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Abstract 

 

Thousands of patients around the globe are affected by paralysis which hinders the 

fulfilment of their basic needs such as mobility and speech. Several research topics 

have been dedicated to improve the livelihood of paralytic patients and a small subset 

of the topics has focused on capturing inputs from the tongue. The tongue is a 

muscular organ directly connected to the brain through a cranial nerve known as the 

hypoglossal nerve which is responsible for the motor functions of the tongue. Hence, 

tongue movements are not affected during spinal cord injuries, which is one of the 

major causes of paralysis. Given the importance of capturing inputs from the tongue, 

this research proposes a novel method of using an intraoral camera for this purpose. It 

discusses the methods used for capturing the images with the help of an Endoscope 

camera. It explains how the features were extracted in real-time using image 

processing techniques on each captured frame and how the orientation and position of 

the tongue was then accurately classified into one of the 11 possible categories to 

produce specific outputs which could be used by paralytic patients as inputs to any 

external system. After testing the system with a data entry application, an average of 

19.34 correct entries per minute was calculated from 5 different experiments, and an 

average error rate of 3.96% was obtained, which outperforms systems such as the 

Resistopalatography and the MouthPad in terms of accuracy.  

 

Keywords: Assistive Technology; disability; paralysis; tongue; intraoral camera; 

image processing. 
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Chapter 1. Introduction 

 

1.1. Overview 

1.1.1. Motivation 

The total number of adults in the United States facing at least some form of 

physical disability adds up to 39.6 million [1], and one of the major causes of concern 

is the spread of paralysis amongst the masses. Paralysis is a loss of muscle function 

which restricts voluntary muscle movements. It is approximated that around 5.4 

million people across the United States are living with paralysis [2]. According to the 

same study, it was revealed that the primary cause of paralysis is stroke (33.7%), 

followed by spinal cord injuries (27.3%) and then multiple sclerosis (18.6 %). Several 

other causes of paralysis exist such as the Parkinson's disease, cerebral palsy and 

Amyotrophic lateral sclerosis (ALS), etc. The ALS is a disease that gradually leads to 

complete paralysis, and it is estimated that around 15 people each day are diagnosed 

with ALS, and around 30,000 Americans are currently suffering from this disease [3]. 

Paralysis may affect one’s face, hands, one arm or leg (monoplegia), one side 

of the body (hemiplegia), both legs (paraplegia), or both arms and legs (tetraplegia or 

quadriplegia) [4]. Moreover, even the severity of paralysis may differ ranging from 

partial to complete paralysis which would cause the patient to be bed-ridden. Thus, 

patients’ needs vary from the type of paralysis they are affected with, which may 

restrict their mobility, speech or even their ability to grasp objects. These restrictions 

make it challenging for the patients to fulfill their very basic needs. 

1.1.2. Assistive technologies 

Latest advancements which aim to assist patients affected by paralysis either 

involve the activation of paralyzed muscles or the restoration of their voluntary 

movements; the latter being the subject of this research which comes under the 

section of assistive technologies. Assistive technology (AT) can be defined as “any 

item, piece of equipment, software program, or product system that is used to 

increase, maintain, or improve the functional capabilities of persons with disabilities” 

[5]. Several solutions in AT have been presented which aim to empower the users by 

providing alternative methods of capturing their inputs to a system. The implications 

of this is huge for people of special needs, as their education, nutrition, 
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communication and mobility may otherwise all be completely dependent on those 

around them. ATs assist by creating more independency for the users. Thus, in order 

to improve the well-being of physically challenged people, it is vital to improve the 

ATs in order to cater to their specific needs. 

The current available solutions in AT for paralytic patients include the 

tracking of limb movements (such as eye, head or tongue movements, etc.), obtaining 

Electroencephalogram (EEG), Electrooculography (EOG) and Electromyography 

(EMG) signals, capturing inhalation and exhalation of the user, etc. Each solution has 

its pros and cons and the most suitable solution varies from user to user, based on the 

type and degree of paralysis or disability. 

1.1.3. Utilizing the tongue 

One of the proposed solutions involves using the tongue as an input to a 

system. There are several advantages with this approach, as the tongue’s movement 

does not cause exhaustion for the user, it is capable of making complex movements 

while remaining hidden from others, and its movement capabilities remain 

independent form the position of the body (i.e. lying, sitting down or standing up does 

not affect tongue movements) [6]. 

1.1.4. Improving the existing tongue-driven systems 

After an extensive literature review dealing with tongue driven systems, it was 

noted that the present solutions had a lot of room for improvement. They can be 

improved by reducing the area occupied by the system, making the system less 

invasive (by avoiding the piercing of any piece through the tongue) and completely 

hidden within the intraoral environment. Moreover, most of the solutions utilized 

contact sensors, which are not very comfortable for the users and thus may not be 

practical for long term usage. Therefore, in order to enhance the existing solutions by 

avoiding the usage of contact sensors, the use of a camera was proposed in this 

research. Furthermore, with the trend of cameras being available in smaller and 

smaller sizes, it is expected that the intraoral camera would also be very conveniently 

hidden completely inside the oral cavity, along with fully functional Wi-Fi 

capabilities to transmit data, in the near future. 
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1.2. Thesis Objectives 

This thesis aims to introduce an innovative alternative in assistive technologies 

for aiding the people affected by disabilities to fulfil their basic needs. The thesis was 

broken down into the following main parts: 

1.2.1. Sensor technology 

In this part, an extensive study was carried out of different 

technologies aiding people affected by paralysis to fulfill their basic needs, such as 

empowering them to commute freely, grasp objects, etc. We propose a novel method 

of utilizing an intraoral camera for using the tongue as an input to any external 

system. In order to form a working prototype, the most suitable camera for the 

intraoral environment also had to be selected. 

1.2.2. Making a prototype 

Once a camera was selected, a wearable prototype had to be set up 

which would hold the camera in place, ensure a proper lighting system in the intraoral 

region and would be comfortable for the patients to use. This would also ensure that 

the results are replicable since the camera and the lighting system would remain the 

same during the entire testing phase. 

1.2.3. Image processing 

  Real time image processing was the key to form a working prototype. 

Each frame captured from the camera had to be processed in order to find the exact 

location and orientation of the tongue which would be used as an input to control an 

external system.  

1.2.4. Connecting an application 

  Once the information of the location of the tongue would be received, 

it was also connected to a system in order to test its performance. The application 

chosen for this system was a robotic arm which is of particular benefit to paralytic 

patients as it is able to fulfil similar functions as that of the human arm.  

1.3. Research Contribution 

The implementation of an intraoral camera would improve the current ATs 

focusing on the tongue by: 

 Preventing the system from being intrusive. 
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 Making the system more comfortable for the users as the tongue would not 

require any contact to a sensor. 

 Allowing the system to be completely hidden in the intraoral environment 

with the latest developments of small-sized cameras. 

1.4. Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides a literature 

review on key research papers and existing solutions with regards to the different 

sensors assisting paralytic patients to fulfil particular tasks. Chapter 3 lays down the 

problem statement and discusses the proposed method of introducing an intraoral 

camera along with the image processing techniques used. The image processing 

results and the identification of the exact location of the tongue is presented in 

Chapter 4. Finally, Chapter 5 concludes the thesis and outlines the future work.  
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Chapter 2. Background and Literature Review 

 

In order to restore mobility and independence for patients suffering from 

paralysis, a number of human machine interfaces (HMIs) have been researched and 

developed, the most common of which are listed below. 

2.1. Eye Movements 

Eye-blinks are used as inputs for a variety of applications such as detecting the 

level of drowsiness of drivers [7] and giving simple yes/no responses. A lot of 

methods have been devised to capture the eye-blinks such as using infrared sensors, 

image processing [7], electrooculography (EOG) signals [8] and Doppler sensors [9]. 

 

Figure ‎2.1: An example illustrating the position of electrodes for acquiring EOG 

measurements [8]. 

 

 

Figure ‎2.2: A setup using a Doppler sensor to detect eye-blinks [9]. 
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A lot more flexibility is added to the inputs by taking into account the 

direction of the eye gaze. This may be achieved by using imaging techniques ranging 

from simple cameras [10] or even utilizing infrared imaging techniques. 

Eye-blinks and the direction of eye gaze may also be estimated using 

Electromyography (EMG) and Electrooculography (EOG) signals [11]. EOG involves 

the placement of electrodes near the eye (e.g. above and below the eye as shown in 

figure 1) and the potential difference of the signals are able to map out the direction of 

the eye movements. EMG signals are capable of recording muscle activities which 

can be used to detect eye-blinks. Depending on the seriousness of paralysis of the 

patient, EMG signals can be used to detect a number of different movements, as 

described in the next section. 

One of the disadvantages of using eye-blinking or eye tracking methods, such 

as those using remote cameras, is that it restricts the natural eye or head movements 

thus restricting the user’s field of vision, and it also demands high levels of 

concentration. Equipment such as head-mounted cameras allow for greater head 

movements but are more obtrusive.  

2.2. Muscle Activities 

EMG signals are able to record muscle activities, and thus form an additional 

source of input for paralytic patients. Apart from eye-blinks, they are also able to 

detect a number of different movements such as eyebrow raises [12], and neck, 

shoulder and cheek movements [13]. Infrared switches have also been used to detect 

cheek movements [14] which work well for non-contact sensing applications. 

 

Figure ‎2.3: A setup using EMG measurements to detect neck, shoulder and cheek 

movements [13]. 
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The clenching of teeth has also been used as an input by detecting muscle 

movements. Apart from detecting the movements via EMG signals [15], the contact 

of the maxillary and mandibular teeth has also been detected with the help of an 

accelerometer placed against the user’s ear [16]. The sensor was used to identify the 

vibrations resulting from the tooth-clicks. However, the drawback of using such 

devices is that hardware adjustments of such equipment are challenging, if not 

impossible, without external assistance for people suffering from paralysis. 

 

Figure ‎2.4: A Tooth-click detector device worn behind the ear. 

The drawback of using EOG and EMG signals as inputs is the inconvenience 

of using electrodes which cannot give accurate results if the contact with the skin is 

loose. Disposable electrodes even come with adhesives but cause discomfort for the 

users. Moreover, the long wires associated with the electrodes make it less appealing 

for the users.  

2.3. Inhalation and Exhalation 

The sip-and-puff technology has been popular amongst paralytic patients as it 

is an easy to use technology. It includes pressure sensors to gauge the air pressure and 

thus distinguish between the inhalation and exhalation of the air by the user. The 

device also takes into account the intensity of the sips or puffs (hard or soft) and 

therefore typically allows for four inputs by the users. Of the disadvantages is that 

regular cleaning and sterilization of the tubes is necessary, long usage of the device 

may be tiring for users and the available inputs are limited. However, recently 

researches have sought to incorporate more inputs by using pattern recognition 

software to study breath patterns of the users [17]. 
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Figure ‎2.5: Sip-and-Puff Assistive Technology for controlling a wheelchair [18]. 

2.4. Electroencephalogram (EEG) Signals 

Brain-controlled techniques have attracted a lot of research which give an 

opportunity to communicate via thoughts and are extremely valuable especially for 

people affected by complete paralysis. Acquiring and processing EEG signals has 

been the most commonly used approach in brain-computer interfaces (BCIs), but EEG 

controlled devices typically tend to have high uncertainty in the commands provided 

by the user and is very time consuming for the users as well [19]. 

 

Figure ‎2.6: A brain-controlled wheelchair acquiring EEG signals via an EEG cap [19]. 

The P300 evoked potentials have been shown to possess the capability of 

implementing a successful brain-computer interface (BCI) and have also been used to 

form entire sentences by the users character by character [20]. The method of 

operation of brain-to-text systems includes a screen which outputs a matrix of 

characters. While the user focuses on his/her character of interest, one row or column 

of the matrix is randomly highlighted at a time (until all of the rows and columns have 

been highlighted once) which forms the oddball paradigm in the experiment. Every 
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time the character of interest in highlighted and spotted by the user, the transient 

activity in recorded via EEG signals and the target character is thus eventually 

outputted via the interface. 

 

Figure ‎2.7: A 6 × 6 matrix for the P300 Event-Related Potential. The rows and 

columns are highlighted at regular intervals [20]. 

However, as discussed earlier, the use of electrodes (which are typically 

attached to a cap for EEG recordings) make this option less popular amongst the 

users. The electrodes require careful connections with the patient’s scalp and in some 

cases (if special dry electrodes are not used) it may even require the use of electro-

gels which would increase discomfort for the patients. In addition, the data rate of 

such systems is relatively low allowing for only few words per minute. 

2.5. Tongue Movements 

One of the most efficient ways for paralytic patients to use assistive devices is 

through tongue movements. The tongue is a muscular organ which is directly 

connected to the brain through a cranial nerve known as the hypoglossal nerve which 

is responsible for the motor function of the tongue. Hence, tongue movements are not 

affected during spinal cord injuries, which is one of the major causes of paralysis in 

people. Moreover, the input device can remain hidden and tongue movements for an 

extended time will not be burdensome for patients. 

Several methods have been researched and implemented with regards to using 

tongue movements as inputs to control assistive devices. The following list provides a 

brief overview of the main contributions in this field. 
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2.5.1. Resistopalatography 

The Resistopalatography sensor [21] works by detecting the change in 

pressure (exerted by the tongue) which alters the resistance. Thus, a change in 

resistance indicates the tongue movements which form the desired input. In order to 

avoid interference from the moisture of the mouth, the sensor was also laminated, and 

a complete 360 degrees detection with a resolution of 45 degrees was made possible. 

The data from the sensor is sent to a microcontroller after passing through an 

analog to digital converter, and x and y values are read as outputs. The sensor in the 

center is used for mouse clicks so it provides an output if the input goes beyond a 

predefined threshold value. 

 

Figure ‎2.8: Construction of a Resistopalatography Sensor [21]. 

 

Figure ‎2.9: Electrodes in grey are used for moving the cursor, while the yellow 

electrode enables the mouse click [21]. 

2.5.2. The MouthPad 

The MouthPad [22] is a tongue-computer interface placed on the palate that 

measures the contact impedance between an electrode array and the tip of the tongue 

and thus identifies the tongue position and its movements. The electrode array 
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receives an AC signal and the ground is attached to the fingers or the wrist. Thus, the 

circuit is closed only when the tongue touches the electrode array.  

 

Figure ‎2.10: The MouthPad with 49 (7×7) gold plated electrodes connected to a 

Microcontroller [22]. 

The MouthPad was tested for the application of controlling a mouse on the 

screen using only 8 pairs of electrodes (thus using 16 of the 49 available electrodes). 

The direction of movement of the cursor was chosen according to the pair of 

electrodes that had been touched by the tongue (which was detected by the 

impedance). If more than one pair of electrodes were activated, then the average of 

the directions was taken as the output, and if several electrodes were activated at once, 

this was detected as an involuntary tongue movement (such as swallowing) and thus 

no movement was outputted.  

 

Figure ‎2.11: a) The electrodes used in the joystick mode used 8 pairs of electrodes, b) 

Corresponding directions of the cursor movements [22]. 
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While testing the MouthPad on subjects, one of the causes of unwanted 

fluctuations in the cursor movements that were reported by users was due to the saliva 

interfering with the contact impedance of the electrode array.  

2.5.3. Magnetic sensors 

The tongue-drive system [23] detects tongue movements using hall-effect 

magnetic sensors placed on a dental retainer. The sensors detect the magnetic field 

produced by a permanent magnet which was placed in the middle of the tongue (for 

long term use the magnet is pierced). 

 

Figure ‎2.12: Block diagram of the tongue-drive system [23]. 

The mouthpiece is powered by small batteries and the sensors are scanned one 

at a time to read analog values which are digitized and wirelessly sent to a controller 

unit where the data is processed and the motion of the tongue is estimated.  

The downside of using this method is the invasive nature of the device as the 

permanent magnet has to be fixed by piercing the tongue, which can even cause 

discomfort while performing regular activities such as eating and speaking. 

There are several research papers that deal with the tongue drive system which 

has been used for several different applications such as controlling wheelchairs [24], 

[25] and performing computer related tasks [26], [27]. 
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Figure ‎2.13: A prototype of the tongue-drive system [23]. 

2.5.4. Tongue-operated joystick 

A prototype of the tongue-operated joystick [28] using a slider crank 

mechanism is demonstrated in the figure below. However, such devices are obtrusive 

and may not be suitable for long term usage as natural movements of the tongue, such 

as during swallowing, are prevented with the holding part in the mouth. 

 

Figure ‎2.14: A prototype of the tongue-operated joystick. 
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Chapter 3. Methodology 

 

3.1. Problem Formulation 

As discussed in the literature review, utilizing the tongue as an input has been 

an efficient way for people of special needs to accomplish their basic needs. However, 

after studying the existing solutions, the following problems are addressed in this 

research: 

 Capture inputs from the tongue without the use of contact sensors which would 

cause discomfort for the patients. 

 Use non-invasive methods to make it convenient for the users. 

 Use a system which occupies less space within the oral cavity, and is also less 

obtrusive. 

3.2. Proposed Solution 

 In this research, we propose a novel technique of using an intraoral camera to 

detect tongue movements. Using a camera would ensure that the tongue would not 

have to continuously establish contact with any object (thus making it comfortable for 

the users). Furthermore, the system would not require any piercing of the tongue, and 

with the latest advancements in technology, mini-cameras are also growing in 

popularity which would ensure that minimal space is consumed within the oral cavity. 

Thus, a novel solution of using an intraoral camera is proposed. Figure 3.1 shows the 

overview of the complete system. 

 

 

 

 

 

Figure ‎3.1: An overview of the system. 

1. An endoscope 

camera (fit inside the 

user’s mouth) takes 

images of the tongue 

which are sent to the 

PC in real-time. 

2. The PC processes 

each frame received 

from the camera and 

evaluates the position 

and orientation of the 

tongue. 

3. According to the location 

of the tongue, a control 

signal is sent to a device (the 

robotic arm in this case) 

allowing the user to control it 

with his/her tongue. 
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Each of the steps presented in Figure 3.1 are explained in greater details in the 

subsequent sections. 

3.3. Capturing the Images 

Initially the Raspberry Pi’s NOIR camera was selected which has the infrared 

(IR) cut filter removed. The IR cut filters allow visible light to pass but block mid-

infrared wavelengths (3–8µm). Thus, the filter’s removal means that the camera 

would be suitable for capturing images in the dark which would be crucial for the 

intraoral environment. However, the camera was not found to be suitable for 

capturing close-range images which rendered this camera unfeasible for the prototype.  

 

Figure ‎3.2: Raspberry Pi's NOIR camera along with the board. 

The AN97 endoscope camera was considered to be the most feasible option. 

The resolution of this low-cost camera is 640×480 and being waterproof makes it 

appropriate for the intraoral environment. The diameter of the camera head is only 

7mm and the length of the camera head is 0.043m and thus it can easily fit on the roof 

of one’s mouth. A mirror angled at 30° was added at the camera head in order to 

reflect the tongue’s image on the camera lens as shown in Figure 3.4.  

 

Figure ‎3.3: The AN97 Endoscope camera along with its dimensions. 
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Figure ‎3.4: The AN97 Endoscope camera along with a 30° mirror added at the camera 

head. 

 Although the AN97 camera had 6 built-in white LEDs, their usage was 

restricted with the addition of the mirror, since the reflection of the light from the 

mirror considerably lowered the image quality. Thus, in order to lighten up the 

intraoral environment, 2 white LilyPad LEDs were used whose dimensions are 

5.5mm×12.5mm as shown in Figure 3.5. The schematic representation is depicted in 

Figure 3.6 which shows a 150 Ω resistor connected in series with the LED. 

 

Figure ‎3.5: A White LilyPad LED with its dimensions. 

 

 

Figure ‎3.6: Schematic representation of the LilyPad LED. 

3.4. Image Processing 

 In order to locate the position and orientation of the tongue in real-time, a 

number of different image processing techniques are implemented on each frame 

Mirror 

angled 

at 30° 

5.5 mm 

12.5 mm 

SEWTAP6 

LED+ 

150 Ω 

SEWTAP6 

LED- 
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captured from the camera. The code is written using the Python programming 

language which also allows us to make use of the Open Source Computer Vision 

Library (OpenCV) which simplifies the implementation of numerous image 

processing techniques. The techniques implemented to extract information about the 

location and orientation of the tongue are explained below. 

3.4.1. Smoothing the image 

The colored image (stored in the BGR format in python) is first blurred in 

order to reduce noise. This is achieved by adding a Gaussian filter to the image, which 

means that a Gaussian kernel (array of pixels corresponding to a 2D Gaussian curve) 

is convolved with each image pixel and the summation of which produces the output 

image. The default values of sigmaX and sigmaY are used for forming a 5×5 

Gaussian kernel. A 2D Gaussian function is given by the following formula: 

  (   )      
 

(3.1) 
 

 

 

Where   
 (    ) 

   
  

 (    ) 

   
  

 

 

(3.2) 
 

 

Where A=coefficient of the amplitude, μ = mean, σx and σy = standard deviation of x 

and y respectively. 

3.4.2. Conversion to HSV (Hue, Saturation, Value) 

The colored image is converted to HSV (Hue, Saturation, Value) format in 

which the points from the RGB model are represented in the form of a cylindrical 

coordinate system as shown in Figure 3.7. The ‘hue’ includes the spectrum of colors, 

‘saturation’ gives an indication of the number of white pixels mixed with the color, 

and ‘value’ defines the lightness of the color. This is extremely beneficial in order to: 

(1) separate the color of the tongue from the set of teeth using the hue, and (2) to use 

the ‘saturation’ and ‘value’ in order to separate the tongue from the floor of the mouth 

which is approximately the same color as the tongue. In order to use the ‘saturation’ 

and ‘value’ effectively, the lighting within the mouth has to be manually adjusted in 

such a way that the brightness of the tongue is much greater than the brightness of the 

floor of the mouth. This is a critical step which would ensure a proper isolation of the 

tongue from its surroundings. 
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Figure ‎3.7: The HSV color model. 

3.4.3. Binarization of the image 

Once the tongue is isolated from its surroundings, the image is then converted 

to a grayscale image which is denoised using a Gaussian blur (similar to the procedure 

described in section 3.4.1). The grayscale image is then converted to a binary image 

using Otsu’s binarization technique [29] which avoids the manual selection of the 

threshold based on trial and error. Using the histogram of the image, the Otsu’s 

binarization technique automatically calculates the threshold. This is done by 

minimizing the weighted within-class variance (denoted by the following formula 3.3) 

and finding the corresponding threshold value ‘t’ [29]. 
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Thus this method assumes that two classes are present within the image and it then 

computes the optimal threshold that distinguishes between the two classes. From 3.3 

and 3.4, q1 is the probability of the first class while q2 is the probability of the second 

class. Formula 3.4 shows how the probabilities are computed from the histogram 

which is done for each intensity value. From each possible threshold (from t=0 to 

t=255 for our case since we are implementing the binarization on a grayscale image), 

the probability and mean is computed from which we obtain the inter-class variance 

which needs to be maximized. The inter-class variance (  
 ( )) is derived by 

subtracting the within-class variance from the total variance of the image, as shown in 

formula 3.9. The threshold (t) corresponding to the maximum inter-class variance is 

the selected threshold value that will be used to binarize the grayscale image [29]. 

 

   
 ( )         

 ( )     (     )     (     )  (3.9) 

   
 

3.4.4. Applying a morphological transformation on the binary image 

After obtaining the binarized image, a morphological transformation known as 

‘closing’ is applied to the image. This is to close tiny holes on the image and remove 

any unnecessary black points on the tongue (represented by the white pixels). The 

‘closing’ morphological transformation is simply carried out by first applying the 

dilation and then the erosion morphological transformations [30]. It can be 

represented by the formula shown in 3.10. 

 
 

    (   )    
 

(3.10) 

 
 

Where   represents dilation and   represents erosion. 
 

 
 

3.4.5. Obtaining the contour of the image 

Once the binary image has been obtained, the next step is to obtain the contour of 

the image which would basically highlight the boundaries of the object. There are 

different contour approximation methods to avoid storing all of the points in the 

contour. In order to compress the contour and remove the redundant points (and thus 

save memory), the ‘CHAIN_APPROX_SIMPLE’ option from OpenCV is used. This 

option compresses the vertical, horizontal and diagonal segments and only utilizes 

their end points to form the contour. Thus, instead of using hundreds of points to form 

a contour of an upright rectangle, this option would only store 4 points for the contour 
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and save a lot of processing time and memory. Once the contour is obtained, the 

features of the contour can easily be obtained by using the inbuilt OpenCV 

commands. In particular, two features are extracted: 

 Area of the Contour: In case the noise is not completely removed from the 

image, after obtaining all of the contours, an ‘if’ statement is added such that the 

unwanted contours can simply be removed based on the area of the contour. 

 Centroid: The centroid of the contour gives valuable information about the 

location of the object. The x and y values of the centroid change based on the 

horizontal and vertical movements of the tongue respectively. 

3.4.6. Segmentation of the image 

The image is then segmented into 12 different rectangles, each of which would 

individually gauge the presence of the tongue within its region of interest. This is 

done by determining the number of white pixels in each region. If it is above a 

particular threshold, it would indicate the presence of the tongue in that particular 

region of interest. Utilizing this information along with the centroid of the contour 

(from 3.4.5), the orientation and location of the tongue could finally be accurately 

evaluated. 

3.4.7. Detecting the tongue location and forming the categories  

The information obtained regarding the centroid of the contour along with the 

presence of the tongue in the pre-defined segments is used in order to form definite 

outputs (which would be inputs to an assistive device). The image is segmented into 

12 regions as shown in Figure 3.8. The role of the top 3 segments is to detect whether 

the tongue was present or not (i.e. whether the tongue has been pulled back by the 

user). This is then used as an indication to begin looking for contours when the tongue 

is in the picture. The reason this condition is set is due to the fact that when the tongue 

is completely pulled back by the user, certain contours are detected in the middle of 

the image as background noise, and implementing a check into the presence of the 

tongue in the top 3 segments would eliminate that.  
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Figure ‎3.8: Segmentation of the 640×480 image into 12 regions. 

 Once the contour is formed, the centroid of the contour is first analyzed, which 

contains the Cx and Cy values (which is the value of the centroid on the x and y axis 

respectively). The values of Cx are gauged when the tongue is in the right, middle and 

left position, and two threshold values for Cx had to be selected which would help to 

give an indication which region the tongue is in (right, middle or center) and thus 

narrow down the ‘if’ statements in the code. From trial and error it was found that the 

threshold values would change slightly according to the positioning of the LEDs 

(especially when packing and unpacking the mouthpiece). Thus, a calibration system 

was set up such that when the code runs, it first asks the user to position his/her 

tongue in the middle during which the Cx value is recorded. The same is done after 

prompting the user to position his/her tongue to the right and the left. Once the tongue 

has been categorized into these 3 positions (right, middle or center), the numbers of 

white pixels in the regions of interest are then evaluated in order to determine the sub-

categories. The categories are depicted in Figure 3.9. Table 3.1 summarizes the logic 

behind the assertion of the categories. 
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Figure ‎3.9: Depiction of the 11 categories. 

 

Table 3.1 shows how a total of 11 different possibilities that are extracted from 

the movements of the tongue. The category of ‘Forwards’ is divided into 2 categories 

of F1 and F2, and similarly, ‘Backwards’ is also divided into B1 and B2. This is made 

possible by the assertion of the presence of teeth. Thus, when the users opt for the 

‘Forwards’ option with their jaw open to the extent of their teeth being visible, this 

would constitute the F1 option, and when the users close their jaw with their teeth 

being hidden, this would constitute the F2 option. Similarly, the ‘Backwards’ option is 

also divided into two parts: B1 (with their teeth visible) and B2 (without their teeth 

visible). This helps to extract two new inputs from the user and thus enhancing the 

range of inputs. 

The way that the presence of the teeth is asserted is by adjusting the range of 

the HSV values of a cloned image such that the teeth are isolated from the 

surroundings. Given the significant contrast between the color of the teeth and its 

surroundings, this step is considerably easier than the isolation of the tongue. Once 

the HSV range is selected, the image is then binarized and then the ‘closing’ 

morphological operation is then applied (similar to the procedure explained in 3.4.4). 

In order to gauge the presence of the teeth, a different set of regions of interest has to 

be set up owing to the location of the teeth. 

Backwards 

(B1 & B2) 

Forwards 

(F1 & F2) 

Right (R) Left (L)  
Middle 
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Table ‎3.1: Evaluation of the categories based on the centroid of the contour and the 

white pixels in the regions of interest (1=tongue is present in that region, 0=tongue is 

not present in that region, ✗=don’t care). 

Regions 

of 

Interest 

Cx = Right Cx = Left Middle 

Cy = 

Front 

Cy = 

Back 

Cy = 

Front 

Cy = 

Back 

With Teeth Without Teeth 

FR R BR FL L BL M F1 B1 F2 B2 

1C ✗ ✗ ✗ ✗ ✗ 1 ✗ ✗ ✗ ✗ ✗ 

2C ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

3C ✗ ✗ 1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

1 ✗ ✗ 0 ✗ ✗ 1 1 ✗ 1 ✗ 1 

2 ✗ ✗ ✗ ✗ ✗ ✗ 1 ✗ 1 ✗ 1 

3 ✗ ✗ 1 ✗ ✗ 0 1 ✗ 1 ✗ 1 

4 ✗ ✗ ✗ ✗ 1 0 1 1 0 ✗ 0 

5 ✗ ✗ ✗ ✗ ✗ ✗ 1 1 ✗ ✗ ✗ 

6 ✗ 1 0 ✗ ✗ ✗ 1 1 0 ✗ 0 

7 0 0 ✗ 1 0 0 0 ✗ ✗ 1 ✗ 

8 ✗ ✗ ✗ ✗ ✗ ✗ 0 ✗ ✗ 1 ✗ 

9 1 0 0 0 0 ✗ 0 ✗ ✗ 1 ✗ 

 

The selected regions (for checking the presence of teeth) are shown in Figure 

3.10 and the numbers of white pixels in that region have to be independently 

evaluated. A threshold for the number of white pixels is manually selected which can 

be used to compare the existing white pixels to its value. If the white pixels within the 

regions of interest are greater than the threshold, a variable is assigned a value of 1, 

otherwise it is assigned a 0. This variable is then used to determine whether the 

‘Forwards’ option selected by the user is F1 or F2, and whether the ‘Backwards’ 

option selected by the user is B1 or B2.  
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Figure ‎3.10: Segmentation of the 640×480 image into 2 regions for gauging the 

presence of teeth. 
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Chapter 4. Experimental Setup   

 

In this chapter, the complete prototype of the intraoral camera along with a 

personalized mouthguard is presented. Having a prototype set in place also allows the 

system to be reproducible since the location of the camera and LEDs would be 

constant. The application on which the prototype was tested is also explained towards 

the end of this chapter. 

4.1. The Personalized Mouthguard  

The Endoscope camera had to be fixed on the roof of the mouth, and thus a 

mouldable mouthguard for the upper jaw was used in order to manufacture a 

personalized mouthguard. The mouthguard (shown in Figure 4.1) is made of silicone 

and can alter its shape when kept in hot water.  

 

Figure ‎4.1: The Adidas ADIBP09 Single Mouthguard. 

The Mouthguard is moulded such that it could get fixed on the upper jaw without 

much effort from the user. Furthermore, a hollow cylinder is also formed using the 

same material, in the middle of the mouthgaurd in order to fix the Endoscope camera. 

Lastly, 2 LilyPad LEDs are fixed on either side of the camera to light up the intraoral 

cavity for better image quality and also to make it possible to implement the image 

processing techniques.  

The angle of the LEDs along with their brightness is of significant importance 

in order to make the image processing successful. This is due to the fact that details of 

the ‘saturation’ and ‘value’ from the HSV format were being used in order to isolate 

the tongue from the floor of the mouth. In order to achieve this, the LEDs have to be 

pointing at such an angle that would brighten up the tongue considerably more than 

the floor of the mouth. Furthermore, the brightness of the LEDs is also manually 
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altered by using different valued resistors in series with the LEDs. A resistor of 

201.2Ω was finally selected which gave the best image processing results. The 

mouthpiece is shown in Figures 4.2 and 4.3, while the overall system is further 

clarified in Figure 4.4. 

 

Figure ‎4.2: The personalized mouthguard along with the LEDs and the Endoscope 

camera. 

 

Figure ‎4.3: The bottom view of the personalized mouthguard. 

 As seen from the bottom view of the mouthguard, it has been moulded by 

taking the impression of the user to ensure suction when the user wears the 

mouthpiece and thus easily fits inside the mouth. This is important to make the system 

comfortable for the user and that usage for long hours doesn’t cause any physical 

pain. 
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Figure ‎4.4: The overall prototype. 

4.2. The Interface 

The Endoscope camera is connected to the PC using a Micro USB (female) to 

USB (male) adapter. The Python programming language is used in order to complete 

the image processing tasks which make extensive use of the OpenCV library. By 

using Python, it is very easy to also run the same code on different platforms such as 

the Raspberry Pi, which is an inexpensive credit card sized computer. The small-size 

and image processing capabilities would make it an ideal choice for connecting our 

system especially to mobile applications (such as an automatic wheelchair, etc.).  

 

Figure ‎4.5: Raspberry Pi 3 Model B. 

4.3. Application 1: Controlling a Robotic Arm 

The information obtained about the position and orientation of the tongue can 

then applied to any assistive device. The application selected in this case is a 5 

degrees of freedom robotic arm (as shown in Figure 4.6) which is useful for pick and 

place operations and especially valuable for paralytic patients. The information of the 

The RedBaord 

used for the 5V 

power supply. 

Resistors adding up to 

201.2Ω connected in 

series with the LEDs 
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location of the tongue is utilized and processed in order to make the robotic arm move 

as desired by the user. The robot is connected to the PC using a USB, and the 

connection via Python is established by writing a code to access the COM port using 

serial communication. The servo motors of the robotic arm are controlled by either 

incrementing or decrementing the angles based on the orientation of the tongue.  

 

Figure ‎4.6: A five degrees of freedom robotic arm 

 Before the implementation of a code, the logic behind the increments and 

decrements of the angles of the servo motors was decided. The commands are 

summarized in Table 4.1. 

Table ‎4.1: Determining the commands sent to the robot according to each acquired 

position of the tongue. 

Category Command to the Robot 

Forwards + Right (FR) 
Servo 0: Fast Increment for clockwise 

rotation. 

Right (R) 
Servo 0: Slow Increment for clockwise 

rotation. 

Backwards + Right (BR) 
Servo 4: Increment for clockwise 

rotation. 

Forwards + Left (FL) 
Servo 0: Fast Increment for anti-

clockwise rotation. 

Left (L) 
Servo 0: Slow Increment for anti-

clockwise rotation. 

Backwards + Left (BL) 
Servo 4: Increment for anti-clockwise 

rotation. 

Servo 0 

(hidden 

within 

the base) 

Servo 1 

Servo 3 

Servo 4 

(for the 

orientation 

of the end-

effector) 

Servo 5     

 (for the 

end-

effector) 

Servo 2 
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Forwards With Teeth (F1) 
Servo 2: Increment for forward 

movement. 

Backwards With Teeth (B1) 
Servo 2: Increment for backward 

movement. 

Forwards Without Teeth (F2) 
Servo 1: Increment for forward 

movement. 

Backwards Without Teeth (B2) 
Servo 1: Increment for backward 

movement. 

 

As seen from Table 4.1, the servo 3 is unused since the calculation for its 

angle will be such that it is exactly 90° to the horizontal axis, which is what is 

generally required for the pick and place tasks. This can be achieved by calculating 

the angles from servo 1 and servo 2 as explained in Figure 4.7. 

 

Figure ‎4.7: Calculation of the angle for Servo 3. 

As the sum of the interior angles within quadrilaterals adds up to 360°, the 

formula for finding the angle for Servo 3 is quite straightforward. Servo 3 will 

consequently position the end-effector to be perpendicular to the horizontal surface. In 

order to move the end-effector for picking up or releasing an object, a button was used 

as in input (which could be replaced by any customized input based on the demands 

of the user. 

                                                
 

(4.1) 

 

4.4. Application 2: Typing  

The aim of this application was to allow the users to type using their tongues. 

In order to achieve this, the outputs from the system would have to allow for the 

selection of the characters that appear on the screen along with an option to scroll 
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through the different characters. A total of 36 different options were selected which 

included the 26 alphabets, 7 special characters, a ‘backspace’, ‘space’ and ‘enter’. A 

scrolling option had to be created such that the user would be able to view 9 options at 

a time. If the user selects a particular option for a certain amount of time (which is 

selected by trial and error), the option is highlighted, indicating that the selection is 

confirmed, and the text eventually appears on the screen. In order to achieve this, the 

F1 (Forwards with Teeth) and B1 (Backwards with Teeth) categories were selected for 

the scrolling options, and the rest of the 9 categories were for the selection of the 

options. The different options appearing on screen for the user are shown in Figures 

4.8-4.12. 

 

Figure ‎4.8: Options 1-9 for the user. 

 

 

Figure ‎4.9: Options 10-18 for the user. 

 

Figure ‎4.10: Options 19-27 for the user. 
 

Figure ‎4.11: Options 28-36 for the user. 
 

 In order to achieve the above, a counter was first initiated in the code which 

would increment or decrement from 1-4 based on the F1 and B1 selections. Each 

number of the counter corresponded to a database of the options which would be 

connected to the category that was selected. For example, when the counter is 1, the 9 

categories, namely, BL, B2, BR, L, M, R, FR, F2 and FL, would correspond to the 
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characters, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’ and ‘I’ respectively. The same would 

apply for the different counters with the only difference being the characters that are 

selected. Once the characters are selected, they are stored in a string and displayed on 

the screen. The backspace option deletes the last character in the string by reducing 

the size of the string by one each time it is selected.  

4.5. Cost Analysis 

A breakdown of the calculation of the cost is provided in Table 4.2 which 

makes it evident that the complete system is quite low in cost.  

Table ‎4.2: Cost Analysis. 

No. Product Name Cost  

1 Adidas ADIBP09 Single Mouth Guard 32.0 AED 

2 
Waterproof Endoscope Snake Inspection 

Borescope Camera For Android Phones 
36.0 AED 

3 LilyPad LED White (5pcs) 12.0 AED 

Total 80.0 AED 
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Chapter 5. Results and Analysis 

 

In this chapter, we present the image processing results which are obtained by 

implementing a Python code on a PC with extensive use of the OpenCV library. The 

results of the steps mentioned in Chapters 3 and 4 are presented in this chapter.  

5.1. Capturing the HSV Range 

 The first step was to determine the best HSV range which will be used to 

isolate the tongue from its surroundings. In order to do that systematically, a trackbar 

was created in Python which would allow to dynamically change the upper and lower 

bounds for the HSV range in real time. After going through the different possible 

ranges, the best range was found as shown in Figure 5.1. 

 

Figure ‎5.1: A trackbar created in Python to tune the range in real-time (with the 

numbers representing the best solution found to isolate the tongue from its 

surroundings). 

5.2. Summary of the Complete Procedure 

The procedure explained in depth in Chapter 3 is summarized in the following 

steps. The original colored image (as seen in Figure 5.2) is first smoothed and then 

converted into the HSV format. A mask is then applied in order to just view the area 

of the image which falls within the HSV range (as seen in Figure 5.3). After further 

smoothing of the image, it is then converted to grayscale (as seen in Figure 5.4). The 

Otsu’s binarization technique is then applied to the grayscale image along with the 

‘closing’ Morphological operation (as seen in Figure 5.5). Next, the contours are 
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detected making sure that the contours of the background noise are eliminated based 

on the presence of the tongue in the image (to avoid capturing any contours when the 

tongue is completely pulled back by the user) and the size and location of the contour. 

The binary image with the background noise being eliminated is shown in Figure 5.6. 

Finally, Figure 5.7 shows the original image along with the centroid of the contour 

(represented by the green dot), an ellipse which fits the contour and the regions of 

interest which are highlighted red only if the tongue is detected in that region. 

 

 
 

Figure ‎5.2: Original Image. 

 

 

 
 

Figure ‎5.3: After applying a mask on the 

original image to only view the colors 

within the HSV range. 

 

 

Figure ‎5.4: After conversion to grayscale. 

 

 

Figure ‎5.5: After applying the Otsu’s 

binarization technique along with the 

application of the ‘closing’ operation. 
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Figure ‎5.6: After the removal of noise 

and the addition of the contour. 

 

 

Figure ‎5.7: The final image with 

information about the centroid of the 

contour, the fitted ellipse and the regions 

of interest covered by the tongue. 

5.3. Results within Different Categories 

In order to prove the accuracy of the system, the results for each of the 

different categories (which were summarized in Table 3.1) are also presented below 

with the conclusion of the control signal also specified on the bottom left in each 

colored frame containing the segments. 

Category 1: Backwards (No Teeth) – B2 

 

Figure ‎5.8: Original Image (Backwards). 

 

 

Figure ‎5.9: After applying the HSV 

mask (Backwards). 

 

Figure ‎5.10: Binary image after 

removing the noise (Backwards). 

 

Figure ‎5.11: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Backwards). 

 

The final 

category is 

specified in 

each frame. 
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Category 2: Forwards (No Teeth) – F2 

 

Figure ‎5.12: Original Image (Forwards). 

 

Figure ‎5.13: After applying the HSV 

mask (Forwards). 

 

Figure ‎5.14: Binary image after 

removing the noise (Forwards). 

 

Figure ‎5.15: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Forwards). 
 

Category 3: Backwards (With Teeth) – B1 

 

Figure ‎5.16: Original Image (Backwards 

with Teeth). 

 

Figure ‎5.17: After applying the HSV 

mask (Backwards with Teeth). 

 

Figure ‎5.18: Binary image after 

removing noise (Backwards with 

Teeth). 

 

Figure ‎5.19: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Backwards with Teeth). 
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Category 4: Forwards (With Teeth) – F1 

 

Figure ‎5.20: Original Image (Forwards 

with Teeth). 

 

Figure ‎5.21: After applying the HSV 

mask (Forwards with Teeth). 

 

Figure ‎5.22: Binary image after 

removing noise (Forwards with Teeth). 

 

 

Figure ‎5.23: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Forwards with Teeth). 

 

Category 5: Forwards + Right (FR) 

 

Figure ‎5.24: Original Image (Forwards 

+ Right). 

 

Figure ‎5.25: After applying the HSV 

mask (Forwards + Right). 

 

Figure ‎5.26: Binary image after 

removing noise (Forwards + Right). 

 

Figure ‎5.27: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Forwards + Right). 
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Category 6: Right (R) 

 

Figure ‎5.28: Original Image (Right). 

 

Figure ‎5.29: After applying the HSV 

mask (Right). 

 

 

Figure ‎5.30: Binary image after 

removing noise (Right). 

 

Figure ‎5.31: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Right). 
 

 

Category 7: Backwards + Right (BR) 

 

Figure ‎5.32: Original Image (Backwards 

+ Right). 
 

 

Figure ‎5.33: After applying the HSV 

mask (Backwards + Right). 

 

Figure ‎5.34: Binary image after 

removing noise (Backwards + Right). 

 

Figure ‎5.35: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Backwards + Right). 
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Category 8: Forwards + Left (FL) 

 

Figure ‎5.36: Original Image (Forwards 

+ Left). 

 

Figure ‎5.37: After applying the HSV 

mask (Forwards + Left). 

 

Figure ‎5.38: Binary image after 

removing noise (Forwards + Left). 

 

Figure ‎5.39: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Forwards + Left). 
 

Category 9: Left (L) 

 

Figure ‎5.40: Original Image (Left). 

 

Figure ‎5.41: After applying the HSV 

mask (Left). 

 

 

Figure ‎5.42: Binary image after 

removing noise (Left). 

 

Figure ‎5.43: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Left). 
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Category 10: Backwards + Left (BL) 

 

Figure ‎5.44: Original Image (Backwards 

+ Left). 
 

 

Figure ‎5.45: After applying the HSV 

mask (Backwards + Left). 

 
Figure ‎5.46: Binary image after 

removing noise (Backwards + Left). 

 
Figure ‎5.47: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Backwards + Left). 

 

Category 11: Middle 

 

Figure ‎5.48: Original Image (Middle). 
 

 

Figure ‎5.49: After applying the HSV 

mask (Middle). 

 
Figure ‎5.50: Binary image after 

removing noise (Middle). 

 
Figure ‎5.51: Image with segmentation, 

fitted ellipse and centroid of the contour 

(Middle). 
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The above results conclude that with the proposed image processing 

techniques, the position and orientation of the tongue were accurately determined for 

all of the 11 categories. This would form the control signal which could be used as an 

input to any assistive device. Based on Table 4.1, the control signal was then used in 

order to increment or decrement the angles of the servo motors of a robot arm. 

5.4. Testing the Performance of the System Using the Robotic Arm 

In order to test the performance of the system, a set of experiments were given 

to a user to complete. The user was asked to output all of the different categories in a 

particular order by moving his tongue. Each experiment consisted of the user going 

through all of the categories 5 times. The performance evaluation was done in 2 ways: 

 Criteria 1: If the user was able to reach the desired output with his tongue 

effortlessly, a ‘1’ was awarded for that particular part of the trial. On the other 

hand, if the user struggled to reach the output (which included flickering of the 

output, taking some time to adjust his tongue to the exact position and a wrong 

output being displayed on the screen), a ‘0’ was marked for that part. It is 

worth noting that in this first criterion the ‘0’ does not necessarily indicate a 

complete failure of the user to reach the desired output, but it indicates the 

inefficiency in reaching his goal.  

 Criteria 2: In this criterion it was noted whether or not the user was 

eventually able to reach the desired output, without taking into account the 

adjustments of the tongue made by the user. 

5.4.1. Experiment 1 

Each experiment consisted of 5 trials and the performance of the user and the 

system were evaluated for each case. Tables 5.1 and 5.2 summarize the performance 

for the 1
st
 experiment. 

The percentage of accuracy of the user from the 1
st
 experiment can be 

calculated from the total as follows: 

 

          (                       )   
  

  
         

 

(5.1) 
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Table ‎5.1: Performance evaluation (1
st
 experiment, criteria 1). 

 

Categories Sum for 

Each Trial 

(Max. 10) FR R BR FL L BL F1 B1 F2 B2 

Trial 1 1 1 1 1 1 1 1 0 0 0 7 

Trial 2 1 1 0 0 1 0 1 0 1 1 6 

Trial 3 1 1 1 0 0 0 1 1 0 1 6 

Trial 4 1 1 0 1 1 0 0 0 0 1 5 

Trial 5 1 1 1 1 0 1 1 0 0 0 6 

Total 5 5 3 3 3 2 4 1 1 3 30 

 

Moreover, the user was also allowed to adjust his tongue in order to ensure 

that he eventually reaches the desired output. Table 5.2 summarizes how many times 

the user was eventually able to reach the desired output in the 1
st
 experiment. 

 

Table ‎5.2: Evaluation of whether or not the user was eventually able to reach his 

desired output for all cases (1
st
 experiment, criteria 2). 

 Categories Sum for Each 

Trial (Max. 

10)  FR R BR FL L BL F1 B1 F2 B2 

Trial 1           10 

Trial 2           9 

Trial 3           10 

Trial 4           8 

Trial 5           10 

Total 5 5 5 5 5 3 4 5 5 5 47 

Total Time Taken = 358 seconds 

 

          (                       )   
  

  
         

 

(5.2) 
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5.4.2. Experiment 2 

The experiment conducted was similar to the 1
st
 experiment, with the only 

difference being that the user was now more accustomed to the system. Tables 5.3 and 

5.4 summarize the performance for the 2
nd

 experiment. 

Table ‎5.3: Performance evaluation (2
nd

 experiment, criteria 1). 

 
Categories Sum for 

Each Trial 

(Max. 10) FR R BR FL L BL F1 B1 F2 B2 

Trial 1 1 1 1 1 1 0 0 1 1 1 8 

Trial 2 1 1 1 1 0 0 0 1 0 0 5 

Trial 3 1 1 1 0 1 1 1 0 0 1 7 

Trial 4 1 1 1 1 1 1 1 1 0 1 9 

Trial 5 1 1 0 1 0 1 1 1 0 1 7 

Total 5 5 4 4 3 3 3 4 1 4 36 

 

          (                       )   
  

  
         

 

(5.3) 

 

Table ‎5.4: Evaluation of whether or not the user was eventually able to reach his 

desired output for all cases (2
nd

 experiment). 

 Categories Sum for Each 

Trial  

(Max. 10)  FR R BR FL L BL F1 B1 F2 B2 

Trial 1           9 

Trial 2           10 

Trial 3           10 

Trial 4           10 

Trial 5           10 

Total 5 5 5 5 5 3 5 5 5 5 49 

Total Time Taken = 246 seconds 
 

 

          (                       )   
  

  
         

 

(5.4) 
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5.4.3. Experiment 3 

Tables 5.5 and 5.6 summarize the performance for the 3
rd

 experiment. 

Table ‎5.5: Performance evaluation (3
rd

 experiment, criteria 1). 

 
Categories Sum for 

Each Trial 

(Max. 10) FR R BR FL L BL F1 B1 F2 B2 

Trial 1 1 1 0 1 0 1 1 1 1 1 8 

Trial 2 1 1 1 1 0 0 1 1 1 1 8 

Trial 3 1 1 0 1 1 1 1 0 1 0 7 

Trial 4 1 1 0 1 1 1 1 1 1 1 9 

Trial 5 1 1 1 1 1 1 1 1 1 1 10 

Total 5 5 2 5 3 4 5 4 5 4 42 

 

          (                       )   
  

  
         

 

(5.5) 

 

Table ‎5.6: Evaluation of whether or not the user was eventually able to reach his 

desired output for all cases (3
rd

 experiment, criteria 2). 

 Categories Sum for Each 

Trial (Max. 

10)  FR R BR FL L BL F1 B1 F2 B2 

Trial 1           10 

Trial 2           10 

Trial 3           10 

Trial 4           10 

Trial 5           10 

Total 5 5 5 5 5 5 5 5 5 5 50 

Total Time Taken = 226 seconds 

 

          (                       )   
  

  
          

 

(5.6) 
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The above experiments and the percentages of the accuracies found in 

formulas 5.1-5.6 make it clear that the effectiveness of the system is also dependant 

on the amount of training the user undergoes. This is also evident by analysing the 

time it takes for the user to complete each experiment (as also shown in Figure 5.48).  

 

Figure ‎5.52: Analysis of the time taken by the user to complete each experiment. 

As the user gets used to system, he/she is likely to make less mistakes. On most of the 

occasions that the user achieved a ‘0’ mark (for ‘criteria 1’ in the 3 experiments), he 

was still able to adjust his tongue further to reach the desired objective. 

5.5. Testing the Performance of the System Using the Typing System 

The typing system, explained in section 4.4, was also tested which allows the 

user to select from 36 different options. Figures 5.49-5.51 show a user selecting an 

option while attempting to write, ‘THANK YOU.’ The message is stored in a string 

inside the code and also appears on the screen for confirmation. 

 
 

Figure ‎5.53: The user 

aligns his tongue to the 

right in order to select the 

letter ‘O’. 

 
 

Figure ‎5.54: The letter ‘O’ 

is highlighted confirming 

that the letter has been 

selected successfully. 

 
 

Figure ‎5.55: The letter ‘O’ 

also appears on the screen. 
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Table 5.7 shows a breakdown of the analysis of the different trials of the user 

which would provide an idea of the system performance. 

Table ‎5.7: Analysis of the typing tests. 

Trial 

No. 

Text 

Entered by 

the User 

No. of 

Mistakes 

Made by 

the User 

Explanation of the 

Mistake 

Time 

Taken to 

Complete 

the Task 

No. of 

Correct 

Characters/

Min  

1 

All the letters 

of the 

alphabets 

without any 

space 

1 

User intended to 

select option F1 but 

entered F2 instead. 

95 

seconds 
16.42 

2 
‘This is 

Wonderful!’ 
2 

1: Forgot to add 

space between 

words. 
 

2: Unintentional 

selection of a 

character. 

203 

seconds 
5.32 

3 
‘An Intraoral 

Camera!’ 
7 

1: User intended to 

select F1 but selected 

FL instead. 
 

2-6: Unintentional 

entry of category B2 

thrice when the user 

wanted to select B1 

(for scrolling). 
 

7: User accidentally 

selected category L 

instead of FL. 

234 

seconds 
5.13 

4 
‘Muhammad 

Amin Tily’ 
3 

1-2: Unintentional 

selection of category 

B2 instead of B1. 
 

3: Wrong entry of a 

character. 

187 

seconds 
5.78 

5 
‘Thank 

You!’ 
0 - 

74 

seconds 
8.11 

 

Most of the errors of the user were during the scrolling phase as the F1 and B1 

categories would instead be inputted as F2 and B2 respectively. This would easily be 

solved with further training as the user would get used to the amount required to open 

or close his mouth in order to distinguish between the categories. Table 5.8 shows the 
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evaluation of the error rate taking into consideration even the scrolling and the 

backspace since those options were selected using the tongue as well. 

Table ‎5.8: Evaluation of the Error Rate. 

Trial 

No. 

No. of 

Charac-

ters of 

the 

Text 

No. of 

Mistakes 

Made 

(corres-

ponding 

to extra 

charac-

ters) 

No. of 

Times 

the 

Back-

space 

was 

Used 

No. of 

Times 

the F1 or 

B1 

Category 

was 

Selected 

(for 

Scrolling) 

Total No. 

of Options 

Selected 

(including 

characters, 

backspace 

and 

scrolling 

options) 

Error 

Rate 

(%) 

No. of 

Correct 

Entries/Min 

1 26 1 1 3 31 3.2% 18.95 

2 18 2 2 32 54 3.7% 15.37 

3 20 7 7 47 81 8.6% 18.97 

4 18 3 3 46 70 4.3% 21.5 

5 10 0 0 17 27 0% 21.89 

 

On average, the error rate for the user was 3.96% but as seen with the 

individual trials, they are dependant on how comfortable the user has become to the 

system. The error rate even reached 0% for one of the trials. On average, the number 

of correct entries/minute was 19.34. The comparison of the performance of this 

system with different techniques is shown in Table 5.9. 

Table ‎5.9: Comparison with different techniques. 

Technique 
Number of 

Inputs 

Average Error 

Rate (%) 

Number of 

Characters/Min 

Resistopalatography 

[21] 
9 5.63% - 

MouthPad [22] 8 2.3% - 

Tongue Drive System 

(TDS) [31] 
6 - 8.8 char/min 

The Intraoral Camera 11 3.96% 8.15 char/min 

 

The intraoral camera introduced in this work outperforms the 

Resistopalatography and the MouthPad in terms of the average error rate. 

Furthermore, the intraoral camera is able to allow for more inputs compared to the 

other systems operated using the tongue. 
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5.6. Limitations and Inaccuracies of the System 

The system is very sensitive to the lighting of the intraoral environment. Since 

the system attempts to isolate the tongue from its background by using the 

information of the ‘hue’, ‘saturation’ and ‘value’ of the image, it is essential that the 

LEDs are positioned in such a manner that it lights the tongue significantly more than 

the floor of the mouth. If the lighting is not accurate, it may lead to the detection of 

false contours arising from the reflection of the floor of the mouth. The way this error 

was minimized through the code was by ensuring that only one contour would be 

drawn in each iteration of the loop based on 3 factors:  

1. Whether or not the tongue is present in the image (which is detected by the 

regions defined as 1C, 2C and 3C which was explained in section 3.4.7), and 

2. The contour with the largest area is always selected. 

3. The contour would only be displayed if the ‘y’ value of its centroid would be 

less than a certain threshold. 

This minimizes the detection of false contours as the floor of the mouth doesn’t 

generate any contours when the tongue isn’t present in the image, and even when the 

tongue is present, the small contours that are occasionally found are also eliminated. 

Furthermore, if the intraoral lighting is adjusted in such a way that even the regions 

1C, 2C and 3C are lit up even when the tongue is absent from the image, it may also 

give rise to false detection of contours. This was also minimized by placing a 

condition based on the centroid of the contour such that the contour would only be 

displayed if the ‘y’ value of the centroid was above a certain value (which could be 

found by extending the tongue to the maximum in the vertical direction and finding 

out the corresponding ‘y’ value of the centroid). Nevertheless, if the LEDs are not 

placed correctly, there is still a possibility that a contour with larger area than the area 

of the tongue’s contour (especially when it is placed in the backward categories (FR 

& BR)) would be detected. This would occasionally give false outputs.  

Moreover, the HSV range must be selected carefully which would also take 

the lighting into consideration. Thus, any change in the position of the LEDs would 

also result in parts of the tongue not being included in the contour. Therefore, the 

system would have to be calibrated again by tuning the HSV range. Due to this error, 

even though the tongue would be present within a region of interest, the region of 
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interest would occasionally be unable to detect its presence since the contour would 

not extend until the region (which is being analysed by each of the regions in every 

iteration of the code). 

Furthermore, one of the limitations, especially during the users’ training 

phase, is that the users have to constantly look at the screen in order to judge whether 

or not they are positioning their tongues correctly. This would be a disadvantage when 

the user is controlling hardware such as the robotic arm which would be away from 

the field of view of the user. Nevertheless, the users’ dependency on the screen would 

eventually be minimized once they get used to the system. 

5.6. Running the Code on Raspberry Pi 

Since the code was written in Python, the advantage was that it could also be 

easily executed on a Raspberry Pi which has the added advantage of being small in 

size. This would be quite useful especially for mobile applications (such as 

controlling a wheelchair, etc.) in which case using a desktop PC would be impractical. 

Although the code was able to be executed on Raspberry Pi, a time delay of 3 seconds 

was obtained for each loop which would be too slow for practical usage. The system 

is summarized in the block diagram depicted in Figure 5.56. 

 

Figure ‎5.56: Block diagram summarizing the complete system. 
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Chapter 6. Conclusion and Future Work 

 

In this thesis, a thorough research was conducted of the available methods 

used to assist people afflicted with disabilities to make use of alternative inputs. A 

novel method was proposed of using an intraoral camera to utilize the tongue as an 

input. Moreover, a prototype was built which included a hand-moulded mouthpiece, 

LEDs for lighting up the oral cavity and a cylindrical slot for the intraoral camera. An 

endoscope camera was selected for this prototype and image processing techniques 

were applied using the Python programming language with extensive use of the 

OpenCV library. Through real-time image processing, the orientation and position of 

the tongue were successfully evaluated based on which an output from the 10 

different categories was then decided. Each category was successfully tested to ensure 

that the desired control signal was achieved. The control signal was then also 

connected to an application, namely a robotic arm. Each control signal was then used 

to control a particular servo motor of the robotic arm which would be extremely 

helpful for paralytic patients to fulfil their pick-and-place tasks.  

A time delay of 3 seconds was received when the Raspberry Pi was used 

instead of the PC. However, it is worth noting that, in this thesis, the detection of the 

position and orientation of the tongue was successfully carried out with the help of 

pure image processing techniques, and not the popular object detection techniques 

such as YOLO (‘You Only Look Once’ real-time object detection technique) and R-

CNN (Region-based Convolutional Neural Networks). The advantage of doing so is 

to save a lot of the processing time which would otherwise create a much greater lag 

in producing the outputs. 

This thesis was successful in implementing a system for supporting assistive 

devices, and it was able to reduce or eliminate some of the drawbacks that are present 

in the current ATs that focus on using the tongue as an input. The systems known as 

Resistopalatography and the MouthPad possess the disadvantage of having a size 

constraint. However, with the emergence of miniature cameras, the actual 

implementation of inserting a camera within the intraoral environment would not be 

expected to take up much space. Furthermore, the insertion of magnetic sensors 

within the tongue has the disadvantage of being quite invasive. Contrary to that, the 
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proposed system offers a non-invasive and thus more comfortable and feasible 

approach to capture inputs from the tongue. Lastly, the tongue-operated joystick is 

quite obtrusive and thus may not be favoured by most of the users. Although the 

proposed system doesn’t eliminate this drawback (as the wires are exposed to the 

outside environment which are connected to the PC), it is still possible to do so in the 

future by implementing a wireless system which could help establish the 

communication between the camera and the PC. 

For future work, alternatives to the Raspberry Pi should be researched which 

could ensure that the entire image processing takes place on a single-board computer 

(SBC) along with minimal delay time. Moreover, the code can also be modified to 

minimize the processing time. Once the processing is done on SBCs, different 

applications (especially in mobile robots) can be connected to the system and tested. 

This would broaden the scope of this prototype. Furthermore, in order to control the 

robot arm, the most efficient technique would be to implement inverse kinematics, in 

which the user would simply move the end-effector point (consisting of the x, y and z 

value of the point) and the calculation of the angles for all of the motors would be 

computed automatically. 
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Appendix: Python Code 

 

The following code was written using the Python programming language. 

However, the presented code just detects 8 categories and is without the calibration 

system for automatically detecting the thresholds for Cx. 

import cv2 

import numpy as np 

import imutils 

from matplotlib.widgets import RectangleSelector 

import matplotlib.pyplot as plt 

import time 

import serial 

import keyboard #Using module keyboard 

 

def nothing(x): 

    pass 

 

cap = cv2.VideoCapture(0) 

 

# Create window for Trackbars 

cv2.namedWindow('Threshed_HSV') 

cv2.namedWindow('Threshed_HSV_Teeth') 

 

# Create trackbars for threshold change - to detect the tongue 

cv2.createTrackbar('H_upper','Threshed_HSV',255,255,nothing)    #190 

cv2.createTrackbar('S_upper','Threshed_HSV',61,255,nothing)     #52 

cv2.createTrackbar('V_upper','Threshed_HSV',255,255,nothing)    #255 

 

cv2.createTrackbar('H_Lower','Threshed_HSV',101,255,nothing)    #128 

cv2.createTrackbar('S_Lower','Threshed_HSV',0,255,nothing)      #0 

cv2.createTrackbar('V_Lower','Threshed_HSV',140,255,nothing)    #0 

 

# create trackbars for threshold change - to detect the teeth 

cv2.createTrackbar('H_upper_Teeth','Threshed_HSV_Teeth',112,255,nothing)    #190 

cv2.createTrackbar('S_upper_Teeth','Threshed_HSV_Teeth',255,255,nothing)     #52 

cv2.createTrackbar('V_upper_Teeth','Threshed_HSV_Teeth',255,255,nothing)    #255 

 

cv2.createTrackbar('H_Lower_Teeth','Threshed_HSV_Teeth',13,255,nothing)    #128 

cv2.createTrackbar('S_Lower_Teeth','Threshed_HSV_Teeth',0,255,nothing)      #0 

cv2.createTrackbar('V_Lower_Teeth','Threshed_HSV_Teeth',0,255,nothing)    #0 

 

#Initializing variables which will be the commands sent to the Servo motors of the Robot 

motor1 = 1500 

motor2 = 1500 

motor3 = 1500 

motor4 = 1500 

motor5 = 1500 

 

#Establishing Serial communication for communication with the robot 

ser = serial.Serial( 

    port='COM7', 
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    baudrate=9600, 

    bytesize=serial.EIGHTBITS, 

    parity=serial.PARITY_NONE, 

    stopbits=serial.STOPBITS_ONE) 

 

if(ser.isOpen() == False): 

    ser.open() 

 

ser.write(b'#0P1500\r') 

ser.write(b'#1P1500\r') 

ser.write(b'#2P1500\r') 

ser.write(b'#3P1500\r') 

ser.write(b'#4P1500\r') 

 

#The following loop will run continuously 

while True: 

    _, img = cap.read() 

 

    Verdict = 'No Input' #The text that is seen on the final image defining the category 

     

    clone = img.copy() 

    clone_black = img.copy() 

    clone_black[:,:,:] = [0,0,0] 

     

    # Blur and HSV Conversion 

    blurred_frame = cv2.GaussianBlur(clone, (5,5),0) 

    hsv = cv2.cvtColor(blurred_frame, cv2.COLOR_BGR2HSV) 

     

    # Get current positions of six trackbars (for the tongue) 

    H_Up = cv2.getTrackbarPos('H_upper','Threshed_HSV') 

    H_Down = cv2.getTrackbarPos('H_Lower','Threshed_HSV') 

     

    S_Up = cv2.getTrackbarPos('S_upper','Threshed_HSV') 

    S_Down = cv2.getTrackbarPos('S_Lower','Threshed_HSV') 

     

    V_Up = cv2.getTrackbarPos('V_upper','Threshed_HSV') 

    V_Down = cv2.getTrackbarPos('V_Lower','Threshed_HSV') 

 

    upper = np.array([H_Up,S_Up,V_Up]) 

    lower = np.array([H_Down,S_Down,V_Down]) 

 

    Threshold = 127 #for the binarization - however sine OTSU was used, this variable was not 

useful 

     

    #TEETH: get current positions of six trackbars 

    H_Up_Teeth = cv2.getTrackbarPos('H_upper_Teeth','Threshed_HSV_Teeth') 

    H_Down_Teeth = cv2.getTrackbarPos('H_Lower_Teeth','Threshed_HSV_Teeth') 

     

    S_Up_Teeth = cv2.getTrackbarPos('S_upper_Teeth','Threshed_HSV_Teeth') 

    S_Down_Teeth = cv2.getTrackbarPos('S_Lower_Teeth','Threshed_HSV_Teeth') 

     

    V_Up_Teeth = cv2.getTrackbarPos('V_upper_Teeth','Threshed_HSV_Teeth') 

    V_Down_Teeth = cv2.getTrackbarPos('V_Lower_Teeth','Threshed_HSV_Teeth') 
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    upper_for_teeth = np.array([H_Up_Teeth,S_Up_Teeth,V_Up_Teeth]) 

    lower_for_teeth = np.array([H_Down_Teeth,S_Down_Teeth,V_Down_Teeth]) 

     

    # Isolation of the image of the tongue through the HSV range 

    mask = cv2.inRange(hsv, lower, upper) 

    res = cv2.bitwise_and(clone,clone, mask= mask) 

 

    # Isolation of the teeth through the HSV range 

    mask_teeth = cv2.inRange(hsv, lower_for_teeth, upper_for_teeth) 

    res_teeth = cv2.bitwise_and(clone,clone, mask= mask_teeth) 

     

    # Conversion to Grayscale 

    frame_gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) 

 

    # Blurring 

    frame_gray = cv2.GaussianBlur(frame_gray,(11,1),0) 

     

    # Binarization 

    ret2,th2 = 

cv2.threshold(frame_gray,Threshold,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) 

 

    # 'Closing' Operation 

    kernel = np.ones((7,7),np.uint8) 

    th2 = cv2.morphologyEx(th2, cv2.MORPH_CLOSE, kernel) 

    th2_teeth = cv2.morphologyEx(mask_teeth, cv2.MORPH_CLOSE, kernel) 

 

    # Initialization of the variables for the regions of Interest 

    roi1c_val = 0 

    roi2c_val = 0 

    roi3c_val = 0 

    roic_total = 0 

    roiRight_val_teeth = 0 

    roiLeft_val_teeth = 0 

 

    # TEETH: Defining the regions of interest and Calculating the white pixels in them 

    # a)Left 

    roi_left_teeth = th2_teeth[79:480, 0:100] 

    n_white_pix1_teeth = np.sum(roi_left_teeth == 255) 

    print('Teeth - Number of white pixels - Left:', n_white_pix1_teeth) 

    if (n_white_pix1_teeth<15000): 

        cv2.rectangle(res_teeth, (0, 79), (100, 480), (255,0,0), 1) 

        roiLeft_val_teeth = 0 

    elif (n_white_pix1_teeth>15000): 

        cv2.rectangle(res_teeth, (0, 79), (100, 480), (0,0,255), 3) 

        roiLeft_val_teeth = 1 

 

    # b)Right 

    roi_right_teeth = th2_teeth[79:480, 540:640] 

    n_white_pix2_teeth = np.sum(roi_right_teeth == 255) 

    print('Teeth - Number of white pixels - Right:', n_white_pix2_teeth) 

    if (n_white_pix2_teeth<15000): 

        cv2.rectangle(res_teeth, (540, 79), (640, 480), (255,0,0), 1) 

        roiRight_val_teeth = 0 

    elif (n_white_pix2_teeth>15000): 
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        cv2.rectangle(res_teeth, (540, 79), (640, 480), (0,0,255), 3) 

        roiRight_val_teeth = 1 

 

    ## TONGUE: Defining the regions of interest and Calculating the white pixels in them 

    # a) Left 

    roi1c = th2[0:78, 0:214] 

    n_white_pix1c = np.sum(roi1c == 255) 

    print('Number of white pixels 1c:', n_white_pix1c) 

    if (n_white_pix1c>10000): 

        cv2.rectangle(clone, (0, 0), (214, 78), (0,0,255), 3)  

        roi1c_val = 2 #Assign a higher value if more pixels are present (when the tongue is 

turned) 

    elif (n_white_pix1c>3000 and n_white_pix1c<10000): 

        cv2.rectangle(clone, (0, 0), (214, 78), (0,0,255), 3) 

        roi1c_val = 1 #The tongue is simply present 

    elif (n_white_pix1c<2000): 

        cv2.rectangle(clone, (0, 0), (214, 78), (255,0,0), 1) 

        roi1c_val = 0 

 

    # b) Middle 

    roi2c = th2[0:78, 215:427] 

    n_white_pix2c = np.sum(roi2c == 255) 

    print('Number of white pixels 2c:', n_white_pix2c) 

    if (n_white_pix2c<2000): 

        cv2.rectangle(clone, (215, 0), (427, 78), (255,0,0), 1) 

        roi2c_val = 0 

    elif (n_white_pix2c>2000): 

        cv2.rectangle(clone, (215, 0), (427, 78), (0,0,255), 3) 

        roi2c_val = 1 

     

    # c) Right 

    roi3c = th2[0:78, 428:640] 

    n_white_pix3c = np.sum(roi3c == 255) 

    print('Number of white pixels 3c:', n_white_pix3c) 

    if (n_white_pix3c>4000): 

        cv2.rectangle(clone, (428, 0), (640, 78), (0,0,255), 3) 

        roi3c_val = 2 

    elif (n_white_pix3c>2000 and n_white_pix3c<4000): 

        cv2.rectangle(clone, (428, 0), (640, 78), (0,0,255), 3) 

        roi3c_val = 1 

    elif (n_white_pix3c<2000): 

        cv2.rectangle(clone, (428, 0), (640, 78), (255,0,0), 1) 

        roi3c_val = 0 

 

    # Calculation of the total value 

    roic_total = roi1c_val + roi2c_val + roi3c_val  

     

    # Finding the contours 

    _, contours, _= cv2.findContours(th2, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

 

    contour_list = [] 

 

    # Initialization for the centroid variables 
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    cx=250 

    cy=250 

     

    for contour in contours: 

        area = cv2.contourArea(contour) 

        if (roic_total < 3): 

            break 

        if ((len(contour) > 8) and (area > 10000)): 

            M = cv2.moments(contour) 

            cx = int(M['m10']/M['m00']) 

            cy = int(M['m01']/M['m00']) 

            if(cy<250): 

                print('cx=',cx) 

                print('cy=',cy) 

                cv2.circle(clone,(cx,cy), 10, (0,255,0), -1) 

                ellipse = cv2.fitEllipse(contour) 

 

 

    ## Checking for Rest of the 9 Regions of Interest 

    #ROI = 1 

    roi1 = clone_black[79:212, 0:214] 

    n_white_pix1 = np.sum(roi1 == 255) 

    print('Number of white pixels 1:', n_white_pix1) 

    if (n_white_pix1<500): 

        cv2.rectangle(clone, (0, 79), (214, 212), (255,0,0), 1) 

        roi1_val = 0 

    elif (n_white_pix1>500): 

        cv2.rectangle(clone, (0, 79), (214, 212), (0,0,255), 3) 

        roi1_val = 1 

 

    #ROI = 2 

    roi2 = clone_black[79:212, 215:427] 

    n_white_pix2 = np.sum(roi2 == 255) 

    print('Number of white pixels 2:', n_white_pix2) 

    if (n_white_pix2<500): 

        cv2.rectangle(clone, (215, 79), (427, 212), (255,0,0), 1) 

        roi2_val = 0 

    elif (n_white_pix2>500): 

        cv2.rectangle(clone, (215, 79), (427, 212), (0,0,255), 3) 

        roi2_val = 1 

 

    #ROI = 3 

    roi3 = clone_black[79:212, 428:640] 

    n_white_pix3 = np.sum(roi3 == 255) 

    print('Number of white pixels 3:', n_white_pix3) 

    if (n_white_pix3<500): 

        cv2.rectangle(clone, (428, 79), (640, 212), (255,0,0), 1) 

        roi3_val = 0 

    elif (n_white_pix3>500): 

        cv2.rectangle(clone, (428, 79), (640, 212), (0,0,255), 3) 

        roi3_val = 1 

 

    #ROI = 4 

    roi4 = clone_black[213:346, 0:214] 
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    n_white_pix4 = np.sum(roi4 == 255) 

    print('Number of white pixels 4:', n_white_pix4) 

    if (n_white_pix4<500): 

        cv2.rectangle(clone, (0, 213), (214, 346), (255,0,0), 1) 

        roi4_val = 0 

    elif (n_white_pix4>500): 

        cv2.rectangle(clone, (0, 213), (214, 346), (0,0,255), 3) 

        roi4_val = 1 

 

    #ROI = 5 

    roi5 = clone_black[213:346, 215:427] 

    n_white_pix5 = np.sum(roi5 == 255) 

    print('Number of white pixels 5:', n_white_pix5) 

    if (n_white_pix5<500): 

        cv2.rectangle(clone, (215, 213), (427, 346), (255,0,0), 1) 

        roi5_val = 0 

    elif (n_white_pix5>500): 

        cv2.rectangle(clone, (215, 213), (427, 346), (0,0,255), 3) 

        roi5_val = 1 

 

    #ROI = 6 

    roi6 = clone_black[213:346, 428:640] 

    n_white_pix6 = np.sum(roi6 == 255) 

    print('Number of white pixels 6:', n_white_pix6) 

    if (n_white_pix6<500): 

        cv2.rectangle(clone, (428, 213), (640, 346), (255,0,0), 1) 

        roi6_val = 0 

    elif (n_white_pix6>500): 

        cv2.rectangle(clone, (428, 213), (640, 346), (0,0,255), 3) 

        roi6_val = 1 

 

    #ROI = 7 

    roi7 = clone_black[347:480, 0:214] 

    n_white_pix7 = np.sum(roi7 == 255) 

    print('Number of white pixels 7:', n_white_pix7) 

    if (n_white_pix7<500): 

        cv2.rectangle(clone, (0, 347), (214, 480), (255,0,0), 1) 

        roi7_val = 0 

    elif (n_white_pix7>500): 

        cv2.rectangle(clone, (0, 347), (214, 480), (0,0,255), 3) 

        roi7_val = 1 

 

    #ROI = 8 

    roi8 = clone_black[347:480, 215:427] 

    n_white_pix8 = np.sum(roi8 == 255) 

    print('Number of white pixels 8:', n_white_pix8) 

    if (n_white_pix8<500): 

        cv2.rectangle(clone, (215, 347), (427, 480), (255,0,0), 1) 

        roi8_val = 0 

    elif (n_white_pix8>500): 

        cv2.rectangle(clone, (215, 347), (427, 480), (0,0,255), 3) 

        roi8_val = 1 

 

    #ROI = 9 



71 

 

    roi9 = clone_black[347:480, 428:640] 

    n_white_pix9 = np.sum(roi9 == 255) 

    print('Number of white pixels 9:', n_white_pix9) 

    if (n_white_pix9<500): 

        cv2.rectangle(clone, (428, 347), (640, 480), (255,0,0), 1) 

        roi9_val = 0 

    elif (n_white_pix9>500): 

        cv2.rectangle(clone, (428, 347), (640, 480), (0,0,255), 3) 

        roi9_val = 1 

 

    # Displaying the values of the centroid of the contour 

    print('Global cx=',cx) 

    print('Global cy=',cy) 

 

    ## Checking for the Categories and Moving the Robot Accordingly 

    if(cx>379): 

        #FR 

        if((roi9_val==1)and(roi7_val==0)):  

            motor1 = motor1 + 10 

            string1 = "#0P" + str(motor1) + "\r" 

            ser.write(string1.encode("utf-8")) 

            Verdict = 'Forward + Right' 

        #R 

        elif((roi9_val==0)and(roi6_val==1)and(roi7_val==0)):  

            motor1 = motor1 + 20 

            string1 = "#0P" + str(motor1) + "\r" 

            ser.write(string1.encode("utf-8")) 

            Verdict = 'Right' 

        #BR 

        

elif((roi3c_val>0)and(roi1_val==0)and(roi3_val==1)and(roi6_val==0)and(roi9_val==0)): 

            Verdict = 'Backwards + Right' 

             

    if(cx<280): 

        #FL 

        if((roi7_val==1)and(roi9_val==0)): 

            motor1 = motor1 - 10 

            string1 = "#0P" + str(motor1) + "\r" 

            ser.write(string1.encode("utf-8")) 

            Verdict = 'Forward + Left' 

        #L 

        elif((roi7_val==0)and(roi4_val==1)and(roi9_val==0)): 

            motor1 = motor1 - 20 

            string1 = "#0P" + str(motor1) + "\r" 

            ser.write(string1.encode("utf-8")) 

            Verdict = 'Left' 

        #BL 

        

elif((roi1c_val>0)and(roi1_val==1)and(roi3_val==0)and(roi4_val==0)and(roi7_val==0)): 

            Verdict = 'Backwards + Left' 

 

    ## Forwards & Backwards if Teeth are NOT Visible 

    if( (roiRight_val_teeth==0) and (roiLeft_val_teeth == 0)): 

        #F2 
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        if (roi7_val==roi8_val==roi9_val==1): 

            motor2 = motor2 - 10 

            string2 = "#1P" + str(motor2) + "\r" 

            ser.write(string2.encode("utf-8")) 

            Verdict = 'Forwards (No Teeth)' 

        #B2 

        if ((roi1_val==roi2_val==roi3_val==1) and (roi4_val==roi6_val==0) ):# and 

(roi9_val==0): 

            motor2 = motor2 + 10 

            string2 = "#1P" + str(motor2) + "\r" 

            ser.write(string2.encode("utf-8")) 

            Verdict = 'Backwards (No Teeth)' 

 

    ## Forwards & Backwards if Teeth are Visible 

    if( (roiRight_val_teeth==1) or (roiLeft_val_teeth == 1)): 

        #F1 

        if ((roi1_val==roi2_val==roi3_val==1)and((roi4_val==roi6_val==1))): 

            motor3 = motor3 + 10 

            string3 = "#2P" + str(motor3) + "\r" 

            ser.write(string3.encode("utf-8")) 

            Verdict = 'Forwards (With Teeth)' 

        #B1 

        if ((roi1_val==roi2_val==roi3_val==1) and (roi4_val==roi6_val==0) ):# and 

(roi9_val==0): 

            motor3 = motor3 - 10 

            string3 = "#2P" + str(motor3) + "\r" 

            ser.write(string3.encode("utf-8")) 

            Verdict = 'Backwards (With Teeth)' 

 

    ## Motor 4 - Pick and Drop 

    if keyboard.is_pressed('p'):#if key 'p' is pressed 

        string4 = "#4P" + "2000" + "\r" 

        ser.write(string4.encode("utf-8")) 

    if keyboard.is_pressed('d'):#if key 'd' is pressed 

        string4 = "#4P" + "700" + "\r" 

        ser.write(string4.encode("utf-8")) 

     

 

    #Preparing the Text to be Inserted on the Final Image 

    font                   = cv2.FONT_HERSHEY_SIMPLEX 

    bottomLeftCornerOfText = (10,450) 

    fontScale              = 1 

    fontColor              = (0,255,255) 

    lineType               = 3 

 

    cv2.putText(clone,Verdict,  

    bottomLeftCornerOfText,  

    font,  

    fontScale, 

    fontColor, 

    lineType) 

 

    ## Displaying the results 

    cv2.namedWindow("1. Original Image",cv2.WINDOW_NORMAL) 
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    cv2.resizeWindow('1. Original Image', 512,384) 

    cv2.moveWindow("1. Original Image", 0,0) 

    cv2.imshow('1. Original Image', img) 

 

    cv2.namedWindow("2. Isolating the Tongue Based on the HSV 

Range",cv2.WINDOW_NORMAL) 

    cv2.resizeWindow('2. Isolating the Tongue Based on the HSV Range', 512,384) 

    cv2.moveWindow("2. Isolating the Tongue Based on the HSV Range", 530,0) 

    cv2.imshow("2. Isolating the Tongue Based on the HSV Range", res) 

 

##    cv2.namedWindow("3. Isolating the Teeth Based on the HSV 

Range",cv2.WINDOW_NORMAL) 

##    cv2.resizeWindow('3. Isolating the Teeth Based on the HSV Range', 512,384)  

##    cv2.imshow("3. Isolating the Teeth Based on the HSV Range", mask_teeth) 

 

    cv2.namedWindow("3. Grayscale Image After Smoothing",cv2.WINDOW_NORMAL) 

    cv2.resizeWindow('3. Grayscale Image After Smoothing', 512,384) 

    cv2.moveWindow("3. Grayscale Image After Smoothing", 1060,0) 

    cv2.imshow("3. Grayscale Image After Smoothing", frame_gray) 

 

    cv2.namedWindow("4. Binarization of the Image After Applying the (Closing) 

Morphological Transform",cv2.WINDOW_NORMAL) 

    cv2.resizeWindow('4. Binarization of the Image After Applying the (Closing) 

Morphological Transform', 512,384) 

    cv2.moveWindow("4. Binarization of the Image After Applying the (Closing) 

Morphological Transform", 0,425) 

    cv2.imshow("4. Binarization of the Image After Applying the (Closing) Morphological 

Transform", th2)     

 

    cv2.namedWindow("5. Final Binarized Image With Contour",cv2.WINDOW_NORMAL) 

    cv2.resizeWindow('5. Final Binarized Image With Contour', 512,384) 

    cv2.moveWindow("5. Final Binarized Image With Contour", 530,425) 

    cv2.imshow("5. Final Binarized Image With Contour", clone_black) 

 

    cv2.namedWindow("6. Obtaining the Contour & Location of the 

Tongue",cv2.WINDOW_NORMAL) 

    cv2.resizeWindow('6. Obtaining the Contour & Location of the Tongue', 512,384) 

    cv2.moveWindow("6. Obtaining the Contour & Location of the Tongue", 1060,425) 

    cv2.imshow("6. Obtaining the Contour & Location of the Tongue", clone) 

         

    # ESC to break 

    k = cv2.waitKey(1) & 0xFF 

    if k == 27: 

        break 

 

# close all open windows 

cap.release() 

cv2.destroyAllWindows(). 
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