HBase is utilized for big data storage

which is in direct communication with the HDFS layer of Hadoop. An open source

tool, OpenTSDB comes with web based UI that is setup to directly interact with

HBase and retrieve data accumulated in HDFS. Using OpenTSDB, a request is sent to

Hadoop with time stamp details and tags and the results are received in graphical or

report format. OpenTSDB served as an efficient platform to generate graphs on the fly

with an easy interaction to access data from Hadoop HDFS.

It is worth mentioning that most data centers and data warehouse systems are

infamous energy consumers. Hadoop or other data centers whether real or virtual (in

cloud) execute large computational jobs such as Map Reduce which is often very

22

energy exhaustive. However, to combat the energy management in Hadoop cluster

nodes, Hadoop has evolved with state-of-the art resource management features that

help in improving performance through dynamic resource control as described in [19]

and [20]. In [19] the authors propose the energy-aware dynamic node management

technology for Map Reduce jobs on Hadoop that ensure the switching ON/OFF the

cluster nodes to reduce the energy consumption while meeting the Service Level

Agreement (SLA). This is achieved by deploying YARN on top of Hadoop

framework. With YARN scheduler, the time-varying workload is predicted based on

the Map Reduce job history information. Based on this predictive workloads and

average execution time of nodes, energy aware dynamic node management is used on

YARN scheduler to assign the suited number of nodes for Map Reduce Tasks. The

nodes that are retained in the idle state for long periods are eventually switched OFF

automatically to save energy. Thus, this dynamic scaling-up / scaling-down capability

in Hadoop utilizing Map Reduce YARN will help in adjusting the size of the cluster

for big data applications in a specified period of time.

Different approaches were utilized in the context of performance analysis of

Hadoop in terms of memory utilization, CPU usage, and scalability in [21], [22], [23].

In [22], HiBench stress test tool was deployed on Hadoop stack as a benchmark suite

to generate a combination of synthetic and real world data. Different HiBench

workloads of varying sizes were selected for memory usage tracing and scalability.

Other parameters such as CPU utilization, memory usage, power consumption of

name node and data nodes were evaluated using two different tools Cloudera manager

and Datacenter manager Console. From the results, it was inferred that approximately

96GB of RAM was sufficient enough for the largest size of workload, i.e., 61,600 MB

in Hadoop data nodes. Moreover, addition of larger memory had little or no

improvement in the execution time for all workloads. The amount of memory usage

for each workload was dependent on factors such as algorithm used in processing the

data set and CPU utilization. In case of CPU intensive Map Reduce jobs such as word

count, the execution time and power consumption of Hadoop data nodes incremented

linearly with the increase in size of data set.

Besides Map Reduce models on Hadoop for Smart Energy Management,

dimensional models utilizing OLAP (On-Line Analytics Processing) to analyze

customer consumption data and deliver real time reporting with trend forecasting is

23

studied in [24],[25],[26]. For instance in [24], researchers propose a system

framework comprising of data warehouse construction, ETL (Extraction-

Transformation-Loading) process, and information representation in the context of

electricity management of buildings. The framework incorporates multi-dimensional

modelling for cube construction with the help of the designed star schema. This

enables the aggregation of data aggregation at different levels and hierarchies

concerned with monetizing energy consumption. On the side of end-users, a web

applet UI is introduced to cater to aggregated data representation at different

granularity levels in order to meet user requirements. Similarly, in [26] a data

warehouse modelling system is implemented by developing a user-developed agent

called EDWH agent that aggregated the collected sensor data and generates cubes.

The data cubes are generated by applying one of the aggregate functions such as

SUM, AVG, or COUNT or one of the OLAP operations once each day and stored in

the Data Warehouse agent. The stored cubes are published to the Building Data cloud

which leverages the data model and exposes it on dashboard in the form of reports

and graphs. This dashboard visualization helps the users to identify areas of energy

leaks or electricity usage pattern within their respective buildings. A similar

experimental setup is deployed for OLAP modelling using a different data warehouse

agent called RDF-DCV. The two platforms are evaluated against selected criteria such

as storage size (latency), query execution time in generating reports, execution time in

storage and generating cubes. From the results, EDWH outperformed the RDF-DCV

data warehouse agent in all evaluation parameters.

Thus it can be stated that Hadoop plays an instrumental role in big data

analytics due to two main reasons; HDFS and Map Reduce. HDFS provides a fault

tolerant, scalable, and a reliable platform due to its distributed storage and processing

capability along with automatic recovery across different cluster nodes. Similarly, the

map reduce programming logic provides parallel processing of data across several

nodes, thus reducing the execution time significantly and making the system more

efficient. Due to its several advantages such as scalability, reliability, availability, and

fault tolerance, Hadoop serves as an optimum platform for deploying it to analyze

energy data and comprehend the users’ consumption pattern and appraise the different

factors which can directly or indirectly affect the consumption pattern of the users. On

the other hand, OLAP processing model is also extensively used in the domain of

24

Smart Energy management for extensive consumption analysis, trend identification

and demand prediction in big data. Real time information feedback to consumers on

different levels of granularity (Home consumers to Energy utility providers) regarding

consumption pattern and associated energy costs can help in redistribution and

adjustment in Demand Response of energy with lower power consumption. Thus,

both the computing models Map Reduce and Dimensional Modelling (OLAP) cater to

the same type of business services to the end users but with different processing

approaches. Data warehousing architecture utilizing OLAP is a traditional platform

for modelling and processing data in contrast to the newer technologies of Hadoop

Map Reduce. The primary objective of this research is to explore which computing

model is more efficient for handling Energy Big Data in terms of the selected criteria

as discussed later.

This chapter presented a survey of previous research where most of the work

implemented small dataset in a few GBs with tailored modeling techniques and

commercial database systems for storage. The processing models proposed have not

been implemented in the domain of smart energy utilizing big data analytical

techniques. The consumers, community, state, and country stakeholders are not

informed about the data insights and analysis in real time. The conventional SQL

querying continues to be the most popular query language for big data analysis. The

Hadoop based SQL engines namely Hive and SparkSQL can be utilized for

benchmarking study as well as to provide data analysis and visualization to consumers

and utility providers.

25

. Chapter 3. Methodology

This chapter is divided as follows: the first section defines a set of non-

functional requirements that were deduced from the works presented in Chapter 2.

The requirements are then used to construct a system definition, which is further

presented in this section.

3.1. Functional and Non-Functional Requirements

To formulate a system definition and architecture for the proposed

methodology, it is important to outline the functional and non-functional requirements

of such a system. The functional requirements of a system are defined by the

functionalities and technical characteristics that the system should provide. On the

other hand, the nonfunctional requirements outline the qualities and the criteria that

define the operation of the system. The system requirements are defined as follows:

 Creation of a Hadoop environment cluster that comprises of at least one

master node and two slave nodes.

 Dynamic addition of slave nodes to an existing Hadoop cluster

 Deletion of slave nodes from an existing Hadoop cluster

 Automated load balancing of cluster machines

 Provide high availability and redundancy.

 Triggering automatic failover in the event of a node crash

 Provide a user-friendly interface to configure and manage Hadoop

environment features, and to interact with the cluster scheduler.

 Provide an interface for graphical visualization to present the status of one

home appliances consumption for stakeholders on different levels; home

owner and utility providers on community, state, and national level.

The non-functional requirements of the system are as follows:

 A scalable distributed storage required so that the cluster is able to store and

process up to one million smart meter data files.

 The nodes (commodity machines) should have specifications of at least 8GB

RAM, between 500GB-1TB storage, and high-speed processors. These

specifications are a critical part for Hadoop cluster planning that perform CPU

intensive i.e. query workloads efficiently in the Hadoop environment.

26

 Ease of deployment and management for large volumes of data.

 The execution time (latency) of the queries should be as small as possible.

 Processor throughput should be as high as possible.

 Should provide an interactive platform for executing queries using disk

caching and in-memory caching for map reduce programming model.

 The Hadoop framework should provide an intuitive navigation to end users.

3.2. System Definition

Figure 3.1 shows the system diagram in accordance to the requirements and

the use cases for the proposed two architecture.

Figure 3.1: System diagram

27

The system consists of six stages:

 Big data sources: The big data sources will be aggregated from smart meters

to obtain a large volume of data in the size of terabytes.

 Model OLAP Queries: OLAP refers to Online Analytic Processing

representing multidimensional data structures that can be utilized for fast

processing in business intelligence. It’s primarily a data warehousing concept

that provides a flexible way to make advanced analytics on multidimensional

data. The smart meter data should be modeled as an OLAP cube with

different dimensions of time, location, and home appliance. OLAP operations

on the smart meter data cube will be applied. The dimensional modelling for

OLAP and map reduce querying to generate the reporting data will be based

on different use cases for each of the stakeholders concerning monitoring of

energy consumption. Different use cases and business processes are

incorporated on a national level to analyze the data on a four level hierarchy of

stakeholders, i.e., the lowest level for the home owner followed by the

community utility provider and the state utility provider, and the highest level

for the national utility provider. The OLAP operations will be mapped to the

equivalent SQL language queries to benchmark querying results on a big data

platform such as Hadoop.

 Big Data Storage: The energy big data from smart meters will be accumulated

and loaded on to Hadoop Distributed File System (HDFS) for efficient storage

across cluster nodes and parallel processing.

 Big Data Processing: Two SQL processing engines namely, SparkSQL and

Hive will be used for executing SQL queries on the data stored in HDFS

storage layer. The two processing engines share a unified processing

paradigms of map reduce tasks running in parallel across the cluster nodes.

Spark utilizes in-memory computation for map reduce tasks while Hive

utilizes disk map reduce processing.

 Visualization: Visualization capabilities will be provided from the smart meter

data to consumers and utility providers on community, state, and national

level. The visualization graphs and charts will allow the end users to analyze

the consumption pattern of home appliances on a periodic basis. For

28

visualization, an interactive interface is provided by Hadoop application, Hue,

to render query results in the form of graphs, charts, tabulated reports.

 Comparison based on selected criteria: Several performance analysis

experiments will be conducted to evaluate the Hadoop based SQL processing

engines in terms of latency and throughput. These experiments will also

provide an insight into how well the two processing engines can scale up with

the increase in dataset volume.

3.3. Data Generation

Smart Meter Energy data is collected for one residential unit from [27]. This

data is the energy consumption in KWh that spans a period of one year (2014) and is

collected every day for each home appliance of the house namely, Furnace, Cellar,

Washing Machine, Fridge, Outlets, Cooking Range, Dishwasher, Lights, and Heater.

The data is in a structured format. The data will be sampled to generate synthetic big

data for one million houses using ARIMA modelling. Each file corresponds to a data

size of 1.5MB summing up to the total size of 1.5TB for one million data files. This

data spans a period of one year and is collected on an everyday basis from a home.

There are several techniques to synthetically generate a dataset for one million smart

meters; Arima Modelling [28] and Markov Chain Monte Carlo [29]. It was found that

ARIMA modelling provides the best fit for simulating data for accurate representation

of smart meter referenced dataset.

 3.3.1. ARIMA modelling. The data obtained for one house is a time series

data as it is a collection of power consumption values for different household devices

achieved through repeated measurements over a period of one year. ARIMA stands

for auto-regressive integrated moving average and is specified by these three order

parameters: (p, d, q). The process of fitting an ARIMA model is sometimes referred to

as the Box-Jenkins method. The auto-regressive parameter p specifies the number of

lags used in the model [28]. For example, ARIMA expression for Time Series Data Yt

can be expressed as:

29

Ø1, Ø2, Ɵ1, Ɵ2, are model parameters, yd is differenced d times between

current and previous value, et is previous error terms, and c is a constant. The‘d’

represents the degree of differencing in the integrated (I (d)) component. Differencing

a series involves simply subtracting its current and previous values d times.

Often, differencing is used to stabilize the series when the stationarity assumption is

not met. For simulating time series data, we need to choose an optimal ARIMA model

(p, d, q). For this, we used the auto.arima () function in R language as it searches

through combinations of order parameters and picks the set of p, d, q values that

optimizes model fit criteria. Auto.arima () function in R performs repeated tests from

Likelihood Estimation (MLE). The parameter d is set to 0 or 1 if it improves the

Akaike Information Criterion (AIC) value to estimate relative quality of statistical

model for the new dataset w.r.t the old data [29]. Figure 3.2 is the flowchart for

ARIMA algorithm.

According to UAE national statistics [30], the UAE population in 2008 was

4.1 million with a breakdown of Sharjah comprising of 17%, Abu Dhabi contributing

to 36%, Dubai contributing to 32%, Ajman contributing to 5%, Umm AlQuain

comprising of 1.1%, Ras AlKhaima contributing to 5%, and Fujairah consisting of 3%

of the country’s population. Using these emirates statistics, one million smart meter

files were synthetically generated utilizing ARIMA simulation method. From the total

smart meters data generated for a million smart meter homes, 170,000 smart meters

data was generated for Sharjah, 360,000 smart meters data was generated for Abu

Dhabi, 320,000 smart meters was generated for Dubai, 50,000 smart meters for

Ajman, 11000 smart meters for Umm Al Quain, 50,000 smart meters for Ras Al

Khaima and 30,000 smart meters for Fujairah. Additionally, the heater consumption

in the synthetic data is considered similar to an AC unit for simulating smart meter

tailored according to UAE. Four distinct communities were taken to generate data in

each emirate. Table 3.1. Illustrates the data files generated following the UAE

population statistics.

30

3.4. Identifying the Key Business Processes

Different business processes are incorporated on a national level to analyze the data

on a four level hierarchy of stakeholders, i.e., the lowest level for the home owner

followed by the community utility provider and the state utility provider, and the

highest level for the national utility provider. An efficient energy management system

should ensure monitoring of energy consumption from a holistic point that renders

real time monitoring capabilities to home owners and divisions of utility providers.

The two important business processes are considered for an efficient home energy

management system.

Figure 3.2: ARIMA flowchart

31

Table 3.1: Synthetically Generated UAE Smart Meters Data

3.4.1. Energy consumption process for consumers. This business process

caters to the monitoring services for home owners. For the consumers, access to the

smart metering data is necessary in order to comprehend their own electricity demand.

Smart Meters installed in residential units capture the electricity consumption of

different devices and send it to central substations every day over a period of time.

The efficiency of different devices in a house building can largely depend upon the

time (month/week) of the year. Using different benchmarking techniques, ideal

efficiency levels for a device can be computed and compared with specific cases

which involve excessive energy consumption. Analytical techniques can help identify

power consumption discrepancies across different home devices over a span of time.

3.4.2. Energy capacity planning process. This business process caters to the

utility providers. There are four divisions of utility providers; Community Owner,

State Owner, and Country Owner. The utility providers can collect smart meters data

from all houses and analyze this large data to generate useful insights and make

Number of
Smart

Meters

Emirate Community Range

60000 Sharjah Dasman SH1-SH60000

80000 Sharjah Maliha SH60001-SH140000
20000 Sharjah Rola SH140001-SH16000

10000 Sharjah UniversityCity SH160001-SH170000

200000 Dubai Mirdiff DH170000-DH370000
80000 Dubai JebelAli DH370001-DH450000

30000 Dubai Jumeirah DH450001-DH480000

10000 Dubai AlBarsha DH480001-DH490000
180000 Abu Dhabi Khalifa City AUH490001-AUH670000

120000 Abu Dhabi Baniyas AUH670001-AUH790000

40000 Abu Dhabi Saadiyat AUH790001-AUH830000
20000 Abu Dhabi Reem AUH830001-AUH850000

10000 Ajman Nakhil AH850001-AH860000

20000 Ajman Manama AH860001-AH880000
15000 Ajman Hamdiya AH880001-AH895000

5000 Ajman Rumailah AH895001-AH900000

4000 UmmAlQuain Duor UH900001-UH904000
2000 UmmAlQuain Sinniyah UH904001-UH906000

3000 UmmAlQuain Qaram UH906001-UH909000

2000 UmmAlQuain AlSow UH909001-UH911000
20000 RasAlKhaima Masafi RH911001-RH931000

10000 RasAlKhaima Khatt RH931001-RH941000

10000 RasAlKhaima Hamra RH941001-RH951000
20000 RasAlKhaima Rams RH951001-RH971000

12000 Fujairah Bidya F971001-F983000

15000 Fujairah Bidnah F983001-F998000
2000 Fujairah Qaram F998001-F1000000

Total: 1,000,000 Smart Meters in UAE

32

efficient energy supply decisions based on the consumer usage pattern. They are

eligible for monitoring total power consumption within each house, community, state,

and country. This energy usage will be depicted through different types of graphs and

timeline. Based on the data analyzed, peak time analysis as well as load scheduling

events can be planned and executed by the Utility Providers. The aggregated energy

consumption can be compared to the overall energy generation from the Central

power station. This will assist the state jurisdiction to set climate goals, prioritize or

implement energy strategies, and make data driven energy decisions.

3.5. Identifying the Use Cases for Stakeholders

Based on the above mentioned business four stakeholders (Consumer, Community

Utility Provider, State Utility Provider, and National Utility provider) are deemed

important for providing real time visualization on smart homes energy consumption.

A detailed description of these stakeholders is discussed as below.

3.5.1. Consumer. A home owner is entitled for viewing the power

consumption of all devices in his/her house with respect to time on a daily, weekly,

monthly, and yearly basis. He/she can also evaluate the asset efficiency of a device

and monitor the aggregate power consumption of all devices on a periodic basis.

3.5.2. Community energy utility provider. A community utility provider can

monitor the aggregated power consumption of each household in his/her respective

community. The analysis will help the community utility providers to identify trends

in energy consumption of each household on a timely basis and the subsequent

relationship between energy supply and demand. This information will be

represented in the form of timeline graphs on a monthly, quarterly, and yearly basis.

Using this analysis, the utility providers can discover the peak load hours and plan

and execute load scheduling events accordingly.

3.5.3. State energy utility provider. A state utility provider can supervise the

cumulative power consumption of all communities within his/her corresponding state

on a monthly, quarterly, and yearly time period. They can adjust the energy prices at

peak demand using multiple tariff rates dynamically.

3.5.4. National energy utility provider. A national utility provider is the

highest level of authority in the hierarchy. They can observe and compare the

aggregated power consumption of each state within the country on a periodic basis

33

(monthly, quarterly, annually). The cumulative power consumption from all states can

be compared to the total power generation from the Central power station. This will

help the utility providers to prioritize different energy saving strategies and execute

data driven energy actions accordingly. Three granularities of time have been

considered to perform different types of analysis on the data periodically; daily,

weekly, monthly, and yearly.

3.6. Dimensional Model Construction

Data Warehouses are designed on the fundamentals of OLAP, whereas

relational databases systems are modelled on the concept of OLTP (On-Line

Transactional Processing). OLAP data querying tools allows the users to analyze

different dimensions of the data such as time series, trend analysis, etc. OLTP models

utilizes two-dimensional data in the form of rows and columns, whereas OLAP opens

new avenues into looking up the data from more than two dimensions. OLAP

supports filtering, slicing, sorting, dicing operations of the data structure. Figure 3.3

below demonstrates the visual representation of OLTP vs. OLAP data models. In an

OLAP data warehouse, there is an aggregated data stored in multi-dimensional

schemas, popularly known as star schemas. It provides multi-dimensional views on

the historical stored data. This multi-dimensional model is alternatively known as a

cube. Each logical cube illustrates a real word business entity comprising of different

measures, dimensions, dimension attributes, levels, and hierarchies. Depending on the

analytics requirement, OLAP operations are performed on this cube to examine the

different measures and other meaningful dimensions and attributes. Figure 3.4

demonstrates the different objects relationship in a multi-dimensional model.

Figure 3.3: OLAP vs. OLTP

34

Figure 3.4: Logical dimensional model; relationship among objects

3.6.1. Dimensions in a logical cube. Dimensions correspond to the unique

values that are used to categorize the data [31]. These form the edges of a cube. Thus,

each numeric value of a Measure is quantified with a dimension or attribute

corresponding to a measure value. Since a cube is modelled in 3D, each cube has 3

dimensions across X axis, Y axis and Z axis. Dimensions of the cube correspond to

different data attributes and parameters such as time, location, and appliances. These

dimensions can be further categorized into hierarchies, levels, and dimension

attributes. Hierarchies and Levels are a way to organize data into different levels of

aggregation [31]. The analysts can drill down to lower levels or roll up to higher

levels to identify consumption trends in smaller and larger sector of population

respectively. On the other hand, dimension attributes are utilized to provide additional

information about each dimension.

3.6.2. Measures in a logical cube. Measures correspond to different values

that populate all cells in a dimensional model. These measures in a cube are organized

based on different dimensions.

3.6.3. Relational implementation of a cube: star schema. A Star Schema is

a method of organizing Cube data in the form of one Facts Table, several dimension

tables, and materialized views. A dimension table comprises of different dimension

attributes, levels and hierarchies. A Facts table and materialized views comprise of

measures. Each Dimension table has a primary key that associates it to the Facts table.

The Materialized Views are instantiated for displaying a combination of levels. Figure

3.5 illustrates a generalized Star Schema implementation:

35

Figure 3.5: A standard star schema implementation [31]

In view of the business processes and stakeholders described in earlier section,

the conceptual dimensional model of a smart meter data is as follows:

 Hierarchy in data: The smart meter data includes each house device

consumption data on an everyday basis. This device-level data can be

aggregated up to community-level, state level, and national level. . Thus,

the user consumption can be divided into four user granularities; home

owner, community owner, state owner, and country owner. Each level is

relatively independent of each other, data however, the underlying user

data forms the very foundation for the upper layer data.

 Time granularity in data: A home smart meter data represents the device

consumption details for each day in a year. This time dimension can have

hierarchy with relative time periods such as levels of week, month, and

year.

 Dimensions design: Dividing the complete data structure into dimensions

provides structured information for analysis as well as reporting. Each

36

Dimension table will further comprise of different attributes related to that

specific dimension. This is demonstrated with the help of a schema that

provides a logical description of the entire data structure. Dimension

corresponds to the attribute of the facts or the factual information from the

data. In our design, there three primary dimensions; Location

corresponding to House IDs , Time corresponding to Days attribute and

Appliances dimension referring to types of devices in a house.

 Metric formulation: Metric is the fact that forms the basis of the data.

From our design, the device consumption in kW (Cellar, Furnace, Fridge,

Heater, Washing Machine, Lights, Outlets, Cooking Range, and

Dishwasher) is the metric value.

 Model formulation: A star schema is used to design the OLAP data model.

This star schema is a relational database model that can be stored in any

conventional data mart. The dimensions of this star schema are stored in

dimension tables and the metrics are stored in fact table. Figure 3.7

represents the OLAP star schema model for the smart meter data. This

model plays an important in data warehousing techniques as it helps

understanding the physical layout of the underlying data sources or tables

and how they are related to each other. In this Star Schema, each cube

dimension is represented with one dimension table consisting of several

attributes related to the corresponding dimension and a private key.

Moreover, there is only one Facts table comprising of several dimension

keys linking to every dimension table and measures that correspond to

attribute values such as power consumption in this case.

A star schema for smart meter data shown in Figure 3.6. The constructed cube in the

Figure 3.7 represents how the smart meters data from several houses is modelled in

the form of cube. OLAP operations will be executed on top of this cube to render

consumption query results to different levels of stakeholders. The cube is represented

with three dimensions, namely, Location House IDs, Time (Days), and Appliances

(Type).

37

Figure 3.6: A star schema for smart meter data

Figure 3.7: OLAP Cube for smart meter dataset

Each dimension is further categorized into dimension attributes such as MH1,

MH2, and DH1 for the dimension Location house IDs, dimension Time has Days, and

the dimension appliance represents four types pf appliances, namely Heater, Fridge,

Outlets, and Lights. The cells of the cube are populated with the power consumption

values with respect to each dimension. There are five different operations that can be

performed on this OLAP Cube:

38

 Roll Up: Roll Up operation performs aggregation on a data cube by

climbing up the hierarchy for a dimension. Figure 3.8 shows the roll up

operation on the dimension of Location House IDs to represent the rolled

up consumption data from individual houses in a community to total

power consumption all houses in each community.

Figure 3.8: Roll Up on an OLAP cube on location dimension to aggregate total

houses’ consumption in a community

Similarly, Figure 3.9 illustrates a roll up operation on dimension time

to aggregate the day’s consumption of a house into weekly smart home

consumption. Figure 3.10 represents a roll up operation from weekly smart

home consumption to monthly consumption. Figure 3.11 represents a three

level hierarchical roll up operation on dimension location from house

consumption to community consumption to state consumption. Each higher

39

level stakeholder consumption is the aggregate power consumption of the

lower granularity attributes.

Figure 3.9: Roll Up on an OLAP cube on time dimension to aggregate house MH1

daily consumption to weekly consumption

 Drill Down: Drill down is the opposite of Roll Up operation. It either

introduces new dimension in the model or steps down the concept

hierarchy for a dimension. Figure 3.12 demonstrates the drill down

operation on the Time dimension from monthly power consumption to

weekly power consumption.

40

Figure 3.10: Roll Up on an OLAP cube on time dimension to aggregate house MH1

weekly consumption to monthly consumption

 Slice: Slicing operation provides a new sub cube from one specific

dimension of a given cube. Figure 3.13 illustrates the resulting cube

after performing slice operation on dimension location for House ID,

DH1.

 Dice: Dicing operations provide a new sub cube from two or more

dimensions of given cube. Figure 3.14 illustrates the resulting cube

after performing dice operation on all three dimensions of Location,

Time, and Appliances. Dice operations is performed for location

House ID=MH1, Time=Sunday, and Appliances=Fridge.

41

Figure 3.11: Roll Up on an OLAP cube on location dimension to aggregate house

consumption to community consumption to state consumption

42

Figure 3.12: Drill Down on an OLAP cube

43

Figure 3.13: Slicing on an OLAP cube

44

 Figure 3.14: Dicing on an OLAP cube

45

3.7. Hadoop Distribution Selection

Apache Hadoop is an open source platform that allows distributed processing

of large volume of datasets across multiple nodes in a cluster/multi cluster

environment. The three modes of installation are [32]:

 Standalone Mode: Single node cluster.

 Pseudo Distributed Mode: Simulated multi node environment on a

single node machine.

 Distributed Mode: Multi node cluster.

Depending on the research requirement, we chose to setup distributed mode

for installing Hadoop in a multi node cluster. A Hadoop cluster comprising of one

master and three slave nodes is created using the open source Hadoop distribution,

Cloudera Distribution Hadoop (CDH) 5.2. CDH is a complete tested 100% open

source Hadoop solution that offers different batch processing, interactive SQL

querying, and continuous availability.

Figure 3.15: Cloudera taxonomy [32]

As shown in Figure 3.15, the Java Virtual machine (JVM) makes up the

foundation on which Cloudera stack runs. The dark blue components depict the two

core Hadoop frameworks:

46

 Data Storage: It is a distributed, scalable Hadoop file system storage that is

used to store data on the cluster nodes.

 Map Reduce processing framework: It is a parallel computing framework

introduced by Google.

The next layer is the Hadoop network layer as Hadoop makes extensive

utilization of network based services in sending and fetching data across cluster nodes

such DNS lookup for name resolution of data nodes, interference of Hadoop traffic

from other network applications, etc.

One of the main aspects of an Apache Hadoop [33] ecosystem is its capability

of distributed parallel processing. To achieve this, Hadoop consists of a fault tolerant

storage system called the Hadoop Distributed File System, also known as HDFS [34].

HDFS is designed to store big data sets across low cost machines in a distributed

fashion. It splits the data files into multiple “blocks” and stores them redundantly

across a relatively cheap hardware. Additionally, HDFS can scale up incrementally

with increasing data and survive the failure of the storage infrastructure without any

data loss. In order to empower distributed processing, Hadoop creates multi-node

clusters of machines and coordinates work among them. Each cluster comprises of its

respective high quality name node and multiple data nodes. The concept of creating

multi-node clusters in HDFS is because it makes Hadoop fault-tolerant. This is due to

the fact that in the case of a data node failure within a cluster, Hadoop continuous to

work by transferring the same load to other data nodes in the same cluster.

Following points will highlight the type of nodes and architecture of a Hadoop

Cluster [35]:

3.7.1. Name node. Hadoop has one centerpiece machine called a Name node server,

which stores and manages the metadata for HDFS. It is the master node in Hadoop

distributed framework. Name Nodes are configured with large RAM as it is the

directory for all the files and blocks stored in the file system across several data

nodes. These Name Nodes run a Job Tracker process that assigns map reduce tasks

among data nodes.

3.7.2. Data nodes. The slave nodes in a Hadoop cluster are called Data nodes.

These Data Nodes store the datasets and perform the read/write operations from the

clients. These data nodes can be controlled and accessed by the master/slave node. It

47

also performs the replication of the datasets on the instructions from Name node. Data

nodes execute a Task tracker process that performs and computes the map or reduce

jobs as allotted by the Job tracker process of the Name node [35].

3.7.3. Master slave architecture. Hadoop cluster is designed as a master-slave

architecture as shown in Figure 3.16. The master node comprises of the Job tracker

process while the slave nodes run the task tracker process. The Job tracker on the

master node is responsible for managing cluster resources, scheduling, and monitoring

progress and fault-tolerance mechanisms [36]. The Job tracker receives the jobs

submitted by the users and appoints it to the Task trackers. The Task tracker process

on each slave node initiates parallel tasks and registers the task status to the Job

tracker constantly [37]. To execute either map or reduce jobs, the slave nodes are

statically divided into different computational tasks depending on the respective

machine’s RAM and memory usage capacity. Additionally, each node can be

segregated into computational (Map Reduce) layer and storage (HDFS) layer that

helps in scaling out the memory of the corresponding node. In short, following are a

few demons that run on multi node standardized Hadoop cluster:

One Master node executes the following modules:

  Job tracker (MapReduce layer)

 Task tracker (MapReduce layer)

  Name node (HDFS layer)

Several slave nodes consist of the following modules:

  Task tracker (MapReduce layer)

 Data node (HDFS layer)

  MapReduce layer contains the job tracker and task tracker processes

 HDFS layer contains the name node and data nodes

Figure 3.16 demonstrates a master-slave architecture paradigm in a distributed

Hadoop cluster and its respective daemon processes.

3.8. Distributed Processing Paradigms on Hadoop

With the constant increase in volume of energy big data, it is challenging to forecast

the size of this data and the computing power required to store and process such huge

data quantity.

48

Figure 3.16: Master slave architecture in a hadoop cluster

In a non-distributed platform, when the computing power increases scaling up

is one of the option where a single computing system with additional number of cores,

hard disks and large memory is used in parallel. However, such an architecture is a lot

more expensive with a single point of failure and large dependency. Alternatively, a

more cost effective option with fault tolerance capability is to scale out where the

computing tasks are divided amongst less powerful machines with moderate

computing power and resources running in parallel. Map Reduce is one parallel batch

processing framework that provides programmers with an abstraction from low level

hardware complexities, thus enabling a reliable and fault tolerant scheme for big data

applications. The concept of Map Reduce programming model was introduced by

Google to enable web indexing. Apache Hadoop is one open source software with

different components steered on Map Reduce.

3.8.1. Parallel processing paradigm on hadoop using map reduce. The

computation of map reduce is such that it takes an input of key/value pairs and

outputs a set of key/values pairs. The mechanism involves a number of stages. An

example of Map Reduce model is demonstrated in Figure 3.17 below to generate

power consumption report of two communities, namely, Maliha and Dasman on a

quarterly basis for a State Energy Utility Provider. The Figure 3.17 illustrates how

power consumption from each device of every house in the community is stored on

HDFS Data Nodes followed by splitting and extraction of total power consumption

data within each community using the Map Reduce algorithm.

When a MapReduce is run by Hadoop, the job is sent to a master node, the Job

tracker which has multiple slaves, or Task trackers that report to it, and ask for new

work when they are idle. Job tracker split the map and reduce tasks among the Task

49

trackers, so all of them work in parallel. The Job tracker keeps a track of which Task

trackers fail.

Figure 3.17: Map Reduce processing model on hadoop

Figure 3.18 shows the Hadoop cluster architecture and its work can be explained in

the following steps [37]:

1. The Map-Reduce library first split the data into small pieces from 16 MB

to 64 MB , then it makes copies on the cluster of the machine, and one

special copy to the master, and others to the workers. There are M map

tasks and R reduces tasks; the masters chooses the idle workers and give

tasks to them.

2. A worker with a map task reads the content of the input split and parses

key/value pairs out of the input data and passes it to the map function. The

50

intermediate key/value pairs produced by the map are buffered in the

memory.

Figure 3.18: Hadoop cluster architecture [37]

Those buffered pairs are written to the disk periodically, partitioned into R

regions by the partitioning function. The location of these pairs on the disk

are passed to the master, who is responsible for passing these pairs to the

reduce workers.

3. When a reduce worker is modified by the master about these locations.it

uses remote procedures to read the buffered data from the local disk. Then

it sorts it .Once it finishes, the reduce worker iterate over the sorted

intermediate data, and for each unique key it passes the key and the

corresponding set of data to the user reduce function, the output of reduce

function is append to the output file.

4. When all map and reduce tasks done, the master wakes up the user

program.

3.8.2. SQL engines on top of Hadoop facilitating map reduce. Map reduce jobs on

Hadoop are coded by programmers in different languages such as Scala, Java, etc.

depending on the data analysis requirement. However, such coding is a time

consuming task as the map reduce performance completely depends on the code and

51

requires a lot of manual effort in practice. It is therefore more practical to implement

high level abstraction queries that autonomously develop and optimize the map

reduce jobs such as SQL. With the help of SQL queries, dynamically the map reduce

jobs are generated and the data analysis of HDFS data can be directly accomplished

using SQL. The most commonly used SQL engines in a Hadoop framework are

SparkSQL and Hive. Both platforms share a common architecture similar to

client/server paradigm [38].

3.8.2.1. Apache hive. Hive is one of the open source Hadoop data warehousing

applications that supports querying languages such Hive-SQL or H-QL for data

analysis in a Hadoop ecosystem. It provides a structure to the unstructured data stored

in HDFS for querying data. The H-QL language directly translates the queries into

map reduce jobs for execution in a Hadoop cluster. The stored HDFS data is

organized into Hive tables, thus, providing a low level structure to the unstructured

data in HDFS. The metadata of the Hive tables such as schema of the data is stored as

Hive metastore in the master node of the cluster.

 Hive Architecture: Hive architecture comprises of command line interface

(CLI), a JDBC/ODBC middleware, and a Graphic User Interface (GUI) as the

application layer on top of Hadoop for executing Hive-SQL queries [38]. The

middleware comprises of the Hive Thrift server that allows clients outside the

Hadoop framework to send SQL requests to hive data tables. As shown in

Figure 3.19, the driver between the thrift server and the HDFS store is the

database layer. Once the HQL queries are posted via the CLI or from the thrift

server, the driver makes a call to the compiler that translates the queries into

map reduce jobs. The sequence of query execution in Hive is as follows:

Hive-SQL -> Parse Tree to validate SQL statement-> Query representation

using a logical plan comprising of a tree of operators -> rule based optimizer

for optimizing the logical plans for determining how to execute a query ->

Map Reduce tasks. The Hive metadata is stored in Hive metastore that is

usually generated during the time of Hive table creation and it is accessed

when the records are being read from or written to the Hadoop cluster. This

Hive metastore is stored on to the client’s operating system or the master node

of the Hadoop cluster [38].

52

 Data model in Hive: The data files stored in HDFS are abstracted as Hive

tables when stored in HDFS. A table schema is applied to the structured data

files stored in HDFS by generating a hive table inside the /hive/warehouse

directory on HDFS by default [38].

Figure 3.19: Hive architecture [38]

When a hive table is created, it’s dynamically generates a metadata of the table

that consists of the all the information regarding data tables, databases, table

columns, column types, etc. When hive queries are executed, the metadata

helps in mapping the hive table to the actual HDFS data and then process it

using the map reduce job.

 Hive Query Language: Hive-QL is the SQL oriented Hive query language for

Big data designed to query data from the hive tables in a Hadoop ecosystem.

Once the hive queries are submitted through CLI, the compiler translates them

into corresponding map reduce tasks for processing in the map reduce engine

on top of Hadoop. Since map reduce paradigm is very low, most developers

and analysts use the map reduce abstraction with Hive-SQL queries. Hive-QL

differs from the SQL of relational database management system in the way

that it supports the feature of Serialization and deserialization using the SerDe

53

library. SerDe [39] is a library built-in to Hadoop API that allows Hive to read

in data from a table, and write it back out to HDFS in any custom format. It is

designed to read unstructured data from any custom file format where the data

is separated by a delimiter character

Hive encapsulates the following steps during the course a HiveQL statement [40]:

 Step 1: After submitting the query on a CLI or UI, the UI calls the execute

interface to the Hive driver.

 Step 2: The driver creates a session handle for handling the query and sends

the query to the compiler in order to produce an execution plan for the

corresponding map reduce tasks.

 Step 3: The compiler creates an acyclic graph of map reduce tasks and

validates the query semantics using the metadata from metastore.

 Step 4: The plan generated by the compiler is a DAG (Directed Acyclic

Graph) that comprises of different stages with each stage being a map or a

reduce job or an operation on HDFS.

 Step 5: The execution engine submits these stages to their task specific

components. In each task for the mapper/reduce, the map reduce engine is

reads in the rows from the Hive table stored in HDFS. Once the output is

produced, these are written out into a temporary file onto the HDFS.

3.8.2.2. Apache spark. Apache Spark is currently one of the most popular big data

processing engines on top of Hadoop. It is much faster than the conventional batch

processing and map reduce programming model in a Hadoop ecosystem. One of the

major reasons for it to be faster than map reduce is the in-memory computational

feature in Spark. With the help of in-memory processing, the intermediate results in

Spark are stored in memory and this allows reuse of the data available in memory thus

reducing the disk I/O. This significantly leverages the execution time of queries in

Spark and particularly after executing queries for the first iteration [38]. Spark

provides an easy interface for programing Scala language and can be integrated with

Java, R, and even python language. The Scala code written on a spark API

corresponds to one fifth of the code written in map reduce. In contrast to Hive, Spark

can fetch and process data not only from HDFS but also from the client’s local file

system, or cloud based storage services [38] The Spark stack as shown in Figure 3.20

54

comprises of several components such as Spark Core that provides an API’s for Java,

R and python programming languages. Other components developed on top of spar

core are; Spark SQL, Spark Streaming and MLLib. Spark SQL is integrated to utilize

data analysis and querying from the structured data. The Spark streaming is

responsible for processing live stream of real time data and MLLib provides a

machine learning paradigm on top of Hadoop framework. Spark performs

unstructured computations using Resilient Distributed Datasets, RDD [38]. RDDs are

stored and distributed across cluster nodes in memory as well as on the disk. The

motivation to use RDD’s is that they can be persisted in memory or on the disk.

Caching the RDDs in memory allows high-speed processing. In addition to

unstructured processing, Spark also supports structured relational functionality, which

utilizes an extensible catalyst optimizer for faster operations than RDDs. Spark SQL

is one such Spark module that provides faster structured computation and allows the

users to integrate SQL queries into the Spark programs [38]. Spark SQL catalyst

optimizer is cost-based query optimization and code generation that allows for the

query computation to be agile enabling fault-tolerance. Spark SQL provides data

processing on top of Hadoop utilizing structured data processing functionalities.

Additionally, its syntax is similar to SQL-like statements. The Spark SQL queries can

be executed through a Spark SQL module on command line interface similar to hive’s

H-SQL. Spark SQL allows the users to import data from the relational hive data

tables, run SQL queries, and write the results on to the Hive tables.

 Spark Architecture: Spark’s architecture as shown in Figure 3.21 is

dominated by master-slave pattern in a Hadoop cluster. The master of

the cluster contains the cluster manager, popularly known as the Yarn

scheduler.

Figure 3.20: Spark Components [41]

55

 For each spark query submitted, the Yarn allocates resources by initiating

executor (container) process on each worker node. The executors on each

slave node can be seen as a background process that will be processing and

storing the data on each slave node of the cluster. The executors have their

own thread pools wherein each thread executes multiple tasks in parallel on its

respective node [38].

Figure 3.21: Spark client-server architecture [41]

Moreover, the spark’s in-memory computing feature is implemented for

executors wherein each executor has a read-only cache in memory. This cache is

shared by all executor tasks generated by the same spark query or application. The

in-memory processing in Spark improves the execution time of Spark queries in

contrast to Hive map reduce processing that entails splitting the data onto the disk

with heavy disk I/O cost. In-memory processing is highly beneficial when it

comes to iterative processing as it allows data to be re-fetched from the cache

rather than from the disk after the first iteration. In order to write a spark

application program, the user has to write a driver program that implements the

execution flow across different tasks of the worker nodes in parallel. The driver

program of the spark SQL application is called the Spark SQL Context. The

SparkSQL context encapsulates all the structured and relational processing

features in Spark in the form SQL like statements. The general context to

SparkSQL is as follows:

56

 Execution workflow in SparkSQL: Spark provides a second-generation map

reduce model on top of Hadoop. It applies the idea of map reduce

programming model by segregating the submitted queries into map-reduce

tasks. Spark SQL context module is used to execute Spark queries on top of

Hadoop cluster. Using the Spark SQL API, Hive-SQL queries are written and

executed that computes results utilizing the same spark execution engine. Two

kinds of operations are performed on SparkSQL queries; transformations and

actions. Transformations refer to the mapper function of Spark engine that

perform data splitting and mapping the data according to <key, value> pairs.

The actions correspond to the reduce function of Spark engine that execute

reducer tasks on the output of the transformations and send the result to the

name node [41].

3.9. SparkSQL vs. Hive

Both Spark SQL and Hive are big data Hadoop based processing engines that

support querying languages of SQL for data analysis. For Hive, the Hive SQL queries

are directly translated into directed acyclic graphs (DAG) that comprises of map

reduce tasks processes in parallel across the cluster nodes. Hive’s execution is strictly

bound to HDFS. Hive provides parallel processing with disk caching. On the other

hand, Spark SQL queries are translated into Directed Acyclic Graphs (DAG) that

comprise of multiple transformations and actions besides just map and reduce

functions for more optimized execution of Spark queries. It facilitates in-memory

caching with several threads executing in parallel in memory [38]. Additionally,

Spark paradigm is fault tolerant as it keeps a track of all the partitions created by

mapper and reducer tasks in a lineage graph. This graph can be reutilized to regain

any lost partitions. For e.g. if a data partition in-memory is lost due to node failure

while data processing, Spark has the capability to regenerate the lost partition by

applying the same mapper and reducer function to the corresponding data block in

HDFS file [42]. This recovery saves the overhead time of rerunning the queries since

the failed node contains multiple partitions which can recreated with in-parallel on

cluster nodes. In terms of resource management, both SparkSQL and Hive depend on

57

the Hadoop ecosystem’s resource manager Yarn for dynamic allocation of container.

Containers are the JVM heap memory that are allocated to execute map and reduce

tasks. Table 3.2 shows how SparkSQL and Hive are different from each other for

different characteristics.

Table 3.2: Comparison between SparkSQL and Hive [38]

Characteristics SparkSQL Hive

On top of Hadoop
HDFS

Yes Yes

MapReduce processing Yes Yes

DAG generation Yes Yes

In-Memory Yes No

Fault Tolerant Yes No

 Support for SQL Yes Yes

3.10. Formulation of Queries w.r.t. Stakeholders

To provide a holistic view of energy consumption from home owner to

country utility providers, a total of eighteen queries are written in SQL language.

These big data SQL queries will be spun off on the two SQL engines of the Hadoop

ecosystem; SparkSQL and Hive. The query description for each stakeholder is are

tabulated in Table 3.3. Further breakdown of queries in SQL language is shown in

Table 3.4.

58

Table 3.3: High-level queries per stakeholder

No Stakeholders Title Description

1.1. Home Owner 1.1.1.

Load Profiling

(Aggregation
Functions)

Load Profiling can be performed by home owners to

execute queries with aggregation functions such as

SUM to obtain SUM consumption data for all home
appliances. This data can be reported with respect to

different granularities of time; daily, weekly, monthly,

and annually. The weekly and monthly data can be
collected and reported rigorously from selected start and

end dates.

1.1. Home Owner 1.1.2.
Compare my

consumption

with

neighborhood

A customer can compare SUM monthly/annual
consumption of the house with the SUM consumption

of his/her neighborhood (community). The customer

can save energy and control devices based on this

information.

2.1. Community Level

Utilities

2.1.1

Consumption
Variability

Analytics for

Houses using
Aggregation

Functions

For a distributed smart grid, utilities must provision for

the peak demand power consumption. Thus, it is critical
for utilities to identify consumers that have large

variation in their consumption and consequently offer

them incentives that can help in smoothing out the
demand. To cater this, the Utilities must be able to view

SUM energy consumption distribution of customers in

their respective community w.r.t different time
granularities (weekly, monthly and annually) and

geographic location dimension (latitude and longitude).
The Utilities must be able to analyze SUM power usage

for each community on a periodic basis to predict the

demand in advance and balance the Demand Response
chain. Aggregated power consumption using other

aggregate functions such as sum, min or max can be

used to view consumption details of houses within a
community (not allowed to view within an individual’s

each house appliance consumption due to privacy

reasons).
2.1. Community Level

Utilities

2.1.2.

Load shapes on

Weekdays/Week
ends for each

month

The Utilities must be able to view load shapes on

weekdays/weekends for the required month of the year.

2.1 Community Level
Utilities

2.1.3
Device-wise

consumption in a

community

The community utility provider should be able to view
the total consumption of individual device from all

houses within the vicinity of the respective community.

2.1 Community Level

Utilities

2.1.4

Additional

Statistical
Information

using Ad Hoc

Queries

Ad Hoc queries are queries that are not predetermined

and can be generated dynamically to obtain information

when the need arises.

3.1 State level Utilities

3.1.1.

Consumption

Variability
Analytics for

Communities

using
Aggregation

Functions.

The State Level Utilities should be entitled to view the

SUM (SUM) power consumption variation for

communities within each state on time granularity
levels and geographic location dimensions/community

name.

4.1 National level

Utilities

4.1.1.

Consumption

Variability

Analytics for
Communities

The National Level Utilities should be entitled to view
power consumption variation of all states (on a

Histogram) with respect to time granularity levels

(monthly, annually) and geographic location dimension
/state name.

59

Table 3.4: Big Data SQL Queries

Query

Sequence

Stakeholde

r

Query Breakdown Hadoop SQL Queries

1 Home

Owner

Total Consumption

of each appliance
of myhouseID=H1

every day in a

week.

Select date format(DateTime,'EEEE') AS Days,

round(sum(Furnace),2) AS Furnace, round(sum(Cellar),2) AS
Cellar , round(sum(Fridge),2) AS Fridge , round(sum(Heater),2)

AS Heater , round(sum(Lights),2) AS Lights,

round(sum(Outlets),2) AS Outlets, round(sum(CookingRange),2)
AS CookingRange, round(sum(WashingMachine),2) AS

WashingMachine, round(sum(DishWasher),2) AS DishWasher

from smarthomeconsumption WHERE HouseID='"H1"'AND
weekofyear(DateTime)=3 group by

date_format(DateTime,'EEEE');

2 Home

Owner

Total Consumption

of each appliance

of myhouseID=H1,
each week of a

month= January

Select weekofyear(DateTime,'EEEE') AS weeks,

round(sum(Furnace),5) AS Furnace, round(sum(Cellar),5) AS

Cellar , round(sum(Fridge),5) AS Fridge ,round(sum(Heater),5)
AS Heater , round(sum(Lights),5) AS Lights,

round(sum(Outlets),5) AS Outlets, round(sum(CookingRange),5)

AS CookingRange, round(sum(WashingMachine),5) AS
WashingMachine,round(sum(DishWasher),5) AS DishWasher

from smarthomeconsumption WHERE HouseID='"H1"'AND

month(DateTime)=2 group by weekofyear(DateTime);

3 Home

Owner

Total consumption

of each appliance
of myhouseID=H1,

monthly for the

given year.

Select month(DateTime) AS monthly, sum(Furnace) AS Furnace,

sum(Cellar) AS Cellar ,sum(Fridge) AS Fridge ,sum(Heater)AS
Heater , sum(Lights) AS Lights, sum(Outlets) AS Outlets,

sum(CookingRange) AS CookingRange, sum(WashingMachine)

AS WashingMachine,sum(DishWasher) AS DishWasher from
smarthomeconsumption WHERE HouseID='"H1"' group by

month(DateTime);

4 Home

Owner

Total power

consumption of

each appliance of
myhouseID=H1,

annually.

Select houseid AS myhouseid, round(sum(Furnace),5) AS

Furnace, round(sum(Cellar),5) AS Cellar , round(sum(Fridge),5)

AS Fridge , round(sum(Heater),5) AS Heater ,
round(sum(Lights),5) AS Lights, round(sum(Outlets),5) AS

Outlets, round(sum(CookingRange),5) AS CookingRange,

round(sum(WashingMachine),5) AS WashingMachine,
round(sum(DishWasher),5) AS DishWasher from

smarthomeconsumption WHERE HouseID='"H1"' group by
houseid;

5 Home
Owner

TOTAL (total of all
appliances)

ANNUAL

consumption of
myhouseID=H1.

AND TOTAL

ANNUAL
consumption of all

houses in that

community for the
same year.

select ((b.totalofmyhouse/d.totalofmycommunity)*100) AS
MyHouseConsumptionPercent,b.totalofmyhouse AS

TotalHouseCOnsumption,d.totalofmycommunity AS

TotalCommunityConsumption from (Select
MyFurnace+MyCellar+MyFridge+MyHeater+MyLights+MyOutl

ets+MyCookingRange+MyWashingMachine+MyDishWasher AS

TotalOfMyHouse from (Select avg(Furnace) AS MyFurnace,
avg(Cellar) AS MyCellar ,avg(Fridge) AS MyFridge

,avg(Heater)AS MyHeater , avg(Lights) AS MyLights,

avg(Outlets) AS MyOutlets, avg(CookingRange) AS
MyCookingRange, avg(WashingMachine) AS

MyWashingMachine,avg(DishWasher) AS MyDishWasher from

smarthomeconsumption WHERE HouseID='"H1"') as a) as b
JOIN (Select

MyFurnace+MyCellar+MyFridge+MyHeater+MyLights+MyOutl

ets+MyCookingRange+MyWashingMachine+MyDishWasher AS
TotalOfMyCommunity from (Select avg(Furnace) AS

MyFurnace, avg(Cellar) AS MyCellar ,avg(Fridge) AS MyFridge

,avg(Heater)AS MyHeater , avg(Lights) AS MyLights,
avg(Outlets) AS MyOutlets, avg(CookingRange) AS

MyCookingRange, avg(WashingMachine) AS

MyWashingMachine,avg(DishWasher) AS MyDishWasher from
smarthomeconsumption WHERE community='"Maliha"') as c) as

d;

60

6 Communit
y Level

Utilities

Total Consumption
of each house in a

community every

day in a week.

SELECT days, HouseID,
round((MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+

MyCookingRange+MyWashingMachine+MyDishWasher),5) AS

TotalHouseConsumption from (Select
date_format(DateTime,'EEEE') AS days, houseid AS HouseID,

round(sum(Furnace),5) AS MyFurnace, round(sum(Cellar),5) AS

MyCellar ,round(sum(Fridge),5) AS MyFridge
,round(sum(Heater),5) AS MyHeater , round(sum(Lights),5) AS

MyLights, round(sum(Outlets),5) AS MyOutlets,

round(sum(CookingRange),5) AS MyCookingRange,
round(sum(WashingMachine),5) AS

MyWashingMachine,round(sum(DishWasher),5) AS

MyDishWasher from smarthomeconsumption WHERE
community='"Maliha"'AND weekofyear(DateTime)=3 group by

HouseID, date_format(DateTime,'EEEE'))a;

7 Communit

y Level

Utilities

Total Consumption

of each house in a

community every
week of a month

SELECT weeks, HouseID,

round((MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+

MyCookingRange+MyWashingMachine+MyDishWasher),5) AS
TotalHouseConsumption from (Select weekofyear(DateTime) AS

weeks, houseid AS HouseID, round(sum(Furnace),5) AS

MyFurnace, round(sum(Cellar),5) AS MyCellar ,
round(sum(Fridge),5) AS MyFridge ,round(sum(Heater),5)AS

MyHeater , round(sum(Lights),5) AS MyLights,

round(sum(Outlets),5) AS MyOutlets,
round(sum(CookingRange),5) AS MyCookingRange,

round(sum(WashingMachine),5) AS MyWashingMachine,
round(sum(DishWasher),5) AS MyDishWasher from

smarthomeconsumption WHERE community='"Maliha"'AND

month(DateTime)=2 group by HouseID,
weekofyear(DateTime))a;

8 Communit
y Level

Utilities

Total power
consumption of

each house in a

community on

weekdays

Select date_format(DateTime,'EEEE') AS weekday,houseid,
Furnace AS CommunityFurnace, Cellar AS CommunityCellar

,Fridge AS CommunityFridge ,Heater AS CommunityHeater ,

Lights AS CommunityLights, Outlets AS CommunityOutlets,

CookingRange AS CommunityRange, WashingMachine AS

MyWashingMachine,DishWasher AS MyDishWasher from

smarthomeconsumption WHERE community='"Maliha"' AND
month(DateTime)=3 AND date_format(DateTime,'u') between 1

and 5 ;

9 Communit

y Level
Utilities

Total power

consumption of
each device in a

community.

Select month(DateTime) AS monthly, sum(Furnace) AS Furnace,

sum(Cellar) AS Cellar ,sum(Fridge) AS Fridge ,sum(Heater)AS
Heater , sum(Lights) AS Lights, sum(Outlets) AS Outlets,

sum(CookingRange) AS CookingRange, sum(WashingMachine)

AS WashingMachine,sum(DishWasher) AS DishWasher from
smarthomeconsumption WHERE community='”Maliha"' group

by month(DateTime);

10 Communit

y Level

Utilities

How many users

exist with a power

consumption

between 20 and

100 in the date

range from”2014-
03-01” to ”2013-

05-01”?

SELECT COUNT(HouseID) AS NumberOfHouses FROM

(SELECT HouseID,

round((MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+

MyCookingRange+MyWashingMachine+MyDishWasher),5) AS

TotalHouseConsumption from (Select houseid AS HouseID,

sum(Furnace) AS MyFurnace, sum(Cellar) AS MyCellar
,sum(Fridge) AS MyFridge ,sum(Heater)AS MyHeater ,

sum(Lights) AS MyLights, sum(Outlets) AS MyOutlets,

sum(CookingRange) AS MyCookingRange,
sum(WashingMachine) AS

MyWashingMachine,sum(DishWasher) AS MyDishWasher from

smarthomeconsumption WHERE Community='"Maliha"' AND
month(DateTime) between 3 and 5 group by houseid)a)b

WHERE TotalHouseConsumption between 20 AND 100 ;

61

11 Communit
y Level

Utilities

Total Consumption
of each community

of a state everyday

in a week.

SELECT community,days,
round(sum(myFurnace+myCellar+MyWashingMachine+MyOutle

ts+MyDishWasher+MyHeater+MyLights),5) as

CommunityConsumption FROM (SELECT
community,date_format(DateTime,'EEEE') as days,

round(sum(furnace),5) as myFurnace, round(sum(cellar),5) as

myCellar, round(sum(washingmachine),5) as
MyWashingMachine, round(sum(outlets),5) as MyOutlets,

round(sum(dishwasher),5) as MyDishWasher,

round(sum(heater),5) as MyHeater, round(sum(lights),5) as
MyLights from smarthomeconsumption where

state='"Sharjah"'AND weekofyear(DateTime)=1 group by

community,date_format(DateTime,'EEEE'))a GROUP BY
community,days ;

12 State level
Utilities

Total Consumption
of each community

of a state on a

weekly basis.

SELECT community,weekly,
round(sum(myFurnace+myCellar+MyWashingMachine+MyOutle

ts+MyDishWasher+MyHeater+MyLights),5) as

CommunityConsumption FROM (SELECT community,
weekofyear(DateTime) as weekly, sum(furnace) as

myFurnace,sum(cellar) as myCellar,sum(washingmachine) as

MyWashingMachine,sum(outlets) as MyOutlets,sum(dishwasher)
as MyDishWasher,sum(heater) as MyHeater,sum(lights) as

MyLights from smarthomeconsumption where

state='"Sharjah"'AND month(DateTime)=1 group by
community,weekofyear(DateTime))a GROUP BY

community,weekly ;

13 State level

Utilities

Total Consumption

of each community
of a state on a

monthly basis.

SELECT community,months,

round((myFurnace+myCellar+MyWashingMachine+MyOutlets+
MyDishWasher+MyHeater+MyLights),5) as

CommunityConsumption FROM (SELECT community,

month(DateTime) as months, sum(furnace) as
myFurnace,sum(cellar) as myCellar,sum(washingmachine) as

MyWashingMachine,sum(outlets) as MyOutlets,sum(dishwasher)

as MyDishWasher,sum(heater) as MyHeater,sum(lights) as

MyLights from smarthomeconsumption where state='"Sharjah"'

group by community,month(DateTime))a GROUP BY

community,months ;

14 State level

Utilities

Total Consumption

of each community
of a state annually.

SELECT CommunityName,

round((MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+
MyCookingRange+MyWashingMachine+MyDishWasher),5) AS

TotalCommunityConsumption from (Select community AS

CommunityName, sum(Furnace) AS MyFurnace, sum(Cellar)
AS MyCellar ,sum(Fridge) AS MyFridge ,sum(Heater)AS

MyHeater , sum(Lights) AS MyLights, sum(Outlets) AS

MyOutlets, sum(CookingRange) AS MyCookingRange,
sum(WashingMachine) AS

MyWashingMachine,sum(DishWasher) AS MyDishWasher from

smarthomeconsumption WHERE state='"Sharjah"' group by
community)a ;

15 National

level

Utilities

Total Consumption
of each state of a

country everyday

in a week.

SELECT mystate,daysOfWeek,
round(sum(MyFurnace+MyCellar+MyHeater+MyLights+MyOutl

ets+MyCookingRange+MyWashingMachine+MyDishWasher),5)

AS TotalStateConsumption from (Select state AS
mystate,date_format(DateTime,'EEEE') as daysOfWeek,

sum(Furnace) AS MyFurnace, sum(Cellar) AS MyCellar

,sum(Fridge) AS MyFridge ,sum(Heater)AS MyHeater ,
sum(Lights) AS MyLights, sum(Outlets) AS MyOutlets,

sum(CookingRange) AS MyCookingRange,

sum(WashingMachine) AS
MyWashingMachine,sum(DishWasher) AS MyDishWasher from

smarthomeconsumption WHERE weekofyear(DateTime)=5 group

by state,date_format(DateTime,'EEEE')) a GROUP BY
mystate,daysOfWeek;

62

16 National

level

Utilities

Total Consumption
of each state of a

country on a

weekly basis.

SELECT mystate,weekly,
sum(MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+M

yCookingRange+MyWashingMachine+MyDishWasher) AS

TotalStateConsumption from (Select state AS
mystate,weekofyear(DateTime) as weekly, sum(Furnace) AS

MyFurnace, sum(Cellar) AS MyCellar ,sum(Fridge) AS

MyFridge ,sum(Heater)AS MyHeater , sum(Lights) AS
MyLights, sum(Outlets) AS MyOutlets, sum(CookingRange) AS

MyCookingRange, sum(WashingMachine) AS

MyWashingMachine,sum(DishWasher) AS MyDishWasher from
smarthomeconsumption where month(DateTime)=3 group by

state,weekofyear(DateTime))a GROUP BY mystate,weekly;

17 National

level

Utilities

Total Consumption

of each state of a

country every
month.

SELECT mystate,

(MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+MyCo

okingRange+MyWashingMachine+MyDishWasher) AS
TotalStateConsumption from (Select state AS mystate,

avg(Furnace) AS MyFurnace, avg(Cellar) AS MyCellar

,sum(Fridge) AS MyFridge ,sum(Heater)AS MyHeater ,
sum(Lights) AS MyLights, sum(Outlets) AS MyOutlets,

sum(CookingRange) AS MyCookingRange,

sum(WashingMachine) AS
MyWashingMachine,sum(DishWasher) AS MyDishWasher from

smarthomeconsumption WHERE month(DateTime)=2 group by

state)a ;

18 National

level

Utilities

Total Consumption
of each state of a

country annually.

SELECT mystate,monthly,
sum(MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+M

yCookingRange+MyWashingMachine+MyDishWasher) AS

TotalStateConsumption from (Select state AS
mystate,month(DateTime) as monthly, sum(Furnace) AS

MyFurnace, sum(Cellar) AS MyCellar ,sum(Fridge) AS

MyFridge ,sum(Heater)AS MyHeater , sum(Lights) AS
MyLights, sum(Outlets) AS MyOutlets, sum(CookingRange) AS

MyCookingRange, sum(WashingMachine) AS

MyWashingMachine,sum(DishWasher) AS MyDishWasher from

smarthomeconsumption group by state,month(DateTime))a

GROUP BY mystate,monthly;

63

. Chapter 4. Experimental Design

Four machines are taken for setting up a cluster consisting of one master-four

slave nodes as shown in Figure 4.1. The replication factor for each node is set to 2 and

the block size is 64MB. For a million smart meters data (~1.5TB), the name node

generates 23438 blocks (1.5TB/64MB) of data. Each data nodes stores a total of 5860

blocks that correspond to a total size of 375GB. The block distribution from B1 to

B5860, B5861 to B11720, and B11721 to B17580, and B17581 to B23440 across

node 1, node 2, node 3, and node 4 respectively is shown in Figure 4.1. The hardware

specifications for deploying a single master or a slave node machine is in Table 4.1.

Table 4.1: Commodity Hardware Specifications

Figure 4.1: One master-four slaves hadoop cluster

 CPU
RAM

 Storage OS Ethernet speed
(Cat6 cables)

IP address
(local)

Master

Node

8 cores at

2GHz

16GB 1TB Ubuntu

16.4

1000Mbps 10.25.34.176

Slave
Node 1

8 cores at
2GHz

16GB 1TB Ubuntu
16.4

1000Mbps 10.25.34.176

Slave

Node 2

4 cores at

1.5GHz

8GB 730GB Ubuntu

16.4

1000Mbs 10.25.34.177

Slave

Node 3

4 cores at

1.5GHz

8GB 500 GB Ubuntu

16.4

1000Mbps 10.25.34.178

Slave
Node 4

4 cores at
1.5GHz

8GB 500GB Ubuntu
16.4

1000Mbs 10.25.34.179

64

4.1. Evaluation Criteria

Performance is critical in Hadoop clusters whether it’s deployed on bare metal

or virtualized environment. Our cluster was deployed on physical environment of the

machines. Three types of variables are determined for evaluating cluster performance:

input variables, output variables, control variables as shown in Table 4.2.

 Table 4.2: Experimental Variables under study

The control variables are based on the physical environment and machine

specifications as already mentioned in the previous section. The input variables are

the optimization parameters that can be controlled by the user during Hadoop Job

submission and queries to optimize the performance. Four output variables will be

assessed by varying different input variables; latency and throughput. The term

‘latency’ refers to the completion time of rendering query results across the cluster

data nodes. Similarly, ‘throughput’ denotes the number of reads from HDFS

completed per unit time (tasks completed/minute). The data files will be imported in

log scale of 10, 100, 1000, 10000, 100000, and 1,000,000 smart meter CSV files.

Each batch of files will be loaded across one, two, and three data nodes to examine

the latency, throughput, and memory usage of write to HDFS. To evaluate the cluster

performance, experiments will be focused on the data querying and reporting on

Hadoop cluster using the two frameworks; Apache Spark and Apache Hive.

4.2. Experiments and Evaluation Use-Cases

Two experiments are designed to analyze performance of the SQL querying

engines on top of Hadoop in terms of latency and throughput.

4.2.1. Experimental objective. To determine the total latency for data

querying each query is scheduled to run 100 times using the Oozie workflow [43] tool

on top of Hadoop. For each query run, there are two variables i.e. number of data files

and number of nodes. Experiments will be conducted to evaluate the overall query

Input

Variables

Control Output

Variables Variables

Number of

Nodes

Number of

Cores

Latency

Number of
Data files

Memory
Size

Throughput

Number of

Queries

Network

Bandwidth

65

performance across the two data querying frameworks of Hadoop; Apache Spark and

Apache Hive.

4.2.2 Experimental objective. To determine the system throughput in data

querying throughput is based on the file size written (or read) by the individual map

tasks and the elapsed time to do so.

Two test cases will be generated to determine the elapsed time (latency) and

throughput for executing queries on Spark and Hive. The test cases are as follows:

 Number of Smart meter files: The impact of the data files size during the

querying process is determined by measuring the elapsed time (latency),

throughput for each batch of data files.

 Number of Data nodes: The impact of the cluster size on querying is

determined by measuring the latency, throughput, for submitting query jobs

across one, two, three, and four data nodes.

66

. Chapter 5. Results and Discussion

This chapter comprises of quantitative results discussion from the performance

evaluation as discussed in the previous chapter. Section 1 elaborates on two

performance metrics; query execution time and throughput. Section II discusses the

Hadoop processing engines performance with proprietary tools and relational

database management system.

5.1. Quantitative Evaluation

In order to obtain statistically accurate data, each query was scheduled in a

workflow using the Oozie Workflow Scheduler system to manage Apache Hadoop

jobs. Oozie [43] is a scalable and a reliable system integrated on top of the Cloudera

Hadoop Stack supporting different types of Hadoop jobs such as map reduce,

multidimensional processing, etc. Each query workflow is scheduled to run every

fifteen minutes on a day, and for each query execution hundred points of latency are

logged to gain statistical significance. Throughput is calculated from the latency

points obtained from the experiments.

5.1.1. Latency. Hadoop is designed and developed to process large number of

files. Hadoop’s mean execution time was evaluated by investigating different factors,

such as the number of active slave nodes and dataset size that affect it, i.e.,

As a query job is submitted via Spark or Hive CLI, the job is executed in

multiple stages where each stage contains multiple Map Reduce tasks. We use the

following notation to represent an big data SQL query job:

Job= {Stagei: 0<i<M}

Stage= {Taski, j: 0<j<N}

Here M is the number of stages in a job and N is the number of Map Reduce

tasks in a stage. The resource manager of master node distributes these stages across

the cluster nodes. The map/reduce task processes assigned to each stage are executed

67

in parallel across several data notes. Latency corresponds to the total execution time

taken by all the mapper/reducers tasks within each stage when run in parallel to

process results.

Since the standard deviations are unevenly distributed, the query performance

will be evaluated based on the average values of latency as well as throughput. Figure

5.1 and Figure 5.2 depict Query-wise mean execution time for Hive and Spark across

1 node and nodes 4 for one million files. From the two graphs, it is observed that the

query execution time largely depends on the query selectivity characteristic as well.

For queries formulated with large selectivity parameters such as Query #1, Query #11,

Query #15, Query #16, Query #17, and Query #18 take longer time to process than

other queries for the same processing volume across each node. Query #11 takes a

long execution time because of multiple JOIN clauses used in this query to find the

total house consumption and its respective neighborhood community consumption.

Due to multiple JOINs, there is a strong interdependency between the files. With

larger interdependency between smart meters dataset, more numbers of reducers

strongly dependent on each other. With this increase in the number of reducers, the

execution time increases sharply depending on varying computing needs. The

maximum time is taken from Q #15 to Q # 18 as these queries have a wider selectivity

requirement to aggregate more number of records on a national level spread across

different cluster nodes, and hence larger latency. For one node, Hive and Spark take

roughly 2322 seconds and 2170 seconds for Query # 18 respectively. Conversely, for

four nodes Hive and Spark take 843 seconds and 712 seconds for same query

respectively. Additionally, it can be observed from both the figures that in case of

Spark, Query #1 takes longer than other queries with the same selectivity clause such

as Query #2 because for the first iteration Spark launches the container memory and

once the processing is completed other memory containers are not stopped until the

session is closed which saves a significant amount of overhead time. However, for

Hive when a query is submitted the map and reduce tasks will be launched on the

execution stage and these tasks are alive until the period of execution. Once the

processing is completed, the map and reduce memory containers will get stopped and

will be relaunched again for the subsequent query session.

68

Figure 5.1: Mean latency per query for 1 million smart meters across 1-Node

Figure 5.2: Mean latency per query for 1 million smart meters across 4-Nodes

The results for the query execution time on Apache Spark and Apache Hive

are shown in Figure 5.3. The results are discussed for cluster size of 1-Node, 2-Nodes,

3-Nodes, and 4-Nodes as follows:

5.1.1.1. 1-node cluster. For processing 10 smart meters on one 1 node, the

execution time for Spark and Hive is 34 seconds and 39 seconds with a standard

deviation of 4.6 and 15.1 seconds respectively. This accounts to Spark being 14%

Latency on 1-Node and 1,000,000 Smart Meters

Latency on 4-Nodes and 1,000,000 Smart Meters

69

faster than Hive. For processing 100 smart meters, Spark’s and Hive’s execution time

is 232 seconds and 265 seconds with standard deviation of 28.78 and 12.289

respectively. Thus, Spark being 14.8% faster than Hive. For a 1000 smart meters, the

processing time for Spark and Hive is 829 and 954 seconds with a standard deviation

of 114.1992 and 60.47 respectively, yielding Spark as 15% faster than Hive. For a

10000 smart meters, Spark and Hive latency is reported as 1201 seconds and 1364

seconds with a standard deviation of 40.79 and 25.6579. Thus, Spark is 13.5 % faster

than Hive. For 100,000 meters, Spark and Hive’s response time is 1476 and 1675

seconds with standard deviation of 43.8 and 51.07 respectively implying that Spark is

13.4% faster than Hive. For a million smart meters, Spark and Hive’s processing time

is 2172 and 2221 seconds with a standard deviation of 70.31 and 70.66 respectively.

This infers that Spark is 2.3% faster than Hive. The reason for Spark being faster than

Hive is that the Spark processes the data in -memory while the Hive processing

utilizes disk access. With in-memory data processing on Spark, the processing speed

is increased substantially. This is because using Spark, the data is cached in the first

query run and it does not require to be fetched from the disk again for the subsequent

query sessions. For the first 10, 100, and 1000 smart meters Spark’s performance is

increasing linearly with respect to Hive wherein Spark is 14%, 14.8% and 15% faster

than Hive. However, as the number of input volume increases to 10,000, 100,000 and

1,000,000 smart meters, the performance of Spark is only 13.5%, 13.4% and 2.3%

faster than Hive. This is because of the memory constraint on a single node

comprising of 540 GB RAM for processing 1.5 TB data that interferes with the

Spark’s in memory processing. The reason being that for an increased input size

coupled with a smaller cluster design (~1 node), Spark SQL is unable to handle the

intermediate result sets (i.e. 1.5 TB for 1 million files, 0.15 TB for 100,000 files) in

the available container memory whereas Hive is able to cope with such a situation due

to read/write fetch from the disk. Due to this memory bottleneck, all records from the

smart meter files cannot be cached into the memory due to which they are forced to be

written on to the disk, causing high latency in Spark.

 5.1.1.2. 2-nodes cluster. The processing time for 10 smart meters on two nodes,

the execution time for Spark and Hive is 31 seconds and 35.04 seconds with a

standard deviation of 4.44 and 5.56 respectively. This accounts to Spark being

13.61% faster than Hive. For processing 100 smart meters, Spark’s and Hive’s

70

execution time is 108 seconds and 120 seconds with a standard deviation of 5.96 and

5.93 respectively. Thus, Spark being 11% faster than Hive. For a 1000 smart meters,

the processing time for Spark and Hive is 734 and 809 seconds 83.63 and 70.39

respectively, yielding Spark as 12.2% faster than Hive. For a 10000 smart meters,

Spark and Hive latency is reported as 1031 seconds and 1140 seconds with a standard

deviation of 76.75 and 71.42. Thus, Spark is 10.5 % faster than Hive. For 100,000

meters, Spark and Hive’s response time is 1202 and 1364 seconds with a standard

deviation of 48.33 and 51.13 respectively implying that Spark is 11.4% faster than

Hive. For a million smart meters, Spark and Hive’s processing time is 1751 and 1927

seconds with a standard deviation of 99.14 and 102.56 respectively. This infers that

Spark is 10.5% faster than Hive. For every set of files, it is observed that Spark’s

performance is greater than Hive. Thus, it can be deduced that even though Spark

outperforms Hive for every batch of files, the increase in performance declines as the

number of input files change from 10,000 to one million in a small cluster set of two

nodes. This is due to the memory intensive computation power of Spark wherein it

splits some of the intermediate records onto the disk when it falls short of commodity

hardware memory. For a cluster of two nodes, the total available memory for

processing was 960 GB (Node-1) and 589 GB (Node-2) RAM, that is, 1549 MB ~

1.5 GB whereas the size of input volume for 10,000 , 100,000 and 1 million files was

15 GB, 150 GB, and 1.5 TB.

5.1.1.3. 3-nodes cluster. The processing time for 10 smart meters on three nodes

node, the execution time for Spark and Hive is 10.5 seconds and 12 seconds with a

standard deviation of 2.68 and 2.85 seconds respectively. This accounts to Spark

being 14.28% faster than Hive. For processing 100 smart meters, Spark’s and Hive’s

execution time is 97 seconds and 120 seconds with a standard deviation of 11.05 and

9.2 respectively. Thus, Spark being 23.7% faster than Hive. For a 1000 smart meters,

the processing time for Spark and Hive is 379 and 482 seconds with a standard

deviation of 19.09 and 45.76 respectively, yielding Spark as 27% faster than Hive.

For a 10000 smart meters, Spark and Hive latency is reported as 454 seconds and 592

seconds with a standard deviation of 12.38 and 10.28 respectively. Thus, Spark is 30.5

% faster than Hive. For 100,000 meters, Spark and Hive’s response time is 789 and

1093 seconds with a standard deviation of 32.46 and 30.75 respectively implying that

Spark is 38% faster than Hive. For a million smart meters, Spark and Hive’s

71

processing time is 977 and 1295 seconds with a standard deviation of 87.166 and

93.175 respectively. This infers that Spark is 32.5% faster than Hive. Thus, with the

increase in nodes, the execution time for both Spark and Hive increased linearly, and

there is a substantial increase in the performance upgradation of Spark in contrast to

Hive as the volume of dataset increases from 10 to one million smart meters without

any memory bottleneck.

5.1.1.4. 4-nodes cluster. The processing time for 10 smart meters on three

nodes node, the average execution time for Spark and Hive is 5.4 seconds and 6.3

seconds with a standard deviation of 1.53 and 1.55 respectively. This accounts to

Spark being 15.66% faster than Hive. For processing 100 smart meters, Spark’s and

Hive’s execution time is 87 seconds and 101 seconds with a standard deviation of

19.49 and 18.69 respectively. Thus, Spark being 16.7% faster than Hive. For a 1000

smart meters, the processing time for Spark and Hive is 258 and 329 seconds with a

standard deviation of 43.788 and 45.54 respectively, yielding Spark as 28% faster

than Hive. For a 10000 smart meters, Spark and Hive latency is reported as 400

seconds and 540 with a standard deviation of 10.921 and 10.27 seconds

correspondingly. Thus, Spark is 35 % faster than Hive. For 100,000 meters, Spark and

Hive’s response time is 546 and 758 seconds with a standard deviation of 69.01422

and 75.065 respectively implying that Spark is 44.3% faster than Hive. For a million

smart meters, Spark and Hive’s processing time is 603 (~13 minutes) and 1089 (~21

minutes) seconds with a standard deviation of 44.433 and 45.25 respectively. This

infers that Spark is 76% faster than Hive. To summarize, for 10, 100, 1000, 10000,

100,000 and 1,000,000 smart meters Spark is 15.6%, 16.7%, 28%, 35%, 43%, and

76% faster than hive respectively. The percentage increment is less for small batch of

files such as 10, 100, and 1000. This is because running a query on dataset which has

only a few hundreds of MBs written to disk is not much different than transferring the

same in memory. Now coming to processing a volume of size in thousands of MBs or

in TBs i.e. 10000, 100000, and one million smart meters, Hive’s intermediate results

from the map outputs are written to the disk and then transferred to the reducers

which take a significantly large amount of time. Additionally, when a hive query is

submitted, the mapper and reducer tasks will be launched. These tasks However, in

Spark this is not the case as the intermediate results are cached in-memory avoiding

any hefty disk I/O. Thus, overall it can be inferred that with a cluster of four nodes the

72

Spark performance increases substantially for each set of files. The best processing

performance for a million meters is achieved with a cluster size of four nodes. Thus,

for processing a larger batch of files, the addition of nodes to the cluster has a big

impact on reducing the execution time.

Figure 5.3: Mean latency across 1-Node, 2-Nodes, 3-Nodes, and 4-Nodes

Additionally, the latency for processing 100,000 files across one node in Spark

and Hive is 2172 and 2221 seconds respectively. Conversely, the processing time for

two nodes and the same processing engines (Spark and Hive) is 1751 and 1927

seconds respectively. Thus, for two nodes Spark is roughly 7 minutes faster than one

node computation. On the other hand, Hive processing across two nodes is

approximately 4 minutes faster than on a single node. For three nodes and one million

smart meters, the latency on Spark and Hive is 977 seconds and 1295 seconds. Thus,

Spark on three nodes is nearly 12 minutes faster than two nodes. Alternatively, Hive

processing on three nodes is roughly 10 minutes faster than that on two nodes.

Similarly, for four nodes the Spark and Hive processing time is 603 and 1029 seconds

73

respectively. This infers that Spark on four nodes is nearly 6 minutes faster than its

processing the same set of million files on three nodes. Conversely, Hive on four

nodes is approximately 6 minutes faster than computation time on three nodes. This

small variation in the increase in processing time between three and four nodes is

attributed to the network bottleneck (~1 Mbps Ethernet bandwidth and CAT6 cables

providing 100 Mb/s) in a cluster as it takes longer time to read and write the data

stored across more number of nodes of the cluster in the network. To minimize this

network constraint for achieving lower latency, high speed Ethernet cables and higher

bandwidth switch can be deployed for connecting the cluster machines. Thus, it can

be inferred that latency reduces as the number of active nodes increase and the

processing time increases with the increase in number of files. The obtained results

are reasonable as it is expected that with increase in the volume of data files on each

node, the processing time will also increase significantly. Theoretically, a linear

improvement is observed in the performance of Spark and Hive with increase in

cluster size and subsequent memory resources. Although, in the practical

implementation there will be some overhead due to network communication and

synchronization between the cluster nodes, yet the performance for a large cluster size

will be better than a small cluster. The performance gain is inversely proportional to

the latency or the query execution time in seconds, and can be expressed as follows:

In practicality, the performance gain also depends upon other parameters such

as the optimization and execution plan generated by the processing engines. Figure

5.4 represents the performance gain achieved for processing one million records using

Spark and Hive across 1 node, 2 nodes, 3 nodes, and 4 nodes. The processing gain

achieved for a small cluster is lower in contrast to the gain obtained with the increase

in cluster size. Spark’s performance gain is always higher than Hive. Additionally

Figure 5.5 illustrates the performance of Query # 1 in on a million smart meters on a

cluster of four nodes. From the graph we can observe the effect of Spark in an

iterative querying environment. It is surmised that with 1.5 TB (million meters) data,

Query #1 performance, Hive takes a constant time per iteration of about 720 seconds.

74

On the other hand, Spark takes 780 seconds in first iteration to load data in-memory

and only ~120 seconds in subsequent iterations.

Figure 5.4: Performance gain in Hive and Spark for a million smart meters

Figure 5.5: Performance of Spark and Hive in iterative querying

5.1.2. Throughput. Throughput refers to the amount of data executed, per second, for

each query execution. Following expression is used to calculate throughput based on

input file size and latency measurements. Figure 5.6 and Figure 5.7 represent the

, File size=1.5MB

Performance gain for 1 million Smart Meters

75

throughput of Hive and Spark for processing one million files across the cluster size

of node 1 and nodes 4 respectively. It can be summarized that Queries with larger

latency have a smaller throughput such as Query #1, Query #11, Query #15, Query

#16, Query #17, and Query #18 with throughput values 686.669 MBps, 651.0047

MBps, 646.1469 MBps, 646.9373 MBps, 646.9897 MBps, and 645.8848 MBps

respectively across 1-node. Alternatively for Figure 5.7, it is observed that the

throughput measurements are higher across the cluster size of 4-nodes in contrast to

1-node cluster. This result matches the theoretical expectation as latency across four

nodes is reduced in comparison to node one, hence higher throughput. Hadoop

scalability to accommodate large volume of data across multiple nodes using Spark is

excellent with an optimum amount of execution time of around 15 minutes to process

a million smart meter data. The mean throughput across each node for every batch of

file across Spark and Hive is shown in Figure 5.8. From the experimental results, it is

observed that for a set of files (e.g. 1,000,000 files) the maximum throughput is

achieved at the addition of four nodes in the cluster. Mean throughput for Spark and

Hive with 1 million processing volume across four nodes is recorded as 2433 MBps

and 1977 MBps with a standard deviation of 158.42 MBps and 110 MBps. This

could be accounted for the fact that with the addition of a node the processing time

decreases for executing queries on the same number of files. Moreover, as the

processing volume across each node increases, the throughput is also observed to be

increased sharply. Overall, Spark outperforms Hive in latency but with a tradeoff in

available memory resources.

Figure 5.6: Mean throughput result for Spark and Hive across Node 1- 1 million smart

meters

76

Figure 5.7: Mean throughput result for Spark and Hive across 4 Nodes and 1

million smart meters

Figure 5.8: Mean throughput result for Spark and Hive across 1 Node, 2

Nodes, 3 Nodes, and 4 Nodes

77

5.2. Comparison of Experimental Results with Proprietary Tools and RDMS

IBM’s Informix big data tool and relational databases from [45] were used as

a benchmark to compare the processing time for running queries on one million smart

meters data. Table 5.1 provides a synopsis of performance comparison between the

experimental results for Spark and Hive with respect to IBM’s proprietary tool and

relational database management system.

 Table 5.1: Comparison of Hadoop processing engines with IBM proprietary tool and

relational database management system [45]

From Table 5.1, we can deduce that for a million smart meters processing,

Spark and Hive have an intermediate performance in comparison to IBM’s

proprietary tool and relational database management system. Relational database

management system perform the worst for one million smart meters processing that

require a storage of 1.3 TB. For 1.5 TB files size, Spark’s processing time was 12-15

minutes for one million smart meters whereas Hive took about 28-34 minutes. On the

other hand, IBM’s processing tool took the least time ranging from 25 seconds to 6

minutes. However, the size of one million smart meters files was only 350 GB for

IBM’s tool while it was 1.5 TB for Spark and Hive. Thus, it can be concluded that for

the same storage of 1.5 TB for one million smart meter dataset, the IBM proprietary

tool could take longer than Spark and Hive processing time.

A large data processing procedure which might take hours of processing time

on a centralized relational database might take just roughly 15 minutes when the same

data is distributed across Hadoop cluster with several nodes given all processing be

done in parallel. The residual graphs of latency and throughput for query wise

execution across each node can be found in the appendix section.

 IBM Relational

Proprietary Tool Database

Spark Hive

Run time for 1

million meters

25 sec to

6 min

2-7 hours 12 to 15

minutes

28-34 minutes

Storage required

for 1 million

meters

350GB 1.3TB 1.5TB (w/o

replication)

1.5 TB (w/o

replication)

78

. Chapter 6. Visualization on Hadoop for Smart Meter Data

Hue is a web-based interactive query editor in the Hadoop stack of Cloudera that

allows data visualization in real time [44]. Hue utilizes hive SQL Query engine to

generate graphs for different levels of stakeholders as discussed in Chapter 3. For

visualization purpose, we sampled 10 smart meters data from the generated dataset in

order to demonstrate an example of how visualization can be performed on Hadoop

ecosystem.

6.1. Consumer

 Query #1: Total consumption of each appliance for consumer’s house

everyday in a week. Figure 6.1 represents the graphical output for Query #1.

Figure 6.1: Consumer’s home appliances consumption for each day in a week

 Query #2: Total consumption of each appliance for consumer’s house each

week in a month. Figure 6.2 represents the output for Query #2 in tabular

format.

Figure 6.2: Consumer’s home appliances consumption for each week in a month

79

 Query #3: Total consumption of each appliance for consumer’s house on a

monthly basis. Figure 6.3 represents the graphical output for Query #3.

Figure 6.3: Consumer’s home appliances consumption for each month of the

year

 Query #4: Total annual power consumption of each home appliance of the

consumer. Figure 6.4 represents the graphical output for Query #4.

Figure 6.4: Total annual consumption of each home appliance for the consumer

 Query #5: Total annual consumption of consumer’s house and total annual

consumption of all houses in that respective community for the same year. .

Figure 6.5 represents the output for Query #5 in tabular format.

80

Figure 6.5: Consumer’s annual consumption in percentage with respect to the

community’s total consumption

6.2. Community Utility Provider

 Query #6: Total consumption of each house in a community for everyday in a

week. Figure 6.6 represents the graphical output for Query #6.

Figure 6.6: Total annual consumption for all houses in a community each day

 Query #7. Total consumption of each house device in a community a week. .

Figure 6.7 represents the graphical output for Query #7.

Figure 6.7: Appliance consumption for all houses in a community for one

week

81

 Query #8. Total consumption of each house in a community every week of a

month. Figure 6.8 represents the graphical output for Query #8.

Figure 6.8: Total consumption of each house in a community every week of the

month

 Query #9: Total consumption of each house in a community every month of

the year. Figure 6.9 represents the graphical output for Query #9.

Figure 6.9: Total consumption of each house in a community on a monthly basis

 Query #10: Total consumption of each house in a community annually. .

Figure 6.10 represents the graphical output for Query #10.

6.3. State Utility Provider

 Query #11: Total consumption of each community of a state every day in a

week. . Figure 6.11 represents the graphical output for Query #11.

82

Figure 6.10: Total annual consumption of each house in a community

Figure 6.11: Total consumption of each community of a state every day in a week

 Query #12: Total consumption of each community of a state for each week in

a given month. Figure 6.12 represents the graphical output for Query #12.

Figure 6.12: Total consumption of each community of a state every day in a

week

 Query #13: Total consumption of each community of a state on a monthly

basis. Figure 6.13 represents the graphical output for Query #13.

83

Figure 6.13: Total consumption of each community of a state on a monthly

basis

 Query #14: Total annual consumption of each community of a state. Figure

6.14 represents the graphical output for Query #14.

Figure 6.14: Total annual consumption of each community of a state

6.4. National Utility Provider

 Query #15: Total consumption of each state of a country everyday in a

week. Figure 6.15 represents the graphical output for Query #15.

Figure 6.15: Total consumption of each state of a country every day in a week

84

 Query #16: Total consumption of each state of a country on a weekly

basis. Figure 6.16 represents the graphical output for Query #16.

Figure 6.16: Total consumption of each state of a country weekly basis

85

. Chapter 7. Conclusion, Limitations and Future Work

The goal of this thesis was to build a high end commodity hardware

computing cluster and utilizing the open source data storage, processing, analyzing,

and visualizing residential area big data. A dataset for one year of everyday energy

consumption using smart meter was obtained from a research team at University of

Massachusetts. In this thesis, using ARIMA modeling synthetic data was generated

for one million smart meters using the sample dataset. The one million meter was

geographically distributed into the seven UAE emirates based on the latest population

percentage in each emirate.

A four nodes computing cluster was designed and configured using high end

quad core CPU’s and large RAM and disk storage. The open source file distributed

system (Hadoop) was installed on the cluster, configuring one machine as the name

node (master) and three machines as data nodes (slaves). The one million smart meter

big data was modeled as a data cube using the On-Line Analytical Processing

technique to develop SQL queries for processing on top of the file distributed system

(hadoop). These queries were utilized for the smart meter big data analysis using two

processing engines on top of hadoop; Spark and Hive for their performance evaluation

in terms of latency, throughput, and memory usage. The outcome of this was

compared with two traditional and proprietary existing energy management

techniques for smart meter big data. It was found that the proposed system

outperformed the traditional system 20 times but it’s less good than the proprietary

system. It’s worth mentioning that the proprietary system is not an open source

platform and used specialized cluster resources that cost more money compared to our

open source commodity hardware cluster.

One major additional contribution was to develop a visualization interface

using open source Hadoop based data visualization tool, called Hue. Different

stakeholder queries are executed on Hue to generate graphs and tabular data

corresponding to each stakeholder. These graphs can be used by home consumers and

utility providers to gain useful insight into the periodic consumption trend of different

home appliances, houses, community, state, and country at large. This helps home

owners and utility to better manage the demand response of energy. This outcome was

86

compared with the existing Google home energy management system called, Google

power meter which only catered to the visualization of individual appliances of the

home owners but lacked a unified visualization platform for utility providers on

community, state, and country level.

In addition to the residential area energy management visualization, a

performance evaluation of two analysis and processing engines; Spark and Hive was

also achieved. In-memory processing provides a significant performance gain and

speed boost in Spark as compared to Hive. Additionally, storing the input data in-

memory in subsequent query iterations greatly benefits the Spark latency in an

iterative querying environment. From the experimental results, Spark proved to have

performed almost 10 times better than Hive. Optimum selection of SQL engine in

reality is very subjective. Even though Spark provides in-memory computation that

fosters low latency, the memory constraint and limited network bandwidth should be

taken into consideration. Hive can be chosen for analysis if the available hardware

resources are limited. For processing small datasets on a small cluster, Hive can be a

good choice to obtain stable query response without any out-of-memory exceptions.

Moreover, the execution times for writing a few MBs on disk or in-memory do not

have much difference so Hive can be preferred for small datasets in a cluster. In a

large size cluster for processing medium to large datasets, Spark is strongly

recommended over Hive.

Some limitations were also identified in this work such as the use of a

structured data format for processing. Hadoop is designed for processing bulk volume

of unstructured and semi structured data efficiently. Since the available dataset for

one smart home was in structured CSV file format, we used the available dataset for

generating, storing, and processing one million smart meters data.

For the future work, we recommend that focus can be given on efficient and

optimized performance of Hive and SparkSQL by tuning in the default configuration

settings and parameters in a Hadoop cluster. Additionally, it would be interesting to

investigate the query plans for both processing systems to study which database

algorithms are being invoked for the query execution.

87

5. References

[1] "What is Hadoop?", IBM Big Data & Analytics Hub, 2016. [Online]. Available:

http://www.ibmbigdatahub.com/blog/what-hadoop. [Accessed: 29- Jun- 2018].

[2] H. Harshawardhan, S. Bhosale1 and D. Gadekar, "A Review Paper on Big Data

and Hadoop," International Journal of Scientific and Research Publications, vol.

4, no. 10, pp. 1-3, 2014.

[3] P. Patil and R. Phursule, "Survey Paper on Big Data Processing and Hadoop

Components," International Journal of Science and Research (IJSR), vol. 3, no.

10, pp. 585-590, 2014.

[4] S. S. Refaat, H. Abu-Rub and A. Mohamed, "Big Data, Better Energy

Management and Control Decisions for Distribution Systems in Smart Grid,"

in 2016 IEEE International Conference on Big Data (Big Data), Washington,

DC, 2016, pp. 3115-3120.

[5] M. V. Moreno et al., "Applicability of Big Data Techniques to Smart Cities

Deployments," IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp.

800-809, April 2017.

[6] Zhou, Kaile, Fu, Chao, Yang and Shanlin, “Big Data Driven Smart Energy

Management: From Big Data to Big Insights,” Renewable and Sustainable

Energy Reviews, vol. 56, pp. 215-225, 2016.

[7] I. Mavridis and H. Karatza, “Performance Evaluation of Cloud-Based Log File

Analysis with Apache Hadoop and Apache Spark," Journal of Systems and

Software, vol. 56, pp. 133-151, March 2017.

[8] C. Wang, C. Tsai, C. Fan, S. Yuan, “A Hadoop based Weblog Analysis System,”

in 7th International Conference on Ubi-Media Computing and Workshops (U-

MEDIA 2014), Ulaanbaatar, Mongolia, 2014, pp. 72–77.

[9] S. Narkhede and T. Baraskar, “HMR Log Analyzer: Analyze Web Application

Logs over Hadoop MapReduce.” International Journal of UbiComp (IJU), vol.

4, pp. 41–51, July 2013.

[11] D. Mysore, S. Khupat and S. Jain, "Introduction to Big Data Classification and

Architecture", IBM, 2013. [Online]. Available:

https://www.ibm.com/developerworks/library/bd-archpatterns1/. [Accessed: 29-

Jun- 2018].

88

[10] H. Yu and D. Wang, “ Mass Log Data Processing and Mining Based on Hadoop

and Cloud Computing,” in 7th International Conference on Computer Science

and Education (ICCSE 2012), 2012, pp. 14–17.

[12] V. Fanibhare and V. Dahake, "SmartGrids: MapReduce framework using

Hadoop," in 2016 3rd International Conference on Signal Processing and

Integrated Networks (SPIN), Noida, 2016, pp. 400-405.

[13] M. Vaidya and S. Deshpande, "Distributed Data Management in Energy Sector

using Hadoop," in 2015 IEEE Bombay Section Symposium (IBSS), Mumbai,

2015, pp. 1-6.

[14] S. Prasad and S. B. Avinash, "Smart Meter Data Analytics using OpenTSDB and

Hadoop," in 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia),

Bangalore, 2013, pp. 1-6.

[15] R. T. Kaushik, M. Bhandarkar and K. Nahrstedt, "Evaluation and Analysis of

GreenHDFS: A Self-Adaptive, Energy-Conserving Variant of the Hadoop

Distributed File System," in 2010 IEEE Second International Conference on

Cloud Computing Technology and Science, Indianapolis, IN, 2010, pp. 274-287.

[16] M. Mayilvaganan and M. Sabitha, "A Cloud-Based Architecture for Big-Data

Analytics in Smart Grid: A Proposal," in 2013 IEEE International Conference

on Computational Intelligence and Computing Research, 2013, pp. 1-4.

[17] D. Alahakoon and X. Yu, "Smart Electricity Meter Data Intelligence for Future

Energy Systems: A Survey," IEEE Transactions on Industrial Informatics, vol.

12, no. 1, pp. 425-436, Feb. 2016.

[18] Xiufeng Liu, Per Sieverts Nielsen, “A Hybrid ICT-Solution for Smart Meter Data

Analytics,” Journal of Energy, vol. 115, pp. 1710-1722, 2016.

[19] Y. Shao, C. Li, W. Dong and Y. Liu, "Energy-Aware Dynamic Resource

Allocation on Hadoop YARN Cluster," in 2016 IEEE 18th International

Conference on High Performance Computing and Communications, Sydney,

NSW, 2016, pp. 364-371.

[20] J. Choi, M. Kim and J. Yoon, "Implementation of the Big Data Management

System for Demand Side Energy Management," in 2015 IEEE International

Conference on Computer and Information Technology; Ubiquitous Computing

and Communications; Dependable, Autonomic and Secure Computing;

Pervasive Intelligence and Computing, Liverpool, 2015, pp. 1515-1520.

89

[21] T. Ivanov, R. Niemann, S. Izberovic, M. Rosselli, K. Tolle and R. V. Zicari,

"Performance Evaluation of Enterprise Big Data Platforms with HiBench," in

2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, 2015, pp. 120-127.

[22] I. Alzuru, K. Long, B. Gowda, D. Zimmerman and T. Li, "Hadoop

Characterization," in 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, 2015, pp.

96-103.

[23] Y. Samadi, M. Zbakh and C. Tadonki, "Comparative Study between Hadoop and

Spark based on Hibench Benchmarks," in 2016 2nd International Conference

on Cloud Computing Technologies and Applications (CloudTech), Marrakech,

2016, pp. 267-275.

[24] Y. Li, L. Wang, L. Ji and C. Liao, "A Data Warehouse Architecture Supporting

Energy Management of Intelligent Electricity System", in Proceedings of the

2nd International Conference on Computer Science and Electronics Engineering

(ICCSEE 2013), 2013.

[25] José Cavalheiro and Paulo Carreira, “A Multidimensional Data Model Design for

Building Energy Management,” Advanced Engineering Informatics, vol. 30, pp.

619-632, 2016.

[26] M. Mehdi, R. Sahay, W. Qu, S. Debloch and E. Curry, "Real-time Generation of

Linked Sensor Data and Multidimensional Data Cubes for Smart

Environments", INSIGHT Centre for Data Analytics, National University of

Ireland, Galway Ireland, 2009.

[27] T. Weibel, “Smart - UMass Trace Repository,” Traces.cs.umass.edu, 2017.

[Online]. Available at: http://traces.cs.umass.edu/index.php/Smart/Smart

[28] R. Dalinina, "Introduction to Forecasting with ARIMA in R", Datascience.com,

2018. [Online]. Available: https://www.datascience.com/blog/introduction-to-

forecasting-with-arima-in-r-learn-data-science-tutorials. [Accessed: 29- Jun-

2018].

[29] P. Müller, “Markov Chain Monte Carlo Methods,” in International

Encyclopedia of the Social & Behavioral Sciences, edited by Neil J. Smelser and

Paul B. Baltes, Pergamon, Oxford, 2001, pp. 9236-9240, ISBN 9780080430768,

https://doi.org/10.1016/B0-08-043076-7/00469-1.

[30] "United Arab Emirates", En.wikipedia.org, 2018. [Online]. Available:

https://en.wikipedia.org/wiki/United_Arab_Emirates. [Accessed: 2- Jul- 2018].

https://doi.org/10.1016/B0-08-043076-7/00469-1

90

[31] "2 The Multidimensional Data Model", Docs.oracle.com, 2017. [Online].

Available:

https://docs.oracle.com/cd/B13789_01/olap.101/b10333/multimodel.htm.

[Accessed: 29- Jun- 2018].

[32] J. Kestelyn, "It's All About You: New Community Forums for Cloudera

Customers and Users - Cloudera Engineering Blog", Cloudera Engineering

Blog, 2018. [Online]. Available: http://blog.cloudera.com/blog/2013/07/its-all-

about-you-new-community-forums-for-cloudera-customers-and-users/.

[33] K. Singh and R. Kaur, "Hadoop: Addressing Challenges of Big Data," in 2014

IEEE International Advance Computing Conference (IACC), Gurgaon, 2014, pp.

686-687.

[34] D. Borthakur, "HDFS Architecture Guide", Hadoop, 2013. [Online]. Available:

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. [Accessed: 29- Jun-

2018].

[35] K. Singh and R. Kaur, "Hadoop: Addressing Challenges of Big Data," in 2014

IEEE International Advance Computing Conference (IACC), Gurgaon, 2014, pp.

686-689.

[36] P. Patil and R. Phursule, "Survey Paper on Big Data Processing and Hadoop

Components", International Journal of Science and Research (IJSR), vol. 3, no.

10, pp. 585-590, 2014.

[37] S. Humbetov, "Data-intensive Computing with Map-Reduce and Hadoop," in

2012 6th International Conference on Application of Information and

Communication Technologies (AICT), Tbilisi, 2012, pp. 1-5.

[38] Rui Xue, “SQL Engines for Big Data Analytics: SQL on Hadoop”, Master’s

thesis, Aalto University, Espoo, 2015.

[39] A. Thusoo et al., "Hive - A Petabyte Scale Data Warehouse Using Hadoop," in

2010 IEEE 26th International Conference on Data Engineering (ICDE 2010),

Long Beach, CA, 2010, pp. 996-1005.

[40] N. Pushpalatha and P. Sudheer, "Data Processing in Big Data by Using Hive

Interface," International Journal of Advanced Research in Computer Science

and Advanced Studies, vol. 3, no. 4, pp. 272-277, 2015.

[41] "Apache Spark - Unified Analytics Engine for Big Data", Spark.apache.org,

2018. [Online]. Available: https://spark.apache.org/. [Accessed: 29- Jun- 2018].

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6385344
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6385344
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6385344

91

[42] M. Zaharia, M. Chowdhury, T. Das, A. Dave, M. Mccauley, M. J.Franklin, S.

Shankar and I. Stoica, "Fast and Interactive Analytics over Hadoop Networked

Systems Data with Spark", usenix.org, 2018. [Online]. Available:

https://www.usenix.org/system/files/login/articles/zaharia.pdf. [Accessed: 29-

Jun- 2018].

[43] "Oozie - Apache Oozie Workflow Scheduler for Hadoop", Oozie.apache.org,

2018. [Online]. Available: http://oozie.apache.org/.[Accessed: 29- Jun- 2018].

[44] "Get Started with Hue | 5.9.x | Cloudera Documentation", Cloudera.com, 2018.

[Online]. Available: https://www.cloudera.com/documentation/enterprise/5-9-

x/topics/hue.html. [Accessed: 29- Jun- 2018].

[45] “Managing Big Data for Smart Grids and Smart Meters”, IBM.com, 2012.

[Online]. Available at: http://www-935.ibm.com /services/multimedia/

Managing_big_data_for_smart_grids_and_smart_meters.pdf. [Accessed: 29-

Jun- 2018].

http://www-935.ibm.com/

92

6. Appendix A: Experimentation Results

This appendix provides average latency, throughput, and memory usage values for

experiment 1 and 2.

A.1. Latency for query wise execution

Figure A.1.1: Mean Latency for Spark and Hive across 1 Node, 10 smart meter files

per query

Figure A.1.2: Mean Latency for Spark and Hive across 1 Node, 100 smart meter files

per query

93

Figure A.1.3: Mean Latency for Spark and Hive across 1 Node, 1000 smart meter

files per query

Figure A.1.4: Mean Latency for Spark and Hive across 1 Node, 10000 smart meter

files per query

94

Figure A.1.5: Mean Latency for Spark and Hive across 1 Node, 100000 smart meter

files per query

Figure A.1.6: Mean Latency for Spark and Hive across 1 Node, 1,000,000 smart

meter files per query

95

Figure A.1.7: Mean Latency for Spark and Hive across 2 Nodes, 10 smart meter files

per query

Figure A.1.8: Mean Latency for Spark and Hive across 2 Nodes, 100 smart meter files

per query

96

Figure A.1.9: Mean Latency for Spark and Hive across 2 Nodes, 1000 smart meter

files per query

Figure A.1.10: Mean Latency for Spark and Hive across 2 Nodes, 10000 smart meter

files per query

97

Figure A.1.11: Mean Latency for Spark and Hive across 2 Nodes, 100000 smart meter

files per query

Figure A.1.12: Mean Latency for Spark and Hive across 2 Nodes, 1,000,000 smart

meter files per query

98

Figure A.1.13: Mean Latency for Spark and Hive across 3 Nodes, 10 smart meter files

per query

Figure A.1.14: Mean Latency for Spark and Hive across 3 Nodes, 100 smart meter

files per query

99

Figure A.1.15: Mean Latency for Spark and Hive across 3 Nodes, 1000 smart meter

files per query

Figure A.1.16: Mean Latency for Spark and Hive across 3 Nodes, 10000 smart meter

files per query

100

Figure A.1.17: Mean Latency for Spark and Hive across 3 Nodes, 100000 smart meter

files per query

Figure A.1.18: Mean Latency for Spark and Hive across 3 Nodes, 1,000,000 smart

meter files per query

101

Figure A.1.19: Mean Latency for Spark and Hive across 4 Nodes, 10 smart meter files

per query

Figure A.1.20: Mean Latency for Spark and Hive across 4 Nodes, 100 smart meter

files per query

102

Figure A.1.21: Mean Latency for Spark and Hive across 4 Nodes, 1000 smart meter

files per query

Figure A.1.22: Mean Latency for Spark and Hive across 4 Nodes, 10000 smart meter

files per query

103

Figure A.1.23: Mean Latency for Spark and Hive across 4 Nodes, 100000 smart meter

files per query

Figure A.1.24: Mean Latency for Spark and Hive across 4 Nodes, 100000 smart meter

files per query

104

A.2. Throughput for query wise execution

Figure A.2.1: Mean Throughput for Spark and Hive across 1 Node, 10 smart meter

files per query

Figure A.2.2: Mean Throughput for Spark and Hive across 1 Nodes, 100 smart meter

files per query

105

Figure A.2.3: Mean Throughput for Spark and Hive across 1 Nodes, 1000 smart meter

files per query

Figure A.2.4: Mean Throughput for Spark and Hive across 1 Nodes, 10000 smart

meter files per query

106

Figure A.2.5: Mean Throughput for Spark and Hive across 1 Node, 100000 smart

meter files per query

Figure A.2.6: Mean Throughput for Spark and Hive across 1 Node, 1,000,000 smart

meter files per query

107

Figure A.2.7: Mean Throughput for Spark and Hive across 2 Nodes, 10 smart meter

files per query

Figure A.2.8: Mean Throughput for Spark and Hive across 2 Nodes, 100 smart meter

files per query

108

Figure A.2.9: Mean Throughput for Spark and Hive across 2 Nodes, 1000 smart meter

files per query

Figure A.2.10: Mean Throughput for Spark and Hive across 2 Nodes, 10000 smart

meter files per query

109

Figure A.2.11: Mean Throughput for Spark and Hive across 2 Nodes, 100000 smart

meter files per query

Figure A.2.12: Mean Throughput for Spark and Hive across 2 Nodes, 1,000,000 smart

meter files per query

110

Figure A.2.13: Mean Throughput for Spark and Hive across 3 Nodes, 10 smart meter

files per query

Figure A.2.14: Mean Throughput for Spark and Hive across 3 Nodes, 100 smart meter

files per query

111

Figure A.2.15: Mean Throughput for Spark and Hive across 3 Nodes, 1000 smart

meter files per query

Figure A.2.16: Mean Throughput for Spark and Hive across 3 Nodes, 10000 smart

meter files per query

112

Figure A.2.17: Mean Throughput for Spark and Hive across 3 Nodes, 100000 smart

meter files per query

Figure A.2.18: Mean Throughput for Spark and Hive across 3 Nodes, 1,000,000 smart

meter files per query

113

Figure A.2.19: Mean Throughput for Spark and Hive across 4 Nodes, 10 smart meter

files per query

Figure A.2.20: Mean Throughput for Spark and Hive across 4 Nodes, 100 smart meter

files per query

114

Figure A.2.21: Mean Throughput for Spark and Hive across 4 Nodes, 1000 smart

meter files per query

Figure A.2.22: Mean Throughput for Spark and Hive across 4 Nodes, 10000 smart

meter files per query

115

Figure A.2.23: Mean Throughput for Spark and Hive across 4 Nodes, 100000 smart

meter files per query

Figure A.2.24: Mean Throughput for Spark and Hive across 4 Nodes, 1,000,000 smart

meter files per query

116

7. Vita

Ragini Gupta was born in 1993, in New Delhi, India. She received her

primary, secondary and high school education in India. She received her B.Sc. degree

in Computer Engineering from the American University of Sharjah in 2016.

 In January 2016, she joined the master’s program of Computer Engineering at

the American University of Sharjah as a graduate teaching assistant. During the

course of her master's study, she co-authored two conference papers and one journal

paper. Her research interests are Big Data, Internet of Things, Cyber Physical

Systems, and Real Time Embedded Systems.

