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Abstract 

 

The isothermal laminar flow of a Bingham fluid in the entrance region of a circular pipe 

has been studied previously by many authors using different approaches. As current 

research stands, the momentum integral approach provides analytical results that do not 

match the boundary-layer thickness experimental data for Newtonian fluid flow. No 

experimental data is currently available for the velocity profiles in the entrance region 

for Bingham fluids. The objective of this investigation is to determine the entrance 

region length in addition to the velocity and pressure profiles in the entrance region 

using a modified momentum integral method that improves the previously published 

boundary-layer model. The present work results reach asymptotically the fully 

developed values and show good agreement with published experimental data for 

pressure drop in the entrance region. The results are also in good agreement with the 

boundary-layer thickness experimental data for Newtonian fluid flow. 

    

 

Keywords: Non-Newtonian; Bingham; Entrance Region; Momentum Integral 

Method.  
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Nomenclature 

 

Cf Skin-friction coefficient 

p pressure 

p0 pressure at the entry    

p* dimensionless pressure, p/(ρUo
2/2)   

p0* dimensionless pressure at the entry, p0/(ρUo
2/2)   

|∆p*| dimensionless pressure drop, p0*- p*     

R pipe radius     

r radial coordinate 

r1 dimensionless radial coordinate, r/R     

ro plug-flow radius 

ro* dimensionless plug-flow radius, ro/R 

re*  dimensionless developed plug-flow radius (re*= ro* beyond the 

inlet region) 

Re Reynolds number, (2R)Uoρ/μ0   

U∞ core velocity 

Uc centerline velocity (Uc = U∞ in the inlet region) 

Uo average velocity 

Uc*  dimensionless centerline velocity, Uc/Uo (Uc = U∞ in the inlet 

region) 

Uc,fd* dimensionless fully developed centerline velocity 

u z component of the velocity 

u̅ dimensionless z-component of the velocity, u/Uc (Uc = U∞ in the 

inlet region) 

uo  fully developed z-component of the velocity in the outer flow 

region 

ui  fully developed z-component of the velocity in the inner plug-

flow region 

v r-component of the velocity 

y R – r 

z axial distance 
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Greek Letters 

η dimensionless y, y/ δ 

𝜉 dimensionless axial distance, z/(Re R) 

𝜉e dimensionless entrance region length 

δ boundary layer thickness 

δ1 dimensionless boundary-layer thickness, δ/R 

δe  dimensionless developed boundary-layer thickness (δe = δ1 

beyond the inlet region) 

δ* displacement thickness 

δ** momentum thickness 

δ1
* dimensionless displacement thickness 

δ1
** dimensionless momentum thickness 

ρ density 

μ0 Bingham viscosity 

τ shear stress tensor 

τ0 yield stress 

τ1  dimensionless Bingham number, τ0
*δ1

3/(1- δ1)U0/Uc (Uc = U∞ in 

the inlet region) 

τ2 dimensionless Bingham number, 6*τ1/(6+ δ1) 

τw wall shear stress 

τ0* Bingham number, τ0R/ μ0 Uo 

λ  pressure gradient parameter, δ2ρ/μ0 dUc/dz (Uc = U∞ in the inlet 

region) 

λ1 dimensionless pressure gradient parameter, 6(λ- 2δ1)/ 6+δ1 

Г second pressure gradient parameter, δ2/U∞(∂2u/∂2r)r=ro 

Г1 dimensionless second pressure gradient parameter, Г/6+δ1 
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Chapter 1. Introduction 

 

1.1. Overview 

Laminar flow in entrance region length, i.e. the length required for fluids to 

become “fully-developed”, has been studied extensively for various types of fluids. 

Recent works can be found in [1-5]. Finding the velocity of fluids in the entrance region 

of a pipe is important in cases where the total pipe length is not large, such as in compact 

heat exchanger design or short tubes leading to a diffuser or a nozzle [6]. The focus of 

the present study is on the problem of Bingham fluid flow in a circular pipe. 

Bingham fluids, also known as Bingham plastics, act like a solid under small 

shear stresses, and the fluid has infinite viscosity until certain critical yield stress is 

reached. Beyond the yield stress, the apparent viscosity is finite. Several fluids used in 

the industry are non-Newtonian including various suspensions such as coal–water or 

coal-oil slurries, glues, inks, polymer solutions and others [7]. The fluid considered here 

is the Bingham model, which is of the ‘time-independent yield stress’ fluid category. 

The following Bingham model is the simplest model used to describe the behavior of 

such fluids [9]. 

τ = τ0 −  μ0

∂u

∂r
 (1.1) 

∂u
∂r⁄ = 0 when τ ≤ τ0 (1.2) 

τ is the shear stress, τ0 is the yield stress and μ0 is the Bingham viscosity. Table 

1 shows some experimental values for some fluids that follow this model. 

 

Table 1.1: Parameters for Bingham Plastics [9]. 

Material Temperature (oC) Yield Stress τ0 

(Pa) 

Plastic viscosity μ0 

(kg/m.s) 

Mayonnaise 30 85 0.63 

Toothpaste 20 200 10 

Paint 20 8.7 0.095 
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1.2.  Thesis Objectives 

To investigate the entrance length, velocity and pressure profiles of a Bingham 

plastic fluid in the entrance region of a circular pipe, using a momentum integral method 

while including not only the inlet region, but also the filled region. 

1.3. Research Contribution 

The proposed investigation provides enrichment to Karman’s momentum 

integral method by accounting for the existence of the filled region as part of the 

entrance region. The method and model results are compared with available models.  

1.4.  Thesis Organization 

Chapter 2 presents previous research addressing this problem and introduces the 

fundamental theory of Bingham fluid flow in a circular pipe. Chapter 3 presents the 

methodology and derivations using the momentum integral method. The results are 

presented, discussed and compared with previous works in Chapter 4. Chapter 5 

concludes the study. 
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Chapter 2. Background and Literature Review 

 

Several studies have investigated the entrance region length both analytically 

and numerically, but only recently have accurate results become available for 

Newtonian and non-Newtonian inelastic fluids obeying the power-law model [8]. In 

this section, all previous investigations for the entrance region length of a Bingham 

fluid will be reviewed. To begin with, the boundary layer theory which is of significant 

historical importance will be discussed. 

2.1. The Boundary Layer Theory 

 In the late 19th century, fluid mechanics investigators were divided into two 

fundamental groups in terms of their attempt to solve engineering problems: 

hydrodynamicists who used the conservation principles and hydraulicians used 

empirical equations. To facilitate solutions, hydrodynamicists theorized a perfect fluid 

with zero viscosity and constant density. Even though these solutions were valid for 

flows that did involve solid surfaces, they did not solve more relevant engineering 

problems concerning fluid behavior in pipes and channels. A wit of the period said, 

“Hydrodynamicists calculate that which cannot be observed; hydraulicians observe that 

which cannot be calculated” [9].  

Ludwig Prandtl’s introduction of the boundary layer concept in 1904 helped to 

bring the two groups together. The boundary layer conceptually divides the flow into 

two parts: a much smaller region close to the solid surface where viscous effects are too 

large to be ignored, and the region outside the boundary layer where viscous effects are 

negligible. At the edge of the boundary layer, the solutions of the velocities and pressure 

must be matched. Prandtl also suggested that the point where the z-component of the 

velocity reaches 0.99 times the free-stream velocity marks the edge of the boundary 

layer. Even though this division is not a physically observed boundary, this concept 

provides a better intellectual basis for discussing flows than had previously existed [9]. 

For a steady, laminar flow with constant density and viscosity, the following 

simplifications of the conservation of mass and momentum equations are made in the 

boundary layer region where vx and vy are the x and y components of the velocity, 

respectively, and p is the pressure. 
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1- Two dimensions for the flow 

2- 
dp

dy
 is negligible 

3- 
∂2vx

∂x2  <<   
∂2vx

∂y2    and is neglected 

The above simplifications led to the boundary layer equations or Prandtl’s 

boundary layer equations for Newtonian fluids [10].  

∂vx

∂x
+

∂vy

∂y
= 0 (2.1) 

vx

∂vx

∂x
+ vy

∂vy

∂y
= −

1

ρ

dp

dx
+

μ

ρ

∂2vx

∂y2
 (2.2) 

  

2.2. Previous Investigations 

This concept can be utilized to describe Bingham fluid flow in a circular pipe. 

When the concerned fluid enters a horizontal pipe, a velocity boundary layer and a shear 

boundary layer exist [11]. The thickness of these boundary layers gradually increases 

from zero as we move in the direction of fluid flow until it reaches a limiting value, 

depending on the characteristic yield stress. In this inlet region, the velocity profile is 

still developing, and thus the flow is called developing flow. At the edges of their 

respective boundary layers, the velocity and shear stress gradients are zero, and the fluid 

flows in “plug-flow” characteristic of Bingham fluids. Beyond the inlet region, the 

velocity profile in [11] is considered fully developed with the centerline velocity 

reaching the fully developed velocity profile predicted. The first region is considered 

as the entrance region, while the latter as the fully developed region [11]. The analysis 

was performed using a parabolic approximation profile [11]. 

Restriction of the entrance region to the inlet region does not allow for smooth 

matching of the velocity profile since the velocity gradient does not approach zero. To 

resolve this issue, Ishizawa [12] proposed that the entrance region be divided into two 

parts, inlet and filled regions for fluid flow in a pipe [13]. The previously defined 

entrance region is the inlet region. In the inlet region, viscous effects are accounted for 

within the boundary layer only. However, in the filled region, the whole fluid across 

the pipe section is influenced by viscous effects. At the end of the inlet region, the 
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boundary layer meets with the corresponding plug-flow radius, but the velocity profile 

is not yet fully developed. The fully developed viscous profile is reached asymptotically 

at the end of the filled region. This approach was successfully implemented by Mohanty 

et al. [13] and Chebbi [14] for Newtonian fluids and power-law fluids, respectively.  

The earliest study to find the entrance length for a Bingham fluid was done by 

Michiyoshi et al. [15]. The variational method used had several major inconsistencies 

as analyzed by Chen et al. [11]. The assumptions made were unrealistic leading to the 

doubtful equation of motion, and the proposed velocity profile would not represent the 

flow behavior of Bingham fluids. Chen et al. [11] analyzed the problem, using two 

different analytical methods: the momentum integral method by Schiller [16] which 

employed a pre-assumed parabolic velocity profile and the Campbell-Slattery method 

[17]. Both methods were initially devised to solve problems for Newtonian fluids. The 

first method led to unrealistic results far from a small region near the inlet (z*>0.04 

where z* is the dimensionless axial distance, z/(Re*R)). The second method uses a 

macroscopic mechanical energy balance to account for viscous dissipation and 

generally provides a more accurate overall description of flow characteristics of 

Bingham fluids in the entrance region [11]. For fluids with different yield stresses, the 

methods provide significantly varying estimates of the entrance length. 

Shah et al. [18] were the first to approach the solution to this problem 

numerically using the Patankar and Spalding procedure [19] and to produce results that 

are comparable to the ones achieved by the Campbell-Slattery method. The Campbell-

Slattery method proved to be much more consistent with their results than the 

momentum integral balance. The results of Shah et al., with a yield stress of zero, are 

in agreement with previous work done for Newtonian fluids and the fully developed 

region for all yield numbers. Therefore, this adds validity to their work [18]. 

Nowak et al. [20] approached the problem using a macroscopic mass and 

momentum balance. They used the approach devised by Matras et al. [21] for the 

Newtonian case where the velocity profile is not pre-assumed but rather determined 

using overall mass and momentum balances at different locations from the inlet. Their 

results are intermediate between those obtained with the momentum-integral and 

Campbell-Slattery methods except for low values of the Bingham number [20]. 
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Vradis et al. [22] were the first to provide a numerical solution for the 

simultaneous developing hydrodynamic and temperature fields in a pipe by discretizing 

the governing continuity, momentum and energy equations into a system of finite 

difference equations. They used the equation of momentum in all 3 co-ordinates (r, Θ, 

z) to study both the hydrodynamic and thermal effects in the entrance region. They 

argued that boundary layer equations completely fail to predict the actual flow 

characteristics due to the oversimplification of a uniform pressure gradient [22].  

Finally, Poole et al. [23] present a detailed numerical study which reconciles 

issues in previous numerical work and believe that the uncertainty in their estimated 

entrance length is no more than 2%. Poole et al. [23] argued that all previous work 

done, except for Ookawara et al. [24] for circular geometry and Al Khatib et al. [25] 

for semi-infinite channels (bi-viscosity model), is entirely inaccurate. All previous work 

done for circular tube geometry ignored the diffusion dominated case (i.e. low Reynolds 

number), and thus incorrectly predicts that for creeping flows, the velocity 

instantaneously develops [23]. To overcome that, Ookawara et al. [24] “redefined the 

entry length as the axial distance, where the velocity at a radial position of 95% of the 

plug radius reaches 99% of the calculated maximum velocity (at the same radial 

location)”. Poole et al. [23] also point out that Ookawara’s correlation, which is 

independent of Bingham number, seems unrealistic, especially for low Reynolds 

number, given previous results for the power-law model. Therefore, Poole et al. chose 

to compare their final results with the analytical solution for fully developed flow and 

obtained excellent agreement [23]. 

As current research stands, the analytical momentum integral solution using the 

boundary layer theory by Chen at al. [11] for Bingham fluids deviates significantly 

from all other works done. On the other hand, the boundary layer theory implemented 

by Mohanty and Asthana [13] for Newtonian fluid flow and Chebbi [14] for power-law 

fluids in a pipe proved to be successful. This suggests that the defect is not in theory, 

but in implementation. 
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Chapter 3. Methodology 

 

In this study, we investigate the flow of a Bingham fluid in a circular pipe of 

radius R. The following assumptions are made: steady-state, laminar flow, isothermal 

conditions, and constant physical properties. The governing continuity, momentum and 

constitutive equations in cylindrical coordinates for both the inlet and filled regions 

reduce to 

1

r

∂

∂r
(rv) +

∂

∂z
(u) = 0 (3.1) 

v
∂u

∂r
+ u

∂u

∂z
= −

1

ρ

dp

dz
−

1

ρr

∂

∂r
(rτrz) (3.2) 

τrz = τ0 − μ0

∂u

∂r
 (3.3) 

where r and z are the radial and axial coordinates, respectively, u and v are the velocity 

components in the z and r directions, respectively, p is the pressure, τrz is the shear 

stress in the z direction on a unit area perpendicular to the r direction, τ0 is the yield 

stress, and μ0 is the Bingham viscosity. 

As fluid enters a horizontal pipe, the boundary layer thickness gradually 

increases downstream from zero until it reaches a limiting value depending on the 

characteristic yield stress. In the core region, there is “plug-flow” characteristic of 

Bingham fluids [11]. The plug-flow radius is related to the yield stress [11] by 

τ0
∗  =

12re
∗

3 − 4re
∗ + re

∗4 (3.4) 

where τ0
∗  is the dimensionless yield stress which is related to the Bingham number (Y 

= 2τ0
∗ ) and re

∗ is the dimensionless plug-flow radius for the fully-developed flow. As re
∗ 

approaches zero, i.e. no plug-flow exists, the boundary layers meet at the pipe axis, and 

the fluid is Newtonian. At the end of the inlet region, the fully developed plug-flow 

radius is reached. In the filled region, the plug-flow radius remains constant, and the 

fully-developed velocity profile is reached asymptotically at the end of the filled region. 

This section outlines the derivations of all the equations used to solve this problem. 

3.1. Conservation of Mass 

Applying an overall mass balance yields the following equation: 
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[∫ u rdr
R

0

]
in

=  [∫ u rdr
R

0

]
out

 (3.5) 

The average velocity can be written as 

Uo ≡ ∫
u

A
dA =

2

R2
∫ u rdr

R

0

  (3.6) 

Combining the above two equations gives 

UoR2

2
= ∫ Uc rdr

R

0

− ∫ Uc  rdr + ∫ u rdr
R

R−δ

R

R−δ

 (3.7) 

UoR2

2
=

UcR2

2
− ∫ (Uc − u)rdr 

R

R−δ

 (3.8) 

Rearranging equation (3.8) and changing the integration variable to y, where y = R – r 

is the distance from the wall, yields 

R2

2
(Uc − Uo) = UcR ∫ (1 −

u

Uc
) (1 −

y

R
) dy

δ

o

  (3.9) 

Using the following definition from Mohanty et al. [13] for the displacement thickness 

δ∗ ≡ ∫ (1 −
u

Uc
) (1 −

y

R
) dy

δ

0

 (3.10) 

equation (3.9) can be expressed in terms of the displacement thickness as 

Uo

Uc
= 1 −

2δ∗

R
  (3.11) 

Equation (3.11) can be differentiated with respect to z to yield 

(1 −
2δ∗

R
)

dUc

dz
+ Uc (−

2

R
)

dδ∗

dz
= 0  (3.12) 

The following dimensionless variables can be used 

Re =
ρU0(2R)

μ0
 δ1 =

δ

R
 δ1

∗ =
δ∗

R
 ξ =

z

R Re
 (3.13) 

and substituting in the above equation, results in the following ordinary differential 

equation: 
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dδ1
*

dξ
=(1-2δ1

* )
λ

δ1
2 (

Uo

Uc
) (3.14) 

3.2. Governing Equations in the Inlet Region 

3.2.1.  Boundary conditions in the inlet region. The problem's boundary 

conditions are defined as: 

B.C. 1: at   y = 0 u = v = 0  

B.C. 2: at   y = δ 

u =  U∞ (z) 

 
 

B.C. 3: at   y = δ 

∂u

∂y
= 0  

B.C. 4: at   y = δ 

∂2u

∂y2
= 0 (3.15) 

where U∞ (z) is the potential core velocity, δ is the boundary layer thickness, and y is 

the distance from the pipe wall (y = R − r).   

In addition, we define Г (z) and λ(z) as 

 
Г =

δ2

U∞
(

∂2u

∂r2
)

r=r0

 (3.16) 

 
λ = δ2

ρ

μ0

dU∞

dz
 (3.17) 

which extends the definitions used by Mohanty et al. [13] to Bingham fluid flow. Г is 

zero in the inlet region. 

Applying the momentum equation (3.2) at the wall yields 

 
[

1

ρr

∂

∂r
(rτrz)]

r=R

= −
1

ρ

dp

dz
  (3.18) 

Applying equation (3.2) at the edge of the boundary layer gives 

 
−

1

ρ

dp

dz
= U∞

dU∞

dz
+

τ0

ρ r0
  (3.19) 

which is similar to the one derived in Section 3.2.2. Using the above two equations and 

applying the definition of  λ, we get the last boundary condition  

B.C.5: at   y = 0 λ = δ1

∂ū

∂ƞ
−

∂2ū

∂ƞ2
− τ1; 
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   u̅ =
u

U∞
,   ƞ =

y

δ
,   δ1 =

δ

R
 , τ1 =

τo
∗δ1

3

(1 − δ1)
 
 Uo

U∞
. (3.20) 

 

3.2.2. Pressure gradient in the inlet region. Applying the momentum 

equation (3.2) at the edge of the boundary layer yields 

U∞

dU∞

∂z
= −

1

ρ

dp

dz
− [

1

ρr

∂

∂r
(rτrz)]r=ro

 (3.21) 

Simplifying the above equation by using the definition of τrz from equation (3.3) yields 

the pressure gradient profile in the inlet region. 

−
1

ρ

dp

dz
= U∞

dU∞

∂z
+

τ0

ρ r0
 (3.22) 

3.2.3. Integral form of the governing equation in the inlet region. The von 

Kármán-Pohlhausen scheme is used to obtain the solution of the boundary layer 

equation. Substituting equation (3.22) into (3.2) results in 

u
∂u

∂z
+ v

∂u

∂r
= U∞

dU∞

dz
+

τ0

ρ r0
−

1

ρr

∂

∂r
(rτrz)  (3.23) 

Rearranging equation (3.1) and substituting into the above equation gives 

u
∂u

∂z
+ (−

1

r
∫

∂u

∂z
rdr

r

0

)
∂u

∂r
= U∞

dU∞

dz
+

τ0

ρ r0
−

1

ρr

∂

∂r
(rτrz) (3.24) 

The next step is to integrate from r = R at the wall to R = R - δ at the edge of the 

boundary layer. Integrating the 2nd term using integration by parts gives 

∫ (−
1

r
∫

∂u

∂z
rdr

r

0

)
∂u

∂r

R−δ

R

rdr = (3.25) 

−U∞ ∫
∂u

∂z
rdr −

R−δ

R

∫ −
∂u

∂z
urdr 

R−δ

R

 (3.26) 

Substituting the above equation back in equation (3.24) and flipping signs gives 
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∫ [−u
∂u

∂z
+ U∞

∂u

∂z
− u

∂u

∂z
+ U∞

dU∞

dz
+ u

dU∞

dz
− u

dU∞

dz
] rdr

R−δ

R

= ∫ − [
τ0

ρ r0
−

1

ρr

∂

∂r
(rτrz)] rdr

R−δ

R

 (3.27) 

Using algebraic manipulation, the above equation can be simplified to result in the 

integral form of the governing equation in the inlet region as shown below. 

∫ [
∂

∂z
[u(U∞ − u)] + (U∞ − u)

dU∞

dz
] rdr

R−δ

R

= [−
τ0r2

2ρ r0
+

(rτrz)

ρ
]

R

R−δ

 (3.28) 

∫ [
∂

∂z
(u(U∞ − u) + (U∞ − u)

dU∞

dz
] rdr

R−δ

R

= −
τ0[(R − δ)2 + R2]

2ρ r0
−

Rτw

ρ
+

(R − δ)τ0

ρ
 (3.29) 

∫ [
∂

∂z
[u(U∞ − u)] + (U∞ − u)

dU∞

dz
] rdr

R−δ

R

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
  (3.30) 

3.2.4. Dimensionless form of the governing equation in the inlet region. 

Rearranging the above equation gives 

R
∂

∂z
[U∞

2 ∫
u

U∞
(1 −

u

U∞
) (1 −

y

R
) (−dy)

δ

0

]

+ RU∞

dU∞

dz
 ∫ (1 −

u

U∞
) (1 −

y

R
) (−dy)

δ

0

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
  (3.31) 

 

Using the definitions from Mohanty et al. [13] for the displacement thickness, equation 

(3.10), and the momentum thickness given below: 

δ∗∗ ≡ ∫
u

U∞
(1 −

u

U∞
) (1 −

y

R
) dy

δ

0

 (3.32) 

while substituting back in equation (3.31) yields 
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−R
∂

∂z
(U∞

2 δ∗∗) − RU∞

dU∞

dz
δ∗

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
  (3.33) 

Using algebraic manipulation, the above equation can be expressed and simplified as  

−R [2U∞δ∗∗
dU∞

dz
+ U∞

2
dδ∗∗

dz
] − RU∞δ∗

dU∞

dz

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
 (3.34) 

−R U∞

dU∞

dz
(2δ∗∗ + δ∗) − RU∞

2
dδ∗∗

dz

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
  (3.35) 

dδ∗∗

dz
+

1

U∞

dU∞

dz
(2δ∗∗ + δ∗)

=
τ0 (

δ2

2 − Rδ)

ρ r0U∞
2 R

−
μo

U∞
2 ρ

(
∂u

∂r
)

r=R
 +

τ0

U∞
2 ρ

−
(R − δ)τ0

U∞
2 Rρ

  (3.36) 

Finally, the above equation can be further simplified by using the pressure gradient 

parameter defined earlier in equation (3.17). 

dδ∗∗

dz
= −

μ0

ρU∞
[

1

U∞
(

∂u

∂r
)

r=R
+

λ

δ2
(2δ∗∗ + δ∗)] −

τ0 δ
2

2ρU∞
2 r0R

 (3.37) 

Using the following dimensionless variables along with the ones defined in equation 

(3.13) 

 u̅ =
u

U∞
 

 

η =
y

δ
 

 

δ1
∗∗ =

δ∗∗

R
 

 

 

 
τ0

∗ =
τ0R

μ0Uo
 τ1 =

τo
∗δ1

3

1 − δ1

Uo

U∞
 p∗ =

p

ρU0
2/2

 
 

(3.38) 
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and substituting in equation (3.37), results in the following dimensionless ordinary 

differential equation: 

dδ1
∗∗

dξ
=

2 U0

δ1U∞

[− (
∂u̅

∂ƞ
)

ƞ=0

+
λ

δ1

(2δ1
∗∗ + δ1

∗ ) +
τ1 

2
] (3.39) 

This will be used along with equation (3.14) from the conservation of mass to solve for 

the velocity profile in the inlet region. The pressure gradient found in equation (3.22) 

can be expressed in dimensionless form as follows: 

−
dp∗

dξ
=

4

δ1
2

U∞

U0
λ + 4

τ0
∗

r0
∗  (3.40) 

 

3.3. Governing Equations in the Filled Region 

3.3.1. Boundary conditions in the filled region. We define Г (𝐳) and 𝛌(𝐳) as 

 
Г =

δe
2

Uc
(
∂2u

∂r2
)r=re

 (3.41) 

 
λ = δe

2
ρ

μ0

dUc

dz
 , (3.42) 

which extends the definitions used by Mohanty et al. [13] to Bingham fluid flow. In 

this region, the boundary layer thickness is a constant that depends on the fully 

developed plug-flow radius i.e. the yield stress of the fluid (δ = δe = R - re= R - ro =

Constant). In order to reduce the number of symbols δ and ro will be used.  

The velocity profile satisfies the following boundary conditions 

B.C. 1: at   r = R u = v = 0   

B.C.2: at   r = ro 
u =  Uc (z)  

 

 

B.C.3: at   r = ro 
∂u

∂y
= 0  (3.43) 

Similarly, applying equation (3.2) at the boundary layer's wall and edge while using the 

definition of , the fourth boundary condition B.C.4 becomes as follows 

B.C.4: at  r = R 
λ − Г = δ1

∂ū

∂ƞ
−

∂2ū

∂ƞ2
− τ1 (3.44) 

where   u̅ = u Uc⁄   and   τ1 = τo
∗δ1

3 (1 − δ1⁄ ) Uo Uc⁄  . 
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3.3.2. Pressure gradient in the filled region. Following the same procedure 

used for the inlet region problem, and applying the momentum equation (3.2) at the 

edge of the boundary layer in the filled region yields 

[u
∂u

∂z
+ v

∂u

∂r
= −

1

ρ

dp

dz
−

1

ρr

∂

∂r
(rτrz)]r=ro

 (3.45) 

Substituting τrzfrom equation (3.3) into the above equation and simplifying gives 

Uc

dUc

∂z
= −

1

ρ

dp

dz
− [

1

ρr

∂

∂r
(−rμo

∂u

∂r
+ rτo)]

r=ro

 (3.46) 

−
1

ρ

dp

dz
= Uc

dUc

∂z
+

τ0

ρ r0
−

μo

ρ
(

∂2u

∂r2
)

r=ro

 (3.47) 

Rearranging the above equation, we can retrieve it in a form similar to the one in 

Mohanty et al. [13]. 

−
δ2

Ucμo

dp

dz
= λ − Γ +

τ0
∗ δ1

2

 r0
∗ (

Uo

Uc
) (3.48) 

3.3.3. Integral form of the governing equation in the filled region. Similar 

to the methodology used for the inlet region, the von Kármán Pohlhausen scheme is 

adopted to obtain the solution for the boundary layer equation. 

Substituting equation (3.47) into equation (3.2) results in 

u
∂u

∂z
+ v

∂u

∂r
= Uc

dUc

dz
+

τ0

ρ r0
−

μo

ρ
(

∂2u

∂r2
)

r=ro

−
1

ρr

∂

∂r
(rτrz)  (3.49) 

Rearranging equation (3.1) and substituting into (3.49) gives 

u
∂u

∂z
+ (−

1

r
∫

∂u

∂z
rdr

R−δ

R

)
∂u

∂r

= Uc

dUc

dz
+

τ0

ρ r0
−

μo

ρ
(

∂2u

∂r2
)

r=ro

−
1

ρr

∂

∂r
(rτrz)  (3.50) 

The next step is to integrate from r = R at the wall to R = R - δ at the edge of the 

boundary layer. Integrating the second term by parts gives 
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∫ (−
1

r
∫

∂u

∂z
rdr

R−δ

R

)
∂u

∂r

R−δ

R

rdr

= −Uc ∫
∂u

∂z
rdr −

R−δ

R

∫ −
∂u

∂z
urdr .

R−δ

R

 (3.51) 

Substituting the above equation back in equation (3.50) and flipping signs gives 

∫ [−u
∂u

∂z
+ Uc

∂u

∂z
− u

∂u

∂z
+ Uc

dUc

dz
+ u

dUc

dz
− u

dUc

dz
] rdr

R−δ

R

= ∫ − [
τ0

ρ r0
−

μo

ρ
(

∂2u

∂r2
)

r=ro

−
1

ρr

∂

∂r
(rτrz)] rdr

R−δ

R

 (3.52) 

Following algebraic manipulation, the above equation can be simplified to result in the 

integral form of the governing equation in the filled region as shown below: 

∫ [
∂

∂z
(u(Uc − u) + (Uc − u)

dUc

dz
] rdr

R−δ

R

= [−
τ0r2

2ρ r0
+

μor2

2ρ
(

∂2u

∂r2
)

r=ro

+
(rτrz)

ρ
]

R

R−δ

 (3.53) 

∫ [
∂

∂z
(u(Uc − u) + (Uc − u)

dUc

dz
] rdr

R−δ

R

= −
τ0((R − δ)2 + R2)

2ρ r0
+

μo((R − δ)2 + R2)

2ρ
(

∂2u

∂r2
)

r=ro

−
Rτw

ρ
+

(R − δ)τ0

ρ
 (3.54) 

∫ [
∂

∂z
(u(Uc − u) + (Uc − u)

dUc

dz
] rdr

R−δ

R

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

μo (
δ2

2 − Rδ)

ρ
(

∂2u

∂r2
)

r=ro

+
Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
 (3.55) 
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3.3.4. Dimensionless form of the governing equation in the filled region.  

Rearranging the above equation yields 

R
∂

∂z
[Uc

2 ∫
u

Uc
(1 −

u

Uc
) (1 −

y

R
) (−dy)

δ

0

]

+ RUc

dUc

dz
 ∫ (1 −

u

Uc
) (1 −

y

R
) (−dy)

δ

0

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

μo (
δ2

2 − Rδ)

ρ
(

∂2u

∂r2
)

r=ro

+
Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
  (3.56) 

Using the following definitions from Mohanty et al. [13] for the displacement and 

momentum thicknesses 

δ∗ ≡ ∫ (1 −
u

Uc
) (1 −

y

R
) dy

δ

0

 (3.57) 

δ∗∗ ≡ ∫
u

Uc
(1 −

u

Uc
) (1 −

y

R
) dy 

δ

0

 (3.58) 

and substituting in equation (3.56) yields 

−R
∂

∂z
(Uc

2δ∗∗) − RUc

dUc

dz
δ∗

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

μo (
δ2

2 − Rδ)

ρ
(

∂2u

∂r2
)

r=ro

+
Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
 (3.59) 

Following algebraic manipulation, the above equation can be expressed as  

−R [2Ucδ∗∗
dUc

dz
+ Uc

2
dδ∗∗

dz
] − RUcδ∗

dUc

dz

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

μo (
δ2

2 − Rδ)

ρ
(

∂2u

∂r2
)

r=ro
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+
Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
 (3.60) 

−R Uc

dUc

dz
(2δ∗∗ + δ∗) − RUc

2
dδ∗∗

dz

= −
τ0 (

δ2

2 − Rδ)

ρ r0
+

μo (
δ2

2 − Rδ)

ρ
(

∂2u

∂r2
)

r=ro

+
Rμo

ρ
(

∂u

∂r
)

r=R
 −

Rτ0

ρ
+

(R − δ)τ0

ρ
  (3.61) 

dδ∗∗

dz
+

1

Uc

dUc

dz
(2δ∗∗ + δ∗)

=
τ0 (

δ2

2 − Rδ)

ρ r0Uc
2R

−
μo (

δ2

2 − Rδ)

ρUc
2R

(
∂2u

∂r2
)

r=ro

−
μo

Uc
2ρ

(
∂u

∂r
)

r=R
 +

τ0

Uc
2ρ

−
(R − δ)τ0

Uc
2Rρ

. (3.62) 

Finally, the above equation can be further simplified by using the pressure gradient 

parameters defined earlier in equations (3.41) and (3.42). 

dδ∗∗

dz
= −

μ0

ρUc

[
1

Uc
(

∂u

∂r
)

r=R
+

λ

δ2
(2δ∗∗ + δ∗) +

Г

δ2R
(

δ2

2
− Rδ)]

−
τ0 δ

2

2ρUc
2roR

 (3.63) 

Using the following dimensionless variables along with ones defined in equations 

(3.13) and (3.38) 

u̅ =
u

Uc
 τ1 =

τo
∗δ1

3

1 − δ1

Uo

Uc
 (3.64) 

and substituting in equation (3.63) results in the following dimensionless ordinary 

differential equation 

dδ1
∗∗

dξ
= −

2 U0

δ1Uc

[− (
∂u̅

∂ƞ
)

ƞ=0

+
λ

δ1

(2δ1
∗∗ + δ1

∗) +
Г

δ1
(

δ1
2

2
− δ1) +

τ1 

2
] (3.65) 

The above equation will be used along with the conservation of mass equation (3.14) 

to solve for the velocity profile in the filled region. 
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The pressure gradient found in equation (3.48) can be expressed in dimensionless form 

as follows. 

−
dp∗

dξ
=

4

δ1
2

Uc

U0
(λ − Г) + 4

τ0
∗

r0
∗  (3.66) 

 

3.4. Skin-friction Coefficient 

Cf is defined by the following expression [13] 

Cf =
τw

ρUo
2/2

 (3.67) 

By applying equation (3.3) at the wall, the wall shear stress can be substituted in the 

above equation. 

Cf =
τw

ρUo
2/2

= [− μ0 (
∂u

∂r
)

r=R
+ τ0]

2

ρUo
2
 .  (3.68) 

Substituting the dimensionless variables previously defined in equation (3.75) into the 

above equation and multiplying by Reynolds number result in 

CfRe = [
Ucμ0

δ
(

∂u̅

∂η
)

η=0

+
τ0

∗ μ0Uo

R
] 

2

ρUo
2

∗
(2R)Uoρ

μ0
 (3.69) 

1

4
CfRe =

1

δ1

Uc

Uo
(

∂u̅

∂η
)

η=0

+ τ0
∗ . (3.70) 

 

3.5. Fully Developed Flow 

The velocity profile in the fully developed region is derived in many references 

including Ref. [18]. The plug-flow and outer-flow velocities are denoted as ui and uo, 

respectively. 

The momentum equation is used to derive the pressure gradient as 

1

ρ

dp

dz
= −

1

ρr

∂

∂r
(rτrz)  (3.71) 

Integrating the above equation and solving for τrz yields 

dp

dz
= −

1

r

∂

∂r
(rτrz) = Co (3.72) 
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1

ρ

dp

dz
= Co (3.73) 

pL − po

L
= Co (3.74) 

−
1

r

∂

∂r
(rτrz) =

pL − po

L
 (3.75) 

∂

∂r
(rτrz) =

(po − pL)

L
r (3.76) 

τrz =
(po − pL)

2L
r  (3.77) 

By applying the above equation at the wall, an expression for the wall shear stress is 

found. 

τw =
(po − pL)

2L
R  (3.78) 

Utilizing the following dimensionless variables 

Δp∗ =
Δp

ρUo
2/2

 ,  τw
∗ =

τw

Uoμ0
R (3.79) 

equation (3.72) can be written as follows 

τw
∗ =

Δp∗

8ξ
  (3.80) 

 

3.5.1. Outer-flow region. To obtain the velocity profile in the outer-flow 

region, equation (3.71) is combined with equation (3.3). 

τrz =
(po − pL)

2L
r = τ0 − μ0

∂uo

∂r
 (3.81) 

∂uo

∂r
= −

(po − pL)

2Lμ0
r +

τ0

μ0
  (3.82) 

Integrating Eq. (3.82) gives 

uo = −
(po − pL)

4Lμ0
r2 +

τ0

μ0
r + C1 (3.83) 

The constant C1 can be found by applying the no-slip boundary condition at the wall as 

follows:  

at r = R                   uo = 0  (3.84) 
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0 = −
(po − pL)

4Lμ0
R2 +

τ0

μ0
R + C1 (3.85) 

C1 =
(po − pL)

4Lμ0
R2 −

τ0

μ0
R (3.86) 

By substituting the expression of the constant, the velocity profile in the outer-flow 

region is found as 

uo = −
(po − pL)

4Lμ0
r2 +

τ0

μ0
r +

(po − pL)

4Lμ0
R2 −

τ0

μ0
R (3.87) 

uo =
(po − pL)

4Lμ0
R2 [1 − (

r

R
)

2

] −
τ0

μ0
R [1 − (

r

R
)] (3.88) 

Using the previously defined dimensionless variables in equation (3.80), the outer-flow 

velocity profile can be expressed in a dimensionless form using the dimensionless shear 

stress at the wall. 

uo

Uo
=

τw
∗

2
[1 − (

r

R
)

2

] − τ0
∗ [1 − (

r

R
)] (3.89) 

 

3.5.2. Inner plug-flow region. Within the plug-flow region, the velocity 

profile is no longer a function of the radial co-ordinate and is a constant 𝐂𝟐. 

∂ui

∂r
= 0              0 ≤ r ≤ ro (3.90) 

ui = C2 (3.91) 

To obtain the outer-flow velocity profile, equations (3.77) and (3.3) are first combined 

τrz =
(po − pL)

2L
ro = τ0 (3.92) 

Using the above equation along with equation (3.80), a relationship between the yield 

stress and the wall shear stress is found. 

τ0
∗ =

Δp∗

8ξ
ro

∗ = τw
∗ ro

∗  (3.93) 

To obtain a continuous velocity profile, the velocity profiles of the plug-flow and 

boundary layer regions are equated at the edge of the boundary layer. 

at r = ro = re                   ui = uo  (3.94) 
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ui =
(po − pL)

4Lμ0
R2 [1 − (

ro

R
)

2

] −
τ0

μ0
R [1 − (

ro

R
)] (3.95) 

Substituting equation (3.87) into equation (3.89) and simplifying the velocity profile 

expression gives 

ui =
(po − pL)

4Lμ0
R2 [1 − (

ro

R
)]

2

. (3.96) 

Using the previously defined dimensionless variables in equations (3.80), the profile 

can be expressed in a dimensionless form using the wall shear stress. 

ui

Uo
=

τw
∗

2
[1 − (

ro

R
)]

2

 (3.97) 

 

3.5.3. Other fully developed flow results. The results for the dimensionless 

fully developed centerline velocity, pressure gradient and plug flow radius are provided 

in [11] and are derived below. The provided velocity profiles can be re-written in terms 

of the yield stress using equation (3.93) 

ui

Uo
=

τo
∗

2ro
∗

[1 − (
ro

R
)]

2

 (3.98) 

uo

Uo
=

τo
∗

2ro
∗

[1 − (
r

R
)

2

] − τo
∗ [1 − (

r

R
)] (3.99) 

A relationship between the yield stress and the plug flow radius can be found using the 

expression for the average velocity in the fully developed region. 

 
Uo =

1

πR2
∫ 2πru dr

R

0

 (3.100) 

 Uo

Uo
= ∫ 2

ui

Uo
r1dr1 + ∫ 2

1

ro
∗

ro
∗

0

uo

Uo
r1dr1 (3.101) 

 
=

2τo
∗

2ro
∗

(1 − ro
∗)2 ∫ r1dr1 + 2τo

∗ ∫
1

2ro
∗

(r1 − r1
3) − (r1 − r1

2)
1

ro
∗

ro
∗

0

dr1 (3.102) 

 
=

τo
∗

ro
∗

(1 − ro
∗)2

(
ro

∗ 2

2
) +

τo
∗

ro
∗

(
1

2
−

ro
∗ 2

2
−

1

4
+

ro
∗ 4

4
)

− 2τo
∗ (

1

2
−

ro
∗ 2

2
−

1

3
+

ro
∗ 3

3
) (3.103) 

 
τ0

∗ =
12ro

∗

3 − 4ro
∗ + ro

∗4 
 (3.104) 
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By substituting equation (3.93) in the above equation, the pressure drop in the fully 

developed region can be found. 

 
|Δp∗| =

96ξ

3 − 4re
∗ + re

∗4 (3.105) 

The skin-friction coefficient in the fully developed region can be derived as follows 

using equation (3.93) and the definition of the coefficient from equation (3.67) 

 
CfRe =

τw

ρUo
2/2

 
(2R)Uoρ

μ0
= 4τw

∗ = 4τ0
∗ /ro

∗  (3.106) 

For the Newtonian fully developed flow, where τ0
∗ =  ro

∗ = 0, the skin-friction 

coefficient can be found by taking the limit of the above equation. 

 
CfRe = lim

τ0
∗ →0

4τ0
∗

ro
∗

= lim
ro

∗ →0
(

4 ∗ 12

3 − 4ro
∗ + ro

∗4 
) = 16 (3.107) 

 

3.6. Solution  

Following Mohanty and Asthana’s [13] approach for Newtonian fluids, the following 

approximate quartic velocity profile is assumed in both the inlet and filled regions. 

 

u̅ =  ∑ Ak(λ, Г)ƞk

4

k=0

 (3.108) 

By applying the boundary conditions in Sections 3.2.1 and 3.3.1, we retrieve the 

solution 

where,  

The coefficients Ak in the approximate velocity profile equation (3.100) are given 

below. 

 ū = F(ƞ) + λ1G(ƞ) + τ2G(ƞ) + Г1K(ƞ)  (3.109) 

 

  
F(ƞ) = 2ƞ − 2ƞ3 + ƞ4 , 

 

 G(ƞ) =
1

6
(ƞ − 3ƞ2 + 3ƞ3 − ƞ4) ,  

 
K(ƞ) = 3ƞ2 − 6ƞ3 + 3ƞ4 + δ1 (

ƞ2

2
− ƞ3 +

ƞ4

2
) , 

 

λ1 =
6(λ − 2δ1)

6 + δ1
 ,  Г1 =

Г

6 + δ1
 , τ2 =

6τ1

(6 + δ1)
  (3.110) 
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 A1 = (λ +   τ1 + 12) 6 + δ1⁄   (3.111) 

 A2 = (−6λ + 6Г + 12δ1 − 6τ1 + Гδ1) [2(6 + δ1)⁄ ]  (3.112) 

 A3 = (−6Г + 3λ −  8δ1 +  3τ1 −  Гδ1   −  12) (6 + δ1)⁄   (3.113) 

 A4 = (6Г − 2λ + 6δ1 − 2τ1 + Гδ1 + 12) [2(6 + δ1)]⁄   (3.114) 

For 

The velocity profile matches the fully developed one. Using the above polynomial 

expression, the displacement and momentum thicknesses are obtained as 

δ1
∗ = δ1 ∫ (1 − ū)(1 − δ1ƞ)

1

0

 dƞ (3.116) 

δ1
∗ = δ1 ∫ [1 − δ1ƞ]

1

0

− [∑ Akƞk − δ1 ∑ Akƞk+1] dƞ (3.117) 

δ1
∗ = δ1 [1 −

δ1

2
] − δ1 [∑

Ak

k + 1
− δ1 ∑

Ak

k + 2
] (3.118) 

δ1
∗∗ = δ1 ∫ ū(1 − ū)(1 − δ1ƞ)

1

0

 dƞ (3.119) 

δ1
∗∗ = δ1 ∫ ∑ Akƞk

1

0

− ∑ ∑ AkAiƞ
k+idƞ

− δ1
2 ∫ ∑ Akƞk+1 − ∑ ∑ AkAiƞ

k+i+1 dƞ
1

0

 (3.120) 

δ1
∗∗ = δ1 [∑

Ak

k + 1
− ∑ ∑

AkAi

k + i + 1
]

− δ1
2 [∑

Ak

k + 2
− ∑ ∑

AkAi

k + i + 2
] (3.121) 

 

3.6.1. Inlet region solution. Using equations (3.14) and (3.65), we can obtain 

the following pair of ordinary differential equations for δ1 and λ using the chain rule 

with Г1 = 0 

 

λ1 =
−6(2δ1)

6 + δ1
 ,  Г1 =

−2

6 + δ1
  (3.115) 
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dλ

dξ
=

dδ1
∗∗

dξ H1i −
dδ1

∗

dξ H3i

H1iH4i − H3iH2i
 

(3.122) 

 
dδ1

dξ
=

dδ1
∗

dξ H4i −
dδ1

∗∗

dξ H2i

H1iH4i − H3iH2i
 

(3.123) 

where 

H1i =
∂δ1

∗

∂δ1
; H2i =

∂δ1
∗

∂λ
;  

H3i =
∂δ1

∗∗

∂δ1
; H4i =

∂δ1
∗∗

∂λ
 . (3.124) 

The initial conditions are λ = δ1 = 0 at ξ = 0. 

3.6.2. Filled region solution. In the filled region, δ1 is no longer a function of 

x and is equal to δe. Г is now a variable, and we obtain the following differential 

equations for λ and Г 

 
dλ

dξ
=

dδ1
∗∗

dξ H1f −
dδ1

∗

dξ H3f

H1fH4f − H3fH2f
, 

(3.125) 

 
dГ

dξ
=

dδ1
∗

dξ H4f −
dδ1

∗∗

dξ H2f

H1fH4f − H3fH2f
, 

(3.126) 

where, 

H1f =
∂δ1

∗

∂Г
; H2f =

∂δ1
∗

∂λ
;  

H3f =
∂δ1

∗∗

∂Г
; H4f =

∂δ1
∗∗

∂λ
. (3.127) 

The initial conditions are Г = 0 and the value of λ is reached at the end of the inlet 

region. 

 

 

 

 



37 

 

Chapter 4. Results and Discussion 

 

Given a value of the yield-stress, equations (3.39) and (3.14) can be integrated 

to determine the profiles of δ1 and λ1 along the axial coordinate. Initially, both variables 

are zero at the inlet of the pipe. As described earlier, at the end of the inlet region, δ1 

should reach a limiting value depending on the yield stress, which is 1 for Newtonian 

fluids, and 1- re
∗ for Bingham fluids. In the filled region, δ1 remains unchanged and the 

values for Г1 and λ1 are obtained by integrating equations (3.66) and (3.14). The initial 

conditions are Г1 = 0, and the value of λ1 is reached at the end of the inlet region. At 

the end of the filled region, the velocity profile reaches asymptotically the fully 

developed profile. For practicality, the end of the filled region is defined as the axial 

location where the centerline velocity reaches 99% of the fully developed value.  

The present investigation is the first work applying the inlet-filled region 

momentum integral method to Bingham fluids originally developed for Newtonian 

fluids flow in circular pipes by Mohanty and Asthana [13]. The results are compared 

with the experimental data by Michiyoshi et al. [15] and the results obtained by Chen 

et al. [11] using the momentum integral and Campbell-Slattery methods. 

As shown in Figure 4.1, the results for the boundary-layer thickness in the inlet 

region using the present work are in perfect agreement with the experimental data of 

Mohanty and Asthana [13] for Newtonian fluids. We can see from Figure 4.1 that the 

results of the momentum integral and Campbell-Slattery methods, as applied by Chen 

at al. [11], do not match the boundary-layer thickness experimental data for Newtonian 

fluid flow. Furthermore, Chen et al. [11] acknowledge that the results of the momentum 

integral method are unrealistic in regions far from the entry (ξ > 0.02). 

Figure 4.2 shows the results for the boundary-layer thickness in the inlet region 

for various Bingham numbers. The higher the Bingham number, the smaller the inlet 

region length. 

The results for λ and Г are presented in Figures 4.3 and 4.4. As seen from the 

two figures, both parameters λ and Г reach their asymptotic fully developed values of 

0, and -2, respectively. 
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Figure 4.2: Boundary-layer thickness profiles for various Bingham numbers. 
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Figure 4.3: Profiles for λ. 

  

 

Figure 4.4: Profiles for Г. 
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The results for pressure drop in the entrance region are presented in Figure 4.5 

and Table 4.1, and are compared with the results of Chen et al. [11] and the 

experimental results by Michiyoshi et al. [15]. A better agreement is obtained with the 

present model. 

 

 

Figure 4.5: Pressure drop in the entrance region. 

 

Table 4.1: Comparison of the pressure drop results in the entrance region. 
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pressure drop 

results [15] 
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% Error for 
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work 
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The velocity profiles are compared in Figure 4.6 with the results by Chen et al 

[11] using Campbell-Slattery method. As seen from the figure, results of the present 

work reach the fully developed values asymptotically. 

Figure 4.7 compares the inlet and entrance region lengths with the results of 

Chen et al. [11]. The present results lie between the results by Chen et al. [11] using 

Campbell-Slattery and the momentum integral methods. 

The fully developed pressure drop profiles are presented in Figure 4.8. Finally, 

the results for the skin-friction coefficient are presented in Figure 4.9. As seen from the 

figure, the results reach asymptotically the fully developed values. 

 

 

Figure 4.6: Centerline velocity profiles. 
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Figure 4.7: Inlet and entrance region lengths. 

  

 

Figure 4.8: Fully developed pressure drop profiles. 
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Figure 4.9: Skin-friction coefficient in the entrance region. 
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Chapter 5. Conclusions and Recommendations 

 

5.1. Summary 

Chapter 2 presented the results of the momentum integral method for Bingham 

fluid flow in a circular pipe using a quadratic profile as applied by Chen et al. [11]. 

Chapter 3 presented the current methodology of a modified momentum integral method 

using a quartic profile and including an additional filled region for Bingham fluids 

following Mohanty and Asthana’s approach [13] for Newtonian fluids. The results are 

compared in Chapter 4 with experimental work [6, 8].  

5.2. Conclusion 

The isothermal laminar flow of a Bingham fluid in the entrance region of a 

circular pipe was studied using a modified momentum integral method that improves 

the previous boundary-layer model presented by Chen et al. [11]. The entrance region 

length and the velocity and pressure profiles were determined for various Bingham 

numbers. The results of Chen et al. [11] do not match the boundary-layer thickness 

experimental data for Newtonian fluid flow (yield stress equal to zero). The 

inconsistency is resolved in the present work using a quartic profile, while including an 

additional filled region following the inlet region, with both regions constituting the 

overall entrance region. The results obtained with the present model are in better 

agreement with the experimental pressure drop results by Michiyoshi et al. [15] as 

compared with the results obtained by Chen et al. [11]. 

5.3. Future work 

Future research should include additional experimental work for further 

comparison with the boundary layer thickness, centerline velocity and pressure drop 

results presented in this work.  
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