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Abstract: This paper proposes a data embedding solution in HEVC videos by modifying the partitioning of Coding Units 
(CUs). The partitions of a CU are first represented as a sequence of binary flags. The flags pertaining to 16x16 sub CUs 
are used as a cover for data embedding, where 6 or 4 message bits are embedded per CU. The data embedding 
algorithm guarantees that a maximum of one partition is modified per message segment, therefore, in a given CU, 
either 0, 1 or 2 partitions are modified. The Proposed solution is assessed in terms of message payload, number of 
modified partitions, loss in video quality as indicated by the PSNR results, mean objective scores and excessive bitrate. 
The proposed solution can embed messages with up to an average payload of 32.6Kbit/s with a corresponding average 
distortion of less than 0.5dB. Comparisons with existing solutions reveal that the proposed solution maintains similar 
message payloads with less modifications of CU partitioning and at the same time resulting in less distortions for the 
cover video. 

1. Introduction

Embedding data messages into compressed video 

has a number of applications including copyright 

protection [1], access control [2], content authentication 

[3], and transaction tracking [4]. Less obvious applications 

can also benefit from data embedding such as real time 

scene change detection in compressed video [5] and error 

detection and concealment [6]. In all cases, the process of 

data embedding should result in minimal video distortion 

whilst maintaining compatibility with the standardized 

decoder.  

Common approaches to data embedding in 

compressed videos include modifying quantization scales, 

DCT coefficients and motion vectors. Data hiding can also 

be implemented using code-word substitution where the 

file size is strictly unaltered [7]. An example of data 

embedding in quantization scales and motion vectors is 

reported in [8]. Matrix encoding was used to modify the 

quantization scales and motion vectors in signal layer and 

scalable video coding. Advanced transcoding techniques 

were applied to embed messages in a pre-encoded video as 

well. The work in [9] embeds messages through altering 

the quantization scales using a machine learning approach. 

The decoder detects a message bit if the predicted 

quantization scale is different than the received one. Data 

embedding using MVs has also been used for video water 

marking [10]. Additionally, [11] proposed a solution that 

improves the security of motion vector-based data 

embedding. Because of its popularity, detection of motion 

vector-based video data embedding became an important 

research topic as reported in [12] and [13]. 

Of relevance to our work is the concept of data 

embedding using block structure and prediction modes. 

For instance, the work in [14] proposed the use of intra 

prediction modes to hide one message bit per 4x4 intra 

blocks in H264/AVC video. Likewise, the authors of [15] 

utilized the block types of H.264/AVC blocks to hide 

message bits. Data embedding is also used with HEVC 

videos, in which data is embedded by forcing certain 

partitioning types for the Prediction Units (PUs) [16]. If a 

message bit is ‘0’ then the PU type is restricted to: NxN, 

nLx2N, 2NxnU and 2NxN. If the message bit is ‘1’ then 

the PU type is restricted to: 2Nx2N, nRx2N, Nx2N and 

2NxnD. The work reported in [17] also altered the CU 

coding modes for data embedding. More specifically, a 

prediction solution was used at the decoder to predict the 

split pattern of a 32x32 CU and compare that to what is 

actually received in the bit stream. Based on the 

comparison, the embedded message bits are revealed.  

Motived by the aforementioned work [16] and [17], 

in this work, we embed data in HEVC video by altering 

the partition decisions of CUs.  

The rest of this paper is organized as follows. 

Section 2 introduces the data embedding system overview. 

Section 3 provides the detailed algorithms for data 

embedding and extraction in CU partitioning flags. Section 

4 reports the experimental setup and results and Section 5 

concludes the paper. 

2. System Overview

In HEVC video coding, video frames are divided

into non-overlapping blocks referred to as coding units 

(CUs). In the luminance part, a typical size of the CU is 

64x64 pixels. These CUs are recursively partitioned into 

square shapes using a quad-tree partitioning approach. 

Allowed partition sizes are 64x64, 32x32, 16x16 and 8x8. 

The purpose of the partitioning is to reduce the prediction 

residual error whilst maximizing the quality of the 

reconstructed video. The resultant partitions are referred to 

as Prediction Units (PUs) and they can be partitioned 

further, however, PUs are not part of the proposed data 

embedding solution. 

In this work, we represent the partitions of a CU as 

a sequence of binary flags as illustrated in Figure 1. The 

64x64 CU in this example (i.e. CU64x64) is partitioned into 
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four CU32x32. The partitions of each CU32x32 is represented 

by 5 flags. The first flag indicates that the top left 16x16 

block is further partitioned into 8x8 blocks. The second, 

third and fourth flags serve the same purpose for the top 

right, bottom left and bottom right 16x16 blocks 

respectively. The last or fifth flag indicates that the CU32x32 

is partitioned into 4 parts. 

Referring to Figure, the top left CU32x32 has 4 flags 

pertaining to the CU16x16 blocks; 0 0 0 and 1. This means 

that only the last CU16x16 is further partitioned. The last 

flag, which is the fifth flag belongs to the CU32x32 as a 

whole and indicates that the CU32x32 is partitioned into four 

CU16x16. Therefore, the 5 flags for the first CU32x32 are as 

follows: 0 0 0 1 1.  

 

 
Fig. 1. Representation of CU partitioning with 20 boolean 

flags. 

 

Notice that the fifth bit pertaining to a CU32x32 can 

be guessed only if any of its four CU16x16 is further split. 

For example 1 0 0 0, means that the top left CU16x16 is 

further split into four CU8x8. In this case, the fifth bit has 

to be a ‘1’. However there is a case where the fifth bit 

cannot be guessed, namely; if the CU32x32 is split into 

four CU16x16, yet none of the CU16x16 is further split 

then the partition flags will be 0 0 0 0 and the fifth bit is a 

‘1’ as well.  

This work proposes to embed data in the first 4 flags 

of each CU32x32, these flags belong to the partitioning of 

the CU16x16 blocks. Therefore, the total number of flags 

available for data embedding per CU64x64 is 16. In the next 

section, we introduce the data embedding and extraction 

algorithms and in the experimental results section we 

study the effect of modifying the partitioning flags on the 

quality of the reconstructed video. 

3. Data embedding and extraction algorithms  

In the context of this work, the purpose of data 

embedding to hide a sequence of message bits whilst 

striking a balance between the number of modified CU64x64 

partitions and the overall message payload.  

For data embedding or message hiding in CU 

partitions, we use the following approach. Assume that 

two message bits (m1, m2) are to be embedded/hidden, in 

such a case, 3 CU64x64 partition flags, i.e. p1, p2 and p3, are 

needed for data embedding using the following algorithm: 

 

 

Data Embedding Algorithm: 

Input: 2 message bits (m1, m2) and 3 CU64x64 partition flags, 

p1, p2 and p3. 

Output: CU64x64 partition flags with an embedded message. 

a. Initialization: 

Initialize m1_flag, m2_flag and m1m2_flag to false 

b. Setting the flags: 

If m1 ≠ p1 then m1_flag ← true 

If m2 ≠ p2 then m2_flag ← true 

If (m1_flag && m2_flag) then m1m2_flag ← true 

c. Modifying the CU64x64 partitions 

If m1m2_flag then p3 ← 1-p3 

Else if m1_flag then p1 ← 1-p1 

Else if m2_flag then p2 ← 1-p2 

Else no modification is needed 
 

As a consequence, a maximum of one CU64x64 

partition flag is modified per message segment which is 2 

bits in this example. The extension of this algorithm to 

allow longer message segments of length 3 and 4 bits is 

straightforward.  

In general, if the message segment length is n bits 

then 2n-1 CU64x64 partitions are needed for data embedding. 

With 16 CU64x64 partitions, if the message segment length 

is 2, then 10 message bits can be hidden as each 2 message 

bits requires 3 partitions. Likewise, if the message segment 

length is 3, then 6 message bits can be hidden and lastly, if 

the message segment length is 4, then only 4 message bits 

can be hidden. Clearly, the larger the message length, the 

lower the message payload and as a consequence, the 

distortion caused to the modified video is reduced.  

For data or message extraction, the partitions of 

non-skipped CUs are retrieved from the bit stream of the 

video. Continuing with the example of using a message 

segment length of 2 bits, the extractor arranges the 

partitions into groups of 3 flags. Then the following 

algorithm is used for message extraction: 

 

Data Extraction Algorithm:  

Input: CU64x64 partition flags , p1, p2 and p3, with embedded 

message.  

Output: 2 message bits  (m1, m2) and 3 CU64x64 partition 

flags. 

a. Arrange CU64x64 partitions into groups of 2n-1 

b. For each group of partition flags: 

m1← (p1+p3) modulus 2 

m2← (p2+p3) modulus 2 

 

Where the “x modulus y” computes the remainder 

of dividing x by y. Again, the extension of this algorithm 

to the case of n=3 and n=4 is straightforward. These data 

embedding and extraction algorithms are original and 

produce the same result as matrix encoding [18]. 

4. Experimental Results 

In the experimental results to follow, message bits 

are embedded in CU16x16 partitioning flags of HEVC 

video. The closest reported work that can be used for 

comparison was published in [16] and [17]. We therefore 

use the same experimental setup as reported in [16] and 

[17]. The following test video sequences are used: Tennis 

[0 0 0 1 1]  

  

 [0 1 0 0 1] 

 [0 0 0 0 0]  [0 0 0 0 1] 



3 

 

(1920×1080@24Hz), FourPeople (1280×720@60Hz),  

BasketballDrill (832×480@50Hz) and BasketballPass 

(416×240@50Hz). The video sequences are coded with 

constant bitrates with the following values: 500Kbit/s, 

1Mbit/s, 5Mbit/s and 10Mbit/s. Since the BasketballPass 

has a low spatial resolution it is coded at 100Kbit/s, 

1Mbit/s and 5Mbit/s. 

All messages to be embedded are generated using a 

uniform discrete binary number generator. 

We use the HEVC reference software HM13.0 [19]. 

The video coding structure is IPPP… using 4 reference 

frames. The maximum CU size is set to the typical 

maximum size of 64x64 pixels. The asymmetric motion 

partitions tool and the adaptive loop filter tool are both 

enabled.  

In the results to follow, we report the effect of data 

embedding in HEVC videos using PSNR, message 

payload in Kbit per second of video, and amount of 

modified 16x16 partitioning flags, again measured as Kbit 

per second averaged over the entire video. Table 1 

includes the results of data embedding using two 

approaches; embedding 4 message bits into 15 CU64x64 

partitioning flags and embedding 3 message bits into 7 

partitioning flags. In the latter approach, since there are 16 

partitioning flags in a CU64x64, then data embedding can be 

applied twice, resulting in embedding 6 message bits per 

CU64x64. 
 
 

Table 1 Proposed data embedding solutions with message segment lengths of n=3 and n=4. 

  
6 msg bits in 14 partition flags 4 msg bits in 15 partition flags 

 

Bitrate 

Mbit/s 

PSNR 

Loss dB 
Msg Kbit/s 

Modified 

partitions 

Kbit/s 

PSNR 

Loss dB 

Msg 

Kbit/s 

Modified 

partitions 

Kbit/s 

Tennis 0.5 1.96 41.14 12.02 1.5 34.6 6.84 

 1 1.09 49.65 14.48 0.82 37.3 7.75 

 5 0.24 62.68 18.27 0.19 48.1 10.22 

 10 0.13 65.05 19.00 0.11 48.9 10.46 

 Avg 0.86 54.63 15.94 0.52 42.23 7.13 

FourPeople 0.5 0.59 28.67 8.36 0.47 19.1 4.72 

 1 0.30 33.43 9.72 0.26 22.3 5.48 

 5 0.08 52.63 15.36 0.08 35.1 8.36 

 10 0.07 64.10 18.69 0.07 43 10.12 

 Avg 0.26 44.71 13.03 0.22 29.88 7.17 

Basketball 0.5 0.65 20.23 5.90 0.52 13.5 3.2 

Drill 1 0.43 22.71 6.63 0.35 15.1 3.5 

 5 0.22 27.41 7.98 0.18 18.3 4.3 

 10 0.13 27.86 8.15 0.1 18.6 4.4 

 Avg 0.36 24.55 7.16 0.22 16.45 2.86 

Basketball 0.1 0.86 5.84 1.71 0.74 3.9 0.96 

Pass 0.5 0.33 6.68 1.94 0.29 4.5 1.07 

 1 0.25 6.91 2.03 0.22 4.6 1.12 

 Avg 0.48 6.48 1.89 0.42 4.33 1.05 

Overall Avg 0.49 32.59 9.51 0.34 23.22 4.55 
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As expected, the results in Table 1 indicate that 

increasing the number of message bits from 4 to 6 per 

CU64x64 results in higher average message bitrate. Namely; 

the averages reported in the Table are 23.2Kbit/s and 

32.6Kbit/s for 4 and 6 message bits per CU64x64 respectively. 

As a consequence, the average bitrate of modified partitions 

increased from 4.6Kbit/s to 9.5Kbit/s and the average PSNR 

loss increased from 0.34dB to 0.49dB. There are other 

observations that can be made from the presented results, for 

example the order of test videos are presented in descending 

spatial resolution order, therefore, the average message 

payload ranges from 54.6 Kbit/s to 6.5 Kbit/s. Likewise, it is 

shown that data embedding at low bitrates for each video 

sequence, results in higher distortion as indicated by the 

PSNR loss. Lastly, the message payload increases as the 

video compression bitrate increases for each sequence. This 

is so, because the percentage of skipped CUs decreases 

accordingly and therefore more CUs are available for data 

embedding.  

In Table 2, we compare this work against the work 

reported in [16] and [17]. On average, 4 partitions per 

CU64x64 are modified in the reviewed work for the 

embedding of 4 message bits. Therefore, in Table 2, we 

compare the results of our 4 message bits per CU64x64 

solution with the existing work as both have the same 

message embedding rate. The results in the table indicate 

that the average bitrate of the modified CU64x64 partitions 

using the proposed solution is around one fourth of that of 

the reviewed work [17], namely, the bitrates are 4.6 Kbit/s 

and 22.9 Kbit/s respectively. This is so, as in the proposed 

solution a maximum of one partition is modified for the 

purpose of embedding 4 message bits as explained in 

Section 3. 

The fact that the modified CU64x64 partitions are less, 

the PSNR loss caused by the proposed solution is 0.34 dB 

whereas that of the reviewed solution is 0.47 dB. These two 

conclusions are consistent for each and every test video 

sequence. 

Lastly, the work reported in [16] achieves a high 

message embedding rate of 80.1Kbit/s, however, as 

expected, this comes at a high cost in terms of quality 

degradation. As a result, the average drop in PSNR is 

around 2dB. The highest drop in PSNR was reported for the 

Tennis sequence which is 3.8 dB and the lowest drop 

reported was for the Basketball Drill sequence which is 1 dB. 

Therefore, increasing the message payload in HEVC video 

by altering coding modes is not desirable. The proposed 

solution on the other hand, presents a balanced trade-off 

between message payload and quality degradation. 

In Table 3 we present the percentage of excessive 

bitrate as a result of data embedding. The excessive bitrate  

is computed in comparison to regular encoding without data 

embedding. Namely, the bitrate resulting from data 

embedding is subtracted from that of regular encoding, and 

the difference is divided by the bitrate of the latter.   

To compute the excessive bitrate, Variable Bit Rate 

(VBR) coding is required. This is achieved by fixing the 

quantization scale/parameter (QP). In HEVC coding, it is 

custom to use the following QP values in VBR testing; 22, 

27, 32 and 37, therefore we use these QP values in the 

results presented in Table 3. We also compare the excessive 

bitrate of the proposed solution against that in [17]. 

Table 2 Comparison with existing work with CBR coding. 

    Reviewed [17] Reviewed [16] Proposed 4 bits in 15 partitions 

  
 Bitrate 

Mbit/s 

PSNR  

loss dB 

Msg  

Kbit/s 

Modified  

Partitions 

 Kbit/s 

PSNR  

loss dB 

Msg  

Kbit/s 

PSNR  

loss dB 

Msg  

Kbit/s 

Modified  

partitions  

Kbit/s 

Tennis 0.5 1.45 34.6 27.4 8.21 146.3 1.5 34.6 6.84 

  1 0.76 37.3 37.5 5.44 147.2 0.82 37.3 7.75 

  5 0.23 48.1 48.1 0.95 188.2 0.19 48.1 10.22 

  10 0.13 48.9 50.7 0.51 223.2 0.11 48.9 10.46 

  Avg 0.64 42.23 40.93 3.78 176.23 0.52 42.23 7.13 

Four 0.5 0.5 19.1 19.1 4.78 61.9 0.47 19.1 4.72 

People 1 0.33 22.3 22.3 1.26 66.6 0.26 22.3 5.48 

  5 0.1 35.1 35.1 0.22 94.8 0.08 35.1 8.36 

  10 0.09 43 42.7 0.18 116.1 0.07 43 10.12 

  Avg 0.26 29.88 29.8 1.61 84.85 0.22 29.88 7.17 

Basket 0.5 0.6 13.5 13.5 1.65 30.1 0.52 13.5 3.2 

ball 1 0.48 15.4 15.1 1.09 38.5 0.35 15.1 3.5 

Drill 5 0.36 18.3 18.3 0.71 59.2 0.18 18.3 4.3 

  10 0.2 18.6 18.6 0.55 69.9 0.1 18.6 4.4 

  Avg 0.41 16.45 16.38 1.00 49.43 0.22 16.45 2.86 

  0.1 0.7 3.9 3.9 2.25 7.8 0.74 3.9 0.96 

Basket 0.5 0.54 4.5 4.5 0.95 13.9 0.29 4.5 1.07 

ball  1 0.47 4.6 4.6 0.76 17.1 0.22 4.6 1.12 

Pass Avg 0.57 4.33 4.33 1.32 12.93 0.42 4.33 1.05 

Overall  Avg 0.47 23.22 22.86 1.93 80.86 0.34 23.22 4.55 
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Table 3 shows that the proposed solution has a lower 

average excessive bitrate in comparison to the reviewed 

work. The average is lower for each and every test sequence, 

the overall averages of the proposed solution and the 

reviewed work are 9.5% and 11.5% respectively.  

It is also shown in the table that the excessive bitrate 

increases as the QP increases. This is an expected result, as 

increasing the QP in regular HEVC encoding, a higher 

percentage of CUs are skipped as more DCT coefficients are 

quantized to zero. With data embedding on the other hand, 

the structure of CUs is altered by modifying the split 

decisions, this results in sub-optimal interframe prediction 

and therefore a reduction in the percentage of skipped CUs.  

 

Table 3 Comparison with existing work with VBR coding. 

    
Reviewed 

[17] 

Proposed 

work 

  

QP 
Excessive 

 bitrate Kbit/s 

(%) 

Excessive 

 bitrate Kbit/s 

(%) 
  

  

Tennis 22 7.4 5.5 

  27 10.3 8.7 

  32 14.5 14.1 

  37 21.2 21.8 

  Avg 13.4 12.5 

FourPeople 0.5 7.0 5.9 

  1 11.2 9.4 

  5 15.1 14.5 

  10 20.6 21.3 

  Avg 13.5 12.8 

Basketball 0.5 7.2 3.5 

Drill 1 9.2 5.4 

  5 11.2 8.5 

  10 14.3 13.5 

  Avg 10.5 7.7 

Basketball 0.1 5.3 2.1 

Pass 0.5 7.4 3.2 

  1 9.6 5.5 

    12.4 9.3 

  Avg 8.7 5.0 

Overall Avg 11.5 9.5 

 

          In Table 4, we present subjective quality assessment 

results of the proposed solution using the Double-Stimulus 

Impairment Scale (DSIS) recommended by ITU-R BT.500-

11 [20]. Constant bitrate video coding is used with the same 

compression parameters used to generate the results of 

Tables 1 and 2 above. In this experiment, 15 subjects are 

presented with a reference video followed by a video with 

embedded data without repetition. The average age of the 

subjects is 23.7 years with a range of 18-45. Since eye stress 

might bias the results, the presentation order of video 

sequences is randomized for different subjects. After 

watching each pair of videos, subjects use a discrete scale of 

1 to 5 to score the results. The grading scales from 1 to 5 are: 

“very annoying”, “annoying”, “slightly annoying”, 

“perceptible but not annoying” and “imperceptible” 

respectively. 

 

Table 4 Statistics of objective scores. 

Proposed 4 bits in 15 partitions 

  
 Bitrate MOS 

 (out of 5) 
Stdev 

Mbit/s 

Tennis 0.5 2.75 1.43 

  1 3.58 0.93 

  5 4.67 0.74 

  10 4.67 0.57 

  Avg 3.92 0.92 

Four 0.5 3.83 0.88 

People 1 4.58 0.61 

  5 4.75 0.70 

  10 4.83 0.44 

  Avg 4.50 0.66 

Basketball 0.5 3.42 1.37 

Drill 1 4.17 1.02 

 
5 4.42 0.80 

  10 4.67 0.57 

  Avg 4.17 0.94 

  0.1 3.50 1.65 

Basketball 0.5 4.33 0.80 

Pass 1 4.42 0.80 

 
Avg 4.08 1.08 

Overall   4.17 0.89 

           

Overall, the average Mean Objective Scores (MOS) 

for all video sequences at the presented bitrates is 4.17 out 

of 5 with a standard deviation of 0.89. The results indicate 

that as the bitrate and quality of the video increase, the mean 

subjective scores increase as well. At the same time, the 

standard deviation of the objective scores decrease. This 

means that data embedding at higher bitrates is less 

detectable. The results also show that on average, the 

smallest standard deviation is associated with the highest 

MOS, which belongs to the FourPeople sequence in this 

experiment.  

          

5. Conclusion 

A data embedding solution was proposed for coded 

HEVC videos. It was proposed to modify the CU64x64 

partitioning flags to hide message bits. The message is first 

divided into segments and each segment is embedded in the 

partitioning flags such that a maximum of one partition per 

message segment is modified.  

We experimented with message segments of lengths 

3 and 4. In the experimental results section, such segment 
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lengths were shown to generate a good trade-off between 

message payload and video distortions. With message 

segment lengths of 3 and 4, six and four message bits can be 

embedded per CU64x64 respectively. As a result, using four 

video sequences with different resolutions, the average 

message payload rates were 32.6Kbit/s and 23.2Kbit/s 

respectively.  

The corresponding average losses in PSNR were 

0.49dB and 0.34dB respectively. Therefore, increasing the 

message segment length reduces both the message payload 

and the overall video distortion. Subjective video testing 

revealed that the average MOS for all video sequences at 

various bitrates is 4.17 out of 5 with a standard deviation of 

0.89. Comparison with existing work revealed that the 

proposed solution results in less video distortion in terms of 

PSNR and excessive bitrate. Yet the proposed solution 

provided a reasonable balance between message payload 

and video distortion. 
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