

AN INTRAORAL CAMERA FOR SUPPORTING

ASSISTIVE DEVICES

by

Muhammad Amin Tily

A Thesis presented to the Faculty of the

American University of Sharjah

College of Engineering

In Partial Fulfillment

 of the Requirements

for the Degree of

Master of Science in

Mechatronics Engineering

Sharjah, United Arab Emirates

December 2018

© 2018 Muhammad Amin Tily. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master’s Thesis of Muhammad Amin Tily

Thesis Title: An Intraoral Camera for Supporting Assistive Devices

Signature Date of Signature
 (dd/mm/yyyy)

___________________________ _______________

Dr. Hasan Al-Nashash

Professor, Department of Electrical Engineering

Thesis Advisor

___________________________ _______________

Dr. Hasan Mir

Professor, Department of Electrical Engineering

Thesis Co-Advisor

___________________________ _______________

Dr. Abdulrahman Al-Ali

Professor, Department of Computer Science and Engineering

Thesis Committee Member

___________________________ _______________

Dr. Usman Tariq

Assistant Professor, Department of Electrical Engineering

Thesis Committee Member

___________________________ _______________

Dr. Lotfi Romdhane

Director, Mechatronics Engineering Graduate Program

___________________________ _______________

Dr. Ghaleb Husseini

Associate Dean for Graduate Affairs and Research

College of Engineering

___________________________ _______________

Dr. Richard Schoephoerster

Dean, College of Engineering

___________________________ _______________

Dr. Mohamed El-Tarhuni

Vice Provost for Graduate Studies

Acknowledgement

All praise and thanks belong to Allah alone, The All-Knowing, The Most

Wise. I start by thanking Allah who is the source of all of the uncountable blessings

that surround us, and whose guidance I long for in each and every step I take on this

earth.

 I would like to thank my parents who have sacrificed a great deal for me and

have supported me in all walks of life. I will always remain indebted to them for all

that they have done for me.

I am also extremely grateful to both my sisters and brothers-in-law who keep

supporting me in unique ways, and to all my nephews (Bilal, Muhammad and Zaid)

and nieces (Zahra, Maryam and Juwairiyah) for spreading joy in my life.

I wish to express my sincere thanks to my advisers, Dr. Hasan Al-Nashash and

Dr. Hasan Mir for guiding me throughout my coursework and making it possible for

me to successfully complete my thesis. I would also like to thank my university for

generously granting me Graduate Teaching Assistantships for 4 semesters which

helped me conduct my research at AUS and also enriched me with the unique

experience of teaching undergraduate students at AUS.

Last but not the least, a special thanks to all my colleagues in the

Mechatronics lab who have made my stay at AUS memorable, especially Ali Qahtan,

Daniyal Al-Waleed, Faris Al-khawaja, Ghaith Rousan, Hassan Umari, Hussein Ali,

Koshish Koirala, Mirghani Daffalla, Mohamad Kassem, Muhammad Usman, Omer

AbuBakr, Wasim Almasri and Zain Ali.

Dedication

Dedicated to my family…

6

Abstract

Thousands of patients around the globe are affected by paralysis which hinders the

fulfilment of their basic needs such as mobility and speech. Several research topics

have been dedicated to improve the livelihood of paralytic patients and a small subset

of the topics has focused on capturing inputs from the tongue. The tongue is a

muscular organ directly connected to the brain through a cranial nerve known as the

hypoglossal nerve which is responsible for the motor functions of the tongue. Hence,

tongue movements are not affected during spinal cord injuries, which is one of the

major causes of paralysis. Given the importance of capturing inputs from the tongue,

this research proposes a novel method of using an intraoral camera for this purpose. It

discusses the methods used for capturing the images with the help of an Endoscope

camera. It explains how the features were extracted in real-time using image

processing techniques on each captured frame and how the orientation and position of

the tongue was then accurately classified into one of the 11 possible categories to

produce specific outputs which could be used by paralytic patients as inputs to any

external system. After testing the system with a data entry application, an average of

19.34 correct entries per minute was calculated from 5 different experiments, and an

average error rate of 3.96% was obtained, which outperforms systems such as the

Resistopalatography and the MouthPad in terms of accuracy.

Keywords: Assistive Technology; disability; paralysis; tongue; intraoral camera;

image processing.

7

Table of Contents

Abstract……...6

List of Figures .. 9

List of Tables ... 13

List of Abbreviations ... 14

Chapter 1. Introduction .. 15

1.1. Overview ... 15

1.1.1. Motivation…………………………………………………………………………………..…15

1.1.2. Assistive technologies……………………………………………………………………..15

1.1.3. Utilizing the tongue………………………………………………………………………...16

1.1.4. Improving the existing tongue-driven systems…………………………………...16

1.2. Thesis Objectives .. 17

1.2.1. Sensor technology…………………………………………………………………………..17

1.2.2. Making a prototype………………………………………………………………………...17

1.2.3. Image processing……………………………………………………………………………17

1.2.4. Connecting an application………………………………………………………………..17

1.3. Research Contribution ... 17

1.4. Thesis Organization ... 18

Chapter 2. Background and Literature Review.. 19

2.1. Eye Movements ... 19

2.2. Muscle Activities ... 20

2.3. Inhalation and Exhalation .. 21

2.4. Electroencephalogram (EEG) Signals ... 22

2.5. Tongue Movements ... 23

2.5.1. Resistopalatography………………………………………………………………………..24

2.5.2. The MouthPad……………………………………………………………………………….24

2.5.3. Magnetic sensors……………………………………………………………………………26

2.5.4. Tongue-operated joystick………………………………………………………………...27

Chapter 3. Methodology .. 28

3.1. Problem Formulation ... 28

3.2. Proposed Solution .. 28

3.3. Capturing the Images ... 29

3.4. Image Processing ... 30

3.4.1. Smoothing the image………………………………………………………………………31

8

3.4.2. Conversion to HSV (Hue, Saturation, Value) ……………………………………31

3.4.3. Binarization of the image………………………………………………………………...32

3.4.4. Applying a morphological transformation on the binary image…………….33

3.4.5. Obtaining the contour of the image…………………………………………………...33

3.4.6. Segmentation of the image………………………………………………………………34

3.4.7. Detecting the tongue location and forming the categories……………………34

Chapter 4. Experimental Setup .. 39

4.1. The Personalized Mouthguard ... 39

4.2. The Interface .. 41

4.3. Application 1: Controlling a Robotic Arm .. 41

4.4. Application 2: Typing ... 43

4.5. Cost Analysis ... 45

Chapter 5. Results and Analysis .. 46

5.1. Capturing the HSV Range ... 46

5.2. Summary of the Complete Procedure ... 46

5.3. Results within Different Categories .. 48

5.4. Testing the Performance of the System Using the Robotic Arm 54

5.4.1. Experiment 1………………………………………………………………………………….54

5.4.2. Experiment 2………………………………………………………………………………….56

5.4.3. Experiment 3………………………………………………………………………………….57

5.5. Testing the Performance of the System Using the Typing System 58

5.6. Limitations and Inaccuracies of the System .. 61

5.6. Running the Code on Raspberry Pi ... 62

Chapter 6. Conclusion and Future Work ... 63

References……………………………………………………………………………………………………...65

Appendix: Python Code ... 68

Vita……..77

9

List of Figures

Figure ‎2.1: An example illustrating the position of electrodes for acquiring EOG

measurements [8]. ... 19

Figure ‎2.2: A setup using a Doppler sensor to detect eye-blinks [9]. 19

Figure ‎2.3: A setup using EMG measurements to detect neck, shoulder and cheek

movements [13]. .. 20

Figure ‎2.4: A Tooth-click detector device worn behind the ear. 21

Figure ‎2.5: Sip-and-Puff Assistive Technology for controlling a wheelchair [18]. 22

Figure ‎2.6: A brain-controlled wheelchair acquiring EEG signals via an EEG cap

[19]. ... 22

Figure ‎2.7: A 6 × 6 matrix for the P300 Event-Related Potential. The rows and

columns are highlighted at regular intervals [20]. 23

Figure ‎2.8: Construction of a Resistopalatography Sensor [21]. 24

Figure ‎2.9: Electrodes in grey are used for moving the cursor, while the yellow

electrode enables the mouse click [21]. ... 24

Figure ‎2.10: The MouthPad with 49 (7×7) gold plated electrodes connected to a

Microcontroller [22]. ... 25

Figure ‎2.11: a) The electrodes used in the joystick mode used 8 pairs of electrodes,

b) Corresponding directions of the cursor movements [22]. 25

Figure ‎2.12: Block diagram of the tongue-drive system [23]. 26

Figure ‎2.13: A prototype of the tongue-drive system [23]. 27

Figure ‎2.14: A prototype of the tongue-operated joystick. .. 27

Figure ‎3.1: An overview of the system. ... 28

Figure ‎3.2: Raspberry Pi's NOIR camera along with the board. 29

Figure ‎3.3: The AN97 Endoscope camera along with its dimensions. 29

Figure ‎3.4: The AN97 Endoscope camera along with a 30° mirror added at the

camera head. .. 30

Figure ‎3.5: A White LilyPad LED with its dimensions. .. 30

Figure ‎3.6: Schematic representation of the LilyPad LED. 30

Figure ‎3.7: The HSV color model. ... 32

Figure ‎3.8: Segmentation of the 640×480 image into 12 regions. 35

Figure ‎3.9: Depiction of the 11 categories. .. 36

01

Figure ‎3.10: Segmentation of the 640×480 image into 2 regions for gauging the

presence of teeth. ... 38

Figure ‎4.1: The Adidas ADIBP09 Single Mouthguard. .. 39

Figure ‎4.2: The personalized mouthguard along with the LEDs and the Endoscope

camera. .. 40

Figure ‎4.3: The bottom view of the personalized mouthguard. 40

Figure ‎4.4: The overall prototype. ... 41

Figure ‎4.5: Raspberry Pi 3 Model B. ... 41

Figure ‎4.6: A five degrees of freedom robotic arm ... 42

Figure ‎4.7: Calculation of the angle for Servo 3. ... 43

Figure ‎4.8: Options 1-9 for the user. .. 44

Figure ‎4.9: Options 10-18 for the user. .. 44

Figure ‎4.10: Options 19-27 for the user. .. 44

Figure ‎4.11: Options 28-36 for the user. .. 44

Figure ‎5.1: A trackbar created in Python to tune the range in real-time (with the

numbers representing the best solution found to isolate the tongue from

its surroundings). ... 46

Figure ‎5.2: Original Image. .. 47

Figure ‎5.3: After applying a mask on the original image to only view the colors

within the HSV range. ... 47

Figure ‎5.4: After conversion to grayscale. ... 47

Figure ‎5.5: After applying the Otsu’s binarization technique along with the

application of the ‘closing’ operation. ... 47

Figure ‎5.6: After the removal of noise and the addition of the contour. 48

Figure ‎5.7: The final image with information about the centroid of the contour, the

fitted ellipse and the regions of interest covered by the tongue. 48

Figure ‎5.8: Original Image (Backwards). .. 48

Figure ‎5.9: After applying the HSV mask (Backwards). ... 48

Figure ‎5.10: Binary image after removing the noise (Backwards). 48

Figure ‎5.11: Image with segmentation, fitted ellipse and centroid of the contour

(Backwards)... 48

Figure ‎5.12: Original Image (Forwards). ... 49

Figure ‎5.13: After applying the HSV mask (Forwards). ... 49

00

Figure ‎5.14: Binary image after removing the noise (Forwards). 49

Figure ‎5.15: Image with segmentation, fitted ellipse and centroid of the contour

(Forwards). .. 49

Figure ‎5.16: Original Image (Backwards with Teeth). .. 49

Figure ‎5.17: After applying the HSV mask (Backwards with Teeth). 49

Figure ‎5.18: Binary image after removing noise (Backwards with Teeth). 49

Figure ‎5.19: Image with segmentation, fitted ellipse and centroid of the contour

(Backwards with Teeth). ... 49

Figure ‎5.20: Original Image (Forwards with Teeth). ... 50

Figure ‎5.21: After applying the HSV mask (Forwards with Teeth). 50

Figure ‎5.22: Binary image after removing noise (Forwards with Teeth). 50

Figure ‎5.23: Image with segmentation, fitted ellipse and centroid of the contour

(Forwards with Teeth). .. 50

Figure ‎5.24: Original Image (Forwards + Right). .. 50

Figure ‎5.25: After applying the HSV mask (Forwards + Right). 50

Figure ‎5.26: Binary image after removing noise (Forwards + Right). 50

Figure ‎5.27: Image with segmentation, fitted ellipse and centroid of the contour

(Forwards + Right). ... 50

Figure ‎5.28: Original Image (Right). ... 51

Figure ‎5.29: After applying the HSV mask (Right). .. 51

Figure ‎5.30: Binary image after removing noise (Right). .. 51

Figure ‎5.31: Image with segmentation, fitted ellipse and centroid of the contour

(Right). .. 51

Figure ‎5.32: Original Image (Backwards + Right). ... 51

Figure ‎5.33: After applying the HSV mask (Backwards + Right). 51

Figure ‎5.34: Binary image after removing noise (Backwards + Right). 51

Figure ‎5.35: Image with segmentation, fitted ellipse and centroid of the contour

(Backwards + Right). .. 51

Figure ‎5.36: Original Image (Forwards + Left). .. 52

Figure ‎5.37: After applying the HSV mask (Forwards + Left). 52

Figure ‎5.38: Binary image after removing noise (Forwards + Left). 52

01

Figure ‎5.39: Image with segmentation, fitted ellipse and centroid of the contour

(Forwards + Left). ... 52

Figure ‎5.40: Original Image (Left). ... 52

Figure ‎5.41: After applying the HSV mask (Left). .. 52

Figure ‎5.42: Binary image after removing noise (Left). .. 52

Figure ‎5.43: Image with segmentation, fitted ellipse and centroid of the contour

(Left). ... 52

Figure ‎5.44: Original Image (Backwards + Left). ... 53

Figure ‎5.45: After applying the HSV mask (Backwards + Left). 53

Figure ‎5.46: Binary image after removing noise (Backwards + Left). 53

Figure ‎5.47: Image with segmentation, fitted ellipse and centroid of the contour

(Backwards + Left). ... 53

Figure ‎5.48: Original Image (Middle). .. 53

Figure ‎5.49: After applying the HSV mask (Middle). ... 53

Figure ‎5.50: Binary image after removing noise (Middle). 53

Figure ‎5.51: Image with segmentation, fitted ellipse and centroid of the contour

(Middle). .. 53

Figure ‎5.52: Analysis of the time taken by the user to complete each experiment. .. 58

Figure ‎5.53: The user aligns his tongue to the right in order to select the letter ‘O’. 58

Figure ‎5.54: The letter ‘O’ is highlighted confirming that the letter has been selected

successfully. .. 58

Figure ‎5.55: The letter ‘O’ also appears on the screen. ... 58

Figure ‎5.56: Block diagram summarizing the complete system. 62

01

List of Tables

Table ‎3.1: Evaluation of the categories based on the centroid of the contour and

the white pixels in the regions of interest (1=tongue is present in that

region, 0=tongue is not present in that region, ✗=don’t care). 37

Table ‎4.1: Determining the commands sent to the robot according to each acquired

position of the tongue. ... 42

Table ‎4.2: Cost Analysis. .. 45

Table ‎5.1: Performance evaluation (1st experiment, criteria 1). 55

Table ‎5.2: Evaluation of whether or not the user was eventually able to reach his

desired output for all cases (1st experiment, criteria 2). 55

Table ‎5.3: Performance evaluation (2nd experiment, criteria 1). 56

Table ‎5.4: Evaluation of whether or not the user was eventually able to reach his

desired output for all cases (2nd experiment). 56

Table ‎5.5: Performance evaluation (3rd experiment, criteria 1). 57

Table ‎5.6: Evaluation of whether or not the user was eventually able to reach his

desired output for all cases (3rd experiment, criteria 2). 57

Table ‎5.7: Analysis of the typing tests. .. 59

Table ‎5.8: Evaluation of the Error Rate. ... 60

Table ‎5.9: Comparison with different techniques. ... 60

01

List of Abbreviations

AT Assistive technology

BCI Brain-Computer Interface

EEG Electroencephalogram

EMG Electromyography

EOG Electrooculography

HMIs Human Machine Interfaces

HSV Hue, Saturation, Value

SBC Single-Board Computer

01

Chapter 1. Introduction

1.1. Overview

1.1.1. Motivation

The total number of adults in the United States facing at least some form of

physical disability adds up to 39.6 million [1], and one of the major causes of concern

is the spread of paralysis amongst the masses. Paralysis is a loss of muscle function

which restricts voluntary muscle movements. It is approximated that around 5.4

million people across the United States are living with paralysis [2]. According to the

same study, it was revealed that the primary cause of paralysis is stroke (33.7%),

followed by spinal cord injuries (27.3%) and then multiple sclerosis (18.6 %). Several

other causes of paralysis exist such as the Parkinson's disease, cerebral palsy and

Amyotrophic lateral sclerosis (ALS), etc. The ALS is a disease that gradually leads to

complete paralysis, and it is estimated that around 15 people each day are diagnosed

with ALS, and around 30,000 Americans are currently suffering from this disease [3].

Paralysis may affect one’s face, hands, one arm or leg (monoplegia), one side

of the body (hemiplegia), both legs (paraplegia), or both arms and legs (tetraplegia or

quadriplegia) [4]. Moreover, even the severity of paralysis may differ ranging from

partial to complete paralysis which would cause the patient to be bed-ridden. Thus,

patients’ needs vary from the type of paralysis they are affected with, which may

restrict their mobility, speech or even their ability to grasp objects. These restrictions

make it challenging for the patients to fulfill their very basic needs.

1.1.2. Assistive technologies

Latest advancements which aim to assist patients affected by paralysis either

involve the activation of paralyzed muscles or the restoration of their voluntary

movements; the latter being the subject of this research which comes under the

section of assistive technologies. Assistive technology (AT) can be defined as “any

item, piece of equipment, software program, or product system that is used to

increase, maintain, or improve the functional capabilities of persons with disabilities”

[5]. Several solutions in AT have been presented which aim to empower the users by

providing alternative methods of capturing their inputs to a system. The implications

of this is huge for people of special needs, as their education, nutrition,

06

communication and mobility may otherwise all be completely dependent on those

around them. ATs assist by creating more independency for the users. Thus, in order

to improve the well-being of physically challenged people, it is vital to improve the

ATs in order to cater to their specific needs.

The current available solutions in AT for paralytic patients include the

tracking of limb movements (such as eye, head or tongue movements, etc.), obtaining

Electroencephalogram (EEG), Electrooculography (EOG) and Electromyography

(EMG) signals, capturing inhalation and exhalation of the user, etc. Each solution has

its pros and cons and the most suitable solution varies from user to user, based on the

type and degree of paralysis or disability.

1.1.3. Utilizing the tongue

One of the proposed solutions involves using the tongue as an input to a

system. There are several advantages with this approach, as the tongue’s movement

does not cause exhaustion for the user, it is capable of making complex movements

while remaining hidden from others, and its movement capabilities remain

independent form the position of the body (i.e. lying, sitting down or standing up does

not affect tongue movements) [6].

1.1.4. Improving the existing tongue-driven systems

After an extensive literature review dealing with tongue driven systems, it was

noted that the present solutions had a lot of room for improvement. They can be

improved by reducing the area occupied by the system, making the system less

invasive (by avoiding the piercing of any piece through the tongue) and completely

hidden within the intraoral environment. Moreover, most of the solutions utilized

contact sensors, which are not very comfortable for the users and thus may not be

practical for long term usage. Therefore, in order to enhance the existing solutions by

avoiding the usage of contact sensors, the use of a camera was proposed in this

research. Furthermore, with the trend of cameras being available in smaller and

smaller sizes, it is expected that the intraoral camera would also be very conveniently

hidden completely inside the oral cavity, along with fully functional Wi-Fi

capabilities to transmit data, in the near future.

07

1.2. Thesis Objectives

This thesis aims to introduce an innovative alternative in assistive technologies

for aiding the people affected by disabilities to fulfil their basic needs. The thesis was

broken down into the following main parts:

1.2.1. Sensor technology

In this part, an extensive study was carried out of different

technologies aiding people affected by paralysis to fulfill their basic needs, such as

empowering them to commute freely, grasp objects, etc. We propose a novel method

of utilizing an intraoral camera for using the tongue as an input to any external

system. In order to form a working prototype, the most suitable camera for the

intraoral environment also had to be selected.

1.2.2. Making a prototype

Once a camera was selected, a wearable prototype had to be set up

which would hold the camera in place, ensure a proper lighting system in the intraoral

region and would be comfortable for the patients to use. This would also ensure that

the results are replicable since the camera and the lighting system would remain the

same during the entire testing phase.

1.2.3. Image processing

 Real time image processing was the key to form a working prototype.

Each frame captured from the camera had to be processed in order to find the exact

location and orientation of the tongue which would be used as an input to control an

external system.

1.2.4. Connecting an application

 Once the information of the location of the tongue would be received,

it was also connected to a system in order to test its performance. The application

chosen for this system was a robotic arm which is of particular benefit to paralytic

patients as it is able to fulfil similar functions as that of the human arm.

1.3. Research Contribution

The implementation of an intraoral camera would improve the current ATs

focusing on the tongue by:

 Preventing the system from being intrusive.

08

 Making the system more comfortable for the users as the tongue would not

require any contact to a sensor.

 Allowing the system to be completely hidden in the intraoral environment

with the latest developments of small-sized cameras.

1.4. Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides a literature

review on key research papers and existing solutions with regards to the different

sensors assisting paralytic patients to fulfil particular tasks. Chapter 3 lays down the

problem statement and discusses the proposed method of introducing an intraoral

camera along with the image processing techniques used. The image processing

results and the identification of the exact location of the tongue is presented in

Chapter 4. Finally, Chapter 5 concludes the thesis and outlines the future work.

09

Chapter 2. Background and Literature Review

In order to restore mobility and independence for patients suffering from

paralysis, a number of human machine interfaces (HMIs) have been researched and

developed, the most common of which are listed below.

2.1. Eye Movements

Eye-blinks are used as inputs for a variety of applications such as detecting the

level of drowsiness of drivers [7] and giving simple yes/no responses. A lot of

methods have been devised to capture the eye-blinks such as using infrared sensors,

image processing [7], electrooculography (EOG) signals [8] and Doppler sensors [9].

Figure ‎2.1: An example illustrating the position of electrodes for acquiring EOG

measurements [8].

Figure ‎2.2: A setup using a Doppler sensor to detect eye-blinks [9].

11

A lot more flexibility is added to the inputs by taking into account the

direction of the eye gaze. This may be achieved by using imaging techniques ranging

from simple cameras [10] or even utilizing infrared imaging techniques.

Eye-blinks and the direction of eye gaze may also be estimated using

Electromyography (EMG) and Electrooculography (EOG) signals [11]. EOG involves

the placement of electrodes near the eye (e.g. above and below the eye as shown in

figure 1) and the potential difference of the signals are able to map out the direction of

the eye movements. EMG signals are capable of recording muscle activities which

can be used to detect eye-blinks. Depending on the seriousness of paralysis of the

patient, EMG signals can be used to detect a number of different movements, as

described in the next section.

One of the disadvantages of using eye-blinking or eye tracking methods, such

as those using remote cameras, is that it restricts the natural eye or head movements

thus restricting the user’s field of vision, and it also demands high levels of

concentration. Equipment such as head-mounted cameras allow for greater head

movements but are more obtrusive.

2.2. Muscle Activities

EMG signals are able to record muscle activities, and thus form an additional

source of input for paralytic patients. Apart from eye-blinks, they are also able to

detect a number of different movements such as eyebrow raises [12], and neck,

shoulder and cheek movements [13]. Infrared switches have also been used to detect

cheek movements [14] which work well for non-contact sensing applications.

Figure ‎2.3: A setup using EMG measurements to detect neck, shoulder and cheek

movements [13].

10

The clenching of teeth has also been used as an input by detecting muscle

movements. Apart from detecting the movements via EMG signals [15], the contact

of the maxillary and mandibular teeth has also been detected with the help of an

accelerometer placed against the user’s ear [16]. The sensor was used to identify the

vibrations resulting from the tooth-clicks. However, the drawback of using such

devices is that hardware adjustments of such equipment are challenging, if not

impossible, without external assistance for people suffering from paralysis.

Figure ‎2.4: A Tooth-click detector device worn behind the ear.

The drawback of using EOG and EMG signals as inputs is the inconvenience

of using electrodes which cannot give accurate results if the contact with the skin is

loose. Disposable electrodes even come with adhesives but cause discomfort for the

users. Moreover, the long wires associated with the electrodes make it less appealing

for the users.

2.3. Inhalation and Exhalation

The sip-and-puff technology has been popular amongst paralytic patients as it

is an easy to use technology. It includes pressure sensors to gauge the air pressure and

thus distinguish between the inhalation and exhalation of the air by the user. The

device also takes into account the intensity of the sips or puffs (hard or soft) and

therefore typically allows for four inputs by the users. Of the disadvantages is that

regular cleaning and sterilization of the tubes is necessary, long usage of the device

may be tiring for users and the available inputs are limited. However, recently

researches have sought to incorporate more inputs by using pattern recognition

software to study breath patterns of the users [17].

11

Figure ‎2.5: Sip-and-Puff Assistive Technology for controlling a wheelchair [18].

2.4. Electroencephalogram (EEG) Signals

Brain-controlled techniques have attracted a lot of research which give an

opportunity to communicate via thoughts and are extremely valuable especially for

people affected by complete paralysis. Acquiring and processing EEG signals has

been the most commonly used approach in brain-computer interfaces (BCIs), but EEG

controlled devices typically tend to have high uncertainty in the commands provided

by the user and is very time consuming for the users as well [19].

Figure ‎2.6: A brain-controlled wheelchair acquiring EEG signals via an EEG cap [19].

The P300 evoked potentials have been shown to possess the capability of

implementing a successful brain-computer interface (BCI) and have also been used to

form entire sentences by the users character by character [20]. The method of

operation of brain-to-text systems includes a screen which outputs a matrix of

characters. While the user focuses on his/her character of interest, one row or column

of the matrix is randomly highlighted at a time (until all of the rows and columns have

been highlighted once) which forms the oddball paradigm in the experiment. Every

11

time the character of interest in highlighted and spotted by the user, the transient

activity in recorded via EEG signals and the target character is thus eventually

outputted via the interface.

Figure ‎2.7: A 6 × 6 matrix for the P300 Event-Related Potential. The rows and

columns are highlighted at regular intervals [20].

However, as discussed earlier, the use of electrodes (which are typically

attached to a cap for EEG recordings) make this option less popular amongst the

users. The electrodes require careful connections with the patient’s scalp and in some

cases (if special dry electrodes are not used) it may even require the use of electro-

gels which would increase discomfort for the patients. In addition, the data rate of

such systems is relatively low allowing for only few words per minute.

2.5. Tongue Movements

One of the most efficient ways for paralytic patients to use assistive devices is

through tongue movements. The tongue is a muscular organ which is directly

connected to the brain through a cranial nerve known as the hypoglossal nerve which

is responsible for the motor function of the tongue. Hence, tongue movements are not

affected during spinal cord injuries, which is one of the major causes of paralysis in

people. Moreover, the input device can remain hidden and tongue movements for an

extended time will not be burdensome for patients.

Several methods have been researched and implemented with regards to using

tongue movements as inputs to control assistive devices. The following list provides a

brief overview of the main contributions in this field.

11

2.5.1. Resistopalatography

The Resistopalatography sensor [21] works by detecting the change in

pressure (exerted by the tongue) which alters the resistance. Thus, a change in

resistance indicates the tongue movements which form the desired input. In order to

avoid interference from the moisture of the mouth, the sensor was also laminated, and

a complete 360 degrees detection with a resolution of 45 degrees was made possible.

The data from the sensor is sent to a microcontroller after passing through an

analog to digital converter, and x and y values are read as outputs. The sensor in the

center is used for mouse clicks so it provides an output if the input goes beyond a

predefined threshold value.

Figure ‎2.8: Construction of a Resistopalatography Sensor [21].

Figure ‎2.9: Electrodes in grey are used for moving the cursor, while the yellow

electrode enables the mouse click [21].

2.5.2. The MouthPad

The MouthPad [22] is a tongue-computer interface placed on the palate that

measures the contact impedance between an electrode array and the tip of the tongue

and thus identifies the tongue position and its movements. The electrode array

11

receives an AC signal and the ground is attached to the fingers or the wrist. Thus, the

circuit is closed only when the tongue touches the electrode array.

Figure ‎2.10: The MouthPad with 49 (7×7) gold plated electrodes connected to a

Microcontroller [22].

The MouthPad was tested for the application of controlling a mouse on the

screen using only 8 pairs of electrodes (thus using 16 of the 49 available electrodes).

The direction of movement of the cursor was chosen according to the pair of

electrodes that had been touched by the tongue (which was detected by the

impedance). If more than one pair of electrodes were activated, then the average of

the directions was taken as the output, and if several electrodes were activated at once,

this was detected as an involuntary tongue movement (such as swallowing) and thus

no movement was outputted.

Figure ‎2.11: a) The electrodes used in the joystick mode used 8 pairs of electrodes, b)

Corresponding directions of the cursor movements [22].

16

While testing the MouthPad on subjects, one of the causes of unwanted

fluctuations in the cursor movements that were reported by users was due to the saliva

interfering with the contact impedance of the electrode array.

2.5.3. Magnetic sensors

The tongue-drive system [23] detects tongue movements using hall-effect

magnetic sensors placed on a dental retainer. The sensors detect the magnetic field

produced by a permanent magnet which was placed in the middle of the tongue (for

long term use the magnet is pierced).

Figure ‎2.12: Block diagram of the tongue-drive system [23].

The mouthpiece is powered by small batteries and the sensors are scanned one

at a time to read analog values which are digitized and wirelessly sent to a controller

unit where the data is processed and the motion of the tongue is estimated.

The downside of using this method is the invasive nature of the device as the

permanent magnet has to be fixed by piercing the tongue, which can even cause

discomfort while performing regular activities such as eating and speaking.

There are several research papers that deal with the tongue drive system which

has been used for several different applications such as controlling wheelchairs [24],

[25] and performing computer related tasks [26], [27].

17

Figure ‎2.13: A prototype of the tongue-drive system [23].

2.5.4. Tongue-operated joystick

A prototype of the tongue-operated joystick [28] using a slider crank

mechanism is demonstrated in the figure below. However, such devices are obtrusive

and may not be suitable for long term usage as natural movements of the tongue, such

as during swallowing, are prevented with the holding part in the mouth.

Figure ‎2.14: A prototype of the tongue-operated joystick.

18

Chapter 3. Methodology

3.1. Problem Formulation

As discussed in the literature review, utilizing the tongue as an input has been

an efficient way for people of special needs to accomplish their basic needs. However,

after studying the existing solutions, the following problems are addressed in this

research:

 Capture inputs from the tongue without the use of contact sensors which would

cause discomfort for the patients.

 Use non-invasive methods to make it convenient for the users.

 Use a system which occupies less space within the oral cavity, and is also less

obtrusive.

3.2. Proposed Solution

 In this research, we propose a novel technique of using an intraoral camera to

detect tongue movements. Using a camera would ensure that the tongue would not

have to continuously establish contact with any object (thus making it comfortable for

the users). Furthermore, the system would not require any piercing of the tongue, and

with the latest advancements in technology, mini-cameras are also growing in

popularity which would ensure that minimal space is consumed within the oral cavity.

Thus, a novel solution of using an intraoral camera is proposed. Figure 3.1 shows the

overview of the complete system.

Figure ‎3.1: An overview of the system.

1. An endoscope

camera (fit inside the

user’s mouth) takes

images of the tongue

which are sent to the

PC in real-time.

2. The PC processes

each frame received

from the camera and

evaluates the position

and orientation of the

tongue.

3. According to the location

of the tongue, a control

signal is sent to a device (the

robotic arm in this case)

allowing the user to control it

with his/her tongue.

19

Each of the steps presented in Figure 3.1 are explained in greater details in the

subsequent sections.

3.3. Capturing the Images

Initially the Raspberry Pi’s NOIR camera was selected which has the infrared

(IR) cut filter removed. The IR cut filters allow visible light to pass but block mid-

infrared wavelengths (3–8µm). Thus, the filter’s removal means that the camera

would be suitable for capturing images in the dark which would be crucial for the

intraoral environment. However, the camera was not found to be suitable for

capturing close-range images which rendered this camera unfeasible for the prototype.

Figure ‎3.2: Raspberry Pi's NOIR camera along with the board.

The AN97 endoscope camera was considered to be the most feasible option.

The resolution of this low-cost camera is 640×480 and being waterproof makes it

appropriate for the intraoral environment. The diameter of the camera head is only

7mm and the length of the camera head is 0.043m and thus it can easily fit on the roof

of one’s mouth. A mirror angled at 30° was added at the camera head in order to

reflect the tongue’s image on the camera lens as shown in Figure 3.4.

Figure ‎3.3: The AN97 Endoscope camera along with its dimensions.

11

Figure ‎3.4: The AN97 Endoscope camera along with a 30° mirror added at the camera

head.

 Although the AN97 camera had 6 built-in white LEDs, their usage was

restricted with the addition of the mirror, since the reflection of the light from the

mirror considerably lowered the image quality. Thus, in order to lighten up the

intraoral environment, 2 white LilyPad LEDs were used whose dimensions are

5.5mm×12.5mm as shown in Figure 3.5. The schematic representation is depicted in

Figure 3.6 which shows a 150 Ω resistor connected in series with the LED.

Figure ‎3.5: A White LilyPad LED with its dimensions.

Figure ‎3.6: Schematic representation of the LilyPad LED.

3.4. Image Processing

 In order to locate the position and orientation of the tongue in real-time, a

number of different image processing techniques are implemented on each frame

Mirror

angled

at 30°

5.5 mm

12.5 mm

SEWTAP6

LED+

150 Ω

SEWTAP6

LED-

10

captured from the camera. The code is written using the Python programming

language which also allows us to make use of the Open Source Computer Vision

Library (OpenCV) which simplifies the implementation of numerous image

processing techniques. The techniques implemented to extract information about the

location and orientation of the tongue are explained below.

3.4.1. Smoothing the image

The colored image (stored in the BGR format in python) is first blurred in

order to reduce noise. This is achieved by adding a Gaussian filter to the image, which

means that a Gaussian kernel (array of pixels corresponding to a 2D Gaussian curve)

is convolved with each image pixel and the summation of which produces the output

image. The default values of sigmaX and sigmaY are used for forming a 5×5

Gaussian kernel. A 2D Gaussian function is given by the following formula:

 ()

(3.1)

Where
 ()

 ()

(3.2)

Where A=coefficient of the amplitude, μ = mean, σx and σy = standard deviation of x

and y respectively.

3.4.2. Conversion to HSV (Hue, Saturation, Value)

The colored image is converted to HSV (Hue, Saturation, Value) format in

which the points from the RGB model are represented in the form of a cylindrical

coordinate system as shown in Figure 3.7. The ‘hue’ includes the spectrum of colors,

‘saturation’ gives an indication of the number of white pixels mixed with the color,

and ‘value’ defines the lightness of the color. This is extremely beneficial in order to:

(1) separate the color of the tongue from the set of teeth using the hue, and (2) to use

the ‘saturation’ and ‘value’ in order to separate the tongue from the floor of the mouth

which is approximately the same color as the tongue. In order to use the ‘saturation’

and ‘value’ effectively, the lighting within the mouth has to be manually adjusted in

such a way that the brightness of the tongue is much greater than the brightness of the

floor of the mouth. This is a critical step which would ensure a proper isolation of the

tongue from its surroundings.

11

Figure ‎3.7: The HSV color model.

3.4.3. Binarization of the image

Once the tongue is isolated from its surroundings, the image is then converted

to a grayscale image which is denoised using a Gaussian blur (similar to the procedure

described in section 3.4.1). The grayscale image is then converted to a binary image

using Otsu’s binarization technique [29] which avoids the manual selection of the

threshold based on trial and error. Using the histogram of the image, the Otsu’s

binarization technique automatically calculates the threshold. This is done by

minimizing the weighted within-class variance (denoted by the following formula 3.3)

and finding the corresponding threshold value ‘t’ [29].

 () ()

 () ()
 ()

(3.3)

Where t= threshold, () ∑ ()
 and () ∑ ()

(3.4)

 () ∑
 ()

 ()

(3.5)

 () ∑
 ()

 ()

(3.6)

 () ∑ ()

 ()

 ()

(3.7)

 () ∑ ()

 ()

 ()

(3.8)

11

Thus this method assumes that two classes are present within the image and it then

computes the optimal threshold that distinguishes between the two classes. From 3.3

and 3.4, q1 is the probability of the first class while q2 is the probability of the second

class. Formula 3.4 shows how the probabilities are computed from the histogram

which is done for each intensity value. From each possible threshold (from t=0 to

t=255 for our case since we are implementing the binarization on a grayscale image),

the probability and mean is computed from which we obtain the inter-class variance

which needs to be maximized. The inter-class variance (
 ()) is derived by

subtracting the within-class variance from the total variance of the image, as shown in

formula 3.9. The threshold (t) corresponding to the maximum inter-class variance is

the selected threshold value that will be used to binarize the grayscale image [29].

 ()

 () () () (3.9)

3.4.4. Applying a morphological transformation on the binary image

After obtaining the binarized image, a morphological transformation known as

‘closing’ is applied to the image. This is to close tiny holes on the image and remove

any unnecessary black points on the tongue (represented by the white pixels). The

‘closing’ morphological transformation is simply carried out by first applying the

dilation and then the erosion morphological transformations [30]. It can be

represented by the formula shown in 3.10.

 ()

(3.10)

Where represents dilation and represents erosion.

3.4.5. Obtaining the contour of the image

Once the binary image has been obtained, the next step is to obtain the contour of

the image which would basically highlight the boundaries of the object. There are

different contour approximation methods to avoid storing all of the points in the

contour. In order to compress the contour and remove the redundant points (and thus

save memory), the ‘CHAIN_APPROX_SIMPLE’ option from OpenCV is used. This

option compresses the vertical, horizontal and diagonal segments and only utilizes

their end points to form the contour. Thus, instead of using hundreds of points to form

a contour of an upright rectangle, this option would only store 4 points for the contour

11

and save a lot of processing time and memory. Once the contour is obtained, the

features of the contour can easily be obtained by using the inbuilt OpenCV

commands. In particular, two features are extracted:

 Area of the Contour: In case the noise is not completely removed from the

image, after obtaining all of the contours, an ‘if’ statement is added such that the

unwanted contours can simply be removed based on the area of the contour.

 Centroid: The centroid of the contour gives valuable information about the

location of the object. The x and y values of the centroid change based on the

horizontal and vertical movements of the tongue respectively.

3.4.6. Segmentation of the image

The image is then segmented into 12 different rectangles, each of which would

individually gauge the presence of the tongue within its region of interest. This is

done by determining the number of white pixels in each region. If it is above a

particular threshold, it would indicate the presence of the tongue in that particular

region of interest. Utilizing this information along with the centroid of the contour

(from 3.4.5), the orientation and location of the tongue could finally be accurately

evaluated.

3.4.7. Detecting the tongue location and forming the categories

The information obtained regarding the centroid of the contour along with the

presence of the tongue in the pre-defined segments is used in order to form definite

outputs (which would be inputs to an assistive device). The image is segmented into

12 regions as shown in Figure 3.8. The role of the top 3 segments is to detect whether

the tongue was present or not (i.e. whether the tongue has been pulled back by the

user). This is then used as an indication to begin looking for contours when the tongue

is in the picture. The reason this condition is set is due to the fact that when the tongue

is completely pulled back by the user, certain contours are detected in the middle of

the image as background noise, and implementing a check into the presence of the

tongue in the top 3 segments would eliminate that.

11

Figure ‎3.8: Segmentation of the 640×480 image into 12 regions.

 Once the contour is formed, the centroid of the contour is first analyzed, which

contains the Cx and Cy values (which is the value of the centroid on the x and y axis

respectively). The values of Cx are gauged when the tongue is in the right, middle and

left position, and two threshold values for Cx had to be selected which would help to

give an indication which region the tongue is in (right, middle or center) and thus

narrow down the ‘if’ statements in the code. From trial and error it was found that the

threshold values would change slightly according to the positioning of the LEDs

(especially when packing and unpacking the mouthpiece). Thus, a calibration system

was set up such that when the code runs, it first asks the user to position his/her

tongue in the middle during which the Cx value is recorded. The same is done after

prompting the user to position his/her tongue to the right and the left. Once the tongue

has been categorized into these 3 positions (right, middle or center), the numbers of

white pixels in the regions of interest are then evaluated in order to determine the sub-

categories. The categories are depicted in Figure 3.9. Table 3.1 summarizes the logic

behind the assertion of the categories.

1C 2C 3C

1

 2C

2 3

4 6

7 8 9

5

0-214 215-427 428-640

0
-7

8

7
9
-2

1
2

2
1
3
-3

4
6

3
4

7
-4

8
0

Pixels (x-axis)

P
ix

el
s

(y
-a

x
is

)

16

Figure ‎3.9: Depiction of the 11 categories.

Table 3.1 shows how a total of 11 different possibilities that are extracted from

the movements of the tongue. The category of ‘Forwards’ is divided into 2 categories

of F1 and F2, and similarly, ‘Backwards’ is also divided into B1 and B2. This is made

possible by the assertion of the presence of teeth. Thus, when the users opt for the

‘Forwards’ option with their jaw open to the extent of their teeth being visible, this

would constitute the F1 option, and when the users close their jaw with their teeth

being hidden, this would constitute the F2 option. Similarly, the ‘Backwards’ option is

also divided into two parts: B1 (with their teeth visible) and B2 (without their teeth

visible). This helps to extract two new inputs from the user and thus enhancing the

range of inputs.

The way that the presence of the teeth is asserted is by adjusting the range of

the HSV values of a cloned image such that the teeth are isolated from the

surroundings. Given the significant contrast between the color of the teeth and its

surroundings, this step is considerably easier than the isolation of the tongue. Once

the HSV range is selected, the image is then binarized and then the ‘closing’

morphological operation is then applied (similar to the procedure explained in 3.4.4).

In order to gauge the presence of the teeth, a different set of regions of interest has to

be set up owing to the location of the teeth.

Backwards

(B1 & B2)

Forwards

(F1 & F2)

Right (R) Left (L)
Middle

17

Table ‎3.1: Evaluation of the categories based on the centroid of the contour and the

white pixels in the regions of interest (1=tongue is present in that region, 0=tongue is

not present in that region, ✗=don’t care).

Regions

of

Interest

Cx = Right Cx = Left Middle

Cy =

Front

Cy =

Back

Cy =

Front

Cy =

Back

With Teeth Without Teeth

FR R BR FL L BL M F1 B1 F2 B2

1C ✗ ✗ ✗ ✗ ✗ 1 ✗ ✗ ✗ ✗ ✗

2C ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

3C ✗ ✗ 1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

1 ✗ ✗ 0 ✗ ✗ 1 1 ✗ 1 ✗ 1

2 ✗ ✗ ✗ ✗ ✗ ✗ 1 ✗ 1 ✗ 1

3 ✗ ✗ 1 ✗ ✗ 0 1 ✗ 1 ✗ 1

4 ✗ ✗ ✗ ✗ 1 0 1 1 0 ✗ 0

5 ✗ ✗ ✗ ✗ ✗ ✗ 1 1 ✗ ✗ ✗

6 ✗ 1 0 ✗ ✗ ✗ 1 1 0 ✗ 0

7 0 0 ✗ 1 0 0 0 ✗ ✗ 1 ✗

8 ✗ ✗ ✗ ✗ ✗ ✗ 0 ✗ ✗ 1 ✗

9 1 0 0 0 0 ✗ 0 ✗ ✗ 1 ✗

The selected regions (for checking the presence of teeth) are shown in Figure

3.10 and the numbers of white pixels in that region have to be independently

evaluated. A threshold for the number of white pixels is manually selected which can

be used to compare the existing white pixels to its value. If the white pixels within the

regions of interest are greater than the threshold, a variable is assigned a value of 1,

otherwise it is assigned a 0. This variable is then used to determine whether the

‘Forwards’ option selected by the user is F1 or F2, and whether the ‘Backwards’

option selected by the user is B1 or B2.

18

Figure ‎3.10: Segmentation of the 640×480 image into 2 regions for gauging the

presence of teeth.

R
eg

io
n

 o
f

In
te

re
st

 –

L
ef

t
T

ee
th

R
eg

io
n

 o
f

In
te

re
st

 –

R
ig

h
t

T
ee

th
 P

ix
el

s
7

9
-4

8
0

Pixels 0-100 Pixels 540-640

P
ix

el
s

7
9

-4
8
0

19

Chapter 4. Experimental Setup

In this chapter, the complete prototype of the intraoral camera along with a

personalized mouthguard is presented. Having a prototype set in place also allows the

system to be reproducible since the location of the camera and LEDs would be

constant. The application on which the prototype was tested is also explained towards

the end of this chapter.

4.1. The Personalized Mouthguard

The Endoscope camera had to be fixed on the roof of the mouth, and thus a

mouldable mouthguard for the upper jaw was used in order to manufacture a

personalized mouthguard. The mouthguard (shown in Figure 4.1) is made of silicone

and can alter its shape when kept in hot water.

Figure ‎4.1: The Adidas ADIBP09 Single Mouthguard.

The Mouthguard is moulded such that it could get fixed on the upper jaw without

much effort from the user. Furthermore, a hollow cylinder is also formed using the

same material, in the middle of the mouthgaurd in order to fix the Endoscope camera.

Lastly, 2 LilyPad LEDs are fixed on either side of the camera to light up the intraoral

cavity for better image quality and also to make it possible to implement the image

processing techniques.

The angle of the LEDs along with their brightness is of significant importance

in order to make the image processing successful. This is due to the fact that details of

the ‘saturation’ and ‘value’ from the HSV format were being used in order to isolate

the tongue from the floor of the mouth. In order to achieve this, the LEDs have to be

pointing at such an angle that would brighten up the tongue considerably more than

the floor of the mouth. Furthermore, the brightness of the LEDs is also manually

11

altered by using different valued resistors in series with the LEDs. A resistor of

201.2Ω was finally selected which gave the best image processing results. The

mouthpiece is shown in Figures 4.2 and 4.3, while the overall system is further

clarified in Figure 4.4.

Figure ‎4.2: The personalized mouthguard along with the LEDs and the Endoscope

camera.

Figure ‎4.3: The bottom view of the personalized mouthguard.

 As seen from the bottom view of the mouthguard, it has been moulded by

taking the impression of the user to ensure suction when the user wears the

mouthpiece and thus easily fits inside the mouth. This is important to make the system

comfortable for the user and that usage for long hours doesn’t cause any physical

pain.

2 LEDs

connected in

series.

Mouthguard

moulded

according to the

user’s set of

teeth.

The AN97

Endoscope

camera.

Mirror angled at

30° to capture

the tongue’s

image.

Connection to a

resistance of

201.2Ω and 5V

supply

Connected to a

PC

10

Figure ‎4.4: The overall prototype.

4.2. The Interface

The Endoscope camera is connected to the PC using a Micro USB (female) to

USB (male) adapter. The Python programming language is used in order to complete

the image processing tasks which make extensive use of the OpenCV library. By

using Python, it is very easy to also run the same code on different platforms such as

the Raspberry Pi, which is an inexpensive credit card sized computer. The small-size

and image processing capabilities would make it an ideal choice for connecting our

system especially to mobile applications (such as an automatic wheelchair, etc.).

Figure ‎4.5: Raspberry Pi 3 Model B.

4.3. Application 1: Controlling a Robotic Arm

The information obtained about the position and orientation of the tongue can

then applied to any assistive device. The application selected in this case is a 5

degrees of freedom robotic arm (as shown in Figure 4.6) which is useful for pick and

place operations and especially valuable for paralytic patients. The information of the

The RedBaord

used for the 5V

power supply.

Resistors adding up to

201.2Ω connected in

series with the LEDs

11

location of the tongue is utilized and processed in order to make the robotic arm move

as desired by the user. The robot is connected to the PC using a USB, and the

connection via Python is established by writing a code to access the COM port using

serial communication. The servo motors of the robotic arm are controlled by either

incrementing or decrementing the angles based on the orientation of the tongue.

Figure ‎4.6: A five degrees of freedom robotic arm

 Before the implementation of a code, the logic behind the increments and

decrements of the angles of the servo motors was decided. The commands are

summarized in Table 4.1.

Table ‎4.1: Determining the commands sent to the robot according to each acquired

position of the tongue.

Category Command to the Robot

Forwards + Right (FR)
Servo 0: Fast Increment for clockwise

rotation.

Right (R)
Servo 0: Slow Increment for clockwise

rotation.

Backwards + Right (BR)
Servo 4: Increment for clockwise

rotation.

Forwards + Left (FL)
Servo 0: Fast Increment for anti-

clockwise rotation.

Left (L)
Servo 0: Slow Increment for anti-

clockwise rotation.

Backwards + Left (BL)
Servo 4: Increment for anti-clockwise

rotation.

Servo 0

(hidden

within

the base)

Servo 1

Servo 3

Servo 4

(for the

orientation

of the end-

effector)

Servo 5

 (for the

end-

effector)

Servo 2

11

Forwards With Teeth (F1)
Servo 2: Increment for forward

movement.

Backwards With Teeth (B1)
Servo 2: Increment for backward

movement.

Forwards Without Teeth (F2)
Servo 1: Increment for forward

movement.

Backwards Without Teeth (B2)
Servo 1: Increment for backward

movement.

As seen from Table 4.1, the servo 3 is unused since the calculation for its

angle will be such that it is exactly 90° to the horizontal axis, which is what is

generally required for the pick and place tasks. This can be achieved by calculating

the angles from servo 1 and servo 2 as explained in Figure 4.7.

Figure ‎4.7: Calculation of the angle for Servo 3.

As the sum of the interior angles within quadrilaterals adds up to 360°, the

formula for finding the angle for Servo 3 is quite straightforward. Servo 3 will

consequently position the end-effector to be perpendicular to the horizontal surface. In

order to move the end-effector for picking up or releasing an object, a button was used

as in input (which could be replaced by any customized input based on the demands

of the user.

(4.1)

4.4. Application 2: Typing

The aim of this application was to allow the users to type using their tongues.

In order to achieve this, the outputs from the system would have to allow for the

selection of the characters that appear on the screen along with an option to scroll

11

through the different characters. A total of 36 different options were selected which

included the 26 alphabets, 7 special characters, a ‘backspace’, ‘space’ and ‘enter’. A

scrolling option had to be created such that the user would be able to view 9 options at

a time. If the user selects a particular option for a certain amount of time (which is

selected by trial and error), the option is highlighted, indicating that the selection is

confirmed, and the text eventually appears on the screen. In order to achieve this, the

F1 (Forwards with Teeth) and B1 (Backwards with Teeth) categories were selected for

the scrolling options, and the rest of the 9 categories were for the selection of the

options. The different options appearing on screen for the user are shown in Figures

4.8-4.12.

Figure ‎4.8: Options 1-9 for the user.

Figure ‎4.9: Options 10-18 for the user.

Figure ‎4.10: Options 19-27 for the user.

Figure ‎4.11: Options 28-36 for the user.

 In order to achieve the above, a counter was first initiated in the code which

would increment or decrement from 1-4 based on the F1 and B1 selections. Each

number of the counter corresponded to a database of the options which would be

connected to the category that was selected. For example, when the counter is 1, the 9

categories, namely, BL, B2, BR, L, M, R, FR, F2 and FL, would correspond to the

11

characters, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’ and ‘I’ respectively. The same would

apply for the different counters with the only difference being the characters that are

selected. Once the characters are selected, they are stored in a string and displayed on

the screen. The backspace option deletes the last character in the string by reducing

the size of the string by one each time it is selected.

4.5. Cost Analysis

A breakdown of the calculation of the cost is provided in Table 4.2 which

makes it evident that the complete system is quite low in cost.

Table ‎4.2: Cost Analysis.

No. Product Name Cost

1 Adidas ADIBP09 Single Mouth Guard 32.0 AED

2
Waterproof Endoscope Snake Inspection

Borescope Camera For Android Phones
36.0 AED

3 LilyPad LED White (5pcs) 12.0 AED

Total 80.0 AED

16

Chapter 5. Results and Analysis

In this chapter, we present the image processing results which are obtained by

implementing a Python code on a PC with extensive use of the OpenCV library. The

results of the steps mentioned in Chapters 3 and 4 are presented in this chapter.

5.1. Capturing the HSV Range

 The first step was to determine the best HSV range which will be used to

isolate the tongue from its surroundings. In order to do that systematically, a trackbar

was created in Python which would allow to dynamically change the upper and lower

bounds for the HSV range in real time. After going through the different possible

ranges, the best range was found as shown in Figure 5.1.

Figure ‎5.1: A trackbar created in Python to tune the range in real-time (with the

numbers representing the best solution found to isolate the tongue from its

surroundings).

5.2. Summary of the Complete Procedure

The procedure explained in depth in Chapter 3 is summarized in the following

steps. The original colored image (as seen in Figure 5.2) is first smoothed and then

converted into the HSV format. A mask is then applied in order to just view the area

of the image which falls within the HSV range (as seen in Figure 5.3). After further

smoothing of the image, it is then converted to grayscale (as seen in Figure 5.4). The

Otsu’s binarization technique is then applied to the grayscale image along with the

‘closing’ Morphological operation (as seen in Figure 5.5). Next, the contours are

17

detected making sure that the contours of the background noise are eliminated based

on the presence of the tongue in the image (to avoid capturing any contours when the

tongue is completely pulled back by the user) and the size and location of the contour.

The binary image with the background noise being eliminated is shown in Figure 5.6.

Finally, Figure 5.7 shows the original image along with the centroid of the contour

(represented by the green dot), an ellipse which fits the contour and the regions of

interest which are highlighted red only if the tongue is detected in that region.

Figure ‎5.2: Original Image.

Figure ‎5.3: After applying a mask on the

original image to only view the colors

within the HSV range.

Figure ‎5.4: After conversion to grayscale.

Figure ‎5.5: After applying the Otsu’s

binarization technique along with the

application of the ‘closing’ operation.

18

Figure ‎5.6: After the removal of noise

and the addition of the contour.

Figure ‎5.7: The final image with

information about the centroid of the

contour, the fitted ellipse and the regions

of interest covered by the tongue.

5.3. Results within Different Categories

In order to prove the accuracy of the system, the results for each of the

different categories (which were summarized in Table 3.1) are also presented below

with the conclusion of the control signal also specified on the bottom left in each

colored frame containing the segments.

Category 1: Backwards (No Teeth) – B2

Figure ‎5.8: Original Image (Backwards).

Figure ‎5.9: After applying the HSV

mask (Backwards).

Figure ‎5.10: Binary image after

removing the noise (Backwards).

Figure ‎5.11: Image with segmentation,

fitted ellipse and centroid of the contour

(Backwards).

The final

category is

specified in

each frame.

19

Category 2: Forwards (No Teeth) – F2

Figure ‎5.12: Original Image (Forwards).

Figure ‎5.13: After applying the HSV

mask (Forwards).

Figure ‎5.14: Binary image after

removing the noise (Forwards).

Figure ‎5.15: Image with segmentation,

fitted ellipse and centroid of the contour

(Forwards).

Category 3: Backwards (With Teeth) – B1

Figure ‎5.16: Original Image (Backwards

with Teeth).

Figure ‎5.17: After applying the HSV

mask (Backwards with Teeth).

Figure ‎5.18: Binary image after

removing noise (Backwards with

Teeth).

Figure ‎5.19: Image with segmentation,

fitted ellipse and centroid of the contour

(Backwards with Teeth).

11

Category 4: Forwards (With Teeth) – F1

Figure ‎5.20: Original Image (Forwards

with Teeth).

Figure ‎5.21: After applying the HSV

mask (Forwards with Teeth).

Figure ‎5.22: Binary image after

removing noise (Forwards with Teeth).

Figure ‎5.23: Image with segmentation,

fitted ellipse and centroid of the contour

(Forwards with Teeth).

Category 5: Forwards + Right (FR)

Figure ‎5.24: Original Image (Forwards

+ Right).

Figure ‎5.25: After applying the HSV

mask (Forwards + Right).

Figure ‎5.26: Binary image after

removing noise (Forwards + Right).

Figure ‎5.27: Image with segmentation,

fitted ellipse and centroid of the contour

(Forwards + Right).

10

Category 6: Right (R)

Figure ‎5.28: Original Image (Right).

Figure ‎5.29: After applying the HSV

mask (Right).

Figure ‎5.30: Binary image after

removing noise (Right).

Figure ‎5.31: Image with segmentation,

fitted ellipse and centroid of the contour

(Right).

Category 7: Backwards + Right (BR)

Figure ‎5.32: Original Image (Backwards

+ Right).

Figure ‎5.33: After applying the HSV

mask (Backwards + Right).

Figure ‎5.34: Binary image after

removing noise (Backwards + Right).

Figure ‎5.35: Image with segmentation,

fitted ellipse and centroid of the contour

(Backwards + Right).

11

Category 8: Forwards + Left (FL)

Figure ‎5.36: Original Image (Forwards

+ Left).

Figure ‎5.37: After applying the HSV

mask (Forwards + Left).

Figure ‎5.38: Binary image after

removing noise (Forwards + Left).

Figure ‎5.39: Image with segmentation,

fitted ellipse and centroid of the contour

(Forwards + Left).

Category 9: Left (L)

Figure ‎5.40: Original Image (Left).

Figure ‎5.41: After applying the HSV

mask (Left).

Figure ‎5.42: Binary image after

removing noise (Left).

Figure ‎5.43: Image with segmentation,

fitted ellipse and centroid of the contour

(Left).

11

Category 10: Backwards + Left (BL)

Figure ‎5.44: Original Image (Backwards

+ Left).

Figure ‎5.45: After applying the HSV

mask (Backwards + Left).

Figure ‎5.46: Binary image after

removing noise (Backwards + Left).

Figure ‎5.47: Image with segmentation,

fitted ellipse and centroid of the contour

(Backwards + Left).

Category 11: Middle

Figure ‎5.48: Original Image (Middle).

Figure ‎5.49: After applying the HSV

mask (Middle).

Figure ‎5.50: Binary image after

removing noise (Middle).

Figure ‎5.51: Image with segmentation,

fitted ellipse and centroid of the contour

(Middle).

11

The above results conclude that with the proposed image processing

techniques, the position and orientation of the tongue were accurately determined for

all of the 11 categories. This would form the control signal which could be used as an

input to any assistive device. Based on Table 4.1, the control signal was then used in

order to increment or decrement the angles of the servo motors of a robot arm.

5.4. Testing the Performance of the System Using the Robotic Arm

In order to test the performance of the system, a set of experiments were given

to a user to complete. The user was asked to output all of the different categories in a

particular order by moving his tongue. Each experiment consisted of the user going

through all of the categories 5 times. The performance evaluation was done in 2 ways:

 Criteria 1: If the user was able to reach the desired output with his tongue

effortlessly, a ‘1’ was awarded for that particular part of the trial. On the other

hand, if the user struggled to reach the output (which included flickering of the

output, taking some time to adjust his tongue to the exact position and a wrong

output being displayed on the screen), a ‘0’ was marked for that part. It is

worth noting that in this first criterion the ‘0’ does not necessarily indicate a

complete failure of the user to reach the desired output, but it indicates the

inefficiency in reaching his goal.

 Criteria 2: In this criterion it was noted whether or not the user was

eventually able to reach the desired output, without taking into account the

adjustments of the tongue made by the user.

5.4.1. Experiment 1

Each experiment consisted of 5 trials and the performance of the user and the

system were evaluated for each case. Tables 5.1 and 5.2 summarize the performance

for the 1
st
 experiment.

The percentage of accuracy of the user from the 1
st
 experiment can be

calculated from the total as follows:

 ()

(5.1)

11

Table ‎5.1: Performance evaluation (1
st
 experiment, criteria 1).

Categories Sum for

Each Trial

(Max. 10) FR R BR FL L BL F1 B1 F2 B2

Trial 1 1 1 1 1 1 1 1 0 0 0 7

Trial 2 1 1 0 0 1 0 1 0 1 1 6

Trial 3 1 1 1 0 0 0 1 1 0 1 6

Trial 4 1 1 0 1 1 0 0 0 0 1 5

Trial 5 1 1 1 1 0 1 1 0 0 0 6

Total 5 5 3 3 3 2 4 1 1 3 30

Moreover, the user was also allowed to adjust his tongue in order to ensure

that he eventually reaches the desired output. Table 5.2 summarizes how many times

the user was eventually able to reach the desired output in the 1
st
 experiment.

Table ‎5.2: Evaluation of whether or not the user was eventually able to reach his

desired output for all cases (1
st
 experiment, criteria 2).

 Categories Sum for Each

Trial (Max.

10) FR R BR FL L BL F1 B1 F2 B2

Trial 1           10

Trial 2           9

Trial 3           10

Trial 4           8

Trial 5           10

Total 5 5 5 5 5 3 4 5 5 5 47

Total Time Taken = 358 seconds

 ()

(5.2)

16

5.4.2. Experiment 2

The experiment conducted was similar to the 1
st
 experiment, with the only

difference being that the user was now more accustomed to the system. Tables 5.3 and

5.4 summarize the performance for the 2
nd

 experiment.

Table ‎5.3: Performance evaluation (2
nd

 experiment, criteria 1).

Categories Sum for

Each Trial

(Max. 10) FR R BR FL L BL F1 B1 F2 B2

Trial 1 1 1 1 1 1 0 0 1 1 1 8

Trial 2 1 1 1 1 0 0 0 1 0 0 5

Trial 3 1 1 1 0 1 1 1 0 0 1 7

Trial 4 1 1 1 1 1 1 1 1 0 1 9

Trial 5 1 1 0 1 0 1 1 1 0 1 7

Total 5 5 4 4 3 3 3 4 1 4 36

 ()

(5.3)

Table ‎5.4: Evaluation of whether or not the user was eventually able to reach his

desired output for all cases (2
nd

 experiment).

 Categories Sum for Each

Trial

(Max. 10) FR R BR FL L BL F1 B1 F2 B2

Trial 1           9

Trial 2           10

Trial 3           10

Trial 4           10

Trial 5           10

Total 5 5 5 5 5 3 5 5 5 5 49

Total Time Taken = 246 seconds

 ()

(5.4)

17

5.4.3. Experiment 3

Tables 5.5 and 5.6 summarize the performance for the 3
rd

 experiment.

Table ‎5.5: Performance evaluation (3
rd

 experiment, criteria 1).

Categories Sum for

Each Trial

(Max. 10) FR R BR FL L BL F1 B1 F2 B2

Trial 1 1 1 0 1 0 1 1 1 1 1 8

Trial 2 1 1 1 1 0 0 1 1 1 1 8

Trial 3 1 1 0 1 1 1 1 0 1 0 7

Trial 4 1 1 0 1 1 1 1 1 1 1 9

Trial 5 1 1 1 1 1 1 1 1 1 1 10

Total 5 5 2 5 3 4 5 4 5 4 42

 ()

(5.5)

Table ‎5.6: Evaluation of whether or not the user was eventually able to reach his

desired output for all cases (3
rd

 experiment, criteria 2).

 Categories Sum for Each

Trial (Max.

10) FR R BR FL L BL F1 B1 F2 B2

Trial 1           10

Trial 2           10

Trial 3           10

Trial 4           10

Trial 5           10

Total 5 5 5 5 5 5 5 5 5 5 50

Total Time Taken = 226 seconds

 ()

(5.6)

18

The above experiments and the percentages of the accuracies found in

formulas 5.1-5.6 make it clear that the effectiveness of the system is also dependant

on the amount of training the user undergoes. This is also evident by analysing the

time it takes for the user to complete each experiment (as also shown in Figure 5.48).

Figure ‎5.52: Analysis of the time taken by the user to complete each experiment.

As the user gets used to system, he/she is likely to make less mistakes. On most of the

occasions that the user achieved a ‘0’ mark (for ‘criteria 1’ in the 3 experiments), he

was still able to adjust his tongue further to reach the desired objective.

5.5. Testing the Performance of the System Using the Typing System

The typing system, explained in section 4.4, was also tested which allows the

user to select from 36 different options. Figures 5.49-5.51 show a user selecting an

option while attempting to write, ‘THANK YOU.’ The message is stored in a string

inside the code and also appears on the screen for confirmation.

Figure ‎5.53: The user

aligns his tongue to the

right in order to select the

letter ‘O’.

Figure ‎5.54: The letter ‘O’

is highlighted confirming

that the letter has been

selected successfully.

Figure ‎5.55: The letter ‘O’

also appears on the screen.

0

50

100

150

200

250

300

350

400

Experiment 1 Experiment 2 Experiment 3

T
im

e
(s

e
co

n
d

s)

Time Taken to Complete the Experiments (in

seconds) for Each Experiment

19

Table 5.7 shows a breakdown of the analysis of the different trials of the user

which would provide an idea of the system performance.

Table ‎5.7: Analysis of the typing tests.

Trial

No.

Text

Entered by

the User

No. of

Mistakes

Made by

the User

Explanation of the

Mistake

Time

Taken to

Complete

the Task

No. of

Correct

Characters/

Min

1

All the letters

of the

alphabets

without any

space

1

User intended to

select option F1 but

entered F2 instead.

95

seconds
16.42

2
‘This is

Wonderful!’
2

1: Forgot to add

space between

words.

2: Unintentional

selection of a

character.

203

seconds
5.32

3
‘An Intraoral

Camera!’
7

1: User intended to

select F1 but selected

FL instead.

2-6: Unintentional

entry of category B2

thrice when the user

wanted to select B1

(for scrolling).

7: User accidentally

selected category L

instead of FL.

234

seconds
5.13

4
‘Muhammad

Amin Tily’
3

1-2: Unintentional

selection of category

B2 instead of B1.

3: Wrong entry of a

character.

187

seconds
5.78

5
‘Thank

You!’
0 -

74

seconds
8.11

Most of the errors of the user were during the scrolling phase as the F1 and B1

categories would instead be inputted as F2 and B2 respectively. This would easily be

solved with further training as the user would get used to the amount required to open

or close his mouth in order to distinguish between the categories. Table 5.8 shows the

61

evaluation of the error rate taking into consideration even the scrolling and the

backspace since those options were selected using the tongue as well.

Table ‎5.8: Evaluation of the Error Rate.

Trial

No.

No. of

Charac-

ters of

the

Text

No. of

Mistakes

Made

(corres-

ponding

to extra

charac-

ters)

No. of

Times

the

Back-

space

was

Used

No. of

Times

the F1 or

B1

Category

was

Selected

(for

Scrolling)

Total No.

of Options

Selected

(including

characters,

backspace

and

scrolling

options)

Error

Rate

(%)

No. of

Correct

Entries/Min

1 26 1 1 3 31 3.2% 18.95

2 18 2 2 32 54 3.7% 15.37

3 20 7 7 47 81 8.6% 18.97

4 18 3 3 46 70 4.3% 21.5

5 10 0 0 17 27 0% 21.89

On average, the error rate for the user was 3.96% but as seen with the

individual trials, they are dependant on how comfortable the user has become to the

system. The error rate even reached 0% for one of the trials. On average, the number

of correct entries/minute was 19.34. The comparison of the performance of this

system with different techniques is shown in Table 5.9.

Table ‎5.9: Comparison with different techniques.

Technique
Number of

Inputs

Average Error

Rate (%)

Number of

Characters/Min

Resistopalatography

[21]
9 5.63% -

MouthPad [22] 8 2.3% -

Tongue Drive System

(TDS) [31]
6 - 8.8 char/min

The Intraoral Camera 11 3.96% 8.15 char/min

The intraoral camera introduced in this work outperforms the

Resistopalatography and the MouthPad in terms of the average error rate.

Furthermore, the intraoral camera is able to allow for more inputs compared to the

other systems operated using the tongue.

60

5.6. Limitations and Inaccuracies of the System

The system is very sensitive to the lighting of the intraoral environment. Since

the system attempts to isolate the tongue from its background by using the

information of the ‘hue’, ‘saturation’ and ‘value’ of the image, it is essential that the

LEDs are positioned in such a manner that it lights the tongue significantly more than

the floor of the mouth. If the lighting is not accurate, it may lead to the detection of

false contours arising from the reflection of the floor of the mouth. The way this error

was minimized through the code was by ensuring that only one contour would be

drawn in each iteration of the loop based on 3 factors:

1. Whether or not the tongue is present in the image (which is detected by the

regions defined as 1C, 2C and 3C which was explained in section 3.4.7), and

2. The contour with the largest area is always selected.

3. The contour would only be displayed if the ‘y’ value of its centroid would be

less than a certain threshold.

This minimizes the detection of false contours as the floor of the mouth doesn’t

generate any contours when the tongue isn’t present in the image, and even when the

tongue is present, the small contours that are occasionally found are also eliminated.

Furthermore, if the intraoral lighting is adjusted in such a way that even the regions

1C, 2C and 3C are lit up even when the tongue is absent from the image, it may also

give rise to false detection of contours. This was also minimized by placing a

condition based on the centroid of the contour such that the contour would only be

displayed if the ‘y’ value of the centroid was above a certain value (which could be

found by extending the tongue to the maximum in the vertical direction and finding

out the corresponding ‘y’ value of the centroid). Nevertheless, if the LEDs are not

placed correctly, there is still a possibility that a contour with larger area than the area

of the tongue’s contour (especially when it is placed in the backward categories (FR

& BR)) would be detected. This would occasionally give false outputs.

Moreover, the HSV range must be selected carefully which would also take

the lighting into consideration. Thus, any change in the position of the LEDs would

also result in parts of the tongue not being included in the contour. Therefore, the

system would have to be calibrated again by tuning the HSV range. Due to this error,

even though the tongue would be present within a region of interest, the region of

61

interest would occasionally be unable to detect its presence since the contour would

not extend until the region (which is being analysed by each of the regions in every

iteration of the code).

Furthermore, one of the limitations, especially during the users’ training

phase, is that the users have to constantly look at the screen in order to judge whether

or not they are positioning their tongues correctly. This would be a disadvantage when

the user is controlling hardware such as the robotic arm which would be away from

the field of view of the user. Nevertheless, the users’ dependency on the screen would

eventually be minimized once they get used to the system.

5.6. Running the Code on Raspberry Pi

Since the code was written in Python, the advantage was that it could also be

easily executed on a Raspberry Pi which has the added advantage of being small in

size. This would be quite useful especially for mobile applications (such as

controlling a wheelchair, etc.) in which case using a desktop PC would be impractical.

Although the code was able to be executed on Raspberry Pi, a time delay of 3 seconds

was obtained for each loop which would be too slow for practical usage. The system

is summarized in the block diagram depicted in Figure 5.56.

Figure ‎5.56: Block diagram summarizing the complete system.

61

Chapter 6. Conclusion and Future Work

In this thesis, a thorough research was conducted of the available methods

used to assist people afflicted with disabilities to make use of alternative inputs. A

novel method was proposed of using an intraoral camera to utilize the tongue as an

input. Moreover, a prototype was built which included a hand-moulded mouthpiece,

LEDs for lighting up the oral cavity and a cylindrical slot for the intraoral camera. An

endoscope camera was selected for this prototype and image processing techniques

were applied using the Python programming language with extensive use of the

OpenCV library. Through real-time image processing, the orientation and position of

the tongue were successfully evaluated based on which an output from the 10

different categories was then decided. Each category was successfully tested to ensure

that the desired control signal was achieved. The control signal was then also

connected to an application, namely a robotic arm. Each control signal was then used

to control a particular servo motor of the robotic arm which would be extremely

helpful for paralytic patients to fulfil their pick-and-place tasks.

A time delay of 3 seconds was received when the Raspberry Pi was used

instead of the PC. However, it is worth noting that, in this thesis, the detection of the

position and orientation of the tongue was successfully carried out with the help of

pure image processing techniques, and not the popular object detection techniques

such as YOLO (‘You Only Look Once’ real-time object detection technique) and R-

CNN (Region-based Convolutional Neural Networks). The advantage of doing so is

to save a lot of the processing time which would otherwise create a much greater lag

in producing the outputs.

This thesis was successful in implementing a system for supporting assistive

devices, and it was able to reduce or eliminate some of the drawbacks that are present

in the current ATs that focus on using the tongue as an input. The systems known as

Resistopalatography and the MouthPad possess the disadvantage of having a size

constraint. However, with the emergence of miniature cameras, the actual

implementation of inserting a camera within the intraoral environment would not be

expected to take up much space. Furthermore, the insertion of magnetic sensors

within the tongue has the disadvantage of being quite invasive. Contrary to that, the

61

proposed system offers a non-invasive and thus more comfortable and feasible

approach to capture inputs from the tongue. Lastly, the tongue-operated joystick is

quite obtrusive and thus may not be favoured by most of the users. Although the

proposed system doesn’t eliminate this drawback (as the wires are exposed to the

outside environment which are connected to the PC), it is still possible to do so in the

future by implementing a wireless system which could help establish the

communication between the camera and the PC.

For future work, alternatives to the Raspberry Pi should be researched which

could ensure that the entire image processing takes place on a single-board computer

(SBC) along with minimal delay time. Moreover, the code can also be modified to

minimize the processing time. Once the processing is done on SBCs, different

applications (especially in mobile robots) can be connected to the system and tested.

This would broaden the scope of this prototype. Furthermore, in order to control the

robot arm, the most efficient technique would be to implement inverse kinematics, in

which the user would simply move the end-effector point (consisting of the x, y and z

value of the point) and the calculation of the angles for all of the motors would be

computed automatically.

61

References

[1] (2017, May) Disability and functioning (noninstitutionalized adults aged 18 and

over). [Online]. Available: https://www.cdc.gov/nchs/fastats/disability.htm

[Accessed: Dec 17, 2018].

[2] Stats about paralysis. Christopher and Dana Reeve Foundation. [Online].

Available: https://www.christopherreeve.org/living-with-paralysis/stats-about-

paralysis [Accessed: Dec 17, 2018].

[3] Quick facts about als and the als association. ALS Association. [Online].

Available: https://www.christopherreeve.org/living-with-paralysis/stats-about-

paralysis [Accessed: Dec 17, 2018].

[4] (2017, Nov.) Paralysis. ALS Association. [Online]. Available:

https://www.nhs.uk/conditions/paralysis/ [Accessed: Dec 17, 2018].

[5] What is at? [Online]. Available: https://www.atia.org/at-resources/what-is-at/

[Accessed: Dec 17, 2018].

[6] B. Yousefi et al., “Quantitative and comparative assessment of learning in a

tongue-operated computer input device—part ii: Navigation tasks,” IEEE

Transactions on Information Technology in Biomedicine, vol. 16, no. 4, pp. 633–

643, 2012.

[7] M. Suzuki, N. Yamamoto, O. Yamamoto, T. Nakano and S. Yamamoto,

"Measurement of Driver's Consciousness by Image Processing -A Method for

Presuming Driver's Drowsiness by Eye-Blinks coping with Individual

Differences -," 2006 IEEE International Conference on Systems, Man and

Cybernetics, Taipei, 2006, pp. 2891-2896.

[8] M. S. Reddy, A. Sammaiah, B. Narsimha and K. S. Rao, "Analysis of EOG

Signals Using Empirical Mode Decomposition for Eye Blink Detection," 2011

International Conference on Multimedia and Signal Processing, Guilin,

Guangxi, 2011, pp. 293-297.

[9] Y. Kim, "Detection of Eye Blinking Using Doppler Sensor With Principal

Component Analysis," in IEEE Antennas and Wireless Propagation Letters, vol.

14, pp. 123-126, 2015.

[10] Y. Cheung and Q. Peng, "Eye Gaze Tracking With a Web Camera in a Desktop

Environment," in IEEE Transactions on Human-Machine Systems, vol. 45, no. 4,

pp. 419-430, Aug. 2015.

[11] H. S. Dhillon, R. Singla, N. S. Rekhi and R. Jha, "EOG and EMG based virtual

keyboard: A brain-computer interface," 2009 2nd IEEE International Conference

on Computer Science and Information Technology, Beijing, 2009, pp. 259-262.

66

[12] A. Castillo et al., "Hands free mouse," 2016 IEEE 13th International Conference

on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA,

2016, pp. 109-114.

[13] C. Ishii and R. Konishi, "A Control of Electric Wheelchair Using an EMG Based

on Degree of Muscular Activity," 2016 Euromicro Conference on Digital System

Design (DSD), Limassol, 2016, pp. 567-574.

[14] S. Hawking. My computer. [Online]. Available: http://www.hawking.org.uk/the-

computer.html [Accessed: Dec 17, 2018].

[15] Hyuk Jeong, Jong-Sung Kim and Wook-Ho Son, "An EMG-based Mouse

Controller for A Tetraplegic," 2005 IEEE International Conference on Systems,

Man and Cybernetics, Waikoloa, HI, 2005, pp. 1229-1234.

[16] T. Simpson, C. Broughton, M. J. A. Gauthier and A. Prochazka, "Tooth-Click

Control of a Hands-Free Computer Interface," in IEEE Transactions on

Biomedical Engineering, vol. 55, no. 8, pp. 2050-2056, Aug. 2008.

[17] (2015, Aug.) Turning breath into words new device unveiled to give paralysis

sufferers a voice. [Online]. Available: https://www.lboro.ac.uk/news-

events/news/2015/august/turning-breath-into-words.html [Accessed: Dec 17,

2018].

[18] (2012, Dec.). [Online]. Available: http://atwiki.assistivetech.net/images/3/32/

Shepherd-center-tube.jpg [Accessed: Dec 17, 2018].

[19] B. Rebsamen et al., "Controlling a Wheelchair Indoors Using Thought," in IEEE

Intelligent Systems, vol. 22, no. 2, pp. 18-24, March-April 2007.

[20] E.W. Sellers, D. J. Krusienski, D. J. McFarland, T. M. Vaughan and J. R.

Wolpaw, “A p300 event-related potential brain–computer interface (bci): the

effects of matrix size and inter stimulus interval on performance,” Biological

psychology, vol. 73, no. 3, pp. 242–252, 2006.

[21] R. Horne, S. Kelly and P. Sharp, "Resistopalatography as an assistive technology

for users with spinal cord injuries," 2015 37th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, 2015,

pp. 4367-4370.

[22] O. Draghici, I. Batkin, M. Bolic and I. Chapman, "Performance evaluation of the

MouthPad," 2014 IEEE International Symposium on Medical Measurements and

Applications (MeMeA), Lisboa, 2014, pp. 1-5.

[23] G. Krishnamurthy and M. Ghovanloo, "Tongue drive: a tongue operated

magnetic sensor based wireless assistive technology for people with severe

disabilities," 2006 IEEE International Symposium on Circuits and Systems,

Island of Kos, 2006, pp. 5551–5554.

67

[24] X. Huo and M. Ghovanloo*, "Using Unconstrained Tongue Motion as an

Alternative Control Mechanism for Wheeled Mobility," in IEEE Transactions on

Biomedical Engineering, vol. 56, no. 6, pp. 1719-1726, June 2009.

[25] B. Yousefi, X. Huo, E. Veledar and M. Ghovanloo, "Quantitative and

Comparative Assessment of Learning in a Tongue-Operated Computer Input

Device," in IEEE Transactions on Information Technology in Biomedicine, vol.

15, no. 5, pp. 747-757, Sept. 2011.

[26] M. N. Sahadat, A. Alreja, N. Mikail and M. Ghovanloo, "Comparing the Use of

Single Versus Multiple Combined Abilities in Conducting Complex Computer

Tasks Hands-Free," in IEEE Transactions on Neural Systems and Rehabilitation

Engineering, vol. 26, no. 9, pp. 1868-1877, Sept. 2018.

[27] M. N. Sahadat, S. Dighe, F. Islam and M. Ghovanloo, "An Independent Tongue-

Operated Assistive System for Both Access and Mobility," in IEEE Sensors

Journal, vol. 18, no. 22, pp. 9401-9409, 15 Nov.15, 2018.

[28] T. Ohba and S. Kajikawa, "Tongue-operated joystick device with reaction force

feedback mechanism," 2017 IEEE International Conference on Advanced

Intelligent Mechatronics (AIM), Munich, 2017, pp. 207-212.

[29] Image thresholding. [Online]. Available: https://docs.opencv.org/3.0-beta/doc/py

tutorials/py imgproc/py thresholding/py thresholding.html [Accessed: Dec 17,

2018].

[30] Morphological transformations. [Online]. Available: https://docs.opencv.org/3.4/

d9/d61/tutorial py morphological ops.html [Accessed: Dec 17, 2018].

[31] X. Huo, H. Park, J. Kim and M. Ghovanloo, "A Dual-Mode Human Computer

Interface Combining Speech and Tongue Motion for People with Severe

Disabilities," in IEEE Transactions on Neural Systems and Rehabilitation

Engineering, vol. 21, no. 6, pp. 979-991, Nov. 2013.

68

Appendix: Python Code

The following code was written using the Python programming language.

However, the presented code just detects 8 categories and is without the calibration

system for automatically detecting the thresholds for Cx.

import cv2

import numpy as np

import imutils

from matplotlib.widgets import RectangleSelector

import matplotlib.pyplot as plt

import time

import serial

import keyboard #Using module keyboard

def nothing(x):

 pass

cap = cv2.VideoCapture(0)

Create window for Trackbars

cv2.namedWindow('Threshed_HSV')

cv2.namedWindow('Threshed_HSV_Teeth')

Create trackbars for threshold change - to detect the tongue

cv2.createTrackbar('H_upper','Threshed_HSV',255,255,nothing) #190

cv2.createTrackbar('S_upper','Threshed_HSV',61,255,nothing) #52

cv2.createTrackbar('V_upper','Threshed_HSV',255,255,nothing) #255

cv2.createTrackbar('H_Lower','Threshed_HSV',101,255,nothing) #128

cv2.createTrackbar('S_Lower','Threshed_HSV',0,255,nothing) #0

cv2.createTrackbar('V_Lower','Threshed_HSV',140,255,nothing) #0

create trackbars for threshold change - to detect the teeth

cv2.createTrackbar('H_upper_Teeth','Threshed_HSV_Teeth',112,255,nothing) #190

cv2.createTrackbar('S_upper_Teeth','Threshed_HSV_Teeth',255,255,nothing) #52

cv2.createTrackbar('V_upper_Teeth','Threshed_HSV_Teeth',255,255,nothing) #255

cv2.createTrackbar('H_Lower_Teeth','Threshed_HSV_Teeth',13,255,nothing) #128

cv2.createTrackbar('S_Lower_Teeth','Threshed_HSV_Teeth',0,255,nothing) #0

cv2.createTrackbar('V_Lower_Teeth','Threshed_HSV_Teeth',0,255,nothing) #0

#Initializing variables which will be the commands sent to the Servo motors of the Robot

motor1 = 1500

motor2 = 1500

motor3 = 1500

motor4 = 1500

motor5 = 1500

#Establishing Serial communication for communication with the robot

ser = serial.Serial(

 port='COM7',

69

 baudrate=9600,

 bytesize=serial.EIGHTBITS,

 parity=serial.PARITY_NONE,

 stopbits=serial.STOPBITS_ONE)

if(ser.isOpen() == False):

 ser.open()

ser.write(b'#0P1500\r')

ser.write(b'#1P1500\r')

ser.write(b'#2P1500\r')

ser.write(b'#3P1500\r')

ser.write(b'#4P1500\r')

#The following loop will run continuously

while True:

 _, img = cap.read()

 Verdict = 'No Input' #The text that is seen on the final image defining the category

 clone = img.copy()

 clone_black = img.copy()

 clone_black[:,:,:] = [0,0,0]

 # Blur and HSV Conversion

 blurred_frame = cv2.GaussianBlur(clone, (5,5),0)

 hsv = cv2.cvtColor(blurred_frame, cv2.COLOR_BGR2HSV)

 # Get current positions of six trackbars (for the tongue)

 H_Up = cv2.getTrackbarPos('H_upper','Threshed_HSV')

 H_Down = cv2.getTrackbarPos('H_Lower','Threshed_HSV')

 S_Up = cv2.getTrackbarPos('S_upper','Threshed_HSV')

 S_Down = cv2.getTrackbarPos('S_Lower','Threshed_HSV')

 V_Up = cv2.getTrackbarPos('V_upper','Threshed_HSV')

 V_Down = cv2.getTrackbarPos('V_Lower','Threshed_HSV')

 upper = np.array([H_Up,S_Up,V_Up])

 lower = np.array([H_Down,S_Down,V_Down])

 Threshold = 127 #for the binarization - however sine OTSU was used, this variable was not

useful

 #TEETH: get current positions of six trackbars

 H_Up_Teeth = cv2.getTrackbarPos('H_upper_Teeth','Threshed_HSV_Teeth')

 H_Down_Teeth = cv2.getTrackbarPos('H_Lower_Teeth','Threshed_HSV_Teeth')

 S_Up_Teeth = cv2.getTrackbarPos('S_upper_Teeth','Threshed_HSV_Teeth')

 S_Down_Teeth = cv2.getTrackbarPos('S_Lower_Teeth','Threshed_HSV_Teeth')

 V_Up_Teeth = cv2.getTrackbarPos('V_upper_Teeth','Threshed_HSV_Teeth')

 V_Down_Teeth = cv2.getTrackbarPos('V_Lower_Teeth','Threshed_HSV_Teeth')

71

 upper_for_teeth = np.array([H_Up_Teeth,S_Up_Teeth,V_Up_Teeth])

 lower_for_teeth = np.array([H_Down_Teeth,S_Down_Teeth,V_Down_Teeth])

 # Isolation of the image of the tongue through the HSV range

 mask = cv2.inRange(hsv, lower, upper)

 res = cv2.bitwise_and(clone,clone, mask= mask)

 # Isolation of the teeth through the HSV range

 mask_teeth = cv2.inRange(hsv, lower_for_teeth, upper_for_teeth)

 res_teeth = cv2.bitwise_and(clone,clone, mask= mask_teeth)

 # Conversion to Grayscale

 frame_gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)

 # Blurring

 frame_gray = cv2.GaussianBlur(frame_gray,(11,1),0)

 # Binarization

 ret2,th2 =

cv2.threshold(frame_gray,Threshold,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

 # 'Closing' Operation

 kernel = np.ones((7,7),np.uint8)

 th2 = cv2.morphologyEx(th2, cv2.MORPH_CLOSE, kernel)

 th2_teeth = cv2.morphologyEx(mask_teeth, cv2.MORPH_CLOSE, kernel)

 # Initialization of the variables for the regions of Interest

 roi1c_val = 0

 roi2c_val = 0

 roi3c_val = 0

 roic_total = 0

 roiRight_val_teeth = 0

 roiLeft_val_teeth = 0

 # TEETH: Defining the regions of interest and Calculating the white pixels in them

 # a)Left

 roi_left_teeth = th2_teeth[79:480, 0:100]

 n_white_pix1_teeth = np.sum(roi_left_teeth == 255)

 print('Teeth - Number of white pixels - Left:', n_white_pix1_teeth)

 if (n_white_pix1_teeth<15000):

 cv2.rectangle(res_teeth, (0, 79), (100, 480), (255,0,0), 1)

 roiLeft_val_teeth = 0

 elif (n_white_pix1_teeth>15000):

 cv2.rectangle(res_teeth, (0, 79), (100, 480), (0,0,255), 3)

 roiLeft_val_teeth = 1

 # b)Right

 roi_right_teeth = th2_teeth[79:480, 540:640]

 n_white_pix2_teeth = np.sum(roi_right_teeth == 255)

 print('Teeth - Number of white pixels - Right:', n_white_pix2_teeth)

 if (n_white_pix2_teeth<15000):

 cv2.rectangle(res_teeth, (540, 79), (640, 480), (255,0,0), 1)

 roiRight_val_teeth = 0

 elif (n_white_pix2_teeth>15000):

70

 cv2.rectangle(res_teeth, (540, 79), (640, 480), (0,0,255), 3)

 roiRight_val_teeth = 1

 ## TONGUE: Defining the regions of interest and Calculating the white pixels in them

 # a) Left

 roi1c = th2[0:78, 0:214]

 n_white_pix1c = np.sum(roi1c == 255)

 print('Number of white pixels 1c:', n_white_pix1c)

 if (n_white_pix1c>10000):

 cv2.rectangle(clone, (0, 0), (214, 78), (0,0,255), 3)

 roi1c_val = 2 #Assign a higher value if more pixels are present (when the tongue is

turned)

 elif (n_white_pix1c>3000 and n_white_pix1c<10000):

 cv2.rectangle(clone, (0, 0), (214, 78), (0,0,255), 3)

 roi1c_val = 1 #The tongue is simply present

 elif (n_white_pix1c<2000):

 cv2.rectangle(clone, (0, 0), (214, 78), (255,0,0), 1)

 roi1c_val = 0

 # b) Middle

 roi2c = th2[0:78, 215:427]

 n_white_pix2c = np.sum(roi2c == 255)

 print('Number of white pixels 2c:', n_white_pix2c)

 if (n_white_pix2c<2000):

 cv2.rectangle(clone, (215, 0), (427, 78), (255,0,0), 1)

 roi2c_val = 0

 elif (n_white_pix2c>2000):

 cv2.rectangle(clone, (215, 0), (427, 78), (0,0,255), 3)

 roi2c_val = 1

 # c) Right

 roi3c = th2[0:78, 428:640]

 n_white_pix3c = np.sum(roi3c == 255)

 print('Number of white pixels 3c:', n_white_pix3c)

 if (n_white_pix3c>4000):

 cv2.rectangle(clone, (428, 0), (640, 78), (0,0,255), 3)

 roi3c_val = 2

 elif (n_white_pix3c>2000 and n_white_pix3c<4000):

 cv2.rectangle(clone, (428, 0), (640, 78), (0,0,255), 3)

 roi3c_val = 1

 elif (n_white_pix3c<2000):

 cv2.rectangle(clone, (428, 0), (640, 78), (255,0,0), 1)

 roi3c_val = 0

 # Calculation of the total value

 roic_total = roi1c_val + roi2c_val + roi3c_val

 # Finding the contours

 _, contours, _= cv2.findContours(th2, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

 contour_list = []

 # Initialization for the centroid variables

71

 cx=250

 cy=250

 for contour in contours:

 area = cv2.contourArea(contour)

 if (roic_total < 3):

 break

 if ((len(contour) > 8) and (area > 10000)):

 M = cv2.moments(contour)

 cx = int(M['m10']/M['m00'])

 cy = int(M['m01']/M['m00'])

 if(cy<250):

 print('cx=',cx)

 print('cy=',cy)

 cv2.circle(clone,(cx,cy), 10, (0,255,0), -1)

 ellipse = cv2.fitEllipse(contour)

 ## Checking for Rest of the 9 Regions of Interest

 #ROI = 1

 roi1 = clone_black[79:212, 0:214]

 n_white_pix1 = np.sum(roi1 == 255)

 print('Number of white pixels 1:', n_white_pix1)

 if (n_white_pix1<500):

 cv2.rectangle(clone, (0, 79), (214, 212), (255,0,0), 1)

 roi1_val = 0

 elif (n_white_pix1>500):

 cv2.rectangle(clone, (0, 79), (214, 212), (0,0,255), 3)

 roi1_val = 1

 #ROI = 2

 roi2 = clone_black[79:212, 215:427]

 n_white_pix2 = np.sum(roi2 == 255)

 print('Number of white pixels 2:', n_white_pix2)

 if (n_white_pix2<500):

 cv2.rectangle(clone, (215, 79), (427, 212), (255,0,0), 1)

 roi2_val = 0

 elif (n_white_pix2>500):

 cv2.rectangle(clone, (215, 79), (427, 212), (0,0,255), 3)

 roi2_val = 1

 #ROI = 3

 roi3 = clone_black[79:212, 428:640]

 n_white_pix3 = np.sum(roi3 == 255)

 print('Number of white pixels 3:', n_white_pix3)

 if (n_white_pix3<500):

 cv2.rectangle(clone, (428, 79), (640, 212), (255,0,0), 1)

 roi3_val = 0

 elif (n_white_pix3>500):

 cv2.rectangle(clone, (428, 79), (640, 212), (0,0,255), 3)

 roi3_val = 1

 #ROI = 4

 roi4 = clone_black[213:346, 0:214]

71

 n_white_pix4 = np.sum(roi4 == 255)

 print('Number of white pixels 4:', n_white_pix4)

 if (n_white_pix4<500):

 cv2.rectangle(clone, (0, 213), (214, 346), (255,0,0), 1)

 roi4_val = 0

 elif (n_white_pix4>500):

 cv2.rectangle(clone, (0, 213), (214, 346), (0,0,255), 3)

 roi4_val = 1

 #ROI = 5

 roi5 = clone_black[213:346, 215:427]

 n_white_pix5 = np.sum(roi5 == 255)

 print('Number of white pixels 5:', n_white_pix5)

 if (n_white_pix5<500):

 cv2.rectangle(clone, (215, 213), (427, 346), (255,0,0), 1)

 roi5_val = 0

 elif (n_white_pix5>500):

 cv2.rectangle(clone, (215, 213), (427, 346), (0,0,255), 3)

 roi5_val = 1

 #ROI = 6

 roi6 = clone_black[213:346, 428:640]

 n_white_pix6 = np.sum(roi6 == 255)

 print('Number of white pixels 6:', n_white_pix6)

 if (n_white_pix6<500):

 cv2.rectangle(clone, (428, 213), (640, 346), (255,0,0), 1)

 roi6_val = 0

 elif (n_white_pix6>500):

 cv2.rectangle(clone, (428, 213), (640, 346), (0,0,255), 3)

 roi6_val = 1

 #ROI = 7

 roi7 = clone_black[347:480, 0:214]

 n_white_pix7 = np.sum(roi7 == 255)

 print('Number of white pixels 7:', n_white_pix7)

 if (n_white_pix7<500):

 cv2.rectangle(clone, (0, 347), (214, 480), (255,0,0), 1)

 roi7_val = 0

 elif (n_white_pix7>500):

 cv2.rectangle(clone, (0, 347), (214, 480), (0,0,255), 3)

 roi7_val = 1

 #ROI = 8

 roi8 = clone_black[347:480, 215:427]

 n_white_pix8 = np.sum(roi8 == 255)

 print('Number of white pixels 8:', n_white_pix8)

 if (n_white_pix8<500):

 cv2.rectangle(clone, (215, 347), (427, 480), (255,0,0), 1)

 roi8_val = 0

 elif (n_white_pix8>500):

 cv2.rectangle(clone, (215, 347), (427, 480), (0,0,255), 3)

 roi8_val = 1

 #ROI = 9

71

 roi9 = clone_black[347:480, 428:640]

 n_white_pix9 = np.sum(roi9 == 255)

 print('Number of white pixels 9:', n_white_pix9)

 if (n_white_pix9<500):

 cv2.rectangle(clone, (428, 347), (640, 480), (255,0,0), 1)

 roi9_val = 0

 elif (n_white_pix9>500):

 cv2.rectangle(clone, (428, 347), (640, 480), (0,0,255), 3)

 roi9_val = 1

 # Displaying the values of the centroid of the contour

 print('Global cx=',cx)

 print('Global cy=',cy)

 ## Checking for the Categories and Moving the Robot Accordingly

 if(cx>379):

 #FR

 if((roi9_val==1)and(roi7_val==0)):

 motor1 = motor1 + 10

 string1 = "#0P" + str(motor1) + "\r"

 ser.write(string1.encode("utf-8"))

 Verdict = 'Forward + Right'

 #R

 elif((roi9_val==0)and(roi6_val==1)and(roi7_val==0)):

 motor1 = motor1 + 20

 string1 = "#0P" + str(motor1) + "\r"

 ser.write(string1.encode("utf-8"))

 Verdict = 'Right'

 #BR

elif((roi3c_val>0)and(roi1_val==0)and(roi3_val==1)and(roi6_val==0)and(roi9_val==0)):

 Verdict = 'Backwards + Right'

 if(cx<280):

 #FL

 if((roi7_val==1)and(roi9_val==0)):

 motor1 = motor1 - 10

 string1 = "#0P" + str(motor1) + "\r"

 ser.write(string1.encode("utf-8"))

 Verdict = 'Forward + Left'

 #L

 elif((roi7_val==0)and(roi4_val==1)and(roi9_val==0)):

 motor1 = motor1 - 20

 string1 = "#0P" + str(motor1) + "\r"

 ser.write(string1.encode("utf-8"))

 Verdict = 'Left'

 #BL

elif((roi1c_val>0)and(roi1_val==1)and(roi3_val==0)and(roi4_val==0)and(roi7_val==0)):

 Verdict = 'Backwards + Left'

 ## Forwards & Backwards if Teeth are NOT Visible

 if((roiRight_val_teeth==0) and (roiLeft_val_teeth == 0)):

 #F2

71

 if (roi7_val==roi8_val==roi9_val==1):

 motor2 = motor2 - 10

 string2 = "#1P" + str(motor2) + "\r"

 ser.write(string2.encode("utf-8"))

 Verdict = 'Forwards (No Teeth)'

 #B2

 if ((roi1_val==roi2_val==roi3_val==1) and (roi4_val==roi6_val==0)):# and

(roi9_val==0):

 motor2 = motor2 + 10

 string2 = "#1P" + str(motor2) + "\r"

 ser.write(string2.encode("utf-8"))

 Verdict = 'Backwards (No Teeth)'

 ## Forwards & Backwards if Teeth are Visible

 if((roiRight_val_teeth==1) or (roiLeft_val_teeth == 1)):

 #F1

 if ((roi1_val==roi2_val==roi3_val==1)and((roi4_val==roi6_val==1))):

 motor3 = motor3 + 10

 string3 = "#2P" + str(motor3) + "\r"

 ser.write(string3.encode("utf-8"))

 Verdict = 'Forwards (With Teeth)'

 #B1

 if ((roi1_val==roi2_val==roi3_val==1) and (roi4_val==roi6_val==0)):# and

(roi9_val==0):

 motor3 = motor3 - 10

 string3 = "#2P" + str(motor3) + "\r"

 ser.write(string3.encode("utf-8"))

 Verdict = 'Backwards (With Teeth)'

 ## Motor 4 - Pick and Drop

 if keyboard.is_pressed('p'):#if key 'p' is pressed

 string4 = "#4P" + "2000" + "\r"

 ser.write(string4.encode("utf-8"))

 if keyboard.is_pressed('d'):#if key 'd' is pressed

 string4 = "#4P" + "700" + "\r"

 ser.write(string4.encode("utf-8"))

 #Preparing the Text to be Inserted on the Final Image

 font = cv2.FONT_HERSHEY_SIMPLEX

 bottomLeftCornerOfText = (10,450)

 fontScale = 1

 fontColor = (0,255,255)

 lineType = 3

 cv2.putText(clone,Verdict,

 bottomLeftCornerOfText,

 font,

 fontScale,

 fontColor,

 lineType)

 ## Displaying the results

 cv2.namedWindow("1. Original Image",cv2.WINDOW_NORMAL)

76

 cv2.resizeWindow('1. Original Image', 512,384)

 cv2.moveWindow("1. Original Image", 0,0)

 cv2.imshow('1. Original Image', img)

 cv2.namedWindow("2. Isolating the Tongue Based on the HSV

Range",cv2.WINDOW_NORMAL)

 cv2.resizeWindow('2. Isolating the Tongue Based on the HSV Range', 512,384)

 cv2.moveWindow("2. Isolating the Tongue Based on the HSV Range", 530,0)

 cv2.imshow("2. Isolating the Tongue Based on the HSV Range", res)

cv2.namedWindow("3. Isolating the Teeth Based on the HSV

Range",cv2.WINDOW_NORMAL)

cv2.resizeWindow('3. Isolating the Teeth Based on the HSV Range', 512,384)

cv2.imshow("3. Isolating the Teeth Based on the HSV Range", mask_teeth)

 cv2.namedWindow("3. Grayscale Image After Smoothing",cv2.WINDOW_NORMAL)

 cv2.resizeWindow('3. Grayscale Image After Smoothing', 512,384)

 cv2.moveWindow("3. Grayscale Image After Smoothing", 1060,0)

 cv2.imshow("3. Grayscale Image After Smoothing", frame_gray)

 cv2.namedWindow("4. Binarization of the Image After Applying the (Closing)

Morphological Transform",cv2.WINDOW_NORMAL)

 cv2.resizeWindow('4. Binarization of the Image After Applying the (Closing)

Morphological Transform', 512,384)

 cv2.moveWindow("4. Binarization of the Image After Applying the (Closing)

Morphological Transform", 0,425)

 cv2.imshow("4. Binarization of the Image After Applying the (Closing) Morphological

Transform", th2)

 cv2.namedWindow("5. Final Binarized Image With Contour",cv2.WINDOW_NORMAL)

 cv2.resizeWindow('5. Final Binarized Image With Contour', 512,384)

 cv2.moveWindow("5. Final Binarized Image With Contour", 530,425)

 cv2.imshow("5. Final Binarized Image With Contour", clone_black)

 cv2.namedWindow("6. Obtaining the Contour & Location of the

Tongue",cv2.WINDOW_NORMAL)

 cv2.resizeWindow('6. Obtaining the Contour & Location of the Tongue', 512,384)

 cv2.moveWindow("6. Obtaining the Contour & Location of the Tongue", 1060,425)

 cv2.imshow("6. Obtaining the Contour & Location of the Tongue", clone)

 # ESC to break

 k = cv2.waitKey(1) & 0xFF

 if k == 27:

 break

close all open windows

cap.release()

cv2.destroyAllWindows().

77

Vita

Muhammad Amin Tily was born in 1991, in Abu Dhabi, United Arab

Emirates. He received his primary and secondary education in Sharjah, UAE. He

received his B.Sc. degree in Electrical Engineering from the American University of

Sharjah in 2013. In September 2016, he joined the Mechatronics Engineering master's

program in the American University of Sharjah where he spent two years as a

graduate teaching assistant. His research interests are in image processing, machine

learning and Biomedical Engineering.

