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Abstract 

 

The vast growth in the e-commerce market has increased the attention to 

resolving the problem of Last Mile Delivery that has significant challenges such as 

reducing operational cost or ecological impact and increasing supply chain 

performance. The inclusion of new technologies such as drones and robots help tackle 

these challenges by developing new distribution systems to improve from traditional 

deliveries methods. However, the use of these technologies brings new operational 

challenges. This research deals with the impact of using autonomous vehicles in 

logistics. We first present a technological review of the use autonomous vehicles in 

logistics and use it to introduce a classification of the delivery systems based on the 

parcel handover at the time of the last handling before delivery to customers. We 

describe three categories of handovers, namely, machine-to-person, machine-to-

machine, and person-to-machine, and characterize for each of them the type of vehicle 

routing optimization that it implies. Moreover, we study a truck-drone system, where 

the truck serves as a depot from where we load the product to the drone for final 

delivery to customers. The depot is now moving unlike in a traditional Vehicle 

Routing Problem for which we always assume a fixed depot. Therefore, we present a 

new class of Vehicle Routing Problems with a moving depot for a truck-drone system 

and formulate six Integer Linear Programming formulations to minimize the total 

operational cost through sequencing the deliveries to different customers and 

optimizing the locations for the truck to release and collect the drones. The problem is 

NP-hard, thus developing heuristic solutions is more appropriate for large size 

instances. The proposed models are first solved using the General Algebraic Modeling 

System software to find the optimal solutions and study their characteristics. 

Furthermore, a Clarke and Wright Savings heuristic is developed using C++ language 

to solve large-size problems. The algorithm returned solutions that are within the 

known quality, 20%. The solutions provided 8% to 20% deviation from the optimal 

solutions. The algorithm returned solutions for 80 nodes within 1200 seconds. 

Different real-life applications can adopt the proposed models such as the UPS truck-

drone and Amazon airborne fulfilment centre. 

Keywords: Autonomous vehicles; last mile delivery; Traveling Salesman Problem; 

Vehicle Routing Problem, moving depot 
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Chapter 1. Introduction 

 

In this chapter, we provide an introduction about electronic commerce, Last 

Mile delivery, autonomous vehicles, and the vehicle routing problem. Then, we 

present the problem investigated in this study as well as the thesis contribution. 

Finally, we present the general organization of the thesis.  

1.1. Overview 

The rapidly growing technology of the internet has infused in almost every 

aspect of our life. It is providing unlimited opportunities for companies and customers 

interactions resulting in adopting electronic commerce as a trending business 

transaction. Shin [1] defines electronic commerce as an undertaking in which the 

internet is used first as a platform to establish the terms of trades (e.g., price, 

availability, and order processing time to delivery) among the participants in a 

marketing channel [1]. With the rise of business-to-consumer transactions, the 

demand for parcel handling and deliveries has increased resulting in creating a 

significant number of smaller orders fulfillment. This rapid evolution has intensified 

the need for logisticians to resolve the problem of conveying goods from 

transportation hubs to their final destinations. This distribution is known as the Last 

Mile Delivery problem (LMD) [2-4]. It is the last leg of a product’s journey 

nevertheless the most challenging, with the highest transportation cost across all 

distribution networks [5]. 

  With e-commerce, customers are looking for instant deliveries at no additional 

cost. This attitude affects the performance of the supply chain and puts pressure on 

logistics management to meet customers’ expectations [6]. Also, these deliveries result 

in higher pollutant emissions such as CO2 and NO2 [7]. Recent advent in technology 

such as drones, robots, electric cars, artificial intelligence and the internet of things has 

given new opportunities to design improved logistics systems. The logistics industry 

makes use of these technologies to improve the traditional delivery methods (delivery 

person, postal/delivery boxes). One illustrative example is a combined truck-drone 

delivery system, which allows parcel deliveries from a mounted launch pad on the 

truck. Such new logistics system comes with new operational challenges in which the 

truck (depot) from where the product is last handed over to the drone for delivery to 
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the costumers is now moving, allowing faster deliveries, unlike a traditional system 

which has a fixed depot.  

1.2. Electronic Commerce 

During the last decade, the internet has grown tremendously to the extent that 

it permeated almost every aspect of our life. When the internet was established, it was 

considered as a medium for communication, but now it becomes a platform for 

purchasing products and services. People from different ages tend to shop from 

different e-stores as it has become simple to find anything on them. The Internet has 

provided unlimited opportunities for companies and customers as it has shaped 

various businesses, resulting in adopting electronic commerce in business transactions 

and being in a continuous phase. There are many definitions of e-commerce. It is 

broadly defined as a transaction in which the Internet is first used as a platform to 

establish the terms of trades (e.g., price, availability, and order processing time to 

delivery) among the participants in a marketing channel [1]. According to Kalakota 

and Whinston [8], e-commerce is recognized as the transmission of information, 

products, or services using computer networks or telephones from a communication 

perspective. E-commerce can also be defined as the transaction of goods and services 

through electronic communications [6].  

E-commerce differs from traditional business in many ways, one of the most 

distinct ways is that e-commerce makes it much easier to reach a global market for 

various kinds of goods and services with the flexible communication between 

producers, suppliers, and customers [9].  It can be divided into five types: business-to-

business (B2B), business-to-consumer (B2C), business-to-government (B2G), 

consumer-to-consumer, and mobile consumer [10]. Among the five types, B2C is the 

most popular one. It is a business conducted directly between the company and the 

consumer who are the end users of the company’s products and services via electronic 

media and by eliminating the process in the middle. As stated by Nisar and Prabhakar 

[10], the growth of Internet users purchasing products online is increasing annually. 

With the development of e-commerce specifically the B2C type, more and more 

customers tend to purchase almost all their needed products online from various 

websites that cover a wide range of products, e.g., electronics, books, furniture, 

clothes, and even food. 
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1.3. Last Mile Delivery 

B2C transactions raised the demand for home deliveries resulting in creating a 

larger number of smaller orders. This enormous growth in the market of e-commerce 

increased the need of supply chains to solve the problem of Last Mile Delivery 

(LMD), which refers to the process of conveying goods from transportation hubs or 

fulfillment centers to a final destination in the supply chain management [2, 3].  In the 

supply chain, the Last Mile is the last leg of a product’s trip before it arrives at the 

customer and in an e-commerce environment, and it is the problem of transport 

planning for delivering goods from e-retailers hubs to their final destination [4]. Also, 

it is considered the most expensive, most polluting, and the least efficient part of the 

e-commerce supply chain. It accounts for 13% - 75% of the total supply chain cost 

[5]. Figure 1 illustrates the Last Mile. 

 

 

 

 

 

Figure 1: The last mile 

According to Morganti et al. [6], the problems experienced with online 

shopping are mostly related to the delivery rather than the product itself. The paper 

reports that 39% of e-consumers have experienced problems such as: delivery at home 

when nobody was there (15%), a delay in the delivery (13%), delivery costs that were 

too high (7%), the lack of a way of tracking delivery status (5%), and the need to 

collect the product from a distant collection point (3%). The challenges in LMD are 

summarized as follows: 
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1. Ecological aspect. The vast number of daily deliveries including the 

repeated deliveries that result from the unavailability of customers at their 

place of residence during the standard working hours of the couriers can 

all result in increasing the emission of air pollutants (CO2) through the 

increment of the car mileage of the courier. The problem of repeated 

deliveries concerns about 20% - 30% recipients [7]. 

2. Cost.  It can be considered as the most important challenge when it comes 

to LMD. It is due to the considerable portion of the cost that goes to 

managing the delivery of the goods to their final destinations. The cost of 

fuel needed for traveling from one location to another and repeated 

deliveries can increase the amount of money spent that eventually cause a 

massive problem in the B2C delivery [5]. 

3. Supply chain performance. With the rise of e-commerce and the high 

demand for online shopping, the complexity of the supply chain increases 

due to the smaller size of orders and the high number of deliveries. 

Therefore, the traditional supply chain network should change to cope with 

the new design of supply chain networks. For instance, distribution 

networks should be restructured and reorganized to meet the high 

demands. E-commerce represents the driver of change in retail physical 

distribution networks. According to Morganti et al. [6], the growth of 

online shopping led to the need for new demand for e-fulfillment facilities 

directed by retailers. There are five types of e-commerce facilities: 

1. Mega e-fulfillment centers - where merchandises are stored and 

selected to make up the order. 

2. Parcel sorting centers (hubs) - where parcels are sorted before being 

forwarded to local parcel delivery centers. 

3. Local parcel delivery centers - for ‘last mile’ fulfillment. 

4. Local urban logistics depots - to ensure rapid order fulfillment. 

5. Return processing centers - to process returned items that customers 

decide they do not want. 

  For instance, Amazon has eight facilities in Germany totaling meter 762,000 

sqm, including four mega centers of 110,000 sqm each [6]. Figure 2 shows the 
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transformation of logistics due to e-commerce in which this evolution has passed 

through multiple phases. 

 

 

 

 

 

 

 

 

Figure 2: The transformation of retail logistics due to e-commerce 

1.4. Autonomous Vehicles 

The autonomous vehicle (AV) revolution is about to become the world-

changing technology as it is developing rapidly in every field: consumer, logistics, 

aerospace, agriculture, and automotive industry. This technology can have many 

advantages but faces many challenges. 

In this section, we discuss the definition of autonomous vehicles, the recent 

technologies, and their challenges. 

1.4.1. Definition of autonomous vehicles. The autonomous vehicle is 

considered a self- driving vehicle that operates without the need for direct input from 

the driver to control the steering, acceleration, and braking [11]. Autonomous vehicles 

are controlled during motion by a computer, along with various electronic subsystems 

and components rather than a human driver [12]. 

The US National Highway Traffic Safety Administration has classified 

autonomous vehicles by the division between automatic control and driver 

intervention [12]. There are six levels and can be listed as follows: 
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1. Level 0 - the automated system has no vehicle control but may issue 

warnings.  

2. Level 1 - the automated system may include features such as autonomous 

cruise control (ACC), parking assistance with automatic steering, and lane 

keeping assistance (LKA). It is essential to have the driver ready to take 

control at any time.  

3. Level 2 - the driver is obliged to detect objects, events and respond in case 

the automated system fails to respond correctly. The automated system 

executes accelerating, braking, and steering. Also, the automated system 

can deactivate immediately when taken over by the driver.  

4. Level 3 - within known and limited environments (such as freeways), the 

driver can safely turn their attention away from driving tasks.  

5. Level 4 - the driver must enable the automated system only when it is safe 

to do so. When enabled, driver attention is not required.  

6. Level 5 - no human intervention is required. The automatic system can 

drive to any location where it is legal to drive.  

To achieve a vehicle capable of driving itself, four primary functions are required: 

1. Navigation using a digital map.  

2. Situational analysis to monitor the environment through which the vehicle 

is moving. 

3. Motion planning using sensors for determining a precise course of motion 

within a defined period.  

4. Trajectory control to manage the execution of pre-planned changes in 

speed and directions [11]. 

 1.4.2. Key benefits of AVs. The rapid development of urbanization and car 

ownership impacts the transport systems, leading to challenges, including demand 

management, traffic signalization, traffic safety, and public transport [13]. 

Compared to the conventional modes of transport, automated vehicles are 

proved to offer a huge improvement in service quality and efficiency. Self-driving 

vehicles have important key benefits such as improving safety. According to [11], up 

to 90% of road traffic accidents are caused by drivers. The autonomous systems can 
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make better and faster decisions than humans because vehicles will always monitor 

and adapt to traffic and weather conditions as well as avoiding road obstacles with 

more diligence, speed, and safety than human drivers. In addition, autonomous 

vehicles can intelligently avoid busy routes using their vehicle-to-vehicle 

communication technology. 

Also, passengers can have greater comfort, in which the driver becomes a 

passenger, and he or she can rest or enjoy doing other activities. Thus, it can make 

AVs an attractive form of transportation method for elderly, underage, and people 

with physical disabilities.  Also, it can lower the environmental impact by achieving 

lower pollutant emissions [11]. 

In dense urban cities, labor costs are high. Manpower is one of the significant 

elements in any logistics system, which undoubtedly leads to a high level of inputs 

into the logistics system. Additionally, fatigue driving and bad driving behaviors lead 

to potential risks of transportation safety; however, automated vehicles are free from 

such risks. Thus, the application of automated vehicles in logistics can efficiently cut 

down the operation costs, improve the efficiency of freightage, and eliminate the 

potential risks caused by human beings [13].  

1.4.3. Current technologies of AVs. Autonomous vehicles have been already 

deployed in a wide range of applications across different industries and fields such as 

aerospace, agriculture, consumer applications, automotive applications, and public 

transport applications. Also, AVs have been applied in logistics such as autonomous 

loading and transport, assisted order picking and linehaul transportation. Table 1 

summarizes the recent applications of autonomous vehicles. 

1.4.4. Truck-drone system. Trucks have been used to handle goods 

distribution across logistics networks. However, drones are recently considered as a 

method for achieving distribution tasks. According to Amazon, 86% of their order is 

less than 5 pounds which it is the ideal for drone delivery, and that 82% of customers 

are willing to pay for drone delivery [22]. Hence, drones can provide new 

opportunities to improve home delivery processes. Moreover, drones have four 

advantages: they operate without a human pilot and avoid the congestion of traditional 

road networks by flying over them. Also, they are faster than trucks and have much 
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lower transportation costs per kilometer [23].  

Table 1: The deployment of autonomous vehicles in different industries 

 

However, drones have a limited travel distance and parcel size. While in the 

opposite, the truck has long-range travel capability and can carry large and heavy 

cargo with different sizes, but it has disadvantages such as being heavy, slow and 

having higher transportation costs [24]. Consequently, the advantages of trucks offset 

the disadvantages of drones and similarly for the other way around. These 

complementary capabilities are the foundation of the “Last Mile delivery with drone” 

[25]. According to Campbell et al. [22], “Using the drones is preferred as long as 

drone cost per mile is about 35% or less of the truck cost per mile”. Therefore, drones 

can deliver to more customers at a lower cost than the truck.  

Industry Application Type Description 

Aerospace 
The Mars Rover 

Curiosity 

Autonomous 

extraterrestrial 

vehicle 

Uses autonomous wayfinding routine. 

Evaluates the area in advance. 

Decides independently which route is the safest [14]. 

Agriculture 
Fendt 

GuideConnect 

Two tractors – one 

driver 

The system connects two tractors via satellite navigation 

and radio communication to form one unit. One of the two 

vehicles is unmanned and performs the same working 
procedure as the manned vehicle [15]. 

Consumer 
Application 

The Homerun 
vacuum cleaner 

Autonomous 
vacuum cleaner 

Runs autonomously through the house and vacuums the 
dust and dirt beneath it into a built-in receptacle [16]. 

Automotive 

Industry 

Bosch Park 

Assist 

Parking assistant 

system 

Parks the car automatically with great accuracy and within 

a few seconds and into tight parking spaces [11]. 

Automotive 
Industry 

Volvo’s 

Autonomous 

Valet Parking 

Parking assistant 
system 

Enables a vehicle to be parked once the driver has stepped 

out of the vehicle. 

The driver can communicate with the system via a mobile 
device such as a smartphone, directing it to a preferred 

parking place and summoning the parked vehicle to leave 

the car park to collect them when required [17]. 

Automotive 

Industry 

Google Self 

Driving Car 
Self-driving vehicle 

Powered by Google Chauffeur software and capable of 

driving itself on both highways and urban streets [18]. 

Warehousing 

Operation 
Open Shuttle 

Autonomous 

Loading and 
Transport 

Designed for transport and picking activities including 

cartoons and containers [19]. 

Warehousing 
Operation 

MoveBox 

Autonomous 

Loading and 

Transport 

Can automatically position itself to pick up and deliver 
pallets as directed [11]. 

Warehousing 

Operation 
Kiva 

Assisted order 

picking 

Kiva can optimize the picking efficiency by mobilizing the 

shelves using Kiva autonomous vehicles [20]. 

Warehousing 

Operation 

Multi-Shuttle 

Move 

Autonomous 

Loading and 

Transport 

Vehicles can handle small load carriers and pallets. 

They can communicate with each other to determine the 

tasks among them [11]. 

Public 

Transport 
Park Shuttle 

Self-driving 

Vehicle 

It finds the way automatically, moves on a simple ground-

level asphalt road, and it is ideally suited to short distance 
public transport [21]. 

Public 

Transport 

Automated 

Public Mover 

Autonomous 

Vehicle 

It runs as an on-demand nonstop transportation system 

between any two points on a network [21]. 
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The truck drone system works as follows: the truck transports the drone close 

to the customer's locations, allowing the drone to serve customers while remaining 

within its flight range, effectively increasing the usability and making the schedule 

more flexible for both drones and trucks. In other words, a truck departs from the 

depot carrying the drone and all the customer parcels. As the truck makes deliveries, 

the drone is launched from the truck to serve a nearby customer with a parcel. While 

the drone is in service, the truck continues its route to further customer locations. The 

drone then returns to the truck at a location different from its launch point [24]. UPS 

Company is testing this system, and according to them, drone delivery can help in 

lowering the cost, specifically in rural locations where cars must drive miles between 

single deliveries. This system can save up to $50 million per year by cutting a mile off 

of every driver’s route each day [26]. However, the Federal Aviation Administration 

prohibits till now commercial drone from flying beyond the sight of their pilots [27]. 

Mercedes Benz is also interested in this system; it is pouring $562 million into 

delivery van-drone. Mercedes Benz van is with a range of up to 168 miles. The van 

has a fully automated cargo space. It consists of a mechanical shelving system that 

can load packages and autonomously know where packages are going. The driver can 

get a notification when reaching a drop of a package. The drone is resting on a 

landing station on top, and when reaching a drop off location, the shelving system will 

push the package to the drone that will do the rest of the job and deliver to customers 

[28]. 

1.4.5. AVs Challenges. Automated vehicles are still on the test bed in which 

the defects and instabilities in the technology limit the scale of applications in the 

initial period. The complexity of the driving environment, congestion, consumer 

acceptance, regulations, and technical performance are discussed below. 

1.4.5.1. Detection.  A substantial challenge for AVs rests in making sense of 

the complex and dynamic driving environment.  AVs operate on three-phases known 

as ‘‘sense-plan-act’’. Trajectory control and motion planning are the most important 

functions in autonomous vehicles in which they manage the execution of the pre-

planned changes in speed, direction, or maintaining the stability as well as monitoring 

the vehicle’s movement. The real challenge is to make an accurate and detailed 

identification and prediction in the self-driving vehicle’s environment such as the 
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movement of objects, weather changes, or anything that could happen in a blink of an 

eye. The more dynamic an object is, the more difficult it is to predict its future 

environment. The prediction of where pedestrians and bicyclists are going to turn next 

is one important challenge that needs to be discussed. Harshitha and Manikandan. 

[29], are proposing in their research paper a real-time pedestrian detection system for 

autonomous vehicles. This system uses a camera to capture the front scene, and each 

frame is processed to extract features using Histogram of Oriented Gradients (HOG) 

followed by Support Vector Machine (SVM) classifier to differentiate between 

pedestrians and backgrounds. The pedestrians are identified, and their locations are 

marked. This proposed system is useful for smarter mobility and would serve the 

purpose of a driver assistance system. The detection system can detect pedestrians 

with an accuracy of 98.31%. 

1.4.5.2. Congestion.  AVs are supposed to provide an easing of traffic 

circulation and reduce the travel cost. However, it may induce additional travel 

demand. This demand could be an opportunity and a threat. The additional travel 

demand may worsen traffic congestion. This concern is becoming severe, and thus, 

researchers are trying to manage the congestion resulting from injecting the 

autonomous vehicles into the transportation system. Currently, most of the research 

papers focus on finding the optimal routes for AVs to maximize traffic throughput. 

One research paper is employing the Dynamic Lane Reversal (DLR) to enable the 

automatic lane reversal. It is used to optimize the travel schedules of connected 

autonomous vehicles (CAVs) based on DLR for performance improvements in which 

it collects the travel requests from the CAVs and determines the optimal schedules 

and routes on dynamically reversal lanes [30]. 

1.4.5.3. Consumer acceptance. Despite the advantages of AVs, the public 

could see the disadvantages outweigh the advantages such as: 

− Control: People prefer being in control and perform the tasks at hand. 

Taking this away would make them feel more susceptible to any risk. 

− System failure: Technology could fail, especially in the early stages of the 

development and the system of autonomous vehicles could fail in many 

areas in which predicting them can be unforeseen such as bad weather, 

digital traffic jam, data loss, and overall system crashing [31]. 
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Many efforts have surveyed consumer perception of automation technology. 

MIT AgeLab performed a study and asked around 3,000 people about their interest in 

self-driving vehicles. The study was repeated twice. In the first year, results showed 

that 48% of the participants would never purchase this type of vehicles, as they are 

uncomfortable with the idea of trusting the technology and losing control of the 

vehicle. In the second year, the research showed a decline in consumer interest in AVs 

across all age groups. In 2016, 40% of people in the age of 25-34 were comfortable 

with the idea of AVs while in 2017, this percentage was decreased by 20% [32].  

Moreover, according to a report of public views on automated vehicles from 

the American Automobile Association [13], 75% of interviewees hold pessimistic 

views on unmanned technology: 54% of drivers maintain that automated vehicles on 

real roads increase the potential risk of a traffic accident and intensify public anxiety. 

1.4.5.4. Regulations and legislation. AVs present a concern.  For instance, 

many restricted regulations and barriers face drone systems from being adopted in the 

commercial sector. In the United States, the Federal Aviation Administration (FAA) 

requires drones to be operated under a ceiling of 400-feet and prohibits them from 

flying beyond the sight of their pilots [27].  

1.4.5.5. Technical challenges.  Drones have technical challenges in terms of 

endurance, reliability, and safety. They have limited battery capacity that impacts the 

flight endurance of such unmanned aerial vehicles [33]. In addition, they may require 

redundant systems such as additional motors and sensors that further reduce flight 

endurance. Furthermore, they rely on GPS, which has a limited accuracy of about 10 

meters without corrective technologies. Therefore, drones that are operating in heavily 

forested areas or so-called urban canyons may lose contact with a GPS signal [34]. 

1.5. Vehicle Routing Problem 

Vehicle Routing Problem (VRP) has been studied intensely in the last four 

decades. It was formally introduced in 1959 by Dantzig and Ramser. It is considered 

an important problem in the fields of transportation, and logistics, and holds an 

important place in distribution management. The problem has different forms, and 

that is due to the variety of constraints encountered in practice. It has attracted the 

attention of operational research community because of the economic importance of it 
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as well as the methodological challenges that it poses [35]. VRP is defined as a set of 

routes for a fleet of vehicles based on one, or multiple depots that must be determined 

for a set of customers [36]. The problem can also be defined as determining a set of 

vehicle routes to perform all or some transportation requests with the given vehicle 

fleet at the minimum cost, particularly, deciding which vehicle handles which 

requests in which sequence so that all vehicle routes can be feasibly executed [37]. In 

other words,  the objective is to deliver a set of customers with known demands on 

minimum cost vehicle routes originating and terminating at a depot [38].  

There are two types of VRP, the conventional static VRP, and the dynamic 

VRP. Psaraftis [39] used the following classification of the static routing problem; “If 

the output of a certain formulation is a set of preplanned routes that are not re-

optimized and are computed from inputs that do not evolve in real-time.” While he 

refers to a problem as dynamic if “the output is not a set of routes, but rather a policy 

that prescribes how the routes should evolve as a function of those inputs that evolve 

in real-time.” In other words, the dynamic VRP is a problem where the planner does 

not know all the relevant information of planning the routes in which information can 

be continuously changing and updating once initial routes have been constructed. The 

followings represent different variants of VRP: 

• Travelling Salesman Problem (TSP) 

The Travelling Salesman Problem is one of the well-known problems in 

combinatorial optimization in which many researchers have solved it with different 

schemes. It refers to a salesman visiting a set of cities and returning to the city he 

started in; the objective is to minimize the total distance traveled [40]. It can also be 

formulated as following: “Given a set of cities along with cost of traveling between 

each pair of them, the problem is to find the cheapest way of visiting all cities and 

returning to the starting point in which the way of visiting the cities is the order in 

which cities are visited; the order is called a tour or circuit through the cities” [41]. 

• Multiple Travelling Salesmen Problem (mTSP) 

The multiple traveling salesman problems (mTSP) is considered as the 

generalization of the TSP in which more than one salesman is allowed to travel. It is 

the core of VRP, which are central to logistics management. The mTSP consists of 
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determining a set of routes for m salesmen whom all start from and return to the same 

depot [42]. The problem can be defined as follows: “Given a set of nodes, and m 

salesmen located at a single depot node. Nodes to be visited are called intermediate 

nodes. The mTSP solution is to find the tours for all m salesmen whom all start and 

end at the same depot in which each intermediate node is to be visited only once, the 

objective function is to minimize the total cost of visiting all nodes” [43]. Compared 

to the TSP, the mTSP is more suitable for real-life situations, because it is capable of 

handling more than one salesman. The following represents some of the possible 

variations of mTSP: 

− Single vs. Multiple depots: In a single depot case, all salesmen should start 

from and end their tours at a single node while in multiple depots, the 

salesmen can either return to their original depot after completing their 

tour or return to any depot with the restriction that the initial number of 

salesmen at each depot remains the same after all travel. 

− Several salesmen: The number of salesmen may be bounded as a variable 

or a fixed number. 

− Fixed charges: Each salesman has an associated fixed cost accounted 

whenever the salesman is used. Thus, minimizing the number of salesmen 

is a concern. 

− Time windows: In such a case, certain nodes need to be visited in a 

specific period, which refers to the TSP with a time window. It is used in 

applications such as school bus, ship, and airline scheduling applications. 

− Other variations could be added to the mTSP including a number of nodes 

each salesman should visit as well as maximum or minimum distances 

traveled by a salesman [42]. 

The TSP and mTSP can be solved using different approaches such as: 

− Exact Solutions: The exact methods such as mathematical modeling, 

dynamic programming, and branch and bound are all capable of giving 

exact solutions [44]. But, to find the exact solution, the computational time 

can take too long which makes it unacceptable in real life [45]. 

− Heuristics: The TSP requires a large computational time. Thus, heuristics 

are designed to overcome the drawback of the exact solutions [45]. 
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• Multi-Depot Multiple Travelling Salesmen Problem 

The multi-depot multiple traveling salesmen problem (MmTSP) is a 

generalization of single depot mTSP. It consists of finding tours for all salesmen such 

that all customers are visited only once, the number of customers visited by a 

salesman lies between a predetermined interval, and the total cost of all tours is 

minimized. The MmTSP can have two categories, fixed destination MmTSP, and 

non-fixed destination MmTSP. If the problem is to determine a total of m tours such 

that all salesmen should return to their original depot, then it is the fixed destination 

case. On the other hand, if the salesman does not need to return to his original depot, 

but the number of salesmen at each depot should be the same at the end as it was at 

the beginning, then this the case of non-fixed destination MmTSP [43].  

1.6. Problem Statement 

As e-commerce business continues to grow every day, the responsibility of 

logistics for solving the Last Mile delivery problem is increasing. As mentioned 

before, the Last Mile delivery is the most expensive, most polluting, and least 

efficient part of the e-commerce supply chain as it accounts for 13% - 75% of the total 

supply chain cost [46]. Logistics companies are always trying to find new solutions to 

minimize the total cost and increase delivery efficiency.  

In this work, we aim to study the Last Mile Delivery problem that is 

characterized by multiple challenges such as high operation cost, high ecological 

impact and the complexity in the performance of the supply chain. To tackle the 

challenges, the inclusion of new technologies such as drones, robots, and the internet 

of things can help by developing new distribution systems to improve from traditional 

deliveries methods. However, the use of these technologies brings new operational 

challenges that add new characteristics to the configurations (the depot) of the 

delivery process. Therefore, this research deals with the impact of using Autonomous 

Vehicles (AV) on the logistics of the LMD. We first present a technological review 

on the use of AVs in logistics and use it to introduce a classification of the delivery 

systems based on the parcel/product handover at the time of the last handling before 

delivery to customers. We describe three categories of handovers, namely, machine-

to-person, machine-to-machine, and person-to-machine, and characterize for each of 

them the type of vehicle routing optimization that it implies.  
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Furthermore, we present a new class of VRP that is characterized by a moving 

depot and formulate six variants of a Discrete Vehicle Routing Problem with a 

Moving Depot (VRP-MD). The problem under consideration can be described as 

follows: a vehicle moves on a particular path to release self-driving vehicles to serve a 

set of customers from different areas. The self-driving vehicles can handle multiple 

deliveries given their load capacities and operating time. Then, the self-driving 

vehicles can be collected by the vehicle at a certain location for refilling before being 

released to serve a new set of customers. Once all customers are served, the self-

driving vehicle is collected by the vehicle. In our work, we will focus on the case 

where the vehicle is a truck, and the self-driving vehicles are drones. Figure 3 

illustrates the problem and explains the delivery process as follows: 

• First, the customer is scheduled for delivery. 

• As a second step, the company sends the truck to serve customers from 

different areas. 

• The truck releases the drones to serve a set of customers. 

• After serving customers, the truck collects the drones. 

• In the case of more deliveries, drones are re-launched to serve a new set of 

customers. 

• Finally, the truck collects the drones. 

 

Figure 3: Problem illustration 
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The objective is to find the optimal path for the drones and truck, along with 

the optimal locations to release and collect the drones to minimize the total 

operational cost. The total operational cost is composed of the traveling costs for the 

drones and the truck. The output of the optimization will give the sequencing of the 

deliveries to different customers as well as the optimized locations for the truck to 

release and collect the drones. The problem is solved using the General Algebraic 

Modeling System (GAMS) software. Also, a Clarke and Wright savings heuristic 

method will be developed to handle large-size instances. For the testing of the 

algorithm, we used data from an existing problem from the online TSP library. 

1.7. Research Objectives and Contribution 

The problem of Last Mile delivery has been studied widely especially with e-

commerce growth. Recently, the inclusion of the AVs is used to reduce the effects of 

the LMD challenges, in which the effective deployment of the AVs can be the 

solution for the LMD problem.  

In this work, we approach the problem of LMD by providing a detailed review 

of the current applications of AVs in LMD. Also, we provide a review of the use of 

TSP in solving problems of the delivery systems. Then, through the technological 

review, we introduce a classification of the system-to-system (S2S) handover, 

namely, person to machine handover, machine to machine handover, and machine to 

person. Consequently, we introduce a new class of VRP with a moving depot and 

formulate variants of a Discrete Traveling Salesman Problem (TSP) with a Moving 

Depot (TSP-MD) to solve the problem of the Last Mile. Moreover, we provide 

Integer Linear Programming formulation to optimize the delivery efficiency by 

minimizing the total truck-drone operational cost. We determine the optimal path for 

the drones and truck, along with the optimal locations to release and collect the 

drones. Finally, we develop a Clarke and Wright savings heuristic method to test the 

ability of the developed model to solve large instances. 

The main contributions of this research are the following: 

• Review the literature on TSP in the area of the applications of AVs in 

LMD. 

• Provide a technological review of the recent applications of AVs 

technology in the design of LMD systems. 
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• Introduce a classification of the system-to-system (S2S) handover that is at 

the time of the last handling before reaching the customer. 

• Introduce a new class of Vehicle Routing Problem with a moving depot 

and formulate an Integer Linear Programming to perform the Last Mile. 

• Minimizing the total truck-drone system’s operational cost by finding the 

optimal path for the drones and truck, along with the optimal locations to 

release and collect the drones. 

• Develop a Clarke and Wright savings heuristic methodology to deal with 

large number of instances. 

1.8. Research Significance 

From 2013 to 2018, the e-commerce retail sales increased dramatically, and it 

is predicted to be in a continuous increase [10]. Nowadays, all businesses are offering 

online shopping. E-retailers increased the complexity of the supply chain due to the 

small order sizes and the large number of deliveries that delivery companies need to 

handle. With online shopping, customers are expecting to have fast home deliveries. 

As a result, the Last Mile is currently regarded as the most expensive, and most 

pollutant part in the entire supply chain. Thus, the implemented solutions should 

address the LMD challenges in terms of replacing the existing solutions with ones that 

can overcome its problems. For instance, the traditional delivery methods such as 

delivery cars can increase the operational cost and air pollutions. Thus, they should be 

replaced by other alternatives. The effective deployment of autonomous vehicles in 

the problem of the Last Mile can be a considerable solution. Autonomous vehicles 

like drones can reduce the operational cost as well as the ecological impact. From an 

application point of view, many companies are considering the use of the autonomous 

vehicle as the promising alternative for an efficient delivery at the Last Mile. For 

example, UPS is supporting the idea of using truck-drone systems [26, 27]. Also, 

Amazon patents train mounted mobile hubs for drone delivery fleet in which the 

system allows for the use of drones to fulfill customers’ orders while the train is in 

motion [47].  

The delivery service offered by e-retailers is one of the fundamental factors 

influencing the customers’ decision to shop from them, so the ability to deliver 

customers’ orders on time reflect the success of businesses. Thus, companies should 
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start working on replacing their traditional ways of deliveries using autonomous 

vehicles. The proposed research helps address the delivery of customers’ orders using 

a combine truck-drone system. 

1.9. Methodology 

The following steps will be followed to achieve the outcomes of this research: 

Step 1:  Update the literature review in the topics of Last Mile delivery, drone 

systems, and the multiple traveling salesmen problems. 

Step 2: Identify objective functions, decisions variables, and constraints based on 

model assumptions. 

Step 3:  Formulate a mathematical model to find the optimal path and locations. 

Step 4:  Code the formulated model using appropriate optimization software. 

Step 5:  Develop a Clarke and Wright savings heuristic method to test the ability of 

the developed model to solve large instances. 

1.10. Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 is dedicated to the 

literature review on e-commerce, LMD, the use of autonomous vehicles, and TSP. 

Moreover, related works of this research are discussed. The introduction of the S2S 

handover classification is discussed in Chapter 3 along with the applications of each 

handover type as well as its importance in introducing new types of logistics 

problems. Chapter 4 presents the different variants of TSP-MD for a truck-drone 

system with their formulation. Chapter 5 illustrates the proposed Clarke and Wright 

savings Heuristics Algorithm. Chapter 6 concludes the thesis and outlines future 

work. 
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Chapter 2. Background and Literature Review 

 

This chapter presents the related theoretical knowledge about Last Mile, 

autonomous vehicles, and the technical knowledge about traveling salesman problem. 

It also presents the recent related studies and work that has been conducted on the 

above topics. Furthermore, the aim is to review the fundamental concepts and some 

up to date and relevant information, which will be used as the basic conceptual line in 

further analysis. 

2.1. Last Mile Delivery Problem 

As mentioned earlier, the enormous growth in the market of e-commerce has 

driven explosive growth in the logistics demand for online shopping in which the Last 

Mile distribution plays an important role in serving the final customer. Home delivery 

is considered the most common and convenient method among customers in 

delivering the purchased products to their homes directly. They are usually conducted 

by an external courier service.  

Besides the direct home deliveries, many solutions are initiated to rationalize 

the Last Mile Delivery. According to Iwan et al. [48], the key solutions to this type of 

problem are as follow: 

• Reception boxes, fixed outside the customer’s home, access is possible 

using a key or an electronic code; the customer is alerted of the delivery by 

mobile phone or email. 

• Delivery boxes, owned by the delivery company; filled with the goods at 

the distribution depot, and then temporarily attached to the home via a 

locking device fixed on the wall in a secure place at the customer’s home. 

• Controlled access systems, provide the delivery driver with the means of 

gaining access to a locked area to leave the goods in. 

• Collection points are based on the use of locations other than customers’ 

homes for delivery. The retailer or the carrier delivers to the collection 

point, and the customer is informed that their order is ready for collection.  

• Locker points are groups of reception box units, sited in apartment 

blocks, workplaces, car parks, and railway stations. Lockers have 

electronic locks with a variable opening code and can be used for different 
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customers on different days. Customers are notified by a message about 

when their delivery will arrive, the box number, location, and the code to 

open the box. Locker banks require the customer to make the final step of 

the journey [48]. Table 2 shows a comparison between the key solutions of 

last mile delivery in terms of many important parameters. 

Table 2: A comparison of last mile delivery systems [48] 

 
Attended 

delivery 

Reception box\ 

Delivery box 

Controlled 

access systems 
Locker-bank Collection point 

Who covers the 

last mile? 

Delivery 

company 

Delivery 

company 

Delivery 

company 
Customer Customer 

Customer 

present? 
Yes No No No No 

Types of 

products 
Any 

Packages, 

groceries 

Packages, 

groceries 

Packages, 

groceries 
Packages 

Failed deliveries High Virtually none Virtually none Virtually none Virtually none 

Delivery window 
Fixed delivery 

hours 

Delivery 
company 

operating hours 

Delivery 
company 

operating hours 

Delivery 
company 

operating hours 

CP opening 

times 

Times at which 

goods can be 

collected 

Not appropriate 24 hours 24 hours 24 hours 
CP opening 

times 

Retrieval time 

for customer 
None Very short Very short Short-Long Short-Long 

Drop-off time Long Short Short Very short Very short 

Initial 

investment 
Low High / Medium Medium Medium Low / Medium 

Delivery Costs High Low Low Lowest Lowest 

Possible 

operational 

problems 

High failed 
deliveries. Poor 

use of vehicle 

capacity 

A large number 
of boxes needed. 

Need to collect 

boxes 

Customer 

concerns about 

safety. Need for a 
suitable delivery 

location 

The customer has 

to travel to collect 

The customer 

has to travel to 
collect 

Potential 

reduction in 

goods vehicle 

activity 

compared to 

attended 

delivery 

- Some reduction Some reduction 
Greatest 

reduction 

Greatest 

reduction 

 

From the table, we can see that locker banks (parcel lockers) and collection 

points are considerable solutions in terms of reducing the delivery cost and the 

possible operation problems. In terms of the ecological aspect, parcel lockers can play 

an essential role in reducing pollutant emissions. Table 3 compares the ecological 

aspects between deliveries performed by a courier company and parcel machine. 
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Table 3: A comparison of ecological aspects of deliveries performed by a courier and 

a company via parcel lockers [7] 

Touchstone Parcel delivery company 24/7 parcel lockers 

Parcels daily per one courier 60 600 

Kilometers daily per one courier 150 70 

CO2 emission per parcel 300g 14g 

Fuel consumption per parcel 0.231 0.011 

 

As it can be seen from the above table, the direct home delivery causes a huge 

increase of the pollutants such as CO2 and NO2 while the current solutions 

particularly the parcel lockers can reduce the emissions of such pollutants as it 

reduces the traffic jams and that is because the delivery trucks serving the collecting 

points run a smaller mileage than regular delivery method. 

Based on the three delivery modes – attended home delivery, reception box, 

and collection points, Wang et al. [49] undertook a quantitative study of the 

competitiveness of the three modes through analyzing the delivery cost structure and 

operation efficiency in different scenarios, which helps identify the most suitable 

mode for different customer distribution densities. Also, Hayel et al. [50] proposed a 

queuing model to describe the Last Mile delivery system with attended home delivery 

and collection point options. Considering the monetary and congestion effect of two 

options, a game-theoretical approach was designed for determining the optimum 

option a consumer would make.  

Many delivery companies are implementing the parcel lockers concept, as it is 

a convenient solution. For instance, in Germany, there are 3000 parcel lockers 

implemented by DHL [6]. Moreover, Aramex and InPost are using a similar solution 

to facilitate their businesses [7]. According to Zhang and Lee [51], parcel lockers / 

shared reception boxes (SRB) can release the time constraint for the customer and the 

courier. It also can protect customer privacy in which customers do not need to use 

their home address for their online purchasing, but instead, they can use the location 

of SRB as the consignment address. Therefore, they proposed scheduling of flexible 

vehicles for the Urban Last Mile Logistics (ULML) problem. This paper is aimed at 

investigating the integration of the attended home delivery (AHD) and the shared 
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reception box (SRB). It addressed the problem of online shopping and e-commerce as 

a huge challenge to ULML as it accounts for a large proportion of logistics cost due to 

city traffic, including labor cost and the cost of the used vehicles. The analysis is 

performed using Ant Colony Optimization (ACO) to solve the proposed system [51]. 

Furthermore, a cost simulation tool was developed by Gevares et al. [46] to simulate 

the Last Mile delivery costs and according to their research work; changes within Last 

Mile characteristics significantly influence the cost. Customer density and delivery 

window size are considered the factors that affect the delivery cost. These factors 

were further studied by Boyer et al. [52] in which the simulation results showed that 

greater customer density and longer delivery windows benefit the delivery efficiency.  

The last Mile puts a significant pressure on the logistics management to meet 

customers’ expectations and reduce the complexity of the supply chain performance. 

As a result, other alternatives should be considered to tackle the problems of the Last 

Mile. The following section discusses the importance and implementations of 

autonomous vehicles in logistics. 

2.2. Autonomous Vehicles 

The focus on autonomous vehicles and the Last Mile Delivery problem arises 

day by day. Yu and Lam [2] proposed a logistics system that accommodates logistics 

demands for smart cities and determines the optimal routes for the governed AVs by 

taking into consideration the various requirements imposed by the vehicles, logistics 

requests, renewable generation, and transportation system. This was performed by 

coordinating routes and charging schedules as well as formulating joint routing and 

charging problem in the form of quadratic constrained mixed integer linear program.  

Nowadays, the truck-drone system is studied widely, as it is used as a delivery 

system to reduce the effect of the Last Mile. The truck and the drone need to interact 

to determine the optimal routing. In this regard, many types of research have 

investigated the routing problem of a combined truck-drone system. Murray and Chu 

[33] introduced the problem of Flying Sidekick Travelling Salesman Problem 

(FSTSP). FSTSP considered a set of c customers in which each of them should be 

served once by either a truck or a drone that is in coordination with the truck. Because 

the drone cannot fulfill some customers’ orders, the truck will only serve these orders. 

In FSTSP, the truck and the drone must depart from and return to a single point 
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exactly once in which they may depart or return independently, or the drone might be 

transported by the truck to reduce battery power consumption. The drone is collected 

at the customer node; the truck cannot connect with the drone at an intermediate 

place. A Mixed Integer Linear Programming (MILP) formulation and heuristic are 

proposed. The heuristic is based on “Truck First, Drone Second” idea, in which they 

construct first routes for the truck by solving a TSP and then run a reallocation 

procedure to reduce the objective value. Moreover, the reallocation procedure 

iteratively checks each node from TSP tour and considers if the node is suitable for 

use as a drone node. The change is applied immediately when this is true, and the 

current node is never checked again. Otherwise, the node is relocated to other 

positions to improving the objective value. The relocation procedure is designed in a 

“best improvement” fashion; it evaluates all the possible moves and executes the best 

one. The proposed methods are tested only on small-sized instances with up to 10 

customers.  

Agatz et al. [53] studied a slightly different problem - called the “Traveling 

Salesman Problem with Drone” (TSP-D), in which the drone has to follow the same 

road network as the truck. Moreover, in TSP-D, the drone may be launched and return 

to the same location, while this is forbidden in the FSTSP. This problem is modeled 

as a MILP formulation and solved by a “Truck First, Drone Second” heuristic in 

which drone route construction is based on either local search or dynamic 

programming. Bouman et al. [54] extended this work by proposing an exact approach 

based on dynamic programming that can solve larger instances. Additionally, Wang et 

al. [55] in recent research introduced a more general problem called “The vehicle 

routing problem with drone” (VRP-D) that deals with multiple trucks and drones to 

minimize the completion time. The analysis was conducted on several worst-case 

scenarios, from which they propose bounds on the best possible savings in time when 

using drones and trucks instead of trucks alone where the drones can be dispatched 

from and picked up only at the nodes; customer locations and the depot. Further 

development of this research was studied by Poikonen et al. [56], where they 

extended the worst-case bounds to more generic distance/cost metrics as well as 

explicitly consider the limitation of battery life and cost objectives. Moreover, 

Dorling et al. [57] addressed some existing problems in the planning of drone 

deliveries such as not allowing multiple trips to the depot which leads to excessive use 
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of drones and the in-consideration of the effect of battery and payload weight on 

energy consumption that leads to costly or infeasible routes. They proposed two 

multi-trip VRP’s that address the two problems mentioned above, one to minimize 

costs subjected to the delivery time limit, while the other minimizes the overall 

delivery time subjected to budget constraint. A mixed integer linear program was used 

to solve the problem. 

To extend the literature further, Ham [58] studied the truck – drone system but 

added new configuration on the traditional system. The drone has a single unit 

capacity and can perform two different tasks: drop and pickup. That is the drone has 

two options after it delivers to the customer. It either returns to the depot for 

delivering to the next customer, or it can travel directly to a customer for a parcel 

pickup. Also, the time window is addressed in which the customer can order multiple 

products with different time priorities (which product should be shipped first). Beside 

drone’s delivery, the truck can serve customers along its route. Finally, constraint 

programming approach is used for modeling the truck-drone system. Additionally, 

Kim et al. [59] addressed the use of drones in the healthcare sector for delivery and 

pickup planning of medications in rural areas where the patients must visit clinics for 

health testing and medicine fill-up. In this paper, the drone can carry more than one 

package. Approximately, the drone can deliver three packages per route. Also, the 

paper introduced two models: the first model is to determine the optimal number of 

drone center locations using the set covering approach. The second model is to 

minimize the operational cost of the drones that are resulted from delivering 

medicines to customers and picking-up exam kits on their way back in which the 

drone can deliver to more than one patient. The solution is developed using a 

preprocessing algorithm, a Partition method, and a Lagrangian Relaxation method.  

Furthermore, an innovative system was developed by Dayarian et al. [60] in 

which the drones are used to resupply the delivery vehicles with customers’ packages. 

The resupply can occur when the delivery vehicle is not moving and when the drone 

is handed on the roof of the vehicle. The purpose of this paper is to investigate the 

advantage of the resupplying configuration and introduce a VRP with a drone. The 

problem is solved using different algorithms and the performance of the algorithms 
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compared.  Lastly, Figliozzi [61] provided different characteristics for the commercial 

use of the truck and drone systems such as: 

• Drone’s most speeds are in the range of 16 to 20 meters per second (35 to 

45 miles per hour) and the flying time is about 20 to 30 minutes. In terms 

of payload, it ranges from 1.8 kg to 6.4 kg (4 to 14 lbs).  

• Truck’s maximum speed is 30 miles per hour (13 to 14 meters per second), 

and its maximum payload is 1890 kg. Hence, the drone is considered more 

attractive when it cooperates with the truck. 

Deviating from the truck-drone system, Boysen et al. [62] studied a system 

that replaces the drones with autonomous robots to deliver to customers. In this 

system, the truck starts from a warehouse loaded with customers’ packages as well as 

small autonomous robots. The truck fills in the robots with customers’ packages and 

then releases the robots in which each robot is dedicated to a single customer. After 

the delivery is made, the robots can return to decentralized robot depots where the 

truck can refill them by delivery packages. The process continues until all the 

customers are served. Therefore, the paper develops scheduling procedures that aim at 

finding the truck route and the launching schedule of the robots that minimizes the 

weighted number of late deliveries. In this, a mixed integer programming and a local 

search heuristic are used. 

Drones are affected by many factors such as loadable capacity, speed, battery 

charging, and body weight. Regarding these aspects, Lim and Jung [63] performed a 

simulation that focuses on charging speed, weight, and battery capacity. Results show 

that recharging speed is the most important factor among the others for increasing the 

delivery amount. Hence, the recharging speed of the battery should be the focus for 

researchers as it has a significant impact on increasing the delivery amounts. 

In brief, autonomous vehicles have acquired great attention. Specifically, 

recent studies have focused on the truck-drone system as a way of tackling the 

problem of the Last Mile. However, most of the studies deal with a single drone. To 

the best of our knowledge, the number of researches that addresses the handling of 

multiple drones is scarce. Also, the collection of the drones is located at the customer 

location, which implied that no location optimization for the truck is performed in the 
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previous studies. The next section discusses the approaches used to solve the routing 

problem. 

2.3. The Traveling Salesman Problem 

A widely studied problem that falls under VRP is the TSP and lot of 

researches highlighted this problem. The TSP has a large number of variants such as 

TSP with time window [64], TSP with pickup and delivery [65], TSP with profits 

[66], maximal based TSP [67], kinetic based TSP [67], and TSP with drones [68]. 

According to Ha et al. [68], TSP with drones is the main focus in which drones are 

deployed alongside trucks to deliver goods to customers to achieve service quality 

improvements. The paper gave rise to a new variant of TSP with drones (TSP-D) that 

aims to minimize the operational cost including transportation cost using two 

algorithms. The first algorithm (TSP-LS) was adapted from the approach proposed by 

Murray and Chu [33], in which the optimal TSP solution is converted to a feasible 

TSP-D solution by local search. The second algorithm, a Greedy Randomized 

Adaptive Search Procedure (GRASP), is based on a new split procedure that 

optimally splits any TSP tour into a TSP-D solution. After a TSP-D solution is 

generated, it is then improved using local search operators. 

TSP deals with one salesman, and it is limited to a certain number of 

applications. However, many applications in the context of LMD deal with multiple 

trucks and more than one salesman is used. Thus, mTSP is more useful than TSP. 

Angel et al. [69] investigated the buses scheduling to obtain a bus loading pattern in 

which the number of routes is minimized, total distance traveled by all buses is kept at 

a minimum, no bus is overloaded, and the time required to traverse any route does not 

exceed a maximum allowed policy. Kencana et al. [70] studied the technique of ant 

system (AS) to solve the mTSP in which this technique was simulated to determine 

the total shortest path for m salesmen who have to visit n cities. Arya et al. [71] stated 

that “the amount of computation time needed to solve the mTSP grows exponentially 

as the number of cities.” Thus, they proposed a modified genetic algorithm that 

generates a population of solutions in each iteration and the best point in the 

population approaches an optimal solution. Kara and Bektas [43], considered the 

single and multi-depot cases of mTSP by proposing integer linear programming for 

both cases with new bounding and the elimination of sub tour constraints.  
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Finally, the MmTSP is one possible variant of the mTSP where several depots 

exist, and at each depot, one salesman locates. References [72-75] studied this type of 

variant. Ghafurian and Javadian [73], proposed an ant colony algorithm to solve a 

fixed destination MmTSP to find the routes for all the salesmen with minimizing the 

total cost of all routes.  

The TSP/mTSP and its variations been studied in many applications especially 

where the scheduling and routing problem is applied. However, these variants do not 

include the characteristics of the depot. To the best of our knowledge, there is no 

research considered the problem of mTSP with a moving depot. 

  The next chapter highlights the different applications of AVs in logistics and 

its importance in bringing new logistics issues and introducing definitions. 
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Chapter 3. System to System Handover  

 

In this chapter, we perform a technological review of the recent application of 

autonomous vehicles in Last Mile Delivery, and we introduce the classification of 

system-to-system handover with illustrating examples. Also, we address the 

importance of vehicle routing in logistics. Finally, we introduce the effect of emerging 

the new vehicles in on bringing new logistics problems. 

3.1. Technological Review of AVs in Logistics 

 Autonomous vehicles play an important role in reducing the problem of 

LMD. Consequently, we performed an intensive internet search of the recent 

applications of AVs technology in the design of LMD systems; some of them are still 

porotypes and patents. Tables 4, 5, and six present a descriptive summary and 

characteristics of each of them.  

Table 4: Applications of autonomous vehicles in logistics – part a 

Technology (Company) Description Differences 

 

Prime Air Delivery 
Drone (Amazon) 

 

It can deliver orders to customers 

within 16 km radius of Amazon’s 

fulfillment centers (It departs from 
warehouse and travel to customer 

location) [76]. It navigates through 

the onboard global positioning 
system (GPS) [77]. 

It can ship under 
2.3 kg (5 pounds) 

[78]. 

 

Starship Vehicle 

(Starship) 

It is powered by an electric motor, 
and it is a six-wheeled intelligent 

robot [79]. It is for use on the 

sidewalk (capable of identifying 
pedestrians, bicyclists). [80]. It took 

the trail in Redwood City and 

Postmates in Washington, DC [80]. 
It delivers in less than 30 minutes. It 

can travel 4 miles per hour, and each 
shipment cost less than $1.40 [81]. 

It can handle 40 

pounds max. 

 

Carry (Dispatch) 

It has four compartments, and it is 

designed to make multiple deliveries 
per trip. It is connected to a 4G 

network for accurate location 

tracking so that it can be tracked, 
and once it reaches a destination, 

people get notified and can unlock 

and access their package through 
using their phones. The company 

launched a pilot program at Menlo 

College to deliver students their mail 
and packages [82] 

It can carry 100 

pounds. 
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Table 5: Applications of autonomous vehicles in logistics – part b 

 

  

Technology (Company) Description Differences 

 

Cargo Pod (Ocado & 

Oxbotica) 

It has been tested in a residential 

area in London. 
The customer can place his order 

through Ocado app that it is 

loaded to the CargoPod at a hub 
station. When the vehicle pulls up, 

Ocado delivery person confirms 

the customer is the same person 
who placed the order[83]. 

It can hold up to 
282 pounds of 

groceries in its 

eight boxes. 

 

Ford Autonomous Car 
(Ford & Domino’s Pizza) 

Customers place an order on 

Domino’s app and then an 
autonomous car will deliver the 

order. They use a unique code to 

access a heated container. 
It has been tested in Michigan, 

US. [84]. 

It can handle one 
order 

 

Electric PostBOT (DHL) 

It is 150 cm tall, can hold up to 

150 kg worth of mail, and scurries 
along at up to 6 km\hr. 

It has a sensor to navigate 

obstacles and track legs of human 
mail carrier to follow him safely. 

It lightens the load for the mail 

carrier and frees up their hands 
from carrying the packages[85]. 

- 

 

Parcelcopter Skyport 

(DHL) 

It can fly 70 km\h and it can do 

deliveries within 8 minutes and 

tested in mountain areas. 
Packages are inserted in the parcel 

locker, drone swoops into action 

(through a helipad on top of the 
locker), grab the package, and 

deliver[86]. 

It can carry 5 

pounds for 8.3 km 

 

UPS Truck-Drone System 
(UPS) 

Trucks have an inside space to 

store and load drones in which the 

top of it can slide off. 
Drones can fly for 30 minutes and 

are recharged while docking on 

the electric delivery vehicle. 

UPS drivers can load packages 

into the drone and confirm flight 

path by truck’s dashboard [27]. 

It can carry 10 
pounds. 
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Table 6: Applications of autonomous vehicles in logistics – part c 

 

The applications of AVs have different characteristics and ways of delivering 

to customers. In other words, these systems perform differently in the way they last 

handle the parcel/product before the final delivery to the customer. Moreover, the 

systems use different combinations of technology, people, and machines that results 

in classifying the ways of handling customers’ parcels in terms of the handling 

process and who is handling the parcels. The following section discusses the 

classification of parcels handling. 

3.2. Handover Classification 

As mentioned previously, drones, robotic machines, and cars are one of the 

possible autonomous vehicles that can be used to tackle the challenge of LMD. 

Precisely, these systems can make the final step of the last mile journey and make the 

delivery to the customers. Therefore, we introduce a classification for the type of 

handover between the logistics systems to make a differentiation between them. The 

handover occurs at the time of the last transfer of the parcel between any two systems 

and then the systems can make the delivery of the parcel to the customer. Also, the 

Technology (Company) Description Differences 

 

Fulfillment Center 

Towers with Drone 
Delivery (Amazon) 

Towers are served as 
drone charging hubs and 

allow drones to pick up 

packages [87]. 

More than one 

handover at a 
time. 

 

Train-Mounted 
Mobile Hubs for 

Drone Delivery 

(Amazon) 

Drones can pick up 

packages and return for 

charging or further 
pickup while the train is 

in motion [47]. 

One handover at 

a time. 

 

Amazon Airborne 

Fulfillment Center 

Unmanned aerial vehicles 

(UAV) are released from 
the airborne to deliver to 

designated customers. 

Smaller airships (shuttles) 
are used to replenish 

airborne and UAVs with 

inventory and fuel [88]. 

More than one 
handover at a 

time 
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handover is considered as the last handling of the parcel before the customer. 

Defining the system-to-system (S2S) handover classification is significant as it eases 

the characterization of the associated vehicle routing problems. We propose three 

classes of the handover namely, person-to-machine, machine-to-machine, and 

machine-to-person. The following represents the definition and characteristics of each 

class.  

3.2.1. Person-to-machine. It is defined as the transfer of parcels from a 

person to a machine. The machine can be an autonomous vehicle that could handle 

the delivery to the customer. For instance, the person loads the delivery package in the 

AV, which will then make the delivery to the customer.  

3.2.2. Machine-to-machine. In this handover, the possible systems are a 

truck - drone system (T2D), truck - autonomous vehicle system (T2AV), autonomous 

vehicle - autonomous vehicle system (AV2AV), and an autonomous vehicle - drone 

system. (AV2D). The most common type of S2S handover is the T2D. This system 

has been broadly studied to improve efficiency and system reliability [33, 89, 90]. The 

AV2AV could be considered in which an autonomous truck offloads a fleet of 

autonomous vehicles close to their destination and can communicate with each other 

to determine their routes. AV2D is like T2D, but instead of using a regular truck, an 

autonomous truck could be used as it can decrease pollution and increase the 

efficiency of the delivery service. T2AV also has the same concept of the AV2AV 

system, but in this system, a regular truck is used. These four systems can all be 

implemented, and the selection depends on location, technology, and objectives. 

3.2.3. Machine-to-person. This system can use a machine, or a driverless 

vehicle to assist the delivery person in carrying the parcels during the delivery. M2P 

handover can be used to address the long walking distance that the delivery person 

should cover when he fails to find a parking space close to the recipient’s door and 

thus, force the delivery person to park anywhere and cover the distance on foot which 

results in using extra time especially when packages are heavy. DHL is using M2P, 

where the vehicle follows the person to the destinations [11]. 

Table 7 shows the different logistics systems that were mentioned in Tables 4, 

5, and six along with classifying these systems based on the type of handover. The 
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table combines the different technologies that fall under the same handover class. For 

example, the UPS truck-drone system, Amazon fulfillment centers, Amazon airborne 

fulfillment center, and Amazon train hubs fall under the M2M class in which the 

product is handed to the drone which will later handle the delivery to the customer. 

Traditionally, the M2P handover is the most common delivery type in which 

the delivery person picks the package from a truck/car and hand it to the customer. 

Alternatively, she/he could now pick the package from a robotic machine. In contrast, 

M2M and P2M are recent types of handover that result from the newly developed 

technologies like Amazon drone systems patents such as a fulfillment center towers 

[87] and an airborne fulfillment center [88]. The proposed systems can handle 

multiple deliveries with multiple handovers all carried out by a moving system. In 

such a case, the system also needs proper scheduling of the handovers and a proper 

routing optimization of both system components. 

Table 7: Applications of AVs and the corresponding handover type  

Handover Type Application 

Person to Machine 

(1) Prime Air Delivery Drone (Amazon) 

(2) Starship Vehicle (Starship) 
(3) Carry (Dispatch) 
(4) Cargo Pod (Ocado & Oxbotica) 
(5) Ford Autonomous Car (Ford & 

Domino’s Pizza) 

Machine to Person (6) Electric PostBOT (DHL) 

Machine to Machine 

(7) Parcelcopter Sky port (DHL) 
(8) UPS Truck-Drone System (UPS) 
(9) Fulfillment Center Towers with Drone 

Delivery (Amazon) 
(10) Train-Mounted Mobile Hubs for Drone 

Delivery (Amazon) 
(11) Amazon Airborne Fulfillment Center 

 

3.3. Emerging of New Vehicles in Logistics 

The different logistics systems mentioned in Table 7 reveals that the depot 

now does not need to be in one place and can be moving from one place to another as 

we deliver. The Amazon patent of the train-mounted mobile hubs for drone delivery is 

an illustration of the moving depot. The system consists of a train, and a drone in 

which the drone can pick up packages returns to the train for charging or for further 

pickup while the train is in motion [47]. From the different logistics systems and their 
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characteristics mentioned previously, we performed a further classification for the 

handover classes. The handover structure can be fixed/moving and single/multiple. 

The following defines each type: 

• Fixed Handover, systems are fixed at the time of the package/product 

delivery handover.  

• Moving Handover, systems are moving when the handover of the delivery 

package is performed. 

• Single Handover, a single delivery package is allowed at a time, The 

system schedules the handovers to handle them one at a time 

• Multiple Handover, more than one delivery package is allowed at a time.  

  The handover structure corresponds to how the logistics systems are oriented. 

A key example is the fulfillment centers tower with drone delivery in which the tower 

is served as a drone charging hub in which it allows the drones to pick up the packages 

and then make the delivery to the customers. Such a system can be recognized as a 

fixed – single type of handover. The handover is taken under fixed handling of 

package/product. Besides the fixed handover, the drone is handled one package at a 

time. Nevertheless, the handover structure leads to the further classification of the 

routing considerations regarding the depot location. The depot can have two possible 

situations: 

• Fixed depot TSP/mTSP, when the handover is fixed. 

• Moving depot TSP/mTSP, when the handover is moving. 

  The introduced classifications are addressed in different logistics systems. 

Table 8 summarizes the above classifications and categorizes the type of handover 

(P2M, M2M, and M2P). The different applications that were mentioned in Tables 4, 5, 

and six are used here to highlight the corresponding S2S type, handover structure, 

routing considerations (TSP type), and finally related references from the literature. 

The following is an illustration of how the table is organized. In the M2P handover, the 

robotic machine follows the delivery person, and when he/she reaches the destination, 

the machine will stop and hand over the parcel to the delivery person. In such a 

situation, the handover is single and fixed. In terms of routing situation, this will result 

in a fixed depot TSP. 
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  As can be seen from Table 8, many examples deal with the moving handover. 

Consequently, the classification highlights new variants of VRP in which the routing 

and optimization decisions will involve both systems concurrently, unlike a fixed 

handover in which the routing decisions comes strictly after the handover. These new 

variants bring challenges that logistics companies need to address. Taking a T2D 

system as an example, we need to define the optimal path of the truck while 

determining the optimal route of the drone. If we take into consideration the 

availability of customers, the possibility of rerouting deliveries, drones power 

limitations, and other operational factors, then the routing problem becomes more 

dynamic and therefore more challenging to address.  

  The introduced S2S handover and its different classes have proved the 

significance of the new technologies in bringing new logistics problems that 

researchers and logistics companies need to address and solve to convoy with what is 

currently implemented to tackle the last mile delivery. Therefore, in the next chapter, 

we introduce a new formulation for a VRP with a Moving Depot (VRP-MD) to 

address the moving systems according to different conditions and situations. 

 Table 8: System to system handover classifications 

  

Handover Related articles 
Handover Structure VRP 

Examples 
Fixed Moving Single Multiple 

Fixed 

depot 

Moving 

depot 

P2M 

[59], [91], [92] 
✓  

 
✓  

 
✓  

 (1) 

[2] [62] [11]. 

✓  
 

✓  
 

✓  
 (2) 

✓  
 

✓  
 

✓  
 (3) 

✓  
 

✓  
 

✓  
 (4) 

✓  
 

✓  
 

✓  
 (5) 

M2P 
[11]  

✓  ✓  
  

✓  
(6) 

M2M 

[33], [53], [24],  

[62, 93] 

 

✓  
 

✓  
 

✓  
 (7) 

✓  ✓  ✓  
✓  

✓  ✓  
(8) 

✓  
  

✓  ✓  
 (9) 

 
✓  ✓  

  
✓  

(10) 

 
✓   

✓   
✓  

(11) 



 

 

48 

 

Chapter 4. Vehicle Routing Problem with a Moving Depot  

 

  There are several variants of the VRP in the literature that differentiate 

themselves from the number of stops on route, customer service demand quantity, 

onsite service/waiting times, time window structure of customers, time horizon, 

location of customers, number of points of origin, number of vehicles, capacity 

constraint, travel time and objective [94]. These variants do not include the 

characteristics of the depot. Indeed, its location is usually given and set for the entire 

delivery process. In this chapter, we propose different variants for the VRP-MD taken 

into consideration the release location of the drone, the collection location of the drone, 

the number of the operating drones, and the need for the truck to reach the collection 

location before the drone in different situations. We present the problem definition and 

notations and provide the ILP formulations. Also, the characteristics of each model are 

studied. Finally, we test and validate the models. 

The VRP-MD considers a truck-drone system in which the truck moves on a 

path and releases the drone to serve a set of customers, each of whom must be served 

exactly once. When all customers are served by the drone, the truck must collect the 

drone. The way the problem was modeled is that we constructed an M by M matrix in 

which the first nodes, L are the locations from where the truck can release and collect 

the drone. The second part of the matrix is customers’ nodes, N. This matrix is carried 

out in all models. Figure 4 shows how the distance matrix is developed. 

 

Figure 4: Distance matrix 

N 

N 
Drone Routes 

  

L 
Truck Path 
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The followings present the assumptions and delimitations used to reduce the 

complexity of the problem. 

• Assumptions 

− The system deals with a moving M2M handover. 

− The truck is assumed to have predetermined locations where it can launch and 

collect the drone. 

− The traveling distances for the drones are calculated using the Euclidean 

distance equation that is: 

                                𝑑(𝑃, 𝑄)2 =  (𝑞1 − 𝑝1)2 +  (𝑞2 − 𝑝2)2                                  (4 − 1) 

− The traveling distances for the truck are approximated using the Euclidean 

distance. 

− Truck’s and drones’ fixed costs are not taken into consideration. 

• Delimitations 

− The number of drones that the truck can handle is limited. 

4.1. Model I: Single Drone, Single Trip with fixed Starting Location 

The first model handles a single drone and a single trip to cover all deliveries. 

The truck is assumed to launch the drone from a predetermined location (first location 

of the set) from where the drone can serve N customers. Afterward, the truck collects 

the drone at an optimized location along the truck’s path.  

4.1.1. Problem definition. In this problem, let N represents the number of 

customers nodes and L = {0,..,l} is the set of the predetermined locations for the truck 

to launch and collect the drone. The truck starts and launches the drone from l = 0. 

Afterwards, the drone delivers to the customers, N = {L+1,…,n+L}. In the end, the 

truck collects the drone at an optimized location that lies within {1, …, l} in which 

the truck cannot return to the original launching location l = 0. The followings are the 

added assumptions to our problem. 

− The truck should launch the drone from the starting location l = 0. 

− The truck cannot return to the starting location l = 0. 

− The drone delivers to all customers on a single trip and then returns to the 

truck.  
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xij 

yij 

4.1.2. Model I formulation. We modelled the problem as M by M matrix in 

which l = 0 is the fixed starting location, the second N nodes are customers’ nodes, 

and the last L nodes are truck’s locations at where it collects the drone. Figure 5 

shows how the system operates. 

 

 

 

 

 

Figure 5: Model I illustration 

The followings are the problem parameters and variables used to assess in formulating 

the ILP. 

• Problem parameters 

𝒅𝒊𝒋 Distance travelled by the drone between node 𝑖 and node 𝑗 

𝑻𝒊𝒋 Distance travelled by the truck between node 𝑖 and node 𝑗 

N Number of customers’ nodes 

L Set of predetermined locations 

Fd Drone unit cost (cost per unit distance) 

Ft Truck unit cost (cost per unit distance) 

• Problem decision variables 

𝒙𝒊𝒋     {

  

1;  if the drone travels from node 𝑖 to node 𝑗
0;  otherwise                                                           

 

𝒚𝒊𝒋     {

 

 1;  if the truck travels from node 𝑖 to node 𝑗
0;  otherwise                                                         

 

𝒖𝒋  Number of nodes visited by the drone from the depot to node j  

We present in Figure 6 the ILP formulation for model I. Equation (4-2) 

presents the objective function that minimizes the total traveling cost for the truck and 

the drone. Constraint (4-3) ensures that the drones start its route from the 

predetermined location only once. 
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Figure 6: Proposed ILP, model I 

 Constraints (4-4) and (4-5) are to ensure that customers’ nodes are entered and 

departed from only once. Constraint (4-6) ensures that the drone enters the collection 

location only once. Constraint (4-7) ensures that the drone does not return to the 

initial predetermined location. Constraint (4-8) indicates that the variable y1j exists if 

the drone enters the collection region. Finally, constraint (4-9) is a sub-tour 

elimination constraint. 

4.1.3. Model I validation. For the validation of the proposed model, an 

example is constructed to show the validity of the model. Example 4.1.1 is solved 

manually to confirm the results obtained from GAMS. Figure 7 shows the possible 

locations of the truck and the customers’ locations. This example will be used to 

validate the rest of the proposed formulations.  
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Figure 7: Coordinates of the customers’ and truck’s nodes in example 4.1.1 

In this example, the unit cost of the drone is assumed to be equal to $1, and the 

truck is assumed to be equal to $0. 

The followings are the possible truck drone paths with the corresponding total cost. 

• Option 1: 0-3-4-5-0. Total cost = $ 6.650 

• Option 2: 0-4-5-3-0. Total cost = $ 7.886 

• Option 3: 0-5-4-3-0. Total cost = $ 6.650 

• Option 4: 0-3-4-5-1. Total cost = $ 5.828 

• Option 5: 0-4-5-3-1. Total cost = $ 7.472 

• Option 6: 0-5-4-3-1. Total cost = $ 6.623 

• Option 7: 0-3-4-5-2. Total cost = $ 5.414 

• Option 8: 0-4-5-3-2. Total cost = $ 8.30 

• Option 9: 0-5-4-3-2. Total cost = $ 6.472 

Option 7 shows the minimum total cost. The model is solved using GAMS and its 

results correspond to the obtained result manually.  

4.1.4. Model I illustration. We solved Model I using example 4.1.2 that has 

the following inputs: 

− It consists of 6 possible locations for the truck to collect the drone and 

seven customers to deliver to by the drone. 

0 1 2

3 4

5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5

Truck Possible Locations Customers Locations



 

 

53 

 

−  The unit cost of the truck and drone are $1, $0.30 respectively. 

− The coordinates of the truck’s possible locations and customers’ nodes are 

shown below in Table 9. 

Table 9: Coordinates of the customers’ and truck’s nodes in example 4.1.2 

 

Figure 8 illustrates the solution. The drone is launched from location l = 0. 

Then, it enters the customer's nodes in which it follows the following path: 7-6-10-12-

8-11-9. After that, the truck collects the drone at l = 1. The resulted total cost is $103.  

 

Figure 8: Solution for model I 

This initial formulation looks very similar to the open path TSP in which the 

delivery person returns to a different (not necessarily predetermined) depot. If the 

movement of the truck and the drone collection points are known in advance, then this 

formulation will reduce to an open path TSP.  However, given the nature of the 

problem, the release/starting location of the drone should be part of the optimization.  

Therefore, we introduce next the TSP-MD with an unknown starting point.  
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4.2. Model II: Single Drone, Single Trip with Unknown Starting Locations 

In this model, the truck starts its path from the warehouse/origin (l = 0). 

However, the truck is not forced to launch the drone from the warehouse/origin in 

which, it can release the drone from any location along the truck’s path. Afterward, 

the drone serves N customers. At last, the truck collects the drone from an optimal 

collection location. 

4.2.1. Problem definition. In this problem, the releasing location is part of 

the optimization process. Let N represents the number of customers nodes, and L is 

the set of the predetermined locations for the truck to launch and collect the drone. 

The truck starts its trip from the origin/warehouse l = 0 and can launch the drone from 

the origin or travel a distance and then launch the drone at any location L = {0, …, l}. 

Then, the drone delivers to the customers that locate in N = {L+1, …, n+L}. In the 

end, the truck collects the drone at an optimized location that is within L = {0, …, l}. 

4.2.2. Model II formulation. In this problem, the system has a new 

configuration. Figure 9 shows the systems operations. 

 

 

Figure 9: Model II illustration 

The following added variables and constraints are to address the new configurations 

to start the route from an unknown location. 

• Added variable 

𝒛𝟎𝒋     {

  

1;  if the truck travels from origin to node 𝑗
0;  otherwise                                                         

 

We present in Figure 10 the ILP formulation for model II. 

 
xij 

yij z0i 
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Figure 10: Proposed ILP, model II 

 Equation (4-10) presents the objective function that minimizes the total 

traveling cost for the truck and the drone including the traveling cost from the 

warehouse/origin to the launching location of the drone. Constraints (4-11) and (4-12) 

ensure that the drone departs from the launching location and enters the collection 
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location at most once. Constraints (4-13) and (4-14) guarantee that customers’ nodes 

are entered and departed from only once. Constraints (4-15), (4-16), and (4-17) are to 

ensure that yij exists when the drone leaves the releasing location and enters the 

collection location (contingent on xij). Constraint (4-18) ensures that the truck departs 

from the origin only once. Constraint (4-19) shows that z0j exists when the drone is 

launched from the truck. Finally, constraint (4-20) is a sub-tour elimination. 

4.2.3. Model II validation. For the validation of the proposed model, for 

example 4.1.1 is carried out here. The example is solved manually to confirm the 

results obtained from GAMS. The followings are the possible truck drone paths with 

the corresponding total cost that are obtained by solving the problem manually. 

• Option 1: 0-3-4-5-0. Total cost = $6.65 

• Option 2: 0-3-4-5-1. Total cost = $5.828 

• Option 3: 0-3-4-5-2. Total cost = $5.414 

• Option 4: 1-3-4-5-1. Total cost = $5.414 

• Option 5: 1-3-4-5-2. Total cost = $5.00 

• Option 6: 2-3-4-5-2. Total cost = $5.414 

Option 5 shows the minimum total cost. The model is solved using GAMS, and its 

results correspond to the obtained here manually. 

4.2.4. Model II illustration. Referring to example 4.1.2. Figure 11 shows 

that the truck launches the drone from the origin/warehouse l = 0. Then, the drone 

starts its route, and it is founded to be: 9-11-8-12-10-6-7. In the end, the drone is 

collected by the truck at the same location where it launched (l = 0). Hence, the truck 

location did not split, and the truck launched and collected the drone from the 

origin/warehouse. The resulted total cost is $88. 

To compare the first and the second variant, the total cost dropped from $103 

to $88. This can indicate that optimizing the truck’s releasing and collection locations 

can result in decreasing the total cost and enhance the optimization solution. Hence, 

determining the truck’s movement should be included in the optimization process. 

4.2.5. Model characteristics. The total cost is considered an important 

contributing factor in studying the behavior of the model, in which it is sensitive to 

the configuration of the truck-drone system including different parameters. 
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Figure 11: Solution for model II 

The unit cost of the drone and the truck affects the movement of the truck 

including the splitting of its location, meaning that releasing location differs from the 

collection location. Therefore, three different scenarios are going to be tested. 

1. Truck’s unit cost is greater than the drone’s unit cost 

2. Truck’s unit cost is less than the drone’s unit cost 

3. Truck’s unit cost is equal to the drone’s unit cost 

In studying the relationship between the unit costs and the configuration of the 

truck’s location, example 4.1.2 was used. Table 10 summarizes the results for each 

one of the scenarios according to its total cost, drone route, and truck path. 

Table 10: System configuration when changing unit costs 

 

Truck and 

Drone Unit 

Costs 

Total Cost Drone’s Route 
Truck’s 

Path 
Splitting/Not 

Scenario 1 $1 and $0.3 $73.3 0-5-9-11-7-10-8-6-0 0-0 No Split 

Scenario 2 $0.1 and $0.3 $77.0 0-6-5-9-11-7-10-8-2 0-2 Split 

Scenario 3 $0.3 and $0.3 $88 0-6-8-10-7-11-9-5-0 0-0 No Split 

From the above table, it can be stated that the splitting of the truck’s location 

is sensitive to the unit costs of both the truck and the drone. As the unit cost of the 

truck decreases, the truck might release and collects the drone at the same location. 
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4.2.6. Model II testing. In this part, we tested mode II to study the behavior 

of the computational time with increasing the number of customers. The test was 

performed in GAMS 24.8.5 using Intel® Xeon® CPU E5-2630 v2 @2.60 GHz 

machine. The used data set (problem eil101) was taken from the online TSP library 

[95]. Among the 101 locations, 20 locations are set as predetermined locations for the 

truck. The rest are considered as customers’ nodes. Figure 12 shows the x and y 

coordinates of both truck and customers’ nodes 

 

Figure 12: The coordinates of the truck's and customers' nodes 

We increased the number of customers with an increment of 10 nodes, starting 

with 11 nodes up to 81 nodes. Also, five different random samples were taken, and 

then the average was calculated to have a better insight of the behaviour. Table 11 

shows the computational time for the five samples along the average. 

By plotting the number of customers’ nodes versus the average of the 

computational time, the computational time increased exponentially with the increase 

in the number of customers’ nodes as shown in Figure 13. 

Also, we performed another test to find the total computational time. The test 

was conducted on the data of [vm1084] from the online TSP library [95]. Two 

hundred nodes are selected, in which 20 of them are used as predetermined locations 

for the truck, and the rest represents the customers’ nodes. 
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Table 11: Computational time for the different sets of customers' nodes 

Number of 

Customers’ 

Nodes 

Computational Time in Seconds 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average 

11 0.97 0.59 0.91 0.59 0.98 0.808 

21 1.97 0.97 1.83 1.74 1.03 1.508 

31 2.22 1.66 2.66 2.45 1.19 2.036 

41 4.98 2.83 2.98 26.16 11.17 9.624 

51 4.47 4.58 4.75 5.08 101.16 24.008 

61 101.13 27.16 17.19 3.63 119.67 53.756 

71 261.66 436.25 32.19 6.16 15.91 150.434 

81 145.16 384.5 464.52 219.09 384.67 319.588 

 

 

Figure 13: The computational time versus the number of customers 

The results have shown that the needed computational time is 7383.4 seconds 

that is approximately 2 hours. Our problem is considered an NP-hard class of 

problems. Indeed, when the drone returns to the origin/warehouse, the problem is 

reduced to a TSP which tends to be an NP-hard problem. The NP-hard problems are 

incapable of reaching the optimality within a reasonable computational time. Results 

from Table 11 suggest that a heuristic solution is needed to solve large instances’ 

problems in a shorter time.  

The drone has a limited operational time that should be taken into 

consideration as it can change the configuration of the solution. The next problem 

adds the time dimension and precedence constraints. 
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From now on, we will refer to Single Drone Trip with an Unknown Starting 

Location as Single Drone Trip.  

4.3. Model III: Single Drone, Single Trip with time and Precedence 

Constraints 

 This problem considers the previous scenario but with time and precedence 

constraints. The precedence constraints encounter the traveling times of both vehicles 

from one node to another. The main objective of the precedence constraints is to 

ensure that the truck precedes the drone’s arrival at the collection location. These 

constraints can tackle the drone’s operational time limitations and can reduce the 

unnecessary usage of the drone’s operation. 

4.3.1. Problem definition. The problem is considered as an extension of 

model II. However, time and precedence constraints are added. To cope with time 

configurations, the followings are the added assumptions: 

− Customers are available during the time of the delivery. 

− The truck is always preceding the drone at a drone collection point. 

However, the trucks waiting time cost is not considered.  

− The drone has a maximum operating time. 

4.3.2. Model III formulation.  The following added parameters, variables, 

and constraints are to address the new configurations to start the route from an 

unknown location. 

• Added parameters 

M  Big number 

tL Operational time required by the truck to prepare and launch the drone 

(launching time) 

tR Time required by the truck to collect the drone (rendezvous time) 

𝝉𝒊𝒋 Traveling time by the truck from node i to node j 

𝝉′𝒊𝒋 Traveling time by the drone from node i to node j 

T’max Maximum operating time for the drone 

• Added variables 

𝒕𝒋 The time at which the truck arrives at node j 

𝒕′𝒋 The time at which the drone arrives at node j 
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𝑺𝑻𝒊 The starting time of the truck at node i 

𝑺𝑻′𝒊 The starting time of the drone at node i 

We present in Figure 14 the ILP for model III. 

 

Figure 14: Proposed ILP, model III 

Constraint (4-21) is to ensure that the arrival time of the drone at the collection 

location j is greater than the arrival time of the truck at the collection location j. 

Constraint (4-22) ensures that the arrival time of the drone at node j is greater than the 

departing time from node i including the traveling time from node i to j. Constraint (4-

23) ensures that the starting time of the drone incorporates the drone’s preparation 

time (tL) while constraint (4-24) ensures that the time at the collection location 

incorporates the rendezvous time (tR). Constraint (4-25) ensures that the arrival time 

of the truck at node j is greater than its starting time at node i incorporating the 

traveling time between i and j, the launching time of the drone, and the rendezvous 

time of the drone. Constraint (4-26) indicates that the starting time of the truck is 

considered when the truck travels from the warehouse/origin to the launching location 

of the drone. Constraint (4-27) states that the truck and the drone have the same 
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𝑡′
𝑖 +  𝜏′

𝑖𝑗 +  𝑡𝑅 − 𝑀 ( 1 − 𝑥𝑖𝑗) ≤  𝑡′
𝑗 ,                                                                                 

                                                          𝑖 = 𝐿 + 1, . . , 𝑁 + 𝐿    , 𝑗 = 0, . . , 𝐿              (4 − 24)                 

𝑆𝑇𝑖 +  𝜏𝑖𝑗 +  𝑡𝑅 + 𝑡𝐿  − 𝑀 ( 1 − 𝑦𝑖𝑗) ≤  𝑡𝑗 ,                 𝑖, 𝑗 = 0, . . , 𝐿                (4 − 25) 
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starting time. Lastly, constraint (4-28) shows that drone traveling time should not 

exceed its maximum operating time.  

4.3.3. Model III validation. For the validation of the proposed model, an 

example is constructed to show the validity of the model. The example is solved 

manually to confirm the results obtained from GAMS. The model used for validation 

in section 4.1.1 is carried out here  

− In this example, the followings are assumed: 

− The unit cost of the drone is equal to 0.5, and the truck is equal to 1.  

− The traveling time by the drone from node i to j 𝜏′𝑖𝑗 is 1 minute. 

− The traveling time by the truck from node i to j 𝜏𝑖𝑗 is 3 minutes. 

− The time required by the truck to release the drone tL is 1 minute. 

− The time required by the truck to collect the drone tR is 1 minute. 

− The maximum operation time of the drone T’max is 20 minutes 

The followings are the possible truck drone paths with the corresponding total cost. 

• Option 1: 0-3-4-5-0. Total cost = $3.325  

o Traveling time by truck, drone = 2, 14 minutes 

• Option 2: 0-3-4-5-1. Total cost = $3.914 

o Traveling time by truck, drone = 5, 14 minutes 

• Option 3: 0-3-4-5-2. Total cost = $4.707 

o Traveling time by truck, drone = 8, 14 minutes 

• Option 4: 1-3-4-5-1. Total cost = $3.707 

o Traveling time by truck, drone = 5, 17 minutes 

• Option 5: 1-3-4-5-2. Total cost = $4.50 

o Traveling time by truck, drone = 8, 17 minutes 

• Option 6: 2-3-4-5-2. Total cost = $4.704 

o Traveling time by truck, drone = 8, 17 minutes 

Option 1 shows the minimum total cost. The model is solved using GAMS, and its 

results correspond to the obtained here manually. 

4.3.4. Model III illustration. Example 4.1.2 is used to illustrate this model. 

However, some inputs are added: the design of this model follows the same design for 
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the previous model. 

− The time required by the truck to prepare the drone tL is 1 minute [33]. 

− The time required by the truck to collect the drone tR is 1 minute [33]. 

− The operating time of the drone is 30 minutes.  

− The truck’s speed is 25 mile per hour (11 meters per second). 

− The drone’s speed is 45 mile per hour (20 meters per second). 

Figure 15 shows the results of the example used to illustrate the proposed 

constraints. The results show that the truck launches the drone from the origin l=0. 

Then, the drone starts its route, and it is founded to be: 9-11-8-12-10-6-7. In the end, 

the drone is collected by the truck at the same location where it launched (l=0). 

Hence, the truck location did not split. Moreover, the figure demonstrates the 

traveling time from one node to another. The drone takes 1 minute to be prepared and 

launched by the truck and from the truck and 3.7 minutes to visit the first customer 

reaching a total of 26.2 minutes to return to the truck. Also, the drone takes 24.2 

minutes to deliver to all customer. On the other hand, the truck spends 2 minutes for 

launching and collecting the drone, that it the addition of tL and tR as the truck does 

not move. The resulted cost is $88.  

 

Figure 15: Solution for model III 

4.3.5. Model III characteristics. Different parameters can affect this model. 

One possible parameter is changing the drone’s maximum operational time. It can 
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change the configuration of the system. Figure 16 shows the results for the same 

example but with a different maximum operation time that is 22 minutes. As shown, 

the truck moves from the origin to l = 2 to launch the drone (z02 = 1). Then the drone 

enters its route that is 9-7-6-10-12-8-11. Afterward, the drone returns to l = 3 to be 

collected by the truck. In other words, the truck moves from l = 2 to l = 3 for 

launching and collecting the drone (y23 = 1). In terms of the traveling times of both 

vehicles, their starting time is 5.7 minutes. The truck needs a total of 2 minutes to 

prepare, launch, and collect the drone that results eventually in a total traveling time 

of 10.9 minutes. On the other hand, the drone takes 21.8 minutes to cover all the 

customers. Also, the arrival time of the truck is ensured to be before the drone’s 

arrival. The change in the maximum operation time results in a total cost of $139. 

Hence, as the drone’s maximum operation time decreases, the drone would be 

forced to find a shorter path to take and the truck would need to move to further 

locations in order to cover the drone’s traveling time. As the truck moves, the total 

cost will increase. 

  

Figure 16: Impact of changing the drone’s operational time 

Another parameter is considering the operational time that the drone needs at 

each customer to land and take off. Therefore, a new parameter is introduced.  

𝑶𝒕𝒋 Operational time of the drone at customer j 

Constraints (4-22) and (4-28) should be modified to account for the new parameter. 
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𝑡′𝑖 +  𝜏′𝑖𝑗 +  𝑂𝑡𝑗𝑥𝑖𝑗 − 𝑀 ( 1 − 𝑥𝑖𝑗) ≤  𝑡′
𝑗 ,              𝑖, 𝑗 = 𝐿 + 1, . . , 𝑁 + 𝐿           

∑ ∑(𝜏′
𝑖𝑗

+ 𝑂𝑡𝑗) 𝑥𝑖𝑗

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

 ≤  𝑇′𝑚𝑎𝑥,        

The values of the new parameter vary between 1 minute to 2 minutes. By 

modifying the constraints, the system configuration and the total cost change in which 

it increases from $88 to $157.3. Regarding the operational time of the drone during its 

trip, it takes 29.98 minutes. Concerning the truck’s movement, its location must split 

to cover the limited operating time of the drone in which it releases the drone at l = 2 

and collects it at l = 4. Figure 17 shows the results. 

 

Figure 17: Impact of considering the drone’s operational time at customers 

To conclude, adding the precedence constraints allow the truck to reach the 

collection location before the drone. Moreover, the traveling time from one node to 

another is calculated concerning the operating times for the truck to launch and collect 

the drone. Furthermore, changing the operational time and considering the operational  

The previous models consider the delivery of the drone to all customers on a 

single trip. However, the limited capacity of the drone should be considered to deal 

with real-life situations. Therefore, with considering this limitation, the truck is 

obliged to make multiple trips for releasing and collecting the drone to serve the 

customers within the drone’s capacity. As mentioned earlier, the drone is capable of 
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carrying more than one parcel [59]. The following variant deals with multiple trips 

with an unknown starting location. 

4.4. Model IV: Single Drone, Multiple Trips 

Given that the drone has a load capacity limitation, it should make multiple 

routes to serves all customers. Thus, the truck needs to stop many times to release and 

collect the drone. This situation deals more with real-life situations as the drone 

cannot deliver to all customers on a single trip.  

4.4.1. Problem definition. This problem deals with multiple trips situation. 

M = {1, ..., m} represents the number of trips used to accomplish the delivery for all 

customers.  In this problem, we assume that the number of deliveries per trip is 

limited by the load capacity of the drone. 

4.4.2. Model IV formulation. The truck-drone system is designed as shown 

in Figure 18. The truck starts its path from the origin/warehouse (l = 0) that might 

launch the drone from that location or another location along the truck’s path. Then, 

the drone delivers to a certain number of customers. Then, it returns to the truck at an 

optimized location to be refilled with customers’ packages. The drone will continually 

get released, deliver, and return to the truck until all customers are served. 

 

 

 

 

 

 

 

Figure 18: Model IV illustration 

The following added parameters and variables are to address the new 

configurations. 

• Problem parameters 

   DL    Number of deliveries/trip 

xijk 

xij(k+1) 

yijk yij(k+1) zijk z0j1 
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• Problem variables 

                 𝒙𝒊𝒋𝒌      {

  

1;  if the drone travels from node 𝑖 to node 𝑗 𝑖𝑛 𝑡𝑟𝑖𝑝 𝑘
0;  otherwise                                                                             

 

                 𝒚𝒊𝒋𝒌      {

  

1;  if the truck travels from node 𝑖 to node 𝑗 𝑖𝑛 𝑡𝑟𝑖𝑝 𝑘
0;  otherwise                                                                           

 

                 𝒖𝒋𝒌    Number of nodes visited by the drone from the depot to node j in trip k 

                 𝒛𝒊𝒋𝒌      {
 1;  if the truck moves from node 𝑖 to node 𝑗 

before the beginning of  trip 𝑘
0;  otherwise                                                          

 

                 𝒕𝒓𝒊𝒑𝒌  {

 

 1;  if trip 𝑘 is made
0;  otherwise          

 

Figures 19 and 20 show the mathematical formulation for this problem. 

 

Figure 19: Proposed ILP, model IV 

𝑀𝑖𝑛 =  ∑ ∑ ∑ 𝐹𝑑𝑑𝑖𝑗𝑥𝑖𝑗𝑘

𝑚

𝑘=1

     +  ∑ ∑ ∑ 𝐹𝑇𝑇𝑖𝑗(𝑦𝑖𝑗𝑘 + 𝑧𝑖𝑗𝑘)

𝑚

𝑘=1

𝐿

𝑗=0

𝐿

𝑖=0

            (4 − 29) 

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

 

∑ 𝑥𝑖𝑗𝑘

𝑁+𝐿

𝑗=𝐿+1

≤ 1,                         𝑖 = 0, . . , 𝐿           , ∀𝑘                                          (4 − 30) 

∑ 𝑥𝑖𝑗𝑘

𝑁+𝐿

𝑖=𝐿+1

≤ 1,                         𝑗 = 0, . . , 𝐿          , ∀𝑘                                          (4 − 31) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑚

𝑘=1

= 1,                    𝑗 = 𝐿 + 1, … , 𝑁 + 𝐿, 𝑖 ≠ 𝑗

𝑁+𝐿

𝑖=0

                       (4 − 32) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑚

𝑘=1

= 1,                    𝑖 = 𝐿 + 1, . . , 𝑁 + 𝐿, 𝑖 ≠ 𝑗                         (4 − 33) 

𝑁+𝐿

𝑗=0

 

∑ 𝑥𝑖𝑗𝑘

𝑁+𝐿

𝑖=0

=  ∑ 𝑥𝑗𝑖𝑘,

𝑁+𝐿

𝑖=0

              𝑗 = 𝐿 + 1, … , 𝑁 + 𝐿,        ∀𝑘                            (4 − 34) 

∑ ∑ 𝑥𝑖𝑗𝑘 ≤ (𝐷𝐿 + 1)

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

𝑇𝑟𝑖𝑝𝑘,                                       ∀𝑘                             (4 − 35) 
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Figure 20: Proposed ILP, model IV 

Equation (4-29) gives the cost of traveling distance for the truck and the drone. 

Constraints (4-30) and (4-31) ensure that drone must depart from the releasing 

𝑇𝑟𝑖𝑝𝑘+1  ≤  ∑ ∑ 𝑥𝑖𝑗𝑘,

𝑁+𝐿

𝑗=0

                                                   ∀𝑘

𝑁+𝐿

𝑖=0

                            (4 − 36) 

𝑇𝑟𝑖𝑝𝑘  ≤  ∑ ∑ 𝑥𝑖𝑗𝑘,

𝑁+𝐿

𝑗=0

                                                   

𝑁+𝐿

𝑖=0

   ∀𝑘                             (4 − 37) 

∑ ∑ 𝑥𝑖𝑗𝑘 

𝐿

𝑗=0

+  ∑ ∑ 𝑥𝑖𝑖𝑘

𝑁+𝐿

𝑗=0

= 0,                                         ∀𝑘

𝑁+𝐿

𝑖=0

𝐿

𝑖=0

                          (4 − 38) 

𝑦𝑖𝑗𝑘 ≥  ∑ 𝑥𝑖𝑤𝑘 

𝑁+𝐿

𝑤=𝐿+1

+   ∑ 𝑥𝑤𝑗𝑘  

𝑁+𝐿

𝑤=𝐿+1

− 1,                 𝑖, 𝑗 = 0, . . , 𝐿   , ∀𝑘         (4 − 39) 

𝑦𝑖𝑗𝑘 ≤  ∑ 𝑥𝑖𝑤𝑘 ,

𝑁+𝐿

𝑤=𝐿+1

                                                       𝑖, 𝑗 = 0, . . , 𝐿     , ∀𝑘       (4 − 40) 

 

𝑦𝑖𝑗𝑘 ≤    ∑ 𝑥𝑤𝑗𝑘 ,

𝑁+𝐿

𝑤=𝐿+1

                                                    𝑖, 𝑗 = 0, . . , 𝐿     , ∀𝑘        (4 − 41) 

𝑧𝑖𝑗(𝑘+1) ≥  ∑ 𝑥𝑤𝑗𝑘 

𝑁+𝐿

𝑤=𝐿+1

+   ∑ 𝑥𝑖𝑤(𝑘+1) 

𝑁+𝐿

𝑤=𝐿+1

− 1,     𝑖, 𝑗 = 0, . . , 𝐿   , ∀𝑘          (4 − 42) 

𝑧𝑖𝑗(𝑘+1) ≤  ∑ 𝑥𝑤𝑗𝑘,

𝑁+𝐿

𝑤=𝐿+1

                                                𝑖, 𝑗 = 0, . . , 𝐿    , ∀𝑘         (4 − 43) 

𝑧𝑖𝑗(𝑘+1) ≤    ∑ 𝑥𝑖𝑤(𝑘+1),

𝑁+𝐿

𝑤=𝐿+1

                                        𝑖, 𝑗 = 0, . . , 𝐿    , ∀𝑘        (4 − 44) 

∑ 𝑧0𝑖1

𝐿

𝑖=0

= 1,                                                                                                              (4 − 45) 

𝑧0𝑖1 ≤ ∑ 𝑥𝑖𝑤1,

𝑁+𝐿

𝑤=𝐿+1

                                                         𝑖 = 0, . . , 𝐿                       (4 − 46) 

𝑢𝑖𝑘 − 𝑢𝑗𝑘 + 𝑁𝑥𝑖𝑗𝑘  ≤ 𝑁 − 1,                           ∀𝑖 ≥ 𝐿 + 1, ∀𝑗, ∀𝑘, 𝑖 ≠ 𝑗        (4 − 47) 
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location and enters the collection location in trip k at most once. Constraints (4-32) 

and (4-33) ensure that customers’ nodes should be visited only once. Moreover, 

constraint (4-34) ensures that the number of times that the drone enters a node is equal 

the number of times the drone exits a node. Constraint (4-35) ensures that the number 

of visited customers per trip should be at most DL+1. In other words, the drone cannot 

make more than DL+1 arc, in which the last arc is the returning to the truck. Also, 

constraints (4-36) and (4-37) order the number of needed trips. By adding these 

constraints, the restriction on defining the number of needed trips as a fixed input is 

eliminated. Constraint (4-38) ensures that the drone cannot move along the truck’s 

path and cannot travel to the same node. Furthermore, constraints (4-39), (4-40), and 

(4-41) are contingent constraints that ensure that yijk exists when the drone leaves the 

releasing location and enters the collection location in trip k.  

Constraints (4-42), (4-43), and (4-44) are contingent constraints that ensure 

𝑧𝑖𝑗(𝑘+1) exists if the drone is collected in trip k and released in trip k + 1. Constraint 

(4-45) indicates that the truck should start from the origin location/warehouse where it 

might launch the drone from it. Constraint (4-46) ensures that 𝑧0𝑗1 of k = 1 exists 

when the drone is launched by the truck. Finally, constraint (4-47) is a sub-tour 

elimination constraint. 

4.4.3. Model IV validation. For the validation of the proposed model, for 

example 4.1.1 is used. However, some modifications are made:  

− Truck’s unit cost is $1 and the drone’s unit cost is $1.  

− The number of deliveries/trips is assumed to be 2. 

The example is solved manually to confirm the results obtained from GAMS. 

The followings are the possible truck drone paths with the corresponding total cost 

that are obtained by solving the problem manually. 

• Option 1:  

− Trip 1: 0-3-4-0 

− Trip 2: 0-5-0   Total cost = $9.122 

• Option 2:  

− Trip 1: 0-3-4-1 

− Trip 2: 1-5-1   Total cost = $7.656 
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• Option 3:  

− Trip 1: 0-3-4-2 

− Trip 2: 2-5-2   Total cost = $7.414 

• Option 4:  

− Trip 1: 1-3-4-1 

− Trip 2: 2-5-2   Total cost = $7.414 

• Option 5:  

− Trip 1: 1-5-1 

− Trip 2: 1-3-4-1  Total cost = $7.242 

• Option 6:  

− Trip 1: 1-3-4-2 

− Trip 2: 2-5-2   Total cost = $7.00 

Option 6 shows the minimum total cost. The model is solved using GAMS and its 

results correspond to the obtained here manually.  Therefore, the model is validated. 

4.4.4. Model IV illustration. This model is illustrated using example 4.4.1 

carried to experiment the model and it has the following inputs: 

− It consists of 6 possible truck’s locations and ten customers’ nodes. 

−  The unit cost of the truck and drone are $1, $0.3 respectively. 

− The drone can make three deliveries per trip (DL=3). 

− Figure 21 shows the coordinates of the used example. 

 

Figure 21: Coordinates of customers' and truck’s nodes in example 4.4.1 
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Figure 22 demonstrates the solutions of the drone’s routes. 

 

Figure 22: Solution for model IV 

Table 12 shows the route taken by the drone on each trip and the truck’s path 

Table 12: Solution for model IV 

Trip number 
Drone route 

xijk 

Truck’s path 

yikj zijk 

1 1 - 6 - 7 - 9 - 2 1 - 2 0 - 1 

2 2 - 12 - 13 - 14 - 2 2 - 2 2 - 2 

3 2 - 15 - 10 - 11 - 2 2 - 2 2 - 2 

4 2 - 8 - 2 2 - 2 2 - 2 

 

 The solution resulted in a total cost of $91 with a total number of 4 trips in 

which the drone is delivering from 1 to 3 deliveries per trip.  

4.4.5. Model III characteristics. The configuration of the system is affected 

by many parameters such as truck’s and drone’s unit costs, the load capacity of the 

drone, the location of the truck path, and the number of truck’s predetermined 

locations.  Therefore, each is evaluated to determine its impact on the system. 

Example 4.4.1 is used. 

Unit cost: The truck’s and drone’s unit costs are comparable, Fd = $0.3 and Ft = $0.5. 

The total cost becomes $80.4. Figure 23 shows the new set-up of the system. 
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Figure 23: The solution for comparable unit costs 

Load capacity: With using DL = 2, the total cost $112.1. The number of trips taken 

by the drone is 6. Figure 24 shows the number of routes taken by the drone along the 

truck’s movement. 

 

Figure 24: The solution for drone’s capacity of 2 

On the other hand, if DL = 4, the cost is $83.4.  The number of trips taken by the 

drone is 6. Figure 25 shows the routes taken by the drone along the truck’s movement. 

From the above, it can be concluded that as the capacity of the drone’s 

increases, the total cost will decrease as the drone will have fewer routes to make. 
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Figure 25: The solution for the drone’s capacity of 4 

Position of the truck’s path: A comparison between the cost and the location of the 

truck’s path is performed. The original truck’s path is displaced along the y-axis. 

Figure 26 illustrates the different displacements done on the truck’s path concerning 

its original location. 

  

Figure 26: The coordinates of the possible truck's path and the customers' nodes  

Figure 27 shows that the cost is sensitive to the truck’s path location and it 

decreases as the truck’s path is close to customers (from +10 to +30).  The minimum 

cost is reached when the location of the truck’s path is displaced by 30. To sum up, 

the cost is reduced when the truck’s path location is around the customers’ nodes.  
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Figure 27: The relationship between the total cost and the location of the truck's path 

Number of truck’s predetermined locations: The obtained result above is used in 

the following comparison. In this comparison, the total cost and the number of 

predetermined locations of the truck are evaluated to find their relationship with each 

other. The existing truck’s locations are discretized around the solution. Figure 28 

shows the discretization of the initial truck’s location around the optimal location. As 

the predetermined locations are more discretized, the total cost decreases. This is due 

to the increase in the number of options for the truck to stop which will give a better 

optimization solution. Part (g) and part (h) show that discretizing the truck’s path 

away from the initial solution does not affect the cost. 

4.5. Model V: Single Drone, Multiple Trips with Time and Precedence 

Constraints 

 This problem is an extension of the previous problem (multiple trips with an 

unknown starting location). New constraints are added to explore the behavior of 

truck’s and drone’s path in terms of time. Also, this problem ensures that the arrival 

time of the truck at the collection location should be less than that of the drone. This 

aspect should be ensured as the drone has limited operating duration. 

4.5.1. Problem definition. In this problem, the main concern is to guarantee 

that the drone does not reach the collection location before the truck on each trip. The 

following assumptions are added: 
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− The drone has a maximum operating time. 

− The truck provides new batteries (or recharge the batteries) for the drones 

during each preparation of launching of the drones. 

 

Figure 28: Number of truck’s predetermined locations and the corresponding cost 

4.5.2. Model V formulation.  The followings are the added variables for 

considering time and precedence constraints. 

𝒕𝒋𝒌 The time at which the truck arrives at node 𝑗, trip 𝑘 
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𝒕′𝒋𝒌 The time at which the drone arrives at node 𝑗, trip  𝑘 

𝑺𝑻′𝒊𝒌 The starting time of the drone at node 𝑖, trip 𝑘 

𝑺𝑻𝒊𝒌 The starting time of the truck at node 𝑖, trip 𝑘 

𝑬𝑻′𝒋𝒌 The end time of the drone at node 𝑗, trip 𝑘 

𝑩𝒆𝒕𝒊𝒋𝒌 The traveling time from 𝑖 to 𝑗 in trip 𝑘 

Figure 29 shows the ILP formulation for time and precedence constraints. 

 

Figure 29: Proposed ILP, model V 

Constraint (4-48) is to ensure that the arrival time of the drone at the collection 

location j is greater than the arrival time of the truck at the collection location j in trip 

k. Constraint (4-49) ensures that the arrival time of the drone at node j is greater than 

the departing time from node i including the traveling time from node i to j in trip k. 

𝑡′
𝑗𝑘 ≥  𝑡𝑗𝑘 − 𝑀 ( 1 −  ∑ 𝑥𝑖𝑗𝑘

𝑁+𝐿

𝑖=𝐿+1

) ,           𝑗 = 0, . . , 𝐿     , ∀𝑘                          (4 − 48) 

𝑡′𝑖𝑘 +  𝜏′𝑖𝑗 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘) ≤  𝑡′
𝑗𝑘 ,          𝑖, 𝑗 = 𝐿 + 1, . . , 𝑁 + 𝐿     , ∀𝑘        (4 − 49) 

𝑆𝑇′
𝑖𝑘 +  𝜏′

𝑖𝑗 +  𝑡𝐿 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘) ≤  𝑡′
𝑗𝑘 ,                                                                   

 𝑖 = 0, . . , 𝐿      , 𝑗 = 𝐿 + 1, . . , 𝑁 + 𝐿     , ∀𝑘                        (4 − 50)       

𝑡′
𝑖𝑘 + 𝜏′

𝑖𝑗 +  𝑡𝑅 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘) ≤  𝑡′
𝑗𝑘 ,                                                                    

 𝑖 = 𝐿 + 1, . . , 𝑁 + 𝐿        , 𝑗 = 0, . . , 𝐿       , ∀𝑘                   (4 − 51) 

𝑆𝑇𝑖𝑘 +  𝜏𝑖𝑗 + 𝑡𝑅 + 𝑡𝐿  − 𝑀 ( 1 − 𝑦𝑖𝑗𝑘) ≤  𝑡𝑗𝑘 ,                                                            

 𝑖, 𝑗 = 0, . . , 𝐿      , ∀𝑘                       (4 − 52) 

𝐸𝑇′
𝑗𝑘 ≥  𝑡′

𝑖𝑘 +  𝜏′
𝑖𝑗 +  𝑡𝑅 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘),                                                               

                                     𝑖 = 𝐿 + 1, . . , 𝑁 + 𝐿    , 𝑗 = 0, . . , 𝐿        , ∀𝑘                    (4 − 53) 

𝐵𝑒𝑡𝑖𝑗𝑘 =  𝜏𝑖𝑗𝑧𝑖𝑗𝑘 ,              𝑖, 𝑗 = 0, . . , 𝐿        , ∀𝑘                                                  (4 − 54) 

𝑆𝑇𝑗𝑘 =  𝐸𝑇′𝑖𝑘−1 +  𝐵𝑒𝑡𝑖𝑗𝑘,                 𝑖, 𝑗 = 0, . . , 𝐿     , ∀𝑘                                 (4 − 55) 

𝑆𝑇′
𝑖𝑘 =  𝑆𝑇𝑖𝑘,                                       𝑖 = 0, . . , 𝐿         , ∀𝑘                                 (4 − 56) 

∑ ∑ 𝜏′
𝑖𝑗𝑥𝑖𝑗𝑘

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

 ≤  𝑇′
𝑚𝑎𝑥 ,                                              ∀𝑘                                 (4 − 57) 
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Constraint (4-50) ensures that the arrival time at node j incorporates the drone’s 

preparation time (tL),  the traveling time between node i and j, and the starting time at 

node i in each trip k while constraint (4-51) ensures that the time at the collection 

location at node j incorporates the rendezvous time (tR), the time at node i, and the 

traveling time between node i and j in each trip k.  

Constraint (4-52) ensures that in trip k, the arrival time of the truck at node j is 

greater than its starting time at node i incorporating the traveling time between i and j, 

the launching time of the drone, and the rendezvous time of the drone. Constraint (4-

53) is to account for the end time of the drone when it is collected by the truck in trip 

k. Note that the end time of the truck is not accounted because the end time will be 

calculated only when the truck collects the drone. Before that, the truck will wait for 

the drone. Constraint (4-54) is to ensure the accounting for the traveling time between 

two trips including the traveling time from the origin to the releasing location of the 

drone on the first trip. Constraint (4-55) shows that the starting time of the truck is 

equal to the end time of the drone and the traveling time between trip k and k + 1. 

Constraint (4-56) shows that the starting time of both vehicles in trip k is equal. 

Finally, constraint (4-57) shows that drone’s traveling time cannot go beyond its 

maximum operating time in each trip k. 

If the operational time of the drone at customers is included, then the 

following parameter should be added. 

𝑶𝒕𝒋𝒌 Operational time of the drone at customer j in trip k 

Constraints (4-49) and (4-57) should be modified to account for the new parameter. 

𝑡′
𝑖𝑘 + 𝜏′

𝑖𝑗 +  𝑂𝑡𝑗𝑘𝑥𝑖𝑗𝑘 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘) ≤  𝑡′
𝑗𝑘 ,  

                                              𝑖, 𝑗 = 𝐿 + 1, . . , 𝑁 + 𝐿     , ∀𝑘                                          

∑ ∑(𝜏′
𝑖𝑗

+ 𝑂𝑡𝑗𝑘)𝑥𝑖𝑗𝑘

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

 ≤  𝑇′
𝑚𝑎𝑥,                                   ∀𝑘                                  

4.5.3. Model V illustration. Example 4.4.1 is used. However, some inputs 

are added:  

− The time required by the truck to prepare/release the drone tL is 1 minute. 
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− The time required by the truck to collect the drone tR is 1 minute. 

− The operating time of the drone is 20 minutes.  

− The truck’s speed is 25 mile per hour (12 meters per second). 

− The drone’s speed is 45 mile per hour (20 meters per second). 

Figure 30 shows the resulted drone’s route on each trip. 

 

Figure 30: Solution for model V 

Table 13 shows the drone’s route in each trip as well as the truck’s path. On 

the other hand, Table 14 displays the traveling times from one node to another for the 

drone and the truck.  

Table 13: Solution for model V (routes) 

Trip number 
Drone route 

xijk 

Truck’s path 

yikj zijk 

1 2 - 8 - 2 2 - 2 0 - 2 

2 2 - 12 - 13 - 14 - 2 2 - 2 2 - 2 

3 2 - 15 - 10 - 11 - 2 2 - 2 2 - 2 

4 2 - 6 - 7 - 9 - 2 2 - 2 2 - 2 

 

The solution resulted in a total cost of $92 with a total number of 4 trips in 

which the drone is delivering from 1 to 3 deliveries per trip. At first, the truck is 

departing from the origin and launching the drone at l = 2. In other words, z021 = 1. 
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Then, the truck launches and collects the drone at the same location l = 2. In terms of 

time considerations, the drone’s operational time is not exceeding the maximum time 

(20 minutes) is each trip. Furthermore, the truck is arriving before the drone’s arrival 

at the collection location. 

Table 14: Solution for model V (time) 

Trip 

number 

Drone’s traveling time 

(minutes) 

t’jk 

Truck’s traveling time 

(minutes) 

tjk 

Drone’s operational 

time (minutes) 

1 3.6 - 4.0 - 5.4 3.6 - 4.6 0.85 

2 6.4 - 7.3 - 9.0 - 10.0 - 13.0 6.4 - 7.4 5.7 

3 14.0 - 17.3 - 18.7 - 19.6 - 24.4 14.0 - 15.0 9.3 

4 25.4 - 26.2 - 27.5 - 28.6 - 31.2 25.4 - 26.4 4.8 

4.5.4. Model characteristics. As in model IV, the arrangement of the system 

changes with unit costs. When the truck’s and drone’s unit costs are comparable, Fd = 

$0.3 and Ft = $0.5, the total cost becomes $82.2. Figure 31 shows the new set-up. 

 

Figure 31: The solution for comparable costs 

 The above problem can be generalized by considering multiple drones instead 

of a single drone. This generalization can increase the number of delivered customers 

and reduces the drone’s operational time. The next problem suggests the multiple 

drones’ scenario. 
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4.6. Model VI: Multiple Drones, Multiple Trips with Time and Precedence 

Constraints 

 The model merges all the previous conditions and configurations. However, it 

adds the multiple drones’ scenario where the truck handles multiple drones. Given the 

limited load capacity of the drone and its limited operational time, the truck should 

handle multiple drones to cover larger set of customers. 

4.6.1. Problem definition. In this problem, multiple drones are used to serve 

customers. R = {1, …, r} represents the number of drones that the truck can handle. 

The followings are the added assumptions: 

− The truck can deal with multiple handovers where it can handle different 

drones independently. 

− The truck can handle two drones. 

− All drones are launched from the same location. 

− The drones are collected from the same location. 

4.6.2. Model VI formulation. The truck-drone system is designed as shown 

in Figure 32. The truck starts its path from the origin/warehouse (l = 0) that might 

launch the drone from that location or another location along the truck’s path. Then, 

the drone delivers to a certain number of customers. Then, it returns to the truck at an 

optimized location to be refilled with customers’ packages. The drone will continually 

get released, deliver, and return to the truck until all customers are served. 

 

 

Figure 32: Model VI illustration 

The followings are the added parameters and variables. 

• Added problem parameters 

 

xijkl 

xijk2 

yijk1 zijkl yjik2 z0jkl yijk1 yjik2 

xij(k+1)l 

xij(k+1)2 
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   R    Number of drones 

   DLT    Number of deliveries/trip 

   DLD    Number of deliveries/drone 

• Problem variables 

   𝒙𝒊𝒋𝒌𝒍        {

  

1;  if drone 𝑙 travels from node 𝑖 to node 𝑗 𝑖𝑛 𝑡𝑟𝑖𝑝 𝑘
0;  otherwise                                                                        

 

   𝒚𝒊𝒋𝒌         {

  

1;  if the truck travels from node 𝑖 to node 𝑗 𝑖𝑛 𝑡𝑟𝑖𝑝 𝑘
0;  otherwise                                                                           

 

   𝒖𝒋𝒌𝒍        Number of nodes visited by drone l from depot to node j in trip k 

   𝒛𝒊𝒋𝒌         {
 1;  if the truck moves from node 𝑖 to node 𝑗 

before the beginning of  trip 𝑘
 0;  otherwise                                                          

 

   𝒕𝒓𝒊𝒑𝒌𝒍    {

 

 1;  if trip 𝑘 is made for drone 𝑙
0;  otherwise                               

 

   𝒕𝒋𝒌       The time at which the truck arrives at node 𝑗, in trip 𝑘 

   𝒕′𝒋𝒌𝒍       The time at which drone 𝑙 arrives at node 𝑗, in trip 𝑘 

   𝑺𝑻′𝒊𝒌𝒍     The starting time of drone 𝑙 at node 𝑖, in trip 𝑘 

   𝑺𝑻𝒊𝒌       The starting time of the truck at node 𝑖, in trip 𝑘 

   𝑬𝑻′𝒋𝒌𝒍     The end time of drone 𝑙 at node 𝑗, in trip 𝑘 

   𝑩𝒆𝒕𝒊𝒋𝒌    The traveling time from node 𝑖 to node  𝑗, in trip 𝑘 

Figures 33, 34, and 35 show the ILP formulation for this problem. Equation 

(4-58) gives the cost of traveling distance for the truck and the drones. Constraints (4-

59) and (4-60) ensure that each drone l must depart from the releasing location and 

enters the collection location in trip k at most once. Constraints (4-61) and (4-62) 

ensure that customers’ nodes should be visited only once.  

Moreover, constraint (4-63) ensures that for each drone l, the number of 

arriving at every customer and collection location is equal to drone’s number of 

leaving at every customer and releasing location or (ensures that if the drone enters a 

node, then it should depart from it). Also, constraints (4-64) and (4-65) are counter 

constraints to determine the number of needed trips given the number of served 

customers for each drone in each trip. Constraint (4-66) ensures that drones cannot 

move along the truck’s path and cannot travel to the same node. 
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Figure 33: Proposed ILP, model VI 

𝑀𝑖𝑛 =  ∑ ∑ ∑ ∑ 𝐹𝑑𝑑𝑖𝑗𝑥𝑖𝑗𝑘𝑙

𝑟

𝑙=1

𝑚

𝑘=1

  

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

+  ∑ ∑ ∑ 𝐹𝑇𝑇𝑖𝑗(𝑦𝑖𝑗𝑘 + 𝑧𝑖𝑗𝑘)

𝑚

𝑘=1

𝐿

𝑗=0

𝐿

𝑖=0

                                              (4 − 58) 

∑ 𝑥𝑖𝑗𝑘𝑙

𝑁+𝐿

𝑗=𝐿+1

≤ 1,                      𝑖 = 0, . . , 𝐿           , ∀𝑘               , ∀𝑙                        (4 − 59) 

∑ 𝑥𝑖𝑗𝑘𝑙

𝑁+𝐿

𝑖=𝐿+1

≤ 1,                       𝑗 = 0, . . , 𝐿          , ∀𝑘                , ∀𝑙                        (4 − 60) 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙

𝑟

𝑙=1

𝑚

𝑘=1

= 1,            𝑗 = 𝐿 + 1, … , 𝑁 + 𝐿, 𝑖 ≠ 𝑗        

𝑁+𝐿

𝑖=0

                  (4 − 61) 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙

𝑟

𝑙=1

𝑚

𝑘=1

= 1,           𝑖 = 𝐿 + 1, . . , 𝑁 + 𝐿, 𝑖 ≠ 𝑗                            (4 − 62)

𝑁+𝐿

𝑗=0

 

∑ 𝑥𝑖𝑗𝑘𝑙

𝑁+𝐿

𝑖=0

=  ∑ 𝑥𝑗𝑖𝑘𝑙 ,

𝑁+𝐿

𝑖=0

           𝑗 = 𝐿 + 1, … , 𝑁 + 𝐿        , ∀𝑘      , ∀𝑙                  (4 − 63) 

𝑇𝑟𝑖𝑝(𝑘+1)𝑙  ≤  ∑ ∑ 𝑥𝑖𝑗𝑘𝑙,

𝑁+𝐿

𝑗=0

                              ∀𝑘     , ∀𝑙                

𝑁+𝐿

𝑖=0

                  (4 − 64) 

𝑇𝑟𝑖𝑝𝑘𝑙  ≤  ∑ ∑ 𝑥𝑖𝑗𝑘𝑙 ,

𝑁+𝐿

𝑗=0

                                     ∀𝑘     , ∀𝑙                

𝑁+𝐿

𝑖=0

                  (4 − 65) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑙  

𝐿

𝑗=0

+  ∑ ∑ 𝑥𝑖𝑖𝑘𝑙

𝑁+𝐿

𝑗=0

= 0,                     ∀𝑘     , ∀𝑙              

𝑁+𝐿

𝑖=0

𝐿

𝑖=0

                    (4 − 66) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑙 ≤ (𝐷𝐿𝐷 + 1)

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

𝑇𝑟𝑖𝑝𝑘𝑙,                   ∀𝑘     , ∀𝑙                                  (4 − 67) 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙

𝑟

𝑙=1

≤ (𝐷𝐿𝑇 + 2)

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

𝑇𝑟𝑖𝑝𝑘𝑙,                        ∀𝑘                                  (4 − 68) 
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Figure 34: Proposed ILP, model VI 

𝑦𝑖𝑗𝑘  ≥ ∑ 𝑥𝑖𝑤𝑘𝑙

𝑁+𝐿

𝑤=𝐿+1

+  ∑ 𝑥𝑤𝑗𝑘𝑙

𝑁+𝐿

𝑤=𝐿+1

− 1, 

                                                             𝑖, 𝑗 = 0, . . , 𝐿     , ∀𝑘   , ∀𝑙                             (4 − 69) 

𝑦𝑖𝑗𝑘 ≤  ∑ 𝑥𝑖𝑤𝑘𝑙 ,

𝑁+𝐿

𝑤=𝐿+1

                      𝑖, 𝑗 = 0, . . , 𝐿     , ∀𝑘   , ∀𝑙                              (4 − 70) 

𝑦𝑖𝑗𝑘 ≤    ∑ 𝑥𝑤𝑗𝑘𝑙 ,

𝑁+𝐿

𝑤=𝐿+1

                     𝑖, 𝑗 = 0, . . , 𝐿     , ∀𝑘   , ∀𝑙                             (4 − 71) 

𝑧𝑖𝑗(𝑘+1) ≥  ∑ 𝑥𝑤𝑗𝑘𝑙

𝑁+𝐿

𝑤=𝐿+1

+ ∑ 𝑥𝑖𝑤(𝑘+1)𝑙

𝑁+𝐿

𝑤=𝐿+1

− 1,      

                                                              𝑖, 𝑗 = 0, . . , 𝐿   , ∀𝑘   , ∀𝑙                              (4 − 72) 

𝑧𝑖𝑗(𝑘+1) ≤  ∑ 𝑥𝑤𝑗𝑘𝑙 ,

𝑁+𝐿

𝑤=𝐿+1

                𝑖, 𝑗 = 0, . . , 𝐿    , ∀𝑘  , ∀𝑙                               (4 − 73) 

𝑧𝑖𝑗(𝑘+1) ≤  ∑ 𝑥𝑖𝑤(𝑘+1)𝑙,

𝑁+𝐿

𝑤=𝐿+1

            𝑖, 𝑗 = 0, . . , 𝐿    , ∀𝑘  , ∀𝑙                            (4 − 74) 

∑ 𝑧0𝑖1

𝐿

𝑖=0

= 1,                                                                                                              (4 − 75) 

𝑧0𝑖1 ≤ ∑ 𝑥𝑖𝑤1𝑙 ,

𝑁+𝐿

𝑤=𝐿+1

                           𝑖 = 0, . . , 𝐿             , ∀𝑙                                (4 − 76) 

𝑢𝑖𝑘𝑙 − 𝑢𝑗𝑘𝑙 + 𝑁𝑥𝑖𝑗𝑘𝑙  ≤ 𝑁 − 1,       ∀𝑖 ≥ 𝐿 + 1, ∀𝑗, ∀𝑘, ∀𝑙, 𝑖 ≠ 𝑗                  (4 − 77) 

𝑡′
𝑗𝑘𝑙 ≥  𝑡𝑗𝑘 − 𝑀 ( 1 −  ∑ 𝑥𝑖𝑗𝑘𝑙

𝑁+𝐿

𝑖=𝐿+1

) ,           𝑗 = 0, . . , 𝐿     , ∀𝑘      , ∀𝑙            (4 − 78) 

𝑡′
𝑖𝑘𝑙 +  𝜏′

𝑖𝑗 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘𝑙) ≤  𝑡′
𝑗𝑘𝑙 ,    

                                                          𝑖, 𝑗 = 𝐿 + 1, . . , 𝑁 + 𝐿     , ∀𝑘      , ∀𝑙            (4 − 79) 

𝑆𝑇′
𝑖𝑘𝑙 + 𝜏′

𝑖𝑗 +  𝑡𝐿 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘𝑙) ≤  𝑡′
𝑗𝑘𝑙 ,                                                                   

𝑖 = 0, . . , 𝐿      , 𝑗 = 𝐿 + 1, . . , 𝑁 + 𝐿     , ∀𝑘       , ∀𝑙                        (4 − 80)       
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Figure 35: Proposed ILP, model VI 

Constraints (4-67) and (4-68) ensure that the total number of visited customers 

per drone should be at most DLD + 1 (maximum number of acres per drone is 

DLD+1) and the total number of visited customers per trip should not exceed DLT +2 

(maximum number of acres per trip for the two drones is DLT + 2). Furthermore, 

constraints (4-69), (4-70), and (4-71) are contingent constraints that ensure that yijk 

exists when the drones leave the releasing location and enter the collection location in 

trip k. Constraints (4-72), (4-73), and (4-74) are contingent constraints that ensure 

𝑧𝑖𝑗(𝑘+1) exists if the drones are collected in trip k and released in trip k + 1. Constraint 

(4-75) indicates that the truck should start from the origin location/warehouse where it 

might launch the drones from it. Constraint (4-76) ensures that 𝑧0𝑗1 of k = 1 exists 

when the drones are launched by the truck and constraint (4-77) is a sub-tour 

elimination constraint. 

In terms of time considerations, Constraint (4-78) is to ensure that the arrival 

time of drone l at the collection location j is greater than the arrival time of the truck 

𝑡′
𝑖𝑘𝑙 +  𝜏′

𝑖𝑗 + 𝑡𝑅 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘𝑙) ≤  𝑡′
𝑗𝑘𝑙 ,                                                                    

 𝑖 = 𝐿 + 1, . . , 𝑁 + 𝐿     , 𝑗 = 0, . . , 𝐿       , ∀𝑘      , ∀𝑙                        (4 − 81) 

𝑆𝑇𝑖𝑘 +  𝜏𝑖𝑗 + 𝑡𝑅 + 𝑡𝐿  − 𝑀 ( 1 − 𝑦𝑖𝑗𝑘) ≤  𝑡𝑗𝑘 ,                                                            

 𝑖, 𝑗 = 0, . . , 𝐿      , ∀𝑘     , ∀𝑙                       (4 − 82) 

𝐸𝑇′
𝑗𝑘𝑙 ≥  𝑡′

𝑖𝑘𝑙 +  𝜏′
𝑖𝑗 + 𝑡𝑅 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘𝑙),                                                               

                     𝑖 = 𝐿 + 1, . . , 𝑁 + 𝐿    , 𝑗 = 0, . . , 𝐿        , ∀𝑘       , ∀𝑙                       (4 − 83) 

𝐵𝑒𝑡𝑖𝑗𝑘 =  𝜏𝑖𝑗𝑧𝑖𝑗𝑘 ,              𝑖, 𝑗 = 0, . . , 𝐿        , ∀𝑘                                                  (4 − 84) 

𝑆𝑇𝑗𝑘 =  𝐸𝑇′𝑖(𝑘−1)𝑙 +  𝐵𝑒𝑡𝑖𝑗𝑘,                 𝑖, 𝑗 = 0, . . , 𝐿     , ∀𝑘      , ∀𝑙                 (4 − 85) 

𝑆𝑇′
𝑖𝑘𝑙 =  𝑆𝑇𝑖𝑘,                                            𝑖 = 0, . . , 𝐿         , ∀𝑘     , ∀𝑙                (4 − 86) 

∑ ∑ 𝜏′
𝑖𝑗𝑥𝑖𝑗𝑘𝑙

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

 ≤  𝑇′
𝑚𝑎𝑥,                       ∀𝑘       , ∀𝑙                                         (4 − 87) 

𝐸𝑇′
𝑗𝑘𝑙 ≥  𝐸𝑇′

𝑗𝑘1,                                 𝑖 = 0, . . , 𝐿         , ∀𝑘     , ∀𝑙                      (4 − 88) 

𝐸𝑇′
𝑗𝑘𝑙 ≥  𝐸𝑇′

𝑗𝑘2,                                𝑖 = 0, . . , 𝐿         , ∀𝑘     , ∀𝑙                       (4 − 89) 
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at the collection location j in trip k. Constraint (4-79) ensures that the arrival time of 

drone l at node j is greater than the departing time from node i including the traveling 

time from node i to j in trip k. Constraint (4-80) ensures that the arrival time at node j 

incorporates the drone’s l preparation time (tL),  the traveling time between node i and 

j, and the starting time at node i in each trip k while constraint (4-81) ensures that the 

time at the collection location at node j incorporates the rendezvous time (tR), the time 

at node i, and the traveling time between node i and j in each trip k. Constraint (4-82) 

ensures that in trip k, the arrival time of the truck at node j is greater than its starting 

time at node i incorporating the traveling time between i and j, the launching time, 

and the rendezvous time. Constraint (4-83) is to account for the end time of drone l 

when it is collected by the truck in trip k. Note that the end time of the truck is not 

accounted because the end time will be calculated only when the truck collects the 

drone. Before that, the truck will wait for the drone. 

Constraint (4-84) is to ensure the accounting for the traveling time between 

two trips including the traveling time from the origin to the releasing location of the 

drones on the first trip. Constraint (4-85) shows that the starting time of the truck is 

equal to the end time of drone l and the traveling time between trip k and k + 1. 

Constraint (4-86) shows that the starting time of both vehicles in trip k is equal. Also, 

constraint (4-87) shows that drone’s l traveling time cannot go beyond its maximum 

operating time in each trip k. Finally, constraints (4-88) and (4-89) guarantee that the 

ending time of the trip is the maximum of the ending times of the two drones. 

The operational time of the drone at customers can be considered by including 

the following parameter. 

𝑶𝒕𝒋𝒌𝒍 Operational time of the drone at customer j in trip k for drone l 

Constraints (4-79) and (4-87) should be modified to account for the new parameter. 

𝑡′
𝑖𝑘𝑙 +  𝜏′

𝑖𝑗 + 𝑂𝑡𝑗𝑘𝑙𝑥𝑖𝑗𝑘𝑙 − 𝑀 ( 1 − 𝑥𝑖𝑗𝑘𝑙) ≤  𝑡′
𝑗𝑘𝑙 ,  

                                             𝑖, 𝑗 = 𝐿 + 1, . . , 𝑁 + 𝐿     , ∀𝑘       , ∀𝑙                                       

∑ ∑(𝜏′
𝑖𝑗

+ 𝑂𝑡𝑗𝑘𝑙)𝑥𝑖𝑗𝑘𝑙

𝑁+𝐿

𝑗=0

𝑁+𝐿

𝑖=0

 ≤  𝑇′
𝑚𝑎𝑥 ,                           ∀𝑘      , ∀𝑙                                
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Also, the drones’ and truck’s fixed costs can be considered for such problems 

by adding decisions variables that determine the use of the drones. However, in our 

case, the drones are assumed to be always in operation. Therefore, the added fixed 

costs are not taken into consideration as mentioned at the beginning of this chapter. 

4.6.3. Model VI illustration. Example 4.6.1 is used here has the following inputs: 

− It consists of 6 possible locations for the truck and ten customers’ nodes. 

− The unit cost of the truck and drone are $1, $0.3 respectively. 

− The time required by the truck to prepare / release the drone tL is 1 minute. 

− The time required by the truck to collect the drone tR is 1 minute. 

− The operating time of the drone is 20 minutes.  

− The truck’s speed is 25 mile per hour (12 meters per second). 

− The drone’s speed is 45 mile per hour (20 meters per second). 

− The drone can make three deliveries per trip (DL=2). 

− The coordinates of the truck’s possible locations and customers’ nodes are 

shown in Figure 36 and Figure 37 shows the solution. 

 

 Figure 36: Coordinates of customers' and truck’s nodes for example 4.6.1 

Table 15 shows the drones routes in each trip as well as the truck’s path. On 

the other hand, Table 16 displays the traveling times from one node to another for the 

drones and the truck. The solution resulted in a total cost of $98 with a total number 

of 3 trips in which the drone is delivering from 1 to 3 deliveries per trip. 
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In terms of time considerations, the truck is arriving before the drone’s arrival 

at the collection location. Lastly, the entire delivery process took around 20 minutes. 

 

Figure 37: Solution for model VI 

Table 15: Solution for model VI (routes) 

Trip number 

Drone’s Route (xijkl) Truck’s path 

Drone #1 Drone #2 yikj zijk 

1 0 - 6 – 7 - 1 0 - 8 - 1 0 - 1 0 - 0 

2 1 - 11 - 12 - 1 1 - 15 - 14 - 1 1 - 1 1 - 1 

3 1 - 13 - 9 - 1 1 - 10 - 1 1 - 1 1 – 1 

 

Table 16: Solution for model VI (time) 

Trip 

number 

Drone’s traveling time (minutes) 

t’jkl 

Truck’s 

traveling 

time 

(minutes) 

tjk 

Drone’s operational time 

(minutes) 

Drone #1 Drone #2 Drone #1 Drone #2 

1 
1.0 - 1.47 - 2.78 -

5.48 
1.0 - 1.5 – 2.95 1.0 – 2.95 3.5 0.93 

2 
6.48 - 9.1 -10.1 - 

13.1 

6.48 - 10.3 - 11.2 

- 15.9 
6.48 - 7.48 5.64 8.40 

3 
16.9 - 18.5 - 19.4 - 

22.9 
16.9 - 17.8 - 19.7  16.9 – 17.9 5.02 1.82 
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4.6.4. Model characteristics. In this model, changing the number of 

operated drones can affect the system set-up. Referring to example 4.6.1, the total cost 

between single and two drones’ scenarios is compared. By operating with a single 

drone, the total cost is $96.1. Figure 38 demonstrates the solution. The drone takes 

five trips and the total operational time is 35 minutes.  

 

Figure 38: Solution for single drone 

Using a single drone reduced the cost in which it reduced from $98 to $96.1. 

However, the total operational time increased from 20 minutes to 35 minutes. 

4.7. Summary 

This section summarizes all the conclusions obtained from the different 

models as well as the applications that be linked to the proposed models. Table 17 

shows the summary. All the applications are motivational examples for adopting the 

proposed models.  

Exact methods can return optimal solutions within a reasonable time frame for 

small size problems. But its efficiency reduces with expanding the problem size. 

Despite that the optimal solutions in heuristics cannot be predicted, heuristics can 

provide solutions with good quality and within a rational time limit. Therefore, a 

Clarke and Wright savings heuristic is developed in the next chapter. 
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Table 17: Models summary 

Model 

Number 
Summary Application 

Model I 

• Including the releasing location in the 

optimization process reduces the total 

operational cost. 

• Unit cost has an impact on truck’s movement. 

When unit costs are comparable, truck turns 

to move from its starting location. 

The Amazon Fulfillment Center 

Towers with Drone Delivery [92] 

is a direct application. The drones 

are launched from the center to 

make the deliveries. After they 

serve the customers, the truck may 

collect them from any point along 

its path. 

Model II 

In precision agriculture drones are 

used for spraying pesticides and 

that can cover many different 

areas in a single trip [96]. 

Model III 

• Total cost increases with decreasing the 

maximum drone’s operational time. 

• The total cost increases with the inclusion of 

the drone’s operational time at customers. 

• This is due to the truck’s movement as it will 

travel a longer distance to compensate for the 

drone’s limited operational time. 

 

- 

Model IV 

• The system’s set-up is sensitive to the drone’s 

and truck’s unit cost. 

• As the capacity of the drone increases, the 

drone will make fewer routes and thus cost is 

less. 

• The location of the truck’s path has a major 

impact on the total cost that affects the 

traveling distance made by the drone. When 

the location of the truck’s path is closer to 

customers, the drone will travel a shorter 

distance. Hence, the total cost will drop. 

• The number of predetermined locations was 

tested. As the locations are discretised more, 

the total cost drops. 

 

UPS truck-drone system [28] is an 

illustrative application for the case 

of single drone and multiple trips. 

In this application, the drone is 

launched from the truck to serve 

customers and then returns to the 

truck. 

Carry, Dispatch [82] has four 

compartments, and it is designed 

to make multiple deliveries per 

trip. 

 

Model V - 

Model VI 

The two drones’ scenario costs more than the 

single drone scenario. However, the total system 

operational time is less. Thus, there is a trade-off 

between time and cost. 

 

It can be used in Amazon 

Airborne Fulfilment Centre 

application [88]. In this 

application, multiple UAVs are 

released from the airborne and 

multiple airships are used to 

replenish the airborne inventory. 
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Chapter 5. Clarke and Wright Savings Algorithm for the Proposed Models  

 

VRP problems require enough computational time to reach an optimum 

solution that cannot be practical for real-life situations. The exact solution methods 

are approaches that find optimal solutions for VRP. They are classified into three 

major categories: dynamic programming, branch and bound, and mathematical 

programming [97]. VRP are NP-hard problems, and this means that exact solutions 

cannot provide optimal solutions to medium to large instances. This due to the long 

required computational time. Therefore, heuristics can be the only solution to tackle 

large and difficult combinatorial optimization problems as they can adopt additional 

tasks and constraints. They can produce several solutions that give the flexibility for 

the user to choose one or more solution [45]. There are two primary methods for 

building VRP solutions, namely, merging existing routes using a saving criterion, and 

gradually assigning vertices to vehicle routes using an insertion cost [98]. In other 

words, heuristic methods can mostly be categorized into the following classifications: 

• Constructive methods: tours are built up by adding nodes to partial tours or 

combining sub tours with respect to the capacities and costs.  

• The two-phase method consists of clustering of vertices and route 

construction. The order of these phases can be clustering first, route later 

procedures or the route first, clustering later procedures [99]. 

5.1. Clarke and Wright Savings Heuristic 

The savings heuristic is a constructive heuristic, and it is widely used to solve 

the VRP. It provides relatively good solutions. The basic savings concept 

demonstrates the cost savings obtained by joining two routes into one route [99]. 

Figure 39 illustrates its concept, in which point 0 represents the depot. Figure 39 part 

(a) shows that customers i and j are visited on separate routes. However, Figure 39 

part (b) shows when both customers are visited on the same route, in which savings 

will be generated when the two routes are combined. 

The Clarke and Wright (CW) savings algorithm for the capacitated VRP 

(CVRP) is the most used heuristic for solving this problem. Generally, it is the best-

known heuristic in which its simplicity, intuitive appeal, and the quality of the 

produced solutions contribute to the algorithm’s acceptance in the research 
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community [100]. Generally, the quality of this algorithm is approximately 22% 

[101]. The general algorithm of the Clarke and Wright method is shown in Figure 40. 

 

Figure 39: Illustration of the savings concept 

 

Figure 40: Steps of the CW savings heuristic 

There are two versions of CW algorithm: a sequential version that allows only 

one route at a time to be constructed, and a parallel version that is all routes are 

constructed simultaneously. The parallel version is more common as it provides better 

results than the sequential version [99]. In the parallel version, each time a pair of 

customers are connected, the cost of the solution is decreased with the saving obtained 

by the customer pair. At last, the algorithm proceeds down the savings list until no 

1. Starting solution: each of the n vehicles serves one customer. 

2. For all pairs of nodes i,j. i≠j, calculate the savings for joining the cycles using 

edge[i.j]: 

𝑠𝑖𝑗 =  𝑐0𝑖 +  𝑐0𝑗 −  𝑐𝑖𝑗      

3. Sort the savings in decreasing order. 

4. Take edge[i.j] from the top of the savings list. Join two separate cycles with 

an edge[i.j], if 

i. The nodes belonging to separate cycles 

ii. The maximum capacity of the vehicle is not exceeded 

iii. i and j are first or the last customer on their cycles. 

5. Repeat step 4 until the savings are handled or the capacities don’t allow more 

merging. 

 

 

(a) (b) 
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more customer pairs can be connected [100]. 

In the implementation of this algorithm, Solomon [101] used approximation 

methods to solve the problems of vehicle routing and scheduling with a time window. 

The parallel savings method was implemented using list processing and heapsort 

structures. The method resulted in a 22% deviation from the best average solution 

value, which is considerably good. Altinel and Oncan [102], introduced a new 

enhancement of the original Clarke and Wright algorithm. The enhancement is 

performed by considering customer demands while calculating the savings. This 

inclusion can increase the opportunity of obtaining higher opportunities. The paper 

concluded that adding the new parameter increases the search effort. However, it 

increases the accuracy of the original remarkably with up to 5.32% of relative 

improvement.  

Another modification of the savings heuristic was performed by 

Anbuudayasankar et al. [103]. The paper focused on the problem of optimizing the 

process of replenishing money in the automated teller machines (distribution of 

logistics problem). Therefore, a bi-objective vehicle routing problem with forced 

backhauls was formulated. Two savings heuristics were modified, namely, modified 

savings heuristics with arc removal procedure (MASR), and modified savings 

heuristic with node swap procedure (MSNS). The first heuristic (MASR) considers 

the objectives of minimizing the travel distance and the span of travel tour. In 

contrast, the MSNS heuristic moves each node in a maximal tour to a set of nodes in 

other tours that results in solving the algorithm twice. The results showed that both 

heuristics provide good quality near-optimal solutions with relatively short computing 

time. 

Furthermore, Stanojevic et al. [104] proposed a new way of combining routes 

and its corresponding formula. Also, they developed a new heuristic – Extended 

Savings Algorithm (ESA) that can dynamically calculate savings during iterations and 

merge routes in more different ways than the CW. Also, the ESA can explore more 

convenient neighbors while still having the same computational complexity. Hence, 

the proposed heuristic provides better solutions than the original CW algorithm. In a 

more recent paper, Li et al. [105] studied the problem of rollon-rollof vehicle routing 
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that focuses the concern on waste material logistics. To solve the problem, a two-

stage heuristic was followed involving a modified CW algorithm and a local search 

phase. The modified algorithm accounts for the short distance span and the number of 

required vehicles that are not covered by the original CW algorithm. The 

effectiveness of the heuristic was examined using randomly-generated small scale 

instances and benchmark instances, in which both proved the good performance of the 

introduced algorithm. 

Using heuristics is extremely beneficial for adapting real-life situations as it 

gives a near optimum solution with an acceptable computational time comparing to 

the exact solutions. The savings procedure is to be followed as it is considered the 

simplest type of heuristics. In our work, we implement a savings heuristic to deal with 

a single drone and multiple drone scenario. The proposed savings algorithm is 

implemented in the following phases: 

5.1.1. Initial solution. In this phase, each customer is visited in a separated 

route. The initial routes will be used then in forming the final routes. The initial 

solutions are constructed with regards to the different combinations of depots. In our 

problem, the truck has multiple predetermined locations/depots for launching and 

collecting the drone. Figure 41 shows the different possible combination for a drone’s 

route to visit a single customer. In this figure, the drone can be launched and collected 

from three depots “D1, D2, and D3”. Thus, the drone’s route can be formed in six 

different configurations. Figure 42 illustrates the construction of the initial solutions. 

 

Figure 41: Initial solution 
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Figure 42: Construction of initial solution 

5.1.2. Savings calculations. In this phase, each customer is joined with 

another customer with respect to the different combination of depots. Afterward, the 

resulted saving from joining customers i and j in one route is calculated. Figure 43 

shows the different scenarios that are taken into consideration in the calculations of 

the savings. The classical CW algorithm accounts for the first scenario in Figure 43 

part (a). However, our proposed algorithm will consider all scenarios.  

 

Figure 43: Customers’ routes 

Inputs: Total number of nodes (nodes), The first customer node (customers), Number of initial 

routes (num_cycles), Depots (depot1, depot2), Demand 

Outputs: Initial cycles 

 

for (m=0 to depot1) do 

 for (n=0 to depot2) do 

  if (n >= m) 

   for (i=customers to nodes) do 

 

Store the values of depot1, customer i, depot 2, position of last visited 

customer and demand 

 

index++ 

i++ 

end for   

n++ 

end for 

m++ 

end for 
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Equation (5-1) shows the traditional method of calculating the savings. 

         𝑠𝑖𝑗 =  𝑑𝑟𝑜𝑛𝑒′𝑠 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 ∗ (𝑑(𝑖, 𝑑𝑒𝑝𝑜𝑡2(𝑖)) + 𝑑(𝑑𝑒𝑝𝑜𝑡1(𝑗), 𝑗) − 𝑑(𝑖, 𝑗))          (5 − 1)  

 An alternative way of calculating the savings is to consider the truck’s 

movement. For instance, in Figure 43 part (d), the truck must move from D1 to D2 to 

collect the drone. Therefore, we penalize the savings by considering the cost of the 

distance traveled by truck. Equation (5-2) considers the penalty. 

𝑠𝑖𝑗 =  𝑑𝑟𝑜𝑛𝑒′𝑠 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 ∗ (𝑑(𝑖, 𝑑𝑒𝑝𝑜𝑡2(𝑖)) + 𝑑(𝑑𝑒𝑝𝑜𝑡1(𝑗), 𝑗) − 𝑑(𝑖, 𝑗)) −

              𝑡𝑟𝑢𝑐𝑘′𝑠 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 ∗ (𝑑(𝑑𝑒𝑝𝑜𝑡1, 𝑑𝑒𝑝𝑜𝑡2))                                                               (5 − 2)  

 A further improvement that can be done is by penalizing the savings through 

including the cost of the truck’s traveling distance that is from the origin to depot2. 

The improved savings is described in equation (5-3). 

𝑠𝑖𝑗 =  𝑑𝑟𝑜𝑛𝑒′𝑠 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 ∗ (𝑑(𝑖, 𝑑𝑒𝑝𝑜𝑡2(𝑖)) + 𝑑(𝑑𝑒𝑝𝑜𝑡1(𝑗), 𝑗) − 𝑑(𝑖, 𝑗)) −

              𝑡𝑟𝑢𝑐𝑘′𝑠 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 ∗ (𝑑(0, 𝑑𝑒𝑝𝑜𝑡2))                                                                           (5 − 3)             

 The above three equations are taken into consideration to explore their impact 

on the quality of the solution. Figure 44 shows the calculations of the savings. The 

generated number of savings will be stored in arrays. Afterwards, savings will be 

sorted in a decreasing order. 

 

Figure 44: Savings calculations 

Inputs: Total number of nodes (Nodes), The first customer node (Customers), Number of edges, 

Number of depots (depot1, depot2), distance between customers, Drone’s unit cost (Fd), Truck’s 

unit cost (Ft) 

Outputs: Edges 

for (i=customers to Nodes) do 

      for (m=0 to depot1) do 

        for (n=0 to depot) do 

  if (n >= m) 

   for (j=customers to Nodes) do 

                      if (j > i) 

       for (l=0 to depot1) do 

                        if (l >= n) do 

                         for (k=0 to depot) do 

                              if (k >= l) do 

if (s(i,j) > 0) do (This it to eliminate any saving with non-

positive value) 

Store the value of savings, customers (i,j), depots         

end for all loops 
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5.1.3. Savings sorting. In this phase, the edges/savings are sorted in 

decreasing order. Later, the phase of joining routes will be constructed from the 

highest savings to the lowest savings. Figure 45 demonstrates the phase of sorting 

savings.  

 

Figure 45: Savings sorting 

5.1.4. Merge cycles. In this phase, the ordered savings are taken and checked 

whether they can be connected or not. The connection of two cycles/routes can be 

feasible if the cycles are separated, if the nodes are not interior and if the vehicle’s 

capacity is not exceeded. Each of the three conditions is explained below. 

5.1.4.1. Check for interior nodes and cycles separation. In this part, the edges 

are tested to check if the nodes i or j are interiors. In other words, the customers 

should be either the first or the last customer in a given cycle. Also, the cycles of an 

edge[i,j] are tested to check if they fall in separate cycles. If one of the nodes in 

edge[i,j] is interior or the two nodes fall in the same cycles, then the edge is skipped, 

and the next edge will be examined. Figure 46 explains the procedure. 

5.1.4.2. Check for capacity. After the above conditions are satisfied, the 

capacity is checked. If the limit is not exceeded, then a new node can be added to the 

route. If not, the edge is ignored. Once the capacity condition is satisfied, the initial 

routes for a customer should be deleted, and only the current route should be kept. 

This is to ensure that the customer is not visited more than once. In this phase, the 

sequence of the routes should be taken into consideration. This is to eliminate 

backtracking and reduce the total cost. Figure 47 explains how capacity is checked. 

5.1.5. Single-customer route construction. In this phase, the constructed 

routes are checked to look for any route with a single customer. 

Inputs: Number of edges, Elements stored in each edge (7) 

Outputs: Edges in descending order 

 

for (i=0 to number_edges) do 

      for (j=0 to number_edges) do 

     if (Edges[i][0] > Edges[j][0]) 

 Sort the edges in a decreasing order 

      j++ 

      end for  

i++ 

end for 
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Figure 46: Check for conditions 

 

Figure 47: Check capacity 

Inputs: Total number of cycles (num_cycles), Total number of edges (num_edges) 

for (i=0 to num_edges) do 

      next edge: 

        if (i < num_edges) do 

  for (j=0 to num_cycles) do 

if (cycle[j] has the same starting and ending depots of the first element 

in edge [i]) do 

   look for cycle[j] that corresponds to first customer in edge[i] 

     if it is found, do 

    check whether it is not interior or not 

     if interior 

     go to next edge 

    else 

     check second customer in edge[i] 

 

else if (cycle[j] has the same starting and ending depots of the second 

element in edge [i]) do 

  look for cycle[j] that corresponds to second customer in edge[i] 

     if it is found, do 

    check whether it is not interior or not 

     if interior 

go to next edge 

 

    else if (cycles for both customers are same) do 

      go to next edge 

     else 

          go to check capacity 

                             j++  

end for    

           else 

           break 

i++     

end for 

 

Inputs: Demands, Drone’s capacity (Capacity), Total number of cycles (num_cycles), Total 

capacity for combining two demands (curr_capacity) 

Outputs: Final routes 

Curr_capacity = the summation of demands when combining two cycles 

if (curr_capacity <= Capacity) do 

join the two cycles 

for (i=1 to num_cycles) do 

if (starting depot of cycle[i] <= ending depot of current cycle && 

cycle[i] is not equal to constructed cycles) do 

     delete cycle[i] 

                             i++  

  end for 

for (n=1 to num_cycles) do 

keep current cycle and delete all initial cycles that consist of the same customers 

                             n++  

end for 

end if 

Reset parameters and go to next edge 
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In a regular savings algorithm, any customer that is left in a single route, the 

same initial route will be taken. However, due to the structure of our problem, there is 

a different combination of depots. In other words, the same customer can have 

multiple initial solutions for the different combination of depots. Therefore, only one 

route should be taken as the customer cannot be visited more than once. The selection 

is based on the route that gives the minimum traveling distance. Figure 48 shows the 

implementation of this phase.  

5.1.6. Total cost calculations. In this phase, the algorithm calculates the 

operational cost for each constructed route which is the sum of the drone’s traveling 

cost and the truck’s traveling cost that account for the distance traveled between 

routes and within routes. Figure 49 illustrates the total cost calculations. 

The above-detailed algorithm is tested on several problems to evaluate the 

resulted solutions in terms of quality and computational time. Next section shows the 

performed experimentations. 

 

Figure 48: Check for single – customer route 

5.2. Savings Heuristic Experimentation 

 In this section, we present the experimentations done to evaluate the 

performance of the proposed algorithm by comparing the results with the exact 

solutions provided by GAMS. 

Inputs: Total number of depots (depot1, depot2), Total number of cycles (num_cycles), 

Traveling distance between i and j for cycle with single customer (single distance), big number 

(curr_distance), number of found cycle (single_indx) 

Outputs: Selected route 

 

for (n=1 to num_cycles) do 

 if (single customer route exists) do 

  calculate single distance = distance traveled cycle[n] 

   if (curr_distance >= single distance) do 

    curr_distance = single distance 

    single_indx = n (store the cycle number) 

n++  

end for 

 

for (n=1 to num_cycles) do 

 if (single customer route exists and is not equal to single_indx) do 

  delete all the other routes of single customer 

 

n++ 

end for  
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Figure 49: Total cost calculations 

 For testing the solution obtained from savings algorithm and evaluating the 

quality of solution in terms of cost and time, the experiment is performed on different 

data sets from TSP Library. The algorithm is coded using a C++ programming 

language, and all the experiments were conducted using Intel(R) Xeon(R) CPU @ 

2.60GHz with 64 GB RAM machine under Windows 10 (64 bit).  

 Table 18 shows a comparison between the objective values for the three ways 

of calculating savings. Equation (5-3) provides the least objective value. 

Table 18: Savings objective values for different savings equations 

Experiment 

Number 
Using Eq. (5-1) Using Eq. (5-2) Using Eq. (5-3) 

1 $19,687 $18,667.2 $18,667.2 

2 $21,305.8 $26760.2 $17,698.5 

3 $27,170.9 $21,098.8 $10,085.1 

Similarly, Table 19 shows the elapsed time taken to compute the total cost 

using the different savings equations. By using equation (5-3), the elapsed time is the 

minimum. 

From Table 19 results, the proposed algorithm will be based on the improved 

savings, equation (5-3) as it gives better near-optimal solutions. Table 20 illustrates 

Inputs: Drone’s unit cost (Fd), Truck’s unit cost (Ft), Cycles (num_cycles). 

Outputs: Total cost 

 

for (n=1 to num_cycles) do 

 if (Cycle[n] is a route) do 

  calculate drone’s cost += Fd* distance [node i] [node j] 

  calculate truck’s cost (within routes) += Ft*distance [first depot] [last depot] 

n++  

end for 

 

for (n=1 to num_cycles) do 

if (Cycle[n] is a route && starting of cycle [n+1] > ending of cycle [n]) do 

calculate truck’s cost (between routes) += Ft*distance [last depot of cycle, n]                

[start depot of cycle, n+1] + distance[0][depot1] 

n++  

end for 

 

Total cost = calculate drone’s cost + calculate truck’s cost (within routes) + calculate truck’s cost 

(between routes) 
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the results obtained from finding a solution to the proposed model using our algorithm 

for different number of depots, number of customers and the different total number of 

nodes. 

Table 19: Elapsed time (sec) for different savings equations 

Experiment 

Number 
Using Eq. (5-1) Using Eq. (5-2) Using Eq. (5-3) 

1 1.38 0.98 0.76 

2 2.16 1.52 1.06 

3 9.77 1.98 1.56 

Table 20: Improved savings objective values and elapsed time 

Experiment 

Number 
Problem 

Number 

of Depots 

Number of 

Customers 

Total 

Number 

of Nodes 

Objective 

Value 

Elapsed 

Time 

(sec) 

1 Vm1084 4 9 13 $18,667.2 0.76 

2 Rd100 5 11 16 $17,698.5 1.06 

3 Att48 7 13 20 $10,085.1 1.56 

Figure 50 shows the time taken by the algorithm to find the solution for 

different problems in which as the number of total nodes increases, the elapsed time 

increases. Figure 51 demonstrates a comparison between the values obtained from the 

exact solution through GAMS and the algorithm. 

Likewise, Table 21 shows a comparison between GAMS and savings 

algorithm in terms of elapsed time. The algorithm is considered very fast compared to 

GAMS solutions. For 20 nodes, GAMS took 14 hours to find the optimal solution 

while the algorithm took 1.6 seconds to solve the same problem. 

Savings algorithm can give near-optimal solutions within a short time. The 

comparison could not be extended due to GAMS limitations. Next, the algorithm is 

experimented to solve larger instances. 

To experiment further, another data set from the online TSP Library is used. 

Table 22 shows the effect of increasing the total number of nodes on the objective 

value and the elapsed time using eil101 problem. Likewise, Figure 52 shows the 
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Figure 50: Elapsed time, improved savings 

  

 

 

 

 

 

 

 

Figure 51: Improved CW savings percentage deviation from GAMS 

Table 21: Elapsed time, improved savings vs. GAMS  
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1 0.76 911.5 

2 1.06 38291.1 

3 1.56 49535.4 
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Table 22: Improved savings objective values and elapsed time 

 

Experiment 

Number 
Problem 

Number of 

Depots 

Number of 

Customers 

Total 

Number of 

Nodes 

Objective 

Value 

Elapsed 

Time 

(sec) 

1 

Eil 101 

10 10 20 $111.1 1.9 

2 10 20 30 $246.54 11.68 

3 10 30 40 $343.4 48.2 

4 10 40 50 $466.4 140.4 

5 10 50 60 $548.8 329.4 

6 10 60 70 $632.6 670.8 

7 10 70 80 $761.3 1288.8 

 

 

Figure 52: Elapsed time, improved clarke and wright savings 

 Generally, the proposed algorithm can give good quality solutions within a 

reasonable time frame compared to GAMS longs runs. 
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Chapter 6. Conclusion and Future Work 

The vast growth in the e-commerce market has increased the attention to 

resolving the problem of Last Mile Delivery to reduce the operational cost. The 

inclusion of new technologies is offering different solutions to tackle the challenges of 

delivering products to customers. In this thesis, we studied the inclusion of drones in 

the delivery process to form a truck-drone system. For this system, we studied six 

different scenarios, and they were formulated as Integer Linear Programming 

problems to minimize the total operational cost. The modeling environment 

considered the use of a truck to release and collect the drone at optimized locations, in 

which the drone is used to serve customers. The different scenarios are subject to 

different constraints that restrict the drone’s capacity, drone’s maximum operational 

time, number of drones, and precedence constraints. The output of the optimization is 

the sequencing of the deliveries to different customers and the optimized locations for 

the truck to release and collect the drones. GAMS software was used to provide exact 

solutions to different data sets from the online TSP library. Results have shown that 

drone’s load capacity, drone’s operational cost, unit traveling costs of drones and 

truck, the location of truck’s path, and the number of truck’s locations affect the 

configuration of the system and change the operational cost. Despite the optimal 

solutions that GAMS can provide, it cannot give an optimal solution within a short 

time. GAMS computational time increased exponentially with the increase in the size 

of the problem. Therefore, a Clarke and Wright savings heuristic was developed to 

give a solution with good quality in a reasonable time duration. 

Clarke and Wright savings algorithm is an effective method for getting good 

quality solutions for large size problems. In our work, we implemented an improved 

Clarke and wright that considers multiple depots, in which there are different depots 

combinations. It also reflects the different scenarios for joining customers that is 

unlike the traditional savings algorithm. Also, the savings equation was modified by 

including the cost for the distance traveled by truck. The proposed model has been 

coded using a C++ programming language, and experimentations were conducted to 

test the effectiveness of the algorithm against GAMS exact solutions using data sets 

from the online TSP library. The improved savings returned solutions that are within 

the known quality of savings heuristics, 20%. The solutions provided 8% to 20% 



 

 

104 

 

deviation from the optimal solutions. The algorithm was further experimented by 

testing larger sets, and it returned solutions for 80 nodes within 1200 seconds. 

In terms of limitations, the proposed models consider the availability of the 

customers at the delivery without taking into consideration the time window. Also, the 

truck’s waiting time is not part of the optimization process. Moreover, the drone’s 

power consumption is not addressed in which the truck is assumed to provide new 

batteries for the drones during each preparation of launching of the drones. Finally, 

the different launching and collection locations in the multiple drones’ model is 

neglected, in which the launching and collection points for all drones are assumed to 

be the same. 

As a future work, the proposed models can be modified to consider the drones’ 

characteristics such as power consumption. Another modification is to consider our 

problem with a time window. Moreover, the truck’s role can be extended by allowing 

it to serve customers that are along its path. Furthermore, the Clarke and Wright 

savings algorithm can be further improved to enhance the performance of the 

algorithm.   
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