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Abstract 

 

Technological advancements are the main drivers of the healthcare industry as it has a 

high impact on delivering the best patient care. Recent years witnessed unprecedented 

growth in the number of medical equipment manufactured to aid high-quality patient 

care at a fast pace. With this growth of medical equipment, hospitals need to adopt 

optimal maintenance strategies that enhance the performance of their equipment and 

attempt to reduce their maintenance cost and effort. In this work, we are proposing a 

Predictive Maintenance (PdM) strategy that relies on real-time data by using the 

Internet of Things (IoT) technology to help in the diagnosis of the failure. The proposed 

approach involves maintenance logs analysis, criticality assessment, failure modes 

analysis, feature selection, and machine learning implementation. The proposed 

approach has to be economically feasible and efficient in terms of selecting and 

monitoring the right parameters that reflect the health of the equipment. The approach 

was demonstrated using a case study from a local hospital- Sharjah, where critical 

equipment of Vitros immunoassay was analyzed. The maintenance strategy was 

changed from corrective to predictive using wireless sensors that monitors vibration 

signals. Features extracted and selected are analyzed using Support Vector Machine 

(SVM) to detect the faulty condition. In terms of economics, our approach proved to 

provide significant cost savings that can reach up to 25% which is worth investing in. 

The approach is scalable and can be used across medical equipment in large medical 

centers. 

 

Keywords: Medical equipment; maintenance; healthcare; failure management 

sensors; Internet of Things; IoT. 
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Chapter 1. Introduction 

 

In this chapter, a short introduction about maintenance strategies, IoT, and 

classification methods will be provided. Furthermore, the problem statement, thesis 

objectives, research contribution, and thesis organization will be discussed. 

1.1. Overview 

The healthcare industry in general and hospitals, in particular, are considered to 

be of unique and complex systems because of the group they serve. Since this industry 

is dealing with human beings, hospitals consider personal safety as a priority that must 

be satisfied before anything else. For this purpose, the healthcare industry is always 

trying to improve the systems, minimize risks, and use the latest technology devices. 

But unfortunately, in some cases, this development of devices is creating more complex 

systems which in turn are increasing the cost of maintenance. This is the point where 

the selection of an appropriate maintenance management strategy becomes very critical 

and useful especially considering the limited budgets and the need to strike a balance 

between maintenance costs and level of services [1]. 

1.2. Maintenance 

Maintenance can be defined as a combination of technical and managerial 

actions that are essential to maintain and restore equipment in the optimum operating 

condition by increasing their reliability and availability and reducing their failure rate 

[2]. The maintenance of devices involves testing and maintaining them or replacing any 

part if necessary. The effective management of this process ensures the high quality of 

device performance, which reflects on the accuracy of the readings and the safety of 

end-users [3]. In addition to that, maintenance management will have a great impact on 

the functionality of the components by extending their useful lifetime, hence reducing 

the cost of maintenance [4]. 

1.3. Reliability Centered Maintenance (RCM) 

It is the process of selecting the most suitable and appropriate maintenance 

strategy. This philosophy aims to increase the functionality and availability [5] of the 

components over their life cycles with the use of least maintenance actions [6].  

RCM includes the following strategies: Preventive Maintenance (PM), 

Predictive Maintenance (PdM), Real-time Monitoring (RTM1), and Run-to-Failure 



13 

 

(RTF- also called reactive maintenance). For a better understanding of the RCM, we 

need to understand the meaning of failure. Failure in simple words is a condition in 

which the equipment is not able to accomplish and achieve the required output. The 

consequences of failure will have an impact on determining the appropriate 

maintenance strategy as well as improving the system to minimize the occurrence of 

failures [7]. The outcomes of the RCM analysis [8] are shown in  Figure 1.  

 

 

Figure 1: RCM elements [7]. 

 

1.3.1. Preventive maintenance. It is the most commonly applied and 

implemented where it is performed regularly after a scheduled time or a certain amount 

of usage while the device is still working, regardless of the equipment condition [6]. 

PM is also referred to as time-driven or interval-based maintenance.  

This strategy was introduced after the corrective (RTF) strategy in order to 

reduce the failure occurrence [9] and extend the lifetime of the device/ system, even 

though searches and studies nowadays are showing that this strategy is being costly in 

the long term since it is not taking into account the current status of the device and it is 

being performed even if the device is working properly and in good condition [10].  
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Figure  2: Elements of RCM 
 
 

Impact  of RCM on a Facilities Life Cycle 
 

A facilities life cycle is often divided into two broad stages: acquisition (planning, design, and 

construction) and operations. RCM affects all phases of the acquisition and operations stages to some 

degree. 

 
Decisions made early in the acquisition cycle profoundly affect the life-cycle cost of a facility. Even 

though expenditures for plant and equipment may occur later during the acquisition process, their cost is 

committed at an early stage. As shown conceptually in Figure 3, planning (including conceptual design) 

fixes two-thirds of the facility’s 

overall life-cycle costs. The 

subsequent design phases determine 

an additional 29% of the life-cycle 

cost, leaving only about 5% of the 

life-cycle cost that can be impacted 

by the later phases. 

 
Thus, the decision to include a 

facility in an RCM program, 

including condition monitoring, 

which will have a major impact on 

its life-cycle cost, is best made 

during the planning phase. As RCM 

decisions are made later in the life 

100 % 

 
 
 

75 % 

 
 
 
50 %     

 

 
65% 

85% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Life-Cycle Phases 

 
95% 

 

Figure  3: Life cycle costs 
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The following are some advantages of the PM over the RTF [11]: 

• The ability to plan for the maintenance action and perform it at a suitable time. 

• Reduce the cost of maintenance by reducing the downtime. 

• Improve the safety of patients. 

However, the PM has some disadvantages that need to be reduced [12]: 

• Ignoring the status and condition of the equipment, resulting in performing 

unnecessary tasks. 

• Human errors are making the condition of the equipment worse. 

• Increased costs due to the use of spare parts and labor. 

1.3.2. Condition-based maintenance. This strategy is performed when one or 

more indicators show that the equipment is about to fail, or its performance is dropping 

down. The main aim of the CBM is to take advantage of the information extracted 

regarding the equipment degradation, and with the help of the sensors, breakdown times 

of the equipment can be minimized [13].  

1.3.3. Predictive maintenance. This strategy predicts when the failure of the 

equipment might occur and prevents this occurrence by performing maintenance action 

at the right time. As mentioned before, if certain indicators reach the threshold point, 

engineers will have to take action. Noise, vibration, temperature, and pressure are some 

physical measurements that can indicate the condition of the equipment. 

By monitoring the future state of the equipment, the maintenance actions will 

be scheduled and planned properly. Compared to PM, PdM is performed only when the 

need for maintenance arises, not based on a certain time passage or a certain usage [14]. 

Applying this strategy will reduce the times’ maintenance actions are performed 

like in preventive maintenance because of the ability to detect the failure in early stages, 

which in turn minimizes the cost wasted on the use of more spare parts.  

Figure 2 describes the concept of PdM. It illustrates the relationship between 

the time where the failure starts to occur, and the cost as the time passes and more 

indicators start to warn the user.  
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Figure 2: PdM concept [15]. 

 

The equipment usually starts to break down and fail gradually. It will give off 

several warnings that will be detected by the sensors. This will give the user enough 

time to schedule the maintenance action before reaching the breakdown point. The 

longer the time, the higher the cost that will be spent on repairing the equipment. 

Potential Failure (P-F) curve is shown in Figure 3. It is an important tool that can be 

used in the RCM program to extend the lifecycle of the equipment. 

 

Figure 3: Potential Failure (P-F) curve [15]. 

 

Using such a tool will help in detecting early failure signals which are difficult 

to be discovered without the use of such tools.  Besides, it will help in selecting the best 
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maintenance strategy for a certain case based on the signals of failure that we are getting 

from the equipment.  

For example, if the indicator of the oil is giving a warning signal, then the PdM 

can be applied, but if the equipment starts to heat up and produces noise then we must 

consider the RTF strategy as shown in Figure 4. 

  

 

Figure 4: P-F curve [16]. 

 

1.3.4. Run-to-Failure (RTF) maintenance. It is the oldest strategy and 

performed after the failure of the component or system. In simple words, only when the 

component is broken, then it will be fixed [2], [17], [18], [19]. It is also called the 

corrective or reactive strategy. The aim of using this strategy is to restore the 

functionality or operation of the broken part [10]. Generally speaking, in some cases 

this strategy may require less planning than the PM, but unexpected failure means that 

spare parts may not be readily available, causing the hospital to pay more for emergency 

parts shipping [2]. Moreover, depending on this strategy will lead the equipment to 

work in improper conditions sometimes, which results in higher consumption of energy 

[20]. In terms of maintenance costs, studies have shown that repair using this strategy 

costs three times a repair action using scheduled or PM [2], [14]. 
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1.4. Internet of Things (IoT) 

IoT is a concept reflecting a connected set of anyone, anything, anytime, 

anyplace, any service, and any network [21]. Nowadays, using IoT technology is 

rapidly growing in different industries such as healthcare, environment, supply chain, 

and logistics [22].  

In the coming years, the number of connected devices to the internet is expected 

to increase sharply. By 2020,  the number is estimated to reach 26 times people [23].  

One of the areas of utilizing IoT is to use it in monitoring which can be achieved 

by having wired or wireless sensor networks which comprise of thousands of 

inexpensive sensors that can report their values to the cloud servers, to ensure safety, 

efficiency, and better decision making [24]. One advantage of using the cloud is the 

ability to share the information which will help in understanding the complete picture 

of the system and therefore manage the hidden risks [25]. 

In terms of architecture, there is no single architecture agreed globally, but the 

basic one is composed of three layers as illustrated in Figure 5 which are: Perception 

layer, Network layer, and Application layer. 

The perception layer or the sensing layer represents the physical layer that 

involves the use of different sensing technologies (e.g., RFID, NFC, GPS) to collect 

data of different parameters from a certain object or environment. It can also involve 

converting the data into the digital form using some microchips which are capable of 

doing the Analog to Digital Conversion (ADC). The network layer is responsible for 

transmitting the data from the sensors to the application layer. In the application layer, 

data will be received by the central system/ smart devices and servers. Then it will be 

used in various applications that provide different services for the users, including the 

ability to monitor the changes in the status of the sensors and therefore helping in taking 

an accurate decision [26], [27]. 

1.5. Classification 

Classification using machine learning tools can be very useful in terms of data 

modeling and analysis. In this section, multiple tools that will be used later in our work 

are discussed. 

 



18 

 

Figure 5: Three-layer IoT architecture [15]. 

 

1.5.1.  Principal component analysis (PCA). This tool is one of the oldest 

statistical procedures that involves reducing the dimensionality of datasets to increase 

interpretability while reducing the loss of information. The working mechanism of this 

tool is based on creating uncorrelated variables, the principal components, which are 

linear functions of the original variables to maximize the variance [28].  

We begin by finding the adjusted matrix, X, which is constructed from n 

observations (rows) and p variables (columns). The adjustment is made by subtracting 

the variable’s mean from each value. That is, the mean of each variable is subtracted 

from all of that variable’s values. 

The principal components are constructed as weighted averages of the original 

variables. The specific values of a specific row of the principal components can be 

referred to as scores. The matrix of scores will be referred to as matrix Y. The basic 

equation of PCA is, in matrix notation, given by Equation (1): 

𝑌 = 𝑊′𝑋 (1) 

where 𝑊′ is a matrix of coefficients that are determined by PCA. 

1.5.2. Support vector machine (SVM). This machine learning algorithm is 

used for data classification [16]. The working concept of this algorithm involves 

plotting every single data point in an n-dimensional space, where n represents the 

number of features that can be used to train the model.  
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The purpose of classification can be achieved by finding the hyperplane that 

classifies data. Figure 6 illustrates the idea of SVM. The margin which is displayed in 

Figure 6 is considered to be the distance between the hyperplane and the nearest data 

point for each class. 

 

Figure 6: SVM classification [16]. 

 

Based on previous work and since we will be having two classes, healthy and 

faulty, we will use this model in MATLAB. The mathematical formulation involves the 

use of a training set (xi, yi) where i =1,2,3……, l, xi ∈ Rn, the class label yi ∈ {+1, −1} 

which is either positive or negative, n is the number of features and l is the number of 

training data points. The SVM approach aims to construct a classifier in the form of 

Equation (2) [29]: 

𝑦(𝑥) = sign[∑ 𝛼𝑖

𝑁

𝐼=1

𝑦𝑖𝑘(𝑥, 𝑥𝑖) + 𝑏] 

 

(2) 

where 𝛼𝑖 are positive real constants, b is a real constant, and 𝑘(𝑥, 𝑥𝑖) is the kernel 

function.  

For 𝑘(. , . ) one typically has the following choices: 𝑘(𝑥, 𝑥𝑖) =  𝑥𝑖
𝑇𝑥 (linear 

SVM); 𝑘(𝑥, 𝑥𝑖) = (𝑥𝑖
𝑇𝑥 + 1) 𝑑 (polynomial SVM of degree d); 𝑘(𝑥, 𝑥𝑖) =

 𝑒
‖−

𝑥−𝑥𝑖
2𝜎2 ‖ 2 

 (Gaussian SVM) where 𝜎 is the width of the kernel. 
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1.5.3. Decision trees.  Decision tree methodology is one of the most powerful 

and popular machine learning algorithms used for data classification for developing 

prediction algorithms for a target variable [30]. This method classifies a dataset into 

branch-like subsets that build an inverted tree with a root node, internal nodes, and 

external nodes. This algorithm is capable of dealing with large and complicated datasets 

without creating a complicated parametric structure. Considering a large sample size 

allows the data to be divided into training and validation datasets. The optimal final 

model can be figured out by training datasets to build the tree model and use a validation 

dataset to help in deciding on the size of the tree. 

 

Figure 7: Example of a decision tree [30]. 

 

For building the decision tree, one of the input variables at each step will be 

chosen to split the samples. According to the selected variable, the split point will be 

determined by an attribute value test.  
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The most commonly used measures for the decision classification trees are 

entropy which can be calculated from Equation (3) and Gini impurity that can be 

calculated from Equation (4): 

𝐻𝑒(𝑆) = − ∑ 𝑝(𝑦)𝑙𝑜𝑔 𝑝(𝑦)

 

 

 

(3) 

𝐻𝑔(𝑆) = − ∑ 𝑝(𝑦)(1 − 𝑝(𝑦)) = 1 −

 

∑ 𝑝(𝑦)2

 

 

 

(4) 

where S represents the dataset, and p(y) is the proportion of the number of samples with 

the class label. 

1.6. Validation 

Validation is the process of assuring that the model can get the patterns of the 

data correctly and being low on bias and variance. Bias measures how much the 

expected value varies from the correct value 𝜃. While the variance measures how much 

the data is varying around the expected value. Bias can be estimated using Equation 

(5): 

𝑏𝜃(𝑑) = 𝐸[𝑑(𝑥)] − 𝜃 (5) 

where 𝑑(𝑥) is the estimator of 𝜃. And variance can be estimated using Equation (6): 

𝑣𝑎𝑟(𝑑) = 𝐸[(𝑑 − 𝐸[𝑑]) 2] (6) 

In other words, it checks if the hypothesized relationships between variables are 

being accepted to describe a certain set of data. In our work, two types of validation 

were tested, holdout validation and K-fold cross-validation. 

In holdout validation, a part of the training data is being removed aside so that 

it can be used to get predictions from the model trained on the rest of the data. While in 

K-fold cross-validation, the dataset is divided into k-folds, and then the holdout method 

can be applied and repeated k times such that one k-fold is used as a test set for each 

time and the other k-1 folds form the training dataset. The choice of k is usually 5 or 

10, but there is no formal rule [31]. Figure 8 illustrates the schematic diagram of both 

holdout validation and k-fold cross-validation.  

After performing the validation and training the models, the resulted confusion 

matrices will be describing the accuracy, sensitivity, and specificity of each classifier.  
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Figure 8: Holdout validation and K-fold cross-validation [32]. 

 

Sensitivity measures the proportion of actual positive cases that got predicted 

as positive (or True Positive (TP)) using Equation (7), while specificity measures the 

proportion of actual negative cases, which got predicted as the negative (or True 

Negative (TN)) using Equation (8). Accuracy, on the other side, is defined as the 

number of correct predictions over the total number of predictions [33], which can be 

found using Equation (9): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

(8) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

(9) 

1.7. Problem Statement 

All industries in general and hospitals, in particular, should aim to use the 

appropriate maintenance strategy that ensures applying the right action at the right time 

to save time, efforts, and money. According to Mobley [2], maintenance is a huge part 

of any industry and it represents around 15% to 60% of the total cost. In the United 

States, industries are spending each year more than $200 billion on maintenance. 

Unfortunately, 33% of maintenance costs are due to improper and unnecessary 

maintenance actions. 
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Applying a PdM strategy can help in reducing unbeneficial maintenance actions 

and therefore reduce the wasted cost. This revolutionary approach can play a role key 

in improving the future of the healthcare industry; as compared to the traditional 

maintenance strategies implemented nowadays. Both RTF and PM strategies are 

showing an unsynchronized relationship with the fast-growing advanced technologies 

that demand continuous monitoring to prevent the error before it occurs.  

Following a strategy that collects real-time data enabled by IoT will reduce time 

and help in failure diagnosis. This will increase the availability of equipment which will 

improve customer satisfaction and reduce risks.  

This work proposes an IoT based maintenance approach that will take advantage 

of using the internet to help in monitoring and collecting data continuously. The work 

is carried out in collaboration with a local hospital- Sharjah, specifically in the 

laboratory department, where we had the chance to explore and check different 

machines and pick up the most suitable one for this study according to the proposed 

criteria. The proposed methodology will help in diagnosing the failures of machines 

which will have a positive impact on the hospital, patients, and industry. 

1.8. Thesis Objectives 

The objective of the research is to propose an IoT based approach to help 

medical equipment maintenance crew in diagnosis and failure prediction. Successful 

implementation of the proposed IoT approach will result in reducing both cost and 

repair time. Instead of purchasing all the spare parts for stock, the right planning will 

give industrial facilities enough time to order the spare parts or replacement at the right 

time. 

When using the IoT in the maintenance process, monitoring the health status of 

the system will allow the prediction and prevention of failures. Specifically, the use of 

IoT with the PdM can provide a complete solution for industries that are always trying 

to find the best and suitable methods to increase the end user’s satisfaction, reduce cost, 

time, efforts, and enhance the reliability of the system.  

In the IoT framework, not only the sensors and devices that are connected, but 

also the users and technicians who are responsible for the maintenance process will 

have access to the information continuously and therefore reducing their efforts.  
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The IoT with the help of the wireless network sensors will play a big role in 

making better decisions for scheduling the maintenance actions. 

1.9. Research Contribution 

The contribution of this research is proposing a methodology that is based on 

the use of PdM strategy and IoT to be implemented in healthcare facilities to determine 

the equipment's failures before their occurrence. Data on the vibration parameter from 

the equipment will be collected and then analyzed using the most appropriate model 

which will allow technicians to indicate early faults and have enough time to prepare 

and schedule for the maintenance action. The use of IoT will facilitate the task by 

sending the collected data from the equipment through the internet, which provides the 

ability for continuous monitoring of the equipment’s condition. The impact of this 

approach will be reflected in cost, time, efforts, and equipment’s lifetime. 

1.10. Thesis Organization 

The rest of the thesis is organized as follows: Related works of this research are 

discussed in Chapter 2. The method to be followed is discussed in Chapter 3. Chapter 

4 presents results and analysis. Finally, Chapter 5 concludes the proposal and outlines 

future work. 
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Chapter 2. Literature Review 

 

Literature is rich with research carried out in the area of medical equipment 

maintenance. In this chapter, the surveyed literature will be divided into the following 

sections: PdM, maintenance in healthcare, IoT and maintenance, fault diagnosis and 

prognostics, failure mode and effect analysis, and fault detection tool selection 

methods. 

2.1. Predictive Maintenance 

According to Selcuk et al. [34], the concept of PdM was introduced since around 

1940. However, at that time, experienced technicians used to depend on their senses of 

hearing, smelling, seeing and touching to figure out any sign that might be an indication 

of a problem. Nowadays, the concept of PdM has developed to replace the senses of 

humans used for failure detection, to the use of sensors. This strategy by many is 

considered to be the latest maintenance strategy.  

Generally speaking, the PdM strategy is responsible for collecting data to 

determine the right time to take the right action, not only predict failures, but improve 

the quality of the operating equipment, enhance safety, and increase reliability and 

availability. The basic three steps toward building a PdM program involves data 

acquisition, data processing, and decision making. Implementing such a strategy will 

have positive impacts on the product lifetime and quality, lead to higher levels of safety 

and reduced times of breakdown and emergencies which can threaten people’s lives 

[35]. 

Different PdM techniques can be applied to evaluate the condition of the 

equipment such as vibration, oil analysis, thermography, etc. Such techniques can be 

capable of detecting symptoms of defects and help in diagnosing these defects and 

determine their level of severity [35].  

Vibration analysis is one common technique that is used for rotating machinery. 

It assists in determining the mechanical and functioning condition of the machine. A 

very important advantage of this technique is the ability to detect the defects before 

they become very serious to the level where the system breaks down. If these analyses 

are done in the right way, technicians will be able to evaluate the equipment state and 
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prevent future failures. Generally, using this technique can give very early indications 

and in some cases even before months of the failure occurrence [36]. 

Real-time health monitoring of industrial components and systems that can 

detect, classify and predict impending faults is critical to reducing operating and 

maintenance costs. System condition is evaluated by processing the information 

gathered from controllers or sensors mounted at different points in the system, and 

maintenance is performed only when the failure/ malfunction prognosis indicates a 

potential failure instead of periodic maintenance inspections [37]. 

Garcia et al. [38] conducted a study on wind turbine gearbox involves using an 

intelligent system for PdM that is based on a software application that utilizes the 

collected data and information by sensors to detect any abnormality in the behavior of 

the system. Moreover, continuous real-time monitoring can help in estimating the 

health state of the gearbox and therefore scheduling the needed maintenance actions. 

 Susto [39] suggested that the rising need for reducing the number of downtimes 

and the number of costs associated with the traditional maintenance approaches are 

driving industries to adopt the PdM strategy. This study was performed on 

semiconductor manufacturing machines to test the effects of wear and tear associated 

with the usage and stress on the equipment part. A multiple classifier machine learning 

methodology was successfully implemented which enhanced the equipment 

performance and reduced the operating costs in comparison to PM and RTF approaches.   

Similarly, Abbasi [40] stated that performing PM strategy in the oil and gas 

industry is highly costing due to either over-maintenance actions or the unexpected 

downtimes of the machine. Therefore, applying PdM which is based on real-time 

monitoring to estimate the health condition of the equipment can predict future failures 

and avoid the unnecessary maintenance actions which reduce the costs. In Abbasi’s 

research, a user-friendly Graphical User Interface (GUI) was developed which is based 

on the multiple linear regression PdM technique to enhance the accuracy of future 

predictions. 

Maritime systems are operating in a very sensitive environment, where a 

breakdown can have very bad consequences that lie in the loss of revenues and high 

logistics charges due to remote locations. Tinga [41] has addressed this issue and 
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mentioned that PM approach has been useful in reducing the number of failures but still 

considered an expensive method in addition to the constraint of system availability 

every time the maintenance action needs to be performed. Alternatively, the prediction 

of failures using PdM will result in reducing the times of maintenance actions which 

will increase the availability and reduce costs associated. This study suggests that both 

data-driven prognostics and physics-based prognostics models can be used for better 

results of failure prediction.  

2.2. Maintenance in Healthcare 

Healthcare technology management involves having a maintenance program 

that considers the characteristics and failures of medical equipment. According to the 

different characteristics of old equipment and new equipment, different maintenance 

strategies have to be used to increase the efficiency of the maintenance program. 

Based on research work, Taghipour et al. [42] have proposed a multi-criteria-

decision-making model that prioritizes medical devices based on their criticality. 

Medical devices will be scheduled for maintenance in the maintenance management 

program according to the criticality score that will be determined using the previous 

model. Devices with lower scores will have lower priority in the maintenance 

management program, while those with higher scores will be studied in detail to 

determine the reasons behind their high criticality and therefore use the appropriate 

maintenance strategy. Based on the different classifications of devices, different 

maintenance strategies will be used. In this work, 26 medical devices were used to set 

up the model. 

According to Arunraj [43], the increase in the complexity and variety of medical 

equipment is a challenge that is affecting the maintenance management program, since 

different aspects need to be taken into considerations. These aspects include personnel 

and equipment safety, environmental compliance, and quality of services. 

Sezdi [44] on the other hand, suggested using the corrective approach for the 

old equipment and the use of the PM approach for the recent ones. This suggestion is 

based on considering the characteristics of medical devices to increase the efficiency of 

this maintenance management program. For PM, devices were subjected to safety tests. 

However, for PdM manufacturers’ recommendations were followed. 
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Sipos et al. [45] have compared the scheduled maintenance (PM) and PdM. 

Scheduled maintenance is being performed in a wide range to ensure the appropriate 

functionality of the equipment and therefore avoid unexpected failures. Most of the 

times each component is being scheduled for maintenance separately based on its usage 

or after a certain period time. However, this strategy seems to be labor-intensive and 

ineffective in identifying problems that develop between the technician’s visits. In 

contrast, PdM helps in predicting the time and the type of failure that might occur, by 

getting information regarding the condition of the medical equipment. This can be 

achieved by using sensors and mount them on the side of the equipment for the 

continuous monitoring of the equipment different parameters such as temperature and 

voltage. When the readings of the sensors exceed certain limits, a warning alert will be 

generated. Even though this approach can be effective, when it comes to in-service 

equipment it becomes impractical due to the infeasibility of adding sensors to the 

equipment and the need for many efforts and potentials. Instead, studying the logs of 

the equipment can give information about the condition, such as the error messages and 

internal states. These logs are generated by the software applications which operate the 

equipment. Analyzing the information can help in detecting potential problems in 

advance. 

2.3. IoT and Maintenance 

IoT is playing an important role nowadays in different industries, it is becoming 

a tool that facilitates maintenance actions. Bayoumi and McCaslin [46] used the PdM 

strategy as a tool that can be applied in different industries and users can be educated 

and trained to use it. The method starts with data collection using wireless sensors, then 

analyzing the data and modeling it using diagnostic and prognostic models to find out 

the Remaining Useful Lifetime (RUL). Finally, the information will be displayed for 

the technicians so that they can build up decisions related to the system status. To 

manage the data easily collected from the network sensors, cloud computing needs to 

be involved. Cloud computing will provide internet-hosted servers that will be able to 

store, manage, analyze the data and then share it across the whole network. This will 

give the user wide access to the database in which will help diagnose and generate 

reports. 
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They applied the method to general machinery. The test was done on gearbox 

by fitting temperature and vibration sensors into it. The data sensed was continuously 

compared with historical data stored already. After that, a thermal fault was introduced, 

and the temperature readings started to rise compared to normal readings. The fault 

model detected the fault and then alerted the user.  

Dong et al. [47] proposed a PdM system based on the integration of IoT to 

change and develop the traditional PM strategy used for coal mining equipment. The 

main reason for applying this system to increase the safety of the coal mining process. 

The system was composed of an equipment state monitoring station, a coal mining 

monitoring center, and a remote predictive system. Equipment state monitoring station 

communicates with the coal mining monitoring center using a wireless network. Mining 

monitoring center receives the data of different parameters from the equipment 

monitoring station then data to be analyzed by the remote predictive system. After that, 

the information is stored in the database for evaluation, generating workloads, and 

creating reports. Engineers and technicians will be able to access the information in the 

predictive system and then they can check the state of the various devices and compare 

it with historical data and therefore predict faults. In this research, mining ventilator 

equipment was used as an example. 

The global market of PdM is booming as the dependency on big data and IoT is 

rising [48]. One of the most valued applications of IoT is PdM. According to market 

research future report [49], it is expected that the global PdM market will grow at 6.3 

billion dollars by 2022 and at 27% of Compound Annual Growth Rate (CAGR). With 

the introduction of IoT, PdM usage among manufacturing companies is expected to 

grow up to 83% in the coming two years [50]. Among its current deployment, the CXP 

Group report showed that 91% of PdM manufacturers reordered a reduction in repair 

time and unplanned downtime. Another report done by PWC reveals that PdM is 

expected to reduced cost by 12%, increase uptime by 9%, reduce safety, health, 

environment, and quality risks by 14% and extend the lifetime of an asset by 20% [49]. 

With the introduction of 5G, the global IoT market is growing rapidly as it 

assists businesses in optimizing the current operations and creates new models. In the 

following, some forecasts and market estimates of IoT are described. According to 

International Data Corporation (IDC), the IoT worldwide technology spending is 
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expected to reach 1.2 trillion US dollars in 2022 and a CAGR of 13.6% over the 

forecasted period 2017-2022. The leading sectors for IoT spending growth are 

consumer, insurance and healthcare provider industries. Bain Company anticipates IoT 

combined market to grow about 520 Billion US dollars in 2021 which is double the 

spent in 2017 [51]. According to IoT analytics, the global IoT market is anticipated to 

grow at 39% CAGR over the forecasted period 2017- 2025 [51]. 

IoT in the healthcare industry is gaining an increasing momentum due to its 

unlimited applications resulting in enhancing the quality of the industry and the 

satisfaction levels of patients. Hospitals, for example, are putting great effort into 

applying IoT technology so doctors can monitor their patients; by using the wireless 

and sensing techniques, costs will be reduced, and work will be done efficiently.  

Another area of application is to enable technicians and engineers to monitor the 

medical devices continuously, helping in their management to maintain high-level 

performance anytime and anywhere [52].  

Monitoring Electrocardiogram (ECG) signals using IoT is one application 

where sensors will collect the heart rhythm signals from patients then send them 

through the internet to the central station, so doctors and nurses can view the 

information and monitor the patients continuously. Several studies have discussed this 

approach [53], [54], [55], [56], [57]. 

Nurdin [52] model was made of ECG hardware, transmission module based on 

Zigbee and web server for data storage and web application. The ECG signal was 

recorded from the patients using an ECG machine with the help of the disposable 

electrodes that will convert the ionic current in the patient’s body into an electronic 

current, and then raw data was sent serially to the computer server using Zigbee. The 

data will be used for diagnosis and treatment, Figure 9 is displaying graphic samples of 

two patients. Doctors will be able to evaluate the measured signals and detect the 

abnormalities. 

The testing results in Figure 10 are showing that the system can handle up to 20 

users without errors. Meanwhile for 50 – 150 users some errors occurred due to 

insufficient bandwidth or high data traffic on the server.  Nurdin [52] suggested 

increasing the capacity of the server to handle more users. 
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Figure 9: Testing results [33]. 

 

 

Figure 10: ECG graphic samples for two patients [33]. 

 

2.4. Fault Diagnosis and Prognostics 

When it comes to fault diagnosis methodologies, three common approaches can 

model the degradation cycle of an asset and estimate its RUL. The approaches are data-

driven, physics-based, and hybrid approaches as illustrated in Figure 11 [58], [59].  
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Figure 11: Prognostics approaches [60]. 

 

 In a data-driven prognostics approach, a previously collected data is being used 

to understand and identify the properties of the progress of the damage and therefore 

predict the future state without the need to use a real physical system or model. Based 

on the obtained data under various conditions, suitable mathematical models can be 

employed [60]. Since the various approaches of the data-driven model depend on the 

trend of the data, they can be very useful in predicting the near-future trends. 

As shown in Figure 11, the data-driven approaches can be divided into two main 

categories. The first category is the artificial intelligence (AI) approaches which include 

neural network (NN) [61], [62], 63] and fuzzy logic [64], [65]. While the second 

category is the statistical approaches that include Gaussian process (GP) regression 

[66], SVM [67], [68], least squares regression [69], the gamma process [70], the Wiener 

processes [71], and hidden Markov model [72]. 

Physics-based prognostics approach involves monitoring a certain physical 

model in normal and abnormal conditions using hardware systems and sensors to obtain 

the damage progress and estimate the RUL. The RUL is predicted by progressing the 

damage state until it reaches a threshold as indicated by the dashed curves in Figure 12 

[60]. 
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Figure 12: Physics-based prognostics [60]. 

   

The hybrid prognostics approach is composed of the two above mentioned 

approaches to enhance the prediction performance and allows better RUL prediction. It 

implies the advantages of the two previous approaches; precision and applicability [73]. 

2.5. Failure Mode and Effect Analysis (FMEA) 

A step-by-step and systematic approach that was generated first in the 1940s by 

the U.S. military. It is considered to be a risk assessment tool in which can be used to 

identify all the possible failures for a certain design, product or equipment.  

After that, multiple factors are taken into account to evaluate the equipment 

such as severity, occurrence and risk detectability as shown in Table 1. Such factors 

assist in classifying and prioritizing the different failure modes and help in coming up 

with actions that mitigate the risk [74]. 
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Table 1: Failure mode and effect analysis (FMEA) [75]. 

Ranking Severity Occurrence Detectability 

1 No effect 

Remote: Failure 

is unlikely <1 in 

150,000 

Design control will detect 

potential cause or the 

mechanism and subsequent 

failure mode 

2 

System operable 

with minimal 

interference 

Low: Relatively 

few failures <1 

in 150,000 

Very high chance the design 

control will detect potential 

cause or the mechanism and 

subsequent failure mode 

3 

System operable 

with some 

degradation of 

performance 

Low: Relatively 

few failures <1 

in 15,000 

High chance the design control 

will detect potential cause the 

mechanism and subsequent 

failure mode 

4 

System operable 

with significant 

degradation of 

performance 

Moderate: 

Occasional 

failures <1 in 

2000 

Low chance the design control 

will detect potential cause the 

mechanism and subsequent 

failure mode 

5 
System inoperable 

with no damage 

Moderate: 

Occasional 

failures <1 in 

400 

Moderate chance the design 

control will detect potential 

cause the mechanism and 

subsequent failure mode 

6 

System inoperable 

with minor 

damage 

Moderate: 

Occasional 

failures <1 in 80 

Low chance the design control 

will detect potential cause the 

mechanism and subsequent 

failure mode 

7 

System inoperable 

with equipment 

damage 

High: Repeated 

failures <1 in 20 

Very low chance the design 

control will detect potential 

cause the mechanism and 

subsequent failure mode 

8 

System inoperable 

with destructive 

failure without 

compromising 

safety 

High: Repeated 

failures <1 in 8 

Remote chance the design 

control will detect potential 

cause the mechanism and 

subsequent failure mode 

9 

Very high severity 

ranking when a 

potential failure 

mode affects safe 

system operation 

with warning 

Very high: 

Failure is almost 

inevitable <1 in 

3 

Very remote chance the design 

control will detect potential 

cause the mechanism and 

subsequent failure mode 

10 

Very high severity 

ranking when a 

potential failure 

mode affects 

operation without 

warning 

Very high: 

Failure is almost 

inevitable <1 in 

2 

Design control cannot detect 

potential cause the mechanism 

and subsequent failure mode 
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2.6. Fault Detection Tool Selection Method 

Numerous algorithms are being used to process signals, classify, and validate 

them as described in Table 2.  

Table 2: Characteristics of commonly used algorithms [87]. 

Algorithm What is it used for? Advantages Disadvantages 

Fourier 

Transform 

[88], [89] 

• To represent a 

waveform in the 

frequency domain. 

• It decomposes or 

separates the 

waveform into a sum 

of sinusoids of 

different frequencies. 

• Appropriate for 

stationary 

signals. 

• Presents signal 

with good 

spectrum 

resolution. 

• Lack of 

temporal 

information. 

• Not appropriate 

for non-

stationary 

signals. 

Principal 

Component 

Analysis 

(PCA) [90], 

[91], [92], 

[93] 

• To reduce the 

dimensionality by 

transforming the 

original features into 

a new set of 

uncorrelated 

features. 

• Reduces multi-

dimensional 

data sets to 

lower 

dimensional 

data sets. 

• Its performance 

varies for 

different 

applications. 

• Linear 

transformation. 

Support 

Vector 

Machine 

(SVM) [94], 

[95], [96], 

[97] 

• To project feature 

space into a higher 

dimensional space by 

a kernel function. 

• To find an optimized 

separation 

hyperplane in the 

projected space to 

maximize the 

decision boundary. 

• Achieves better 

decision 

accuracy in 

special cases 

because of the 

maximized 

decision 

boundary. 

• Efficient for a 

large dataset and 

real-time 

analysis. 

• No standard 

method to 

choose the 

kernel function 

which is the key 

process for 

SVM. 

Decision 

Trees [98], 

[99], [100], 

[101] 

• Classify data item by 

starting at the root 

node of the tree and 

following the 

assertions down until 

reaching a terminal 

node (leaf of tree). 

• A special form of a 

rule set, 

characterized by the 

hierarchical 

organization of rules. 

• Good 

visualization, 

easy 

interpretation 

and quick 

analysis ability 

for decision 

making. 

• Need high-level 

experience and 

knowledge to 

formulate the 

tree structure. 
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The most common algorithms for signal processing and classifications were 

summarized in Table 2 along with the various applications, in addition to their 

associated advantages and disadvantages when it comes to the field of selecting the best 

method for fault detection. 

Kulkarni et al. [76] discussed a machine learning-based method to overcome 

problems related to refrigerates and cold-storage systems. In such environments, 

temperature and defrost readings are needed. To detect any future presence or absence 

of any problem in a certain refrigeration case in a certain time, the extracted features to 

learn a random forest-based binary classifier are used. The data used in this approach 

was for 2265 refrigeration cases across seventeen supermarkets with a precision of up 

to 89%.  

A study conducted by Konar [77], on bearing fault detection scheme of three-

phase induction motor where SVM was used to analyze the frame vibrations during 

start-up. Results showed that SVM classifier gave excellent result since it is very simple 

and easy to implement compared to Artificial Neural Networks (ANN) based approach 

which requires an exhaustive task of trial and error process for determining the most 

optimum model.  

In [78], Chen et al. developed an SVM model to improve the efficiency of 

equipment in a thermal power plant. The proposed model integrates a dimension 

reduction scheme to analyze the failures of turbines in thermal power facilities. Also, a 

real case was provided from a thermal power plant to evaluate the effectiveness of the 

proposed SVM based model. Experimental results showed that SVM outperforms 

Linear Discriminant Analysis (LDA) and Back-propagation Neural Networks (BPNN) 

in classification performance. 

Another study done by Hu [79] presents a novel method for fault 

diagnosis based on an Improved Wavelet Package Transform (IWPT), a distance 

evaluation technique and the SVM. The optimal features are input into the SVM to 

identify the different abnormal cases. The proposed method is applied to the fault 

diagnosis of rolling element bearings, and testing results showed that the SVM can 

reliably separate different fault conditions and identify the severity of incipient faults, 

which has a better classification performance compared to the single SVM. 
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A published paper by Ye Zhao et al. [80] showed that because of the non-linear 

output characteristics of photovoltaic arrays, a variety of faults may be difficult to detect 

by conventional protection devices. To detect and classify these unnoticed faults, a fault 

detection and classification method has been proposed based on decision trees. In 

experimental results, the trained decision tree models have shown a high accuracy of 

fault detection and fault classification on the test set.  

Based on Sun [81], data mining technology was introduced to the rotating 

machinery fault diagnosis field and the decision tree was proposed to make fault 

diagnosis of rotor faults. PCA was used to reduce features after data 

collection, preprocessing and feature extraction. Then, the decision tree was trained by 

using the samples to generate a decision tree model with diagnosis knowledge. The 

result showed that the decision tree and PCA-based diagnosis method has higher 

accuracy and needs less training time than BPNN. 

According to Huang et al. [82], the main criterion to evaluate and compare the 

classification’s algorithms in terms of their predictive performance is the prediction 

accuracy percentage. 

One study conducted by [83] in image classification area has used two 

classifiers, SVM and decision trees, to investigate a new approach in this field. SVM 

types that were used are linear, polynomial, and Gaussian. The overall accuracy of the 

SVM showed higher percentages (73%) in comparison to the decision trees algorithm 

(69%), which indicates a better image classification when using the SVM algorithm. 

In [84], Mayasari compared the performance of SVM and decision tree methods 

in predicting graduation time. Results revealed that the decision tree algorithm 

outperforms SVM in terms of computing speed. However, both methods showed a 

balanced level of accuracy.  

Authors in [85], conducted a comparative study of machine learning algorithms, 

SVM, K-Nearest Neighbors (KNN), and decision tree to predict student’s performance. 

Initially, the data was collected, and then the three models were built, to perform the 

comparison and evaluation analysis. Results showed that SVM has the highest 

prediction accuracy of 95%, while the decision tree has 93% and KNN has a 92% 

prediction accuracy value. 
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Huang et al. [86], assessed the use of SVM for high dimensional data sets for 

land cover classification from satellite images. SVM was analyzed and compared with 

other classifications which are the Maximum Likelihood Classification (MLC), NN, 

and decision tree classifiers. The comparison was made based on accuracy, stability, 

and training speed criteria. Comparing the four algorithms, results showed that SVM is 

more accurate and stable than the other classifiers. Out of the 24 training cases, 22 cases 

revealed that SVM has higher accuracy than the decision tree. In terms of investigating 

the impact of selecting training samples, all four classifiers were affected.  

The literature and previous studies reveal that the implementation of an IoT-

based predictive approach is yet to be explored especially in the healthcare industry. 

This was the main motivation for our present study. In this study, we propose an IoT-

based PdM strategy using a machine learning approach. Chapter 3 well details about 

the methods used for implementing this study.  
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Chapter 3. Methodology 

 

Figure 13 outlines the proposed approach for managing and optimizing medical 

equipment maintenance using IoT based structure. The steps that will be followed to 

deal with the problem are discussed as follows: 

 

 

Figure 13: Methodology steps 

  

3.1. Review Maintenance Logs and Collect Failure-related Information 

The first step towards building the methodology is reviewing incidents and 

maintenance orders log for medical equipment. This step will give a better idea 

regarding the issues that arise in the equipment and will allow us to track the 

maintenance history of each asset. Thus, we can collect fault data, the number of 

failures, time to repair, and cost to repair related to some equipment. 

Step 1:
• Review maintenance logs and collect failure related

information.

Step 2: • Equipment criticality assessment criteria.

Step 3: • Develop FMEA for the critical equipment.

Step 4: • Determine the most appropriate maintenance strategy.

Step 5: • Needed feature for fault detection.

Step 6: • Collect sensor data.

Step 7: • Feature extraction.

Step 8: • Feature selection.

Step 9: • Determine best classification method.

Step 10: • Evaluate economic feasibility of IoT solution.



40 

 

3.2. Equipment Criticality Assessment Criteria 

The purpose of this step is to figure out the equipment with the highest negative 

potential consequences on business performance. Determining the criticality of 

equipment can be achieved by finding out failure occurrence, usage, and equipment 

importance. Based on these criteria the medical equipment will be selected for the 

study. 

3.3. Failure Modes  

FMEA is the tool that will be developed for the critical equipment to discover 

and identify the associated failure modes and their effect on the functionality of the 

equipment, and thus the corresponding needed actions to fix the problem. This will help 

in ranking the issues in terms of their importance so that corrective actions can be 

performed. Choosing the most critical failure mode will be done through finding the 

Risk Priority Number (RPN) which is the measure for assessing the risks associated. 

RPN can be calculated by multiplying the severity, occurrence, and detectability, and 

the failure with the highest RPN will be the most critical one. 

3.4. Determine the Most Appropriate Maintenance Strategy 

Based on the failure modes and the nature of the equipment that needs to be 

taken into consideration, we will determine the most appropriate maintenance strategy 

to follow, whether it is PM, PdM, or RTF, that will have the highest impact in terms of 

costs, efforts, and personnel safety. 

3.5. Needed Feature for Fault Detection 

For predictive failure modes, determine based on physics, the needed feature 

for fault detection and the method to collect data for this feature. Examples of features 

are voltage, current, or vibration. 

3.6. Data Collection 

The following step towards building a PdM approach is data collection through 

using sensors mounted on the device.  A Wireless Sensor Network (WSN) consists of 

sensor nodes, each of which is equipped with a radio transceiver, a small 

microprocessor, and several sensors can be used. These nodes can autonomously form 

a network through which sensor readings can be propagated. Since the sensor nodes 

have some intelligence, data can be processed as it flows through the network. 
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3.7. Signal Processing and Features Extraction 

Signal pre-processing is aiming to enhance the characteristics of the signals, 

which might lead to easier extraction of the useful information related to the condition 

that is being monitored and even more efficient. The tools that can be used in this step 

may involve signal filtering, amplification, correlation, and compression to reduce 

artifacts and noise levels for a better quality of the signals. Extracting features from the 

pre-processed signals is then performed which can be an initial indicator for a fault or 

failure [102]. 

3.8. Feature Selection 

After extracting the features from the signals, features selection which involves 

selecting the most significant and contributing features can be performed using PCA. 

In some cases, where the selection of significant features is not applicable, PCA can be 

used to describe around 90% of the extracted features using principal components that 

were described previously in Chapter 1. 

Correlation is another tool that can be used for features selection. In such a case 

where more than one sensor is used, a correlation between the sensors can be applied 

to determine their relationship, if they are correlated, then we can select one of them 

and drop the other.  

3.9. Classification 

Different models can be used to analyze, and classify the data, therefore predict 

the future status of the component or system. For example, the logistic regression model 

is used to determine whether an observation is falling in the safe range or critical range.  

Historical data with this model will be needed to create the initial model which will be 

able to detect the failure. This will be done by comparing the real-time data with the 

historical data to detect if there is any abnormal change that might lead to failure. 

Different statistical models will be considered for this work such as SVM and decision 

trees. Based on the accuracy percentages, the best classifier will be determined. 

3.10. Economic Feasibility of IoT Solution 

By connecting the sensor network to existing network infrastructure such as the 

global Internet, a local area network, or a private intranet, gaining remote access to the 

sensor network is straightforward. Dealing with signals coming from sensors can be 
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done and data analysis is then performed that allows the technicians and engineers to 

monitor the condition of the system continuously. 

After proposing our system, a cost/ benefit analysis will be performed to 

estimate the costs and revenues of implementing the PdM system by taking into 

considerations all the requirements that are needed for applying the system. The 

proposed approach will be demonstrated using medical equipment of a local hospital.   
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Chapter 4. Results and Analysis 

 

In this chapter, the experimental results and analysis of implementing the 

predictive approach are discussed, in addition to the costs and benefits of the proposed 

approach. 

4.1. Review Maintenance Logs and Collect Failure-related Information 

In collaboration with a local hospital- Sharjah, they were able to provide us with 

the most failing machines in the hospital in addition to the total breakdowns of these 

machines for the years 2015, 2016, and 2017 as shown in Table 3. Besides, the 

maintenance log of the machine is described in Table 4, Table 5 and Table 6.  The 

minimum time taken to fix a failure is around one day, and the opportunity cost for one 

failure is around AED 10,000 per day. 

 

Table 3: Most failing medical machines in the local hospital. 

# Equipment Name Department 

Total 

Breakdown 

2015 

Total 

Breakdown 

2016 

Total 

Breakdown 

2017 

1 

Vitros 

Immunoassay 

Analyzer 

Laboratory 17 14 14 

2 

Integra 400 Plus 

Biochemistry 

Analyzer 

Laboratory 16 14 13 

3 
Modular Auto 

Analyzer 
Laboratory 15 15 9 

4 

Sysmex 

Hematology 

Analyzer 

Laboratory 7 7 6 

5 

Elite Pro 

Coagulation 
Analyzer 

Laboratory 10 8 1 

 

4.2. Equipment Criticality Assessment Criteria 

Among the previous machines which are working in the laboratory department 

24/7, we have chosen Vitros Immunoassay Analyzer as shown in Figure 14 for our 

work since it is the most failing equipment in the laboratory department. The Vitros 

analyzer is immunodiagnostic equipment which is responsible for performing several 

medical blood tests such as HIV, BHCG, and Hepatitis.  
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Figure 14: Vitros Immunoassay Analyzer. 

 

4.3. Failures Criticality Analysis 

After monitoring the equipment for three months we were able to identify the 

failure modes associated which are explained in Table 7.  

We found that most failures are due to the mechanical movements of the parts. The 

most failing and critical part selection was based on the highest RPN score.  

The most failing part was called the sample-metering arm as shown in Figure 

15 which is responsible for drawing a certain amount of the sample from the sample 

tube through a cup, then mixing it with a specific reagent inside the incubator based on 

the requested test.  
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Table 4: Maintenance log. 

Description 
Number of 

occurrences 

Probability 

% 

Fault 

mode 

Probability 

% based on 

fault mode 

Action taken 

Luminometer voltage/ temperature/ 

data is out of range 
5 12.20 Electrical 

46.34 

Clean the sensors, check the power 

supply, recalibration 

Reagent washing probe verification 

is outside acceptable limits 
1 2.44 Electrical 

Replace the pump if it is not 

functioning properly 

The washing well temperature is 

out of range 
1 2.44 Electrical 

Monitor the environmental 

temperature and replace fluid heater 

if necessary 

Sample- metering arm is not 

reaching home location, motor flag 

failure 

10 24.39 

Electrical/ 

Wear and 

Tear 

Make sure door lock switch is 

locked, check the sample- metering 

probe if blocked using a syringe, if 

it is not working then replace the 

probe, re-adjust the belt 

4
5
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Table 5: Continue- Maintenance log. 

Description 
Number of 

occurrences 

Probability 

% 

Fault 

mode 

Probability 

% based on 

fault mode 

Action taken 

Reagent metering performance is 

outside acceptable limits 
2 4.88 

Electrical/ 

Wear and 

Tear 

 

Check reagent metering liquid level 

sensor and replace it if it is not 

functioning, check the reagent 

metering probe if blocked using a 

syringe, if it is not working then 

replace the probe 

The inner ring is not reaching 

home/ washing well 
4 9.76 Mechanical 

46.34 

Check the solid waste container if 

full then it needs to be emptied, 

reagent cups are stuck inside and 

need to be removed 

Reagents loading is not working 2 4.88 Mechanical 
Take out all reagents then reload 

them 

Luminometer shuttle is not closing, 

the inner ring is not reaching the 

washing well 

2 4.88 Mechanical 
Check the position of the shuttle 

using a special tool 

 

4
6
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Table 6: Continue- Maintenance log.  

Description 
Number of 

occurrences 

Probability 

% 

Fault 

mode 

Probability 

% based on 

fault mode 

Action taken 

Incubator shuttle is not reaching 

home location, water is leaking 

from bottom 

1 2.44 Mechanical 

 

Clean the sensors and check the 

position of the incubator shuttle using 

a special tool 

Reagent shuttle is not moving 1 2.44 Mechanical 
Replace the packed shuttle if broken 

or bent 

Unable to move the reagent 

metering pump 
2 4.88 Mechanical 

Check the pump and replace it if it is 

not working 

Unable to meter the sample fluid 7 17.07 

Mechanical

/ Wear and 

Tear 

Check the sample- metering probe if 

blocked using syringe, if it is not 

working then replace the probe 

Calibration error 1 2.44 Software 

7.32 

Recalibration 

The machine is not taking 

bidirectional commands 
1 2.44 Software 

Check the lab computer configuration, 

and check the communication cable 

The incubator is filled with dust 1 2.44 
Wear & 

Tear 
Clean filter 

The total number of faults: 41     

4
7
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Table 7: FMEA.  

# Function Failure Mode Severity Occurrence Detectability RPN 

1 
Sample-

metering arm 

Sample- metering arm is not reaching home location, motor 

flag failure 
4 5 3 60 

Unable to meter the sample fluid 5 4 3 60 

2 Luminometer 

Luminometer voltage/ temperature/ data is out of range 3 3 2 18 

Luminometer shuttle is not closing, the inner ring did not reach 

the well 
3 2 2 12 

3 Incubator 

Incubator shuttle is not reaching home location, water leaking 

from bottom 
3 3 3 27 

Incubator filled with dust 1 1 2 2 

4 Reagent 

Reagent washing probe verification is outside acceptable limits 3 3 2 18 

Reagent metering performance is outside acceptable limits 3 2 2 12 

Reagents loading is not working 1 3 1 3 

Reagent shuttle is not moving 2 2 1 4 

Unable to move the reagent metering pump 2 2 3 12 

5 Well 
The washing well temperature is out of range 3 2 2 12 

The inner ring is not reaching home/ washing well 2 3 1 6 

4
8
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Four failure modes associated with the sample- metering arm which are: tube 

blockage, presence of air pressure in the tube, blockage in the sample-metering arm 

pump, and finally, wear and tear of the belt. We have started with the wear and tear of 

the belt which causes the belt to become loose due to the continuous use and movement 

of the sample-metering arm.  

4.4. Determine the Most Appropriate Maintenance Strategy 

To diagnose the failure related to the belt, we had to apply the predictive 

approach through collecting data from sensors being mounted on this part, but due to 

the hospital’s regulations and restrictions we were not allowed to do any modification 

on any machine, so we had to simulate this part in our university lab using a 3D printer 

that had a similar part to the one shown in Figure 15. 

4.5. Needed Feature for Fault Detection 

Referring back to Figure 4 where we have the P-F curve, it shows that vibration 

signals are among the first ones to indicate the deterioration of the equipment. Besides, 

Figure 15: Sample- metering arm. 
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after studying the functionality of the machine we found that vibration signals are 

needed to be collected based on the nature of our part of interest.  

4.6. Vibration Data Collection 

Accordingly, two accelerometer sensors as shown in Figure 16 were mounted 

on the 3D printer to collect vibration signals for 30 repetitive cycles; which are 

considered to be healthy profiles of the extruder part that is attached to a belt.  

After the collection of the 30 healthy profiles, we had to tighten the belt as 

shown in Figure 17 and recollect the vibration signals for 20 cycles that are considered 

now to be the faulty profiles. As a result, we had 50 profiles in total for each sensor 

where 30 profiles are healthy, and 20 profiles are faulty. Figure 18 and Figure 19 

illustrate the vibration signals in the time domain for 8 seconds for the first and the 

second sensor respectively of both healthy, faulty, and both combined. 

 

 

Figure 16: 3D printer used for simulation. 
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4.7. Signal Processing and Features Extraction 

Following the collection of the data, signals processing step is then performed 

in order to extract the useful information. Vibration signals were collected in the time 

domain, so we had to transform them into the frequency domain using the Fast-Fourier 

Transform (FFT) algorithm. This step provides a better extraction of the features since 

it is easier to interpret signals in the frequency domain. Using FFT enhances the Signal-

to-Noise (SNR) ratio which measures the strength of the desired signal in comparison 

to the background noise. A high SNR means more reduction in the noise of the collected 

signals. Moreover, since the properties of the process that generates the signals do not 

change in time, then the process is stationary which makes the FFT a powerful and 

useful tool to be used in our case. 

MATLAB software was used to process the signals and display them. Figure 20 

and Figure 21 are illustrating the vibration signals in the frequency domain of an 

interval of 500 Hz for the first and the second sensor respectively of both healthy, faulty, 

and both combined. 

 

Figure 17: Extruder belt after being tightened. 
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Figure 19: Sensor 2- Vibration signals in the time domain for 

healthy, faulty, and both combined. 

Figure 18: Sensor 1- Vibration signals in the time domain for 

healthy, faulty, and both combined. 
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Figure 21: Sensor 2- Vibration signals in the frequency domain 

for healthy, faulty, and both combined. 

Figure 20: Sensor 1- Vibration signals in the frequency domain 

for healthy, faulty, and both combined. 
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Following the FFT, features extraction step was performed using 17 different 

features that were extracted from each frequency domain profile of the healthy and 

faulty measurements of the two sensors. Table 8 and Table 9 below summarize the 

extracted features and their formulas respectively where xi represents the signal. 

According to previous studies, some features such as Root-Mean-Square (RMS), 

standard deviation, and variance were used most of the time to differentiate between 

vibration signals in addition to more advanced features such as skewness and kurtosis 

that can be used with stationary signals [103].  

  

Table 8: Features extracted from the vibration signals in the frequency domain. 

# Feature Name Formula References 

1 RMS 𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2
𝑁

𝑖=1
 

 

[103], [104], 

[105] 

2 Mean 𝑀𝑒𝑎𝑛 (𝜇) =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
 [104] 

3 Skewness 𝑆𝑘 =
∑ (𝑥𝑖 − 𝜇)3𝑁

𝑖=1

(𝑁 − 1)3
 

[103], [104], 

[105] 

4 Kurtosis 𝐾𝑢 =
∑ (𝑥𝑖 − 𝜇)4𝑁

𝑖=1

(𝑁 − 1)4
 

[103], [104], 

[105] 

5 Peak to peak 𝑃2𝑃 = 2√2 𝑅𝑀𝑆 [104] 

6 Standard deviation 𝑆𝐷(𝜎) = √2 [104] 

7 Crest factor 𝐶𝐹 =
𝑚𝑎𝑥|𝑥𝑖|

𝑅𝑀𝑆
 [103], [104] 

8 Shape factor 𝑆𝐹 =
𝑅𝑀𝑆

|𝜇|
 [103], [104] 

9 Impulse factor 𝐼𝐹 =
𝑚𝑎𝑥 (𝑥𝑖)

|𝜇|
 [104] 

10 Margin factor 
𝑀𝐹 =

𝑚𝑎𝑥 (𝑥𝑖)

(
1
𝑁

∑ √|𝑥𝑖|
𝑁
𝑖=1 )

2 
[104] 
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Table 9: Continue- Features extracted from the vibration signals in the frequency 

domain. 

# Feature Name Formula References 

11 Median 𝑀𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 [106] 

12 Maximum 𝑀𝑎𝑥 = 𝑚𝑎𝑥 (𝑥𝑖) [107] 

13 Minimum 𝑀𝑖𝑛 = 𝑚𝑖𝑛 (𝑥𝑖) [107] 

14 Mode 𝑀𝑜𝑠𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡 [108] 

15 Variance 𝑉𝑎𝑟(2) =
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1

(𝑁 − 1)2
 

[103], [104], 

[105] 

16 Range 𝑅 =  𝑚𝑎𝑥 (𝑥𝑖) − 𝑚𝑖𝑛 (𝑥𝑖) [107] 

17 Energy 𝐸 = ∑ |𝑥𝑖|
2

𝑁

𝑖=1
 [109] 

 

4.8. Features Selection 

After extracting the 17 features from the 50 profiles, PCA and correlation 

techniques can be used to check the possibility of reducing the number of features or 

reducing the number of the sensors that are used without losing information. 

4.8.1.  PCA. We applied the PCA to transform the set of correlated features 

that we extracted previously, into a set of linearly uncorrelated variables which are the 

principal components. Figure 22 and Figure 23 correspond respectively to the scree 

plots for the PCA analysis of sensor 1 and sensor 2.   

 

Figure 22: Scree plot for extracted features of sensor 1. 
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In the scree plot of sensor 1, the first 3 principal components account for 

approximately 92% of the total variance, while in the scree plot of sensor 2, the first 3 

principal components account for approximately 90% of the total variance. An example 

of the variables that correlate the most with the first Principal Component (PC1) of 

sensor 1 is Mean (0.316), RMS (0.308), Median (0.307), and Energy (0.3607). 

In our case, the performed PCA did not result in reducing the number of 

features, since all the principal components till number 16 were combinations of all the 

features, which means that we will be using them all in the classifications. 

4.8.2.  Correlation. It is a statistical procedure that measure whether pairs of 

variables are strongly related or not. After obtaining the values of the extracted features, 

we applied a correlation to these values that correspond to sensor 1 and sensor 2 to see 

the relationship between the two sensors.  

Table 10 displays Pearson’s correlation coefficients for the 30 healthy profile 

which measures the strength of the linear relationship between the two sensors, while 

Table 11 displays Pearson’s correlation coefficients for the 20 faulty profile.  

The correlation coefficients have shown a positive correlation between the two 

sensors, which in turn proves that one sensor is enough for collecting the data instead 

of using two sensors. This will have a positive impact on reducing the total cost that is 

associated with implementing the IoT-based PdM approach.  

 

Figure 23: Scree plot for extracted features of sensor 2. 
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Table 10: Pearson's correlation coefficients for healthy profiles. 

Healthy profile number Pearson’s correlation coefficient 

Profile 1 0.576 

Profile 2 0.628 

Profile 3 0.509 

Profile 4 0.673 

Profile 5 0.667 

Profile 6 0.692 

Profile 7 0.744 

Profile 8 0.662 

Profile 9 0.705 

Profile 10 0.719 

Profile 11 0.609 

Profile 12 0.686 

Profile 13 0.605 

Profile 14 0.759 

Profile 15 0.630 

Profile 16 0.551 

Profile 17 0.416 

Profile 18 0.537 

Profile 19 0.533 

Profile 20 0.470 

Profile 21 0.622 

Profile 22 0.449 

Profile 23 0.531 

Profile 24 0.441 

Profile 25 0.658 

Profile 26 0.280 

Profile 27 0.653 

Profile 28 0.488 

Profile 29 0.533 

Profile 30 0.431 
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Table 11: Pearson's correlation coefficients for faulty profiles. 

Faulty profile number Pearson’s correlation coefficient 

Profile 1 0.512 

Profile 2 0.478 

Profile 3 0.486 

Profile 4 0.691 

Profile 5 0.473 

Profile 6 0.629 

Profile 7 0.705 

Profile 8 0.708 

Profile 9 0.665 

Profile 10 0.785 

Profile 11 0.736 

Profile 12 0.738 

Profile 13 0.758 

Profile 14 0.688 

Profile 15 0.661 

Profile 16 0.645 

Profile 17 0.642 

Profile 18 0.685 

Profile 19 0.596 

Profile 20 0.716 

  

4.9. Validation and Modelling 

Before training the classifiers, we need to test the different validation methods. 

For our case, we tested the holdout validation and the k-fold cross-validation.  
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Table 12 summarizes the used classifiers and their accuracy percentages for the 

first and second sensors respectively using holdout validation of 20% of the data being 

held for validation, and the k-fold cross-validation of 5 folds. The accuracy percentage 

of classifiers using holdout validation is the average of the accuracy percentage for each 

iteration.  

Table 12: Accuracy percentages of the classifiers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 By observing the  the results that were obtained for sensor 1 and sensor 2, we can 

see that for sensor 1, linear SVM in both holdout and cross-validation has obtained 

higher percentages of accuracy. Figure 24 shows the confusion matrix of the linear 

SVM using holdout validation, while Figure 25 shows the confusion matrix of the linear 

SVM using cross-validation. 

 

Classifier 

Holdout K-fold 

Sensor 1 Sensor 2 Sensor 1 Sensor 2 

Fine Tree 90% 70% 94% 80% 

Medium 

Tree 
90% 70% 94% 80% 

Linear 

SVM 
100% 90% 96% 82% 

Quadratic 

SVM 
90% 90% 94% 84% 

Cubic 

SVM 
100% 80% 92% 78% 

Fine 

Gaussian 

SVM 

90% 90% 94% 84% 
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On the other hand, for sensor 2 it was found that quadratic SVM and fine 

gaussian SVM have achieved the highest accuracy percentages using holdout validation 

and cross-validation. The confusion matrices for both models using holdout and cross-

validations are shown in Figure 26, Figure 27, Figure 28, and Figure 29 respectively. 

After comparing the accuracy results, we can see that the SVM classifier achieved 

higher accuracy compared to decision trees. 

Figure 24: Confusion matrix of the linear SVM model using holdout validation. 

Figure 25: Confusion matrix of the linear SVM model using cross-validation. 
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Figure 26: Confusion matrix of the quadratic SVM model using holdout validation. 

Figure 27: Confusion matrix of the quadratic SVM model using cross-validation. 

Figure 28: Confusion matrix of fine Gaussian model using holdout validation. 
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When it comes to comparing holdout validation and cross-validation, cross-

validation tends to be better in terms of providing better training to the classifier on 

multiple training and testing datasets. This method gives a better indication of how the 

classifier is going to perform on unseen data. 

4.10. Economic Feasibility of PdM 

IoT concept was applied through using wireless accelerometer sensors, which 

were connected wirelessly with the data acquisition system.  

After we collect the data from the sensors and perform the analysis, using the 

internet connection will allow us to establish a communication line that will send the 

data and make it available online which will be monitored continuously by the 

technicians without the need for them to be presented physically with the equipment. 

PdM implementation is associated with some costs and benefits. Costs are 

divided into Investment Cost (IC), labor, communication (Comm), and Operations and 

Maintenance (O&M) costs. Investment costs include the acquisition system and 

software. Benefits, on the other hand, include reduction of opportunity costs, 

breakdown cost, inventory cost, secondary damages as well as extending the life of the 

equipment.  

4.10.1.  Costs. To collect from 0 to 50 points to be measured per month, one 

maintenance engineer is required [110]. The average salary of a maintenance engineer 

is AED 69,856 per year [111].  

Figure 29: Confusion matrix of fine Gaussian model using cross-validation. 
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Data acquisition allows measuring an electrical or physical phenomenon such 

as voltage, current, temperature, pressure, or vibration with a computer. A data 

acquisition system consists of sensors, measurement hardware, and a computer with 

programmable software. Its value is around AED 30,000. In terms of communication, 

internet subscription is required to establish the connection between the different parts 

of the system which is estimated to be around AED 7,200. One software that can be 

used for data analysis in MATLAB which has a perpetual license cost of AED 8,632. 

O&M is estimated at 10% to 15% of the capital cost [110].   

4.10.2.  Benefits. PdM reduces the number of equipment outages by reducing 

the number of unplanned stops. Also, machine downtime can be scheduled for the most 

suitable and inexpensive time. Thus, the availability of hospital equipment increases 

and its usage as well, so the equipment is more utilized which generates more profit 

over the saved time. According to the local hospital, the Vitros machine performs 

around 50 tests per day and the minimum cost per test is around AED 200 which will 

result in an opportunity cost of AED 10,000 for each reduced breakdown of the 

machine. 

 Inventory costs will be reduced since failure can be predicted; the backup 

materials stored in inventory are reduced as spare parts can be ordered when required. 

The cost reduction is estimated to be around AED 3,000 [110]. PdM indicates when the 

machine is about to break and thus it helps in reducing the number of breakdowns as 

they can be avoided by fixing the problem before it occurs. Therefore, costs for 

breakdown are reduced. PdM reduces the number of times the machine is disassembled 

as it is now disassembled only when required. Therefore, the machine lifetime is 

extended [110]. The use of IoT and PdM can reduce the cost up to 25% by reducing the 

major failures by up to 50% and extending the life of the equipment up to 36% [112]. 

So, if the cost per breakdown is around AED 500, after implementing the approach it 

will be reduced by 25% which is around AED 375. Since the failure is detected in 

advance, sequential damages are prevented from occurring. For example, the failure of 

the sample-metering arm can be identified and fixed before other sequential damages 

occur. According to [110], repairing before machine failure occurs reduces the repair 

bill by ten times. Based on that, data was collected as shown in Table 13. 
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Table 13: Annual costs and benefits (AED) of implementing PdM. 

 Costs  

Labor 69,856 

Acquisition system 30,000 

Communication 7,200 

Software 8,632 

O & M cost 3,923 

Total 120,271.35 

Benefits 

# of breakdown/year before predictive 14 

# of breakdown/year after predictive 2 

Opportunity cost per breakdown 10,000 

Opportunity cost savings 120,000 

Inventory reduction 3,000 

Cost per breakdown  500 

Reduced breakdown cost 375 

Total 123,375 

 

4.10.3.  Cash Flows. The cash flow (CF) calculations were performed based 

on the collected data described above. Also, the following inflation rate [113], 

Minimum Attractive Rate of Return (MARR) and Value-Added Tax (VAT) [114] were 

considered based on UAE economics as shown in Table 14. 

Table 14: UAE economic rates. 

Economic parameters Rate 

Inflation Rate 2.20% 

MARR 8% 

VAT % 5% 

 

Accordingly, Table 15 below shows the cash flow calculations over 11 years 

through which the Net Present Value (NPV) was calculated.   
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Table 15: CF and NPV of PdM. 

Year IC Labor Comm. O&M cost 
Total 

costs 

Total 

savings 
Net CF 

0 38,632    38,632  (38,632) 

1  74,962 7,726 4,918 87,607 132,394 44,787 

2  76,612 7,896 5,026 89,534 135,306 45,772 

3  78,297 8,070 5,137 91,504 138,283 46,779 

4  80,020 8,248 5,250 93,517 141,325 47,808 

5  81,780 8,429 5,366 95,575 144,435 48,860 

6  83,579 8,614 5,484 97,677 147,612 49,935 

7  85,418 8,804 5,604 99,826 150,860 51,033 

8  87,297 8,998 5,728 102,022 154,178 52,156 

9  89,218 9,196 5,854 104,267 157,570 53,304 

10  91,181 9,398 5,982 106,561 161,037 54,476 

11  93,186 9,605 6,114 108,905 164,580 55,675 

NPV: AED 312,806.49  

 

The Net Present Value (NPV) of implementing PdM is AED 312,806.49 after 

11 years of use. Since the NPV value is positive, then it yields that the projected 

earnings generated exceed the anticipated costs. Therefore, PdM implementation is 

expected to be profitable and it is advisable to invest in. 

4.10.4.  Payback period. The PdM project payback period is 1 year as shown 

in Table 16 and Figure 30, where the cumulative cash flow becomes positive with a 

value of AED 6,155.  

Therefore, the management if decided to implement the PdM project should 

keep the project running for more than 1 year to acquire more positive CF.  
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Table 16: CF of PdM. 

Year Net CF Cumulative CF 

- (38,632) (38,632) 

1 44,787 6,155 

2 45,772 51,927 

3 46,779 98,705 

4 47,808 146,514 

5 48,860 195,373 

6 49,935 245,308 

7 51,033 296,342 

8 52,156 348,498 

9 53,304 401,801 

10 54,476 456,277 

11 55,675 511,952 

 

 

 

Considering the reliability of the IoT system, in terms of the availability of the 

network connection, we have two different aspects to be discussed; the first one is when 

we are having a single node sensor failure, in this case, we can introduce an architecture 

where we can add a backup node which will be placed randomly, and when one of the 

nodes dies it checks all the backup nodes available and selects the node which is at the 

nearest distance of the faulty or failed node. Moving on to the second aspect, where a 

whole network failure occurs, we may need a local processor close to the machines and 

a remote one. The remote will collect data from all machines and process it (sample 

size maximization), while the local server will be used in emergencies. 

 (100,000)

 -

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

0 1 2 3 4 5 6 7 8 9 10 11

C
u

m
u

la
ti

ve
 C

F 
(A

ED
)

Year

Payback period

Figure 30: Cumulative CF for PdM. 
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Chapter 5. Conclusion and Future Work 

 

In this thesis, the issue of lacking the implementation of the predictive 

maintenance (PdM) strategy along with Internet of Things (IoT) technology in 

healthcare industry was addressed to show how the efficient use of such approach can 

result in many benefits that will be reflected in the total resources of the different 

industries in general and the healthcare industry in specific. In addition to increasing 

the system’s reliability especially in critical departments, implementing the PdM 

strategy will be a revolutionary breakthrough in the healthcare industry; not only in 

providing maintenance to the medical equipment but also in restricting the undesired 

growth of errors that normally occur by following a time-based or a failure-based 

strategy, and eventually leads to a complete malfunction of the equipment. Despite the 

challenges that were faced to carry out this work, the impact that will be gained if this 

approach is applied was motivating to go through hard times and especially after 

contacting some well-known companies like GE, and finding out that they are moving 

towards applying the proposed approach worldwide.  

In this work, an IoT-based PdM methodology that can be applied to any medical 

equipment was formed and applied on Vitros machine in order to achieve the objective 

of fault diagnosis. After studying the equipment maintenance logs and performing 

failure criticality assessments, the most critical failures were determined and ranked 

based on their Risk Priority Number (RPN). Next, the part of interest was simulated in 

one of the university labs for the purpose of data collection, classification and modelling 

using the most common machine learning tools. Finally, the economic feasibility of the 

proposed approach was studied and results indicated that such strategy is worth 

investing in. 

As for the future work, the proposed methodology that have been discussed 

previously can be applied on more failure modes and other medical machines as well, 

to improve the quality of services, patients’ safety, and reduce the associated risks and 

costs due to sudden failures. 
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