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1. Abstract 

 

As Internet of Things (IoT) technology and open source file distributed system 

applications are evolving, home appliances can be monitored and controlled via an 

IoT-based home gateway. These gateways collect energy consumption from home 

appliances and hence create a large amount of data. Due to the large amount of data 

being generated, utility companies require platforms that enable them to store, 

process, analyze, visualize, and monetize the energy consumption data, and to gain 

meaningful insights into load profiles. This thesis proposes a residential area smart 

energy management system that enables home owners and utilities to monitor 

consumption patterns of each home, community, state, and country. Using an open 

source file distributed file system tools, home owners can monitor their home 

appliances energy consumption on a periodic basis. Additionally, utilities can also 

monitor the neighborhoods, communities, states, and country’s consumption.  The 

architecture was tested to process data from one million smart meters. This data was 

synthetically generated based on one year of real consumption data from a home. The 

big data was stored in a Hadoop cluster of four nodes. Dimensional modeling was 

used to develop benchmarking queries to create a real time dashboard consisting of 

charts, graphs, and reports for home owners and utilities. Both Spark and Hive were 

used to implement the benchmarking queries and it was found that Spark 

outperformed Hive in terms of latency and processor throughput. Spark’s average 

latency was fifteen minutes with an average throughput of 2400 MBps while Hive’s 

average latency was thirty-four minutes with an average throughput of 2200 MBps for 

processing one million smart meters in a four nodes cluster.  To validate the proposed 

system outcomes, the results were compared with existing proprietary tools such as 

IBM’s TimeSeries and relational database management systems. Spark and Hive have 

an intermediate performance in comparison to IBM’s proprietary tool and relational 

database management system. The results demonstrate that the proposed solution can 

be utilized to provide energy data consumption visualization for consumer and utility 

provider stakeholders, while implementing Spark as the backend processing engine 

for low latency, performance gain, and a high throughput.    

Search Terms:  Internet of Things; Big data; Hadoop; Smart energy management 

system; Spark; Hive 
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. Chapter 1.   Introduction 

 

This chapter provides an overview of big data and its relevance in the growing 

Smart Grid energy sector.  

1.1. Big Data in a Smart Grid 

Electrical energy and environment have been observed as the mainspring for 

the growing energy economy. Attaining a better quality of life requires a high quality 

electricity generation, transmission, distribution, consumption, and management. 

There are many challenges currently faced by the electric power systems such as 

increased cost of fossil fuels, increased carbon footprint, aging equipment, energy 

resources security, environmental impacts, and inability to accommodate new 

trending technologies. Each year very large volumes of data gets collected in the 

home energy sector due to continuous application of sensors, wireless networks, 

communication networks, and power distribution outlets. Due to these reasons, smart 

energy technologies and green environment have been recognized as a fundamental 

research priority in many research centers. Motivated by the aforementioned reasons, 

the energy sector is deviating towards the era of big data in Smart Grids. In order to 

achieve valuable insights of this accumulated energy big data, big data driven smart 

energy management technologies have become an increasing trend. The future smart 

energy management systems should be able to seamlessly accommodate data from the 

renewable and non-renewable energy generation units in residential, business, and 

industrial networks. It should optimize energy consumption for air conditioning, 

lighting, heating and cooling systems in order to ensure that the electricity is 

consumed only when needed. Such smart energy management system will provide a 

remote access to the utility providers in order to view their power generation pattern 

in close relation to the clients’ electricity consumption behavior. For example, the 

streaming data from residential areas will be visually represented in reports that will 

enable home owners and utilities to monitor the supply and meet the demand to 

ensure that the rapid changes in demand are anticipated beforehand and upgrade the 

power network efficiently. Significant research efforts are needed in order to 

recognize this vision.   
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Big Data in a smart grid comprises of any complex, diverse form of structured and 

unstructured data in large massive volume. There are five distinguished characteristics 

of Big Data (5Vs) [1-2]:  

 Volume: Increasing volumes of datasets in size of petabytes and terabytes.  

 Variety: Different types and formats of datasets  

 Velocity: The rate of data generation which is being generated at an 

alarming rate.  

 Value: Data has the potential to be mined to generate and value and 

meaningful results. 

 Veracity: The inconsistencies and uncertainties (heterogeneity) in the 

data.  

 For a Smart Grid system, big data sources are residential, building, factories, 

power plants, renewable energy resources, electric vehicles, and environmental events 

as shown in Figure 1.1.  Figure 1.1 demonstrates a lifecycle for Smart Grid initiating 

from Data Generation to Data Analytics at the top layer.  

 

Figure 1.1: Lifecycle of smart grid data from data generation to data analytics with a 

learn and response loop [3] 

Smart Grid has the potential to capture a massive volume of data through 

electrical and communication networks which can be harnessed to make strategic 

control decisions.  The big data of a smart grid can be acquired, stored, processed, 

analyzed, visualized and monetized in different ways. When big data is stored and 

processed, additional dimensions come into action, such as management, security, 



14 

 

cost and governance. The smart grid data requires effective analytics, management in 

order to enhance grid reliability, operational efficiency and meet the increasing 

consumer demand with the help of information exchange and monitor in real-time.  

The different sources of energy data that contribute to forming big data in a 

smart grid are elaborated in [3]. The residential units play a significant role in Smart 

Grid. The smart meters installation numbers report smart devices consumption in each 

house and its profound impact on the smart grid.      

1.2. Research Problem 

Each day smart meters collect power consumption data generated from 

residential areas home appliances. These produce large volumes of data flow in the 

size of petabytes and terabytes. This massive volume of big data cannot be handled by 

the conventional Relational Database Management Systems (RDMS) in Utility data 

centers. The staggering rate of growth in smart home devices enabled with Internet of 

Things (IoT) technology, and the need to perform data analytics on the captured 

datasets has challenged the use of utility data centers data management capability 

such as RDMS. Open source big data platforms such as Apache Hadoop can be 

utilized to assist in storage and parallel processing of this big data utilizing Map 

Reduce algorithm (MRA). MRA is a solution that not only helped in the data 

aggregation but was also useful in gaining meaningful insights from the collected 

information. Hadoop storage popularly known as, Hadoop Distributed File System 

Storage (HDFS) and RDMS serve the same roles in terms of collection, storage, and 

interpretation of collected datasets.  However, the two platforms are very different in 

terms of the ‘type’ of data each platform handles. RDMS focuses on small to medium 

scale well-structured data by storing tables in the form of rows and columns with 

primary keys and foreign keys. Different query languages such as SQL can be used in 

a RDMS to access, retrieve, store, process, manipulate, and interpret data. On the 

other hand, HDFS concentrates on semi structured and unstructured data such as 

videos, audio files, and text files and different file formats such as XML, JSON, etc. 

RDMS is not powerful enough when it comes to horizontal scalability and delivers 

results with high latency with addition of more storage systems and/or CPUs. On the 

contrary, Hadoop’s infrastructure is of distributed file system with clusters of many 

systems in horizontal scalability.  
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Thus, there were the following major challenges in using RDMS that gave birth to 

Hadoop framework: 

 Large amount of unstructured and semi structured data adding to the storage 

and replication cost.  

 Parallel Processing and horizontal scaling. 

 As the data grows vertically, there is an increasing query performance related 

problems with RDMS due to high latency with the large number of rows in a 

table.  

 The traditional RDMS cannot be utilized in processing requests from 

customers for monitoring real time usage data.  

 Table 1.1 demonstrates the major differences between a RDMS and Hadoop 

framework.  

Table 1.1: Difference between RDMS and Hadoop HDFS 

Characteristics Hadoop Distributed File System 

(HDFS) 

Relational Database Management 

System  

(RDMS) 

Basic Description Distributed file-based system to store 

data across a range of nodes allowing 
parallel processing 

Traditional column oriented database 

for transactional systems, operational 
DBs, and archiving 

Storage Capability Store TBs and PBs of data Store GBs of data 

Processing Type Supports batch processing, in-memory  Supports batch processing and 
interactive process 

Best for Application Does not allow UPDATION, follows 

WORM (Write Once Read Many) 
paradigm 

Allows UPDATION, multiple writes 

and reads 

Table Schema 

Requirement 

Schemas not required Schemas must be defined 

Type of Data Support Supports multi types of data 

(structured and non-structured) 

Only structured data 

Throughput and Latency High throughput but high latency also 
as data is distributed across nodes in a 

network 

Throughput depends on data size. Low 
latency as data is stored in a 

centralized server.  

   

 

Hadoop is a framework that allows distributed processing of huge data sets 

across clusters which hosts thousands of computer nodes using simple programming 

models. It brings together different components under one umbrella to form a scalable 

system. Hadoop provides a platform for storage and analysis on massive scale of data. 

The Current Apache Hadoop ecosystem consists of the Hadoop Kernel, MapReduce, 

HDFS and various components like Apache Hive, Base, Pig, Sqoop, and Zookeeper 

[72]. The core of Hadoop consists of a storage part, known as Hadoop Distributed file 
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system (HDFS), and the processing part is called Map Reduce. Hadoop is not really a 

type of database but a software ecosystem that provides a platform for massive 

parallel computing. 

1.3. Thesis Statement 

While there are diverse sources of big data in a smart grid, this research 

focuses on the smart meter data in residential areas. This thesis emphasizes on the 

performance evaluation of Hadoop with respect to data querying using two distributed 

computing frameworks; Apache Spark and Apache Hive [1]. Apache Spark is an in-

memory, open source fast processing engine on top of Hadoop for big data analytics 

and machine learning. Spark Queries are executed as individual jobs that runs in 

multiple stages, each stage comprising of multiple tasks utilizing Directed Acyclic 

Graphs (DAG). Apache Hive is an open source distributed batch processing engine 

that facilitates map reduce programming model utilizing the map reduce engine. Both 

frameworks will be deployed for the same data querying and data reporting smart 

home uses cases in order to analyze which engine outperforms in terms of latency and 

throughput. Both processing engines will share a unified data storage logical layer of 

Hadoop distributed file system (HDFS) enabling parallel storage and processing 

across several Hadoop cluster nodes. To analyze the performance between the two 

engines, the cluster will be scaled from one node to four nodes, with each cluster-size 

processing logarithmic batch of files from ten to one million smart meters. This thesis 

will also provide a solution for storing, processing, analyzing and visualizing smart 

meter data that will benefit the consumers and utility providers in gaining insights 

from the data and discovering significant consumption patterns for each housing unit. 

Additionally, big data and analytics can help the utility providers to uncover 

anomalies at energy network that can help to predict and prevent power outages and 

help in planning. The proposed solution can help home owners, community owners, 

state owner, and country owner to efficiently monitor and manage the energy supply-

demand. This will improve the power consumption, reduce the power outages, reduce 

the operational cost, and improve the grid performance at large.  Stakeholders can 

access the smart meter real time data through a web portal and visualize the 

consumption pattern of home appliances and the grid performance. 
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. Chapter 2.   Background and Literature Review 

 

This chapter describes the theoretical background and the main motivation that 

fostered the current research. A number of applications of Smart Grid in the energy 

sector utilizing big data solutions can be found in the literature, wherein the main 

objective is to process large volumes of data and estimate the particular load profiles 

of consumers depending on different contexts. Smart Grids produce gigabytes of data 

which leads to several issues due to storage reasons. Thus, it becomes instrumental to 

map this Gigabytes of data into a few Kilobytes or Megabytes, which is enabled by 

utilizing the technique of big data for efficient storage. Different researches and 

surveys highlight the significance of big data for better energy management and 

control decisions in distributed systems of smart grid [4-6].   

For instance, in [4] the authors emphasize the different benefits of big data in 

power distribution smart grids such as reduced electric grid network losses, large 

scale optimization of distributed energy system resources, maintain reliable power 

supply during peak load hours and critical loads, and determining the root causes of 

failure. However, the authors focus on different criteria that should be adopted in 

selecting the best tool for big data management. There are many challenges involved 

in power distribution systems to extract relevant information from the huge data 

volume and foster online decision making. Some of these challenges include the data 

challenges corresponding to data scalability, velocity, veracity, volume, volatility and 

data quality. The big data tool should have the ability to handle large volumes of 

structured, semi structured and unstructured data. Next are the processing and 

analytical challenges since the tool should be able to identify the relevant data sources 

to extract useful insights and analyze information in order to satisfy the smart grid 

objectives. Other challenges involve the big data security and the cost of deploying a 

big data system as it is crucial to use the right and cost effective infrastructure for big 

data.  

Alternatively, in [6] the authors propose a four layered IoT based architecture 

that utilizes big data techniques in the Management layer to obtain energy efficiency 

in the buildings of a smart city. The paper focuses on different Big Data analytic 

techniques that can be used for intelligent decision making process in energy 

management. Big data analytic algorithms such as Artificial Neural Networks, and 
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Support Vector Machines, can be used to predict energy requirements, particularly for 

HVAC units. The results obtained after developing the energy consumption predictive 

models for buildings showed that with the application of predictive models there was 

a 23% of energy savings per month on HVAC units without compromising on the 

consumer comfort.  

In [6], authors provide a comprehensive study of big data driven smart energy 

management. Different sectors of energy management such as power generation side 

management, micro grid and renewable energy management, asset management, and 

demand side management (DSM) have been taken into study for the application of big 

data analytics techniques. The authors emphasize on the issues that need to be 

addressed in adoption of big data analytics techniques such as data processing and 

analysis. The traditional techniques such as data mining, machine learning, and 

statistical analysis may face several complexities in dealing with energy data. To 

enable smart energy management tasks, effective and efficient data mining analysis 

techniques are required to establish models and obtain simulation results that can be 

well interpreted for strategic decision making.  

In response to the different requirements to be fulfilled by big data, many 

researches have been aligned towards using several big data frameworks such as 

Apache Hadoop and Apache Spark in energy domain. Authors in [8], performed an 

evaluation of cloud-based log file analysis using Apache Hadoop and Apache Spark. 

Both the frameworks were utilized to extend the Map Reduce programming model to 

process the log files generated as big data from the HTTP server. The key difference 

between the two ecosystems is that Hadoop performs on-the-disk data processing 

whereas Spark does that in-memory. Experiments were conducted to compare the two 

platforms in terms of parameters such as execution time, scalability, resource 

utilization, cost, and power consumption. For Scalability, the mean execution time of 

the two frameworks was evaluated with increasing size of log file and increase in 

number of node clusters. It was concluded that both Hadoop and Spark showed a 

similar pattern and supported great scalability with up to 1000 GB of data within 5 

cluster nodes. For other performance indicators such as execution time, resource 

utilization and power consumption Apache Spark outperformed Hadoop. However, 

Spark needs a large amount of memory for caching the data. Additionally, the 

requirement to use the main memory for processing adds to the total cost of 
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infrastructure in case of Spark. Thus, the authors conclude that since Hadoop Map 

Reduce is oriented towards batch processing it is a more preferable and cost-effective 

framework for any big data processing application.  

Several other researches in [8-10] have focused on mass log processing based 

on Hadoop Map Reduce model to achieve high scalability, reliability and better 

performance. The log files are first stored in HDFS and processed using Map Reduce 

model and Hadoop mining system. This provides the administrator to analyze the log 

data efficiently and be more decisive in taking decisions. The Map Reduce 

programming model provided an administrative monitoring system for problem 

identification and future trend prediction of the system.  

The utility companies have deployed smart meters that can measure the energy 

consumption of water, gas, and electricity at regular intervals. These smart meters 

tend to generate a large volume of interval data that requires being stored, processed 

and analyzed. The utilities also run large, sophisticated systems that generate power 

and each grid comprises of smart sensors that can monitor the current, voltage, and 

other operating parameters. To achieve operating efficiency, the organization should 

monitor the data delivered by the sensors. Consequently, a big data solution can help 

to analyze power generation (demand) and power consumption (supply) data makes 

sense [11]. 

Many researches proposed different programming models using Map Reduce 

on Hadoop framework for transforming massive amounts of data on distributed 

systems. In [12] and [13], Hadoop Map Reduce framework is utilized where the Big 

Data generated as a result of periodic audit files is stored in Hadoop environment 

using map reduce. In [12], the audit files or the log files are continuously generated 

from Advanced Metering Infrastructure (AMI) installed in Smart Grids that 

corresponds to large bulk of data or Big Data. This data is stored in Hadoop Cluster 

nodes, called the Data Nodes which are controlled by the Name Node instances. 

Additionally, during simulation a Hadoop environment is created with a generator 

unit, solar panel unit, processor unit, industrial unit, power plant and industrial wind 

turbines which are deployed in the network. The data from each individual unit it 

stored on Hadoop HDFS. Each unit sends its log files to a specific allocated node for 

storage in HDFS. The log files generated from all units are applied with Map Reduce 

algorithm wherein each log file is moved into the mapper function from HDFS line by 
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line. The Mapper maps each entry into the equivalent <key, value> pair and generates 

small pieces of data. During the Reduce stage, all the output from the mapper section 

is accumulated and the reducer creates a new set of output and stores it in the HDFS. 

This solves the storage limitation issue. One of the major advantages of Hadoop Map 

Reduce programming model is that the algorithm is performed at the position of the 

data and the data storage and computations are synchronized on all nodes in the 

cluster, thus decreasing the overhead of network traffic involved in shifting data. This 

research was concluded with performance analysis based on parameters such as 

latency, packet delivery ratio, throughput, total energy consumption of all nodes in 

cluster, overall residual energy present in the nodes of Smart Grid in Hadoop 

configuration with respect to the packet size in bytes. Thus, Map Reduce algorithm 

proved instrumental in storing large Gigabytes of data efficiently by mapping it into a 

few kilobytes or Megabytes as the experimental results also showed great 

improvement in Hadoop Map Reduce framework.  

In [13], the authors provide a comprehensive overview on using Hadoop Map 

Reduce in energy sector for analyzing momentary outage data and power theft. The 

authors compare the Hadoop Map Reduce framework with other data storage and 

analytics platforms such as Spark and SAP HANA. However, the latter cause an 

overhead on the machines as they are all in-memory platforms. Thus, the authors have 

recommended on using Hadoop for deploying safety analytics by assessing the meter 

temperature data and predicting the transformer or meter mishaps and fire before the 

event happens. Other factors that make Hadoop outperform other analytic platforms is 

its ability for large data processing on HDFS, processing data on the fly, distributed 

performance and faster access. This ensures Hadoop as one of the most cost effective 

scalable analytics platform available today.  

More researches have been steered in the realm of smart meter data analytics 

using Hadoop HDFS in [14-18].  In [18], authors implemented an information 

integrated pipeline for collecting data from smart meters periodically and utilizing a 

scalable platform like Hadoop for processing and mining big data sets along with a 

web portal for end users to visualize analytical results. Additionally, Hive (an open 

source SQL-based distributed warehouse system) is used on top of Hadoop 

framework for off-line analytic queries in SQL like script language called, Hive –QL. 

The analytic queries are internally translated into Map Reduce jobs and the results are 
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stored into a Hive table, which is a data organizational structure in HDFS. From 

HDFS, the results are exported into PostgresSQL for interactive analytics and 

visualization via web application. Five categories of analytics modules were 

considered: load profiling of customers to study monthly and annual consumption 

variability of customers, pattern discovery and segmentation to perform k-means 

clustering of customers with a similar consumption pattern, load disaggregate to 

segregate energy consumption into temperature-dependent and temperature-

independent loads, forecasting to predict the period of peak demands for energy 

utilities, and online anomaly detection to allow customers to detect their unusual 

consumption compared to their compared to their consumption history and/or 

neighborhood consumption.  Several off-the-shelf analytics functions (such as 

percentile, mean, min, max and median) and algorithms (such as clustering and 

regression) were exported from Apache Common Math library and Spark streaming 

on top of Hadoop to provide analytic results in the form of graphs, charts and reports. 

The effectiveness and efficiency of this solution was tested extensively with real time 

data and synthetic data with successful results.  

Similarly, [14] presents smart meter data as time series data utilizing open 

source tools on Hadoop and HBase for storage and analytics.  HBase is an open 

source column-oriented store modelled on top of Hadoop framework for read/write 

access and storage of very large tables with millions of rows and columns on HDFS 

clusters. Smart meter data is tracked as time series data that is collected continuously 

but in short intervals of time and stored in HBase.  The setup comprised of a fully 

distributed mode of Hadoop comprising of several nodes with different requirements 

based on scalability, reliability, and availability. HBase is utilized for big data storage 

which is in direct communication with the HDFS layer of Hadoop. An open source 

tool, OpenTSDB comes with web based UI that is setup to directly interact with 

HBase and retrieve data accumulated in HDFS. Using OpenTSDB, a request is sent to 

Hadoop with time stamp details and tags and the results are received in graphical or 

report format. OpenTSDB served as an efficient platform to generate graphs on the fly 

with an easy interaction to access data from Hadoop HDFS.  

It is worth mentioning that most data centers and data warehouse systems are 

infamous energy consumers. Hadoop or other data centers whether real or virtual (in 

cloud) execute large computational jobs such as Map Reduce which is often very 
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energy exhaustive. However, to combat the energy management in Hadoop cluster 

nodes, Hadoop has evolved with state-of-the art resource management features that 

help in improving performance through dynamic resource control as described in [19] 

and [20]. In [19] the authors propose the energy-aware dynamic node management 

technology for Map Reduce jobs on Hadoop that ensure the switching ON/OFF the 

cluster nodes to reduce the energy consumption while meeting the Service Level 

Agreement (SLA). This is achieved by deploying YARN on top of Hadoop 

framework. With YARN scheduler, the time-varying workload is predicted based on 

the Map Reduce job history information. Based on this predictive workloads and 

average execution time of nodes, energy aware dynamic node management is used on 

YARN scheduler to assign the suited number of nodes for Map Reduce Tasks. The 

nodes that are retained in the idle state for long periods are eventually switched OFF 

automatically to save energy. Thus, this dynamic scaling-up / scaling-down capability 

in Hadoop utilizing Map Reduce YARN will help in adjusting the size of the cluster 

for big data applications in a specified period of time.  

Different approaches were utilized in the context of performance analysis of 

Hadoop in terms of memory utilization, CPU usage, and scalability in [21], [22], [23]. 

In [22], HiBench stress test tool was deployed on Hadoop stack as a benchmark suite 

to generate a combination of synthetic and real world data. Different HiBench 

workloads of varying sizes were selected for memory usage tracing and scalability.  

Other parameters such as CPU utilization, memory usage, power consumption of 

name node and data nodes were evaluated using two different tools Cloudera manager 

and Datacenter manager Console. From the results, it was inferred that approximately 

96GB of RAM was sufficient enough for the largest size of workload, i.e., 61,600 MB 

in Hadoop data nodes. Moreover, addition of larger memory had little or no 

improvement in the execution time for all workloads. The amount of memory usage 

for each workload was dependent on factors such as algorithm used in processing the 

data set and CPU utilization. In case of CPU intensive Map Reduce jobs such as word 

count, the execution time and power consumption of Hadoop data nodes incremented 

linearly with the increase in size of data set.  

Besides Map Reduce models on Hadoop for Smart Energy Management, 

dimensional models utilizing OLAP (On-Line Analytics Processing) to analyze 

customer consumption data and deliver real time reporting with trend forecasting is 
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studied in [24],[25],[26]. For instance in [24], researchers propose a system 

framework comprising of data warehouse construction, ETL (Extraction-

Transformation-Loading) process, and information representation in the context of 

electricity management of buildings. The framework incorporates multi-dimensional 

modelling for cube construction with the help of the designed star schema. This 

enables the aggregation of data aggregation at different levels and hierarchies 

concerned with monetizing energy consumption. On the side of end-users, a web 

applet UI is introduced to cater to aggregated data representation at different 

granularity levels in order to meet user requirements. Similarly, in [26] a data 

warehouse modelling system is implemented by developing a user-developed agent 

called EDWH agent that aggregated the collected sensor data and generates cubes. 

The data cubes are generated by applying one of the aggregate functions such as 

SUM, AVG, or COUNT or one of the OLAP operations once each day and stored in 

the Data Warehouse agent. The stored cubes are published to the Building Data cloud 

which leverages the data model and exposes it on dashboard in the form of reports 

and graphs. This dashboard visualization helps the users to identify areas of energy 

leaks or electricity usage pattern within their respective buildings.  A similar 

experimental setup is deployed for OLAP modelling using a different data warehouse 

agent called RDF-DCV. The two platforms are evaluated against selected criteria such 

as storage size (latency), query execution time in generating reports, execution time in 

storage and generating cubes. From the results, EDWH outperformed the RDF-DCV 

data warehouse agent in all evaluation parameters.  

Thus it can be stated that Hadoop plays an instrumental role in big data 

analytics due to two main reasons; HDFS and Map Reduce. HDFS provides a fault 

tolerant, scalable, and a reliable platform due to its distributed storage and processing 

capability along with automatic recovery across different cluster nodes.  Similarly, the 

map reduce programming logic provides parallel processing of data across several 

nodes, thus reducing the execution time significantly and making the system more 

efficient. Due to its several advantages such as scalability, reliability, availability, and 

fault tolerance, Hadoop serves as an optimum platform for deploying it to analyze 

energy data and comprehend the users’ consumption pattern and appraise the different 

factors which can directly or indirectly affect the consumption pattern of the users. On 

the other hand, OLAP processing model is also extensively used in the domain of 
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Smart Energy management for extensive consumption analysis, trend identification 

and demand prediction in big data. Real time information feedback to consumers on 

different levels of granularity (Home consumers to Energy utility providers) regarding 

consumption pattern and associated energy costs can help in redistribution and 

adjustment in Demand Response of energy with  lower power consumption. Thus, 

both the computing models Map Reduce and Dimensional Modelling (OLAP) cater to 

the same type of business services to the end users but with different processing 

approaches. Data warehousing architecture utilizing OLAP is a traditional platform 

for modelling and processing data in contrast to the newer technologies of Hadoop 

Map Reduce.  The primary objective of this research is to explore which computing 

model is more efficient for handling Energy Big Data in terms of the selected criteria 

as discussed later. 

This chapter presented a survey of previous research where most of the work 

implemented small dataset in a few GBs with tailored modeling techniques and 

commercial database systems for storage. The processing models proposed have not 

been implemented in the domain of smart energy utilizing big data analytical 

techniques. The consumers, community, state, and country stakeholders are not 

informed about the data insights and analysis in real time. The conventional SQL 

querying continues to be the most popular query language for big data analysis. The 

Hadoop based SQL engines namely Hive and SparkSQL can be utilized for 

benchmarking study as well as to provide data analysis and visualization to consumers 

and utility providers.   
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. Chapter 3.   Methodology 

 

This chapter is divided as follows: the first section defines a set of non-

functional requirements that were deduced from the works presented in Chapter 2. 

The requirements are then used to construct a system definition, which is further 

presented in this section.  

3.1. Functional and Non-Functional Requirements 

To formulate a system definition and architecture for the proposed 

methodology, it is important to outline the functional and non-functional requirements 

of such a system. The functional requirements of a system are defined by the 

functionalities and technical characteristics that the system should provide. On the 

other hand, the nonfunctional requirements outline the qualities and the criteria that 

define the operation of the system. The system requirements are defined as follows: 

 Creation of a Hadoop environment cluster that comprises of at least one 

master node and two slave nodes. 

 Dynamic addition of slave nodes to an existing Hadoop cluster 

 Deletion of slave nodes from an existing Hadoop cluster 

 Automated load balancing of cluster machines 

 Provide high availability and redundancy. 

 Triggering automatic failover in the event of a node crash  

 Provide a user-friendly interface to configure and manage Hadoop 

environment features, and to interact with the cluster scheduler.  

 Provide an interface for graphical visualization to present the status of one 

home appliances consumption for stakeholders on different levels; home 

owner and utility providers on community, state, and national level. 

The non-functional requirements of the system are as follows: 

 A scalable distributed storage required so that the cluster is able to store and 

process up to one million smart meter data files. 

 The nodes (commodity machines) should have specifications of at least 8GB 

RAM, between 500GB-1TB storage, and high-speed processors. These 

specifications are a critical part for Hadoop cluster planning that perform CPU 

intensive i.e. query workloads efficiently in the Hadoop environment.  
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 Ease of deployment and management for large volumes of data.  

 The execution time (latency) of the queries should be as small as possible.  

 Processor throughput should be as high as possible. 

 Should provide an interactive platform for executing queries using disk 

caching and in-memory caching for map reduce programming model.  

 The Hadoop framework should provide an intuitive navigation to end users. 

3.2. System Definition 

Figure 3.1 shows the system diagram in accordance to the requirements and 

the use cases for the proposed two architecture.  

 

Figure 3.1: System diagram 
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The system consists of six stages: 

 Big data sources: The big data sources will be aggregated from smart meters 

to obtain a large volume of data in the size of terabytes.  

 Model OLAP Queries: OLAP refers to Online Analytic Processing 

representing multidimensional data structures that can be utilized for fast 

processing in business intelligence. It’s primarily a data warehousing concept 

that provides a flexible way to make advanced analytics on multidimensional 

data.  The smart meter data should be modeled as an OLAP cube with 

different dimensions of time, location, and home appliance. OLAP operations 

on the smart meter data cube will be applied. The dimensional modelling for 

OLAP and map reduce querying to generate the reporting data will be based 

on different use cases for each of the stakeholders concerning monitoring of 

energy consumption. Different use cases and business processes are 

incorporated on a national level to analyze the data on a four level hierarchy of 

stakeholders, i.e., the lowest level for the home owner followed by the 

community utility provider and the state utility provider, and the highest level 

for the national utility provider. The OLAP operations will be mapped to the 

equivalent SQL language queries to benchmark querying results on a big data 

platform such as Hadoop.  

 Big Data Storage: The energy big data from smart meters will be accumulated 

and loaded on to Hadoop Distributed File System (HDFS) for efficient storage 

across cluster nodes and parallel processing.  

 Big Data Processing: Two SQL processing engines namely, SparkSQL and 

Hive will be used for executing SQL queries on the data stored in HDFS 

storage layer. The two processing engines share a unified processing 

paradigms of map reduce tasks running in parallel across the cluster nodes. 

Spark utilizes in-memory computation for map reduce tasks while Hive 

utilizes disk map reduce processing.  

 Visualization: Visualization capabilities will be provided from the smart meter 

data to consumers and utility providers on community, state, and national 

level. The visualization graphs and charts will allow the end users to analyze 

the consumption pattern of home appliances on a periodic basis. For 
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visualization, an interactive interface is provided by Hadoop application, Hue, 

to render query results in the form of graphs, charts, tabulated reports.  

 Comparison based on selected criteria: Several performance analysis 

experiments will be conducted to evaluate the Hadoop based SQL processing 

engines in terms of latency and throughput. These experiments will also 

provide an insight into how well the two processing engines can scale up with 

the increase in dataset volume.  

3.3. Data Generation 

Smart Meter Energy data is collected for one residential unit from [27]. This 

data is the energy consumption in KWh that spans a period of one year (2014) and is 

collected every day for each home appliance of the house namely, Furnace, Cellar, 

Washing Machine, Fridge, Outlets, Cooking Range, Dishwasher, Lights, and Heater. 

The data is in a structured format. The data will be sampled to generate synthetic big 

data for one million houses using ARIMA modelling.  Each file corresponds to a data 

size of 1.5MB summing up to the total size of 1.5TB for one million data files. This 

data spans a period of one year and is collected on an everyday basis from a home. 

There are several techniques to synthetically generate a dataset for one million smart 

meters; Arima Modelling [28] and Markov Chain Monte Carlo [29]. It was found that 

ARIMA modelling provides the best fit for simulating data for accurate representation 

of smart meter referenced dataset.  

  3.3.1. ARIMA modelling.  The data obtained for one house is a time series 

data as it is a collection of power consumption values for different household devices 

achieved through repeated measurements over a period of one year. ARIMA stands 

for auto-regressive integrated moving average and is specified by these three order 

parameters: (p, d, q). The process of fitting an ARIMA model is sometimes referred to 

as the Box-Jenkins method. The auto-regressive parameter p specifies the number of 

lags used in the model [28]. For example, ARIMA expression for Time Series Data Yt  

can be expressed as: 
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Ø1, Ø2, Ɵ1, Ɵ2, are model parameters, yd is differenced d times between 

current and previous value, et is previous error terms, and c is a constant. The‘d’ 

represents the degree of differencing in the integrated (I (d)) component. Differencing 

a series involves simply subtracting its current and previous values d times. 

Often, differencing is used to stabilize the series when the stationarity assumption is 

not met. For simulating time series data, we need to choose an optimal ARIMA model 

(p, d, q). For this, we used the auto.arima () function in R language as it searches 

through combinations of order parameters and picks the set of p, d, q values that 

optimizes model fit criteria. Auto.arima () function in R performs repeated tests from 

Likelihood Estimation (MLE). The parameter d is set to 0 or 1 if it improves the 

Akaike Information Criterion (AIC) value to estimate relative quality of statistical 

model for the new dataset w.r.t the old data [29].  Figure 3.2 is the flowchart for 

ARIMA algorithm.  

According to UAE national statistics [30], the UAE population in 2008 was 

4.1 million with a breakdown of Sharjah comprising of 17%, Abu Dhabi contributing 

to 36%, Dubai contributing to 32%, Ajman contributing to 5%, Umm AlQuain 

comprising of 1.1%, Ras AlKhaima contributing to 5%, and Fujairah consisting of 3% 

of the country’s population. Using these emirates statistics, one million smart meter 

files were synthetically generated utilizing ARIMA simulation method. From the total 

smart meters data generated for a million smart meter homes, 170,000 smart meters 

data was generated for Sharjah, 360,000 smart meters data was generated for Abu 

Dhabi, 320,000 smart meters was generated for Dubai, 50,000 smart meters for 

Ajman, 11000 smart meters for Umm Al Quain, 50,000 smart meters for Ras Al 

Khaima and 30,000 smart meters for Fujairah.  Additionally, the heater consumption 

in the synthetic data is considered similar to an AC unit for simulating smart meter 

tailored according to UAE.  Four distinct communities were taken to generate data in 

each emirate. Table 3.1. Illustrates the data files generated following the UAE 

population statistics. 
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3.4. Identifying the Key Business Processes 

Different business processes are incorporated on a national level to analyze the data 

on a four level hierarchy of stakeholders, i.e., the lowest level for the home owner 

followed by the community utility provider and the state utility provider, and the 

highest level for the national utility provider. An efficient energy management system 

should ensure monitoring of energy consumption from a holistic point that renders 

real time monitoring capabilities to home owners and divisions of utility providers. 

The two important business processes are considered for an efficient home energy 

management system. 

  

Figure 3.2: ARIMA flowchart 
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Table 3.1: Synthetically Generated UAE Smart Meters Data 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1. Energy consumption process for consumers. This business process 

caters to the monitoring services for home owners. For the consumers, access to the 

smart metering data is necessary in order to comprehend their own electricity demand. 

Smart Meters installed in residential units capture the electricity consumption of 

different devices and send it to central substations every day over a period of time. 

The efficiency of different devices in a house building can largely depend upon the 

time (month/week) of the year. Using different benchmarking techniques, ideal 

efficiency levels for a device can be computed and compared with specific cases 

which involve excessive energy consumption. Analytical techniques can help identify 

power consumption discrepancies across different home devices over a span of time.   

3.4.2. Energy capacity planning process. This business process caters to the 

utility providers. There are four divisions of utility providers; Community Owner, 

State Owner, and Country Owner.  The utility providers can collect smart meters data 

from all houses and analyze this large data to generate useful insights and make 

Number of 
Smart 

Meters 

Emirate           Community           Range 

60000 Sharjah Dasman SH1-SH60000 

80000 Sharjah Maliha SH60001-SH140000 
20000 Sharjah Rola SH140001-SH16000 

10000 Sharjah UniversityCity SH160001-SH170000 

200000 Dubai Mirdiff DH170000-DH370000 
80000 Dubai JebelAli DH370001-DH450000 

30000 Dubai Jumeirah DH450001-DH480000 

10000 Dubai AlBarsha  DH480001-DH490000 
180000 Abu Dhabi  Khalifa City AUH490001-AUH670000 

120000 Abu Dhabi Baniyas AUH670001-AUH790000 

40000 Abu Dhabi Saadiyat AUH790001-AUH830000 
20000 Abu Dhabi Reem AUH830001-AUH850000 

10000 Ajman Nakhil AH850001-AH860000 

20000 Ajman Manama AH860001-AH880000 
15000 Ajman Hamdiya AH880001-AH895000 

5000 Ajman Rumailah AH895001-AH900000 

4000 UmmAlQuain Duor UH900001-UH904000 
2000 UmmAlQuain Sinniyah UH904001-UH906000 

3000 UmmAlQuain Qaram UH906001-UH909000 

2000 UmmAlQuain AlSow UH909001-UH911000 
20000 RasAlKhaima Masafi RH911001-RH931000 

10000 RasAlKhaima Khatt RH931001-RH941000 

10000 RasAlKhaima Hamra RH941001-RH951000 
20000 RasAlKhaima Rams RH951001-RH971000 

12000 Fujairah Bidya F971001-F983000 

15000 Fujairah Bidnah F983001-F998000 
2000 Fujairah Qaram F998001-F1000000 

Total: 1,000,000 Smart Meters in UAE 
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efficient energy supply decisions based on the consumer usage pattern. They are 

eligible for monitoring total power consumption within each house, community, state, 

and country.  This energy usage will be depicted through different types of graphs and 

timeline.  Based on the data analyzed, peak time analysis as well as load scheduling 

events can be planned and executed by the Utility Providers. The aggregated energy 

consumption can be compared to the overall energy generation from the Central 

power station. This will assist the state jurisdiction to set climate goals, prioritize or 

implement energy strategies, and make data driven energy decisions.  

3.5. Identifying the Use Cases for Stakeholders 

Based on the above mentioned business four stakeholders (Consumer, Community 

Utility Provider, State Utility Provider, and National Utility provider) are deemed 

important for providing real time visualization on smart homes energy consumption. 

A detailed description of these stakeholders is discussed as below.  

3.5.1. Consumer. A home owner is entitled for viewing the power 

consumption of all devices in his/her house with respect to time on a daily, weekly, 

monthly, and yearly basis. He/she can also evaluate the asset efficiency of a device 

and monitor the aggregate power consumption of all devices on a periodic basis.  

3.5.2. Community energy utility provider. A community utility provider can 

monitor the aggregated power consumption of each household in his/her respective 

community. The analysis will help the community utility providers to identify trends 

in energy consumption of each household on a timely basis and the subsequent 

relationship between energy supply and demand.  This information will be 

represented in the form of timeline graphs on a monthly, quarterly, and yearly basis.  

Using this analysis, the utility providers can discover the peak load hours and plan 

and execute load scheduling events accordingly.  

3.5.3. State energy utility provider.  A state utility provider can supervise the 

cumulative power consumption of all communities within his/her corresponding state 

on a monthly, quarterly, and yearly time period. They can adjust the energy prices at 

peak demand using multiple tariff rates dynamically.  

3.5.4. National energy utility provider. A national utility provider is the 

highest level of authority in the hierarchy. They can observe and compare the 

aggregated power consumption of each state within the country on a periodic basis 
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(monthly, quarterly, annually). The cumulative power consumption from all states can 

be compared to the total power generation from the Central power station. This will 

help the utility providers to prioritize different energy saving strategies and execute 

data driven energy actions accordingly. Three granularities of time have been 

considered to perform different types of analysis on the data periodically; daily, 

weekly, monthly, and yearly.   

3.6. Dimensional Model Construction 

Data Warehouses are designed on the fundamentals of OLAP, whereas 

relational databases systems are modelled on the concept of OLTP (On-Line 

Transactional Processing). OLAP data querying tools allows the users to analyze 

different dimensions of the data such as time series, trend analysis, etc. OLTP models 

utilizes two-dimensional data in the form of rows and columns, whereas OLAP opens 

new avenues into looking up the data from more than two dimensions. OLAP 

supports filtering, slicing, sorting, dicing operations of the data structure. Figure 3.3 

below demonstrates the visual representation of OLTP vs. OLAP data models. In an 

OLAP data warehouse, there is an aggregated data stored in multi-dimensional 

schemas, popularly known as star schemas. It provides multi-dimensional views on 

the historical stored data. This multi-dimensional model is alternatively known as a 

cube. Each logical cube illustrates a real word business entity comprising of different 

measures, dimensions, dimension attributes, levels, and hierarchies. Depending on the 

analytics requirement, OLAP operations are performed on this cube to examine the 

different measures and other meaningful dimensions and attributes.  Figure 3.4 

demonstrates the different objects relationship in a multi-dimensional model.  

 

Figure 3.3: OLAP vs. OLTP 
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Figure 3.4: Logical dimensional model; relationship among objects 

 

3.6.1. Dimensions in a logical cube. Dimensions correspond to the unique 

values that are used to categorize the data [31]. These form the edges of a cube.  Thus, 

each numeric value of a Measure is quantified with a dimension or attribute 

corresponding to a measure value. Since a cube is modelled in 3D, each cube has 3 

dimensions across X axis, Y axis and Z axis. Dimensions of the cube correspond to 

different data attributes and parameters such as time, location, and appliances. These 

dimensions can be further categorized into hierarchies, levels, and dimension 

attributes. Hierarchies and Levels are a way to organize data into different levels of 

aggregation [31]. The analysts can drill down to lower levels or roll up to higher 

levels to identify consumption trends in smaller and larger sector of population 

respectively. On the other hand, dimension attributes are utilized to provide additional 

information about each dimension.  

3.6.2. Measures in a logical cube.  Measures correspond to different values 

that populate all cells in a dimensional model. These measures in a cube are organized 

based on different dimensions.  

3.6.3. Relational implementation of a cube: star schema. A Star Schema is 

a method of organizing Cube data in the form of one Facts Table, several dimension 

tables, and materialized views. A dimension table comprises of different dimension 

attributes, levels and hierarchies. A Facts table and materialized views comprise of 

measures. Each Dimension table has a primary key that associates it to the Facts table. 

The Materialized Views are instantiated for displaying a combination of levels. Figure 

3.5 illustrates a generalized Star Schema implementation: 
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Figure 3.5: A standard star schema implementation [31] 

In view of the business processes and stakeholders described in earlier section, 

the conceptual dimensional model of a smart meter data is as follows: 

 Hierarchy in data: The smart meter data includes each house device 

consumption data on an everyday basis. This device-level data can be 

aggregated up to community-level, state level, and national level. . Thus, 

the user consumption can be divided into four user granularities; home 

owner, community owner, state owner, and country owner. Each level is 

relatively independent of each other, data however, the underlying user 

data forms the very foundation for the upper layer data.  

 Time granularity in data: A home smart meter data represents the device 

consumption details for each day in a year. This time dimension can have 

hierarchy with relative time periods such as levels of week, month, and 

year.  

 Dimensions design: Dividing the complete data structure into dimensions 

provides structured information for analysis as well as reporting. Each 
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Dimension table will further comprise of different attributes related to that 

specific dimension. This is demonstrated with the help of a schema that 

provides a logical description of the entire data structure.  Dimension 

corresponds to the attribute of the facts or the factual information from the 

data. In our design, there three primary dimensions; Location 

corresponding to House IDs , Time corresponding to Days attribute and 

Appliances dimension referring to types of devices in a house.  

 Metric formulation: Metric is the fact that forms the basis of the data.  

From our design, the device consumption in kW (Cellar, Furnace, Fridge, 

Heater, Washing Machine, Lights, Outlets, Cooking Range, and 

Dishwasher) is the metric value.  

 Model formulation: A star schema is used to design the OLAP data model. 

This star schema is a relational database model that can be stored in any 

conventional data mart. The dimensions of this star schema are stored in 

dimension tables and the metrics are stored in fact table. Figure 3.7 

represents the OLAP star schema model for the smart meter data.  This 

model plays an important in data warehousing techniques as it helps 

understanding the physical layout of the underlying data sources or tables 

and how they are related to each other.  In this Star Schema, each cube 

dimension is represented with one dimension table consisting of several 

attributes related to the corresponding dimension and a private key. 

Moreover, there is only one Facts table comprising of several dimension 

keys linking to every dimension table and measures that correspond to 

attribute values such as power consumption in this case.  

A star schema for smart meter data shown in Figure 3.6. The constructed cube in the 

Figure 3.7 represents how the smart meters data from several houses is modelled in 

the form of cube. OLAP operations will be executed on top of this cube to render 

consumption query results to different levels of stakeholders.  The cube is represented 

with three dimensions, namely, Location House IDs, Time (Days), and Appliances 

(Type). 
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Figure 3.6: A star schema for smart meter data 

 

 

Figure 3.7: OLAP Cube for smart meter dataset 

Each dimension is further categorized into dimension attributes such as MH1, 

MH2, and DH1 for the dimension Location house IDs, dimension Time has Days, and 

the dimension appliance represents four types pf appliances, namely Heater, Fridge, 

Outlets, and Lights. The cells of the cube are populated with the power consumption 

values with respect to each dimension.  There are five different operations that can be 

performed on this OLAP Cube: 
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 Roll Up: Roll Up operation performs aggregation on a data cube by 

climbing up the hierarchy for a dimension.   Figure 3.8 shows the roll up 

operation on the dimension of Location House IDs to represent the rolled 

up consumption data from individual houses in a community to total 

power consumption all houses in each community.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Roll Up on an OLAP cube on location dimension to aggregate total 

houses’ consumption in a community 

Similarly, Figure 3.9 illustrates a roll up operation on dimension time 

to aggregate the day’s consumption of a house into weekly smart home 

consumption. Figure 3.10 represents a roll up operation from weekly smart 

home consumption to monthly consumption. Figure 3.11 represents a three 

level hierarchical roll up operation on dimension location from house 

consumption to community consumption to state consumption. Each higher 
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level stakeholder consumption is the aggregate power consumption of the 

lower granularity attributes.  

 

 

Figure 3.9: Roll Up on an OLAP cube on time dimension to aggregate house MH1 

daily consumption to weekly consumption  

 

 Drill Down: Drill down is the opposite of Roll Up operation. It either 

introduces new dimension in the model or steps down the concept 

hierarchy for a dimension. Figure 3.12 demonstrates the drill down 

operation on the Time dimension from monthly power consumption to 

weekly power consumption. 
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Figure 3.10: Roll Up on an OLAP cube on time dimension to aggregate house MH1 

weekly consumption to monthly consumption 

 

 Slice: Slicing operation provides a new sub cube from one specific 

dimension of a given cube.  Figure 3.13 illustrates the resulting cube 

after performing slice operation on dimension location for House ID, 

DH1.  

 Dice: Dicing operations provide a new sub cube from two or more 

dimensions of given cube. Figure 3.14 illustrates the resulting cube 

after performing dice operation on all three dimensions of Location, 

Time, and Appliances. Dice operations is performed for location 

House ID=MH1, Time=Sunday, and Appliances=Fridge.  
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Figure 3.11: Roll Up on an OLAP cube on location dimension to aggregate house 

consumption to community consumption to state consumption 
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Figure 3.12: Drill Down on an OLAP cube 
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Figure 3.13: Slicing on an OLAP cube 
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 Figure 3.14: Dicing on an OLAP cube 
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3.7. Hadoop Distribution Selection 

Apache Hadoop is an open source platform that allows distributed processing 

of large volume of datasets across multiple nodes in a cluster/multi cluster 

environment. The three modes of installation are [32]:  

 Standalone Mode: Single node cluster. 

 Pseudo Distributed Mode: Simulated multi node environment on a 

single node machine. 

 Distributed Mode: Multi node cluster. 

Depending on the research requirement, we chose to setup distributed mode 

for installing Hadoop in a multi node cluster.  A Hadoop cluster comprising of one 

master and three slave nodes is created using the open source Hadoop distribution, 

Cloudera Distribution Hadoop (CDH) 5.2. CDH is a complete tested 100% open 

source Hadoop solution that offers different batch processing, interactive SQL 

querying, and continuous availability.  

 

Figure 3.15: Cloudera taxonomy [32] 

As shown in Figure 3.15, the Java Virtual machine (JVM) makes up the 

foundation on which Cloudera stack runs. The dark blue components depict the two 

core Hadoop frameworks: 
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 Data Storage: It is a distributed, scalable Hadoop file system storage that is 

used to store data on the cluster nodes.  

 Map Reduce processing framework: It is a parallel computing framework 

introduced by Google.  

The next layer is the Hadoop network layer as Hadoop makes extensive 

utilization of network based services in sending and fetching data across cluster nodes 

such DNS lookup for name resolution of data nodes, interference of Hadoop traffic 

from other network applications, etc.  

One of the main aspects of an Apache Hadoop [33] ecosystem is its capability 

of distributed parallel processing. To achieve this, Hadoop consists of a fault tolerant 

storage system called the Hadoop Distributed File System, also known as HDFS [34]. 

HDFS is designed to store big data sets across low cost machines in a distributed 

fashion. It splits the data files into multiple “blocks” and stores them redundantly 

across a relatively cheap hardware. Additionally, HDFS can scale up incrementally 

with increasing data and survive the failure of the storage infrastructure without any 

data loss. In order to empower distributed processing, Hadoop creates multi-node 

clusters of machines and coordinates work among them. Each cluster comprises of its 

respective high quality name node and multiple data nodes. The concept of creating 

multi-node clusters in HDFS is because it makes Hadoop fault-tolerant. This is due to 

the fact that in the case of a data node failure within a cluster, Hadoop continuous to 

work by transferring the same load to other data nodes in the same cluster. 

Following points will highlight the type of nodes and architecture of a Hadoop 

Cluster [35]: 

3.7.1. Name node. Hadoop has one centerpiece machine called a Name node server,  

which stores and manages the metadata for HDFS. It is the master node in Hadoop 

distributed framework. Name Nodes are configured with large RAM as it is the 

directory for all the files and blocks stored in the file system across several data 

nodes. These Name Nodes run a Job Tracker process that assigns map reduce tasks 

among data nodes. 

3.7.2. Data nodes. The slave nodes in a Hadoop cluster are called Data nodes. 

These Data Nodes store the datasets and perform the read/write operations from the 

clients. These data nodes can be controlled and accessed by the master/slave node. It 
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also performs the replication of the datasets on the instructions from Name node. Data 

nodes execute a Task tracker process that performs and computes the map or reduce 

jobs as allotted by the Job tracker process of the Name node [35]. 

3.7.3. Master slave architecture. Hadoop cluster is designed as a master-slave  

architecture as shown in Figure 3.16. The master node comprises of the Job tracker 

process while the slave nodes run the task tracker process.  The Job tracker on the 

master node is responsible for managing cluster resources, scheduling, and monitoring 

progress and fault-tolerance mechanisms [36]. The Job tracker receives the jobs 

submitted by the users and appoints it to the Task trackers. The Task tracker process 

on each slave node initiates parallel tasks and registers the task status to the Job 

tracker constantly [37]. To execute either map or reduce jobs, the slave nodes are 

statically divided into different computational tasks depending on the respective 

machine’s RAM and memory usage capacity. Additionally, each node can be 

segregated into computational (Map Reduce) layer and storage (HDFS) layer that 

helps in scaling out the memory of the corresponding node. In short, following are a 

few demons that run on multi node standardized Hadoop cluster: 

One Master node executes the following modules: 

  Job tracker (MapReduce layer)  

 Task tracker (MapReduce layer) 

  Name node (HDFS layer)  

Several slave nodes consist of the following modules: 

  Task tracker (MapReduce layer)  

 Data node (HDFS layer) 

  MapReduce layer contains the job tracker and task tracker processes  

 HDFS layer contains the name node and data nodes 

Figure 3.16 demonstrates a master-slave architecture paradigm in a distributed 

Hadoop cluster and its respective daemon processes.  

3.8. Distributed Processing Paradigms on Hadoop 

With the constant increase in volume of energy big data, it is challenging to forecast 

the size of this data and the computing power required to store and process such huge 

data quantity. 
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Figure 3.16: Master slave architecture in a hadoop cluster 

In a non-distributed platform, when the computing power increases scaling up 

is one of the option where a single computing system with additional number of cores,  

hard disks and large memory is used in parallel. However, such an architecture is a lot 

more expensive with a single point of failure and large dependency.  Alternatively, a 

more cost effective option with fault tolerance capability is to scale out where the 

computing tasks are divided amongst less powerful machines with moderate 

computing power and resources running in parallel. Map Reduce is one parallel batch 

processing framework that provides programmers with an abstraction from low level 

hardware complexities, thus enabling a reliable and fault tolerant scheme for big data 

applications. The concept of Map Reduce programming model was introduced by 

Google to enable web indexing. Apache Hadoop is one open source software with 

different components steered on Map Reduce.  

3.8.1. Parallel processing paradigm on hadoop using map reduce. The 

computation of map reduce is such that it takes an input of key/value pairs and 

outputs a set of key/values pairs. The mechanism involves a number of stages. An 

example of Map Reduce model is demonstrated in Figure 3.17 below to generate 

power consumption report of two communities, namely, Maliha and Dasman on a 

quarterly basis for a State Energy Utility Provider. The Figure 3.17 illustrates how 

power consumption from each device of every house in the community is stored on 

HDFS Data Nodes followed by splitting and extraction of total power consumption 

data within each community using the Map Reduce algorithm.  

When a MapReduce is run by Hadoop, the job is sent to a master node, the Job 

tracker which has multiple slaves, or Task trackers that report to it, and ask for new 

work when they are idle. Job tracker split the map and reduce tasks among the Task 
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trackers, so all of them work in parallel. The Job tracker keeps a track of which Task 

trackers fail. 

 

 

Figure 3.17: Map Reduce processing model on hadoop  

Figure 3.18 shows the Hadoop cluster architecture and its work can be explained in 

the following steps [37]: 

1. The Map-Reduce library first split the data into small pieces from 16 MB 

to 64 MB , then it makes copies on the cluster of the machine, and one 

special copy to the master, and others to the workers. There are M map 

tasks and R reduces tasks; the masters chooses the idle workers and give 

tasks to them.     

2. A worker with a map task reads the content of the input split and parses 

key/value pairs out of the input data and passes it to the map function. The 
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intermediate key/value pairs produced by the map are buffered in the 

memory. 

 

 

Figure 3.18: Hadoop cluster architecture [37] 

Those buffered pairs are written to the disk periodically, partitioned into R 

regions by the partitioning function. The location of these pairs on the disk 

are passed to the master, who is responsible for passing these pairs to the 

reduce workers. 

3. When a reduce worker is modified by the master about these locations.it 

uses remote procedures to read the buffered data from the local disk. Then 

it sorts it .Once it finishes, the reduce worker iterate over the sorted 

intermediate data, and for each unique key it passes the key and the 

corresponding set of data to the user reduce function, the output of reduce 

function is append to the output file. 

4. When all map and reduce tasks done, the master wakes up the user 

program. 

3.8.2. SQL engines on top of Hadoop facilitating map reduce. Map reduce jobs on 

Hadoop are coded by programmers in different languages such as Scala, Java, etc. 

depending on the data analysis requirement. However, such coding is a time 

consuming task as the map reduce performance completely depends on the code and 
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requires a lot of manual effort in practice. It is therefore more practical to implement 

high level abstraction queries that autonomously develop and optimize the map 

reduce jobs such as SQL. With the help of SQL queries, dynamically the map reduce 

jobs are generated and the data analysis of HDFS data can be directly accomplished 

using SQL.  The most commonly used SQL engines in a Hadoop framework are 

SparkSQL and Hive. Both platforms share a common architecture similar to 

client/server paradigm [38]. 

3.8.2.1. Apache hive. Hive is one of the open source Hadoop data warehousing 

applications that supports querying languages such Hive-SQL or H-QL for data 

analysis in a Hadoop ecosystem. It provides a structure to the unstructured data stored 

in HDFS for querying data. The H-QL language directly translates the queries into 

map reduce jobs for execution in a Hadoop cluster. The stored HDFS data is 

organized into Hive tables, thus, providing a low level structure to the unstructured 

data in HDFS. The metadata of the Hive tables such as schema of the data is stored as 

Hive metastore in the master node of the cluster. 

 Hive Architecture: Hive architecture comprises of command line interface 

(CLI), a JDBC/ODBC middleware, and a Graphic User Interface (GUI) as the 

application layer on top of Hadoop for executing Hive-SQL queries [38]. The 

middleware comprises of the Hive Thrift server that allows clients outside the 

Hadoop framework to send SQL requests to hive data tables. As shown in 

Figure 3.19, the driver between the thrift server and the HDFS store is the 

database layer. Once the HQL queries are posted via the CLI or from the thrift 

server, the driver makes a call to the compiler that translates the queries into 

map reduce jobs. The sequence of query execution in Hive is as follows:  

Hive-SQL -> Parse Tree to validate SQL statement-> Query representation 

using a logical plan comprising of a tree of operators -> rule based optimizer 

for optimizing the logical plans for determining how to execute a query -> 

Map Reduce tasks. The Hive metadata is stored in Hive metastore that is 

usually generated during the time of Hive table creation and it is accessed 

when the records are being read from or written to the Hadoop cluster. This 

Hive metastore is stored on to the client’s operating system or the master node 

of the Hadoop cluster [38]. 
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 Data model in Hive: The data files stored in HDFS are abstracted as Hive 

tables when stored in HDFS.  A table schema is applied to the structured data 

files stored in HDFS by generating a hive table inside the /hive/warehouse 

directory on HDFS by default [38].   

 

 

Figure 3.19: Hive architecture [38] 

When a hive table is created, it’s dynamically generates a metadata of the table 

that consists of the all the information regarding data tables, databases, table 

columns, column types, etc. When hive queries are executed, the metadata 

helps in mapping the hive table to the actual HDFS data and then process it 

using the map reduce job.  

 Hive Query Language: Hive-QL is the SQL oriented Hive query language for 

Big data designed to query data from the hive tables in a Hadoop ecosystem. 

Once the hive queries are submitted through CLI, the compiler translates them 

into corresponding map reduce tasks for processing in the map reduce engine 

on top of Hadoop. Since map reduce paradigm is very low, most developers 

and analysts use the map reduce abstraction with Hive-SQL queries. Hive-QL 

differs from the SQL of relational database management system in the way 

that it supports the feature of Serialization and deserialization using the SerDe 
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library. SerDe [39] is a library built-in to Hadoop API that allows Hive to read 

in data from a table, and write it back out to HDFS in any custom format. It is 

designed to read unstructured data from any custom file format where the data 

is separated by a delimiter character 

Hive encapsulates the following steps during the course a HiveQL statement [40]: 

 Step 1: After submitting the query on a CLI or UI, the UI calls the execute 

interface to the Hive driver.  

 Step 2: The driver creates a session handle for handling the query and sends 

the query to the compiler in order to produce an execution plan for the 

corresponding map reduce tasks. 

 Step 3: The compiler creates an acyclic graph of map reduce tasks and 

validates the query semantics using the metadata from metastore. 

 Step 4: The plan generated by the compiler is a DAG (Directed Acyclic 

Graph) that comprises of different stages with each stage being a map or a 

reduce job or an operation on HDFS.  

 Step 5: The execution engine submits these stages to their task specific 

components. In each task for the mapper/reduce, the map reduce engine is 

reads in the rows from the Hive table stored in HDFS. Once the output is 

produced, these are written out into a temporary file onto the HDFS.  

3.8.2.2. Apache spark. Apache Spark is currently one of the most popular big data 

processing engines on top of Hadoop. It is much faster than the conventional batch 

processing and map reduce programming model in a Hadoop ecosystem. One of the 

major reasons for it to be faster than map reduce is the in-memory computational 

feature in Spark. With the help of in-memory processing, the intermediate results in 

Spark are stored in memory and this allows reuse of the data available in memory thus 

reducing the disk I/O. This significantly leverages the execution time of queries in 

Spark and particularly after executing queries for the first iteration [38]. Spark 

provides an easy interface for programing Scala language and can be integrated with 

Java, R, and even python language. The Scala code written on a spark API 

corresponds to one fifth of the code written in map reduce. In contrast to Hive, Spark 

can fetch and process data not only from HDFS but also from the client’s local file 

system, or cloud based storage services [38] The Spark stack as shown in Figure 3.20 
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comprises of several components such as Spark Core that provides an API’s for Java, 

R and python programming languages. Other components developed on top of spar 

core are; Spark SQL, Spark Streaming and MLLib. Spark SQL is integrated to utilize 

data analysis and querying from the structured data. The Spark streaming is 

responsible for processing live stream of real time data and MLLib provides a 

machine learning paradigm on top of Hadoop framework.  Spark performs 

unstructured computations using Resilient Distributed Datasets, RDD [38]. RDDs are 

stored and distributed across cluster nodes in memory as well as on the disk. The 

motivation to use RDD’s is that they can be persisted in memory or on the disk. 

Caching the RDDs in memory allows high-speed processing. In addition to 

unstructured processing, Spark also supports structured relational functionality, which 

utilizes an extensible catalyst optimizer for faster operations than RDDs. Spark SQL 

is one such Spark module that provides faster structured computation and allows the 

users to integrate SQL queries into the Spark programs [38]. Spark SQL catalyst 

optimizer is cost-based query optimization and code generation that allows for the 

query computation to be agile enabling fault-tolerance.  Spark SQL provides data 

processing on top of Hadoop utilizing structured data processing functionalities. 

Additionally, its syntax is similar to SQL-like statements. The Spark SQL queries can 

be executed through a Spark SQL module on command line interface similar to hive’s 

H-SQL. Spark SQL allows the users to import data from the relational hive data 

tables, run SQL queries, and write the results on to the Hive tables.  

 Spark Architecture: Spark’s architecture as shown in Figure 3.21 is 

dominated by master-slave pattern in a Hadoop cluster. The master of 

the cluster contains the cluster manager, popularly known as the Yarn 

scheduler. 

 

 

 

 

 

 

Figure 3.20: Spark Components [41] 
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 For each spark query submitted, the Yarn allocates resources by initiating 

executor (container) process on each worker node. The executors on each 

slave node can be seen as a background process that will be processing and 

storing the data on each slave node of the cluster. The executors have their 

own thread pools wherein each thread executes multiple tasks in parallel on its 

respective node [38].   

 

 

Figure 3.21: Spark client-server architecture [41] 

Moreover, the spark’s in-memory computing feature is implemented for 

executors wherein each executor has a read-only cache in memory. This cache is 

shared by all executor tasks generated by the same spark query or application. The 

in-memory processing in Spark improves the execution time of Spark queries in 

contrast to Hive map reduce processing that entails splitting the data onto the disk 

with heavy disk I/O cost. In-memory processing is highly beneficial when it 

comes to iterative processing as it allows data to be re-fetched from the cache 

rather than from the disk after the first iteration.  In order to write a spark 

application program, the user has to write a driver program that implements the 

execution flow across different tasks of the worker nodes in parallel. The driver 

program of the spark SQL application is called the Spark SQL Context. The 

SparkSQL context encapsulates all the structured and relational processing 

features in Spark in the form SQL like statements. The general context to 

SparkSQL is as follows: 
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 Execution workflow in SparkSQL: Spark provides a second-generation map 

reduce model on top of Hadoop. It applies the idea of map reduce 

programming model by segregating the submitted queries into map-reduce 

tasks. Spark SQL context module is used to execute Spark queries on top of 

Hadoop cluster. Using the Spark SQL API, Hive-SQL queries are written and 

executed that computes results utilizing the same spark execution engine. Two 

kinds of operations are performed on SparkSQL queries; transformations and 

actions. Transformations refer to the mapper function of Spark engine that 

perform data splitting and mapping the data according to <key, value> pairs. 

The actions correspond to the reduce function of Spark engine that execute 

reducer tasks on the output of the transformations and send the result to the 

name node [41].  

3.9. SparkSQL vs. Hive 

Both Spark SQL and Hive are big data Hadoop based processing engines that 

support querying languages of SQL for data analysis.  For Hive, the Hive SQL queries 

are directly translated into directed acyclic graphs (DAG) that comprises of map 

reduce tasks processes in parallel across the cluster nodes. Hive’s execution is strictly 

bound to HDFS. Hive provides parallel processing with disk caching. On the other 

hand, Spark SQL queries are translated into Directed Acyclic Graphs (DAG) that 

comprise of multiple transformations and actions besides just map and reduce 

functions for more optimized execution of Spark queries.  It facilitates in-memory 

caching with several threads executing in parallel in memory [38]. Additionally, 

Spark paradigm is fault tolerant as it keeps a track of all the partitions created by 

mapper and reducer tasks in a lineage graph. This graph can be reutilized to regain 

any lost partitions. For e.g. if a data partition in-memory is lost due to node failure 

while data processing, Spark has the capability to regenerate the lost partition by 

applying the same mapper and reducer function to the corresponding data block in 

HDFS file [42]. This recovery saves the overhead time of rerunning the queries since 

the failed node contains multiple partitions which can recreated with in-parallel on 

cluster nodes. In terms of resource management, both SparkSQL and Hive depend on 
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the Hadoop ecosystem’s resource manager Yarn for dynamic allocation of container. 

Containers are the JVM heap memory that are allocated to execute map and reduce 

tasks. Table 3.2 shows how SparkSQL and Hive are different from each other for 

different characteristics.  

Table 3.2: Comparison between SparkSQL and Hive [38] 

Characteristics SparkSQL Hive 

On top of Hadoop 
HDFS 

Yes Yes 

MapReduce processing Yes Yes 

DAG generation Yes Yes 

In-Memory Yes No 

Fault Tolerant  Yes                        No 

        Support  for  SQL                   Yes Yes 

 

3.10. Formulation of Queries w.r.t. Stakeholders 

To provide a holistic view of energy consumption from home owner to 

country utility providers, a total of eighteen queries are written in SQL language. 

These big data SQL queries will be spun off on the two SQL engines of the Hadoop 

ecosystem; SparkSQL and Hive. The query description for each stakeholder is are 

tabulated in Table 3.3. Further breakdown of queries in SQL language is shown in 

Table 3.4. 
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Table 3.3: High-level queries per stakeholder 

No Stakeholders Title Description 

1.1. Home Owner 1.1.1. 

Load Profiling 

(Aggregation 
Functions) 

Load Profiling can be performed by home owners to 

execute queries with aggregation functions such as  

SUM to obtain SUM consumption data for all home 
appliances. This data can be reported with respect to 

different granularities of time; daily, weekly, monthly, 

and annually. The weekly and monthly data can be 
collected and reported rigorously from selected start and 

end dates. 

1.1.  Home Owner 1.1.2. 
Compare my 

consumption 

with 

neighborhood 

A customer can compare SUM monthly/annual 
consumption of the house with the SUM consumption 

of his/her neighborhood (community).  The customer 

can save energy and control devices based on this 

information.  

2.1. Community Level 

Utilities 

2.1.1 

Consumption 
Variability 

Analytics for 

Houses using 
Aggregation 

Functions 

For a distributed smart grid, utilities must provision for 

the peak demand power consumption. Thus, it is critical 
for utilities to identify consumers that have large 

variation in their consumption and consequently offer 

them incentives that can help in smoothing out the 
demand. To cater this, the Utilities must be able to view 

SUM energy consumption distribution of customers in 

their respective community w.r.t different time 
granularities (weekly, monthly and annually) and 

geographic location dimension (latitude and longitude). 
The Utilities must be able to analyze SUM power usage 

for each community on a periodic basis to predict the 

demand in advance and balance the Demand Response 
chain. Aggregated power consumption using other 

aggregate functions such as sum, min or max can be 

used to view consumption details of houses within a 
community (not allowed to view within an individual’s 

each house appliance consumption due to privacy 

reasons).  
2.1. Community Level 

Utilities 

2.1.2. 

Load shapes on 

Weekdays/Week
ends for each 

month 

The Utilities must be able to view load shapes on 

weekdays/weekends for the required month of the year. 

2.1 Community Level 
Utilities 

2.1.3 
Device-wise 

consumption in a 

community 

The community utility provider should be able to view 
the total consumption of individual device from all 

houses within the vicinity of the respective community.  

2.1 Community Level 

Utilities 

2.1.4 

Additional 

Statistical 
Information 

using Ad Hoc 

Queries 

Ad Hoc queries are queries that are not predetermined 

and can be generated dynamically to obtain information 

when the need arises. 

3.1 State level Utilities  

 

3.1.1. 

Consumption 

Variability 
Analytics for 

Communities 

using 
Aggregation 

Functions. 

The State Level Utilities should be entitled to view the 

SUM (SUM) power consumption variation for 

communities within each state on time granularity 
levels and geographic location dimensions/community 

name. 

4.1 National level 

Utilities  

 

4.1.1. 

Consumption 

Variability 

Analytics for 
Communities 

The National Level Utilities should be entitled to view 
power consumption variation of all states (on a 

Histogram) with respect to time granularity levels 

(monthly, annually) and geographic location dimension 
/state name. 
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Table 3.4: Big Data SQL Queries 

Query 

Sequence 

Stakeholde

r 

Query Breakdown Hadoop SQL Queries 

1 Home 

Owner 

Total Consumption 

of each appliance 
of myhouseID=H1 

every day in a 

week. 
 

Select date format(DateTime,'EEEE') AS Days, 

round(sum(Furnace),2) AS Furnace, round(sum(Cellar),2) AS 
Cellar , round(sum(Fridge),2) AS Fridge , round(sum(Heater),2) 

AS Heater , round(sum(Lights),2) AS Lights, 

round(sum(Outlets),2) AS Outlets, round(sum(CookingRange),2) 
AS CookingRange, round(sum(WashingMachine),2) AS 

WashingMachine, round(sum(DishWasher),2) AS DishWasher 

from smarthomeconsumption WHERE HouseID='"H1"'AND 
weekofyear(DateTime)=3 group by 

date_format(DateTime,'EEEE'); 

 

2 Home 

Owner 

Total Consumption 

of each appliance 

of myhouseID=H1, 
each week of a 

month= January 

 

Select weekofyear(DateTime,'EEEE')  AS weeks, 

round(sum(Furnace),5) AS Furnace, round(sum(Cellar),5) AS 

Cellar , round(sum(Fridge),5) AS Fridge ,round(sum(Heater),5) 
AS Heater , round(sum(Lights),5) AS Lights, 

round(sum(Outlets),5) AS Outlets, round(sum(CookingRange),5) 

AS CookingRange, round(sum(WashingMachine),5) AS 
WashingMachine,round(sum(DishWasher),5) AS DishWasher 

from smarthomeconsumption WHERE HouseID='"H1"'AND 

month(DateTime)=2 group by weekofyear(DateTime); 
 

3 Home 

Owner 

Total consumption 

of each appliance 
of myhouseID=H1, 

monthly for the 

given year. 
 

Select month(DateTime)  AS monthly, sum(Furnace) AS Furnace, 

sum(Cellar) AS Cellar ,sum(Fridge) AS Fridge ,sum(Heater)AS 
Heater , sum(Lights) AS Lights, sum(Outlets) AS Outlets, 

sum(CookingRange) AS CookingRange, sum(WashingMachine) 

AS WashingMachine,sum(DishWasher) AS DishWasher from 
smarthomeconsumption WHERE HouseID='"H1"' group by 

month(DateTime); 

 

4 Home 

Owner 

Total power 

consumption of 

each appliance of 
myhouseID=H1, 

annually. 

Select houseid AS myhouseid, round(sum(Furnace),5) AS 

Furnace, round(sum(Cellar),5) AS Cellar , round(sum(Fridge),5) 

AS Fridge , round(sum(Heater),5) AS Heater , 
round(sum(Lights),5) AS Lights, round(sum(Outlets),5) AS 

Outlets, round(sum(CookingRange),5) AS CookingRange, 

round(sum(WashingMachine),5) AS WashingMachine, 
round(sum(DishWasher),5) AS DishWasher from 

smarthomeconsumption WHERE HouseID='"H1"' group by 
houseid; 

 

5 Home 
Owner 

TOTAL (total of all 
appliances) 

ANNUAL 

consumption of 
myhouseID=H1. 

AND TOTAL 

ANNUAL 
consumption of all 

houses in that 

community for the 
same year. 

 

select ((b.totalofmyhouse/d.totalofmycommunity)*100) AS 
MyHouseConsumptionPercent,b.totalofmyhouse AS 

TotalHouseCOnsumption,d.totalofmycommunity AS  

TotalCommunityConsumption from (Select 
MyFurnace+MyCellar+MyFridge+MyHeater+MyLights+MyOutl

ets+MyCookingRange+MyWashingMachine+MyDishWasher AS 

TotalOfMyHouse from (Select avg(Furnace) AS MyFurnace, 
avg(Cellar) AS MyCellar ,avg(Fridge) AS MyFridge 

,avg(Heater)AS MyHeater , avg(Lights) AS MyLights, 

avg(Outlets) AS MyOutlets, avg(CookingRange) AS 
MyCookingRange, avg(WashingMachine) AS 

MyWashingMachine,avg(DishWasher) AS MyDishWasher from 

smarthomeconsumption WHERE HouseID='"H1"' ) as a) as b 
JOIN (Select 

MyFurnace+MyCellar+MyFridge+MyHeater+MyLights+MyOutl

ets+MyCookingRange+MyWashingMachine+MyDishWasher AS 
TotalOfMyCommunity from ( Select avg(Furnace) AS 

MyFurnace, avg(Cellar) AS MyCellar ,avg(Fridge) AS MyFridge 

,avg(Heater)AS MyHeater , avg(Lights) AS MyLights, 
avg(Outlets) AS MyOutlets, avg(CookingRange) AS 

MyCookingRange, avg(WashingMachine) AS 

MyWashingMachine,avg(DishWasher) AS MyDishWasher from 
smarthomeconsumption WHERE community='"Maliha"') as c) as 

d; 
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6 Communit
y Level 

Utilities 

Total Consumption 
of each house in a 

community every 

day in a week. 

SELECT days, HouseID, 
round((MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+

MyCookingRange+MyWashingMachine+MyDishWasher),5) AS 

TotalHouseConsumption from (Select 
date_format(DateTime,'EEEE') AS days, houseid AS HouseID, 

round(sum(Furnace),5) AS MyFurnace, round(sum(Cellar),5) AS 

MyCellar ,round(sum(Fridge),5) AS MyFridge 
,round(sum(Heater),5) AS MyHeater , round(sum(Lights),5) AS 

MyLights, round(sum(Outlets),5) AS MyOutlets, 

round(sum(CookingRange),5) AS MyCookingRange, 
round(sum(WashingMachine),5) AS 

MyWashingMachine,round(sum(DishWasher),5) AS 

MyDishWasher from smarthomeconsumption WHERE 
community='"Maliha"'AND weekofyear(DateTime)=3 group by 

HouseID, date_format(DateTime,'EEEE'))a; 

 
7 Communit

y Level 

Utilities 

Total Consumption 

of each house in a 

community every 
week of a month 

SELECT weeks, HouseID, 

round((MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+

MyCookingRange+MyWashingMachine+MyDishWasher),5) AS 
TotalHouseConsumption from (Select weekofyear(DateTime)  AS 

weeks, houseid AS HouseID, round(sum(Furnace),5) AS 

MyFurnace, round(sum(Cellar),5) AS MyCellar , 
round(sum(Fridge),5) AS MyFridge ,round(sum(Heater),5)AS 

MyHeater , round(sum(Lights),5) AS MyLights, 

round(sum(Outlets),5) AS MyOutlets, 
round(sum(CookingRange),5) AS MyCookingRange, 

round(sum(WashingMachine),5) AS MyWashingMachine, 
round(sum(DishWasher),5) AS MyDishWasher from 

smarthomeconsumption WHERE community='"Maliha"'AND 

month(DateTime)=2 group by HouseID, 
weekofyear(DateTime))a; 

 

8 Communit
y Level 

Utilities 

Total power 
consumption of 

each house in a 

community on 

weekdays 

Select date_format(DateTime,'EEEE') AS weekday,houseid, 
Furnace AS CommunityFurnace, Cellar AS CommunityCellar 

,Fridge AS CommunityFridge ,Heater AS CommunityHeater , 

Lights AS CommunityLights, Outlets AS CommunityOutlets, 

CookingRange AS CommunityRange, WashingMachine AS 

MyWashingMachine,DishWasher AS MyDishWasher from 

smarthomeconsumption WHERE community='"Maliha"' AND 
month(DateTime)=3 AND date_format(DateTime,'u') between 1 

and 5 ; 

    

9 Communit

y Level 
Utilities 

Total power 

consumption of 
each device in a 

community. 

Select month(DateTime)  AS monthly, sum(Furnace) AS Furnace, 

sum(Cellar) AS Cellar ,sum(Fridge) AS Fridge ,sum(Heater)AS 
Heater , sum(Lights) AS Lights, sum(Outlets) AS Outlets, 

sum(CookingRange) AS CookingRange, sum(WashingMachine) 

AS WashingMachine,sum(DishWasher) AS DishWasher from 
smarthomeconsumption WHERE community='”Maliha"' group 

by month(DateTime); 

 
10 Communit

y Level 

Utilities 

How many users 

exist with a power 

consumption 

between 20 and 

100 in the date 

range from”2014-
03-01” to ”2013-

05-01”? 

SELECT COUNT(HouseID) AS NumberOfHouses FROM 

(SELECT HouseID,  

round((MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+

MyCookingRange+MyWashingMachine+MyDishWasher),5) AS 

TotalHouseConsumption from ( Select houseid AS HouseID,  

sum(Furnace) AS MyFurnace, sum(Cellar) AS MyCellar 
,sum(Fridge) AS MyFridge ,sum(Heater)AS MyHeater , 

sum(Lights) AS MyLights, sum(Outlets) AS MyOutlets, 

sum(CookingRange) AS MyCookingRange, 
sum(WashingMachine) AS 

MyWashingMachine,sum(DishWasher) AS MyDishWasher from 

smarthomeconsumption WHERE Community='"Maliha"' AND 
month(DateTime) between 3 and 5 group by houseid)a )b 

WHERE TotalHouseConsumption between 20 AND 100 ; 
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11 Communit
y Level 

Utilities 

Total Consumption 
of each community 

of a state everyday 

in a week. 
 

SELECT community,days, 
round(sum(myFurnace+myCellar+MyWashingMachine+MyOutle

ts+MyDishWasher+MyHeater+MyLights),5) as 

CommunityConsumption FROM (SELECT 
community,date_format(DateTime,'EEEE') as days, 

round(sum(furnace),5) as myFurnace, round(sum(cellar),5) as 

myCellar, round(sum(washingmachine),5) as 
MyWashingMachine, round(sum(outlets),5) as MyOutlets, 

round(sum(dishwasher),5) as MyDishWasher, 

round(sum(heater),5) as MyHeater, round(sum(lights),5) as 
MyLights from smarthomeconsumption where 

state='"Sharjah"'AND weekofyear(DateTime)=1 group by 

community,date_format(DateTime,'EEEE'))a GROUP BY 
community,days ; 

 

12 State level 
Utilities 

Total Consumption 
of each community 

of a state on a 

weekly basis. 

SELECT community,weekly, 
round(sum(myFurnace+myCellar+MyWashingMachine+MyOutle

ts+MyDishWasher+MyHeater+MyLights),5) as 

CommunityConsumption FROM (SELECT community, 
weekofyear(DateTime) as weekly, sum(furnace) as 

myFurnace,sum(cellar) as myCellar,sum(washingmachine) as 

MyWashingMachine,sum(outlets) as MyOutlets,sum(dishwasher) 
as MyDishWasher,sum(heater) as MyHeater,sum(lights) as 

MyLights from smarthomeconsumption where 

state='"Sharjah"'AND month(DateTime)=1 group by 
community,weekofyear(DateTime))a GROUP BY 

community,weekly ; 
 

13 State level 

Utilities 

Total Consumption 

of each community 
of a state on a 

monthly basis. 

SELECT community,months, 

round((myFurnace+myCellar+MyWashingMachine+MyOutlets+
MyDishWasher+MyHeater+MyLights),5) as 

CommunityConsumption FROM (SELECT community, 

month(DateTime) as months, sum(furnace) as 
myFurnace,sum(cellar) as myCellar,sum(washingmachine) as 

MyWashingMachine,sum(outlets) as MyOutlets,sum(dishwasher) 

as MyDishWasher,sum(heater) as MyHeater,sum(lights) as 

MyLights from smarthomeconsumption where state='"Sharjah"' 

group by community,month(DateTime))a GROUP BY 

community,months ; 
 

14 State level 

Utilities 

Total Consumption 

of each community 
of a state annually. 

SELECT CommunityName, 

round((MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+
MyCookingRange+MyWashingMachine+MyDishWasher),5) AS 

TotalCommunityConsumption from ( Select community AS 

CommunityName,  sum(Furnace) AS MyFurnace, sum(Cellar) 
AS MyCellar ,sum(Fridge) AS MyFridge ,sum(Heater)AS 

MyHeater , sum(Lights) AS MyLights, sum(Outlets) AS 

MyOutlets, sum(CookingRange) AS MyCookingRange, 
sum(WashingMachine) AS 

MyWashingMachine,sum(DishWasher) AS MyDishWasher from 

smarthomeconsumption WHERE state='"Sharjah"' group by 
community)a ; 

 

15 National 

level 

Utilities  

 

Total Consumption 
of each state of a 

country everyday 

in a week. 

SELECT mystate,daysOfWeek, 
round(sum(MyFurnace+MyCellar+MyHeater+MyLights+MyOutl

ets+MyCookingRange+MyWashingMachine+MyDishWasher),5) 

AS TotalStateConsumption from (Select state AS 
mystate,date_format(DateTime,'EEEE') as daysOfWeek, 

sum(Furnace) AS MyFurnace, sum(Cellar) AS MyCellar 

,sum(Fridge) AS MyFridge ,sum(Heater)AS MyHeater , 
sum(Lights) AS MyLights, sum(Outlets) AS MyOutlets, 

sum(CookingRange) AS MyCookingRange, 

sum(WashingMachine) AS 
MyWashingMachine,sum(DishWasher) AS MyDishWasher from 

smarthomeconsumption WHERE weekofyear(DateTime)=5 group 

by state,date_format(DateTime,'EEEE')) a GROUP BY 
mystate,daysOfWeek; 
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16 National 

level 

Utilities  

 

Total Consumption 
of each state of a 

country on a 

weekly basis. 

SELECT mystate,weekly, 
sum(MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+M

yCookingRange+MyWashingMachine+MyDishWasher) AS 

TotalStateConsumption from (Select state AS 
mystate,weekofyear(DateTime) as weekly, sum(Furnace) AS 

MyFurnace, sum(Cellar) AS MyCellar ,sum(Fridge) AS 

MyFridge ,sum(Heater)AS MyHeater , sum(Lights) AS 
MyLights, sum(Outlets) AS MyOutlets, sum(CookingRange) AS 

MyCookingRange, sum(WashingMachine) AS 

MyWashingMachine,sum(DishWasher) AS MyDishWasher from 
smarthomeconsumption  where month(DateTime)=3 group by 

state,weekofyear(DateTime))a GROUP BY mystate,weekly; 

 
17 National 

level 

Utilities  

 

Total Consumption 

of each state of a 

country every 
month. 

SELECT mystate, 

(MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+MyCo

okingRange+MyWashingMachine+MyDishWasher) AS 
TotalStateConsumption from (Select state AS mystate, 

avg(Furnace) AS MyFurnace, avg(Cellar) AS MyCellar 

,sum(Fridge) AS MyFridge ,sum(Heater)AS MyHeater , 
sum(Lights) AS MyLights, sum(Outlets) AS MyOutlets, 

sum(CookingRange) AS MyCookingRange, 

sum(WashingMachine) AS 
MyWashingMachine,sum(DishWasher) AS MyDishWasher from 

smarthomeconsumption WHERE  month(DateTime)=2 group by 

state)a ; 
 

18 National 

level 

Utilities  

 

Total Consumption 
of each state of a 

country annually. 

SELECT mystate,monthly, 
sum(MyFurnace+MyCellar+MyHeater+MyLights+MyOutlets+M

yCookingRange+MyWashingMachine+MyDishWasher) AS 

TotalStateConsumption from (Select state AS 
mystate,month(DateTime) as monthly, sum(Furnace) AS 

MyFurnace, sum(Cellar) AS MyCellar ,sum(Fridge) AS 

MyFridge ,sum(Heater)AS MyHeater , sum(Lights) AS 
MyLights, sum(Outlets) AS MyOutlets, sum(CookingRange) AS 

MyCookingRange, sum(WashingMachine) AS 

MyWashingMachine,sum(DishWasher) AS MyDishWasher from 

smarthomeconsumption  group by state,month(DateTime))a 

GROUP BY mystate,monthly; 
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. Chapter 4.   Experimental Design 

 

Four machines are taken for setting up a cluster consisting of one master-four 

slave nodes as shown in Figure 4.1. The replication factor for each node is set to 2 and 

the block size is 64MB. For a million smart meters data (~1.5TB), the name node 

generates 23438 blocks (1.5TB/64MB) of data. Each data nodes stores a total of 5860 

blocks that correspond to a total size of 375GB. The block distribution from B1 to 

B5860, B5861 to B11720, and B11721 to B17580, and B17581 to B23440 across 

node 1, node 2, node 3, and node 4 respectively is shown in Figure 4.1.  The hardware 

specifications for deploying a single master or a slave node machine is in Table 4.1. 

Table 4.1: Commodity Hardware Specifications  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1: One master-four slaves hadoop cluster 

 CPU                         
RAM 

     Storage OS Ethernet speed  
(Cat6 cables) 

IP address 
(local) 

Master 

Node 

8 cores at 

2GHz 

16GB 1TB Ubuntu 

16.4 

1000Mbps 10.25.34.176 

Slave 
Node 1 

8 cores at 
2GHz 

16GB 1TB Ubuntu 
16.4 

1000Mbps 10.25.34.176 

Slave 

Node 2 

4 cores at 

1.5GHz 

8GB 730GB Ubuntu 

16.4 

1000Mbs 10.25.34.177 

Slave 

Node 3 

4 cores at 

1.5GHz 

8GB 500 GB Ubuntu 

16.4 

1000Mbps 10.25.34.178 

Slave 
Node 4 

4 cores at 
1.5GHz 

8GB 500GB Ubuntu 
16.4 

1000Mbs 10.25.34.179 
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4.1. Evaluation Criteria 

Performance is critical in Hadoop clusters whether it’s deployed on bare metal 

or virtualized environment. Our cluster was deployed on physical environment of the 

machines. Three types of variables are determined for evaluating cluster performance: 

input variables, output variables, control variables as shown in Table 4.2.     

 Table 4.2: Experimental Variables under study 

 

 

 

 

 

 

The control variables are based on the physical environment and machine 

specifications as already mentioned in the previous section. The input variables are 

the optimization parameters that can be controlled by the user during Hadoop Job 

submission and queries to optimize the performance. Four output variables will be 

assessed by varying different input variables; latency and throughput. The term 

‘latency’ refers to the completion time of rendering query results across the cluster 

data nodes. Similarly, ‘throughput’ denotes the number of reads from HDFS 

completed per unit time (tasks completed/minute).  The data files will be imported in 

log scale of 10, 100, 1000, 10000, 100000, and 1,000,000 smart meter CSV files. 

Each batch of files will be loaded across one, two, and three data nodes to examine 

the latency, throughput, and memory usage of write to HDFS. To evaluate the cluster 

performance, experiments will be focused on the data querying and reporting on 

Hadoop cluster using the two frameworks; Apache Spark and Apache Hive.  

4.2. Experiments and Evaluation Use-Cases 

Two experiments are designed to analyze performance of the SQL querying 

engines on top of Hadoop in terms of latency and throughput.  

4.2.1. Experimental objective. To determine the total latency for data 

querying each query is scheduled to run 100 times using the Oozie workflow [43] tool 

on top of Hadoop. For each query run, there are two variables i.e. number of data files 

and number of nodes. Experiments will be conducted to evaluate the overall query 

Input 

Variables 

Control               Output 

Variables           Variables           

Number of 

Nodes 

Number of 

Cores 

Latency 

Number of 
Data files  

Memory 
Size 

Throughput 

Number of 

Queries 

Network 

Bandwidth 
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performance across the two data querying frameworks of Hadoop; Apache Spark and 

Apache Hive.  

4.2.2 Experimental objective. To determine the system throughput in data 

querying throughput is based on the file size written (or read) by the individual map 

tasks and the elapsed time to do so. 

Two test cases will be generated to determine the elapsed time (latency) and 

throughput for executing queries on Spark and Hive. The test cases are as follows:    

 Number of Smart meter files: The impact of the data files size during the 

querying process is determined by measuring the elapsed time (latency), 

throughput for each batch of data files.   

 Number of Data nodes: The impact of the cluster size on querying is 

determined by measuring the latency, throughput, for submitting query jobs 

across one, two, three, and four data nodes.  
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. Chapter 5.    Results and Discussion 

 

This chapter comprises of quantitative results discussion from the performance 

evaluation as discussed in the previous chapter. Section 1 elaborates on two 

performance metrics; query execution time and throughput. Section II discusses the 

Hadoop processing engines performance with proprietary tools and relational 

database management system.   

5.1. Quantitative Evaluation 

In order to obtain statistically accurate data, each query was scheduled in a 

workflow using the Oozie Workflow Scheduler system to manage Apache Hadoop 

jobs. Oozie [43] is a scalable and a reliable system integrated on top of the Cloudera 

Hadoop Stack supporting different types of Hadoop jobs such as map reduce, 

multidimensional processing, etc.  Each query workflow is scheduled to run every 

fifteen minutes on a day, and for each query execution hundred points of latency are 

logged to gain statistical significance. Throughput is calculated from the latency 

points obtained from the experiments.    

5.1.1. Latency. Hadoop is designed and developed to process large number of 

files. Hadoop’s mean execution time was evaluated by investigating different factors, 

such as the number of active slave nodes and dataset size that affect it, i.e., 

 

 

As a query job is submitted via Spark or Hive CLI, the job is executed in 

multiple stages where each stage contains multiple Map Reduce tasks.  We use the 

following notation to represent an big data SQL query job: 

Job= {Stagei: 0<i<M} 

Stage= {Taski, j: 0<j<N} 

Here M is the number of stages in a job and N is the number of Map Reduce 

tasks in a stage. The resource manager of master node distributes these stages across 

the cluster nodes. The map/reduce task processes assigned to each stage are executed 
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in parallel across several data notes. Latency corresponds to the total execution time 

taken by all the mapper/reducers tasks within each stage when run in parallel to 

process results. 

Since the standard deviations are unevenly distributed, the query performance 

will be evaluated based on the average values of latency as well as throughput. Figure 

5.1 and Figure 5.2 depict Query-wise mean execution time for Hive and Spark across 

1 node and nodes 4 for one million files. From the two graphs, it is observed that the 

query execution time largely depends on the query selectivity characteristic as well. 

For queries formulated with large selectivity parameters such as Query #1, Query #11, 

Query #15, Query #16, Query #17, and Query #18 take longer time to process than 

other queries for the same processing volume across each node. Query #11 takes a 

long execution time because of multiple JOIN clauses used in this query to find the 

total house consumption and its respective neighborhood community consumption. 

Due to multiple JOINs, there is a strong interdependency between the files. With 

larger interdependency between smart meters dataset, more numbers of reducers 

strongly dependent on each other. With this increase in the number of reducers, the 

execution time increases sharply depending on varying computing needs. The 

maximum time is taken from Q #15 to Q # 18 as these queries have a wider selectivity 

requirement to aggregate more number of records on a national level spread across 

different cluster nodes, and hence larger latency. For one node, Hive and Spark take 

roughly 2322 seconds and 2170 seconds for Query # 18 respectively. Conversely, for 

four nodes Hive and Spark take 843 seconds and 712 seconds for same query 

respectively.  Additionally, it can be observed from both the figures that in case of 

Spark, Query #1 takes longer than other queries with the same selectivity clause such 

as Query #2 because for the first iteration Spark launches the container memory and 

once the processing is completed other memory containers are not stopped until the 

session is closed which saves a significant amount of overhead time. However, for 

Hive when a query is submitted the map and reduce tasks will be launched on the 

execution stage and these tasks are alive until the period of execution. Once the 

processing is completed, the map and reduce memory containers will get stopped and 

will be relaunched again for the subsequent query session.  
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Figure 5.1: Mean latency per query for 1 million smart meters across 1-Node 

 

 

Figure 5.2: Mean latency per query for 1 million smart meters across 4-Nodes 

The results for the query execution time on Apache Spark and Apache Hive 

are shown in Figure 5.3. The results are discussed for cluster size of 1-Node, 2-Nodes, 

3-Nodes, and 4-Nodes as follows:  

5.1.1.1. 1-node cluster. For  processing 10 smart meters on one 1 node, the 

execution time for Spark and Hive is 34 seconds and 39 seconds with a standard 

deviation of 4.6 and 15.1 seconds respectively. This accounts to Spark being 14% 

Latency on 1-Node and 1,000,000 Smart Meters 

Latency on 4-Nodes and 1,000,000 Smart Meters 
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faster than Hive. For processing 100 smart meters, Spark’s and Hive’s execution time 

is 232 seconds and 265 seconds with standard deviation of 28.78 and 12.289 

respectively. Thus, Spark being 14.8% faster than Hive. For a 1000 smart meters, the 

processing time for Spark and Hive is 829 and 954 seconds with a standard deviation 

of 114.1992 and 60.47 respectively, yielding Spark as 15% faster than Hive. For a 

10000 smart meters, Spark and Hive latency is reported as 1201 seconds and 1364 

seconds with a standard deviation of 40.79 and 25.6579. Thus, Spark is 13.5 % faster 

than Hive. For 100,000 meters, Spark and Hive’s response time is 1476 and 1675 

seconds with standard deviation of 43.8 and 51.07 respectively implying that Spark is 

13.4% faster than Hive. For a million smart meters, Spark and Hive’s processing time 

is 2172 and 2221 seconds with a standard deviation of 70.31 and 70.66 respectively. 

This infers that Spark is 2.3% faster than Hive.  The reason for Spark being faster than 

Hive is that the Spark processes the data in -memory while the Hive processing 

utilizes disk access. With in-memory data processing on Spark, the processing speed 

is increased substantially. This is because using Spark, the data is cached in the first 

query run and it does not require to be fetched from the disk again for the subsequent 

query sessions. For the first 10, 100, and 1000 smart meters Spark’s performance is 

increasing linearly with respect to Hive wherein Spark is 14%, 14.8% and 15% faster 

than Hive. However, as the number of input volume increases to 10,000, 100,000 and 

1,000,000 smart meters, the performance of Spark is only 13.5%, 13.4% and 2.3% 

faster than Hive. This is because of the memory constraint on a single node 

comprising of 540 GB RAM for processing 1.5 TB data  that interferes with the 

Spark’s in memory processing. The reason being that for an increased input size 

coupled with a smaller cluster design (~1 node), Spark SQL is unable to handle the 

intermediate result sets (i.e. 1.5 TB for 1 million files, 0.15 TB for 100,000 files) in 

the available container memory whereas Hive is able to cope with such a situation due 

to read/write fetch from the disk. Due to this memory bottleneck, all records from the 

smart meter files cannot be cached into the memory due to which they are forced to be 

written on to the disk, causing high latency in Spark. 

 5.1.1.2. 2-nodes cluster. The processing time for 10 smart meters on two nodes, 

the execution time for Spark and Hive is 31 seconds and 35.04 seconds with a 

standard deviation of 4.44 and 5.56 respectively. This accounts to Spark being 

13.61% faster than Hive. For processing 100 smart meters, Spark’s and Hive’s 
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execution time is 108 seconds and 120 seconds with a standard deviation of 5.96 and 

5.93 respectively. Thus, Spark being 11% faster than Hive. For a 1000 smart meters, 

the processing time for Spark and Hive is 734 and 809 seconds 83.63 and 70.39 

respectively, yielding Spark as 12.2% faster than Hive. For a 10000 smart meters, 

Spark and Hive latency is reported as 1031 seconds and 1140 seconds with a standard 

deviation of 76.75 and 71.42. Thus, Spark is 10.5 % faster than Hive. For 100,000 

meters, Spark and Hive’s response time is 1202 and 1364 seconds with a standard 

deviation of 48.33 and 51.13 respectively implying that Spark is 11.4% faster than 

Hive. For a million smart meters, Spark and Hive’s processing time is 1751 and 1927 

seconds with a standard deviation of 99.14 and 102.56 respectively. This infers that 

Spark is 10.5% faster than Hive. For every set of files, it is observed that Spark’s 

performance is greater than Hive. Thus, it can be deduced that even though Spark 

outperforms Hive for every batch of files, the increase in performance declines as the 

number of input files change from 10,000 to one million in a small cluster set of two 

nodes. This is due to the memory intensive computation power of Spark wherein it 

splits some of the intermediate records onto the disk when it falls short of commodity 

hardware memory. For a cluster of two nodes, the total available memory for 

processing was 960 GB (Node-1) and 589 GB  (Node-2) RAM, that is, 1549 MB ~ 

1.5 GB whereas the size of input volume for 10,000 , 100,000 and 1 million files was 

15 GB, 150 GB, and 1.5 TB.  

5.1.1.3. 3-nodes cluster. The processing time for 10 smart meters on three nodes 

node, the execution time for Spark and Hive is 10.5 seconds and 12 seconds with a 

standard deviation of 2.68 and 2.85 seconds respectively. This accounts to Spark 

being 14.28% faster than Hive. For processing 100 smart meters, Spark’s and Hive’s 

execution time is 97 seconds and 120 seconds with a standard deviation of 11.05 and 

9.2 respectively. Thus, Spark being 23.7% faster than Hive. For a 1000 smart meters, 

the processing time for Spark and Hive is 379 and 482 seconds with a standard 

deviation of 19.09 and 45.76 respectively, yielding Spark as 27% faster than Hive. 

For a 10000 smart meters, Spark and Hive latency is reported as 454 seconds and 592 

seconds with a standard deviation of 12.38 and 10.28 respectively. Thus, Spark is 30.5 

% faster than Hive. For 100,000 meters, Spark and Hive’s response time is 789 and 

1093 seconds with a standard deviation of 32.46 and 30.75 respectively implying that 

Spark is 38% faster than Hive. For a million smart meters, Spark and Hive’s 
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processing time is 977 and 1295 seconds with a standard deviation of 87.166 and 

93.175 respectively. This infers that Spark is 32.5% faster than Hive. Thus, with the 

increase in nodes, the execution time for both Spark and Hive increased linearly, and 

there is a substantial increase in the performance upgradation of Spark in contrast to 

Hive as the volume of dataset increases from 10 to one million smart meters without 

any memory bottleneck.  

5.1.1.4. 4-nodes cluster. The processing time for 10 smart meters on three 

nodes node, the average execution time for Spark and Hive is 5.4 seconds and 6.3 

seconds with a standard deviation of 1.53 and 1.55 respectively. This accounts to 

Spark being 15.66% faster than Hive. For processing 100 smart meters, Spark’s and 

Hive’s execution time is 87 seconds and 101 seconds with a standard deviation of 

19.49 and 18.69 respectively. Thus, Spark being 16.7% faster than Hive. For a 1000 

smart meters, the processing time for Spark and Hive is 258 and 329 seconds with a 

standard deviation of 43.788 and 45.54 respectively, yielding Spark as 28% faster 

than Hive. For a 10000 smart meters, Spark and Hive latency is reported as 400 

seconds and 540 with a standard deviation of 10.921 and 10.27 seconds 

correspondingly. Thus, Spark is 35 % faster than Hive. For 100,000 meters, Spark and 

Hive’s response time is 546 and 758 seconds with a standard deviation of 69.01422 

and 75.065 respectively implying that Spark is 44.3% faster than Hive. For a million 

smart meters, Spark and Hive’s processing time is 603 (~13 minutes) and 1089 (~21 

minutes) seconds with a standard deviation of 44.433 and 45.25 respectively. This 

infers that Spark is 76% faster than Hive. To summarize, for 10, 100, 1000, 10000, 

100,000 and 1,000,000 smart meters Spark is 15.6%, 16.7%, 28%, 35%, 43%, and 

76% faster than hive respectively. The percentage increment is less for small batch of 

files such as 10, 100, and 1000. This is because running a query on dataset which has 

only a few hundreds of MBs written to disk is not much different than transferring the 

same in memory. Now coming to processing a volume of size in thousands of MBs or 

in TBs i.e. 10000, 100000, and one million smart meters, Hive’s intermediate results 

from the map outputs are written to the disk and then transferred to the reducers 

which take a significantly large amount of time. Additionally, when a hive query is 

submitted, the mapper and reducer tasks will be launched. These tasks However, in 

Spark this is not the case as the intermediate results are cached in-memory avoiding 

any hefty disk I/O. Thus, overall it can be inferred that with a cluster of four nodes the 
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Spark performance increases substantially for each set of files. The best processing 

performance for a million meters is achieved with a cluster size of four nodes. Thus, 

for processing a larger batch of files, the addition of nodes to the cluster has a big 

impact on reducing the execution time. 

 

Figure 5.3: Mean latency across 1-Node, 2-Nodes, 3-Nodes, and 4-Nodes 

Additionally, the latency for processing 100,000 files across one node in Spark 

and Hive is 2172 and 2221 seconds respectively. Conversely, the processing time for 

two nodes and the same processing engines (Spark and Hive) is 1751 and 1927 

seconds respectively. Thus, for two nodes Spark is roughly 7 minutes faster than one 

node computation.  On the other hand, Hive processing across two nodes is 

approximately 4 minutes faster than on a single node. For three nodes and one million 

smart meters, the latency on Spark and Hive is 977 seconds and 1295 seconds. Thus, 

Spark on three nodes is nearly 12 minutes faster than two nodes. Alternatively, Hive 

processing on three nodes is roughly 10 minutes faster than that on two nodes. 

Similarly, for four nodes the Spark and Hive processing time is 603 and 1029 seconds 
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respectively. This infers that Spark on four nodes is nearly 6 minutes faster than its 

processing the same set of million files on three nodes. Conversely, Hive on four 

nodes is approximately 6 minutes faster than computation time on three nodes. This 

small variation in the increase in processing time between three and four nodes is 

attributed to the network bottleneck (~1 Mbps Ethernet bandwidth and CAT6 cables 

providing 100 Mb/s) in a cluster as it takes longer time to read and write the data 

stored across more number of nodes of the cluster in the network. To minimize this 

network constraint for achieving lower latency, high speed Ethernet cables and higher 

bandwidth switch can be deployed for connecting the cluster machines. Thus, it can 

be inferred that latency reduces as the number of active nodes increase and the 

processing time increases with the increase in number of files. The obtained results 

are reasonable as it is expected that with increase in the volume of data files on each 

node, the processing time will also increase significantly. Theoretically, a linear 

improvement is observed in the performance of Spark and Hive with increase in 

cluster size and subsequent memory resources. Although, in the practical 

implementation there will be some overhead due to network communication and 

synchronization between the cluster nodes, yet the performance for a large cluster size 

will be better than a small cluster. The performance gain is inversely proportional to 

the latency or the query execution time in seconds, and can be expressed as follows: 

 

In practicality, the performance gain also depends upon other parameters such 

as the optimization and execution plan generated by the processing engines. Figure 

5.4 represents the performance gain achieved for processing one million records using 

Spark and Hive across 1 node, 2 nodes, 3 nodes, and 4 nodes. The processing gain 

achieved for a small cluster is lower in contrast to the gain obtained with the increase 

in cluster size. Spark’s performance gain is always higher than Hive. Additionally 

Figure 5.5 illustrates the performance of Query # 1 in on a million smart meters on a 

cluster of four nodes. From the graph we can observe the effect of Spark in an 

iterative querying environment. It is surmised that with 1.5 TB (million meters) data, 

Query #1 performance, Hive takes a constant time per iteration of about 720 seconds. 
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On the other hand, Spark takes 780 seconds in first iteration to load data in-memory 

and only ~120 seconds in subsequent iterations. 

 

 

 

 

 

 

 

Figure 5.4: Performance gain in Hive and Spark for a million smart meters 

 

Figure 5.5: Performance of Spark and Hive in iterative querying  

5.1.2. Throughput. Throughput refers to the amount of data executed, per second, for 

each query execution. Following expression is used to calculate throughput based on 

input file size and latency measurements. Figure 5.6 and Figure 5.7 represent the  

                            

, File size=1.5MB 

Performance gain for 1 million Smart Meters 
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throughput of Hive and Spark for processing one million files across the cluster size 

of node 1 and nodes 4 respectively. It can be summarized that Queries with larger 

latency have a smaller throughput such as Query #1, Query #11, Query #15, Query 

#16, Query #17, and Query #18 with throughput values 686.669 MBps, 651.0047 

MBps, 646.1469 MBps, 646.9373 MBps, 646.9897 MBps, and 645.8848 MBps 

respectively across 1-node. Alternatively for Figure 5.7, it is observed that the 

throughput measurements are higher across the cluster size of 4-nodes in contrast to 

1-node cluster.  This result matches the theoretical expectation as latency across four 

nodes is reduced in comparison to node one, hence higher throughput. Hadoop 

scalability to accommodate large volume of data across multiple nodes using Spark is 

excellent with an optimum amount of execution time of around 15 minutes to process 

a million smart meter data.  The mean throughput across each node for every batch of 

file across Spark and Hive is shown in Figure 5.8. From the experimental results, it is 

observed that for a set of files (e.g. 1,000,000 files) the maximum throughput is 

achieved at the addition of four nodes in the cluster. Mean throughput for Spark and 

Hive with 1 million processing volume across four nodes is recorded as 2433 MBps 

and 1977 MBps with a standard deviation of 158.42 MBps and 110 MBps.  This 

could be accounted for the fact that with the addition of a node the processing time 

decreases for executing queries on the same number of files.  Moreover, as the 

processing volume across each node increases, the throughput is also observed to be 

increased sharply.  Overall, Spark outperforms Hive in latency but with a tradeoff in 

available memory resources.  

 

Figure 5.6: Mean throughput result for Spark and Hive across Node 1- 1 million smart 

meters 
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Figure 5.7: Mean throughput result for Spark and Hive across 4 Nodes and 1 

million smart meters 

Figure 5.8: Mean throughput result for Spark and Hive across 1 Node, 2 

Nodes, 3 Nodes,   and 4 Nodes 
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5.2. Comparison of Experimental Results with Proprietary Tools and RDMS 

IBM’s Informix big data tool and relational databases from [45] were used as 

a benchmark to compare the processing time for running queries on one million smart 

meters data. Table 5.1 provides a synopsis of performance comparison between the 

experimental results for Spark and Hive with respect to IBM’s proprietary tool and 

relational database management system. 

 Table 5.1: Comparison of Hadoop processing engines with IBM proprietary tool and 

relational database management system [45]  

 

 

 

 

From Table 5.1, we can deduce that for a million smart meters processing, 

Spark and Hive have an intermediate performance in comparison to IBM’s 

proprietary tool and relational database management system. Relational database 

management system perform the worst for one million smart meters processing that 

require a storage of 1.3 TB. For 1.5 TB files size, Spark’s processing time was 12-15 

minutes for one million smart meters whereas Hive took about 28-34 minutes. On the 

other hand, IBM’s processing tool took the least time ranging from 25 seconds to 6 

minutes. However, the size of one million smart meters files was only 350 GB for 

IBM’s tool while it was 1.5 TB for Spark and Hive. Thus, it can be concluded that for 

the same storage of 1.5 TB for one million smart meter dataset, the IBM proprietary 

tool could take longer than Spark and Hive processing time.   

A large data processing procedure which might take hours of processing time 

on a centralized relational database might take just roughly 15 minutes when the same 

data is distributed across Hadoop cluster with several nodes given all processing be 

done in parallel. The residual graphs of latency and throughput for query wise 

execution across each node can be found in the appendix section.      

 IBM                     Relational  

Proprietary Tool  Database                     

Spark           Hive 

Run time for 1 

million meters 

25 sec to 

6 min 

2-7 hours 12 to 15 

minutes 

28-34 minutes 

Storage required 

for 1 million 

meters 

350GB 1.3TB 1.5TB (w/o 

replication) 

1.5 TB (w/o 

replication) 
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. Chapter 6.   Visualization on Hadoop for Smart Meter Data 

 

Hue is a web-based interactive query editor in the Hadoop stack of Cloudera that 

allows data visualization in real time [44]. Hue utilizes hive SQL Query engine to 

generate graphs for different levels of stakeholders as discussed in Chapter 3. For 

visualization purpose, we sampled 10 smart meters data from the generated dataset in 

order to demonstrate an example of how visualization can be performed on Hadoop 

ecosystem.  

6.1. Consumer 

 Query #1: Total consumption of each appliance for consumer’s house 

everyday in a week.  Figure 6.1 represents the graphical output for Query #1.  

 

 
 

Figure 6.1: Consumer’s home appliances consumption for each day in a week 

 

 Query #2: Total consumption of each appliance for consumer’s house each 

week in a month. Figure 6.2 represents the output for Query #2 in tabular 

format.  

 
 

Figure 6.2: Consumer’s home appliances consumption for each week in a month 
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 Query #3: Total consumption of each appliance for consumer’s house on a 

monthly basis. Figure 6.3 represents the graphical output for Query #3.  

 

 
 

Figure 6.3: Consumer’s home appliances consumption for each month of the 

year 

 Query #4: Total annual power consumption of each home appliance of the 

consumer. Figure 6.4 represents the graphical output for Query #4. 

 

 

Figure 6.4: Total annual consumption of each home appliance for the consumer 

 

 Query #5: Total annual consumption of consumer’s house and total annual 

consumption of all houses in that respective community for the same year. . 

Figure 6.5 represents the output for Query #5 in tabular format. 
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Figure 6.5: Consumer’s annual consumption in percentage with respect to the       

community’s total consumption 

 

6.2. Community Utility Provider 

 Query #6: Total consumption of each house in a community for everyday in a 

week. Figure 6.6 represents the graphical output for Query #6. 

 

 
 

Figure 6.6: Total annual consumption for all houses in a community each day 

 

 Query #7.  Total consumption of each house device in a community a week. . 

Figure 6.7 represents the graphical output for Query #7. 

 

 
 

Figure 6.7: Appliance consumption for all houses in a community for one 

week 
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 Query #8.  Total consumption of each house in a community every week of a 

month. Figure 6.8 represents the graphical output for Query #8. 

 

 
 

Figure 6.8: Total consumption of each house in a community every week of the    

month 

 

 Query #9: Total consumption of each house in a community every month of 

the year. Figure 6.9 represents the graphical output for Query #9. 

 

 
 

Figure 6.9: Total consumption of each house in a community on a monthly basis 

 

 Query #10: Total consumption of each house in a community annually. . 

Figure 6.10 represents the graphical output for Query #10. 

 

6.3. State Utility Provider 

 Query #11: Total consumption of each community of a state every day in a 

week. . Figure 6.11 represents the graphical output for Query #11. 
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Figure 6.10: Total annual consumption of each house in a community 

 

 

Figure 6.11: Total consumption of each community of a state every day in a week 

 

 Query #12: Total consumption of each community of a state for each week in 

a given month. Figure 6.12 represents the graphical output for Query #12. 

 

 

Figure 6.12: Total consumption of each community of a state every day in a 

week 

 Query #13: Total consumption of each community of a state on a monthly 

basis. Figure 6.13 represents the graphical output for Query #13. 
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Figure 6.13: Total consumption of each community of a state on a monthly 

basis 

 Query #14: Total annual consumption of each community of a state. Figure 

6.14 represents the graphical output for Query #14. 

 

 

Figure 6.14: Total annual consumption of each community of a state 

 

6.4. National Utility Provider 

 Query #15: Total consumption of each state of a country everyday in a 

week. Figure 6.15 represents the graphical output for Query #15. 

 
Figure 6.15: Total consumption of each state of a country every day in a week 
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 Query #16: Total consumption of each state of a country on a weekly 

basis. Figure 6.16 represents the graphical output for Query #16. 

 

 

Figure 6.16: Total consumption of each state of a country weekly basis 
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. Chapter 7.    Conclusion, Limitations and Future Work 

 

The goal of this thesis was to build a high end commodity hardware 

computing cluster and utilizing the open source data storage, processing, analyzing, 

and visualizing residential area big data.  A dataset for one year of everyday energy 

consumption using smart meter was obtained from a research team at University of 

Massachusetts. In this thesis, using ARIMA modeling synthetic data was generated 

for one million smart meters using the sample dataset. The one million meter was 

geographically distributed into the seven UAE emirates based on the latest population 

percentage in each emirate.  

A four nodes computing cluster was designed and configured using high end 

quad core CPU’s and large RAM and disk storage. The open source file distributed 

system (Hadoop) was installed on the cluster, configuring one machine as the name 

node (master) and three machines as data nodes (slaves). The one million smart meter 

big data was modeled as a data cube using the On-Line Analytical Processing 

technique to develop SQL queries for processing on top of the file distributed system 

(hadoop). These queries were utilized for the smart meter big data analysis using two 

processing engines on top of hadoop; Spark and Hive for their performance evaluation 

in terms of latency, throughput, and memory usage. The outcome of this was 

compared with two traditional and proprietary existing energy management 

techniques for smart meter big data. It was found that the proposed system 

outperformed the traditional system 20 times but it’s less good than the proprietary 

system. It’s worth mentioning that the proprietary system is not an open source 

platform and used specialized cluster resources that cost more money compared to our 

open source commodity hardware cluster.  

One major additional contribution was to develop a visualization interface 

using open source Hadoop based data visualization tool, called Hue. Different 

stakeholder queries are executed on Hue to generate graphs and tabular data 

corresponding to each stakeholder. These graphs can be used by home consumers and 

utility providers to gain useful insight into the periodic consumption trend of different 

home appliances, houses, community, state, and country at large. This helps home 

owners and utility to better manage the demand response of energy. This outcome was 
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compared with the existing Google home energy management system called, Google 

power meter which only catered to the visualization of individual appliances of the 

home owners but lacked a unified visualization platform for utility providers on 

community, state, and country level.  

In addition to the residential area energy management visualization, a 

performance evaluation of two analysis and processing engines; Spark and Hive was 

also achieved. In-memory processing provides a significant performance gain and 

speed boost in Spark as compared to Hive. Additionally, storing the input data in-

memory in subsequent query iterations greatly benefits the Spark latency in an 

iterative querying environment. From the experimental results, Spark proved to have 

performed almost 10 times better than Hive. Optimum selection of SQL engine in 

reality is very subjective. Even though Spark provides in-memory computation that 

fosters low latency, the memory constraint and limited network bandwidth should be 

taken into consideration. Hive can be chosen for analysis if the available hardware 

resources are limited. For processing small datasets on a small cluster, Hive can be a 

good choice to obtain stable query response without any out-of-memory exceptions. 

Moreover, the execution times for writing a few MBs on disk or in-memory do not 

have much difference so Hive can be preferred for small datasets in a cluster. In a 

large size cluster for processing medium to large datasets, Spark is strongly 

recommended over Hive.   

Some limitations were also identified in this work such as the use of a 

structured data format for processing. Hadoop is designed for processing bulk volume 

of unstructured and semi structured data efficiently. Since the available dataset for 

one smart home was in structured CSV file format, we used the available dataset for 

generating, storing, and processing one million smart meters data.  

For the future work, we recommend that focus can be given on efficient and 

optimized performance of Hive and SparkSQL by tuning in the default configuration 

settings and parameters in a Hadoop cluster. Additionally, it would be interesting to 

investigate the query plans for both processing systems to study which database 

algorithms are being invoked for the query execution.  
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6. Appendix A: Experimentation Results 

 

This appendix provides average latency, throughput, and memory usage values for 

experiment 1 and 2.  

A.1.  Latency for query wise execution 

 

 

 

Figure A.1.1: Mean Latency for Spark and Hive across 1 Node, 10 smart meter files 

per query 

 

Figure A.1.2: Mean Latency for Spark and Hive across 1 Node, 100 smart meter files 

per query 
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Figure A.1.3: Mean Latency for Spark and Hive across 1 Node, 1000 smart meter 

files per query 

 

 

Figure A.1.4: Mean Latency for Spark and Hive across 1 Node, 10000 smart meter 

files per query 

 



94 

 

 

Figure A.1.5: Mean Latency for Spark and Hive across 1 Node, 100000 smart meter 

files per query 

 

 

Figure A.1.6: Mean Latency for Spark and Hive across 1 Node, 1,000,000 smart 

meter files per query 
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Figure A.1.7: Mean Latency for Spark and Hive across 2 Nodes, 10 smart meter files 

per query 

 

 

Figure A.1.8: Mean Latency for Spark and Hive across 2 Nodes, 100 smart meter files 

per query 
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Figure A.1.9: Mean Latency for Spark and Hive across 2 Nodes, 1000 smart meter 

files per query 

 

 

Figure A.1.10: Mean Latency for Spark and Hive across 2 Nodes, 10000 smart meter 

files per query 
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Figure A.1.11: Mean Latency for Spark and Hive across 2 Nodes, 100000 smart meter 

files per query 

 

 

Figure A.1.12: Mean Latency for Spark and Hive across 2 Nodes, 1,000,000 smart 

meter files per query 
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Figure A.1.13: Mean Latency for Spark and Hive across 3 Nodes, 10 smart meter files 

per query 

 

 

Figure A.1.14: Mean Latency for Spark and Hive across 3 Nodes, 100 smart meter 

files per query 
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Figure A.1.15: Mean Latency for Spark and Hive across 3 Nodes, 1000 smart meter 

files per query 

 

 

 

Figure A.1.16: Mean Latency for Spark and Hive across 3 Nodes, 10000 smart meter 

files per query 
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Figure A.1.17: Mean Latency for Spark and Hive across 3 Nodes, 100000 smart meter 

files per query 

 

 

Figure A.1.18: Mean Latency for Spark and Hive across 3 Nodes, 1,000,000 smart 

meter files per query 
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Figure A.1.19: Mean Latency for Spark and Hive across 4 Nodes, 10 smart meter files 

per query 

 

 

Figure A.1.20: Mean Latency for Spark and Hive across 4 Nodes, 100 smart meter 

files per query 
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Figure A.1.21: Mean Latency for Spark and Hive across 4 Nodes, 1000 smart meter 

files per query 

 

 

Figure A.1.22: Mean Latency for Spark and Hive across 4 Nodes, 10000 smart meter 

files per query 
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Figure A.1.23: Mean Latency for Spark and Hive across 4 Nodes, 100000 smart meter 

files per query 

 

 

Figure A.1.24: Mean Latency for Spark and Hive across 4 Nodes, 100000 smart meter 

files per query 
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A.2.  Throughput for query wise execution 

 

 

Figure A.2.1: Mean Throughput for Spark and Hive across 1 Node, 10 smart meter 

files per query 

 

 

 

Figure A.2.2: Mean Throughput for Spark and Hive across 1 Nodes, 100 smart meter 

files per query 
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Figure A.2.3: Mean Throughput for Spark and Hive across 1 Nodes, 1000 smart meter 

files per query 

 

 

Figure A.2.4: Mean Throughput for Spark and Hive across 1 Nodes, 10000 smart 

meter files per query 
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Figure A.2.5: Mean Throughput for Spark and Hive across 1 Node, 100000 smart 

meter files per query 

 

 

Figure A.2.6: Mean Throughput for Spark and Hive across 1 Node, 1,000,000 smart 

meter files per query 
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Figure A.2.7: Mean Throughput for Spark and Hive across 2 Nodes, 10 smart meter 

files per query 

 

 

Figure A.2.8: Mean Throughput for Spark and Hive across 2 Nodes, 100 smart meter 

files per query 

 



108 

 

 

Figure A.2.9: Mean Throughput for Spark and Hive across 2 Nodes, 1000 smart meter 

files per query 

 

 

Figure A.2.10: Mean Throughput for Spark and Hive across 2 Nodes, 10000 smart 

meter files per query 
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Figure A.2.11: Mean Throughput for Spark and Hive across 2 Nodes, 100000 smart 

meter files per query 

 

 

Figure A.2.12: Mean Throughput for Spark and Hive across 2 Nodes, 1,000,000 smart 

meter files per query 
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Figure A.2.13: Mean Throughput for Spark and Hive across 3 Nodes, 10 smart meter 

files per query 

 

 

Figure A.2.14: Mean Throughput for Spark and Hive across 3 Nodes, 100 smart meter 

files per query 
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Figure A.2.15: Mean Throughput for Spark and Hive across 3 Nodes, 1000 smart 

meter files per query 

 

 

Figure A.2.16: Mean Throughput for Spark and Hive across 3 Nodes, 10000 smart 

meter files per query 
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Figure A.2.17: Mean Throughput for Spark and Hive across 3 Nodes, 100000 smart 

meter files per query 

 

 

Figure A.2.18: Mean Throughput for Spark and Hive across 3 Nodes, 1,000,000 smart 

meter files per query 
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Figure A.2.19: Mean Throughput for Spark and Hive across 4 Nodes, 10 smart meter 

files per query 

 

 

Figure A.2.20: Mean Throughput for Spark and Hive across 4 Nodes, 100 smart meter 

files per query 
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Figure A.2.21: Mean Throughput for Spark and Hive across 4 Nodes, 1000 smart 

meter files per query 

 

 

Figure A.2.22: Mean Throughput for Spark and Hive across 4 Nodes, 10000 smart 

meter files per query 
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Figure A.2.23: Mean Throughput for Spark and Hive across 4 Nodes, 100000 smart 

meter files per query 

 

 

Figure A.2.24: Mean Throughput for Spark and Hive across 4 Nodes, 1,000,000 smart 

meter files per query 
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