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Abstract

The interest in mobile robots has increased rapidly due to the complicated tasks a mobile

robot can accomplish. An efficient robot power supply system can increase the robot

range of travel. Different power management techniques have been applied heavily in

the field of electric vehicles. Such techniques are helpful in terms of extending the

robot driving range; power controller requires placing a DC converter that consists of

power switches, inductors, and capacitors. In most cases, robots are still powered by

a single battery. This observation inspired this work to develop an enhanced passive

multi-source power system, using Generalized Predictive Control (GPC) and Kalman

filtering (KF) to find the minimum power required to drive the robot along a predefined

path. As a result, the designed power system extends robot driving range from 3 to

16 hours. Since batteries are a major component of any current hybrid energy system

design, any good energy management system must incorporate an impending battery

failure detection system, so that other energy sources can be switched on to replace a

dying battery. This work proposes a battery voltage collapse detection technique based

on Fast Fourier Transforms (FFTs) and artificial neural network (ANNs), where the

robot driving range is extended more by 3 hours using a backup battery. This work

aims to use two batteries, a supercapacitor, and a fuel cell based system to form a long-

lasting hybrid energy system for a mobile robot.

Search Terms: Generalized Predictive Control (GPC), Kalman filter (KF),

Fast Fourier Transform (FFT), and Artificial Neural Network (ANN)
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Chapter 1: Introduction and Literature Review

1.1. Introduction

Power management strategies are applied heavily in the field of electric vehicles

to manage more than one power source, so that battery lifetime can be extended, and

the driving range of the electric vehicle can be increased. Recently, mobile robots have

become an effective tool in navigation, exploration, firefighting, and other applications

where there may be an inherent danger to humans. Utilizing hybrid energy sources on

board a robot, and developing a power management strategy, can increase the driving

range of mobile robots. This is very important, because if a robot suffers a malfunction

in any system, an extended driving range can improve the chances of the robot navi-

gating home. This can reduce the number of man-hours required to conduct a salvage

operation for the robot, and maybe reduce the number of losses of expensive scientific

equipment far away from a robot’s operating home base. A preliminary example of this

is in [1], where NASA successfully deployed two mobile robots on Mars for environ-

mental exploration purposes. The two robots were powered by Lithium-ion batteries

combined with photovoltaic cells. As a result, the robots could last in operation for

three months before power sources were completely exhausted. Based on the above,

this work aims to use two batteries, a supercapacitor, and a fuel cell based system to

form a long-lasting hybrid energy system for a mobile robot.

1.2. Literature Review

Normally, mobile robots are powered by a single source. As discussed in [2], a

mobile robot was converted from a lead acid battery to a hydrogen PEM fuel cell. As

a result, the robot’s performance was influenced due to additional weight. However,

the recharging time, compared to battery operated robots, was eliminated due to the

requirement of a single refueling step. Another example is illustrated in [3]; a battery

connected in parallel with a supercapacitor extends battery lifetime due to reducing bat-

tery discharging current; however, the proposed parallel combination reduced vehicle

performance because of additional weight.
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1.2.1. Power sources configurations. Several energy system topologies have

been discussed in the literature [4], [5], [6], and [7]; where the most basic power sources

combination is seen in Fig. 1. This type of configuration is called passive parallel

connection, and it is the simplest way to connect different power sources to each other.

The simplicity of electric circuit implementation and low cost are the main advantages

behind applying such configuration. On the other hand, the major drawback is the

absence of any type of control on power sources. As mentioned in [4] and [5], the

passive parallel connection can be improved more by using DC/DC converters in order

to control one of the power sources separately as seen for example in Fig. 2 (a) and (b).

Figure 1: Passive configuration

The semi-active configuration seen in Fig. 2 adds more flexibly to the system

by decoupling one of the sources from the load with the help of the DC/DC converters.

The power supplied to the load can be controlled by adjusting the duty cycle of the

converter. The configuration is shown in Fig. 2 (b) is preferred due to its robustness, by

letting the battery handle the peak load demand. While in the configuration seen in Fig.

2 (a), the system is limited by the peak current allowed by the duty cycle of the DC/DC

converter, and also by the amount of energy stored in the supercapacitor.

Figure 2: Semi-active configuration
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Multiple DC/DC converters could be placed in the above systems to increase

system flexibility; such configurations are called full active configurations, as shown in

Fig. 3. The full active configuration decouples all sources from the load, and the sources

could connect in series as seen in Fig. 3 (a) where the battery is intended to supply the

average load, whereas peak power requirements are supplied by the supercapacitor. On

the other hand, the parallel combination offers the highest flexibly due to the ability to

control each source somewhat independently. Generally, managing the system power

with multiple converters is considered a complicated task due to a need for controlling

different source simultaneously [4].

Figure 3: Series/parallel full active configuration

1.2.2. Power management strategies. Power management strategies have been

categorized into two major types; rule-based and optimization-based techniques. The

techniques are based on some prior knowledge processed through if-then statements

or look-up tables. In [8], the power demand is divided between a battery and internal

combustion engine based on vehicle acceleration and battery state of charge (SOC), by

connecting/disconnecting internal combustion engine/battery to the load, or simultane-

ously using both of them. Another rule-based technique is applied in [9] by defining

a static power threshold for the battery. As an extension of the traditional rule-based

approach, fuzzy logic can be used to deal with complex decisions. The fundamental
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idea of this technique is about using the known information about the system in order

to form a set of fuzzy rules close to the human way of thinking in terms of approxima-

tions. The main advantage of the fuzzy technique is the robustness to the variation of

different input measurements, as well as, its simplicity in terms of rules formulation and

tuning. In [10], a fuzzy logic approach is applied in order to manage the energy of a bus

powered by a battery, supercapacitor, and fuel cell. The controller was able to maintain

battery state of charge (SOC) within specific boundaries with the help of multiple input

DC/DC converter.

The power can be optimally managed through optimizing a specific cost func-

tion over a known driving cycle. Different optimization approaches like dynamic pro-

gramming (DP), linear programming, and convex optimization have been used in this

area. In [11], the DP approach is applied in order to find out the optimal path for a

vehicle that guarantees minimum fuel consumption. Usually, the optimization is imple-

mented offline because it is computationally expensive. The driving cycle may not be

completely known for electric vehicles and mobile robots. An artificial neural network

(ANN) can be used to deal with such uncertainty [12]. The work published in [13]

considers a power management problem for a hybrid electric vehicle based on model

predictive control (MPC). In [14], a model predictive control-based approach was sim-

ulated for a battery, fuel cell, supercapacitor system in order to find out the proper

reference current to be fed to proportional-integral controllers which generate the duty

cycles of a DC/DC converters. In [15], the objectives of the optimization problem in

MPC were to minimize the current fluctuation, as well as, reduce the supercapacitor

voltage variations from the reference voltage.

1.2.3. Model predictive control. The permanent magnet DC (PMDC) mo-

tors have been widely investigated, and several superior control approaches have been

introduced in the literature. Where the simplest way to control a PMDC machine is hys-

teresis control, the main disadvantage of hysteresis control is the huge power loss due

applying positive and negative maximum source voltage across PMDC machine termi-

nals. Among the new approaches, an attractive way of controlling permanent magnet

DC motor is model predictive control (MPC).
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The acronym Model-based Predictive Control (MPC) denotes different types

of predictive control laws, e.g. IDCON [16], DMC [17], GPC [18], QDMC [19],

IMC [20]. MPC philosophically imitates human reaction, whereby control actions are

chosen, which are assumed to reach to the best-predicted output over certain horizon.

The internal model of the process (plant) is used to determine the horizon range. Plant

model must reflect the relationship between the output and current/future inputs. The

model is formulated as a transfer function in case of single input single output sys-

tem (SISO) or state-space approaches may be used in case of multi-inputs multi-output

(MIMO) model. Practically, the majority of MPC algorithms are formulated based on

linear models. However, nonlinear models can still be used with MPC, but the com-

putational time and model approximations are the main difficulties. Since predictive

control uses the model solely to predict system output, the work done during the mod-

eling stage should show reliable system predictions. The system model is used to get an

approximate idea future information from the faraway horizon in order to update MPC

controller control actions (decisions).

1.2.4. Battery terminal voltage collapse detection. Battery behavior and cer-

tain properties start to deviate from the normal conditions when a battery is about to

die. Different methods may be used to predict or detect battery terminal voltage col-

lapse. Using a voltage threshold (VT), or capacity threshold (CT) are simple methods

to switch batteries when a battery terminal voltage is about to drop below operational

requirements. However, a threshold does not provide pre-warning of impending battery

terminal voltage collapse. If an additional VT or CT is used for battery terminal voltage

collapse pre-warning system, then several issues need to be considered. For example,

a VT [21] can lead to false alarms in existence of momentary surge discharge currents.

Similarly, CT [22] can be used to create a threshold on battery state of charge (SOC)

to make a battery terminal voltage collapse pre-warning system. But the CT approach

may be highly influenced by the accuracy of battery current measurement, number of

charging/discharging cycles, and temperature. The most commonly used technique to

calculate battery state of charge is Coulomb counting, which involves battery current

integration [23]. The main concerns of this method are, the initial battery SOC, and
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inaccurate current measurements. In [24], a rule-based and probabilistic method is

applied to detect battery voltage collapse. However, rules mentioned in [24] usually

capture only simple changes in battery behavior, and probabilistic approaches require

knowledge of a probability density function, which is hard to get. The approach in [25]

uses battery impulse response, and look-up tables to detect battery failure. But, look-up

tables are battery specific and need substantial effort to develop. Also, if battery charac-

teristics change, then the look-up tables need to be obtained again. According to [26],

using a battery model enhances battery fault detection accuracy. Further, battery SOC

can be estimated with the help of a Kalman filter (KF) or an extended Kalman filter

(EKF) as discussed in [27]. Filtering approaches such as KF and EKF require a detailed

battery model. However, obtaining an accurate battery model and its parameters can be

challenging [28], [29], and [30]. In [31], different tests are performed to show how VT

and CT based battery terminal voltage collapse detection methods can be inadequate,

and this is fixed with help of adaptive threshold (AT). In [32], battery terminal voltage

collapse is detected without a sophisticated model based on universal adaptive stabilizer

(UAS), however, this approaches trend detector, and picking window sizes for a trend

detector can be complex.

1.3. Motivation

Form the proposed literature review, it is apparent that the power management

problem for mobile robots powered by multiple energy sources, still has ample room for

innovation. Based on this observation, this work proposes to develop a passive strategy

for a hybrid energy system on board a mobile robot, and Generalized Predictive Control

(GPC) combined with a Kalman filter (KF). In addition, this work proposes a novel bat-

tery terminal voltage collapse detection method based on fast Fourier transform (FFT)

of battery terminal voltage, and then processing this data through an artificial neural net-

work (ANN). The developed battery failure prediction/detection method will be used in

real-time to find out the right moment to switch one battery out of the job of supplying

power to the mobile robot, and letting the backup battery handle the load demand.
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1.4. Thesis Organization

Chapter 2 focuses on the mathematical background and gives a brief explanation

of the models used. Chapter 3 discusses the robot chassis, hardware setup, and different

components specifications. In Chapter 4, preliminary work is discussed. In Chapter 5,

the results for this work are introduced. In Chapter 6, the conclusion is presented to

summarize the main outcomes achieved.
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Chapter 2: Background

2.1. Chen and Mora’s Model

Chen and Mora’s model [28], applied in this work, is shown in Fig. 4 in order

to model the battery unit. The left side of the model, shown in Fig. 4, represents

the battery state of charge (SOC) behavior, while the right side describes the battery

output voltage with respect to the variation of load current. While the state denoted

by x1 represents the battery SOC as discussed, the state denoted by x2 represents the

voltage drop across Rts‖Cts, and the state denoted by x3 represents the voltage drop

across Rtl‖Ctl . The parallel combination Rts‖Cts models the short-term terminal voltage

behavior with respect to the variation of the discharge current. Likewise, the parallel

combination Rtl‖Ctl shows the long-term terminal voltage dynamics with respect to the

variation of the discharge current: the state x1 ∈ [0,1], and the state x2,x3 in R. The state

space equations for Chen and Mora’s model as derived in [33] are:

Figure 4: Chen and Mora’s battery model

ẋ1(t) =−
1

Cc
i(t), Cc = 3600C f1 f2 (1)

ẋ2(t) =−
x2(t)

Rts(x1)Cts(x1)
+

i(t)
Cts(x1)

(2)

ẋ3(t) =−
x3(t)

Rtl(x1)Ctl(x1)
+

i(t)
Ctl(x1)

(3)

y(t) = Eo(x1)− x2(t)− x3(t)− i(t)Rs(x1) (4)
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Where the components Rts, Rtl , Cts, Ctl , Rs and Eo are given as follows:

Rts(x1) = k7e−k8x1 + k9 (5)

Rtl(x1) = k10e−k11x1 + k12 (6)

Cts(x1) =−k13e−k14x1 + k15 (7)

Ctl(x1) =−k16e−k17x1 + k18 (8)

Eo(x1) =−k1e−k2x1 + k3 + k4x1− k5x2
1 + k6x3

1 (9)

Rs(x1) = k19e−k20x1 + k21 (10)

Rs, Rts, Rtl , Cts, and Ctl refer to the resistances and capacitances of Chen Mora’s model

shown in Fig. 4. The term Eo expresses the open circuit voltage of a Li-ion battery.

ki > 0 for i = {1,2,3, . . .21} are the battery model parameters that required the iden-

tification given in [29] and [30]. Further, the discussed battery model is constructed in

MATLAB/Simulink environment as shown in Fig. 5.

Figure 5: Chen and Mora’s model in MATLAB/Simulink
environment

2.2. Continuous and Discrete PMDC Motor Model

In this section, a continuous and discrete model for PMDC motor are formu-

lated. The electrical and mechanical dynamics of PMDC motor are represented by Eq.
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(11) and Eq. (12), respectively.

va = Raia +La
dia
dt

+Kbωm (11)

dωm

dt
=

Kt

Jeq
ia−

Bm

Jeq
ωm−

1
Jeq

TL (12)

Where Ra is the armature resistance, La is the armature inductance, ia and va are motor

armature current and terminal voltage, respectively. Kt and Kb are the motor torque con-

stant (Nm/A) and the back EMF constant (Nm/rad/s), respectively. Where Jeq and Bm

are the motor equivalent inertia and viscous friction, respectively. Also ωm is the shaft

rotational speed (rad/sec), and TL is the torque load (Nm). Note that, an approximation

is used by setting TL to zero since the motor is identified under no-load condition. The

above system equations can be represented in state-space form as follows:

dx(t)
dt

= Acx(t)+Bcu(t)+v(t); y(t) = Ccx(t)+w(t) (13)

where, x =

ωm

ia

 , u = va, Ac =

−Bm
Jeq

Kt
Jeq

−Kb
La
−Ra

La

 , Bc =

 0
1

La

 , Cc =
[
1 0

]
.

Ac, Bc, and Cc are the system dynamics, input, and measurement matrix, re-

spectively. Furthermore, v(t) and w(t) represent the process and measurement noise,

and they are in form of uncorrelated Gaussian random variables with zero mean. The

continuous time model is approximated through Euler approximation to get the discrete

time system model given in Eq. (14).

xk+1 = Adxk +Bduk +vk; yk = Cdxk +wk (14)

where, Ad =

1− (Bm
Jeq

)∆ Kt
Jeq

∆

−Kb
La

∆ 1− (Ra
La
)∆

 , Bd =

 0
∆

La

 , Cd =
[
Cc

]
.

2.3. PMDC Motor Identification

As introduced in section 2.2, the motor model is linear time-invariant (LTI)

model, and the PMDC motor parameters needs to be found with sufficient accuracy to
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do predictions. As discussed in [34], motor parameters are heat dependent, meaning, an

accurate model is formed by nonlinear equations with time varying parameters. How-

ever, GPC does not require an accurate model since it updates its predictions in each

time step (∆). Therefore, approximated PMDC machine equations given in Eq. (11)

and Eq. (12) are suitable to accomplish such a task. In [35], the electrical parameters

(Kb,Ra,La) within Eq. (11) can be determined through the open-circuit, locked rotor

tests. Likewise, motor mechanical parameters (Bm, Jeq) within Eq. (12) are obtained

based on the work discussed in [36].

2.3.1. Evaluating motor back EMF (Kb) and torque constant (Kt). Motor

back EMF constant (Kb) can be determined from the direct relationship between the

back EMF (ea) and motor speed as given in Eq. (15). A number of motor speeds in

rad/sec and back EMF (ea) across PMDC machine terminals are measured, and the

slope of Eq. (15) is found since it represents the back EMF (Kb). Furthermore, back

EMF constant (Kb) and torque constant (Kt) are assumed to be the same value, since

they are having approximately the same value in the literature.

ea = Kbωm (15)

2.3.2. Determining motor resistance (Ra). The locked rotor test is applied to

identify the motor resistance (Ra) and inductance (La) experimentally. When the rotor

is locked, both motor angular speed ωm and the rate of change of motor current
dia
dt

are

set to zero. Therefore, the Eq. (11) results in the simple form given Eq. in (16). Further,

both of va and ia are measured, and then Ra can be simply determined.

va = Raia (16)

2.3.3. Finding motor inductance (La). Motor inductance can be determined

close to the instant that the motor terminal voltage is applied; at this moment, the pro-

duced EMF is zero (no angular speed yet), and the motor current is approximately zero.

Just at the moment of applying the voltage to the motor coil, the inductance slows down
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the change in current values. As a result, the Eq. (11) is reduced to Eq. (17).

va = La
dia
dt

(17)

2.3.4. Obtaining motor viscous friction (Bm). In this section, the viscous

friction (Bm) of a PMDC is obtained under no-load steady-state case in order to drive

(Jeq
dωm

dt
) and (TL) to zero. As a result, the mechanical Eq. (12) is simplified to Eq. (18).

In Table 11, both PMDC motor speed and current are considered under no-load (NL),

steady-state (SS) condition, and listed. Since Kt is known, then Bm can be calculated.

0 = Kt(ia)NL
SS −Bm(ωm)

NL
SS (18)

2.3.5. Calculating motor equivalent inertia (Jeq). In this section, the moment

of inertia (Jeq) is found under no-load steady-state condition to drive (Jeq
dωm

dt
) and (TL)

to zero. In the first stage, the PMDC motor is mentioned at constant speed, and then

the supplied power is switched off from the PMDC motor to let (Kt ia) go to zero. As a

result, the mechanical Eq. (12), just after shutting down the motor (t+0 ), is simplified to

Eq. (19).

Jeq(
dωm

dt
)+0 = Kt ia−Bm(ωm)

+
0 (19)

2.4. Low Level Control - Generalized Predictive Control (GPC)

In this section, a linear MPC strategy, called Generalized Predictive Control

(GPC), unconstrained case, is illustrated. Usually, GPC is performed in discrete-time

as discussed in [37].

2.4.1. CARIMA model. A general representation [38] and [39], known as

controlled auto-regressive integrated moving average (CARIMA), in form of a discrete
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transfer function combined with a disturbance term is given in Eq. (20).

a(z)yk = b(z)uk +
T (z)

∆
vk (20)

Where vk represents the measurement noise by a Gaussian random variable with zero

mean, T (z) is a filtering term in the form of transfer function within the GPC algorithm.

Further, the work in [38] and [39] illustrate the way of designing T (z) term because it

has an impact on system close-loop performance. While a(z) and b(z) are the denomi-

nator and numerator coefficients of the system transfer function, respectively. Further,

system output and input are represented by yk and uk, respectively. Finally, system time

step is denoted by ∆.

Usually, the transfer function can be written in form of an equivalent difference

equation to obtain Eq. (21), where a(z), b(z), and dk are represented by Eq. (22), Eq.

(23), and Eq. (24), respectively. The obtained transfer function will be used in the next

subsection to do predictions.

yk +a1yk−1 + ...+anyk−n+1 = b1uk−1 +b2uk−2 + ...+bnuk−n+1 +dk (21)

a(z) = 1+a1z−1 +a2z−2 + ...+anz−n (22)

b(z) = b1z−1 +b2z−2 + ...+bnz−n (23)

dk =
T (z)

∆
vk (24)

2.4.2. Prediction with CARIMA model. The approach discussed in [37] is

related to the case of T (z)=1. The incremental CARIMA model is given by Eq. (25).

Then, let A(z) = a(z)∆ is defined, and the incremental CARIMA model can be reformed

as given in Eq. (26), where A(z) and b(z) are given by Eq. (27), Eq. (23), respectively.

a(z)∆yk = b(z)∆uk (25)

A(z)yk = b(z)∆uk (26)

A(z) = 1+A1z−1 +A2z−2 + ...+An+1z−n−1 (27)
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yk+1 =−A1yk− ...−Anyk−n+1 +b1uk + ...+bnuk−n+1 (28)

yk+1 =−[A1, ...,An]yk←−
+[b2, ...,bn]∆u←−k−1 +b1∆uk (29)

yk+2 =−A1yk+1− ...−Anyk−n+1 +b1uk+1 +b2yk + ...+bnuk−n+2 (30)

yk+ny =−An+1yk+ny+1−n− ...−Anyk−n+1 +b1uk+ny−1 + ...+bnuk+ny−n (31)

The difference equation given by Eq. (21) can be manipulated to form Eq. (28),

where the idea behind this manipulation is to have one-step ahead prediction because

of the term yk+1. Then Eq. (28) can be re-arranged further to predict future output yk+1

based on current and past input increment (∆uk), in addition to the current output (yk)

as given in Eq. (29). Same procedures can be used to predict two steps ahead through

substituting Eq. (28) into Eq. (30). As a result, Eq. (31) can be used to predict n-steps

a head, where ny denotes the horizon prediction range. The form shown in Eq. (27)

can be lumped to Eq. (33). The predicted output yk−→
is given by Eq. (34), furthermore,

yk−→
can be re-arranged as shown in Eq. (35); where H = CA

−1Cb, P = CA
−1Hb, and

Q =CA
−1HA.


1 0 . . . 0

A1 1 . . . 0

A2 A1 . . . 0
...

...
...

...


︸ ︷︷ ︸

CA


yk+1

yk+2
...

yk+ny


︸ ︷︷ ︸

yk−→

+


A1 A2 . . . An+1

A2 A3 . . . 0

A3 A4 . . . 0
...

...
...

...


︸ ︷︷ ︸

HA


yk

yk−1
...

yk−n


︸ ︷︷ ︸

yk←−

=


b1 0 . . . 0

b2 b1 . . . 0

b3 b2 . . . 0
...

...
...

...


︸ ︷︷ ︸

Cb


∆uk

∆uk+1
...

∆uk+ny−1


︸ ︷︷ ︸

∆u−→k

+


b2 b3 . . . bn

b3 b4 . . . 0

b4 b5 . . . 0
...

...
...

...


︸ ︷︷ ︸

Hb


∆uk−1

∆uk−2
...

∆uk−n+1


︸ ︷︷ ︸

∆u←−k−1

(32)
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CA yk−→
+HA yk←−

=Cb∆u−→k +Hb∆u←−k−1 (33)

yk−→
=CA

−1[Cb∆u−→k +Hb∆u←−k−1−HA yk←−
] (34)

yk−→
= H∆u−→k +P∆u←−k−1 +Qyk←−

(35)

2.4.3. Cost function and optimization. The control law is defined by minimiz-

ing the cost function (J) w.r.t. the future control increment ∆u−→k. As the cost function

is quadratic, it has a single minimum that can be reached by applying the gradient. As

given in Eq. (36), the cost function (J) should cover system performance till time tends

to infinity; however, it can be approximated using a prediction horizon (ny) with value

greater than plant settling-time as discussed in [37]. Further, Eq. (36) can be expanded

to form Eq. (37) since the error is represented by r−→k− y
−→k, where r−→k and y

−→k are de-

noted the reference and plant measured output, respectively. The given predicted output

yk−→
by Eq. (35) is substituted into Eq. (37), as a result of this substitution, Eq. (38) is

formulated after finalizing the substitution, where this equation needs to be minimized

w.r.t. ∆u−→k. According to algebra, the gradient of (xT a) is equal to a. Furthermore, ap-

plying the gradient to (xT Sx) results in (S+ ST )x. The previous shortcuts are used to

minimize the cost function in Eq. (38), where the result of the minimization is shown

in Eq. (40).

J =
∞

∑
k=0

( e−→k)
2 +λ (∆u−→k)

2 ≈
ny

∑
k=0

( e−→k)
2 +λ (∆u−→k)

2 (36)

J =
ny

∑
k=0

( r−→k− y
−→k)

T ( r−→k− y
−→k)+λ (∆u−→k)

T (∆u−→k) (37)

0 = min
∆u−→k

J (38)

0 = grad
∆u−→k

(
∆u−→

T
k︸︷︷︸

xT

(HT H +λ I)︸ ︷︷ ︸
S

∆u−→k︸︷︷︸
x

− ∆u−→
T
k︸︷︷︸

xT

(2HT )( r−→k−P∆u←−k−1−Q y
←−k)︸ ︷︷ ︸

a

)
︸ ︷︷ ︸

J

(39)

0 = 2(HT H +λ I)∆u−→k− (2HT )( r−→k−P∆u←−k−1−Q y
←−k) (40)
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In this stage, the Eq. (41) is re-arranged w.r.t. ∆u−→k to give a set of predicted

control increments [∆uk−1 ∆uk−2 . . . ∆uk−n+1]
T . Then, Eq. (41) is multiplied by vector

E = [I 0 . . . 0]T , where this vector is used to get the first element from each predicted

set as given in Eq. (42).

∆u−→k = (HT H +λ I)−1HT ( r−→k−P∆u←−k−1−Q y
←−k) (41)

∆u−→k = ET (HT H +λ I)−1HT︸ ︷︷ ︸
Pr

( r−→k−P∆u←−k−1−Q y
←−k) (42)

Finally, Pr term is used to reduced Eq. (42) to Eq. (43), where Pr is nothing

more than ET (HT H + λ I)−1HT . In Eq. (43), new matrices D and N are used for

further simplification, where D and N are represented by [PrP] and [PrQ], respectively.

As a result, the final control law is found in Eq. (44) and its diagram is shown by Fig.6.

∆u−→k = Pr r−→k− PrP︸︷︷︸
D

∆u←−k−1− PrQ︸︷︷︸
N

y
←−k (43)

∆u−→k = Pr r−→k−D∆u←−k−1−N y
←−k (44)

Figure 6: GPC diagram

2.5. State Observer

In this section, the formulation of a discrete Kalman filter (KF) is used to esti-

mate PMDC motor angular speed is discussed. As reported in [37], filtering approaches

are a powerful tool to enhance the overall performance of GPC controllers. The discrete

time form of a PMDC motor model is represented by Eq. (14), where the system states
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are x = [ωm ia]T . The process noise covariance matrix is given by Eq. (45). Likewise,

measurement noise covariance matrix is given in Eq. (46).

Q = diag[q11, q22] (45)

R = [r11] (46)

According to [40], the KF algorithm consists of a prediction followed by an

update step, where the predication (priori estimate) is represented by Eq. (47) and Eq.

(48). Note that, the dynamic (Ad) and input matrix (Bd) are defined in section (2.2).

x̂−k+1 = x̂+k Ad +Bdu (47)

P−k+1 = AdPkAT
d +Q (48)

The update process starts by computing Kalman filter gain (K) given in Eq. (49).

According to [41], K will converge to a steady-state value when the used model is linear.

Further, the corrected state estimate (x̂+k+1) is obtained based on the priori estimate

(x̂−k+1), Kalman filter gain (K), and the sampled measurement (zk+1) as shown in Eq.

(50). Finally, the updated covariance (P+
k+1) is calculated based on priori covariance

(P−k+1) and K as given in Eq. (51).

Kk+1 = P−k+1CT
d (CdP−k+1CT

d +R)−1 (49)

x̂+k+1 = x̂−k +Kk+1(zk+1−Cd(x̂−k+1)) (50)

P+
k+1 = (I−Kk+1Cd)P−k+1 (51)

2.6. Differential-drive Mobile Robot Model

2.6.1. Odometry model. The model is formulated for the differential-drive

robot seen in Fig. 7, where this model uses measured parameters (e.g. robot di-

mensions) to relate model inputs to the outputs without including detailed parameters.
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Robot dimensions are represented by wheel radius (r) and the distance between the

wheels (L). The inputs to the model are represented by the right wheel speed denoted

by (vR), and left wheel speed denoted by (vL). Typically, the model shows robot posi-

tion (x, y) and heading (θ ); as a result, the model tells us where the robot is on a plant

using (x, y) and direction it is going based on θ . Furthermore, Eq. (52), Eq. (53), and

Eq. (54) are formulated so as to show the relation between model states [x y θ ]T and

its inputs (vR, vL). However, the model is offering no knowledge about robot linear (v)

and rotational speed (ω), which are commonly used to control robot motion. Therefore,

unicycle model will be introduced to show the relation between robot states and (v, ω)

as inputs.

ẋ =
r
2
(vR + vL)cos(θ) (52)

ẏ =
r
2
(vR + vL)sin(θ) (53)

θ̇ =
r
L
(vR− vL) (54)

2.6.2. Unicycle model. Different from Odometry model, the inputs in this

model are represented by linear (v) and rotational speed (ω) as seen in Eq. (55), Eq.

(56), and Eq. (57). Further, right and left wheel speed are found by equating Odometry

to unicycle model equations to each other, and the result of equating are shown in Eq.

(58) and Eq. (59).

ẋ = vcos(θ) (55)

ẏ = vsin(θ) (56)

θ̇ = ω (57)

vR =
2v+ωL

2r
(58)

vL =
2v−ωL

2r
(59)
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2.7. High Level Control - Input/Output State Feedback Linearization

In this section, input/output state feedback linearization (IOSFL) as high level

control is introduced, where the controller is responsible for generating angular (ω) and

linear (v) velocity. According to [42], a point B is placed outside the robot frame with

distance b to pull the robot toward the desired point (xdes,ydes) as shown in Fig. 7. The

mathematical representation of IOSFL is initiated by Eq. (60) and Eq. (61). where x

and y are the actual robot position, however, the xb and yb represent the B point with

distance b.

xb = x+bcos(θ) (60)

yb = y+bsin(θ) (61)

Figure 7: Control problem description

In order to find out v and ω for the robot, the derivative of Eq. (60) and Eq. (61)

are found in Eq. (62), Eq. (63), and Eq. (64).

ẋb = vcos(θ)−ωbsin(θ) (62)

ẏb = vsin(θ)−ωbcos(θ) (63)

θ̇ = ω (64)
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Matrix representation is seen in Eq. (65), where v and ω are the inputs to the

mentioned equations, while the rate of change ẋb and ẏb are the outputs. The inverse

of the matrix in Eq. (65) is found since the interest is in v and ω as outputs, where the

matrix in Eq. (65) is invertible in case of b 6= 0 as shown in Eq. (66).ẋb

ẏb

=

cos(θ) −bsin(θ)

sin(θ) bcos(θ)

 v

ω

 (65)

∣∣∣∣∣∣cos(θ) −bsin(θ)

sin(θ) bcos(θ)

∣∣∣∣∣∣= b 6= 0 (66)

Therefore, the linear and angular velocity are found in Eq. (67) by inverting the

matrix within Eq. (65). Given a predefined path (xdes,ydes) seen in Fig. 7, it is feasible

to obtain ẋb and ẏb that ensure asymptotic tracking. This can be implemented using Eq.

(68) and Eq. (69), where kx and ky are proportional controller gains.

 v

ω

=

 cos(θ) sin(θ)
−1
b

sin(θ)
1
b

cos(θ)

ẋb

ẏb

 (67)

ẋb = kxex ≡ kx(xdes− xb) (68)

ẏb = kyey ≡ ky(ydes− yb) (69)

2.8. Coordinate Transformations

A rotation matrix method is used for reconstructing a vector of measurement

from one coordinate representation to another one. The GPS sensor gives the measure-

ment in terms of longitude, latitude, and altitude (LLA), where the robot requires to

localize itself based on XYZ–coordinates. Therefore, LLA to Earth–Centered Earth–

Fixed (ECEF) Conversion is used to accomplish such a task. Note that, Both od LLA

and XYZ–coordinates are found with respect to the origin of the earth.

2.8.1. LLA to XYZ–coordinates conversion in ECEF frame. LLA to XYZ–

coordinates in ECEF is implemented based on the equations seen in Eq.(70), Eq.(71),

and Eq.(72), where the constants within each equation are discussed in [43]. Further,
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Fig. 8 presents the relationship between ECEF and a reference ellipsoid. Where φ is

the latitude, ψ represents the longitude, h is the height above ellipsoid, and N denotes

the radius of curvature.

X = (N +h)cos(φ)cos(ψ) (70)

Y = (N +h)cos(φ)sin(ψ) (71)

Z = (
b2

a2 N +h)sin(φ) (72)

Figure 8: ECEF and reference ellipsoid

2.8.2. XYZ–coordinates in ECEF to ENU conversion. The Conversion from

XYZ–coordinates in ECEF to East, North, Up (ENU) coordinates is performed as fol-

lows:

Xenu =


e

n

u

=


−sin(ψ) cos(ψ) 0

−cos(ψ)sin(φ) −sin(ψ)sin(φ) cos(φ)

cos(ψ)cos(φ) sin(ψ)cos(φ) sin(φ)




x− x0

y− y0

z− z0

 (73)

ECEF gives unique LLA or XYZ–coordinates for each position on earth. How-

ever, ENU converts the XYZ–coordinates w.r.t earth origin to xyz–coordinates w.r.t

initial robot position. In this work, LLA to XYZ–coordinates is applied firstly, then

XYZ–coordinates to ENU is used to compare the GPS XY–measurement to Odometry

XY–states.
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Chapter 3: Hardware Setup

This chapter describes the hardware setup developed for implementing the hy-

brid power system based mobile robot.

3.1. Robot Chassis

Virtual robot chassis is shown in Fig. 9. However, the actual robot chassis used

in this work is seen in Fig. 10. Furthermore, it is a differential-drive robot with two

DC motors. Incremental encoders with resolution (1024 pulses / rotation) are used to

measure the rotational speeds of the wheels, which can be used to know the linear and

rotational speed of the robot itself. Moreover, a GPS sensor (MIDG II INS/GPS) is used

to localize the robot during different tests to drive the robot along a predefined path. In

addition, laptop is used to receive all measurements and send control commands to

different robot units. Power sources are mounted on the top of the robot chassis as

shown in Fig. 9 and Fig. 10.

As a result, battery, fuel cell, and supercapacitor are the sources that are chosen.

In addition to this, the aim in our case is to maximize the robot range by applying

motion controller capable of finding the minimum amount of input voltage across each

motor. Note that, minimum amount voltage drives robot power consumption trowed

minimum value.

Figure 9: Virtual robot platform. Figure 10: Actual robot platform.
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Table 1: Robot Specifications

Robot chassis size 650 mm (L) x 330 mm (W) 300 mm (H)
Wheels radius (R) 0.09 m

distance between wheels (L) 0.59 m
Robot type Differential

Maximum speed 20 rad/sec

Encoder
YUMO E6B2-CWZ3E

incremental encoder
with resolution (1024P/R)

PMDC motor Rated voltage 24V
Chassis weight 10Kg

Max. weight, robot can handle 18Kg

3.2. MIDG II INS/GPS Sensor

A GPS-aided inertial navigation system (INS) is used in localization and nav-

igation applications. An inner GPS receiver (RX) localizes robot position and it then

gives this measurement to a fusion processor within the sensor to combine it with the

inertial data to generate an optimal solution. MIDG is shown in Fig. 11.

Figure 11: GPS sensor (MIDG II INS/GPS)
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3.3. Laptop Computer

Figure 12: Laptop computer

In this thesis, a Lenovo G580 laptop, in Fig. 12, is used as the main processor

which receives all measurements and does the computations to control the robot based

on different algorithms. The laptop specification is shown in Table 2.

Table 2: Desktop Computer Specification

System Manufacturer Lenovo
System Model G580

Processor Intel Core i5-3630QM @2.40GHz (8CPUs)
RAM 16GB

Graphic Card AMD Radeon HD 7610M
USB 2 USB 2.0 and 1 USB 3.0

3.4. Motor Driver

In this work, a full H-bridge will be used in order to control the motor efficiently

in two directions clockwise and anticlockwise, while the specifications of the motor

driver are given in Table 3.
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Table 3: Li-ion Battery Specifications

Mpdel Supply
voltage

Continuous of
Current

Surge
Current

PWM
frequency

Current
sense
output

MegaMoto 5-28V 13A 30A DC-20kHz 0.0745 V/A

3.5. Li–ion Battery

In this work, two Lithium-ion batteries will be mounted on the robot chassis,

where the first battery will be used as main power source and the second battery will be

used as a backup source. An ANN-based decision function is proposed to find the right

time to switch from the primary battery to the secondary battery.

Table 4: Li-ion Battery Specifications

Model
number

Battery
capacity

Number of
cells

Cell
voltage

Battery
voltage

(nominal)

Battery
weight

TP6600-
6SP+25

6600
mAH 6 3.7V 22.4V 1Kg

3.6. Fuel Cell

Fuel cells are considered a clean energy source as they are capable of converting

one form of energy (hydrogen i.e. chemical) to another form (electricity) with zero

emissions. Further, the cells are capable of supplying a load as long as the fuel flow is

maintained. Hydrogen is considered as the ideal fuel for fuel cells due to its high energy

density compared to other fuel types. In addition to this, the chemical reaction product

out of a fuel cell is only water in case of using hydrogen and oxygen with the fuel cell.

Comparing to batteries and supercapacitors, fuel cells require specific tank storage on

board, and their time response is relatively longer. The specifications of the fuel cell are

given in Table 5.
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Table 5: PEM fuel cell Specifications

Model Number of
cells

Output
voltage

Rated
performance

Min. H2
input

pressure

Low
voltage

shutdown
Weight

Aerostak
PEM fuel
cell 200W

35 21-32V 10A at 21V 0.55 bar 20V 500g

3.7. Supercapacitor

Comparing to batteries and fuel cells, a supercapacitor has superior performance

during transient periods even with heavy loads. The specifications of the supercapacitor

proposed to be used, are given in Table 6.

Table 6: Supercapacitor specifications

Rated
voltage Capacity

24V 3F

3.8. Current Sensor

In this work, the current sensor (LEM LA-25 NP) is used to measure different

source and load currents, while the specifications of the current sensor are given in Table

7.

Table 7: Current sensor specifications

Model
number

Max. input
current

Supply
voltage Type

LEM LA-25 NP 25A ±15 Hall effect
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Chapter 4: Experimental Work and Results

4.1. Battery Terminal Voltage Collapse Detection using Fast Fourier Transforms
and Neural Networks

As a battery is discharged, its SOC will keep decreasing until battery termi-

nal voltage collapse occurs when the low SOC. As reported in [32], the aim of any

battery terminal voltage collapse method is to detect the transition in battery behavior

from stable to the unstable region. However, voltage-dependent methods are suffering

from a gradual drop in the measured battery terminal voltage value, and this fact adds

more difficulties to detect the true transition when the battery is close to the unstable

region (terminal voltage collapse occurs soon). Battery terminal voltage collapse de-

tection methods should preferably overcome any false alarms resulting from gradual or

sudden drops in terminal voltage. Artificial neural networks (ANNs) can be trained to

accomplish such a task effectively based on the mathematical model of a battery.

The proposed ANN method is compared with conventional battery terminal

voltage collapse methods such voltage threshold (VT) and capacity threshold (CT) in

terms of the terminal voltage collapse alarm accuracy. Note that, the alarm is considered

false alarm (FA) if the used method declared the voltage collapse with SOC in the rage

of 100 – 10%. The alarm is considered true alarm (TA) if the used method declared the

voltage collapse with SOC in the rage of 10 – 7%. Finally, the alarm is considered late

alarm (LA) if the used method declared the voltage collapse with SOC less than 7%.

4.1.1. Training data and feature extraction. This section explains the main

procedures applied to create the training data and feature extraction. The process be-

gins with constructing Chen and Mora’s battery model [28] in the MATLAB/Simulink

environment. Further, model parameters (k1–k21) are found in [29] and [30] for the

same Li-ion battery used in this work. The model is discharged with several loads i to

create different battery terminal voltage y profiles. The load currents i were constant,

square, sine, triangle waves; and each wave type has different magnitudes (i=1, 2, 3,

. . . 10A) and different oscillation frequencies ( fosc=0.01, 0.1, 1, 10, 100, 1000 Hz).

After finalizing the discussed process, a window N is used, where this window consists
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Figure 13: y vs. SOC, 1st window, and
a window within collapse region.

Figure 14: Results of applying FFT for
1st , and voltage collapse window.

of stacked terminal voltage y measurements and N represents the number of measure-

ments within the window. Theoretically speaking, FFT gives a frequency magnitude | f |

vs. set of frequencies. As a result of dividing battery terminal voltage to windows with

size N, fast Fourier transform (FFT), discussed in [44] is applied for each window to

find the frequency magnitude | f | at selected frequency fs. Note that, the fs is selected

empirically. In this work, | f | is found for fs = 0.78125Hz. After applying FTT for all

y windows, the obtained frequency magnitudes | f | for each window are stacked again

in an array to be used as training data for pattern classification, where the target vectors

are seen in Fig. 15. One way to accomplish pattern classification is MATLAB toolbox

(nprtool), where it solves the problem with the help of feed-forward neural network

based on sigmoid output neurons according to [45].

To test the above strategy, Chen and Mora’s battery model with capacity 6.6Ah

is discharged in MATLAB/Simulink environment by constant current i=10A and the

sampling time (Ts) is selected as 0.01 Sec. Battery terminal voltage y vs. its capacity

SOC is shown in Fig. 13. The window size N is set as 200 samples. The results of the

FFT are shown in Fig. 14 for terminal battery voltage y. Furthermore, the frequency

magnitude | f | is picked at 0.78125Hz. Generally, the FFT process collects frequency

magnitudes at 0.78125Hz for each window until the total number of N is reached. In

Fig. 15, FFT is plotted versus battery SOC after finalizing the sliding FFT window

process discussed previously for all y. Two target vectors are used to identify the voltage

collapse transition moment from stable to unstable region. As seen in Fig. 15, first target

vector represents each FFT point in stable region by 0 and all FFT points within unstable
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region are labeled as 1s. However, the second target vector is the complement of the

first vector, where the FFT points in stable region are labeled as 1s, and the FFT points

in unstable region are set to 0s. Based on this, a feed-forward neural network is trained

to distinguish between these groups using the FFT data obtained as input feature to

ANNs. Chen and Mora’s battery model is discharged with different waveforms, several

frequencies, and different current magnitudes to create sufficient training data. The

proposed classification approach will be discussed further in the next section.

Figure 15: FFT vs. SOC in addition to target vector of voltage
and no voltage collapse.

4.1.2. Classification based on neural network. As discussed in [46] and [47],

an ANN is capable of calculating logical and arithmetic equations. The artificial neuron

is shown in Fig. 16, where the inputs are represented by p1, p2, . . . pR; and weighted

w1,1,w1,2, . . .w1,R. The total input n can be determined by Eq. (74). Further, Eq. (74)

can be lumped to Eq. (75) in a matrix representation, where b is the bias of the shown

artificial neuron in Fig. 16. The output of the neuron can by formulated as given in Eq.

(76), where f represents linear/non-linear transfer function of n.

n = w1,1 p1 +w1,2 p2 + ...+w1,R pR +b (74)

n =Wp +b (75)

a = f (Wp +b) (76)
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Figure 16: Artificial Neuron [47]

The structure of the neural network is defined by selecting the transfer function

f , the number of the inputs, and the neurons. Theoretically, the training is a process

to end with acceptable output by updating weights and bias. In this work, the Neural

Network Pattern Recognition Toolbox (nprtool) is used in the training phase. It sup-

ports feed-forward network architecture [45], where the training process of ANN is as

follows: First, uploading training data, which it is correctly grouped to the nprtool tool-

box, second, selecting a number of neurons. and third, specifying one of the training

algorithm found in [48].

Figure 17: Feed-forward neural network architecture

4.1.3. Feed-forward neural network. The feed-forward neural network is one

of the simplest forms categorized under artificial neural networks. As seen in Fig. 17,

our architecture consists of a single input node, one hidden layer with n neurons, and

two outputs. The input data is processed only in forward direction. It starts from the

input node; then it goes through the hidden layer, and it finally ends to the output layer.

Note that, there is no feedback loop in this type of neural network. However, a feed-
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forward neural network can learn any relation effectively with sufficient training data in

addition to enough number of neurons n within the hidden layer.

Table 8: Mean Squared Error (MSE) and Training Time (sec) of Different Training
Algorithms

Training
algorithm n=10 n=20 n=30 n=40 n=50 n=60

trainb f g 0.069981
17s

0.069209
28s

0.070446
70s

0.069499
75s

0.070621
87s

0.070009
189s

trainbr 0.046049
531s

0.04613
776s

0.04629
1535s

0.046109
2072s

0.046392
3002s

0.046168
4107s

traincgb 0.069288
24s

0.071194
48s

0.069702
64s

0.06994
91s

0.069743
93s

0.070752
132s

traincg f 0.071716
15s

0.070145
30s

0.071217
35s

0.070982
41s

0.069181
57s

0.069482
101s

traincgp 0.072076
16s

0.069809
35s

0.071867
61s

0.070933
63s

0.069769
120s

0.0709
205s

traingd 0.091464
195s

0.089759
270s

0.092537
212s

0.080721
380s

0.087284
441s

0.083712
501s

traingdm 0.093095
203s

0.093252
259 s 0.082842

334s
0.090658

435s
0.076888

469s
0.086937

528s

traingda 0.07233
31s

0.071782
44s

0.072897
52s

0.074745
49s

0.074359
61s

0.07671
74s

traingdx 0.072954
36s

0.070361
54s

0.070073
60s

0.091935
11s

0.07118
78s

0.070968
90s

trainlm 0.046936
74s

0.044938
13s

0.047792
14s

0.04525
39s

0.044737
33s

0.044847
86s

trainoss 0.071905
43s

0.069747
80s

0.070736
94s

0.071073
141s

0.07114
134s

0.071696
111s

trainrp 0.071935
22s

0.069934
8s

0.06993
17s

0.070492
15s

0.071614
41s

0.070027
27s

trainscg 0.071095
12s

0.072847
18s

0.069315
13s

0.069076
30s

0.071909
31s

0.072535
21s

4.1.4. Training algorithms. The goal behind introducing different training

algorithms is to generate sufficiently accurate outputs. The weights and bias need to

be updated during the training phase to obtain a function which performs correctly

for a given input. Different training algorithms are discussed in [48]. Those training
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algorithms are provided within nprtool in MATLAB environment. However, studying

each algorithm deeply, in terms of definitions and related implementations, are far from

the scope of this work, but the way of updating the weights, bias, and learning rate

are the main differences between them. Our ANN has a single input in form of FFT

value, and two output layers with the following targets: the first target is a vector of 0s

where there is no voltage collapse, and 1s where there is a voltage collapse occurring;

the second target vector is the complement of the first first target vector. The dataset

used to train the neural network is divided as follows: 70% is selected randomly for the

training phase, 15% is selected randomly for the validation, and the last 15% is selected

for the testing.

To create sufficiently accurate and suitable output and architecture for our bat-

tery voltage collapse function, the obtained data from the battery model and the FFT

process is tested with all training functions listed in the first column of Table 8. Each

training function is tested with a different number of neurons. Mean squared error

(MSE) and training time are reported in the mentioned table. Both of trainlm and

trainbr show the best behavior in terms of MSE. However, trainlm has less training

time comparing to trainbr, where trainlm confusion matrix and its performance are

shown in Fig. 18 and Fig. 19, respectively. Note that, the n is selected as 60 neurons,

and the overall accuracy is reported as 93.4%. Now, the ANN function needs to be used

within an algorithm to do the stacking and FFT process in order to feed the ANN by the

evaluated observations.

Basically, Algorithm 1 begins as follows: loop counter β is set to one, and

battery selector S is set to one as well since the battery has full lifetime initially. Taking

this into consideration, the outputs of ANN function are bounded between [0,1], where

the 1st ANN output produces one when that battery is operated in the unstable region,

and it outputs zero at the stable region. As discussed previously, the 2nd ANN output is

the complement of the 1st output. A predefined threshold γ is used to announce battery

voltage collapse at early stages because the target vector covers early and late collapse

observations, where the γ is placed on the 1st ANN output only. Also, Upper and lower

window limits α1 and α2 of N are needed. Initially, α1 is set to one, while α2 is set

to window size value N. The algorithm needs to wait until N voltage measurements
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are sampled. Then, FFT will be applied for the stacked N voltage measurements, | f |

for selected fs will be collected, and | f | is fed to ANN function for battery terminal

voltage collapse checking purposes. The battery will be disconnected in case the 1st

ANN output layer is greater than γ . In case of keeping the battery connected to the

load, α1 and α2 are incremented by (N− 1), then, the algorithm will wait again until

the battery terminal voltage measurements are stacked within the new window to repeat

the same checking process.

Figure 18: Confusion matrix.

Now, the ANN function is ready to detect an impending battery terminal voltage.

In the next sections, the obtained ANN decision function will be investigated further

in terms of detection performance during different actual tests. In addition, different
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battery terminal voltage collapse detection methods will take place in this work for

comparison purposes to end up with fair say about the proposed approach in this work.

Figure 19: MSE for the training, validation, and testing data.

4.1.5. Preliminary results of battery terminal voltage collapse. In this sec-

tion, the proposed method to detect battery terminal voltage collapse based on the ANN

function is presented. The current and terminal voltage measurements are recorded via

dSPACE (CP1104). In test1, the Li-ion battery is discharged with squared wave seen in

Fig. 20, by switching the load bulb ON and OFF, until the battery is fully discharged.

Further, the window size N is selected as 200 samples. Terminal voltage y samples

are stacked and fed to FFT process to find out the frequency magnitude | f | at fs =

0.78125Hz for each window. By applying VT at 22V results to FA with SOC equal to

12.25%, while placing a CT at 10%, SOC was able to announce battery terminal voltage

collapse correctly. The trained ANN also shows good performance in detecting battery

voltage collapse correctly with SOC equal to 7.73% SOC. In test2, Li-ion battery got

discharged continuously until battery terminal voltage collapse occurs as seen in Fig.

21. FA was the result of applying VT at 22V since the battery SOC approximately is

equal to 17%. However, placing CT at 10% was capable of recognizing battery terminal

voltage collapse accurately. The ANN announces a TA with battery SOC approximately

equal to 10%.
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Figure 20: Test1, Li-ion battery is dis-
charged with square wave load.

Figure 21: Test2, Li-ion battery is dis-
charged continuously.

Algorithm 1 ANN battery terminal voltage collapse detection

1: Set: Loop counter β=1, battery selector S=1, predefined threshold γ ∈ [0,1] , win-
dow lower limit α1=1, and window upper limit α2= window size N

2: while S == 1 do
3: Connect battery to the load
4: y(β ) = read battery terminal voltage
5: if (β Modulus N == 0) then
6: Find FFT for y(α1:α2)
7: Collect | f | at selected fs of y(α1:α2)
8: Check the collected | f | using the ANN function
9: if (ANN 1st Output >= γ) then

10: Set: S = 0
11: else
12: Continue
13: end if
14: α1 = α1 + (N−1)
15: α2 = α2 + (N−1)
16: else
17: Continue
18: end if
19: β = β + 1
20: end while

4.2. Motor Identification

Motor identification procedures in section 2.3 are applied in this section for the

used motors in this work; the first motor is operated within dSPACE setup to show
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initial results, while the second type is used with the mobile robot platform. In first

stage, armature voltage (va), angular speed (ω), and armature current (ia) at no-load

steady-state condition are found, and the results are listed in Table 11.

4.2.1. Parameters of electrical equation. The back EMF constant (Kb) and

torque constant (Kt) are obtained based on Eq. (15). As seen in Fig. 99, the linear

fitting is applied for the back EMF (ea) vs. angular speed (ωss), and then the back

EMF constant (Kb) and torque constant (Kt) are found with value equal to 0.06578.

In Table 12, motor resistance (Ra) is obtained under locked-rotor condition and same

slope procedures are applied to evaluate Ra based on Eq. (16) with value equal to 0.6536

Ohm. The inductance of the motor (La) can be determined based on Eq. (17). Initially,

the motor armature current is seen in Fig. 100. Further, the current (ia) value before

applying the voltage across the motor is found ≈ zero, while the ia value after applying

the voltage is 0.03937A. On the other hand, the voltage at applying moment is collected

as seen in Fig. 101, as a result, the inductance (La) is found as 0.0363H.

4.2.2. Parameters of mechanical equation. The introduced Eq. (18) is applied

to obtain the viscous friction (Bm), where the motor angular speed and current under no-

load steady-state condition are seen in Table 11. The Eq. (18) is manipulated as given in

Eq. (77), the motor angular speed vs. current is plotted to get the slope based on linear

fitting function as seen in Fig (102), where the slope represents
Kt

Bm
, Kt is known ,and

then the Bm is found equal to 2.4945×10−4. The equivalent inertia (Jeq) is determined

by running the motor in constant speed in the first stage, the power is switched off, at

this moment, the Jeq is found equal to 5.2574×10−4 based on Eq. (19).

ωm =
Kt

Bm
ia (77)

4.2.3. Motor process reaction curve. The obtained motor parameters listed

in Table 9 are used in simulation for validation purposes. process reaction curve (sys-

tem response) is shown in Fig. 22, where the simulated system response based on the

obtained parameters was unsuitable, therefore, the model is tuned by modifying mo-
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tor resistance value, where both of obtained and modified system response are seen in

Fig.22. Finally, GPC will be implemented in next section based on the modified motor

parameters.

Figure 22: Motor process reaction curve

Table 9: dSPACE PMDC motor parameters

Parameter Symbol Obtained
Parameter

Modified
Parameter Unit

Resistance Ra 0.6538 9 Ohm
Back EMF constant Kb 0.06578 0.06578 Nm/rad/s

Torque constant Kt 0.06578 0.06578 Nm/A
Inductance La 0.0363 0.0363 H

Viscous friction Bm 2.4945 ×10−4 2.4945 ×10−4

Equivalent inertia Jeq 5.2574 ×10−4 5.2574 ×10−4

4.3. Generalized Predictive Control (GPC)

In this section, GPC is used as speed controller and compared with a PI con-

troller tuned by Cohen-Coon and Ziegler-Nichols rules, found in [49]. The comparison

is performed in terms of transient time, disturbance rejection, controller effort, and dif-

ferent error criteria.
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4.3.1. Transfer function. As discussed in [50], the continuous PMDC motor

transfer function is obtained using MATLAB ss2t f function, based on the rule in Eq.

(78), where the continuous transfer function is seen in Eq. (79).

G(s) = Cc

(
sI−Ac

)−1
Bc (78)

G(s) =
ωm

va
=

Kt

(LaJeq)s2 +(RaJeq +LaBm)s+RaBm +
Kb

Kt

(79)

Further, modified motor parameters in Table 9 are substituted into continuous

transfer function, and it is then discretized based on tustin method with time step (∆)

equal to 0.01 sec. Note that the discretization is done using MATLAB c2d function

discussed in [51], where the final discrete transfer function is given in Eq. (80).

G(z) =
ωm

va
=

b1 +b2z−1 +b3z−2

a1 +a2z−1 +a3z−2 =
0.9502+1.9z−1 +0.9502z−2

1−0.781z−1−0.1968z−2 (80)

Figure 23: GPC stable response with
ny=50 and λ=1000.

Figure 24: GPC unstable response with
ny=10 and λ=1000.

4.3.2. GPC tuning. The work discussed in section 2.4 is applied based on the

obtained discrete transfer function in Eq. (80). Furthermore, GPC control law matrices

(Pr, D, N) are built by selecting ny and λ . As discussed in [37], a prediction horizon (ny)

needs to be greater than the settling-time of the used plant. In Fig. 23, simulated GPC

stable response is shown based on ny and λ equal to 50 samples and 1000, respectively.

However, when the prediction horizon (ny) is selected as 10 samples in case of λ =

1000, GPC shows unstable response as seen in Fig. 24. On the other hand, the stability
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issue is fixed by changing λ from 1000 to 1 as seen in Fig. 25 and Fig. 26 since the λ

affects the motor transient-time (τs).

Figure 25: GPC stable response with
ny=50 and λ=1.

Figure 26: GPC stable response with
ny=10 and λ=1.

Figure 27: dSPACE setup.

4.3.3. Preliminary actual GPC step response results. Initially, GPC is con-

structed in MATLAB/Simulink and dSPACE environment as seen in Fig. 27, Fig. 104

and Fig. 105 to test controller response with respect to a step input. As illustrated in

Fig. 28 and Fig. 29, GPC shows better settling-time and disturbance rejection compar-

ing to PI (Cohen-Coon) and PID(Ziegler-Nichols), where ny and λ are selected as 10

and 1, respectively.
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Figure 28: Step response test, GPC

Figure 29: Step response test, PI (Cohen-Coon)

Figure 30: Step response test, PID (Ziegler–Nichols)

Theoretically speaking, integral squared error (ISE) penalizes huge errors more

than smaller ones (due to squaring a big quantity ends with much bigger value), where
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the ISE is used in this work to show large errors quickly. However, integral time-

weighted absolute error (ITAE) penalizes the error after a long time much more than

those at the beginning of the plant response. ITAE is a good observation tool to show the

error occurred after the system settling-time. Different from ISE and ITAE, integrates

absolute error (IAE) doesn’t weight the error of plant response.

Figure 31: Step response test, Controllers error.

Figure 32:
IAE.

Figure 33:
ISE.

Figure 34:
ITAE.

The error for each controller is shown by Fig. 31, where the GPC shows better

performance in terms of driving the error to zero. Furthermore, different error crite-

ria (IAE, ISE, and ITAE) are shown in Fig. 32, Fig. 33, and Fig. 34 where the GPC

scores less amount of error in short and long term, compared to PI (Cohen-Coon) and
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PID(Ziegler-Nichols). In terms of controller effort, GPC has a greater current consump-

tion in short term. However, it reaches the steady-state value shortly as seen in Fig. 35.

Figure 35: Step response test, controllers effort

Figure 36: GPC. Figure 37: PI(CC). Figure 38: PID(ZN).

4.3.4. Preliminary actual GPC drive cycle results. In this test, a New Eu-

ropean Driving Cycle (NEDC) is used as a referenced speed to the both controllers in

order to test performance and effort with varying set points. As seen in Fig. 36, Fig.

37, and Fig. 38, controllers were able to follow the NEDC set points. Based on Fig.

40 and Fig. 41, GPC has good performance, compared to PI (Cohen-Coon), in terms of

short and long term error, based on ISE and ITAE. However, IAE shows the absolute

error without weighting it over the time as seen in Fig. 39. On the other hand, the PID

(Ziegler-Nichols) has close error profile to GPC.
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Figure 39: NEDC, IAE Figure 40: NEDC, ISE Figure 41: NEDC, ITAE

In Fig. 42, motor current measurement is seen, where PID (Ziegler-Nichols) has

higher effort than GPC and PI (Cohen-Coon). However, GPC has clean current profile

compared to PI (Cohen-Coon). As a result, GPC shows reasonable effort, performance,

error, and transient time compared to PI (Cohen-Coon) and PID (Ziegler-Nichols). Fur-

thermore, Applying GPC as robot low level controller will lead to discharge the stored

power within the sources efficiently.

Figure 42: NEDC, Controllers effort.

4.4. Robot Overall System

As seen in Fig. 43, robot power system consists of a fuel cell (FC), two batteries,

and a supercapacitor. Power sources are also connected in the form of passive parallel

connection, where the main aim is to give the sufficient flexibility to the power system
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Figure 43: Power sources connection diagram

since the sources can be connected/disconnected independently from each other, where

an electric switches (S1, S2, S3, and S4) are placed to do the required selection. The

two batteries are protected from flow back current using diodes (D1, and D2). Different

from all used power sources, FC is combined with hydrogen (H2) cylinder containing

the fuel.

Furthermore, voltage and current sensors are combined with each source to col-

lect the required measurements, where the measurements are fed to a laptop placed on

top of the robot. The sensors are interfaced first to a Arduino board, and then MAT-

LAB is used in real-time to read sensors and control with help of a package discussed

in [52], where the mentioned package converts MATLAB script to C-code. Initially,

the process starts with connecting the selected sources by the user, where different tests

are performed based on battery, battery-supercapacitor, and battery-supercapacitor-fuel

cell.

After selecting the power sources combination, the error between the desired

position (xdes, ydes) and robot initial position is found, where the robot localize itself

initially based on LLA using MIDG-II INS/GPS sensor, and then it converts the po-

sition data from LLA to xyz in global frame based on Eq.(70), Eq.(71), and Eq.(72).

The position in robot frame (RF) is found based Eq. (73). High level control (IOSFL)

calculates v and ω based on the obtained error between the desired and measured posi-

tion, where the robot orientation (θ ) is determined based on Eq. (54). Furthermore, the

obtained v and ω are converted to controller set points (reference) in form of right (vR)
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Figure 44: High and low level control diagram

and left (vL) speeds, where Eq. (58) and Eq. (59) are used to accomplish the conver-

sion. The measured speed from each motor is filtered by Kalman filter (KF) to reduce

the noise effect before feeding the estimated speed back to the error node as seen in Fig.

44. The robot inside layer is shown in Fig. 45, where it consists of PMDC motors, in-

cremental encoders, motor drivers, relays, and common ground. On the other hand, the

outside layer is seen in Fig. 46, where it contains the laptop, MIDG-II INS/GPS sensor,

batteries, fuel cell, hydrogen cylinder, supercapacitor, current sensors, and voltage sen-

sors. In next chapter both of battery voltage collapse method and GPC controller will

be investigated more using a differential drive robot.

Figure 45: Robot inside layer Figure 46: Robot outside layer
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Chapter 5: Field Test Results and Analysis

In this chapter, the proposed method in section (4.1) to detect battery terminal

voltage collapse based on FFT and ANN function is presented, where the preliminary

tests are shown in section (4.1.5) for the Li-ion battery. In addition, the discussed high

level control (IOSFL), and low level control in form of GPC combined with KF in

section (4.4) are tested with differential-drive robot.

5.1. KF Effect on GPC Performance

As discussed in section (2.4), the GPC has a filtering term in the form of moving

average T (z). As discussed previously, T (z) is equated to 1, and then it is replaced by

KF to reduce the noise effect. In this section, GPC performance will examine with

and without KF algorithm discussed in section (2.5). The control law given by Eq.

(44) represents the GPC in case of excluding the KF, while the control law in Eq. (81)

describes GPC in case of including the KF, where y
←−k is replaced by ŷ

←−k
.

∆u−→k = Pr r−→k−D∆u←−k−1−N ŷ
←−k

(81)

KF algorithm in section (2.5), PMDC discrete model in section (2.2), robot

PMDC motor parameters listed in Table 13, GPC algorithm in section (2.4), and high

level control (IOSFL) discussed in section (2.7) are used to accomplish this task effec-

tively. Furthermore, the process and measurement noise covariance of KF are selected

as 0.03 and 0.1, respectively. Note that, the values are obtained by trial and error.

Figure 47: Reference and measured speed
of the right wheel.

Figure 48: Reference, measured, estimated
speed of the right wheel.
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Figure 49: Reference and robot path with-
out including KF.

Figure 50: Reference and robot path in-
cluding KF.

As discussed in [37], one of the weak points of a GPC controller is its sensitivity

to the noisy measurements. Therefore, the shown speed measurement combined with

noise in Fig. 47 is fed to the GPC to study its performance. However, the filtered

measurement seen in Fig. 48 is used within GPC in this second case. Furthermore, the

same work is applied to the left wheel. Clearly from Fig. 49 and Fig. 50, including

the KF leads to enhancing robot performance in terms of path following. Since the

shortest path between two points is a straight-line, the GPC without KF is going to

draw more power from the sources with time compared to a GPC combined with KF.

As a result, GPC performance powered by different sources will be investigated more

in next section.

5.2. GPC Effort with Different Sources

In this section, the differential drive robot discussed in section (4.4) is used

to test GPC performance combined with KF, where the GPC preliminary results are

seen in section (4.3.3). Furthermore, different tests are performed in case of using

a single battery, battery-supercapacitor, and battery-supercapacitor-fuel cell to run the

robot along predefined path.

5.2.1. Battery test. In this test, single Li-ion battery is used to supply robot

power demand while it is moves along the seen path in Fig. 51 and Fig. 52. In Fig.
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51, GPS visualizer site is used to plot the recorded LLA data during the test on Google

map. Equations discussed in section (2.8.1) and section (2.8.2) are applied to obtain the

GPS path seen in Fig. 52 since the target is to localize the robot in xyz–coordinates.

The obtained GPS path is compared with Odometry path discussed in section (2.6.1).

Figure 51: Battery test, LLA robot path on
Google map using GPS visualizer.

Figure 52: Battery test, reference and robot
path

In Fig. 52, robot GPS path in ENU format is used as feedback to the high level

control (IOSFL) in order to drive the robot along the reference path. However, the

Odometery path was inaccurate during the test since no measurement is prefect and

model states [x y θ ]T are obtained based on integrating vR, vL, and θ combined with

noise.

Figure 53: Battery test, reference, mea-
sured, estimated speed of the right wheel.

Figure 54: Battery test, reference, mea-
sured, estimated speed of the left wheel.
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Figure 55: Battery test, discharging cur-
rent.

Figure 56: Battery test, battery terminal
voltage.

The right (vR) and left (vL) wheel speed are seen in Fig. 53 and Fig. 54, where

the estimated speed is fed to GPC during the test to enhance its accuracy, as discussed

in section (5.1). Clearly, the estimated speed over/under fit the measurement instead of

smoothing it in some places, while process and measurement noise covariance selected

values are causing this behavior. The work found in [53] introduces a method to com-

pute process and measurement noise covariance in each time step such that KF works

as optimal state estimator. On the other hand, battery terminal voltage and discharging

current are seen in Fig. 55 and Fig. 56, respectively. The drop in battery state of charge

(SOC) will be discussed later after finalizing all tests.

5.2.2. Battery–supercapacitor test. In this test, same procedures in terms

of high level (IOSFL) and low level (GPC) control discussed previously in section

(5.2.1) are applied. Furthermore, the recorded LLA and robot path during battery-

supercapacitor test are seen in Fig. 57 and Fig. 58, respectively. Different from battery

test in section (5.2.1), the supercapacitor is connected in parallel connection with the

battery during this experiment to study GPC performance.

As discussed in [5], a supercapacitor can capture the produced energy by motor

in regenerative braking period, where the work aims to enhancing battery lifetime with

the help of power controller. Theoretically speaking, a power controller is needed to let

the the supercapactour charge during the regenerative braking period and discharge with

respect to certain conditions, where DC/DC converter controls the flow of the energy.

In this work, the supercapacitor is connected to the battery directly without including a

power controller or DC/DC converter in between to avoid weight issues.
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Figure 57: Battery-supercapacitor test,
LLA robot path on Google map using GPS
visualizer.

Figure 58: Battery-supercapacitor test, ref-
erence and robot path

The zoomed view of right (vR) and left (vL) wheel speed in Fig. 59 and Fig. 60

show the robot while it is trying to adjust its direction at the end of the trip; as a result,

both of vR and vL are fluctuated between positive and negative speed values. Based

on this fact, the nominal value of the battery discharging current seen in Fig. 61 gets

decreased because of the energy flow from the motor back to supercapacitor, where the

supercapacitor charging current at that moment is shown in Fig. 62.

Figure 59: Battery-supercapacitor test, ref-
erence, measured, estimated speed of the
right wheel.

Figure 60: Battery-supercapacitor test, ref-
erence, measured, estimated speed of the
left wheel.

Supercapacitor covers load demand first for short time and then the battery sup-

plies the remaining power to the load since a supercapacitor has fast response, compared

to battery. As seen in Fig. 62, supercapacitor is kept charging/discharging since it pro-
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vides the energy first, and then it gets charged by the battery when its voltage becomes

less than battery voltage. Therefore, keeping the supercapacitor connected to the load

affects battery lifetime badly. However, letting supercapacitor connected to the load at

the right moment can enhance battery lifetime since it can capture the flow back energy

with the help of a power controller and DC/DC converter as discussed previously.

Figure 61: Battery-supercapacitor test,
battery discharging current.

Figure 62: Battery-supercapacitor test, su-
percapacitor charging/discharging current.

Figure 63: Battery-supercapacitor test,
battery terminal voltage.

Figure 64: Battery-supercapacitor test, su-
percapacitor terminal voltage.

5.2.3. Battery–fuel cell test. In this test, a fuel cell is connected to the battery

in parallel configuration. Furthermore, same previous tests procedures are applied in

terms of high and low level control. In Fig. 65, the LLA recorded data during the

test is plotted on Google map using GPS visualizer site. However, robot path after

converting the LLA to XYZ-coordinates and applying ENU is shown in Fig. 66, where

the Odometry path shows the same poor behavior during the test.

Reference, measured, estimated speed for the right and left wheel are shown in

Fig. 67 and Fig. 68, where fluctuations between positive and negative values are shown
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in the zoomed view. However, the produced energy is not capture due the absence of

the supercapacitor in this test.

Figure 65: Battery-fuel cell test, LLA
robot path on Google map using GPS vi-
sualizer.

Figure 66: Battery-fuel cell test, reference
and robot path

Figure 67: Battery-fuel cell test, refer-
ence, measured, estimated speed of the
right wheel.

Figure 68: Battery-fuel cell test, refer-
ence, measured, estimated speed of the left
wheel.

The main advantage of using fuel cell in this test is seen in Fig. 69 and Fig. 70

compared to previous tests, where the battery supplies less amount of current, and the

fuel cell provides the remaining current demand since the fuel cell has higher terminal

voltage as shown in Fig. 71 and Fig. 72. As a result, battery lifetime can be enhanced

through sharing the load demand.
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Figure 69: Battery-fuel cell test, battery
discharging current.

Figure 70: Battery-fuel cell test, fuel cell
discharging current.

Figure 71: Battery-fuel cell test, battery
terminal voltage.

Figure 72: Battery-fuel cell test, fuel cell
terminal voltage.

5.2.4. Battery–supercapacitor–fuel cell test. In this test, power sources com-

bination consists of a fuel cell, supercapacitor, and battery, where the power sources are

connected in parallel configuration. Also, same high and low level control are applied

during this experiment. In Fig. 65, Google map and GPS visualizer site are used to

show LLA recorded data during the test. As seen in Fig. 74, robot path in form of

xyz–coordinates is obtained. Clearly, Odometry model shows inconstancy in terms of

localization accuracy compared to GPS approach.

In Fig. 75 and Fig. 76, right and left wheel speed are shown for the full trip.

In the zoomed view, both motors are fluctuated to adjust robot orientation towered the

desired orientation, where the cause of the fluctuation is back to the noisy GPS mea-

surement at that moment. As a result, the supercapacitor is charged by the produced

energy at that moment as seen in Fig. 79, as well as, both of battery and fuel cell are

supplied less amount of current under this condition. Furthermore, the same issue is

68



seen in battery, fuel cell, and supercapacitor terminal voltage in Fig. 80, Fig. 81, and

Fig. 82, respectively.

Figure 73: Battery-supercapacitor-fuel cell
test, LLA robot path on Google map using
GPS visualizer.

Figure 74: Battery-supercapacitor-fuel cell
test, reference and robot path.

Figure 75: Battery-supercapacitor-fuel cell
test, reference, measured, estimated speed
of the right wheel.

Figure 76: Battery-supercapacitor-fuel cell
test, reference, measured, estimated speed
of the left wheel.

Figure 77: Battery-supercapacitor-fuel cell
test, battery discharging current.

Figure 78: Battery-supercapacitor-fuel cell
test, fuel cell discharging current.
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Figure 79: Battery-supercapacitor-
fuel cell test, supercapacitor charg-
ing/discharging current.

Figure 80: Battery-supercapacitor-fuel
cell test, battery terminal voltage.

Figure 81: Battery-supercapacitor-fuel
cell test, fuel cell terminal voltage.

Figure 82: Battery-SC-FC test, superca-
pacitor terminal voltage.

5.2.5. Time analysis for different tests. Battery SOC is calculated for the

previous tests using Coulomb-counting in discrete form given in Eq. (82), where ik

represents battery current measurement, Cc is battery capacity given in Eq. (1), ∆ is

the time-step, and the initial SOCk is set to one since the battery has full lifetime in

the beginning. As seen in Fig. 83, battery–supercapacitor configuration affects battery

lifetime badly in long term since the battery is supplying the load demand and super-
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capacitor. Although, adding the suppercapacitor gives the chance to recover energy

flowed back from the motors., different from battery and battery–supercapacitor tests,

battery–fuel cell configuration offers better battery lifetime since fuel cell covers most

of the load demand. Furthermore, this type of conflagration does not have the ability to

recover any energy from the motor. However, battery-supercapacitor-fuel cell combi-

nation shows the best performance in terms of battery lifetime, where the same issue is

reported in [54].

SOCk+1 = SOCk−
ik
Cc

∆ (82)

Figure 83: Battery lifetime for different tests

The full lifetime is calculated based on Eq. (83), where the idea is to show full

drop in battery lifetime. Initial state of charge (SOC1), final state of charge (SOC2),

initial time (T1) are equated to 1, 0, 0 min, respectively. In addition, the slope for each

test is found and listed in Table 10. As a result, the final battery lifetime for each test

is calculated and listed in Table 10. As seen in Fig. 84, battery-supercapacitor-fuel

cell has higher lifetime than other combinations since it could last to 16.65 hr. Further,

combining the battery with fuel cell lets the battery last in operation for 12.804 hr.

However, both battery and battery supercapacitor test have approximately same battery

lifetime.
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SOC2−SOC1 = a(T2−T1) (83)

Table 10: Slope and final battery lifetime for each test.

Test Type Slope (a) T2 (hr)
Battery 0.0054 3.069

Battery+SC 0.0052 3.1885
Battery+FC 0.0011 12.804

Battery+SC+FC 0.001 16.65

Figure 84: Final battery lifetime

Figure 85: Robot connections diagram
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5.3. Battery Terminal Voltage Collapse Detection based on FFT and ANN Func-
tion

5.3.1. ANN battery test. A differential-drive robot is used to discharge a full

lifetime battery until the ANN announces battery voltage collapse, and ANN detection

performance is compared by convectional techniques such as VT and CT. Note that,

power sources (2nd battery, fuel cell, supercapacitor) shown in Fig. 46 are not used in

this test. In the preliminary tests, the voltage and current measurements were sufficient

because the load was simple resistive load. However, the loads in this test are two DC

motors, in addition to motor drivers. Practically speaking, those motor drives add more

difficulties due their switching behavior. As seen in Fig. 85, two inductors (L=6.6 mH)

are placed to filter the measured current. The motor drivers are used to control left and

right motor speed via PWM signal generated by a micro-controller. A user controls the

robot through wireless RC-transmitter (Futaba−6J−2.4 GHZ). The receiver is fed to

the micro-controller.

Figure 86: Longitude vs. latitude recorded via MIDG II INS/GPS sensor.
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In this test, the robot is driven continuously along the seen path in Fig. 86 until

the trained ANN detects battery voltage collapse, where the path is a part of the parking

area in the American University of Sharjah (AUS). GPS data is recorded during the

experiment via MIDG II INS/GPS sensor in real time during the test. The ANN output

threshold value (γ) is selected equal to 0.5; however, ANN is performed batter with γ =

0.2 as realized later. The actual and filtered motors current are seen in Fig. 87, where a

low pass filter with a cut-off frequency equal to 5Hz is used to show the average current

value. Note that, the calculated SOC is inaccurate due to noisy current measurement;

base on Fig. 87, applying CT announces LA. Regarding VT, the method leads to FA

since the battery terminal voltage hit the 22V threshold at early stages. Different from

VT and CT, the trained ANN is capable of declaring TA with γ = 0.2 as seen in Fig. 87,

where the ANN output plotted vs. time (hr) instead of SOC due the calculated values

are not suitable.

Figure 87: ANN battery test, ANN outputs vs. time

5.3.2. ANN battery–supercapacitor test. The differential-drive robot con-

trolled by high and low level control is combined with ANN algorithm to detect battery

terminal voltage collapse in real-time. A battery with low capacity is used since full

capacity needs long time to discharge as seen in Fig. 87. Furthermore, LLA robot
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path during the test is seen in Fig. 88, and GPS path compared to Odometry path after

applying ENU is shown in Fig. 89.

In this test, ANN detection algorithm is used to replace the dying battery by

backup one in real-time. The ANN alarm outputs are shown in Fig. 90, where the

threshold (γ) is selected as 0.3. As seen in Fig. 90, the voltage collapse alarm signal is

crossed the alarm threshold at time equal to 1.285 min. Based on that, the 1st battery

is terminated from the load and the 2nd battery is connected, where 1st battery terminal

voltage processed within ANN algorithm is seen in Fig. 96. Furthermore, ANN algo-

rithm does not affect by connecting a supercapacitor to the battery. Also, the low level

controller (GPC) has not influenced by the battery switching since right and left wheel

speed tracking are maintained.

Figure 88: ANN battery-supercapacitor
test, LLA robot path is plotted on Google
map using GPS visualizer.

Figure 89: ANN battery-supercapacitor
test, Reference and robot path

Figure 90: ANN battery-supercapacitor test,
ANN outputs vs. time
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Figure 91: ANN battery-supercapacitor
test, Reference, measured, estimated speed
of the right wheel.

Figure 92: ANN battery-supercapacitor
test, Reference, measured, estimated speed
of the left wheel.

Figure 93: ANN battery-supercapacitor
test, 1st battery discharging current.

Figure 94: ANN battery-supercapacitor
test, 2nd battery discharging current.

Figure 95: ANN battery-supercapacitor
test, supercapacitor charging/discharging
current.

Figure 96: ANN battery-supercapacitor
test, 1st battery terminal voltage.

Figure 97: ANN battery-supercapacitor
test, 2nd terminal voltage.

Figure 98: ANN battery-supercapacitor
test, supercapacitor terminal voltage.
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Chapter 6: Conclusion

A novel neural network method is introduced in this work to detect battery volt-

age collapse and alarm the end-user about the failure when it is going to happen. The

method successfully predicted battery voltage collapse in real-time battery monitoring.

The proposed method can be used in protecting Li-ion battery from an over-discharge

scenario. According to Table 14, the trained ANN function scored three TAs out of

three different tests. Where VT ends with zero TA and three FAs; however, VT was

close to the 10% SOC in the preliminary test1 and 2 as listed in Table 14. CT shows

better performance by scoring two TAs and one LAs, where one way to enhance CT

performance is estimating SOC using KF and EKF [27]. However, this technique re-

quires a battery model with sufficient accuracy. Linearization is required in case of

using nonlinear battery model like Chen and Mora’s [28]. In addition, EKF works as

optimal state estimator when the process and measurement noise are statistically esti-

mated as discussed in [53]. In [55], adaptive unscented Kalman filter associated with a

noise statistics estimator is proposed to solve SOC accuracy calculation issues as well.

The proposed method has weak points in terms of the empirical way of defining

the window size N, where the same empirical issue is applied for the pecked | f | at se-

lected frequency fs, and predefined threshold γ which affects the accuracy of the method

since the ANN is trained to output one for the early and late voltage collapse observa-

tion in terms of FFT value. Further, ANN requires extensive training based on accurate

battery model with known parameters for the used battery in actual tests. Finlay, this

method can be enhanced further by adding new observations to ANN like battery tem-

perature and surface acoustic waves [56] since the multi-sensor approach offers more

knowledge about battery terminal voltage transition from stable to the unstable region.

A generalized predictive control (GPC) combined with Kalman filter (KF) is

used to control motor speed, where the main aim is to generate the minimum input

voltage to the motors since the control law is obtained by minimizing a cost function

with respect to ∆u. However, the cost function provides a suboptimal solution since it

is approximated with number of samples greater than system settling time. Preliminary

controller tests, GPC shows good performance, compared to a PI controller tuned by

Cohen-Coon rules in terms of transit time, disturbance rejection, and different error
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criteria. In step response test, GPC draws more power than PI (Cohen-Coon) since it is

accelerated from zero to 100 rad/sec in short time to drive the error to zero; however,

PI (Cohen-Coon) consumes less amount of current but it takes longer time to drive the

error to zero. Different from step response test, GPC performs better than PI (Cohen-

Coon) in drive cycle test in terms the same comparing issues, where it is shows almost

the same current profile since the reference speed is changing smoothly.

Different power sources, sensors, relays, motor drivers, GPS sensor, and laptop

are mounted on differential-drive robot to test the ANN and GPC performance in real-

time outdoor tests. An input/output state feedback linearization (IOSFL) used high level

control to generate linear (v) and rotational robot velocity (ω), where the obtained v and

ω are used to calculate right and left wheel reference speed to the GPC. A GPS sensor

(MIDG II INS/GPS) is used to localizes robot position. Furthermore, robot location

given by GPS sensor and desired points in each time step feds to the IOSFL to generate

the correspond robot v and ω . The effect of KF on GPC performance is also discussed,

where adding KF to GPC leads to improve robot performance.

Several power sources tests are performed in order to study their effect on bat-

tery lifetime. The standard battery lifetime is shown by battery test. However, adding a

supprcaacitor affects battery lifetime badly but it offers an ability to capture the flowed

back energy from the motor. Moreover, the difference in battery lifetime from the stan-

dard case is not big. Replacing supprcaacitor by fuel cell shows good improvement in

battery life time since the fuel cell supplies most of the load demand. However, this

configuration is not able to recover motors energy. Finally, the best battery lifetime

achieved is seen in case of having a battery connected in parallel conflagration to a fuel

cell and supercapacitor, where the fuel cell still supplies the higher amount of current to

the load and the supercapacitor gives to the ability to recover any energy produced by

the motors. The cost for such enhancement can be seen in Fig. 106, where the fuel cell,

GPS sensor, and robot platform are the main costly parts. Further, the cost breakdown

can be found in Table 15.

As a future work, a DC/DC converter can be placed to control the amount of

the energy supplied to the load. In supercapacitor case, the DC/DC converter will let

the suppercapacitor connected to the bus when the motor produces energy. Otherwise,
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charging/discharging current will be reduced by DC/DC converter since the superca-

pacitor draws current from other sources to charge itself. Usually, DC/DC converter is

controller either by simple controller like PI or advanced controller, where the advance

controllers are model dependent (e.g. GPC).
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Appendix

Figure 99: Back EMF (ea) vs. steady-state angular speed (ωss)

Figure 100: Motor armature current at time equal to zero

Figure 101: Motor armature voltage at time equal to zero
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Figure 102: Speed vs. Current under no-load condition

Figure 103: Shut downing the motor

Table 11: PMDC motor va, ω , and ia under no-load steady-state condition.

Duty
Cycle va (V) ea (V) ωss (rad/sec) ia (A)

0.55 2.4 1.8 17.7 0.0028
0.6 4.8 3.42 42.1 0.06

0.65 7.2 5.3 74.5 0.17
0.7 9.6 7.6 107.5 0.30

0.75 12 9.62 140.8 0.46
0.8 14.4 12 180.6 0.65

0.85 16.8 13.56 206 0.76
0.9 19.2 15.82 244.9 0.96

0.95 21.6 17.5 273.2 1.10
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Table 12: PMDC motor va, ω , and ia under locked-rotor condition.

Duty
Cycle va (V) ea (V) ωss (rad/sec) ia (A)

0.55 2.4 1.21 0 0.02
0.6 4.8 2.53 0 0.3

0.65 7.2 4.2 0 1.05
0.7 9.6 5.3 0 2.3

Figure 104: Full view GPC in MATLAB/Simulink environment
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Figure 105: GPC in MATLAB/Simulink environment

Table 13: Robot PMDC motor parameters

Parameter Symbol Parameter
Value Unit

Resistance Ra 1.13091922 Ohm
Back EMF constant Kb 1.0146 Nm/rad/s

Torque constant Kt 0.07358 Nm/A
Inductance La 0.0345 H

Viscous friction Bm 0.014
Equivalent inertia Jeq 0.0031

Table 14: Comparison between different battery voltage collapse detection methods

Test No. VT
22V

CT
10%

ANN
γ = 0.2

Preliminary
Test1

FA
SOC=12%

TA
SOC=10%

TA
SOC=7.73%

Preliminary
Test2

FA
SOC=17%

TA
SOC=10%

TA
SOC=10%

Battery
Test

FA
Time=0.39 hr

LA
Time=1.8 hr

TA
Time=1.668 hr
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Table 15: Cost for different robot items

Item Qty. Unit Price
(AED)

Total Price
(AED) Remark

Robot platform 1 17,000 17,000 Robot platform includes chassis,
2 motors, 2 gearboxes, and 2 encoders.

PEM fuel cell
+ hydrogen cylinder 1 50,000 50,000 Manufacturer: Airostack

MIDG II
INS/GPS sensor 1 25,000 25,000

Labtop 1 2,300 2,300
Li-ion battery 2 360 720
Supercapacitor 1 180 180 Capacity: 3F
Current sensor 5 62 310 Commercial name: HXS 20-NP/SP30
Voltage sensor 4 12.5 50
Motor driver 2 183 366 Commercial name: MegaMoto

Relay 4 10 40 SPDT type
Arduino board 2 360 720 Type: Mega2560
Total amount: 96,686

Figure 106: Robot cost in AED
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