
1

Data Embedding in HEVC Video by Modifying the Partitioning of Coding
Units

Tamer Shanableh 1

1 Department of Computer Science and Engineering, American University of Sharjah, Sharjah, UAE
*tshanableh@aus.edu

Abstract: This paper proposes a data embedding solution in HEVC videos by modifying the partitioning of Coding Units
(CUs). The partitions of a CU are first represented as a sequence of binary flags. The flags pertaining to 16x16 sub CUs
are used as a cover for data embedding, where 6 or 4 message bits are embedded per CU. The data embedding
algorithm guarantees that a maximum of one partition is modified per message segment, therefore, in a given CU,
either 0, 1 or 2 partitions are modified. The Proposed solution is assessed in terms of message payload, number of
modified partitions, loss in video quality as indicated by the PSNR results, mean objective scores and excessive bitrate.
The proposed solution can embed messages with up to an average payload of 32.6Kbit/s with a corresponding average
distortion of less than 0.5dB. Comparisons with existing solutions reveal that the proposed solution maintains similar
message payloads with less modifications of CU partitioning and at the same time resulting in less distortions for the
cover video.

1. Introduction

Embedding data messages into compressed video

has a number of applications including copyright

protection [1], access control [2], content authentication

[3], and transaction tracking [4]. Less obvious applications

can also benefit from data embedding such as real time

scene change detection in compressed video [5] and error

detection and concealment [6]. In all cases, the process of

data embedding should result in minimal video distortion

whilst maintaining compatibility with the standardized

decoder.

Common approaches to data embedding in

compressed videos include modifying quantization scales,

DCT coefficients and motion vectors. Data hiding can also

be implemented using code-word substitution where the

file size is strictly unaltered [7]. An example of data

embedding in quantization scales and motion vectors is

reported in [8]. Matrix encoding was used to modify the

quantization scales and motion vectors in signal layer and

scalable video coding. Advanced transcoding techniques

were applied to embed messages in a pre-encoded video as

well. The work in [9] embeds messages through altering

the quantization scales using a machine learning approach.

The decoder detects a message bit if the predicted

quantization scale is different than the received one. Data

embedding using MVs has also been used for video water

marking [10]. Additionally, [11] proposed a solution that

improves the security of motion vector-based data

embedding. Because of its popularity, detection of motion

vector-based video data embedding became an important

research topic as reported in [12] and [13].

Of relevance to our work is the concept of data

embedding using block structure and prediction modes.

For instance, the work in [14] proposed the use of intra

prediction modes to hide one message bit per 4x4 intra

blocks in H264/AVC video. Likewise, the authors of [15]

utilized the block types of H.264/AVC blocks to hide

message bits. Data embedding is also used with HEVC

videos, in which data is embedded by forcing certain

partitioning types for the Prediction Units (PUs) [16]. If a

message bit is ‘0’ then the PU type is restricted to: NxN,

nLx2N, 2NxnU and 2NxN. If the message bit is ‘1’ then

the PU type is restricted to: 2Nx2N, nRx2N, Nx2N and

2NxnD. The work reported in [17] also altered the CU

coding modes for data embedding. More specifically, a

prediction solution was used at the decoder to predict the

split pattern of a 32x32 CU and compare that to what is

actually received in the bit stream. Based on the

comparison, the embedded message bits are revealed.

Motived by the aforementioned work [16] and [17],

in this work, we embed data in HEVC video by altering

the partition decisions of CUs.

The rest of this paper is organized as follows.

Section 2 introduces the data embedding system overview.

Section 3 provides the detailed algorithms for data

embedding and extraction in CU partitioning flags. Section

4 reports the experimental setup and results and Section 5

concludes the paper.

2. System Overview

In HEVC video coding, video frames are divided

into non-overlapping blocks referred to as coding units

(CUs). In the luminance part, a typical size of the CU is

64x64 pixels. These CUs are recursively partitioned into

square shapes using a quad-tree partitioning approach.

Allowed partition sizes are 64x64, 32x32, 16x16 and 8x8.

The purpose of the partitioning is to reduce the prediction

residual error whilst maximizing the quality of the

reconstructed video. The resultant partitions are referred to

as Prediction Units (PUs) and they can be partitioned

further, however, PUs are not part of the proposed data

embedding solution.

In this work, we represent the partitions of a CU as

a sequence of binary flags as illustrated in Figure 1. The

64x64 CU in this example (i.e. CU64x64) is partitioned into

This paper is a postprint of a paper submitted to and accepted for publication in
IET Image Processing and is subject to Institution of Engineering and Technology Copyright. The
copy of record is available at the IET Digital Library.
https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5782

mailto:tshanableh@aus.edu

2

four CU32x32. The partitions of each CU32x32 is represented

by 5 flags. The first flag indicates that the top left 16x16

block is further partitioned into 8x8 blocks. The second,

third and fourth flags serve the same purpose for the top

right, bottom left and bottom right 16x16 blocks

respectively. The last or fifth flag indicates that the CU32x32

is partitioned into 4 parts.

Referring to Figure, the top left CU32x32 has 4 flags

pertaining to the CU16x16 blocks; 0 0 0 and 1. This means

that only the last CU16x16 is further partitioned. The last

flag, which is the fifth flag belongs to the CU32x32 as a

whole and indicates that the CU32x32 is partitioned into four

CU16x16. Therefore, the 5 flags for the first CU32x32 are as

follows: 0 0 0 1 1.

Fig. 1. Representation of CU partitioning with 20 boolean

flags.

Notice that the fifth bit pertaining to a CU32x32 can

be guessed only if any of its four CU16x16 is further split.

For example 1 0 0 0, means that the top left CU16x16 is

further split into four CU8x8. In this case, the fifth bit has

to be a ‘1’. However there is a case where the fifth bit

cannot be guessed, namely; if the CU32x32 is split into

four CU16x16, yet none of the CU16x16 is further split

then the partition flags will be 0 0 0 0 and the fifth bit is a

‘1’ as well.

This work proposes to embed data in the first 4 flags

of each CU32x32, these flags belong to the partitioning of

the CU16x16 blocks. Therefore, the total number of flags

available for data embedding per CU64x64 is 16. In the next

section, we introduce the data embedding and extraction

algorithms and in the experimental results section we

study the effect of modifying the partitioning flags on the

quality of the reconstructed video.

3. Data embedding and extraction algorithms

In the context of this work, the purpose of data

embedding to hide a sequence of message bits whilst

striking a balance between the number of modified CU64x64

partitions and the overall message payload.

For data embedding or message hiding in CU

partitions, we use the following approach. Assume that

two message bits (m1, m2) are to be embedded/hidden, in

such a case, 3 CU64x64 partition flags, i.e. p1, p2 and p3, are

needed for data embedding using the following algorithm:

Data Embedding Algorithm:

Input: 2 message bits (m1, m2) and 3 CU64x64 partition flags,

p1, p2 and p3.

Output: CU64x64 partition flags with an embedded message.

a. Initialization:

Initialize m1_flag, m2_flag and m1m2_flag to false

b. Setting the flags:

If m1 ≠ p1 then m1_flag ← true

If m2 ≠ p2 then m2_flag ← true

If (m1_flag && m2_flag) then m1m2_flag ← true

c. Modifying the CU64x64 partitions

If m1m2_flag then p3 ← 1-p3

Else if m1_flag then p1 ← 1-p1

Else if m2_flag then p2 ← 1-p2

Else no modification is needed

As a consequence, a maximum of one CU64x64

partition flag is modified per message segment which is 2

bits in this example. The extension of this algorithm to

allow longer message segments of length 3 and 4 bits is

straightforward.

In general, if the message segment length is n bits

then 2n-1 CU64x64 partitions are needed for data embedding.

With 16 CU64x64 partitions, if the message segment length

is 2, then 10 message bits can be hidden as each 2 message

bits requires 3 partitions. Likewise, if the message segment

length is 3, then 6 message bits can be hidden and lastly, if

the message segment length is 4, then only 4 message bits

can be hidden. Clearly, the larger the message length, the

lower the message payload and as a consequence, the

distortion caused to the modified video is reduced.

For data or message extraction, the partitions of

non-skipped CUs are retrieved from the bit stream of the

video. Continuing with the example of using a message

segment length of 2 bits, the extractor arranges the

partitions into groups of 3 flags. Then the following

algorithm is used for message extraction:

Data Extraction Algorithm:

Input: CU64x64 partition flags , p1, p2 and p3, with embedded

message.

Output: 2 message bits (m1, m2) and 3 CU64x64 partition

flags.

a. Arrange CU64x64 partitions into groups of 2n-1

b. For each group of partition flags:

m1← (p1+p3) modulus 2

m2← (p2+p3) modulus 2

Where the “x modulus y” computes the remainder

of dividing x by y. Again, the extension of this algorithm

to the case of n=3 and n=4 is straightforward. These data

embedding and extraction algorithms are original and

produce the same result as matrix encoding [18].

4. Experimental Results

In the experimental results to follow, message bits

are embedded in CU16x16 partitioning flags of HEVC

video. The closest reported work that can be used for

comparison was published in [16] and [17]. We therefore

use the same experimental setup as reported in [16] and

[17]. The following test video sequences are used: Tennis

[0 0 0 1 1]

 [0 1 0 0 1]

 [0 0 0 0 0] [0 0 0 0 1]

3

(1920×1080@24Hz), FourPeople (1280×720@60Hz),

BasketballDrill (832×480@50Hz) and BasketballPass

(416×240@50Hz). The video sequences are coded with

constant bitrates with the following values: 500Kbit/s,

1Mbit/s, 5Mbit/s and 10Mbit/s. Since the BasketballPass

has a low spatial resolution it is coded at 100Kbit/s,

1Mbit/s and 5Mbit/s.

All messages to be embedded are generated using a

uniform discrete binary number generator.

We use the HEVC reference software HM13.0 [19].

The video coding structure is IPPP… using 4 reference

frames. The maximum CU size is set to the typical

maximum size of 64x64 pixels. The asymmetric motion

partitions tool and the adaptive loop filter tool are both

enabled.

In the results to follow, we report the effect of data

embedding in HEVC videos using PSNR, message

payload in Kbit per second of video, and amount of

modified 16x16 partitioning flags, again measured as Kbit

per second averaged over the entire video. Table 1

includes the results of data embedding using two

approaches; embedding 4 message bits into 15 CU64x64

partitioning flags and embedding 3 message bits into 7

partitioning flags. In the latter approach, since there are 16

partitioning flags in a CU64x64, then data embedding can be

applied twice, resulting in embedding 6 message bits per

CU64x64.

Table 1 Proposed data embedding solutions with message segment lengths of n=3 and n=4.

6 msg bits in 14 partition flags 4 msg bits in 15 partition flags

Bitrate

Mbit/s

PSNR

Loss dB
Msg Kbit/s

Modified

partitions

Kbit/s

PSNR

Loss dB

Msg

Kbit/s

Modified

partitions

Kbit/s

Tennis 0.5 1.96 41.14 12.02 1.5 34.6 6.84

 1 1.09 49.65 14.48 0.82 37.3 7.75

 5 0.24 62.68 18.27 0.19 48.1 10.22

 10 0.13 65.05 19.00 0.11 48.9 10.46

 Avg 0.86 54.63 15.94 0.52 42.23 7.13

FourPeople 0.5 0.59 28.67 8.36 0.47 19.1 4.72

 1 0.30 33.43 9.72 0.26 22.3 5.48

 5 0.08 52.63 15.36 0.08 35.1 8.36

 10 0.07 64.10 18.69 0.07 43 10.12

 Avg 0.26 44.71 13.03 0.22 29.88 7.17

Basketball 0.5 0.65 20.23 5.90 0.52 13.5 3.2

Drill 1 0.43 22.71 6.63 0.35 15.1 3.5

 5 0.22 27.41 7.98 0.18 18.3 4.3

 10 0.13 27.86 8.15 0.1 18.6 4.4

 Avg 0.36 24.55 7.16 0.22 16.45 2.86

Basketball 0.1 0.86 5.84 1.71 0.74 3.9 0.96

Pass 0.5 0.33 6.68 1.94 0.29 4.5 1.07

 1 0.25 6.91 2.03 0.22 4.6 1.12

 Avg 0.48 6.48 1.89 0.42 4.33 1.05

Overall Avg 0.49 32.59 9.51 0.34 23.22 4.55

4

As expected, the results in Table 1 indicate that

increasing the number of message bits from 4 to 6 per

CU64x64 results in higher average message bitrate. Namely;

the averages reported in the Table are 23.2Kbit/s and

32.6Kbit/s for 4 and 6 message bits per CU64x64 respectively.

As a consequence, the average bitrate of modified partitions

increased from 4.6Kbit/s to 9.5Kbit/s and the average PSNR

loss increased from 0.34dB to 0.49dB. There are other

observations that can be made from the presented results, for

example the order of test videos are presented in descending

spatial resolution order, therefore, the average message

payload ranges from 54.6 Kbit/s to 6.5 Kbit/s. Likewise, it is

shown that data embedding at low bitrates for each video

sequence, results in higher distortion as indicated by the

PSNR loss. Lastly, the message payload increases as the

video compression bitrate increases for each sequence. This

is so, because the percentage of skipped CUs decreases

accordingly and therefore more CUs are available for data

embedding.

In Table 2, we compare this work against the work

reported in [16] and [17]. On average, 4 partitions per

CU64x64 are modified in the reviewed work for the

embedding of 4 message bits. Therefore, in Table 2, we

compare the results of our 4 message bits per CU64x64

solution with the existing work as both have the same

message embedding rate. The results in the table indicate

that the average bitrate of the modified CU64x64 partitions

using the proposed solution is around one fourth of that of

the reviewed work [17], namely, the bitrates are 4.6 Kbit/s

and 22.9 Kbit/s respectively. This is so, as in the proposed

solution a maximum of one partition is modified for the

purpose of embedding 4 message bits as explained in

Section 3.

The fact that the modified CU64x64 partitions are less,

the PSNR loss caused by the proposed solution is 0.34 dB

whereas that of the reviewed solution is 0.47 dB. These two

conclusions are consistent for each and every test video

sequence.

Lastly, the work reported in [16] achieves a high

message embedding rate of 80.1Kbit/s, however, as

expected, this comes at a high cost in terms of quality

degradation. As a result, the average drop in PSNR is

around 2dB. The highest drop in PSNR was reported for the

Tennis sequence which is 3.8 dB and the lowest drop

reported was for the Basketball Drill sequence which is 1 dB.

Therefore, increasing the message payload in HEVC video

by altering coding modes is not desirable. The proposed

solution on the other hand, presents a balanced trade-off

between message payload and quality degradation.

In Table 3 we present the percentage of excessive

bitrate as a result of data embedding. The excessive bitrate

is computed in comparison to regular encoding without data

embedding. Namely, the bitrate resulting from data

embedding is subtracted from that of regular encoding, and

the difference is divided by the bitrate of the latter.

To compute the excessive bitrate, Variable Bit Rate

(VBR) coding is required. This is achieved by fixing the

quantization scale/parameter (QP). In HEVC coding, it is

custom to use the following QP values in VBR testing; 22,

27, 32 and 37, therefore we use these QP values in the

results presented in Table 3. We also compare the excessive

bitrate of the proposed solution against that in [17].

Table 2 Comparison with existing work with CBR coding.

 Reviewed [17] Reviewed [16] Proposed 4 bits in 15 partitions

 Bitrate

Mbit/s

PSNR

loss dB

Msg

Kbit/s

Modified

Partitions

 Kbit/s

PSNR

loss dB

Msg

Kbit/s

PSNR

loss dB

Msg

Kbit/s

Modified

partitions

Kbit/s

Tennis 0.5 1.45 34.6 27.4 8.21 146.3 1.5 34.6 6.84

 1 0.76 37.3 37.5 5.44 147.2 0.82 37.3 7.75

 5 0.23 48.1 48.1 0.95 188.2 0.19 48.1 10.22

 10 0.13 48.9 50.7 0.51 223.2 0.11 48.9 10.46

 Avg 0.64 42.23 40.93 3.78 176.23 0.52 42.23 7.13

Four 0.5 0.5 19.1 19.1 4.78 61.9 0.47 19.1 4.72

People 1 0.33 22.3 22.3 1.26 66.6 0.26 22.3 5.48

 5 0.1 35.1 35.1 0.22 94.8 0.08 35.1 8.36

 10 0.09 43 42.7 0.18 116.1 0.07 43 10.12

 Avg 0.26 29.88 29.8 1.61 84.85 0.22 29.88 7.17

Basket 0.5 0.6 13.5 13.5 1.65 30.1 0.52 13.5 3.2

ball 1 0.48 15.4 15.1 1.09 38.5 0.35 15.1 3.5

Drill 5 0.36 18.3 18.3 0.71 59.2 0.18 18.3 4.3

 10 0.2 18.6 18.6 0.55 69.9 0.1 18.6 4.4

 Avg 0.41 16.45 16.38 1.00 49.43 0.22 16.45 2.86

 0.1 0.7 3.9 3.9 2.25 7.8 0.74 3.9 0.96

Basket 0.5 0.54 4.5 4.5 0.95 13.9 0.29 4.5 1.07

ball 1 0.47 4.6 4.6 0.76 17.1 0.22 4.6 1.12

Pass Avg 0.57 4.33 4.33 1.32 12.93 0.42 4.33 1.05

Overall Avg 0.47 23.22 22.86 1.93 80.86 0.34 23.22 4.55

5

Table 3 shows that the proposed solution has a lower

average excessive bitrate in comparison to the reviewed

work. The average is lower for each and every test sequence,

the overall averages of the proposed solution and the

reviewed work are 9.5% and 11.5% respectively.

It is also shown in the table that the excessive bitrate

increases as the QP increases. This is an expected result, as

increasing the QP in regular HEVC encoding, a higher

percentage of CUs are skipped as more DCT coefficients are

quantized to zero. With data embedding on the other hand,

the structure of CUs is altered by modifying the split

decisions, this results in sub-optimal interframe prediction

and therefore a reduction in the percentage of skipped CUs.

Table 3 Comparison with existing work with VBR coding.

Reviewed

[17]

Proposed

work

QP
Excessive

 bitrate Kbit/s

(%)

Excessive

 bitrate Kbit/s

(%)

Tennis 22 7.4 5.5

 27 10.3 8.7

 32 14.5 14.1

 37 21.2 21.8

 Avg 13.4 12.5

FourPeople 0.5 7.0 5.9

 1 11.2 9.4

 5 15.1 14.5

 10 20.6 21.3

 Avg 13.5 12.8

Basketball 0.5 7.2 3.5

Drill 1 9.2 5.4

 5 11.2 8.5

 10 14.3 13.5

 Avg 10.5 7.7

Basketball 0.1 5.3 2.1

Pass 0.5 7.4 3.2

 1 9.6 5.5

 12.4 9.3

 Avg 8.7 5.0

Overall Avg 11.5 9.5

 In Table 4, we present subjective quality assessment

results of the proposed solution using the Double-Stimulus

Impairment Scale (DSIS) recommended by ITU-R BT.500-

11 [20]. Constant bitrate video coding is used with the same

compression parameters used to generate the results of

Tables 1 and 2 above. In this experiment, 15 subjects are

presented with a reference video followed by a video with

embedded data without repetition. The average age of the

subjects is 23.7 years with a range of 18-45. Since eye stress

might bias the results, the presentation order of video

sequences is randomized for different subjects. After

watching each pair of videos, subjects use a discrete scale of

1 to 5 to score the results. The grading scales from 1 to 5 are:

“very annoying”, “annoying”, “slightly annoying”,

“perceptible but not annoying” and “imperceptible”

respectively.

Table 4 Statistics of objective scores.

Proposed 4 bits in 15 partitions

 Bitrate MOS

 (out of 5)
Stdev

Mbit/s

Tennis 0.5 2.75 1.43

 1 3.58 0.93

 5 4.67 0.74

 10 4.67 0.57

 Avg 3.92 0.92

Four 0.5 3.83 0.88

People 1 4.58 0.61

 5 4.75 0.70

 10 4.83 0.44

 Avg 4.50 0.66

Basketball 0.5 3.42 1.37

Drill 1 4.17 1.02

5 4.42 0.80

 10 4.67 0.57

 Avg 4.17 0.94

 0.1 3.50 1.65

Basketball 0.5 4.33 0.80

Pass 1 4.42 0.80

Avg 4.08 1.08

Overall 4.17 0.89

Overall, the average Mean Objective Scores (MOS)

for all video sequences at the presented bitrates is 4.17 out

of 5 with a standard deviation of 0.89. The results indicate

that as the bitrate and quality of the video increase, the mean

subjective scores increase as well. At the same time, the

standard deviation of the objective scores decrease. This

means that data embedding at higher bitrates is less

detectable. The results also show that on average, the

smallest standard deviation is associated with the highest

MOS, which belongs to the FourPeople sequence in this

experiment.

5. Conclusion

A data embedding solution was proposed for coded

HEVC videos. It was proposed to modify the CU64x64

partitioning flags to hide message bits. The message is first

divided into segments and each segment is embedded in the

partitioning flags such that a maximum of one partition per

message segment is modified.

We experimented with message segments of lengths

3 and 4. In the experimental results section, such segment

6

lengths were shown to generate a good trade-off between

message payload and video distortions. With message

segment lengths of 3 and 4, six and four message bits can be

embedded per CU64x64 respectively. As a result, using four

video sequences with different resolutions, the average

message payload rates were 32.6Kbit/s and 23.2Kbit/s

respectively.

The corresponding average losses in PSNR were

0.49dB and 0.34dB respectively. Therefore, increasing the

message segment length reduces both the message payload

and the overall video distortion. Subjective video testing

revealed that the average MOS for all video sequences at

various bitrates is 4.17 out of 5 with a standard deviation of

0.89. Comparison with existing work revealed that the

proposed solution results in less video distortion in terms of

PSNR and excessive bitrate. Yet the proposed solution

provided a reasonable balance between message payload

and video distortion.

6. References

[1] Tian, L., Zheng, N., Xue, J., Li, C., Wang, X.: ‘An

integrated visual saliency-based watermarking approach

for synchronous image authentication and copyright

protection’, Signal Processing: Image Communication,

October 2011, 26(8-9), pp. 427-437

[2] Chang, F.C., Huang, H.C., Hang, H.M.: ‘Layered

access control schemes on watermarked scalable media’,

Journal of VLSI Signal Processing, 2007, 49(2007), pp.

443–455

[3] Su, P.C., Wu, C.-S., Chen, I.-F., Wu, C.-Y., Wu, Y.-C.:

‘A practical design of digital video watermarking in

H.264/AVC for content authentication’, Signal

Processing: Image Communication, October, 2011,

26(8-9), pp. 413-426

[4] Emmanuel, S., Vinod, A., Rajan, D., Heng, C.K.: ‘An

Authentication Watermarking Scheme with Transaction

Tracking Enabled’, Proc. Digital EcoSystems and

Technologies Conference, Inaugural, February, 2007

[5] Kapotas, S., Skodras, A.: ‘A new data hiding scheme

for scene change detection in H.264 encoded video

sequences’, Proc. IEEE International Conference on

Multimedia and Expo, Hannover, Germany, June 2008,

pp.277-280

[6] Yilmaz, A. Aydin, A.: ‘Error detection and concealment

for video transmission using information hiding’, Signal

Processing: Image Communication, April 2008, 23(4),

pp. 298-312

[7] Xu, D., Wang, R., Shi, Y.Q.: ‘Data Hiding in Encrypted

H.264/AVC Video Streams by Codeword Substitution’,

IEEE Transactions on Information Forensics and

Security, April 2014, 9(4), pp. 596-606

[8] Shanableh, T.: ‘Matrix encoding for data hiding using

multilayer video coding and transcoding solutions’,

Signal Processing: Image Communication, Elsevier,

October, 2012, 27(9), pp. 1025-1034

[9] Shanableh, T.: ‘Data Hiding in MPEG Video Files

Using Multivariate Regression and Flexible

Macroblock Ordering’, IEEE Transactions on

Information Forensics and Security, April, 2012, 7(2),

pp.455-464

[10] T. Stütz, T., Autrusseau, F., Uhl, A.: ‘Non-Blind

Structure-Preserving Substitution Watermarking of

H.264/CAVLC Inter-Frames’, IEEE Transactions on

Multimedia, Aug. 2014, 16(5), pp. 1337-1349

[11] Cao, Y., Zhang, H., Zhao, X., Yu, H.: ‘Covert

Communication by Compressed Videos Exploiting the

Uncertainty of Motion Estimation’, IEEE

Communications Letters, February 2015, 19(2), pp.

203-206

[12] Wang, K., Zhao, H., Wang, H.: ‘Video Steganalysis

Against Motion Vector-Based Steganography by

Adding or Subtracting One Motion Vector Value’,

IEEE Transactions on Information Forensics and

Security, May 2014. 9(5), 741-751

[13] Tasdemir, K., Kurugollu, F., Sezer, S.: ‘Spatio-

Temporal Rich Model-Based Video Steganalysis on

Cross Sections of Motion Vector Planes’, IEEE

Transactions on Image Processing, July 2016, 25(7), pp.

3316-3328

[14] Hu, Y., Zhang, C., Su, Y.: ‘Information Hiding Based

on Intra Prediction Modes H.264/AVC’, Proc. IEEE

International Conference on Multimedia and Expo,

Beijing, China, July 2007, pp.1231-1234

[15] Yang, G., Li, J., He, Y., Kang, Z.: ‘An information

hiding algorithm based on intra-prediction modes and

matrix coding for H.264/AVC video stream’,

International Journal of Electronics and

Communications, April, 2011, (65)4, pp. 331-337

[16] Tew, Y., Wong, K.: ‘Information hiding in HEVC

standard using adaptive coding block size decision’,

Proc. IEEE International Conference on Image

Processing, Paris, France, October 2014, pp. 5502-5506

[17] Shanableh, T.,: ‘Altering Split Decisions of Coding

Units for Message Embedding in HEVC’, Multimedia

and applications, Springer, May 2017, 77(7), pp. 8939–

8953

[18] R. Crandall: ‘Some Notes on Steganography’, 1998,

http://dde.binghamton.edu/download/Crandall_matrix.p

df, accessed 20 February 2019

[19] Kim, I.-K., McCann, K., Sugimoto, K., Bross, B., Han,

W.-J., Sullivan, G.: ‘High Efficiency Video Coding

(HEVC) Test Model 13 (HM13) Encoder Description’,

Document: JCTVC-O1002, Joint Collaborative Team

on Video Coding (JCT-VC) of ITU-T SG16 WP3 and

ISO/IEC JTC1/SC29/WG11, 15th Meeting: Geneva,

CH, 23 Oct. – 1 November 2013

[20] ‘Methodology for the Subjective Assessment of the

Quality of TV Pictures’, Recommendation ITU-R

BT.500-11, January 2002

Tamer Shanableh received his Ph.D. in Electronic

Systems Engineering in 2002 from the University of Essex,

UK. From 1998 to 2001, he was a senior research officer at

the University of Essex, during which, he collaborated with

BTexact on inventing video transcoders. He joined Motorola

UK Research Labs in 2001. During his affiliation with

Motorola, he contributed to establishing a new profile within

the ISO/IEC MPEG-4 known as the Error Resilient Simple

Scalable Profile. He joined the American University of

Sharjah in 2002 and is currently a professor of computer

science. Dr. Shanableh spent the summers of 2003, 2004,

2006, 2007 and 2008 as a visiting professor at Motorola

multimedia Labs. He spent the spring semester of 2012 as a

visiting academic at the Multimedia and Computer Vision

and Lab at the School of Electronic Engineering and

http://dde.binghamton.edu/download/Crandall_matrix.pdf
http://dde.binghamton.edu/download/Crandall_matrix.pdf

7

Computer Science, Queen Mary, University of London,

London, U.K . His research interests include digital video

processing and pattern recognition.

