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Abstract

One of the most important and useful tools used in the studyacfial differential
equations is the maximum principle. This principle is a naltextension to higher di-
mensions of an elementary fact of calculus: any functionclvkatisfies the inequality
f” > 0 on an interval [a,b], achieves its maximum at one of the emip®f the in-
terval. In this context, we say that the solution to the défeial inequalityf” > 0
satisfies a maximum principle. In this thesis we will discties maximum principles
for partial differential equations and their applicatiomMdore precisely, we will show
how one may employ the maximum principles to obtain infororaabout uniqueness,
approximation, boundedness, convexity, symmetry or asgticgoehavior of solutions,
without any explicit knowledge of the solutions themselvé&se thesis will be orga-
nized in two main parts. The purpose of the first part is toflyriatroduce in Chapter
1 the terminology and the main tools to be used throughostttigsis. We will start
by introducing the second order linear differential opersitof elliptic and parabolic
type. Then, we will develop the first and second maximum [pies of E. Hopf for
elliptic equations, respectively the maximum principlés.oNirenberg and A. Fried-
man for parabolic equations. Next, in the second part, nameChapter 2 and 3, we
will introduce variousP-functions, which are nothing else than appropriate fumati
combinations of the solutions and their derivatives, anivdenew maximum princi-
ples for such functionals. Moreover, we will show how to eayhese new maximum
principles to get isoperimetric inequalities, symmetrgulés and convexity results in
the elliptic case (Chapter 2), respectively spatial andotanal asymptotic behavior of
solutions, in the parabolic case (Chapter 3).

Search TermsMaximum principles, isoperimetric inequalities, overtetined prob-
lems, symmetry, convexity, time decay estimates, spatiehy estimates.



Table of Contents

F Y o 1Y 1 = (o1 TP 3]

Chapter 1:  Maximum PriNCIPIES .........uviiiiiiiieiie s 9

1.1 Second Order Linear Differential Operators . . . . ... ...... .. 9
1.2 Maximum Principles for Elliptic Operators . . . . . . . . . .. ... 11
1.3 Maximum Principles for Parabolic Operators . . . ... . ...... . 20

Chapter 2:  Applications to the Elliptic Case ........cccceeevvvevveeeveiiiiiiieeeeen 29

2.1 A Standard Problem: The Torsion Problem . . . . . ... ... ..... 29

2.1.1 P-functions with maximumo®$2. . ... ... .. ...... 29
2.1.2 P-functions with minimumor®Q. . . . . . . ... .. .. ... 34
2.1.3 P-functions with maximum at a critical pointef . . . .. .. 35
2.2 Some Extensions to Nonlinear Problems . . . ... ... ... ...38
2.2.1 P-functions with maximumo®$. . ... ... ........ 38
2.2.2 P-functions with maximum at a critical pointef . . . .. .. 42

Chapter 3: Applications to the Parabolic Case. ... eeeeeeeeeeiiiiiiiiieiiiiiieinnnnn. 45

3.1 P-functions with Maximumat=0 . . ... .. ... ... ...... 45

3.2 P-functions with Maximumord . . . . ... ... ... ... .... 51
Chapter 4:  CONCIUSION ........uuiiie e e e 56
=] (=] 0= o = 57
R €= T 59



Fig.
Fig.
Fig.
Fig.
Fig.

1.1:
1.2:
1.3:
1.4:
1.5:

LIST OF FIGURES

The weak maximum principle . . . . . ... ... ... .... 13
Hopf'slemmaforballs . . ... ... ... ... ........ 16
Hopf’s first maximum principle . . . . . . ... .. ... ... 18
Hopfslemma . . . ... .. ... ... ... . ......... 20
Friedman's maximum principle . . . . . . . .. .. ... ... 26



Chapter 1: Maximum Principles

One of the most important and useful tools used in the stughadfal differential
equations is the maximum principle. This principle is a natextension to higher di-
mensions of an elementary fact of calculus: any functionclvbatisfies the inequality
/" > 0 on an intervala, b], achieves its maximum at one of the endpoints of the in-
terval, unless it is identically constant. In this contexg say that the solution to the
differential inequalityf” > 0 satisfy a maximum principle. In the more general context
of the partial differential equations of elliptic and paoéb type, a similar idea applies
and the aim of this chapter is to present such extensionsne general classes of
second order elliptic and parabolic problems.

1.1 Second Order Linear Differential Operators

Let Q2 be a non-empty open bounded sefdf, N > 2.

Definition 1.1. We say that the operatdr, defined as
Lu(x) == a;j(x)uij + b (x)u,; + c(x)u, u € C*(Q), x € Q, (1.1)
is alinear partial differential operator of order 2In (1.1), the coefficients
a=(a;):Q=RY  b=(b):Q=RY, ¢:Q-RY, (1.2

are given measurable functions. Moreover, without losseofegality, we may assume
thata = (a;;) is @ symmetric matrix, since:;; = v j;, SO that we can write,;;ju ;; =

% (a;j + aj;) u,j, if necessary. Finally, iil.1) and throughout this thesis, we will make
use of the following notations

ou ' J*u

aﬂfi7 o 8.’172‘837]‘7

(1.3)

U; -

and summation from to NV is understood on repeated indices. Using these notations
we have, for instance,

N N

0?u  Ou Ou
i ' 14
Uij Uit ;;8%3%’ Ox; Ox; o

Definition 1.2. We say that the operatdr, defined in(1.1), is:




(i) elliptic at x € €, if there exists a numbeX(x) > 0 such that
aiy(x)6€; > A(x) €], forall € € RY; (1.5)

(ii) elliptic in €2, if L is elliptic at everyx € €);

(i) uniformly elliptic in€2, if L is elliptic in 2 and there exists a constaxt > 0,
such that\(x) > A, for all x € Q. The largest suchy is calledthe uniform modulus
of ellipticity of L.

Now, letu(x, t) € C? (27), with Qr := Q x (0, T], whereT is a positive constant.
Let us define the second order partial differential operator

Lu(x,t) := ayi(x,t)u; + Bi(x,tu; +v(x,t)u, (x,t) € Qr, (1.6)
where the coefficients
o = (Oél'j) : QT — RN2, ﬁ = (ﬁz) : QT — RN, v QT — RN, (17)

are given measurable functions. As before, without any ¢bggenerality, we assume
that the matrixx = («;;) is symmetric. Next, let us define the operator

Lu(x,t) := (Z — %) u(x,t) = Lu(x,t) —u(x,t). (1.8)

Definition 1.3. We say that the operatdf, defined in(1.8), is:

(i) parabolic at(x,t) € Qr, if there exists a number(x,t) > 0 such that
aij(x,)&6&; > p(x.t) [¢°, forall ¢ € RY; (1.9)

(i) parabolic inQr, if £ is parabolic at everyx,t) € Qr ;

(i) uniformly parabolic in Qr, if £ is parabolic inQ2; and there exists a constant
o > 0 such thatu(x,t) > uo, for all (x,t) € Qr. The largest suchy, is calledthe
uniform modulus of parabolicity of .

Example 1.4.

(i) The Laplace operatolu(x) :=Au(x) is uniformly ellipticin eachQ) C RY,
with uniform modulus of ellipticity\, = 1.

(i) The heat operatofu(x,t) := Au — u, is uniformly parabolicin eachQ; C
RN x (0, 7], with uniform modulus of parabolicity,, = 1.
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1.2 Maximum Principles for Elliptic Operators

In this section we consider the operafgrdefined in(1.1), with ¢(x) < 0, for all
x € Q. Moreover, we assume that the coefficienigx), b;(x) andc(x) are bounded
measurable functions ardis uniformly elliptic, with modulus of ellipticity\, > 0.

Definition 1.5. We say that, € C%(Q) is:

(i) a sub-solution relative td, and (2, if Lu(x) > 0in Q;

(i) a super-solution relative td and (2, if Lu(x) < 0 in €;

(iii) a solution relative taL and €2, if Lu(x) = 0in €.

In most of the applications it is sufficient to apply the feliog weak form of the
maximum principle, known in the litterature as tiveak maximum principle

Theorem 1.6.

Letu € C(Q2) N C%*(Q) be a sub-solution relative th and 2.

(i) If c(x) = 0, then

mﬁaxu(x) = I%%Xu(x). (1.10)
(i) If c(x) <0, then
maxu(x) < maxu’(x), (1.11)
Q o0

whereu™ (x) = max {u(x),0} .

Proof.

(i) For an arbitrary: > 0 and a constant to be chosen later, we define

v(x) == u(x) + e, forall x = (z1,...,zy) € Q, (1.12)

Then
Lv(x) = L(u(x)+ee*) = Lu(x)+ L (e*)

> as{an(x)a+bi(x)} e (1.13)

> ae <)\0a — sup |b1|) e > 0, forall x € 2,
Q

. 1 . .
if we chosex > 1 Sup |b1| . Therefore, with such a choice far, we have
00

Lv(x) > 0, forallx € . (1.14)

11



On the other hand, sineec C (Q) and(2 is a compact set iir", thenv takes its
maximum at some point, € Q. In what follows we will show that, in facts, ¢ €2, so
thatx, € 0f). To this end, we assume contrariwise tkgte 2. Then, at this point of
maximum we have

vi(x0)=0,i=1,..., N, (1.15)

and the hessian matrik (xo) := (v,;(x0)) < 0 (that is, H(x,) is a negative semi-
definite matrix).

Now, sinceA(xy) = (a;;(x0)) is symmetric and positive semi-definite, then there
exists an orthogonal matriX = (r;;), such that

RA(XQ)Rt = dlag (dl, ceny dN) s RRt =1. (116)

By the hypothesis of ellipticity, we also havg > 0, j = 1,...,N. Let us denote
y = Rx and compute

U (X) = 0 (¥) Yii (X) = 0k (Y) This (1.17)

V5 (X) = v (¥) Thatt;- (1.18)

Then

a,ij(%X0)v,5(x0) = a;j(%x0)v i (yo) Teiryy = (RA (%0) RY),,; vit (o)

N (1.19)
= 2 dv; (o),
7=1
so that
Lv(x¢) = djv j; (yo) + b; (%0) v (x0) <0, (1.20)
contradicting thug1.14). Thereforep(x) takes its maximum of$2, so
maxv(x) = maxv(x). (1.21)
Q o
Lettinge — 0, we obtain
maxu(x) = maxu(x), (1.22)
Q o0
and the proof of (i) is thus achieved.
(i) Let
O ={xeQ:u(x)>0}. (1.23)

12



Clearly, Q2 is an open set (since(x) is continuous). We will analyze separately the
following two possible cases:

1) Q" = () : In this casenaxu(x) < 0 and the theorem is true.
Q
2) Q0 + 0 : In this case, we define a new operaigras follows
Lu = Lu — cu. (1.24)

Since L is uniformly elliptic in €2, then L is also uniformly elliptic in<2. Moreover,
Lu > 0, in QF. Using now (i), we obtain

u(xp) = maxu(x) > 0. (1.26)
O+

Fig. 1.1: The weak maximum principle

If xo € Q2 (see Fig. 1.1) we get a contradiction. Indeedkfe (2, the continuity ofu

implies thatu(x) > 0 in B(xo, p), for ap > 0. On the other handB(x,, p) contains
points inO\ Q" because, € 90", andu(x) < 0 at such points. Thereforey € 00

and the proof is thus achieved.

Remark 1.7.
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() If uw € C(Q) N C?() is a super-solution relative tb andS?, then—u € C(2) N
C?(Q) is a sub-solution relative tb and2. Applying Theorem 1.6 (ii) to-u, we obtain

max (—u(x)) < max (—u(x))", (1.27)
where
(—u)" (x) = max {—u(x),0} = —min {u(x),0} =: —u"(x). (1.28)
Therefore
mﬁax(—u(x)) < I%%X(—u* (x)), (1.29)
which is equivalent to
minu(x) > minu~ (x). (1.30)
Q o0

(i) If v € C(Q) N C%(Q) is a solution relative td. and(?, then

inu~(x) < < + Q
minu (x) <u(x) < maxu (x), forallx € 2. (1.31)

(i) The Dirichlet problem forL in a bounded domaif consists in finding: €
C(Q) N C%(Q) such that
Lu(x) = f(x) in 2,
(x) = f(x) (1.32)
u(x) = g(x) onos.

wheref andg are given functions. This problem can have at most one solulndeed,
if we apply the weak maximum principle to the difference= u; — uy (Where we
assume that, u, are two possible solution), then we obtain that) = 0, in Q.

Despite the fact that the use of the weak maximum principkufficient in some
applications, sometimes it is necessary to have a strooger, fvhich eliminates the
possibility of having a non-trivial maximum in an interiooipt of the domain. In what
follows we will obtain such a stronger result making use doaindary point lemma
obtained by E. Hopf [12], which is equally useful in some agations.

14



Lemma 1.8. (Hopf's lemma for balls)

Assume thaB C Q is a ball andu € C*(B) N C?(B) is a sub-solution relative to
L and B. Assume also that there exists a pqwé& 0B such that

u(x) < u(p), forallx € B, (1.33)

with u(p) > 0, if ¢(x) # 0. Then,

ou

om

(p) >0, (1.34)

whenever this directional derivative exists. In (1.34h)js an outward unit vector abp
(m - n > 0 and|m| = 1, wheren denotes the outward unit normal pte 0B).

Proof.

Asin Fig. 1.2., let us define

B := B(q, p), (1.35)
A= B(q, p)\B(q, %p), (1.36)

and
M := u(p) = supu(x). (1.37)

Next, we define o the following function
v(x) =4 (e_a’"Q — e_ap2> , ri=|x—q, (1.38)

whered anda are two positive constants to be chosen later. We thus ntitade <
C?*(A) and

v(p) =0, (1.39)
ov dv
On the other hand, with
(e"”2> = e’mz(—a)Q(a:i —q), (1.412)
(e"”2> y — o’ {4042(3% —qi)(xj —qj) — 2a5ij} , (1.42)



m

B{q.p)

Fig. 1.2: Hopf's lemma for balls

we obtain

1oo(x) = e {doPag(x) (i — )z — 4;) — 2005(x)

0 (1.43)
~20b;(x)(x; = )} + cl) {7 — e}

SinceL is uniformly elliptic in 2, with modulus of ellipticity)\y, we have

1 2
~Lv(x) > e {4a2>\0r2 — 2asup (|aj;| + |b] p) — sup |c|}
0 A 4 (1.44)

> 0, forallx € A,

. - 1\° .
if we choosex sufficiently large, becausé > (5/)) . Let’s fix such a value ofr and

define
w(x) == u(x) +v(x), forallx € A. (1.45)

Then
Lw(x) = Lu(x) + Lv(x) > 0, forall x € A, (1.46)

16



so that the weak maximum principle implies

maxw = maxw. (2.47)
1 DA

Next, we will analyze the following two cases:

1) r = p : In this case, we have(x) < M andv(x) = 0. Thereforeu(x) +v(x) <
M, with equality atx = p.

2)r = %p : In this case, we have(x) < M, by (1.33). If we denote byM — 5

the maximum ofu(x) for r = %p (since the supremum of a continuous function on a
compact set is always attained), theén> 0. On the other hand, choosirdg= 3, we
havev(x) < 3. Thereforeu + v < M in this case.

In conclusion,

max (u+v) (x) = max (u+v)(x) =M. (1.48)

: 1 :
Finally, for0 < ¢ < 5P and for an unit outward vectan, we have

wlp) —wlp —tm) M —wlp—tm) (1.49)
t t - |

by (1.39) and(1.49). Therefore,

i igpdP) —ulp —tm) {w(p) —w(p—tm)  v(p) —v(p —tm) }

t\O t t\0 t t
> liminf —v(p) +v(p — tm)
t\0 t
Oov
= —— >0
5 P) > 0

(1.50)
by (1.18), and the proof is thus achieved.

The above Hopf’'s lemma is the main tool in the proof of thedwiing strong max-
imum principle also known in the literature a$opf’s first maximum principte
Theorem 1.9. (E. Hopf [11], 1927)

Assume thaf) is connected (possibly unbounded!) amd= C(Q) N C?(Q) is a
sub-solution relative td. and Q. Assume also thatupu(x) > 0, if c(x) # 0. If the

Q
supremum of(x) is attained at some interior point d2, thenu(x) = const. inf).

17



Proof.

Let M :=supu(x) and assume that the supremum is attainesat (). Let us
Q
define

F={xeQ:ulx)=M}, (1.51)
G={xeQ:ulx)<M}. (1.52)

Then, clearlyF' is closed (because(x) is continuous) and non-empty (becausec
F), andG is open (because(x) is continuous). We will analyse the following two
possible cases:

1) G = @ : Inthis case, the theorem is true.

2) G # @ :In this case( contains at least one point, let's say € G. Using
Theorem 1.6 we will show that this is impossible.

First of all, since? ¢ R" is a domain (open and connected set), then G is connected
by arcs. Therefore, there exists a continuous arc

v7:={L{): 0<t <1} CQ, £(0) =x%, {(1) =xy, (1.53)
asin Fig. 1.3. Here§ € C([0, 1] ,R™), so+ is compact. If2 has a boundary, then
dist(vy,00) > 0, (1.54)

sinced(} is closed inRY andoQ N~ = (.

Fig. 1.3: Hopf’s first maximum principle

18



Let x, be the first point ofy, in F, while the curvey is traversed fronk, to x;, the
point whereu(x) attains its maximum\/. Possiblyx, = x;. Let q be a point ofy
located betweer, andx,, such thalq — x,| < dist(, 09), if 2 has a boundary. We
consider the balB := B(q, p), with p := dist(q, F'). Then

p < |q—xo| < dist(ry,00), (1.55)

so B C €. Also, by constructionB C G. SinceF' is closed, then there exists a point
p € FNoB (possiblyp = x5). Applying now Hopf's lemma, we have

2 (p) = n- (Vu)(p) > 0. (1.56)

On the other hand, singe € F, thenp is an interior point of maximum fou €
CL(Q2). Therefore,Vu(p) = 0, so that we get a contradiction and the proof of the
theorem is thus achieved]

To stateHopf’s lemma also known in the literature adopf’'s second maximum
principle, we need the following definition:

Definition 1.10. A set() has the interior ball property at some poipt € 02, if
there exists a balB, C €2 such thap € 0B, (see Fig. 1.4).

Theorem 1.11. (E. Hopf [12], 1952)

Assume that € C''(2) N C?%(Q) is a sub-solution relative td and(2. Assume also
that there exists a poim € 02, such that

u(x) < u(p), forall x € Q, (1.57)

with u(p) > 0, if ¢(x) # 0, and2 has the interior ball property ap. Let m an unit
outward vector ap. Then, either

u
— 0 1.58
5m P) > 0 (1.58)
whenever this directional derivative existg,u(x) = const. inf.

Proof.

19



Fig. 1.4: Hopf’'s lemma

Let B, be the ball inQ2 such thatp € 09, x, is the center of the balB, and
po := |p — x| is the radius of the ball, that By = B(xy, po). Let us consider another
ball, smaller tharB, and located insid#,, defined as

1 . 1
B := B(q, 500)7 with q := 5(10 + Xo). (1.59)

SinceB C By U {p},we haveB C QU {p}, sou € C(B). If u(x) < u(p), for all

x € B, Hopf’s lemma for balls implie$1.58). If u(x;) = u(p) for ax; € B, then

u(x1) = supu(x) and the strong maximum principles implies thak) = const. in Q.
Q

The proof is thus achieved]

1.3 Maximum Principles for Parabolic Operators

In this section we will consider the operatérdefined in(1.8), with v(x,t) < 0in
Q7. We also assume that the coefficientgx, t), 5,(x, t) andy(x, t) are bounded mea-
surable functions and is an uniformly parabolic operator, with constant of paitaddy
1o > 0. Moreover, let us denote dy; := Q7 \ Q7 the parabolic boundary of2;.

Definition 1.12. We say that. € C?*(Q7) is:

20



(i) a sub-solution relative t&€ and Qp, if £Lu(x,t) > 0 in Qr;

(i) a super-solution relative t& and Qr, if Lu(x,t) <0 in Qrp;

(iii) a solution relative ta£ andQy, if £u(x,t) =0 in Q.

Similarly to the elliptic case, in some applications it i§f&ient to use the following
weak form of the maximum principle. This result is known ie thierature ashe weak
maximum principéor parabolic operators.

Theorem 1.13.

Letu € C(Qr) N C?(Qr) a sub-solution relative ta& and Q7.

() If v(x,t) =0 inQp, then

maxu(x,t) = maxu(x,t). (1.60)

Qr I'r

(i) If v(x,t) <0 in Qr, then

maxu(x, t) = maxu’ (x, t), (1.61)
ﬁT FT

with ™ (x,t) := max {u(x,t),0} .
Proof

(i) Let e > 0 be an arbitrary constant. We define the following function
v(x,t) == u(x,t) +et, forall (x,t) € Qr, (1.62)
Then
£u(x,t) = Lu(x,t) +¢ >0, forall (x,t) € Qr. (1.63)

We assume that the maximumuwe(x, t) on Q0 is attained at some poilik,, o) €
Qr. We will show that this fact leads us to a contradiction, sd,tim fact, the maximum
of v(x, t) is attained ori’;. We analyse the following two possible cases:

1)ty € (0,7) : In this case(xq, ty) € S is an interior point of maximum. There-
fore,
’th(XQ, t(]) =0. (164)

On the other hand, if we proceed exactly as in the proof of Téradl.6, then we can
show thatLv(xg, ty) < 0, SO

£0(x0,t0) = Lv(xo, to) — v4(Xo,t0) <0, (1.65)

21



which contradictg1.63).

2)to = T : In this case, as the maximum ofx, t) over )y is attained atxy, t()
then
Ut (Xo, to) > 0. (166)

On the other hand, the inequalify(xo, o) < 0 remains true in this case. Therefore,
we obtain a contradiction as in the previous case.
In conclusion

maxv(x,t) = maxv(x, t). (1.67)
QT Ir
Lettinge — 0, we obtain
maxu(X,t) = maxu(x,t), (1.68)
QT FT

which achieves the proof of (i).

(i) Assume that the positive maximum efx, t) overQ; is attained at some point
in Q7. Then the function(x, t), defined in(1.62), also attains a positive maximum at
some point i)y, let’s say(xo, to) , if € > 0 is sufficiently small. Since(x,t,) > 0
and~y(xo, tg) > 0, then

£v(xg,t9) >0 (1.69)

which contradict$1.63). In conclusion,

maxu(x, ) = maxu’ (x, 1), (1.70)

QT FT
and this achieves the proof of the theoreém.

To prove a strong maximum principle we need a result knowménliterature as
Harnack’s inequality which states that ifi(x, ¢) is a non-negative solution relative to
£ andQr, then the maximum of(x, ¢) at an interior point of a region can be estimated
by its minimum in the same region, but at a later time.

Theorem 1.14. (Harnack’s inequality)

Letu € C? (Q7) be a solution relative tof andQz, v > 0in Qr, and letU cc
be a connected set. Then, foralk ¢; < t, < T, there exists a constant such that

supu (-, t1) < Cill}fu(~,t2). (1.72)
U
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The constan€ depends only oY, t,, t, and the coefficients of.
Proof. See L.C. Evans [6], pp. 370-375l

Harnack’s inequality is the main tool in the proof of the siganaximum principle
which, as in the elliptic case, eliminates the possibilithaving a point of non-trivial
maximum at an interior point dl,. This result is known in the literature as tNeen-
berg’s maximum principte

Theorem 1.18. (L. Nirenberg [14], 1953)

Assume thaf is connected and € C7 (Q) N C (Qr) is a sub-solution relative to
£ and Q.
() If v(x) = 0in Qr andu attains its maximum at a poirko, o) € 2, then

u = const. in Q.

() If v(x) < 0in Q7 and u attains its non-negative maximum at some point
(x0,t0) € Qr, thenu = const. in €.

Proof.

(i) Assume that; attains its maximum at some poifx,, t,) € 27. We consider an
open seUU CC Q, with zy € U. Letwv be the solution of:

£v(x,t) =0, forall (x,t) € Ur,
(1.72)
v(x,t) =u(x,t), forall (x,t) € Ar,

whereA; := Uy — Ur denotes the parabolic boundaryof (see L.C. Evans [6] for
the existence of the solution). Then, the weak maximum ieémplies the following
inequality

u(x,t) <wv(x,t), forall (x,t) € Ur. (1.73)

Asu < v < M, with M := maxu (x, t), we deduce that (xo, tg) = M.
Qr
Next, we denote

w(x,t):=M —wv(x,t), forall (x,t) € Ur. (1.74)
Sincey (x,t) = 0, then we have

Lw (x,t) = Lw (x,t) — wy (x,t) =0, w(x,t) >0, forall (x,t) € Ur. (1.75)
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We chosel/ cc U, with 5 € V, V connected. Le0 < ¢ < t5. Then, Harnack’s
inequality implies
maxw (,t) < Cil‘}fw(-,to). (1.76)

But
il‘}fw(-, to) < w(xo,ty) = 0. (1.77)

Sincew(x,t) > 0 for all (x,t) € Ur, then

w(x,t) =0, forall (x,t) € V. (1.78)
But this is true for any sét’ chosen as above. Therefore,

w(x,t) =0, forall (x,t) € Uy, (1.79)
which is equivalent to

v(x,t) = M, forall (x,t) € Uy,. (1.80)
On the other hand, sinee(x, t) = u (x, t), for all (x,t) € Ar, we obtain

u(x,t) =M, forall (x,t) € OU x [0, to] . (1.81)

But this conclusion is true for any s€tchosen as above. Therefore,

u(x,t) = M, forall (x,t) € Uy,. (1.82)

(i) Let M := supu(x,t). Assume that\/ > 0 andu(x, t) attains this maximum at
Qr
(x0,t0) € Qr. We will analyse the following two possible cases:

1) If M =0 : In this case, we obtain as before

Lw (x,t) =0, w(x,t) >0, forall (x,t) € Ur. (1.83)

2) If M > 0 : In this case, we consider as before alget C 2, with x, € U. Let
v (x,t) the solution to the problem

Kv(x,t) —v; =0, forall (x,t) € Ur,
(1.84)
v(x,t) =ut(x,t), forall (x,t) € Ar,
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whereA, := Uy — Uy denotes the parabolic boundarylof and
Kv = Lv — . (1.85)
We note thad < v < M. Since
Ku(x,t) —us (x,t) = —yu (x,t) <0, forall (x,t) € U, (1.86)

whereU; = {(x,t) : u(x,t) > 0}, the weak maximum principle implies

u<w. (1.87)
The same approach as in (i) gives
v(zo,t0) = M. (1.88)
Now, we denote
w(x,t):=M —wv(x,t), forall (x,t) € Qrp. (1.89)

Since the operatak” doesn’t have zero order terms, then we have
Kw(x,t) —w; (x,t) =0, w(x,t) >0, forall (x,t) € Ur. (1.90)

Next, letV cc U, with xq € V, V connected, and < ¢ < t,. Harnack’s inequality
then implies
v(x,t)=ut (x,t) = M, forall OU x [0,1,]. (1.92)

SinceM > 0, we deduce that
u(x,t) =M, forall (x,t) € OV x [0, . (1.92)
But this conclusion is true for any sEtgiven as above. Therefore,
u(x,t) =M, forall (x,t) € Uy, (1.93)
and the proof of the theorem is thus achievied.

In what follows, we will formulate the counterpart in the gbolic case of the
Hopf’s second maximum principle, known in the literatureFaedman’s maximum
principle.
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Theorem 1.19. (A. Friedman [9], 1958)
Assume that € C*(Qr) N C%(Qyr) is a sub-solution relative td& and 2. Assume
also that there exists a poipt := (xo, ty) € I'r such that

u(x,t) < u(xg,to) =: M, forall (x,t) € Qr, (1.94)

with u(xg,%) > 0, if v(x,t) # 0. Moreover, assume thd& has the interior ball
property at xo. Letm be an unit outward vector tQ,, at (xo, to) . Then, either

0
6—;;(X0,t0) > 0, (195)

whenever this directional derivative exists,u(x, ¢) = const. in{)y.

Fig. 1.5: Friedman’s maximum principle

Proof.
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As in Fig. 1.5, letB be a ball of centefz, ty) and radius
p= |X1 - X0| ) (196)

which is tangent td); at (xo, ;). We will build a ball B; centered afx, t,) and of
radius smaller thap. Let us denote

S' = 9B, N By, (1.97)

S"=0BN By NQy,, (1.98)

and note that the surfaces, S” and {(x,t) € Qr : t =t} form the boundary of a
region D. Choosing the dislB to be small enough, if necessary, we can make M

onS"\ {p}.

Sinceu < M on S’ then we can establish the following three facts:

() u < MonS"\{p},

(i) u = M at(xo, to),

(iii) there existsy sufficiently small such that < M —nonS’.
Let us now define o the following function

v(x) = e — e = |(x, 1) — (x1,10)] (1.99)

where the positive constaatwill be chosen later. We thus note that C?(D) and

v(p) =0, (1.100)
2 ) = (m-m) % <o (1.101)

Making the computations as in the proof of Lemma 1.8, we obtai
Lo(x) > e " {4a2u0r2 — 2asup (|a;j| + |bj| p) + (t — to)} : (1.102)
D

Therefore,
Lu(x) >0, onD U D, (1.103)

if we choosex to be sufficiently large. Let us now fix such a valuexcind define

w(x) := u(x) + ev(x), forall (x,t) € D. (1.104)
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Then
Lw(x) = Lu(x) + eLv(x) > 0, forall (x,t) € D. (1.105)

On the other hand, by (iii) we can chossufficiently small such that

w< Mongs' (1.106)
Since
v=00n0B, (2.107)
we obtain, using (i), that
w < MonS"™ {p} (1.108)
and
w(p) = M. (1.109)

Now, we restrict our attention to the regiédhand we apply the weak maximum princi-
ple to conclude that the maximumfon D is attained at one single poipt Therefore

ow ou ov
- - — > (. 1.11
5 (p) 5 (p)+€a (p) >0 (1.110)
One the other hand,
ov ov 2
B — = . _— = — . —ap
5 (p)=m ne 2m - nape < 0. (1.111)

Therefore, we deduce that
ou

om

and the proof of the theorem is achievéed.

(p) >0, (1.112)

Remark 1.20.

The material in this chapter was inspired from the books & [Erankel [8], L.C.
Evans [6] and M.H. Protter-H.F. Weinberger [17]. We refez tbader to these books
for more detail on this topic and extension of these resoltsidre general nonlinear
operators.
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Chapter 2: Applications to the Elliptic Case

In the following two chapters we will develop some maximurmpiples for some
appropriate functionals involving the solution of somelgeons and their derivatives.
Such functionals are usually called in the literaturePainctions due to L.E. Payne,
who had a lot of contributions in this direction in the '70de@@se see the book of R.
Sperb [20] on this topic and the references therein).

For the sake of simplicity, we will start this chapter with tarsdard problem, to
better understand the main ideas.

2.1 A Standard Problem: The Torsion Problem

Let 2 C R be a bounded domain, with2 € C%< andu € C3(Q) N C?(Q) be the
solution of thetorsion problem:

Au=—1in(Q,
(2.1)
u = 0on 0N.

From Hopf's maximum principles, we immediately notice that- 0 in andg—z =
—|Vu| < 0 on o). However, our goal here is to rather build some new maximum
principles for P-functions and use these new maximum principles to getestiry
results in applications.

2.1.1 P-functions with maximum on 0f2. Let us first consider the following
P-function

2
PW = |Vul|? +

If we differentiate successivel.2), we get
P — 9y ikuﬁrzuk (2.3)
'k 9 9 N Ky
APW = 2uu,4+2(Au), uy + 2 Au
9 2 (2.4)
= 2Uyik Uyik — -
On the other hand, making use of Cauchy-Schwarz inequadity)ave
> > 1 (Au)® = ! (2.5)
Uyik Uyik = WU 45 = N u) = N .
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Inserting now(2.5) into (2.4), we get
APY >0in Q. (2.6)
Hopf’s first maximum principle then implies:

Theorem 2.1.

P takes its maximum od¥2, unless it is identically constant.

Next, we apply this result to solve an overdetermined problslore precisely, we
have:

Theorem 2.2.

If a solution to problem(2.1) also satisfiesVu| = ¢ on 952, then( is a ball of
radius N¢, and o
Nec* —r

= 2.7

u o (2.7)

Proof. For the proof, let us first notice th&™") = ¢? on 99, so either
PY < ZinQ, (2.8)

or
PY =¢2inQ. (2.9)

We will show that(2.8) cannot holds. To this end, we first note that

Ju 0
A(TE> ra(Au)ﬁ—QAu — (2.10)

Next, we make use of Green’s theorem, to compute

£[2U—Tgu]d$ = é[ u A(r9%) + r2:Auldz

— afﬂ[_uaa (r aU) + r%%]ds

(2.11)
— j‘,r,ar ou 2d8

= czfrg—;ds = N2V,
1)
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wherel” = |2 denotes the volume ét. Using again Green’s theorem, we have

r—dx = /V \Wudz = —N/udx (2.12)

Therefore,
(N +2) / udz = N2V, (2.13)
Q

Now, if we assume thg®.8) holds, then

/P(l)dx < /Cle‘ = V. (2.14)

Q Q

But
2 N N
/P(l)da: = /(|Vu\2 + Nu)dx =(1+ —)/ud:v = ECQV, (2.15)
0 0 0

where(2.13) was used to get the last identity. Comparing n@a4) and(2.15), one
can easily notice that we get a contradiction. In conclusion

PY = |Vul? + %u =c2inQ. (2.16)
Therefore
APY =0inQ, (2.17)
so the equality must hold in inequality (2.5), thatis = —d;; /N, so

1 2
u:ﬁ(/l—r ), (2.18)

whereA is a constant. Finally, sinee = 0 and|Vu|? = ¢? on 952, we obtain thaf) is
a ball of radius4'/? = N¢. The proof is thus achievedl

Remark 2.3.

i) The above proof was given by H.F. Weinberger [21] but tremefew other nice
methods to get similar results: moving plane method (se@ding19], shape opti-
mization technique (see M. Choulli and A. Henrot [3]), Nemtioequalities (see B.
Brandolini, C. Nitsch, P. Salani and C. Trombetti [2]) etc.

i) The method of H.F. Weinberger was used by N. Garofalo ah@wis in [10] for
a larger class of overdetermined problems.

iii) For another alternative method to get the result fron1@} we refer the reader
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to a paper of A. Farina and B. Kawohl [7].

Next, let us consider the following-function:
P® =z Vu—2u = z;u,; —2u. (2.19)
If we differentiate successivel.19), we get
P = 6y + wittig —2u = Tt — s, (2.20)
AP® = §,u., +z;(Au); — Au = Au — Au = 0. (2.21)

Therefore, Hopf’s first maximum principle implies:

Theorem 2.4.

P®@ takes its maximum and minimum 9f, unless it is constant.

Next, we give a application of this result to some overdeteeah problem.

Theorem 2.5.

If the solution of(2.1) also satisfies
x - Vu = c=const. o2, (2.22)

then(2 is the interior of an ellipsoid.
For the proof of Theorem 2.5 we will make use of the followiegult:

Theorem 2.6.

Let u be the solution of problerf2.1), with the originO € Q. Suppose that there
existA € (0,1), such that

W={\eRY:2€Q}CQ, (2.23)
anda > 0, such that
u(z) = aonofly. (2.24)
Then(2 must be the interior of an ellipsoid.

Remark 2.7.

i) If Q is starshaped with respect to the origin, then (2.23) iskad for all\ €
(0,1).
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i) If we choose\ > 0 sufficiently small, then(2.23) holds for any domaifi .

iif) Theorem 1.5 and 1.6 still hold if in probleri2.1) we replace the Laplacian with
a general fully nonlinear elliptic operatdi( D?u) (see C. Enache-S. Sakaguchi [5]).

Proof of Theorem 2.6.Let us introduce the following functions
v () = u(z) — a, va(z) = Nu(\ o). (2.25)

Then, clearlyv; andwv, are solutions to the following problem

Av = —1inQ,,
(2.26)
v =00n0,.

Therefore, by the uniqueness theorem, we have
vi(x) = ve(x), for all x € Q. (2.27)
Differentiating twice(2.27), with respect ta; andz;, we obtain
Uy (1) = u,; (A '), forallz € Q. (2.28)
On the other hand, sinde, C 2, we have
x ey, forallz € Qy,n e N. (2.29)

Therefore,
Uyij () = u,; (\"z), forallz € Qy,n € N. (2.30)

Now, if we letn — oo in (2.30), we obtain
U,ij () = u,; (0), forall z € €, (2.31)

which means that(z) must be a quadratic function in,. Sinceu(xz) = « on d,,
then it follows that2, must be the interior of an ellipsoid and the proof is thus el
O

Proof of Theorem 2.5.We first notice that

P® =z .Vu—2u=conds. (2.32)
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Therefore(2.21) and Hopf’s first maximum principle implies that

P® =conq. (2.33)
Now, let us define
U(z) := u(xr) — minu. (2.34)
Q
We then have

soU is homogeneous of degréen 2. Therefore, the level sets 6f (so, also the level
sets ofu) are homothetic witl§2. Theorem 2.6 then implies th&tis the interior of an
ellipsoid.

2.1.2 P-functions with minimum on 0. Assume thaf? C R?. Let us intro-
duce the followingP -function

U,11 Uy12 Uy
P®) .= Uy21 U2 Uy :u,iju,iu,j—|Vu|2Au+u[(Au)2—u,iju,ij]. (2.36)

Uy1 Uy2 2u

Differentiating successivel§2.36), we obtain

(3) _
Puk = Uik Uni Uyj —2U Uik Ui s (2.37)
3)  _
AP® = Auaij Uyj Ui +2U550 Uik Uyj — 20U,k Usijp, Usj _2UAu7ij Uyj —2Uyijk Ui

= —2Ulijk Uik < 0.

(2.38)
Therefore, Hopf’s first maximum principle implies:

Theorem 2.8.

P®) takes its minimum o8¢, unless it is identically constant.

As an application of this result we have the following coritAexesult, due to L.
Makar-Limanov [13]:

Theorem 2.9.

If w is the solution of problen®2.1), with @ C R? convex, them = /u is strictly
concave irt.

For the proof we make use of of the following:
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Lemma 2.10.
Let 2 C R? be convex bounded domain ande C2(2) be strictly super harmonic

function, i.eAw < 0in Q. Thenw is strictly concave i) if and only if det(D?u) > 0.

Proof of Theorem 2.9. Sincev = /u, thenu = v? and we get successively, by
differentiation, the following relations

1
vi = gu” (2.39)
1 —-1/2 1 —-3/2
,U”'j = 5'& u7ij _Zu U,; u7j . (240)
Therefore ' )
Av = ——(|Vv]* + 5) <0 (2.41)
v
Also, since '
Uyij = W[QU% — Ui Uy ] (2.42)
one can easily note that
, 1| 2uugy —u? 2ut 19 — U U
det(A%v) = 603 : (2.43)

2ut g — U U 2Ul 20 — u?Q
On the other hand, we also notice that

2
PO 1 | 2uuqg — Uy 2ut 12 — U Uy
2u 2uu gy — Uty 2ty — UG

(2.44)

Therefore, to show thalet(D?v) > 0, it is sufficient to show thaP® > 0.
From Theorem 2.8 we know th&® attains its maximum of$2. But onof) we
have
P® = i u,i u,; —|Vul*Au = K |Vul?, (2.45)

where K is the curvature o). Therefore, sincé? is convex, the strong minimum

principle implies that”® > 0in Q and the proof is thus achieved.

2.1.3 P-functions with maximum at a critical point of u. Let us consider the
following P-function
PW = |Vu|* + 2u. (2.46)
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If we differentiate successivel2.46), we get
Pa§§4) = 2u7ik U,; +2u7k ) (247)

APYW = 200wy +2 (Au)l Uyi F2AU = 2U 5 Uy —2. (2.48)

Next, making use of Cauchy-Schwarz inequality, we have
Uik Uik Uyj Uyj = Uik Uyj Wk Wy - (2.49)
Now, using(2.47) in (2.49), we obtain
Uik Uyi > 1+ .. in Q\w, (2.50)

where, here and in all that follows in this thesis;= {z : Vu(xz) = 0} and the dots
stand for linear terms containing the first derivatives a frfunction (Pf) in this
case). Therefore

APW 4 >0, in Q\w, (2.51)

and Hopf’s first maximum principles implies:

Theorem 2.12.

PY takes its maximum either a¥f) or at a point critical point ofu, unless it is
identically constant.

Remark 2.13.

i) Theorem 2.12 holds independently of the boundary coowlitor «(x). However,
we will see thatP™® cannot take its maximum od(, if Q is a convex domain and
u = 00nof).

ii) In the caselV = 2 we can replace the Cauchy-Schwarz inequafity9), used to
get a bound for,;, u,;1, by the following identity

WUyike Uik |Vu\2 = \Vu|2(Au)2 + 20Uy Uyij Uk Uy — 20U Uy Usj (2.52)

and obtain
APW 4 . =0in Q\w. (2.53)

Therefore, wheV = 2, P takes its minimum either ofX or at a point critical point
of u, unless it is identically constant.

Next, let's assume thd® is convex andP® takes its maximum value at a point
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Q € 09. Then, Hopf's second maximum principle implies that eitfét = const.
in Q or 9P /on > 0 at Q. Using now the normal coordinates with respect to the
boundary and the fact that= 0 on 952, we have

OPW
on

= 2UpUny + 2Uyp, (2.54)

where, here and in the remainder of this thesjsandu,,, represent the first and the
second normal derivative af, respectively.
On the other hand, sin@#? is smooth, equatio(®.1) is also satisfied ordf2, so

Au=—-10ndQ < up, + (N — 1)Ku, = —10n9Q, (2.55)

whereK is the mean curvature oK. Therefore, inserting2.55) into (2.54), we get

OPW
on

(Q) = 2up[—1 — (N — Dkuy,) + 2u, = —2(N — 1)Ku? < 0. (2.56)

Since, from Hopf’s second max principle we hef%? > 0, unlessPY is identically
constant, then fron2.56) we get:

Theorem 2.14.

If Q is convex,P™ takes its maximum value at critical point af unless it is
identically constant.

In what follows we give an application of this result:

Theorem 2.15.

If in problem (2.1)2 is also convex, then

d2
whered is the radius of the largest ball inscribed {n
Proof. From Theorem 2.14 we know th&® := |Vu|? + 2u takes its maximum
value at a critical point of.. Therefore,
Vul? < 2(uy, — u), (2.58)

whereu,, = maxu(z). Next, letA € Q2 be a point where: = w,,, andB € 052 be a
Q
point nearest tol. Letr measure the distance fromalong the ray connecting and
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B. Then
du

dr
Integrating fromA to B relation(2.59) and making use df2.58), we get

Um

< 6 < .

2.2 Some Extensions to Nonlinear Problems

Let ) C R" be bounded domain, withQ2 € C*¢ andu € C3(Q) N C%(Q2) be a
solution of the following nonlinear problem in divergencerh:

div(g(|Vul>)Vu) + p(|Vul?) f(u) = 0in ©,
(2.61)
u = 0 onofl.

wheref € C!, g € C* andp € C* satisfy the following conditions

g(s) >0, p(s) >0, G(s) :=g(s) + 2s¢'(s) > 0, forall s > 0. (2.62)

2.2.1 P-functions with maximum on 0f). Let us consider the following-

function o
Vul? u
G(s) 2
®) .= ds + — ds. 2.63
P [ 05) 3+N[f(s) s ( )

We have:

Theorem 2.16.

If u is a solution of equation (2.61) and

0P =Gf >0, (2.64)
N
then P®® takes its maximum value @if2, unless it is identically constant.

Proof. For simplicity, we consider only the cage= 1. We differentiateP®
successively to get
1 2
P)IE:5) = ;2uazk U; + Nfuak ) (265)
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/ 2 2 2 2
AP(5) = —%4%% uiulkul+;u,i (Au),l +;U,ik Uik +Nf (|VU‘2)+N]CAU (266)

To estimateu,; (Au),; we differentiate equatio(2.61), and obtain

2u7i (Au)ﬂ = 2u7i [_f(u)p(|vu|2)ﬂ = _2flp|vu|2 - 4fplu7ik U, Uy - (267)

Therefore
APB) = —4%U,zk U Uik Uy —%fP\VUP - %fﬂ'un‘k Usf Uyi (2.68)
—l—%u,ik Ugp +2f|Vul* = 2 f%p
Next, we first remind that
1 9 1.5,
Uy Uik = ~ (Au)” = Nf . (2.69)
On the other hand, using the expressiogfwe obtain
1 2
Uyik Uk Uyj = —pr|Vu\ + .., (2.70)
Ui Ui Uygps Uy = 2p* | Vul® + ... . (2.71)

N?
Replacing (2.69), (2.70) and(2.71) in (2.68), after some reductions we obtain

AP®) > (2 — %)|Vu\2 {%p'f 2 _ f’} > 0. (2.72)

Then the conclusion follows now from Hopf’s first maximumrgriple. [J

Remark 2.17.

i) Theorem 2.16 held independently of the convexity(bfand of the boundary
condition foru(z).

i) If the solution of equation (2.61) also satisfies

u = a = const on of2, (2.73)

and f(u) does not change sign, then using some computations in na@ooadinates
one can also obtain the following bound

IVl Vtlmax . f(a)
pIVU)Fax) 7 NEiin®

max

(2.74)
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where|Vu|max = max |Vu|, Ky = ngsi)n K(s) and K (s) represents the mean curva-
Q
ture of 02 (see L.E. Payne-G.A. Philippin [15]).
In what follows we’ll give some applications of Theorem 2tbGsurfaces of con-

stant mean curvature. The mathematical model describidign2nsional surfaces of
constant mean curvature with planar boundary, is given by the following problem:

div (\/%) = —2A inQ C R?, A = const> 0,

u = 0 on oN).

(2.75)

In this case Serrin’s existence criterion [18] states thatfollowing condition should
be satisfied
k(s) > 2A onof. (2.76)

Now, with g(s) = —=, p(s) = L andf(s) = 2A, Theorem 2.16 implies that

2
PO =92(1—- ——— +Au, (2.77)
V1+ | Vul?

takes its maximum value at some poipte 0€2, unless it is identically constant. This

means that ) .
Au < — in Q, (2.78)
V14 Vul2 1+ ]|Vul?

max

where |Vu|m., = max|Vu|. Evaluating this inequality at a point whetetakes its
Q

maximum, we get
1

V1+ VU,

At < 1 — (2.79)

Next, using(2.74), we have

24/1+ |Vu|r2nax
Knin < k(Q) < (2.80)

- ) < 2|Vt max

so that we get the following inequality

A2
max — K2 _ A2' (281)

min

[Vl <

Inserting now(2.81) into (2.79), we obtain

Theorem 1.18.
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The solution of mean curvature problé75) satisfies

1 Kmin - A2
Umax S K (1 — K—) . (282)

The equality is obtained if2.82) when(2 is a disk

We note that other interesting isoperimetric inequalities also be derived. For
instance, if we denote hyt the area of the surface

S = {(x1,ma, u(z1, 22)), T3 = u(T1, T2), (T1,22) € Q}, (2.83)

and byV” the volume betweeft andS, then we have
V= /udx, A= /\/1 + |Vu|?dz. (2.84)
Q Q

Therefore, integrating the inequality

1 |Vul?
U< e = T ¥ VP — — 2.85
V14 |Vul? Vel V1+|Vul? (2.83)

we obtain

2
A/udx < /\/1 + |Vu|?dz — ﬂdz. (2.86)
A A A Vv 1+|Vul?

On the other hand,

. Vu |Vul|?
2A/udaz =— /udw — | dr = | ——=dx. 2.87
<\/1+|Vu\2> Q\/1+|Vu\2 (2.87)

Q Q

Therefore, inserting2.87) into (2.86), we get

Theorem 2.19.

With the notations given above, we have
AV < A. (2.88)

The equality holds if2.88) when(2 is a disk of radiud /A. This mean that the volume
V', bounded by? and S, is greatest whef is a disk andS a hemisphere.
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2.2.2 P-functions with maximum at a critical point of u. Let us consider the
following P-function

[Vu|? u
PO .— [%dstQ[f(s)ds, (2.89)

whereu is a solution to problen(2.61). We then have:

Theorem 1.20.

P©) takes maximum either of2 or at a point critical point of u, unless it is
identically constant.

Proof. For simplicity, we consider again only the cage= 1. Differentiating
successively?® | we get

1
P7IE:6) = _2u7ik U,; +2fu7k ; (290)
p

/

2 2
APO® — —%4u,iku,iu,lku,l +;u,iku,ik +;u,i (Auw),; +2f'|Vul? + 2fAu. (2.91)

Now, to estimates,; (Au),; we use(2.67). On the other hand, from Cauchy-Schwarz
inequality we have

Uik Uyik uuj uuj Z Uik Uyg uujk uuj . (292)

Moreover, using the expression Bﬁf), we get
Uik Ui o= pf |Vul? + ... N Q, (2.93)
Uik Ui Uy Uy = P> f2Vul? +...InQ, (2.94)
respectively, using2.92),
U gy > p2f2 + in Q\w, (2.95)

wherew := {z € Q : Vu(z) = 0}. Replacing(2.67), (2.93), (2.94) and(2.95) in the
expression oA P©) we get

AP > AL 2 f2Vu? 4+ 220 + A fplpf(|Vul?) — 2f%p

= 0inQ\w,

(2.96)

and the result follows from Hopf’s first maximum principlée.
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Let’s now assume thd? is convex and: satisfies the Dirichlet boundary condition
from problem (2.61), namely = 0 on 952. We will show that, in such a cas&®®
cannot take its maximum ofX2, so that the maximum aP®) is attained at a critical
point of u, unlessP® is identically constant.

Assume tha”®) takes its maximum value at a poigte 09). Then Hopf’s second
maximum principle implies that eithé?©® = const. or 222 > 0 atQ. Now, using the

on

normal coordinates with respect to the boundary and theHati. = 0 on 952, we have

p(6)
88 = 2gunnun + 2fuy,. (2.97)
n P

On the other hand, siné¥? is smooth, equatiofR.61) is also satisfied ons2, so that
we have
Gupy + (N — 1)K gu, + fp=00n0S. (2.98)

Inserting now(2.98) into (2.97), we get

aP®  _ 5aG fo  (N=-1DKguy
O L g0y, (g O Lo,
’ ’ ¢ ¢ (2.99)

= —2(N—-1)Kgu? <0,
sincel? is convex. Hopf's second maximum principles then impliex:th

Theorem 2.21.
If Qis convex, therP® takes its maximum value at critical point of unless it is

identically constant.

As an application of this result, we will find a bound for thesfieigenvalue of the
Dirichlet-Laplacian. More precisley, let be the first eigenfunction of the Dirichlet-
Laplacian on a bounded convex dom&rC RY, i.e. u satisfies

Au+ Au=0inQ,

(2.100)
u = 00nofl.
Inthis caseg = 1, p = 1, f(s) = \;s, so theP-function becomes
PO = |Vul? + \u?, (2.101)
and Theorem 2.21 implies
(Vul? < A\ (u?,, —u?). (2.102)
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Next we proceed as the proof of Theorem 2.15. Adie a point where, = .,
and B a point onos2, nearest toA. Letr measure the distance frorh along the ray
connectingd and B. We then have

d
—d—“ < |V < ViR, — . (2.103)
.

Integrating(2.103) from A to B, we have

Umax

B

d

/ ﬁ < \/)\1/dr = VMIAB| < /d, (2.104)
max A

0
whered is the radius of the largest ball inscribed(in Therefore

[sinl “} :g, (2.105)

Umax |

which leads to the following:

Theorem 1.22.

With the notations given above, we have
A > —, (2.106)

with equality whenf2 is a strip.
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Chapter 3: Applications to the Parabolic Case

This chapter deals with two semi-linear heat diffusion jpeats, whose solutions,
without appropriate restrictions on the data, might blowrupme or space. Our aim is
to present some conditions to insure that the solutionsirebmaunded, as well as some
conditions which allow us to derive explicit exponentiatdg bounds for the solutions
and their derivatives.

3.1 P-functions with Maximumat ¢ =0

In this section we deal with a heat emission process in a medith a nonnegative
source and no heat emission in a cold medium. In other wordsyiV consider the
following initial-boundary value problem

Au—uy=—f(u) ,xeQ, t>0,

u(x,0) = h(x) ,x €Q,

where() is a bounded convex domain R, N > 2, with smooth boundarg) &
C?¢, while f € C' andh € C? are given functions assumed to satisfy the following
conditions:

f(0)=0, sf'(s) > f(s) >0, s> 0, (3.2)

h>0, h(x)=0, xec. (3.3)

Under these assumptions, it then follows from Nirenbergéaximum principle that
u(x,t) is nonnegative. We also note th@2) implies in particular thaff(s)/s is a
nondecreasing function ef

It is well known that the solution of problem (3.1) may notsbdor all time and
that the only way that the solution can fail to exist is by beowy unbounded at some
finite timet* (see J.M. Ball [1]). In this section we first determine coiudis on the data
sufficient to guarantee global boundedness of solutionreéditer, making use of the
maximum principles, we will derive some explicit exponahtlecay estimates in time
for the solution and its derivatives. These results have begined in Payne-Philippin
[16].

As the solution: (x, t) of problem (3.1) might blow up in a finite timé, it follows,
in this case, that the solution exists in an inter@alr) with 7 < t*. Let us denote

= . 4
U, Q@(%§)U(X,t)(< 00) (3.4)
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In what follows, we will derive the conditions on the data watniwill guarantee that
u(x,t) remains bounded for all time> 0, i.e. such that the solution of the problem
(3.1) doesn’t blow up. In establishing this condition we make udeefirst eigenvalue
A1 of the Dirichlet-Laplacian and of the corresponding eigexetion®, (x), for a region
QD0

A(I)l (X) + )\1(1)1 (X) = O, (I)l (X) >0 , X € Q,
_ (35)
Moreover, sinced; (x) is determined up to an arbitrary multiplicative constang w
normalized, (x) by the condition

max ¢ (x) = 1. (3.6)
Q
The reason for replacing by QD Qinour investigation is merely to allow an explicit
computation ofb; and\; by considering, for instance, th@tis a ball or a rectangle.
Lemma 4.1.
The classical solution of problem (3.1) satisfies the falt@inequality

0<wu(x,t)<Tjexp (— <)\1— f(um))t) .t e |0,7], (3.7)
where h(x)
X
r, = max B, (x) < 0 (3.8)
Proof. We consider the following auxiliary function
v (x,t) :=u(x,t)exp (—f (um)t) : (3.9)
We compute
{Av — v} exp (f (ttm) t) = Au—u;+ / (um>u
Um Um (3.10)

> Au—wuy+ f(u) =0,
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where we have used the fact th[a(-tﬁ is nondecreasing. We thus have
S

Av—v, >0 ,xeQ te(0,7),
v(x,0)=h(x) ,x€Q, (3.11)
v(x,t) =0 ,Xx €0, te(0,7).

The comparison principle implies

v(x,t) < T 0e ™ = w(x,1), (3.12)
because we have
Aw—w; =0 ,x€Q te(0,7),
w(x,0) =119 (x) > h(x) ,x€Q, (3.13)
w(x,t) >0 ,x€e 0, te(0,7).

Now, combining(3.9) and(3.12) we get the desired inequality (3.7)L

Theorem 3.2.
If T, satisfies the condition
T
1T <A, (3.14)
Iy
thent* = oo and we have
maxM <A, 0<t < o0 (3.15)
Q  u(x,t)

Proof. We suppose tha3.15) is violated and establish a contradiction. By con-

tinuity, there exists a first time for which & reaches the valug;, in the sense
u
that
t
max M = A1 (3.16)

f(s)

S

Since is a nondecreasing function ef> 0, Lemma 3.1. implies

u(x,t) <Tp, 0<t <H, (3.17)

47



which lead to the following chain of inequalities

f(u(x,t)) < férl) <A, xEN0<t<T, (3.18)

in view of (3.14). In particular, we have

max M < A, (3.19)

Q U (X,%)

which is in contradiction with the definition @f We then conclude that= oo and the
proof of the theorem is completel

In what follows we will establish sufficient conditions oretdata to derive expo-
nential decay bounds in time for the solutiofix, ), its derivatives and some data of
problem (3.1). For this aim, we shall derive some maximumgpies for the following
P-function

P (x,t) := {|Vu|2 + 2/ f(s)ds + auz} et (3.20)
0
wherea and 5 are some real positive parameters to be appropriately nhose
The main result of this section is formulated in the follog/theorem:

Theorem 3.3.
Let u (x,t) be the classical solution of problef.1). Assume that the domafn
and the initial datah (x) are small enough in the following sense

< 7> f(Iy)

e T,

(3.21)

whered is the inradius ofQ2, and « € (0, 1] is a constant. Then, the auxiliary function
® (x,t) defined in (3.20) takes its maximum value at 0, i.e.

IVul? + 2/ f(s)ds +au® < H*e " x € Q, t >0, (3.22)
0

with .
H? = max {|Vh|2 + 2/ f(s)ds + ah2} : (3.23)
0

Proof of theorem 3.3.The proof will be given in several steps.
Step 1.
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Differentiating (3.20), we obtain successively
@y =2 {upu; + fuy + auuy} e, (3.24)

ADd = 2 {u7iku7ik +u;Au; +a |Vu|2 + aulAu + [’ |Vu|2 + fAu} ( |
3.25
= 2 {uzkuzk +uuy+a \Vu|2 + (au+ f)(uy — f)}

P, =2 {uztuZ + fuy +auuy+a |Vu|2 + 2@/ f(s)ds + a2u2} e?t  (3.26)

0

Next, we differentiate the equation (3.1), to obtain
Aui = u,ti — f’u,i, (327)

from which we get
Augu; =ugzu; — f |Vu|2 ) (3.28)

Making use of the Cauchy-Schwarz inequality, in the follogvform,
Vul® wat e > g, (3.29)
and of (3.24), we obtain
ikt > (f + au)2 2 4 inN\w. (3.30)
Next, using the differential equation (3.1) in the equivdi®rm
Au = —f +uy, (3.32)

and inserting (3.28), (3.30) and (3.31) into (3.25), we ob#édter some reductions
LO:=AD — &, + ... > 2> {uf(u) — 2/ f(s) ds} > 01in N\ w. (3.32)
0

It follows from Nirenberg’s maximum principle th&t takes its maximum value either
(i) at a pointP on 0f) for somet > 0, or
(i) at a critical point ofu(x, t) for somet > 0, or
(i) at a pointP in 2 at timet = 0.

Step 2.
Using Friedman’s maximum principle, we will see tldatx, ¢) cannot take its max-
imum value or)(2, that is the first possibility, namely (i), is eliminated.
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Indeed, suppose thét(x,t) takes its maximum value & = (ﬁ,ﬂ on 09). We

. . .0P : : .
will compute the the outward normal derlvatl\é(-,L at an arbitrary point 0bf). Since

n
u = 0 onodf), we obtain
aq) 2at

n = 2UppUn

From equation (3.1), evaluated 6Q € C?<, in normal coordinates, we have

(3.33)

Upp + (N = 1)Ku,, = 0. (3.34)

Inserting (3.34) into (3.33), we get

o0

= —2(N —1)Kg*u2 <0, onoS. (3.35)

Therefore, Friedman’s maximum principle implies tldatx, ¢) cannot take its maxi-
mum value ordf). We also note tha¥/u £ 0 on 92 in view of Friedman’s maximum
principle.

Step 3.

Assume that the second possibility (ii) holds, ide(x, ¢) takes its maximum value
at a critical pointP := (x,f). Then we would have

D (x,t) <P (X,1), x€Qt>0. (3.36)
Evaluating (3.36) it = ¢, we obtain
|Vl < 2/ f(s)ds+2(u? —u?),x € Q, (3.37)

with u,, := maxq u (x, Z). Using Cauchy’s mean value theorem we can write

f(&)

21 f(s)ds = 2[fy" (s — [ 7 (o)ds] = 2 [u o (1)
<! iim) [u, = ? (x.7)]

(3.38)
where¢ is some intermediate value betweemandwu,,,. Replacing (3.38) in (3.37) we
obtain

’Vu (x,f)}Q < (f(um) +a) [uz, — u* (x,7)], x € Q, (3.39)

U, m

or

T o
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Integrating (3.40) on a straight line frorto the nearest point, € 02, we obtain
Z< \/<f(“’”) +a) %x0| < \/<f(“m) + a)d. (3.41)
2 U, U,

(3.42)

Consequently,

> .
“= 4z
The inequality (3.42) is a necessary condition in orderdh@t, ¢) takes its maximum at

a critical point ofu (x, t). On the other hand, using the fact t}:(e@ is a nondecreasing
function we obtain the following chain of inequalities
f(Ty) 2 2

f(um)
< T ) —a< 4
=T, St esmEoa (3.43)

which is in contradiction witt{3.42).
This achieves the proof of the theorem.

3.2 P-functions with Maximum on 02

In this section we will study a semilinear heat equation inraglcylindrical region
for which the far end and the lateral surface are held at mnpérature and a nonzero
temperature is applied at the near end. More preciselypbefic domain we consider
is a finite cylinderQ? := D x [0, L], where D is a bounded convex domain in the
(71, 12)-plane, with smooth bounda@D € C?¢, the generators of the cylinder are
parallel to thers-axis and its length i.. The heat diffusion problem we consider is the
following:

((Au—u;=—f(u) ,xeQ,te(0,7),

u(x,t) =0 , X €00, Uy, t€(0,T),
(3.44)
u(x,t) = h(xy, z9,t) ,x € 0, t € (0,7,

u(x,0) =0 , X €0,

\

whered)y := D x {0}, 09 := D x {L}, 0a := 0D x (0, L) andT" is assumed
to be any time prior to blow-up time. We also suppose that, z-,t) is a prescribed
nonnegative function, with(z,, z»,0) = 0, and f is a nonnegative function satisfying
the following conditions

lim J(5) exists f'(s) < p(s), 1"(s) < q(s), s >0, (3.45)

s—0 S8
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wherep(o) andg(o) are nondecreasing functions of

We are interested in the spatial decay bounds for the salti@3.44). Since the
solutionu(x,t) can blow up at some point in space time, our first goal is toveeri
sufficient conditions on the data which will guarantee thatdolution remains bounded.
Moreover, under such conditions, we will obtain some exggdigatial decay bounds for
the solution and its derivatives. The results presented have been obtained by C.
Enache [4]. The method we will use is similar to the one from pinevious section,
in the sense that the main idea is to construct a maximumiplenfor an appropriate
P-function.

The P-function that we consider is

D(x,t) = {uata +u® +ui} P, (3.46)

whereu(x, t) is the solution tq3.44), while 5 and~ are positive constants to be ap-
propriately chosen. As in the previous section, to deriveaaimum principle for the
P-function defined in3.46), we have to derive a parabolic inequality fbrand apply
the maximum principles of Nirenberg and Friedman.

Differentiating successivel§s.46), we get

D =2{u U or +uny + wpu gt e2lBs—t] | 268P0s;, (3.47)

Ad = 2 {u@ku,ak + |Vu|2 + WUty + U g (Au)@ + ulAu

(3.48)
Q) 150, 0
with 53k =0, if & # 3, (533 =1,and
0P I
E = 2 {U7atu7at + U7t + u,tuﬁ} (& — 27@ (349)

Combining(3.48) and(3.49), using equationi3.44) and conditiong3.45), regrouping
appropriately the various terms and dropping the nonnegatiantities: ,;u .. and
U U 11, WE obtain

Lb = AD—48B4— 0, > 2{uquy[l+7 — 2% — p(u)] + ud

(3.50)
+u? [y — 287 — p(€)] + ui [y — 262 — p(u)] e2Prs1,

wheref is an intermediate value betwe@andu. Now, itis clear that ifp(«) is bounded
from above, then we can choosend~y such that.® > 0, in Q2 x [0,7).

Next, we will derive a condition o (xy, z5,t) which guarantees that(x, t) re-
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mains bounded for all time, that is the solution to problgn4) does not blow up.
In establishing this condition we make use of the first eigeofiony, (x;, z,) of the
Dirichlet-Laplacian and the corresponding eigenvalugfor a regionf) o D:

Apr + A1 =0, 1 >0 ,x€ D,
N (3.51)
p1=0 ,x € 0D.

Moreover, sincep; is determined up to an arbitrary multiplicative constarg,vormal-
ize p; by the condition

max ¢, = 1. (3.52)
D

We have :

Lemma 3.4.
Letz, and M be positive constants such that

¥1 3
h(xy, z9,t) < M% exp { =7 | (3.53)

and leth be defined as

~ 1 T3 B M\/§

with e = 2.718281... We also assume thatis small enough in the following sense:
p(h) < A1 (3.55)

Then the solution(x, ¢) of the problem (3.44) exists for all time. Moreover, the tiorc
p(u) remains bounded away from for all time, i.e.

pu(x,t)) < A, x€ 8, t>0, (3.56)

and we have the following estimate

M 2
u(x,t) < U(x,t) == \/ﬁl exp <—w> , x€e, t>0. (3.57)

Proof.
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The functionU (x, t), defined in(3.57), satisfies the following properties
(AU -U,+\MU=0 ,x€Q,t>0,
U(x,t) =0 , X € 0s, t >0,
U(x,t) >0 ., x€e 0, t>0, (3.58)

U(X7 t) Z h([[’l,l‘g,t) , X € aQOa t> 07

| U(x,t) =0 ,xe O t—0.

Suppose that3.56) is violated. Then there exists, by continuity, a first timier
which p(u) reaches the valug in the sense that

sup p(u(x,t)) = Ay. (3.59)

x€€)

Combining(3.58) and(3.59), we have
AU - U, < —Ulilég(p(u(x, t), te [0,7]. (3.60)
Settingz = U — v and making use of the mean value theorem we obtain
Az—2z, < —z I}(léig)ch(u(x, t), te [O,ﬂ : (3.61)

It follows, from Nirenberg’s maximum principle, thatx, ¢) is a positive function in
Q x [0,#]. Thus, we obtain the inequalit®.57) in [0,¢]. Moreover, making use of
(3.53), we obtain

u(x,t) <h, te0,7]. (3.62)

Sincep is a nondecreasing function, we are led to the following clodinequalities
plu(xt) <p(h) <\, xeQ te0d], (3.63)

in view of (3.55). In particular, we have

max p(u(x,t)) < Ap. (3.64)

xeN

which is in contradiction to the definition of We then conclude that= oo, and the
proof of the Lemma 3.4 is thus achieved.
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Now, under the conditio(3.55) of Lemma 3.4, it is clear that choosing the positive
parameterg and~ to satisfy the following condition

v —28% >\, (3.65)

we obtain the inequality.® > 0, in Q x (0, 7). Nirenberg’s maximum principle then
implies that®(x, t) (# const.) attains its maximum value either at= 0 (which is
excluded, sinc® = 0 att = 0) or onof2.

Next, using Friedman’s maximum principle, we will see tldix, t) (# const.)
cannot take its maximum value &2, U 0. Indeed,

od 0P
— = —=20, ondf 3.66
and 50
= QU2 P73 7 = —ZUiKGQ[B”_W <0, onoQyys, (3.67)
n

where K is the mean curvature @fD (which is nonnegative sincP is a convex do-
main) and where used equation (3.44) in normal coordinaitbsrespect to the bound-
ary. Thus®(x,t) (# const.) cannot take its maximum value @), U 0,,. Conse-
guently, the maximum value @ occurs oroS), and we have:

Theorem 3.5.

Letu(x, t) be the classical solution of (3.44). Suppose that the indéga 7 on 02
is small enough, in the sense thasatisfies the conditio(B.55) of Lemma 3.44, and
that the positive parametersand~ are chosen to satisfy the inequality.65). Then,
the auxiliary function®, defined in (3.46), takes its maximum valuedsty x (0,7,
i.e. we have the inequality

Ugtg +u’ +uf <2l x e te0,T), (3.68)
with
2 2 2 —2
= DIE[%?%] {h,ah@ + h* + h7t} e (3.69)

valid for arbitrary T > 0. Clearly, (3.68) holds for the quantities”, u ,u, and u?
separately

Remark 4.6. Using the same idea, one may also prove that the solutiorotdgm
(3.44) depends continuously on the data:, -, t) at the near end of the cylinder (see
C. Enache [4] for more details).
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Chapter 4: Conclusion

The first aim of this thesis was to give a complete and rigosimresentation of the
classical maximum principles known for general classesobsd order linear elliptic
and parabolic operators. The second aim was to show how on@appdy these max-
imum principles to obtain various information about theusioins of some important
partial differential equations of elliptic and parabolypé, which appear as model for
real life problems. To this end, in Chapter 1 we have intreduthe terminology and
the maximum principles of E. Hopf, in the elliptic case, resjprely the maximum prin-
ciples of L. Nirenberg and A. Friedman, in the parabolic cadeereafter, in Chapters
2 and 3 we have developed some maximum principles for auxifimctions involv-
ing the solutions of some problems and their derivativesreMmecisely, using these
new maximum principles, we found several optimal a prionutds for quantities of
interest in problems from physics and geometry, whose isoisiare not known explic-
itly. Moreover, in Chapter 3 we found explicit time and sphtlecay estimates for two
different heat diffusion problems, whose solutions areusnially known in an explicit
form. Our next aim is to adapt these techniques to fully medr elliptic equations, re-
spectively to nonlinear parabolic equations in divergdoom and publish some papers
in this directions of research.
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