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Abstract 

Studies involving heavy hydrocarbons have been steadily increasing due to the increase 

in the extraction of shale or heavy oil of which heavy hydrocarbons are a major 

constituent. Experimental studies are difficult to conduct on species found in heavy oil 

because of thermal instability that results in their decomposition at high temperatures. 

This is especially true in the case of determining critical properties. Additionally, 

extraction of pure species from heavy oil is difficult due to the high energy 

requirements. Since they are extrapolative in nature, existing correlations can be used 

but with a certain degree of inaccuracy. This study uses molecular simulation, mainly 

molecular dynamics, to predict viscosity, saturated liquid and vapor densities, and 

critical properties of three pure heavy n-alkanes, namely, n-decane, n-pentadecane and 

n-eicosane. The viscosity was predicted as a function of temperature using equilibrium 

molecular dynamics with the Green-Kubo relations and the AMBER force-field. 

Comparison with experimental data showed that the AMBER force-field predicts 

reasonably the viscosity of smaller molecules at higher temperatures. The percentage 

deviation for n-decane was 40% at 300 K and 25% at 500 K. On the other hand, for n-

pentadecane and n-eicosane, the percentage deviations were 34.7% at 550K and 76.2% 

at 600 K, respectively. For the critical properties, which were determined from the 

simulated saturated liquid and vapor densities, AMBER, COMPASS and TraPPE force 

fields were employed. For all three force fields, the methodology of volume-expansion 

molecular dynamics was used, while the Gibbs ensemble Monte Carlo technique was 

used with the AMBER force field. The results were compared with experimental data, 

as well as with those from several correlations and equations-of-state. The results show 

that the TraPPE force field is the most accurate in predicting critical properties (less 

than 10% deviation), followed by AMBER (less than 20% deviation, except for the 

critical pressures for n-eicosane) and COMPASS (up to 24% deviation). Finally, a 

comparison was made for the needed computational time; COMPASS required the 

largest execution time, followed by AMBER and TraPPE. 

Search Terms: Molecular Dynamics, Monte Carlo, Heavy Hydrocarbons, Viscosity, 

Critical Properties 
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Chapter 1. Introduction 

1.1 Overview 

Due to the continuous increase in world energy demand and the rapid depletion 

of conventional petroleum resources, emphasis is being placed on increased extraction 

and utilization of unconventional oil resources in the form of shale or heavy oil [1], [2]. 

These heavy oil resources are much larger than conventional oil resources, which has 

contributed to their increased production in the oil and gas industry. In China alone, for 

example, it has been estimated that the resources of heavy oil reach about 6×109 tons 

[3], which are less than those of Canada [4] and Venezuela, where both countries are 

estimated to have 2 – 3 trillion barrels of unconventional oil resources, each [5]. Figure 

1 below displays the production history of heavy oil in Canada, which leads the world 

in terms of production of heavy oil. 

 
Figure 1: Heavy Oil production history in Canada [4]. 

 It is evident from Figure 1 that the trend of heavy oil production will continue 

to increase in the future. Hence, it is anticipated that petroleum resources, and 

specifically unconventional oil, will be important sources of energy for the world in the 

future [6]. 

However, the oil extracted from these reserves is heavy and highly viscous. As 

per the definitions provided by the American Petroleum Institute (API), any liquid 

petroleum having an API gravity less than 22° is defined to be heavy oil. Whereas, an 
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API gravity of less than 10° is considered to be “extra-heavy” oil [1], [2], [7]. 

Furthermore, heavy oil also has a viscosity in the range of 102-104 cP [1], [8], [9]. The 

highly viscous nature of the heavy oil is due to the presence of a higher percentage of 

asphaltenes, aromatics, resins and saturated hydrocarbons that are generally made up 

of over 15 carbon atoms [2], [8]. Additionally, the concentrations of heavy metals, 

sulfur and nitrogen are found to be higher in heavy oil than in conventional oil [9]. 

Table 1 below, presents the ranges of typical weight percentage (composition) for heavy 

and conventional oil: 

Table 1: Compositional comparison between conventional and heavy oil [2]. 

Sample 

Typical composition range (wt. %) 

Asphaltenes Resin 
Saturates & 

Aromatics 

Conventional oil <0.1-12 3-22 67-97 

Heavy oil 11-45 14-39 24-64 

Because of the increase in the production of the heavy oil; it is imperative to 

study the different thermophysical properties associated with the individual 

constituents of the heavy oil. Determination of the critical properties and viscosity of 

the heavy hydrocarbons that make up the heavy oil is not an easy task. This is so because 

heavy hydrocarbons are prone to thermal degradation at higher temperatures, i.e., they 

become thermally instable. Lack of available thermophysical data on heavy 

hydrocarbons has led to  a slow development of heavy oil production [10]. The critical 

properties of heavy hydrocabons are essential to predict various thermodynamic and 

volumetric properties, in order to design processes for both production and refining of 

crude oils [11]. For example, cubic equation of states (EOS), such as Soave-Redlich-

Kwong and Peng-Robinson, are used in the petroleum industry to perform phase 

equilibrium calculations. However, in order to perform such calculations using the 

EOS, it is essential to precisely know the critical properties of the hydrocarbon species 

[12]. Although experimentation is the best method to determine the critical properties 

of pure components and mixtures; heavy hydrocarbons thermally decompose before the 

critical point is achieved, thereby making experimentation not an option for 
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determining the critical properties [11]–[13]. Moreover, the knowledge of the viscous 

nature of heavy oil allows the design of processes that would make heavy oil pipeline 

transportable [8].  Therefore, analytical methods are required to predict the critical 

properties and viscosities of the heavy hydrocarbons that are present in heavy oil. 

One method that can be used for the prediction of the critical properties of heavy 

hydrocarbons is applying correlations. Estimation of thermophysical properties using 

correlations usually incurs a certain degree of inaccuracy, due to their inefficient 

extrapolative power. New techniques are, therefore, required to predict the 

thermophysical properties of heavy hydrocarbons, such as critical temperature, since 

experimental determination of these properties is extremely difficult and very costly 

[11]. 

An important technique that can predict the critical and other thermophysical 

properties, such as viscosity, is based on molecular simulations and modelling. 

Molecular simulations are now increasingly being used to predict the thermophysical 

properties of pure species and mixtures over a range of temperatures and pressures [14]. 

Here, thermophysical properties of macroscopic systems are predicted by following the 

interactions among a limited number of system constituents (molecules, atoms, or ions) 

in a certain special region under fixed (known a priori) external set of constraints 

(ensembles). Such interactions in a simulation can be primarily studied either using the 

Monte-Carlo (MC) method (a stochastic method) or the molecular dynamics (MD) 

method (a deterministic method). The results from these simulations are used to 

complement experimental data and also provide an insight into a system at molecular 

level [14]. 

1.2 Thesis Objectives 

The aim of this work is to employ molecular simulation, MC and MD, to predict 

selected thermophysical properties (critical and viscous properties) of pure heavy 

chemical species belonging to specific family of n-alkanes. The species studied are n-

decane (C10) as a reference compound, n-pentadecane (C15) and n-eicosane (C20).  

Specifically, the following tasks will be carried out: 

1. Prediction of the critical properties of the selected heavy n-paraffins using 

MD (with three different force-fields) and MC  
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2. Prediction of the viscosities using the Green-Kubo MD simulations 

3. Comparison of the predicted critical properties using different force-fields 

in the case of MD 

4. Comparison of the computational time for different force-fields  

1.3 Thesis Organization 

This thesis is organized as follows: 

• Chapter 1 provides with an introduction to the problem at hand and 

objectives that are to be carried out in the thesis.  

• Chapter 2 deals with the literature review on molecular simulations 

(including statistical mechanics theory) and the different techniques and 

methods used to predict viscosities and critical properties.  

• Chapter 3 gives the methodology used to carry out the simulations and also 

provides details on the software used, along with the parameters for the 

different force-fields employed.  

• Chapter 4 provides the results generated for viscosity, critical properties and 

the computational efficiency.  

• Chapter 5 provides conclusions and recommendations based on the 

simulation work carried out in this thesis. 
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Chapter 2. Literature Review 

2.1 Ensembles and Statistical Mechanics 

The fundamental framework for carrying out molecular simulations is provided 

by statistical mechanics [14], [15]. The aim of statistical mechanics is to provide the 

theoretical basis that would define the macroscopic properties (such as temperature, 

pressure, volume, energy, etc.) of the state of a system (i.e. the macrostate) from the 

microscopic description of the same system. The microscopic description of the state 

of a system is completely specified by the velocities and positions of all system 

constituents, which in turn specify the energy level of the system for that state. Such a 

state is known as the quantum state or microstate. Hence, for any given macrostate, 

there exists many different quantum states [14], [16]–[20]. Figure 2 below summarizes 

the concept of macrostates and quantum states: 

 
Figure 2: Depiction of macrostates and microstates. The macrostate in this example 

must have a total energy of 3 eV. 

In Figure 2, the macrostate is defined to have a total energy of 3eV. In order to 

satisfy this condition, ten different quantum states exist. For example, in macrostate i, 

only one particle is required to be at the third energy level. This particle could be any 

of the three particles (a, b, or c); but a different particle would correspond to a different 

quantum state in the same macrostate. Therefore, a given macrostate corresponds to 

many different possible microstates. 

In order to perform a priori calculation of a given thermodynamic property, such 

as pressure, from the molecular description of a system, quantum and/or classical 

mechanics would need to be used to calculate the force per unit area exerted on the 

walls of such a system. Additionally, such exerted force would fluctuate with time, 

hence, a sufficiently long period of time would be required in order to smooth out the 
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fluctuations. However, because of the large number of particles involved (of the order 

of ~ 1023) and the large number of quantum states available for a given macrostate, 

carrying out such calculations would be a near impossible task, even with the use of 

supercomputers computers [19]–[21].  

The solution to this problem was proposed by Gibbs employing the concept of 

ensembles. The ensemble is a mental or virtual collection of a large number of systems, 

Π. Each of these systems in the ensemble is a replica of the macroscopic system that is 

being studied. For example, given a macroscopic system that has N number of 

molecules of a total volume V and a temperature T, the ensemble would have Π systems 

that would replicate the N, V and T of the macroscopic system. The Π systems are all 

identical on a macroscopic level, however, on the microscopic level each system in the 

ensemble would correspond to a certain quantum state. Therefore, at any instant of time, 

many quantum states would be represented by the various systems in the ensemble 

[16]–[21].  Continuing with the example of calculating pressure, each of the quantum 

states would then give a different instantaneous pressure. By giving equal weightage to 

each system in the ensemble, the “ensemble average” can be calculated by using the 

average of the instantaneous pressures in each quantum state [20]. Furthermore, after 

equilibrium has been established, the differences in the instantaneous pressure are very 

small, and hence, negligible [19]. This leads to the main conclusion of Gibbs idea, 

known as the “ergodic postulate”, which states:  

The time average of any thermodynamic variable φ in an actual system is equal 

to the ensemble average of φ in the limit as the number of replicas Π in the 

ensemble goes to infinity, provided that the members of the ensemble copy 

precisely the thermodynamics state and environment of the actual system, that 

is, adhere to the specified macroscopic conditions. [19] 

Equation (1) below summarizes ergodic postulate for a thermodynamic 

property, A: 

𝐴𝑚𝑎𝑐𝑟𝑜 = 〈𝐴〉𝑡𝑖𝑚𝑒 = 〈𝐴〉𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 (1) 

In Equation (1), the subscripts macro, time, and ensemble, respectively 

represent the thermodynamic property in macroscopic conditions, time average of an 

actual system, and ensemble average. 
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In molecular simulations, statistical ensembles are used to conceive many 

microstates that would result in the conditions that are desired in the macrostate. In 

general, the ensemble is subject to the same constraints imposed of the studied 

macroscopic system. As such, it is usually constrained by a set of three properties that 

represent the external constraints on the macroscopic system, such as fixed N, V, and T 

or fixed N, E, and V. These constraints are usually selected based on the properties that 

need to be studied in the macroscopic system and are similar to those of an experimental 

set-up. Therefore, different ensembles are used throughout molecular simulations [14]–

[16], [19], [21]. The properties that are not constrained will fluctuate throughout the 

simulation and can be predicted by analyzing the simulation results using the 

formulation of statistical mechanics [14]. 

As stated previously, molecular simulations are usually carried out by two main 

methods, MD and MC. MD, a deterministic method, follows the time evolution of a 

system by numerically integrating Newton’s equations of motion [14]–[16], [19], [21], 

[22]. Equation (2) below presents the statistical average for a thermodynamic property 

A [14], [22] using the MD approach: 

〈𝐴〉𝑚𝑎𝑐𝑟𝑜 = 〈𝐴〉𝑡𝑖𝑚𝑒 = lim
𝑡→∞

1

𝑡
∫𝐴(𝑡)𝑑𝑡

𝑡

0

≈(
1

𝑀𝑡
)∑𝐴𝑖(𝑡)

𝑀𝑡

𝑖=1

(2) 

where t is the simulation time and Mt is the number of time steps conducted in the 

simulation. 

MC, in contrast to MD, is based on the probability of finding a macroscopic 

system in a certain quantum state and is thus a stochastic method. Successive 

configurations of a system are generated using statistics that respect the probability 

distribution of the system [22]. In order to calculate the statistical average for a 

property; Equation (3) is used [14]: 

〈𝐴〉𝑚𝑎𝑐𝑟𝑜 = 〈𝐴〉𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ∫𝐴(𝑃𝑆) (
𝑒−𝛽𝐸(𝑃𝑆)

𝑍
)𝑑(𝑃𝑆)

𝑃𝑆

≈ ∑ 𝐴(𝑃𝑆)

𝑁𝑚𝑖𝑐𝑟𝑜

(
𝑒−𝛽𝐸(𝑃𝑆)

𝑍
)𝑑(𝑃𝑆)  

(3) 

where PS is the phase space of possible configurations, i.e. tracking the position and 

momentum of N particles in a 6N dimensional space. While Z is the partition function 
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that enables the calculation of thermodynamic properties, E is the total energy and β is 

the thermodynamic beta. Equation (4) below,  presents the thermodynamic beta (with 

kB being the Boltzmann constant) [22]: 

𝛽 =
1

𝑘𝐵𝑇
(4) 

As can be seen from Eqns. (1), (2) and (3), both MD and MC provide the same 

results for a system that is at equilibrium. The relationship between MD and MC is 

illustrated in Figure 3 below: 

 

Figure 3: Monte-Carlo and Molecular dynamics concept [22].  

2.1.1 Microcanonical (NVE) ensemble. The microcanonical ensemble 

describes an isolated system with fixed N, V and E (total energy). This represents a 

system with impermeable, rigid and adiabatic walls. Figure 4, represents the 

microcanonical ensemble: 
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Figure 4: The microcanonical ensemble (const. N, V and E).  

Although the constraint of having fixed energy will correspond to a certain 

temperature; the microcanonical ensemble is rarely used in molecular simulations 

because of the difficulty in replicating experimental set-up [14]. Hence, it is mostly 

used for carrying out fundamental theoretical concepts [18]. However, it has been 

reported to provide various transport and vibrational properties of  liquid water [23], as 

well as the diffusion of water through carbon nanotubes [24]. Additionally, the 

microcanonical ensemble has also recently been used to study the dispersion curves of 

water [25] and viscosities of branched alkanes for a range of pressures [26] in 

combination with other ensembles. Lastly, the oxidation of aluminum nanoparticles in 

the presence of oxygen has also been simulated using the microcanonical ensemble 

[27].  

In the microcanonical ensemble, it is reasonable to postulate that all microstates 

have an equal probability of being accessible (equal a priori probability [18]) as long as 

they satisfy the macroscopic conditions [16], [18], [28]. The thermodynamic probability 

(Ωj, possible number of microstates in a given configuration, j) in a system of 

distinguishable particles can be calculated using Equation (5) [14]: 

Ω𝑗 =
𝑁!

∏ 𝑁𝑖!𝑖=1
 (5) 

where Ni is the distribution of particles on different energy levels in a quantum state. 

For the example shown in Figure 1, calculating the number of microstates for the first 

configuration where only one particle is required to be at the third energy level is as 

shown in Equation (6): 
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Ω1 =
3!

1! 2!
= 3 (6) 

Additionally, the true probability, pj, of the system can be calculated using the 

total thermodynamic probability, Ω, as shown in Equation (7) [19], [20]: 

𝑝𝑗 =
Ω𝑗

Ω
(7) 

 Furthermore, using the Gibbs entropy equation (Equation (8)) and the fact that 

the sum of the true probability equals 1; the famous Boltzmann entropy equation is 

derived (Equation (9)) [16], [17], [19], [20]: 

𝑆 =  −𝑘𝐵∑𝑝𝑗 ln(𝑝𝑗)

𝑗=1

(8) 

𝑆 = 𝑘𝐵 ln(Ω) (9) 

The Boltzmann entropy equation is one of the most significant equations as it 

bridges the gap between classical and statistical thermodynamics. Several 

thermodynamics properties can be derived by using Equation (9) with the relationships 

present in classical thermodynamics [14], [16], [18], [20]. 

Lastly, the microcanonical partition function is provided in Equation (10) below 

[15]: 

𝑍𝑁𝑉𝐸 = ∑𝛿[ℋ(𝑃𝑆) − 𝐸]

𝑃𝑆

(10) 

where ℋ is the Hamiltonian and δ is the Kronecker delta according to the conditions 

given below: 

𝛿 = 1, 𝑖𝑓 𝐸 <  ℋ(𝑃𝑆)  

𝛿 = 0, 𝑒𝑙𝑠𝑒. 

2.1.2 Canonical (NVT) ensemble. In the canonical ensemble, the number of 

particles N, the temperature T, and the volume V, are held constant [22], [29]. This 

ensemble is the most commonly used ensemble in statistical thermodynamics [18]. 

Average properties predicted from this ensemble are the total energy, pressure and 
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chemical potential [22]. The partition function for the canonical ensemble is calculated 

as shown in Equation (11) [14], [18], while Figure 5 depicts the ensemble. 

𝑍𝑁𝑉𝑇 = ∑𝑒−(𝛽𝐸𝑖)

𝑖

(11) 

 

Figure 5: Canonical ensemble at fixed N, V and T 

The canonical ensemble is mainly used to study phase properties, such as 

constant volume heat capacity, enthalpy, chemical potential, etc. [22], [30]–[32]. 

Furthermore, the canonical ensemble in MC simulations (known as the Gibbs 

ensemble) has been employed to calculate vapor liquid equilibria of pure species and 

mixtures and their critical properties [33]–[38]. 

2.1.3 Isothermal-isobaric (NPT) ensemble. This ensemble, as the name 

suggests, imposes a constant pressure P, temperature T, and a constant number of 

particles N, as depicted in Figure 6. 

 
Figure 6: Isothermal-isobaric ensemble. Fixed N, P and T. 
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 The NPT ensemble is one of the most widely used ensembles in molecular 

simulations, especially in MC simulations. This is because most real experiments are 

conducted at constant temperature and pressure. It is worth mentioning that this 

ensemble has been used in connection with virial expansion for pressure in order to 

verify the equation of state [29].  

Equations (12) and (13) displays the partition function of this ensemble derived 

from the canonical ensemble respectively [14]–[16], [18]: 

𝑍𝑁𝑃𝑇 = ∑∑𝑒−(𝛽𝐸𝑖)𝑒−(𝑃𝑉𝑗∗𝛽)

𝑖𝑉𝑗

(12) 

𝑍𝑁𝑃𝑇 = ∑𝑍𝑁𝑉𝑇𝑒
−(𝑃𝑉𝑗∗𝛽)

𝑉𝑗

(13) 

Similar to the canonical ensemble, the NPT ensemble is used to study the phase 

properties of different species and mixtures at a given temperature and pressure [22]. 

For example, MD simulations have been conducted to study the formation of ice at high 

pressures [39] and the cage occupancy of methane in methane hydrates [40]. MC 

simulations have also been conducted using the NPT ensemble to develop phase 

equilibria of systems such as dipropylene glycol, dipropylene ether and water [41] and 

methane & n-butane [42]. Moreover, the NPT ensemble can also be used to predict the 

equilibrium properties (such as molar volume, isothermal compressibility, speed of 

sound, etc.) of ionic liquids [43]. 

2.1.4 Grand Canonical (VTμ) ensemble. For some simulations, it is required 

to know the average number of particles based on the external conditions. For example, 

in adsorption studies it is desired to know the amount of a material adsorbed on the 

surface of the adsorbent as a function of temperature and pressure. In the Grand-

Canonical ensemble, volume, temperature and the chemical potential μi are imposed, 

as depicted in Figure 7 [22], [29]. The probability density of this ensemble is given in 

Equation (14) [22]: 

𝑍𝑉𝑇𝜇 = ∑∑𝑒−(𝑉𝐸𝑗∗𝛽)𝑒(𝜇𝑁𝑖∗𝛽)

𝑗𝑖

(14) 
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Figure 7: Grand canonical ensemble. V, T and µ are fixed. 

The VTμ ensemble is again more adapted for use in MC simulations rather than 

the MD simulations, which, when used, is mainly employed for simple systems [29]. 

The VTμ ensemble is best suited for adsorption studies. However, in order to carry out 

the simulations, the interaction energies between the adsorbent and the adsorbate must 

be specified [22]. Several studies have been conducted that use the grand canonical 

ensemble to study the effects of adsorption, such as:  

• Adsorption of dye N719 on titanium oxide [44] 

• Adsorption of benzene and toluene on activated carbon [45] 

• Study of pyridine adsorption on different adsorbents [46] 

• Studies involving adsorption of natural gas [47], ethane and ethylene [48], and 

gases such as CO2 and nitrogen [49] on metal organic frameworks 

2.1.5 Partition function and thermodynamic properties. The partition 

function is a key concept in statistical thermodynamics and is used to calculate and 

derive properties from relationships available in classical thermodynamics. For a given 

ensemble, the partition function is essentially the sum of all available states. It is a 

fundamental property in statistical thermodynamics that is similar to the fundamental 

thermodynamic relations in classical thermodynamics, thus allowing the calculation of 

various thermodynamic properties [14].   

The following sections provide a summary of different thermodynamic 

properties available for the ensembles discussed above, derived from fundamental 

thermodynamic relations. Equations (15)-(19) provide the thermodynamic properties 



27 

 

for the microcanonical (NVE) ensemble, while Equations (20)-(25) represent the 

thermodynamic properties for the canonical (NVT) ensemble. For the NPT ensemble, 

Equations (26)-(30) are used to calculate the different thermodynamic properties [14], 

[18]. Lastly, Equations (31)-(35) are used for the grand canonical (VTμ) ensemble [14], 

[18].  

2.1.5.1 Microcanonical (NVE) ensemble  

𝑆 =  𝑘𝐵 ln(𝛺) (15) 

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉 −

𝜇

𝑇
𝑑𝑁 (16) 

1

𝑇
= 𝑘𝐵 (

𝜕(ln(Ω))

𝜕𝐸
)
𝑁,   𝑉

(17) 

𝑃

𝑇
= 𝑘𝐵 (

𝜕(ln(Ω))

𝜕𝑉
)
𝑁,   𝐸

(18) 

𝜇

𝑇
= −𝑘𝐵 (

𝜕(ln(Ω))

𝜕𝑁
)
𝑉,   𝐸

(19) 

 

2.1.5.2 Canonical (NVT) ensemble 

𝑆 =  𝑘𝐵 ln(Z𝑁𝑉𝑇) + 𝑘𝐵𝑇 (
𝜕Z𝑁𝑉𝑇
𝜕𝑇

)
𝑁,   𝑉

 (20) 

𝐴 = −𝑘𝐵𝑇 ln(Z𝑁𝑉𝑇) (21) 

𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 (22) 

𝑃

𝑇
= 𝑘𝐵 (

𝜕(ln(Z𝑁𝑉𝑇))

𝜕𝑉
)
𝑁,   𝑇

(23) 

𝜇

𝑇
= −𝑘𝐵 (

𝜕(ln(Z𝑁𝑉𝑇))

𝜕𝑁
)
𝑉,   𝑇

(24) 

𝐸

𝑇2
= 𝑘𝐵 (

𝜕(ln(Z𝑁𝑉𝑇))

𝜕𝐸
)
𝑁,   𝑉

(25) 
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2.1.5.3 Isothermal-isobaric (NPT) ensemble 

𝑆 =  𝑘𝐵 ln(Z𝑁𝑃𝑇) + 𝑘𝐵𝑇 (
𝜕Z𝑁𝑃𝑇
𝜕𝑇

)
𝑁,   𝑃

(26) 

𝐺 =  −𝑘𝐵𝑇 ln(Z𝑁𝑃𝑇) (27) 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁 (28) 

𝑉

𝑇
= −𝑘𝐵 (

𝜕(ln(Z𝑁𝑃𝑇))

𝜕𝑃
)
𝑁,   𝑇

(29) 

𝜇

𝑇
= −𝑘𝐵 (

𝜕(ln(Z𝑁𝑃𝑇))

𝜕𝑁
)
𝑃,   𝑇

(30) 

2.1.5.4 Grand canonical (VTμ) ensemble 

𝑆 =  𝑘𝐵 ln(Z𝑉𝑇𝜇) + 𝑘𝐵𝑇 (
𝜕Z𝑉𝑇𝜇

𝜕𝑇
)
𝑁,   𝜇

(31)  

𝑃𝑉 =  𝑘𝐵𝑇 ln(Z𝑉𝑇𝜇) (32) 

𝑑(𝑃𝑉) = 𝑆𝑑𝑇 + 𝑃𝑑𝑉 + 𝑁𝑑𝜇 (33) 

𝑁

𝑇
= 𝑘𝐵 (

𝜕(ln(Z𝑉𝑇𝜇))

𝜕𝜇
)
𝑉,   𝑇

(34) 

𝑃

𝑇
= 𝑘𝐵 (

𝜕(ln(Z𝑉𝑇𝜇))

𝜕𝑉
)
𝜇,   𝑇

=
𝑘𝐵 ln(Z𝑉𝑇𝜇)

𝑉
(35) 

 

2.2 Inter-and-Intra Molecular Energy 

The formulations derived in statistical thermodynamics are dependent on the 

total energy of the system, which is the sum of the kinetic and potential energy. 

Computation of the kinetic energy using MD is straightforward (Equation (36)) [50]. 

While in MC, the kinetic energy is calculated through analytical integration and 

therefore, does not need to be performed explicitly [22].  

𝐾𝐸(𝑡) =
1

2
∑𝑚𝑖(𝑣𝑖(𝑡))

2

𝑁

𝑖=1

(36) 
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Therefore, it is the calculation of the potential energy that is required in order to 

accurately compute thermophysical properties, as it needs to be provided on the basis 

of the molecular coordinates of the system [22], [50].  Hence in molecular simulations, 

one key factor that affects the outcome of the results is the molecular interaction model 

used to calculate the potential energy among the different molecular species [14]. The 

total potential energy is usually decomposed into two main components as shown in 

Equation (37) below [22]: 

𝐸𝑝𝑜𝑡 = 𝐸𝑖𝑛𝑡 + 𝐸𝑒𝑥𝑡 (37) 

where Eint is the intramolecular energy and Eext is the external or intermolecular energy. 

The intermolecular energy term is fundamentally the energy due to the interactions 

between the system’s constituents.  

Equation (37) can be further expanded according to a modern molecular 

potential energy model, as displayed in Equation (38) [14], [21], [26], [51]. Generally, 

the first four terms represent the energy from the intramolecular interactions, while the 

last two are forms of the intermolecular interactions. 

𝐸𝑝𝑜𝑡 = ∑ 𝐸𝐴𝐵
𝑠𝑡𝑟𝑒𝑡𝑐ℎ

+ ∑ 𝐸𝐴𝐵𝐶
𝑏𝑒𝑛𝑑

+ ∑ 𝐸𝐴𝐵
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

+ ∑ 𝐸𝐴𝐵𝐶𝐷
𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒

+ ∑ 𝐸𝐴𝐵𝐶𝐷
𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑

+ ∑ 𝐸𝐴𝐵
𝐶𝑜𝑢𝑙𝑜𝑚𝑏

 

(38) 

2.2.1 Bond stretching. Assuming Hooke’s law is applicable, the stretching of 

the bonds between atoms A and B will contribute to the total molecular potential energy 

of the system. The energy from this source is calculated using Equation (39) [14], [21], 

[33], [51], [52]. 

𝐸𝐴𝐵 =
1

2
𝑘𝐴𝐵( 𝑅𝐴𝐵 − 𝑅𝑒,𝐴𝐵)

2
(39) 

where kAB is the force or spring constant, RAB is the instantaneous bond length and Re,AB 

is the equilibrium bond length. Figure 8 depicts the stretching of a bond for a butane 

molecule. 



30 

 

 

Figure 8: Stretching of a bond. 

2.2.2 Bond bending. It is normal to consider the energy due to the bending 

vibrations between three connected atoms A-B-C as provided by Equation (40) [14], 

[21], [33], [51], [52]: 

𝐸𝐴𝐵𝐶 =
1

2
𝑘𝐴𝐵𝐶( 𝜃𝐴𝐵𝐶 − 𝜃𝑒,𝐴𝐵)

2
(40) 

where kABC is the spring constant and θ is the angle between the atoms. The symbol e 

again represents the equilibrium value. For a butane molecule; Figure 9 presents an 

example of bond bending: 

 

Figure 9: Bond bending. 

2.2.3 Dihedral motions (Torsion). Considering four atoms linked together, 

ABCD, there might be either full rotation (known as proper dihedral, see Figure 10) or 

partial rotation (improper dihedral) about the backbone of the molecule, B-C.  

 

Figure 10: Dihedral angle, 𝝌, for a butane molecule.  

The energy associated can be calculated using Equation (41) as follows [14], 

[21], [33], [51]: 

𝐸 =
𝑈𝑜
2
(1 − 𝑐𝑜𝑠(𝑛(𝜒 − 𝜒𝑒))) (41) 
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where n is the periodicity parameter; for example, a methyl group would have the 

periodicity parameter as 3. χ is the torsion angle and Uo is the torsional rotation force 

constant. 

2.2.4 Out-of-plane angle potential (inversion). For a molecule of four atoms, 

such as ammonia, changing the inversion angle (ψ) from positive to negative inverts 

the molecule (see Figure 11).  

 

Figure 11: Inversion potential. 

The potential energy from this contribution can be calculated using Equation 

(42) [14], [21], [33], [51]: 

𝐸 =  𝑘1(1 + 𝑐𝑜𝑠(𝑛𝜓 − 𝑘2)) (42) 

Again, n represents the periodicity parameter, k1 and k2 are constants set at the 

beginning of the experiment and ψ is the angle of inversion. 

2.2.5 Non-Bonded interactions. Key non-bonded interactions are dispersion-

repulsion energy between atoms of different molecules [22] or of atoms within the same 

molecule at a distance of 3 bonds or more [36]; thus requiring the calculation of 

intermolecular energy. Many potentials are available for calculating the dispersion-

repulsion energy such as Born-Mayer-Huggins potential (used when dealing with polar 

species), Buckingham exp-6 model, and the most extensively used and popular model, 

that is the Lennard-Jones (LJ) 6–12 model. Equation (43) below, present the LJ 6-12 

model [14]–[16], [18], [19], [21] : 

𝐸𝐿𝐽 = 4𝜀𝑖𝑗 ((
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

) (43) 
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where rij is the separation distance between force centers of particles i and j, ij is the 

energy at minimum ELJ and ij the distance at which the inter-particle potential is zero. 

Figure 12 below, illustrates a typical Lennard-Jones plot between pair of atoms and also 

shows the position of  and . 

 

Figure 12: Plot of a typical Lennard-Jones 6-12 potential. 

2.2.6 Coulomb interactions. Some models also calculate the potential energy 

due to the electronegativity between the atoms, thus requiring the addition of the 

electrostatic terms [1], [2], [8], [9], [20], [38]. The potential energy for this interaction 

is calculated using Equation (44) below: 

𝐸𝐴𝐵 =
1

4𝜋ε𝑜
∑

𝑄𝑖𝑄𝑗

𝑅𝑖𝑗𝑖,𝑗
𝑖<𝑗

 (44)
 

where, in Equation (44), Qi represents the point charges of atoms i, Rij is the distance 

between the atoms and εo (the permittivity of free space) equals 8.85419×10-12 C2 N-1 

m-2. 

2.3 Force-Fields 

Force-fields are used in molecular simulations to carry out the potential energy 

calculations and contain all the necessary information relating to atoms and groups that 

make up a molecule. Equation (38) represents a typical form of what is referred to as 
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class I force-field. Class I force-fields are typically designed based on the harmonic 

motion that is derived from Hooke’s law. Such force-fields are typically used to carry 

out simulations based on biological molecules, such as proteins and DNA, in order to 

study their folding and supercoiling properties. Furthermore, several class I force-fields 

have also been developed to study the thermophysical properties of hydrocarbons, ionic 

liquids and refrigerants [14].  

Class II force fields contain additional terms that account for the coupling of 

different potentials, such as between bonds stretching and inversion potential. 

Moreover, in contrast to the use of Hooke’s law; class II force-fields tend to use the 

anharmonic Morse potential or other more accurate descriptors, in order to provide a 

more realistic picture of the vibrational and stretching phenomena within molecules. 

Lastly, class III force-fields are also being developed that explicitly include terms for 

polarization [14]. However, it is to be noted that the thermophysical properties are 

almost always predicted using class I force-fields and other classes of force-fields are 

rarely used. 

Many different types of force-fields exist in the field of molecular simulation 

that are used according to the need of the system. For example, some force-fields are 

modified as per the solution properties against amino acids [15], [21]. Some of the 

common force-fields found in molecular simulation computational codes are listed in 

the sub-sections below. 

2.3.1 AMBER. The Assisted Model Building and Energy Refinement or 

AMBER force-field was developed by Cornell et. al. [53] for conducting MD 

simulations on proteins, nucleic acids, and other organic molecules. Their work showed 

good accuracy in reproducing the interaction energies, solvation, and conformational 

energies of small molecules. 

2.3.2 COMPASS. Condensed-phase Optimized Molecular Potentials for 

Atomistic Simulation Studies or COMPASS, a class II force-field was first developed 

by Sun [54] in 1998. The COMPASS force-field was primarily developed to study 

small organic and inorganic molecules and polymers. Additionally, COMPASS 

provides parameters for the 9-6 Lennard-Jones potential instead of the 6-12 [54]. 
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2.3.3 TraPPE. Transferable Potentials for Phase Equilibria or TraPPE is a 

force-field developed for studying phase equilibria of n-alkanes, branched alkanes, 

ketones, aldehydes and alcohols [55].  

Some other force fields such as OPLS (Optimized Potentials for Liquid 

Simulations) for studying organic molecules and peptides [56] and carbohydrates [57], 

ReaxFF (a Reactive force-field for studying reactions) [58] and CHARMM (Chemistry 

at Harvard Molecular Mechanics) for studies involving proteins and peptides [59] are 

also available.  

2.4 Simulation Techniques 

2.4.1 Interaction potentials. In order to save on computing power, some force 

fields use simplified interaction potentials [21]. There are three such approaches, 

namely: the All-Atoms (AA) [22] or atom-atom [15], [16] model, United Atom (UA) 

model [16], [21], [22], and the Anisotropic United Atom (AUA) [21], [37] model. 

These models consider different force centers in order to model an atom or a group of 

atoms. Figure 13 provides a depiction of the three different models. 

 
Figure 13: Three different models of determining the force centers [22]. 

The most realistic and accurate model is the AA model that has the force center 

on each individual atom. However, this model is considered to be highly intensive in 

terms of calculations among the three, as it requires more computing power [16], [22]. 

The UA model considers the force center to be at the main atom of a group of atoms. 
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For example, in a CH3 methyl group, the force center is located on the carbon atom 

[16], [21], [22]. The AUA model is similar to the UA model, but with the force center 

located at an intermediate position rather than on the main atom [22].  

2.4.2 Periodic boundary conditions. Because of speed and memory limitations 

in a small computer, molecular simulations are usually run with a system containing 

hundreds to tens of thousands of molecules. The simulations, therefore, would simulate 

a very small aerosol drop rather than a bulk fluid. This would result in the ratio of the 

number of molecules at or near the surface to the number of molecules in the bulk liquid 

be greater when compared to the same ratio for a large amount of liquid. Hence, causing 

the simulations to provide inaccurate results [14]–[16], [29].  

In order to overcome this problem, periodic boundary conditions are applied 

which makes the system think that it is larger than it actually is. During the simulation, 

the actual simulation box is surrounded by its periodic images. Thus, if a molecule exits 

from one side of the simulation box, its copy enters from the periodic image into the 

main simulation box from the opposite side [14]–[16], [29]. Figure 14 shows a typical 

2D representation of the periodic boundary condition. 

 

Figure 14: Periodic boundary condition.  
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2.4.3 Minimum image convention and cut-off radius. A minimum-image-

convention, as shown in Figure 15, is used along with the periodic boundary conditions. 

Hence, when calculating the interaction between molecules, a cut-off distance of one-

half the length of the box is typically used. This is done to ensure that one molecule 

does not interact with copies of the same molecule in other periodic boxes, which would 

introduce a false periodicity and also drastically increase the computational time [14]–

[16], [29]. 

 

Figure 15: Minimum image convention. 

 For simulations of systems that contain a large number of particles; it may be 

necessary to use a cut-off radius for the LJ potential in order to reduce the computational 

time. Such measure is usually taken since the pair potential energy is negligible for 

particles that are far away. The cut-off radius for LJ potential is typically taken to be 

2.5σ [60], [61], however, a cut-off radius of more than 2.5σ has been reported [36], 

[37], [52], [62]. This results in the LJ truncated potential (see Figure 15), with the 

conditions given in Equation (45) below [63]: 

𝐸𝐿𝐽 = {
𝐿𝐽(𝑟), 𝑟 < 𝑟𝑐𝑢𝑡−𝑜𝑓𝑓

0, 𝑟 ≥ 𝑟𝑐𝑢𝑡−𝑜𝑓𝑓
(45) 
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 Because of the sudden truncation, the potential near the cut-off radius is similar 

to a step-wise function. Hence, in order to allow the LJ potential reach zero smoothly; 

a switching function 𝑆(𝑟) is used as shown in Equation (46)  [63]: 

𝑆(𝑟) =
[𝑟2𝑜𝑢𝑡 − 𝑟

2]2[𝑟2𝑜𝑢𝑡 + 2𝑟
2 − 3𝑟2𝑖𝑛]

[𝑟2𝑜𝑢𝑡 − 𝑟2𝑖𝑛]3
(46) 

where rout is the outer radius cut-off, while rin is the inner radius cut-off. The conditions 

for using the cut-off radius with the switching function is displayed in Equation (47) 

[63]: 

𝐸𝐿𝐽 = {

𝐿𝐽(𝑟), 𝑟 < 𝑟𝑖𝑛
𝑆(𝑟) ∗ 𝐿𝐽(𝑟), 𝑟𝑖𝑛 ≤ 𝑟 < 𝑟𝑜𝑢𝑡

0,                   𝑟 ≥ 𝑟𝑜𝑢𝑡

(47) 

 

 Figure 16 depicts the comparison between the three types of LJ potentials. 

 

Figure 16: LJ potential with truncation and switching functions. 

2.5 Monte Carlo Simulations 

The MC method is a stochastic method, i.e., it uses probability functions to 

construct a mathematical model simulating a real system in order to determine 

numerical results. MC was first used in the 1940s by John von Neumann, Stanislaw 

Ulam and Nicholas Metropolis, who were working on the nuclear weapon project: the 
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Manhattan Project. The use of the MC method allowed scientists to construct 

mathematical models in order to solve a series of algorithms that were too complex to 

be solved analytically [64]. 

The basis of the MC method is to generate successive configurations of each 

particle or molecule in the system by a probability or a statistical method, such that the 

probability distribution of the desired statistical ensemble is met [14], [15], [21], [28], 

[29]. Figure 17 below, provides a summary of the moves that can be performed in a 

MC simulation. Under a given set of conditions, there could be several combinations 

of the moves that are displayed in Figure 17. 

 

Figure 17: Moves available in a MC simulation [14]. 

 Each MC move (i.e. the change in the configuration) is generated by applying 

an elementary change. For the system to meet the desired equilibrium distribution, only 

the micro-reversibility criterion needs to be observed [22], which states that the flux of 

configurations from state i to state j is equivalent to the inverse flux from state j to state 

i (see Equation (48) [14], [15], [22], [28], [29]). This results in what is known as the 

“Metropolis method”. 

℘𝑖𝜋𝑖𝑗 = ℘𝑗𝜋𝑗𝑖 (48) 
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where ℘𝑖 is the probability distribution of configuration i, proportional to the 

Boltzmann weight for a given ensemble, for example, for the canonical ensemble this 

is exp(-βE) and πij is the transition probability from configuration i to j [14], [15], [22], 

[28], [29].  

The microscopic reversibility criterion is then used to determine appropriate 

transition probability from state i to j in a single MC move. This condition is satisfied 

by the Metropolis algorithm as displayed in Equation (49) [14], [15], [22], [28], [29]: 

𝜋𝑖𝑗 = min [1,
℘𝑗

℘𝑖
] (49) 

For example, in the canonical ensemble, the test configuration for a particle k, 

would be accepted when the following Equation (50) is satisfied [14], [15], [22], [28], 

[29]: 

𝜋𝑖𝑗 = min[1, 𝑒𝑥𝑝(𝛽∆𝐸𝑘
𝑖→𝑗 

)] (50) 

where ΔEk is the change in the potential energy of the system when changing from 

configuration i to configuration j. 

In the Metropolis scheme, the transition probability πij comprises the probability 

of suggesting the transition αij and the probability of accepting this transition, accij, as 

shown in Equation (51) [14], [15], [28], [29]. 

𝜋𝑖𝑗 = 𝛼𝑖𝑗 ∙ 𝑎𝑐𝑐𝑖𝑗 (51) 

A move is accepted when the configurational energy in state j is lower than that 

in state i (i.e. if  ℘𝑗 is greater than ℘𝑖). If the energy in state j is higher, then a random 

number, Random, is generated that is between 0 and 1. If Random is less than the ratio of 

the configuration energies, the move is accepted, otherwise the move is rejected [14], 

[15], [28], [29]. Equations (52) and (53) summarize the scheme as provided in the 

Metropolis method [14], [15], [28], [29]: 

πij = {
𝑎𝑐𝑐𝑒𝑝𝑡 𝑚𝑜𝑣𝑒, ℘𝑖 < ℘𝑗

𝑟𝑒𝑗𝑒𝑐𝑡 𝑚𝑜𝑣𝑒, ℘𝑖 > ℘𝑗
(52) 

𝑖𝑓 ℘𝑖 > ℘𝑗 , 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] 
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πij =

{
 

 𝑎𝑐𝑐𝑒𝑝𝑡 𝑚𝑜𝑣𝑒, 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] <
℘𝑗

℘𝑖

𝑟𝑒𝑗𝑒𝑐𝑡 𝑚𝑜𝑣𝑒, 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] >
℘𝑗

℘𝑖

(53) 

Additionally, the Metropolis method creates what is known as the Markov 

change of states. In such a condition, the transition probability πij is only dependent on 

states i and j and not the states that preceded before them [14]. Furthermore, the 

Metropolis algorithm may then be adapted to generate favorable configurations more 

frequently in order to reduce the computational time. These statistical biases are now 

standard in MC simulations and can handle systems with flexible linear chains [65], 

flexible branched molecules [66] and flexible cyclic molecules [67]. One such bias is 

known as the configurational bias where a molecule is grown segment-by-segment, in 

a way to minimize the energy as discussed for Metropolis method. The configurational 

bias is the most commonly used bias in MC simulations. Figure 18 below depicts the 

use of the configurational bias for a lattice: 

 

Figure 18: Configuration bias for a molecule on a lattice model [14]. 

 In Figure 18, there are three possible moves the molecule can grow about. Of 

the three possibilities as shown in the middle three images, only the first two are 

possible. The third possibility would maximize the energy because of the presence of a 

molecule, thus showing that the molecule cannot grow in the stated direction [14], [68].  
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Lastly, another type of bias is the oriental bias where a molecules orientation is 

continuously displaced based on the force center until the orientation becomes 

acceptable [14]. 

2.6 Molecular Dynamics Simulations 

Molecular dynamics (MD) is dynamic rather than artificial [19], [51]. MD 

follows the time evolution of a system by applying and numerically integrating 

Newton’s law of motions (Equation (54)) [18] at regular time increments (typically in 

the order of 10-14 s) for a set of N particles in the phase space [14], [19], [22]. This 

results in the particle’s trajectory to be specified according to the variation in velocity 

and position with time. However, because of the increase in the number of equations 

that need to be solved, MD is more computationally intensive than MC. 

𝑭𝐴 = 𝑚𝐴

𝑑2𝑹𝐴
𝑑𝑡2

 (54) 

where, mA is the mass of particle A, and RA is the position vector of the particle A. 

Hence, the second-order differential term in Equation (54) represents acceleration. 

However, using Equation (54) and the Newtonian approach in general, is only 

suitable for Cartesian coordinate systems. In order to study more dynamic systems, 

additional forces would need to be defined, but in most systems these forces are 

unknown [18].  

In order to overcome this problem, convenient formulations exist that are not 

tied to any one coordinate system [18]. One common formulation is the Hamiltonian.  

Considering a set of N particles, there will be 6N degrees of freedom in the Hamiltonian, 

as for each particle, the momenta and position would need to be calculated in a 3D 

space in order to specify the trajectories of the particles. Equation (55) describes the 

Hamiltonian of the system H [18]. r and p represent the positions and momenta of the 

particles, respectively. Furthermore, Equations (55)-(57) collectively represent the 

Hamiltonian equations of motions [15], [18], [29]. 

𝐻(𝒓𝑁 , 𝒑𝑁) =  ∑
𝒑𝑖
2

2𝑚𝑖
+ 𝐸(𝒓𝑁)

𝑖

(55) 
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𝑟𝑖̇ = 
𝜕𝐻

𝜕𝑝𝑖
= 

𝑝𝑖
𝑚𝑖

(56) 

𝒑𝑖 = −
𝜕𝐻

𝜕𝒓𝑖
= −∇𝒓𝑖𝐸(𝒓

𝑁) (57) 

The system of equations can be solved numerically using integrators like Verlet-

based or Gear-based predictor-corrector algorithms. Equations (58) and (59) represent 

the velocity Verlet algorithm which is the most widely used algorithm [14], [15], [18], 

[19], [22], [51]: 

𝒓𝐴(𝑡 + ∆𝑡) =  𝒓𝐴(𝑡) + (
𝑑𝒓𝐴
𝑑𝑡
)
𝑡
∆𝑡 +

1

2
(
𝑑2𝒓𝐴
𝑑𝑡2

)
𝑡

(∆𝑡)2 (58) 

𝒗𝐴(𝑡 + ∆𝑡) = (
𝑑𝒓𝐴
𝑑𝑡
)
𝑡
+
1

2
(
𝑑2𝒓𝐴
𝑑𝑡2

)
𝑡

∆𝑡 +
1

2
(
𝑑2𝒓𝐴
𝑑𝑡2

)
𝑡+∆𝑡

∆𝑡 (59) 

In MD, the temperature is directly proportional to the average kinetic energy of 

the systems as shown by Equation (60) below [51], [69]: 

𝑇 =
2

3𝑘𝐵
〈
1

𝑁
∑

|𝒑𝑖|
2

2𝑚𝑖

𝑁

𝑖=1

 〉 (60) 

where ⟨ ⟩ represents the average of the ensemble, N is the total number of particles, mi 

is the mass of particle i and kB is the Boltzmann constant. 

In order to keep the system at constant temperature and not allow fluctuations 

due to changes in the kinetic energy, a heat-bath at the desired temperature is applied 

to act as a thermostat. Many different thermostats are available to be used in the MD 

simulations, such as the Anderson thermostat [70]. However, the most commonly used 

thermostat is the Nose-Hoover. This is because the Nose-Hoover allows a user to 

perform deterministic calculations in MD at constant temperature. Equation (61) below 

displays the Nose-Hoover thermostat which needs to be conserved in order to keep the 

temperature constant [29]: 

𝐻𝑁𝑜𝑠𝑒−𝐻𝑜𝑜𝑣𝑒𝑟 = ∑
𝑷𝑖

2

2𝑚𝑖𝑠2

𝑁

𝑖=1

+ 𝐸(𝒓𝑁) +
𝒑2

2𝑄
+ 𝐿𝑘𝐵𝑇(ln(𝑠)) (61) 
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where the first two terms in Equation (61) represent the kinetic and potential energy 

terms respectively. The s term is the time scale parameter. L is the number of the degrees 

of freedom, which in the case of the canonical ensemble is 3N+1, due to the addition of 

the extra degree of freedom coming from the parameter s. Lastly; Q is the strength of 

the coupling between the system and the heat bath and should be set carefully. If Q is 

too large, then there will be weak coupling resulting in poor temperature control, 

conversely if Q is too small, then the temperature will keep on fluctuating [29].  

Pressure in a MD simulation of a homogeneous system is studied according to 

Equation (62) [69]: 

𝑃 =  〈
𝑁𝑘𝐵𝑇

𝑉
+
1

3𝑉
∑∑𝑟𝑖𝑗⋅𝑓𝑖𝑗

𝑗>𝑖

𝑁−1

𝑖=1

〉 (62) 

where r is the location of particles and rij = ri - rj. fij is the force applied by particle j on 

particle i. 

Similar to the thermostat, a barostat is also required in order to keep the pressure 

constant during the simulation. Again, coupling the system to a constant pressure bath 

(similar to a piston) can be implemented like the coupling of a constant temperature 

bath. By adding an extra term to the equations of motion, the pressure change is affected 

as displayed in Equation (63) [71]: 

(
𝑑𝑃

𝑑𝑡
)
𝑏𝑎𝑡ℎ

= 
𝑃𝑜 − 𝑃

𝜏𝑃
 (63) 

where τP is the time constant, Po is the pressure of the bath and P is the pressure of the 

system. Moreover, applying a proportional coordinate scaling, related to the volume 

scaling, minimizes the local disturbances. This is shown in Equation (64) (in the form 

of αx that is added to ẋ = ν) with the volume change shown in Equation (65) [71]: 

𝑑𝑥

𝑑𝑡
=  𝜐 +  𝛼𝑥 (64) 

𝑑𝑉

𝑑𝑡
= 3𝛼𝑉 (65) 

The pressure change is related to isothermal compressibility (κT) as illustrated 

in Equation (66) [71]: 
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𝑑𝑃

𝑑𝑡
=  −

1

𝜅𝑇𝑉

𝑑𝑉

𝑑𝑡
=  −

3𝛼

𝜅𝑇
(66) 

Substituting Equation (63) into Equation (66) gives the following Equation (67) 

in terms of α: 

𝛼 = −
𝜅𝑇
3𝜏𝑃

(𝑃𝑜 − 𝑃) (67) 

where κT is the isothermal compressibility that only requires a general value, as the 

dynamics of a solution are largely unaffected due to the inaccuracy of κT [71].  

Equation (67) is now substituted into Equation (64) to give Equation (68) as 

shown below. This equation represents the proportional scaling of coordinates, x and 

box length l, with a time step change of Δt from x to μx and l to μl [71]. 

𝜇 =  1 −
𝜅𝑇Δ𝑡

3𝜏𝑃
(𝑃𝑜 − 𝑃) (68) 

2.7 Thermophysical Properties from Molecular Simulations 

2.7.1 Shear viscosity. The viscosity of hydrocarbons is an important property 

since products like lubricants depend on how temperature and pressure affect viscosity, 

which would lead to their use in a fitting application. Since viscosity is a dynamic 

property, only MD can be used for its prediction [22], [69]. 

2.7.1.1 Equilibrium molecular dynamics. One way to calculate viscosity is to 

use the Green-Kubo relationship in Equilibrium Molecular Dynamics (EMD), as shown 

in Equation (69), in which σxy(t) is the component of the pressure tensor at equilibrium 

time [69], [72]: 

𝜂 =
𝑉

𝑘𝐵𝑇
∫〈𝜎𝑥𝑦(𝑡)𝜎𝑥𝑦(0)〉𝑑𝑡

∞

0

(69) 

where, η is the viscosity to be calculated, and V is the volume of the system. The infinity 

on the integral represents the system at the time of equilibrium. Hence, simulations 

involving EQMD need to be run for long periods of time in order to achieve equilibrium 

values of viscosity. Additionally, the use of the Green-Kubo relationship, allows for the 

inclusion of inaccuracies due to it’s correlative nature. 
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The results for the xylene isomers at a temperature of 323 K for different 

pressures are presented in Figure 19 for two different force fields, derived from the 

OPLS [73] and AUA potentials [22], [37]. Furthermore, the results obtained from the 

simulations are compared to the experimental data. 

 
Figure 19: MD results for the xylene isomers [22]. 

 Figure 19 illustrates the difference between the two force-fields. As it can be 

observed, the OPLS force-field produces results much closer to the experimental 

results, with a maximum deviation of less than 6% [73]. On the other hand, the AUA 

model greatly underestimates the viscosity of all the isomers. This is because, unlike 

OPLS, the AUA model does account for the electrostatic interactions between the 

molecules. Nonetheless, the AUA model does predict an increase in viscosity with 

pressure which is consistent with the experimental data [22]. 

2.7.1.2 Non-Equilibrium Molecular Dynamics (NEMD). Compared to use of 

Green-Kubo formalism, NEMD is considered to be more accurate since the statistical 

uncertainty with the use of a correlation is reduced  [74]. Furthermore, NEMD requires 

fewer particles and simulation time as compared to EMD [75]. There are different 

methods by which a NEMD simulation can be carried out. The first method is similar 

to that of a Couette flow, whereby the periodic boxes surrounding the main simulation 

box at the top and bottom are moved at opposite velocities, resulting in shear stress 

being applied to the system inside the main simulation box [74], [75]. This method is 

known as the periodic perturbation method [76]. Figure 20 below represents the shear 

stress that is applied: 
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Figure 20: Movement of periodic boxes at top and bottom. 

 Another method is known as the Muller-Plathe method or reverse NEMD 

(RNEMD) method, where momenta between two particles at different positions in a 

simulation box are exchanged. Hence, resulting in the formation of shear velocity 

profile which can then be used to calculate the shear viscosity [77], [78]. 

2.7.2 Critical properties. Unlike other thermophysical properties, a problem 

arises with the prediction and calculation of the critical properties. This is because no 

relationships exist in statistical mechanics that can calculate the critical properties 

directly from the available equilibrium energy or any other variables. Furthermore, 

approaching the critical point in a molecular simulation results in the density of the 

vapor and liquid phase to be identical [29].  Hence, the methods usually employed 

require the measurement of density at temperatures lower than the critical temperature 

and then use the scaling laws to determine the critical properties. These techniques are 

discussed in more detail in the following sections, for both the MC and MD methods. 

2.7.2.1 Critical properties from Monte Carlo. The MC method has been 

extensively used to calculate the critical properties of a system through the simulations 

of phase equilibria. 

2.7.2.1.1 Gibbs ensemble. The most common method to predict the critical 

properties by simulating the phase equilibria is through the Gibbs ensemble method. In 

the early stages of the use of Gibbs ensemble, simple systems, such as spherical 

Lennard-Jones particles, were studied. Later, more complex systems such as alcohol-

water mixtures and polyatomic hydrocarbons were studied [79]. The general algorithm 
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for the Gibbs ensemble is displayed in Figure 21. Two boxes (one for liquid phase and 

the other for the vapor phase) are used in this ensemble where only the initial densities 

and temperature are provided. The first step is to randomly displace a particle in each 

box. The second step is then to change the volume of the boxes, such that the total 

volume of the system is kept constant. This is done randomly, but in a correlated 

manner. The final step involves exchanging a particle from one box to the other, but 

keeping the total number of particles constant as in the initial system [80]. Probability 

functions from statistical mechanics are used to decide which box would receive the 

particle as mentioned in Equations (52) and (53) in the preceding sections. 

 
Figure 21: Steps in the Gibbs ensemble [80]. 

The Gibbs ensemble method has also been used to simulate various hydrocarbon 

systems in order to find the critical temperature and density. In one of the methods [37], 

MC moves of the molecules involved were translations, rigid body rotations, transfers 

and volume changes. The simulations were carried out for 150 molecules and the 

Anisotropic United Atom (AUA) model was used for the pair potentials. Furthermore, 

the simulations were performed at temperatures below the critical temperature, because 

at the critical point, the MC method is unable to reach equilibrium due to low 

acceptance ratio of transfer moves [36], [37]. 

After the completion of the simulations the critical temperature and density were 

then obtained by fitting the critical scaling law (Equation (70)) and the law of rectilinear 

diameters (Equation (71)), respectively [37]. 

𝜌𝑙 − 𝜌𝑣 =  𝜆(𝑇𝑐 − 𝑇)
0.3265 (70) 
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1

2
(𝜌𝑙 + 𝜌𝑣) =  𝜌𝑐 +  𝛾(𝑇 − 𝑇𝑐) (71) 

where ρ is the density at a particular temperature, T, and the subscripts l, v and c 

represent the liquid, vapor, and critical properties, respectively. λ and γ are constants 

that are fit with the available simulation data. 

The results obtained from these simulations are displayed in Table 2. As evident 

from Table 2, the percentage deviations between the simulated values and the 

experimental values is less than 5% in all cases, making the results acceptable. 

Additionally, the average absolute deviations are 1.1% and 2.7% for critical 

temperature and density, respectively. These deviations could be attributed to the choice 

of the pair potential model and therefore, could be reduced if a more accurate model is 

used. 

Table 2: Results using the Gibbs ensemble Monte Carlo technique [37]. 

 

Tc (K) ρc (kg/m3) 

AUA 
Experimental 

values 

Percentage 

Deviation 
AUA 

Experimental 

values 

Percentage 

Deviation 

2,3-Dimethylpentane 543 537 1.1 243 255 −4.7 

2,4-Dimethylpentane 532 520 2.3 243 240 1.3 

n-Propylbenzene 627 638.2 −1.8 281 273 2.9 

n-Hexylbenzene 688 698 −1.4 275 274 −1.6 

n-Propylhexane 636 639 −0.4 255 265 −3.9 

n-Propylpentane 600 596 0.7 254 262 −3.1 

trans-Decalin 684 687 −0.5 278 288 −3.4 

Tetralin 728 720 1.1 314 322 −2.6 

Indan 679 685 −0.9 295 298 −1.2 

 Although molecular simulations do well in predicting the critical densities and 

temperatures; it is quite difficult to model the vapor pressure of a system. Hence, 

alternative methods, such as the Antoine Equation, are used [34]. Another method is to 

use the modified form of Rackett’s Equation as done by Vetere to calculate the critical 

pressure from the critical density and temperature as modelled by the simulation [34]. 

Equation (72) presents the equation for calculating the critical pressure [34]. 
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𝑃𝑐 =
𝑅𝑇𝑐𝜌𝑐
𝑀𝑊

(
𝜌𝑐
𝜌𝑙
)
(1−

𝑇𝑖
𝑇𝑐
)
−
2
7

(72)
 

where, R is the gas constant, MW is the molecular weight and Ti is the temperature at 

the liquid density. 

2.7.2.1.2 Histogram reweighting method. The second technique that can be used 

to study the phase equilibria is the Grand Canonical MC method with histogram 

reweighting. In this method, the density is allowed to vary, while the chemical potential 

is held constant. Equilibrium is achieved when the chemical potentials of both phases 

reach a constant value. In theory, the probability distribution, which is a function of 

total energy, E, should exhibit two peaks at a given temperature and chemical potential 

because of the presence of two phases. Hence, separate simulations for liquid and vapor 

phase are conducted that are just below the critical point, after which the histogram 

reweighting is applied to combine the results and predict the critical properties [14]. 

Moreover, unlike the Gibb’s ensemble method where the simulations have to be carried 

out below the critical point; it is possible to derive the critical properties of a system 

using histogram reweighting method by extrapolation of results from a simulation that 

is conducted close to the critical point [81]. 

GCMC has been used with histogram reweighting to find the phase diagrams of 

hexadecane-CO2 mixture. Binodal curves for pure species were also found as displayed 

in Figure 22 below.  

 

Figure 22: Binodal curves for pure hexadecane and CO2 [82]. 
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From Figure 22, it can be observed that the simulated binodal curve of 

hexadecane is more in agreement with the experimental value as compared to the 

binodal curve for CO2. The reason for the disagreement between the experimental and 

simulated binodal curves is because of neglecting the electronegative charges in the 

pair potential model CO2 [82]. 

Additionally, the histogram reweighting technique with the Gibbs ensemble 

method is slowly being used more often than standalone Gibbs ensemble, as they 

predict the critical points more accurately and efficiently [36]. In histogram reweighting 

for Gibbs ensemble, a histogram of particle number and energy is collected. Histogram 

reweighting techniques are then applied, along with finite size scaling, to extract 

thermodynamic properties from the probability distribution of density [83]. Figure 23 

shows the predicted results of having a specific density at a probability distribution 

from the coexistence curves of CO2, generated by Gibb’s ensemble simulations. 

 

Figure 23: Probability distribution of having a specific density at different 

temperatures extrapolated using only 3 Gibbs ensemble simulations [83]. 

2.7.2.1.3 Gibbs-Duhem integration. In this method, the famous Gibbs-Duhem 

equation is used [84], as shown in Equation (73) below: 

𝑆𝑚𝑑𝑇 − 𝑉𝑚𝑑𝑃 + ∑𝑥𝑖𝑑𝜇𝑖 = 0

𝑖

(73) 
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where the Sm and Vm are the molar entropy and volume, respectively. µi is the chemical 

potential of species i, while xi is the mole fraction. For a pure system containing the 

vapor (I) and liquid (II) phases, the Gibbs-Duhem equation is given by Equations (74) 

and (75): 

𝑆𝑚,𝐼𝑑𝑇𝐼 − 𝑉𝑚,𝐼𝑑𝑃𝐼 +  𝑑𝜇𝐼 = 0 (74) 

𝑆𝑚,𝐼𝐼𝑑𝑇𝐼𝐼 − 𝑉𝑚,𝐼𝐼𝑑𝑃𝐼𝐼 +  𝑑𝜇𝐼𝐼 = 0 (75) 

Using the thermodynamic criteria of phase existence that sets the change in 

temperature, pressure and chemical potential to be equal, Equations (74) and (75) can 

be subtracted to yield Equation (76), as depicted below [14], [84]: 

(
𝜕𝑃

𝜕𝑇
) =  

𝑆𝑚,𝐼𝐼 − 𝑆𝑚,𝐼
𝑉𝑚,𝐼𝐼 − 𝑉𝑚,𝐼

= 
𝐻𝑚,𝐼𝐼 − 𝐻𝑚,𝐼

𝑇(𝑉𝑚,𝐼𝐼 − 𝑉𝑚,𝐼)
(76) 

The right-hand side of Equation (76) is the Clapeyron equation and is suggested 

to be evaluated through the use of molecular simulations (MD and MC [84]). 

Additionally, unlike the Gibbs ensemble MC, the Gibbs-Duhem integration can be used 

to conduct vapor-liquid simulations, as well as solid-liquid equilibria. Moreover, as 

compared to the Gibbs ensemble simulations that provide a single point on the phase 

diagram per simulation, the Gibbs-Duhem integration method provides a series of 

points. However, it is to be noted that at least one point on the coexistence curve is 

required to be known at the start of the simulation for the Gibbs-Duhem integration 

[14]. 

2.7.2.2 Critical properties from molecular dynamics 

2.7.2.2.1 Temperature quench molecular dynamics (TQMD). In this method, a 

single component liquid-vapor system is considered as shown in Figure 24. The 

ensemble used is the canonical one, where the number of particles, volume and 

temperature are held constant. The temperature has to be controlled through the use of 

a thermostat, an example of which is the Nose-Hoover. Starting from a temperature (a) 

as displayed in Figure 24, the temperature is lowered abruptly to a new temperature (b). 

This new temperature must be such that it is within the spinodal envelope of the system. 

As the system equilibrates at the new temperature, phases of liquids and vapor begin to 

develop [36].  
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Figure 24: Generalized TQMD method [36]. 

 Figure 25 displays the development of the liquid and vapor phases using 

TQMD. Snapshot (a) represents the initial state at the Lennard-Jones reduced 

temperature of T* = TkB/ε = 4 and reduced ρ* = ρ σ3 = 0.33. After suddenly reducing 

the temperature to T* = 0.9, the vapor and liquid phases begin to develop as shown in 

snapshots (b) – (h). Snapshot (i) shows the equilibrated state, with the vapor phase at 

the center of the box and the liquid phase on either side. 

 
Figure 25: TQMD method. Snapshots show the development of the liquid and vapor 

phases [36]. 

2.7.2.2.2 Volume expansion molecular dynamics (VEMD). This technique starts 

by placing a liquid in the box using the canonical ensemble and allow it to equilibrate. 

After equilibrium is achieved, the volume of the box is suddenly increased, which 
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decreases the density. This density is present in the unstable region along the line of 

rectilinear diameters. After a certain amount of time steps, the system separates into a 

liquid and a vapor phase. Figure 26 shows the snapshot of a box containing propane 

molecules that has been enlarged along one axis from 15.8 A to 39.51 A. Figure 26 also 

shows the presence of the two vapor phases on either side of the box, with the bulk 

liquid phase present in the middle [52]. 

 

Figure 26: Snapshot of the simulation box of propane at equilibrium at 217 K [52]. 

 Figure 27 also shows the vapor-liquid equilibria of propane obtained from the 

MD simulations using the VEMD method. In Figure 27, the results show a comparison 

between simulations performed using MC (squares) and MD (circles). 

 
Figure 27: Coexistence curve for propane using MD (circles) and MC (squares) 

simulations. Black circles represent cut-off of 5.5σCH2 while white circles are at a 

cut-off of 4.5σCH2 [52] 
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2.7.2.2.3 Gibbs ensemble. Similar to MC, the Gibbs ensemble method can be 

used with MD to study the phase equilibria of systems. Gibbs ensemble for MD 

(GEMD) was first developed in 1995, and uses a fourth positional degree of freedom, 

ξ, for each particle in the system. This ξ is bounded by zero and one and governs if a 

particle is supposed to be in the vapor phase (ξ = 0) or liquid phase (ξ = 1). GEMD 

involves having a constant temperature, volume and number of particles, with the two 

phases exchanging particles and volumes, to equalize the chemical potential, pressure 

and temperature [85]. Figure 28 represents a typical scenario of the Gibbs ensemble in 

MD. 

 

Figure 28: Running the GEMD simulation. Red particles represent the vapor phase (ξ 

= 0) while blue particles represent the liquid phase (ξ = 1). White particles represent 

the transition state [85] 

The ξ coordinate of each particle, weighs the pairwise potential energy in such 

a way that the particles that are in the same phase interact strongly with each other and 

particles that are in opposite phases interact weakly. This modifies the pairwise 

potential energy, Eij as shown in Equation (77) [85]: 

𝐸𝑖𝑗 = 𝐸𝑖𝑗(𝑟𝑖𝑗,1)𝜉𝑖𝜉𝑗 + 𝐸𝑖𝑗(𝑟𝑖𝑗,2)(1 − 𝜉𝑖)(1 − 𝜉𝑗)                (77) 
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where rij,1 and rij,2 is the distance between the atoms i and j, for phases 1 (vapor) and 2 

(liquid) respectively. Additionally, the total potential energy of the system is then 

calculated as (Equation (78)) [85]: 

𝐸 = ∑𝐸𝑖𝑗 +

𝑖<𝑗

∑𝑔(𝜉𝑖)

𝑖

(78) 

where g(ξ) is an additional potential term, used to make the transition state energetically 

favorable. The functional form of g(ξ) is displayed in Equation (79) below [85]: 

𝑔(𝜉𝑖) = 𝑤(tanh(𝑢𝜉𝑖) + tanh(𝑢(1 − 𝜉𝑖)) − 1)               (79) 

where u is the steepness and w is the height of the potential, chosen in such a way to 

give a low, yet nonzero, number of particles in the transition state [85].  

2.7.2.3 Hybrid MC/MD. In this method, the Gibbs ensemble formalism is used 

similar to the MC method, with the presence of two boxes. One box is for the vapor 

phase while the other is for the liquid phase. However, one key difference is that instead 

of using MC to predict the position of each particle, the deterministic calculations of 

MD are used. Thus, allowing for the advantages of both the MC Gibbs ensemble, like 

ease of applicability, and MD (for example, simulation of dense systems and parallel 

computing applications) to be present in a single simulation. Moreover, because of the 

use of MD, dynamics properties can also be determined which is not possible using the 

MC technique [85]. 

2.8 Molecular Simulations with Parallel Computing 

As stated previously, the most commonly used technique to predict critical 

properties using molecular simulation is through the use of the Gibbs ensemble MC 

technique. However, because of the stochastic nature of MC simulations, it becomes 

difficult to model dense liquids, as the acceptance ratios associated with the insertion 

and deletion moves for the system have very low acceptance ratios [36]. Hence, with 

heavier components, conducting Gibbs ensemble MC simulations would take a 

significant amount of computational time.  

In order to overcome this problem, techniques involving MD simulations (as 

discussed in the previous sections) to predict critical properties have been developed. 
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This is because MD, (unlike MC) can be easily programmed to run on parallel 

computing systems, i.e. supercomputers. Although efforts have been made to make MC 

simulations run with parallel computing, the result is still far from being accurate and 

simple enough to be able to be applied in research [86].  

In parallel computing, a task is broken down into discrete parts or fragments 

that are then fed to different processors to be solved simultaneously. The processors in 

this case could be multiple cores on a single central processing unit (CPU) or multiple 

CPUs on different computers [87].  

Therefore, with the aid of parallel computing, the simulations for MD can have 

significantly shorter computational times that would aid in research as a greater number 

of simulations with higher time steps and with complex systems could be conducted. 

This would be especially true in the future, where classical CPUs with higher number 

of cores would be commercially available leading to faster processing times.  

Apart from the use of classical CPUs; there has been rapid developments in the 

field of quantum computing. In a recent study conducted by NASA and Google using 

the “Sycamore Processor”; a task was engineered which took 200 seconds to be 

completed using quantum computing. The same task would take about 10,000 years to 

be completed using a classical supercomputer [88]. Therefore, conducting a MD 

simulation on such a system would take mere seconds, even if the number of particles 

is of the order of 1010. Hence, it is easier to assess the importance and scope of research 

using MD that can be conducted in the future. 
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Chapter 3. Simulation Methodology 

3.1 Simulation Details 

A number of simulations were conducted in order to predict the viscosities and 

critical properties of heavy hydrocarbons, details of which can be found in the sections 

below.  

All simulations were performed on computer system housing an Intel Core i7-

6700 CPU and 8 GB of RAM. With the aid of the in-built boost system, the simulations 

were consistently run at a clock speed of 3.95 GHz instead of the base speed of 3.40 

GHz. Additionally, the simulations were performed on a single core; thereby not taking 

advantage of the parallelization nature of MD simulations. Moreover, all simulations 

used a switching function for the calculations involving the intermolecular potential. 

The inner cutoff was set to be 9.0 Å, while the outer cutoff was 12.0 Å. The inner cutoff 

was set according to the values provided by the system building software, Moltemplate 

[89]. The outer cutoff was based on 3σ for the CH2 group as provided by the TraPPE 

force-field (see Table 3). Although, it is usually taken to be 2.5σ as recommended by 

Smit and Toxaevard [60], [61]; the value is rounded off to provide more accurate set of 

results. Furthermore, in order to visualize the results of the simulations, the Open 

Visualization Tool (OVITO) was used. Lastly, Table 3 below depicts the Lennard-Jones 

parameters for the different force-fields employed: 

Table 3: LJ parameters for the AMBER, COMPASS and TraPPE force-field. 

Force-Field  ε/kB, K σ, Å 

AMBER 

C atom (CH3) 55.1 3.40 

H atom (CH3) 7.90 2.65 

C atom (CH2) 43.3 3.40 

H atom (CH2) 7.90 2.47 

COMPASS 

C atom 31.2 3.854 

H atom 11.6 2.878 

TraPPE 

CH3 Group 98.0 3.75 

CH2 Group 46.0 3.95 
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3.1.1 Viscosity simulations. The Green-Kubo formalism with EQMD was used 

to calculate the viscosity of the three hydrocarbons using the AMBER (an all-atom 

model) force-field. All simulations were conducted using the LAMMPS (Large-scale 

Atomic/Molecular Massively Parallel Simulator) module built into the MAPS 

(Materials and Process Simulation) by Scienomics software [90]. Moreover, all systems 

consisted of 150 molecules and simulations were performed with a time-step of 1 fs. 

Initially, the system was first equilibrated by running it for 500-700 ps using the NPT 

ensemble at a pressure of 1 atm and the desired temperature. After the equilibration run, 

the system was then simulated in the NVE ensemble for 5 ns, after which the system 

was analyzed for the viscosity readings. 

For the same system at the desired temperature, three simulations were 

conducted. This is because the viscosity results from a single simulation greatly 

fluctuates and running the simulation again with the same conditions would provide a 

different result as to the one obtained before. Hence, three simulations were performed 

at the same conditions after which an average of the viscosity results was taken. 

In order to reduce the computational time, only the very first simulation for 

equilibration was conducted at 700 ps in the NPT ensemble. After the calculation of 

viscosity from the NVE ensemble; the same system was run for 500 ps at the NPT 

ensemble for the next run. This allows in the reduction of the computational time, 

especially in the long run where a significant number of simulations were required to 

be performed. This method is illustrated in Figure 29 below: 

 
Figure 29: Schematic for carrying out viscosity simulations. 
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3.1.2 Critical Properties 

3.1.2.1 Critical properties from molecular dynamics. In order to predict the 

critical properties using MD, the VEMD method was used. Furthermore, to study the 

effect of different potential models, three different force-fields were used to predict the 

critical properties of the heavy hydrocarbons. These were AMBER (all-atom model), 

COMPASS (all-atom model) and TraPPE (united atom model). Figure 30 below depicts 

n-decane molecule for the three force-fields: 

 
Figure 30: n-Decane as made using different force-fields 

Two software packages were used to conduct the simulation. The first software 

used was Moltemplate [89]. This software allows the building of a molecule according 

to the parameters of a force-field and consequently, a box containing the desired number 

of molecules. Such a box is shown in Figure 31 for n-decane that was made using the 

TraPPE force-field. The second software used was LAMMPS [91] in order to carry out 

the simulations on the system that was made using Moltemplate. For all simulations, a 

time-step of 1 fs was employed, and the number of molecules was set to 1000 for cases 

below the boiling point of the hydrocarbon, and 8000 for the cases above the boiling 

point. This was done to ensure the formation of a stable interface at higher temperatures.  

 
Figure 31: Initial simulation box containing 1000 n-decane molecules made with the 

TraPPE force-field using the Moltemplate software. 
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As shown in Figure 31, the box is not only very large but also contains very 

large spacing between the molecules. In order to produce a more realistic system, the 

steps as provided by Moltemplate are used as a reference [89]. The steps that are carried 

out are as follows: 

1. Running the system for 5 ps at NVE and 50 ps at NVT ensembles at a 

temperature of 900 K in order to reorient the molecules and change their 

direction to a more natural one. 

2. In order to reduce the size of the box, the system was then run in the NPT 

ensemble with a pressure of 250 atm for 250 ps. Additionally during this run 

the temperature was decreased from 900 K to the desired temperature 

required.  

3. After the first NPT run at high pressure, a second NPT run is performed 

where the pressure is reduced from 250 atm to 1 atm, with the desired 

temperature being held constant, at 250 ps. 

4. Lastly, a final NPT run is conducted at 1 atm and desired temperature for 

500 ps. This run allows the system to reach a constant and realistic density 

at the given temperature and pressure. 

Performing the above steps allows the molecules to have a more natural and 

realistic orientation. Moreover, it allows the system to reach an equilibrium density, as 

shown in Figure 32, which also shows the density of the system at different stages of 

the simulation. 

 

Figure 32: Density profile for n-decane during the different stages of simulation for 

equilibration. The desired temperature is 380 K and the force-field used is TraPPE. 
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After the final NPT run, the box is then suddenly enlarged in the x-dimension 

by using a factor of 3.5 and the system is run at the desired temperature for 0.75 ns to 

3 ns. The density of the system is continuously monitored to assess if the system has 

reached equilibrium or not. After equilibrium has been attained, the final liquid and 

vapor density is recorded. Appendix A provides snapshots for the development of the 

density profile of a simulation for n-decane at 380 K. 

3.1.2.2 Critical properties from monte-carlo. The simulations involving MC 

were carried out in the Towhee module of the MAPS by Scienomics software [90]. The 

simulations consisted of a total of 150 molecules. The simulations were performed for 

1.5 million moves and using the AMBER force-field. Additionally, 6 moves were 

performed during the course of the simulation. The moves, along with their probability 

and acceptance ratios are presented in Table 4 below: 

Table 4: Types and probability of moves and acceptance ratios used in predicting 

critical properties using MC simulation. 

Type of Move 
Probability of 

move 

Acceptance 

ratio 

Center-of-mass molecule translation move 0.833 0.5 

Rotation about the Center-of-mass move 1.0 0.5 

Intramolecular single atom translation 

move 
0.667 0.5 

Configuration-bias two box molecular 

transfer move 
0.5 - 

Rotational-bias two box molecular transfer 

move 
0.333 - 

Isotropic volume move 0.167 0.5 
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3.2 Validity of Results 

In order to verify the results obtained from molecular simulations; the results 

were compared with various experimental data and correlations. For viscosity, a 

number of sources for experimental data were found and compared with the results of 

simulations. Table 5 below lists out the references and systems studied along with the 

experimental technique for measuring the viscosity of the different hydrocarbons: 

Table 5: References used for viscosity experimental data of n-decane, n-pentadecane 

and n-eicosane. 

Reference Systems Studied 
Experimental 

Technique 

Knapstad et al. [92] 

n-C6, n-C7, n-C8, n-C10, 

n-C12, n-C14 

Absolute Oscillating 

Viscometer 

Klein et al. [93] n-C6, n-C8, n-C10, n-C16 Surface Light Scattering 

Yucel et al. [94] n-C12, n-C13, n-C15 

Anton Paar SVM 

3000 Stabinger 

Viscometer 

Hogenboom et al. 

[95] 
n-C12, n-C15, n-C18 Rolling-ball Viscometer 

NguyenHuynh et al. 

[96] 

Several n-alkanes, including n-

C10, n-C15 and n-C20 
DIPPR database 

Gross & 

Zimmerman [97] 
n-C20 N/A 

The critical properties predicted from the different force-fields were compared 

with experimental data from Ambrose [98]. The experimental data from Ambrose lacks 

the critical density for n-eicosane, hence, Equation (72) was used to calculate the critical 

density using the experimental critical temperatures and pressures. Moreover, 

experimental vapor-liquid equilibria data for n-decane [99] was also used to compare 
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with the results of the simulations. In addition to the experimental data, results predicted 

by several correlations were also compared with the results obtained from the molecular 

simulations. Table 6 below presents the references for the employed correlations: 

Table 6: Correlations used for predicting critical points employed in this work for 

comparison purposes. 

Correlation Reference 

Asymptotic Behavior Correlation (ABC) by Gasem [100] 

Riazi & Sahhaf [11] 

Pakmakar-Ivan Topological Index by Vakili-Nezhaad & 

Sabbaghian-Bidgoli 

[101] 

Teja et al. [102] 

Tsonopoulous (1993) [103] 

Tsonopoulous (1987) [104] 

Joback’s group contribution method [105] 

Lydersen’s group contribution method [106] 

Klincewicz’s group contribution method [107] 

Fedor’s group contribution method [108] 

Ambrose’s group contribution method [109], [110] 

The above correlations only provide a single point for comparison. In order to 

study the performance of the force-fields in predicting the vapor and liquid densities, 

three equation of states (EOS) were also used; namely, the Peng-Robinson (PR), Soave-

Redlich-Kwong (SRK) and the Wilson’s EOS. These EOS were used to provide an 

insight on the accuracy of the force-fields in predicting the vapor and liquid densities.  
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Chapter 4. Results and Discussion 

4.1 Results 

4.1.1 Viscosity. EQMD simulations were conducted using the MAPS by 

Scienomics software to study the effect of temperature on the viscosity of the liquid 

hydrocarbons under study in this work. Because of time limitations, only the AMBER 

force-field was used. Figures 33-35 depicts the results obtained from the simulations, 

along with the experimental results, for n-decane, n-pentadecane and n-eicosane 

respectively. 

  

Figure 33: Viscosity for n-decane using AMBER force-field at different temperatures 

 

Figure 34: Viscosity for n-pentadecane using AMBER force-field at different 

temperatures 
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Figure 35: Viscosity for n-eicosane using AMBER force-field at different 

temperatures 

4.1.2 Critical properties. For the critical properties, the AMBER, COMPASS 

and TraPPE force-fields were used. For the case of AMBER, both MD and MC 

simulations were conducted. Several correlations and EOS were also used for cross-

comparison of the molecular simulations results. 

The coexistence curves for n-decane are presented in Figure 36 for the AMBER, 

COMPASS and TraPPE force-fields.  

 

Figure 36: Coexistence curves and critical points for n-decane as predicted by the 

AMBER, TraPPE and COMPASS force-fields. 
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Figure 37 below depicts the coexistence curves obtained for n-pentadecane 

using the different force-fields.  

 

Figure 37: Coexistence curves and critical points for n-pentadecane as predicted by 

the AMBER, TraPPE and COMPASS force-fields. 

The results for the coexistence curves of n-eicosane are presented in Figure 38 

below. It is important to note that experimental data for the critical density was not 

found. Hence, Equation (72) is used along with the experimental critical temperature 

and pressure and density data from [99] to calculate the critical density. 

 

Figure 38: Coexistence curves and critical points for n-eicosane as predicted by the 

AMBER, TraPPE and COMPASS force-fields. 
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The critical pressures as obtained from the Vetere’s equation (Equation (72)), 

as well as the experimental data, are presented in Figure 39 below. 

 

Figure 39: Critical pressure as calculated for n-decane, n-pentadecane and n-eicosane 

from the simulated critical temperatures and densities. 

Lastly, the critical values as obtained from the simulations are presented in 

Tables 7 (for critical temperature), 8 (for critical density) and 9 (for critical pressure) 

below. The values in the square brackets represent the percentage deviation from the 

experimental values. 

Table 7: Tc (K) for the three heavy hydrocarbons investigated as predicted by 

different force-fields (Values in square brackets represent the percentage deviation 

from the experimental data). 

Hydrocarbon 
Experimental 

Data, K 

AMBER 

(MD), K 

AMBER 

(MC), K 

COMPASS, 

K 

TraPPE, 

K 

n-decane 617.7 
614.2  

[-0.57%] 

617.0 

[-0.11%] 

575.1 

[-6.89%] 

618.9 

[0.19%] 

n-

pentadecane 
708.0 

691.1 

[-2.38%] 

693.0 

[-2.12%] 

629.8 

[-11.05%] 

704.9 

[-0.44%] 

n-eicosane 768.0 
721.7 

[-6.03%] 

724.9 

[-5.60%] 

671.5 

[-12.57%] 

762.7 

[-0.69%] 
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Table 8: ρc (g/cm3) for the three heavy hydrocarbons investigated as predicted by 

different force-fields (Values in square brackets represent the percentage deviation 

from the experimental data) 

Hydrocarbon 
Experimental 

Data, g/cm3 

AMBER 

(MD), g/cm3 

AMBER 

(MC), g/cm3 

COMPASS, 

g/cm3 

TraPPE, 

g/cm3 

n-decane 0.228  
0.213 

[-6.77%] 

0.211  

[-7.36%] 

0.204 

 [-10.5%] 

0.225  

[-1.32%] 

n-

pentadecane 
0.220 

0.212  

[-3.47%] 

0.215  

[-2.27%] 

0.202 

 [-8.26%] 

0.212  

[-3.54%] 

n-eicosane 
0.212 (From 

Equation (72)) 

0.254 

[19.7%] 

0.248 

[17.0%] 
0.221 [4.31%] 

0.212  

[-0.02%] 

Table 9: Pc (MPa) for the three heavy hydrocarbons investigated as predicted by 

different force-fields (Values in square brackets represent the percentage deviation 

from the experimental data). 

Hydrocarbon 
Experimental 

Data, MPa 

AMBER 

(MD), MPa 

AMBER 

(MC), MPa 

COMPASS, 

MPa 

TraPPE, 

MPa 

n-decane 2.11 
1.95  

[-7.53%] 

1.95  

[-7.73%] 

1.60 

 [-24.2%] 

2.11  

[0.07%] 

n-

pentadecane 
1.48 

1.39  

[-6.20%] 

1.43  

[-3.49%] 

1.30  

[-12.4%] 

1.34 

 [-9.22%] 

n-eicosane 1.07 
1.77  

[65.5%] 

1.64  

[53.7%] 

1.20  

[12.0%] 

1.08  

[0.77%] 

 

4.1.3 Computational efficiency. The computational efficiency takes into 

account the number of steps completed per day by a force-field. The measurement of 

the steps performed provides insight into the effectiveness of each force-field, as 

computational time is crucial in carrying molecular simulations that provide accurate 

results. Additionally, knowing the number of steps that can be computed per day allows 

for planning the number of simulations that can be carried out in a given period of time. 

Such a comparison is provided in Figure 40 below for a system of 1000 n-decane 

molecules in an enlarged box (in one dimension) at 520 K. Figure 40 presents data in 

time steps of nanoseconds per day (ns/day) for all three force-fields: AMBER, 

COMPASS and TraPPE. 
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Figure 40: Time performance comparison for different force-fields for different n-

alkanes in a one-dimensional box at 520 K. 

4.2 Discussion 

4.2.1 Viscosity. The viscosity for n-decane, n-pentadecane and n-eicosane were 

predicted using the AMBER force-field in EQMD. From Figures 33, 34 and 35, it can 

be observed that the use of AMBER force-field over-estimates the viscosity of the 

studied hydrocarbons for all temperatures. Additionally, it can be seen that at lower 

temperatures, and especially at ambient conditions, the viscosity is greatly 

overpredicted. For example, at 300 K for n-eicosane (Figure 35), the percentage 

deviation is 112% from the experimental value while at 600 K it is 76.2%. Such a trend 

is also observed for n-decane (Figure 33: 40.5% at 300 K and 25.0% 500 K) and n-

pentadecane (Figure 34: 83.0% at 300 K and 34.7% 550 K). The reason for this trend 

can be attributed to the process of crystallization of the hydrocarbons at ambient 

temperatures; which results in poor modelling by the AMBER force-field. This is 

especially true for the heavier hydrocarbons, n-pentadecane and n-eicosane. 

Additionally, it can be seen that at 300 K, n-decane has the lowest deviation from the 

experimental results, followed by n-pentadecane and n-eicosane. This further proves 

the poor effect of crystallization or solidification process of the hydrocarbons on 

AMBER. Such an effect has also been observed for the OPLS force-field. In a study by 

Siu et al. [111], it was seen that at a temperature of 298.15 K the viscosity for n-
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pentadecane was over 7000 cP as compared to the experimental value of 2.54 cP. This 

result is due to the formation of a “gel” or crystalline phase. Similarly, for n-decane, 

the OPLS force-field predicts the viscosity to be 1.386 cP (at 298.15 K), with a 

percentage deviation of 65%, providing similar results to the one presented in this work 

for n-decane using AMBER (percentage deviation of 40.5% at 300 K). However, the 

main objective of this study [111] was to optimize the OPLS force-field into providing 

better results; the result of which is the L-OPLS force-field. Using L-OPLS, the 

viscosity prediction at 298.15 K for n-decane and n-pentadecane turned out to be 1.102 

cP (percentage deviation of 31.1%) and 3.496 cP (percentage deviation of 37.6%), 

respectively. 

Another study  conducted on n-hexadecane (n-C16) also shows similar behavior 

where the viscosity predicted by AMBER is extremely high as compared to the 

experimental data [112]. According to this study, at high temperature and high-pressure 

conditions, the prediction of viscosity by AMBER was found to be more accurate when 

compared to the experimental results. Figure 41 below represents the results obtained 

from that study [112]: 

 
Figure 41: n-Hexadecane viscosity predictions using different force-fields compared 

with experimental data [112] 

Lastly, a study  performed on n-hexane (n-C6) showed more accurate 

predictions for viscosity [113]. This fits the trend that is observed in Figures 33, 34 and 

35, where lighter hydrocarbons fit the AMBER force-field much better than heavier 

hydrocarbons. Figure 42 depicts the simulated results for n-C6 with the experimental 

data: 



71 

 

 
Figure 42: n-Hexane viscosity results from AMBER force-field with experimental 

data [113] 

4.2.2 Critical properties. As stated before, for each of the three heavy 

hydrocarbons studied in this work (n-C10, n-C15, and n-C20), three different force-

fields were used to predict the critical properties, i.e., AMBER, TraPPE, and 

COMPASS. The results generated by molecular simulation in this work were compared 

to those of several correlations, EOS and experimental data. Figures 36-48 and Tables 

7-9 present the results obtained for the critical properties Tc, ρc, and Pc. 

Referring to Tables 7-9, it can be seen that TraPPE, followed by AMBER, 

provide the best results in prediction of the critical properties. For TraPPE, all 

percentage deviations are less than 10% with the prediction of the critical temperatures 

being less than 1%. The AMBER force-field also provides accurate results for the 

critical properties. However, it can be seen that, compared to TraPPE, the percentage 

deviations are higher. For example, TraPPE has a percentage deviation of only -0.69% 

for the critical temperature of n-eicosane, while it is -6.03% and -5.60% for the AMBER 

MD and MC results, respectively. Furthermore, compared to AMBER and TraPPE, the 

COMPASS force-field provides results that are least accurate, having a percentage 

deviation as high as 12.57% for the critical temperature of n-eicosane. However, for the 

critical density, COMPASS provides a better prediction than AMBER for n-eicosane, 

where the percentage deviation is 4.31% for COMPASS and 19.7% and 17.0%, 

respectively for AMBER MD and MC. Lastly, comparing the generated results in this 
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work with those generated by different available correlations, it is observed in Figures 

36-38 that the results from the AMBER and TraPPE force-fields fall within the range 

of several correlations, thus proving the accuracy and reliability of the said force-fields. 

For further results calculated using the correlations; Appendices B, C and D provide 

the numerical values of critical temperature, density and pressure respectively. 

From Figure 39 and Table 9; the values of critical pressure predicted by the 

force-fields are compared to the experimental results. Similar to the results of critical 

temperature and density, the TraPPE force-field provides the most accurate results, with 

a maximum percentage deviation of -9.22% for n-pentadecane. Moreover, although the 

COMPASS force-field provides poor predictions for n-decane and n-pentadecane, it 

gives better accuracy in the case of n-eicosane when compared with AMBER.  

 In order to compare and assess the predictive capability for the molecular 

simulation techniques used in this study for the equilibrium (coexisting) liquid and 

vapor densities, results using the different the force-fields were compared with those 

generated by well-known EOS, i.e., Wilson, SRK and PR. In the case of n-decane, 

experimental vapor-liquid data were also used for comparison.  

In the case of AMBER, there seems to be good agreement with the simulated 

results and the experimental data (and even with results from PR and SRK to some 

extent) for n-decane for the vapor density (see Figure 36). However, AMBER 

underpredicts the liquid density when compared to the experimental data. Rather, the 

liquid density more closely follows the trend set by PR, specifically at high 

temperatures. In comparison to n-decane, the vapor densities for n-pentadecane (Figure 

37) and n-eicosane (Figure 38) show poor agreement for all EOS. The liquid densities 

for n-pentadecane and n-eicosane, on the other hand, agree well with the SRK EOS at 

high temperatures, similar to n-decane for PR EOS.  

For the TraPPE force-field, similar trends are observed for n-decane (Figure 36) 

when compared to AMBER, where the vapor density follows closely the experimental 

data, PR and SRK data. While the liquid density from TraPPE more closely follows the 

liquid density predicted by PR. Additionally, for n-pentadecane (Figure 37), the vapor 

density is again in good agreement with the results from PR and SRK. While for the 

liquid density, the TraPPE predictions match closely with those by the SRK EOS. 
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However, for n-eicosane (Figure 38), again similar trends are seen to that of AMBER, 

where the vapor density is poorly predicted by TraPPE. Whereas the liquid density at 

high temperatures follows the trend set by PR EOS.  

Lastly, the COMPASS force-field severely underpredicts both the liquid and 

vapor densities for all hydrocarbons and compared to AMBER and TraPPE, provides 

the most inaccurate results. 

Considering the results obtained from molecular simulations, it is observed that 

the TraPPE force-field, followed by AMBER, provides the most accurate results when 

compared to the experimental data. They are also in the best agreement with results 

generated by other correlations and EOS. This may be attributed to the fact that TraPPE 

is designed to have specific parameters in order to predict accurate phase equilibria 

properties of different species (such as n-alkanes and ketones). For AMBER, a clear 

trend is observed where the percentage deviations seem to increase with the carbon 

number for all critical properties. This trend has also been observed for the viscosity 

results. Hence, the increase in percentage deviation could be attributed to the increase 

of crystallization in the system which AMBER is unable to quantify accurately. This 

fact is further proved by the accurate prediction (when compared to EOS) of liquid 

viscosities at higher temperatures.  

In this work, the least accurate of the three employed force-fields has been 

COMPASS, with inaccurate results obtained for critical properties and liquid and vapor 

densities. This could be attributed to the fact that COMPASS does not place equal 

emphasis between intramolecular and intermolecular parameters. Similar results have 

also been produced in another study in the literature, for different hydrocarbons 

simulated with different force-fields [114], including AMBER, TraPPE and 

COMPASS, where the most accurate results were produced by TraPPE followed by 

AMBER and COMPASS, as it is the case in this work. It was also observed in that 

study, that for smaller molecules, AMBER predicts the vapor density much more 

accurately with a greater set of results showing a deviation of only 1%, which is similar 

to the trends observed in this work where AMBER produces the vapor density for n-

decane similar to the experimental data. In a different study [115], it was also observed 

that the TraPPE force-field predicts liquid densities that are in good agreement with the 
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Lemmon and Huber EOS for n-dodecane. These results are similar to the results 

obtained in this work for other hydrocarbons. 

Apart from the critical properties obtained from MD, results from the MC 

simulations using AMBER were also provided. In theory, it is expected that any result 

from MC and MD should be the same. From the results obtained, it can be clearly seen 

that MC and MD do provide similar results. Small differences in the final results arise 

from the minor fluctuations that take place during the course of the simulations and also 

because of significant figures. 

It is also important to note here that the results for critical pressure were obtained 

from the simulated results of critical temperature and critical density by means of 

Equation (72). Because of this, the errors for critical pressure are much higher, as the 

small errors and inaccuracy in critical temperatures and density are greatly amplified. 

4.2.3 Computational efficiency. An important aspect of molecular simulations 

is the execution time required for carrying out these simulations. In an effort to reduce 

the computational time, different force-fields were developed (such as the united-atom 

TraPPE force-field) that simplify the intermolecular calculations, thereby reducing the 

computational time. Hence, it becomes of value to provide a comparison between the 

computational time for the different force-fields used in this study in order to gauge the 

computational efficiency. However, this aspect must be looked while taking into 

account the accuracy of the generated simulation results.   

The computational time greatly depends on the models used and also, on the 

number of particles in the system. In this work, two different models were used to 

design the three force-fields that were used in this study. The first model is the All-

Atom model (AA), which was used for the AMBER and COMPASS force fields, while 

the second is the United-Atom model (UA) for the TraPPE force-field. The results for 

the time performance are shown in Figure 40. 

From Figure 40, two trends are observed: 1) for all hydrocarbons, the TraPPE 

force-field provides the highest number of time-steps computed followed by AMBER 

and COMPASS, and 2) with the increase in the carbon number, the number of time-

steps for all force-fields tends to decrease. These trends can be attributed to the AA and 

UA nature of the force-fields. In the AA model, all atoms are modelled, which in the 



75 

 

case of n-alkane would include hydrogen and carbon atoms. UA model, on the other 

side, only looks at a group of atoms. For example, for n-alkanes, there will be two 

methyl groups, while the rest will be the methylene groups. This greatly reduces the 

number of interaction sites for a UA model when compared to AA model, leading to 

better computational performance.  

Based on the results obtained for critical properties and those presented in 

Figure 40; it can be concluded that TraPPE provides with the most accurate results 

while being efficient in terms of the computational time required.  

Finally, it is necessary to state that the simulations were not carried in a parallel 

system. Parallelization is an important aspect of MD simulations and computational 

methods in general, where a task is broken into chunks and a number of cores on a CPU 

or multiple CPUs are utilized to reduce the computational time. In this work, the 

computer system would utilize a maximum of 15% of its speed by using a single core. 

The use of a single core ensures that the CPU is adequately cooled using stock cooling 

apparatus. Hence, in order to increase the number of cores used, and thereby reduce the 

computational time, a system would require more efficient form of cooling.  Figure 43 

below shows this percent utilization: 

 

Figure 43: Percent utilization of the CPU. Note: the spike in utilization is due to the 

command for screenshot. Steady state value is at 15%. 

Hence, it can be concluded that increasing the utilization of the number of cores 

on this system would greatly increase the computational efficiency. 
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Chapter 5. Conclusion and Recommendations 

The aim of this thesis is to use molecular simulation to predict the viscosity and 

critical properties of the heavy hydrocarbons n-decane, n-pentadecane and n-eicosane. 

This was primarily done using MD. The following sections provide the key conclusions 

and further recommendations coming out of this work. 

5.1 Viscosity Study 

Through the use of EQMD with Green-Kubo relations, the viscosity of n-

decane, n-pentadecane and n-eicosane were studied for the first time using the AMBER 

force-field as a function of temperature. It was observed that AMBER poorly models 

the viscous behavior of heavier molecules at lower temperatures. This is especially true 

at ambient temperature, where the percentage deviation for n-pentadecane and n-

eicosane are found to reach 83 and 112%. From these it can be concluded that AMBER 

is unable to accurately model such heavy species. 

It is recommended to use other force-fields in predicting the viscosities of heavy 

hydrocarbons and establish as to which force-field provides greater accuracy. Also, to 

further illustrate the possible effects of crystallization, the AMBER force-field can be 

used to study the viscosities of lighter hydrocarbons. This will further help to verify the 

trends that were observed in the thesis. The viscosity of mixtures of heavy hydrocarbons 

can also be studied using molecular simulation whereby the hydrocarbon system can 

be modelled similar to an actual heavy oil system. 

5.2 Critical Properties Study  

The primary method of predicting the critical properties of heavy hydrocarbons, 

or any species in general, is through the use of Gibbs ensemble Monte Carlo. However, 

a major disadvantage of using MC techniques is the lack of parallelization on a 

computational system which leads to increasing computational time. Hence, the use of 

MD to predict critical properties is being extensively researched.  

In this thesis, MD simulations, specifically VEMD, were used to predict the 

critical properties of n-decane, n-pentadecane and n-eicosane, using the AMBER, 

COMPASS and TraPPE force-fields. Although n-decane and n-eicosane critical 
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properties have been investigated using the TraPPE force-field [33], n-pentadecane is 

studied in this work for the first time using AMBER, COMPASS and TraPPE. 

Additionally, no studies were found in open literature on the prediction of critical 

properties for n-decane and n-eicosane using AMBER and COMPASS force fields. 

From the results generated in this work, it can clearly be seen that TraPPE is the 

most accurate force among the three fields studied for predicting the critical properties 

with maximum percentage deviation of -9.22%. The second most accurate force-field 

is AMBER followed by COMPASS. Moreover, when compared to other correlations, 

it is observed that TraPPE fits well within the results of most correlations. 

Additionally, when compared with EOS, it is observed that when the carbon 

number of the hydrocarbons increases (i.e., for heavier hydrocarbons), the liquid 

density predicted by TraPPE and AMBER were in good agreement with those predicted 

by EOS. For n-decane, both TraPPE and AMBER provide good agreement with the 

experiment vapor density as well. However, this is not the case for COMPASS force 

field for all species where it generated the worst prediction for vapor and liquid 

densities. 

Based on the findings in this study, it is recommended to use TraPPE and 

AMBER, and other force-fields, such as CHARMM, to predict and study the critical 

properties of heavier hydrocarbons. Additionally, it is also important to study mixtures 

of heavy hydrocarbons. Hence, it is recommended to find a model heavy hydrocarbon 

system that can be used with different force-fields in order to study the critical 

properties of such a mixture. 

5.3 Computational Efficiency 

The number of time steps performed by each force-field was also computed and 

compared. The results showed that TraPPE can compute a significantly higher number 

of steps because of its UA nature; followed by AMBER and COMPASS. Therefore, it 

can be concluded that TraPPE has the highest efficiency, since it provides with the 

lowest percentage deviations in critical properties while computing the highest number 

of time steps. 
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Since the critical properties with MD require a greater number of molecules, it 

is recommended to use parallel computer systems to greatly reduce the computational 

time and to make the process of predicting critical properties using MD more efficient. 

This can be easily implemented in a high-performance computing facility.  
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[52] J. C. Pàmies, C. McCabe, P. T. Cummings, and L. F. Vega, “Coexistence 

Densities of Methane and Propane by Canonical Molecular Dynamics and 

Gibbs Ensemble Monte Carlo Simulations,” Mol. Simul., vol. 29, no. 6–7, pp. 

463–470, 2003. 

[53] W. D. Cornell et al., “A Second Generation Force Field for the Simulation of 

Proteins, Nucleic Acids, and Organic Molecules,” J. Am. Chem. Soc., vol. 117, 

no. 19, pp. 5179–5197, May 1995. 

[54] H. Sun, “COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase 

ApplicationsOverview with Details on Alkane and Benzene Compounds,” J. 

Phys. Chem. B, vol. 102, no. 38, pp. 7338–7364, Sept. 1998. 

[55] M. G. Martin and J. I. Siepmann, “Transferable Potentials for Phase Equilibria. 

1. United-Atom Description of n-Alkanes,” J. Phys. Chem. B, vol. 102, no. 14, 

pp. 2569–2577, Apr. 1998. 

[56] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and 

Testing of the OPLS All-Atom Force Field on Conformational Energetics and 

Properties of Organic Liquids,” J. Am. Chem. Soc., vol. 118, no. 45, pp. 11225–

11236, Nov. 1996. 

[57] W. Damm, A. Frontera, J. Tirado–Rives, and W. L. Jorgensen, “OPLS all-atom 

force field for carbohydrates,” J. Comput. Chem., vol. 18, no. 16, pp. 1955–

1970, Dec. 1997. 

[58] A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “ReaxFF:  A 

Reactive Force Field for Hydrocarbons,” J. Phys. Chem. A, vol. 105, no. 41, pp. 

9396–9409, Oct. 2001. 

[59] A. D. MacKerell et al., “All-Atom Empirical Potential for Molecular Modeling 

and Dynamics Studies of Proteins,” J. Phys. Chem. B, vol. 102, no. 18, pp. 

3586–3616, Apr. 1998. 

[60] B. Smit, “Phase diagrams of Lennard-Jones fluids,” J. Chem. Phys., vol. 96, no. 

11, pp. 8639-8640, 1992. 

[61] S. Toxværd and J. C. Dyre, “Shifted forces in molecular dynamics,” J. Chem. 

Phys., vol. 134, no. 8, 2011. 

[62] C. Desgranges, K. N. Ngale, and J. Delhommelle, “Prediction of critical 

properties for Naphthacene, Triphenylene and Chrysene by Wang-Landau 

simulations,” Fluid Phase Equilib., vol. 322–323, pp. 92–96, May 2012. 

[63] P. J. Steinbach and B. R. Brooks, “New spherical-cutoff methods for long-range 

forces in macromolecular simulation,” J. Comput. Chem., vol. 15, no. 7, pp. 

667–683, 1994. 

[64] N. T. Thomopoulos, Essentials of Monte Carlo Simulation : Statistical Methods 

for Building Simulation Models. New York: Springer, 2013. 

[65] J. I. Siepmann, S. Karaborni, and B. Smit, “Simulating the critical behaviour of 

complex fluids,” Nature, vol. 365, no. 6444, pp. 330–332, 1993. 

[66] M. D. Macedonia and E. J. Maginn, “Impact of confinement on zeolite cracking 

selectivity via Monte Carlo integration,” AIChE J., vol. 46, no. 12, pp. 2504–

2517, 2000. 

[67] E. Bourasseau, P. Ungerer, and A. Boutin, “Prediction of Equilibrium Properties 



83 

 

of Cyclic Alkanes by Monte Carlo Simulation - New Anisotropic United Atoms 

Intermolecular Potential - New Transfer Bias Method,” J. Phys. Chem. B, vol. 

106, no. 21, pp. 5483–5491, 2002. 

[68] M. N. Rosenbluth and A. W. Rosenbluth, “Monte Carlo Calculation of the 

Average Extension of Molecular Chains,” J. Chem. Phys., vol. 23, no. 2, pp. 

356–359, Feb. 1955. 

[69] F. Jabbari, A. Rajabpour, and S. Saedodin, “Thermal conductivity and viscosity 

of nanofluids: A review of recent molecular dynamics studies,” Chem. Eng. Sci., 

vol. 174, pp. 67–81, Dec. 2017. 

[70] H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or 

temperature,” J. Chem. Phys., vol. 72, no. 4, pp. 2384–2393, Feb. 1980. 

[71] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. 

Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., 

vol. 81, no. 8, pp. 3684–3690, Oct. 1984. 

[72] J. Rivera, “Transport properties of nitrogen and n-alkane binary mixtures,” 

Fluid Phase Equilib., vol. 185, no. 1–2, pp. 389–396, 2001. 

[73] B. Rousseau and J. Petravic, “Transport Coefficients of Xylene Isomers,” J. 

Phys. Chem. B, vol. 106, no. 50, pp. 13010–13017, Dec. 2002. 

[74] F. J. Cherne III and P. A. Deymier, “Calculation of the transport properties of 

liquid aluminum with equilibrium and non-equilibrium molecular dynamics,” 

Scr. Mater., vol. 45, no. 8, pp. 985–991, 2001. 

[75] T. Koishi, Y. Shirakawa, and S. Tamaki, “Shear viscosity of liquid metals 

obtained by non-equilibrium molecular dynamics,” J. Non. Cryst. Solids, vol. 

205–207, no. 1, pp. 383–387, Oct. 1996. 

[76] A. P. Markesteijn, R. Hartkamp, S. Luding, and J. Westerweel, “A comparison 

of the value of viscosity for several water models using Poiseuille flow in a 

nano-channel,” J. Chem. Phys., vol. 136, no. 13, p. 134104, Apr. 2012. 

[77] P. Bordat and F. Müller-Plathe, “The shear viscosity of molecular fluids: A 

calculation by reverse nonequilibrium molecular dynamics,” J. Chem. Physics, 

vol. 116, pp. 3362-3369, Feb. 2002. 

[78] F. Müller-Plathe, “Reversing the perturbation in nonequilibrium molecular 

dynamics: An easy way to calculate the shear viscosity of fluids,” Phys. Rev. E, 

vol. 59, no. 5, pp. 4894–4898, May 1999. 

[79] J. J. De Pablo, “Simulation of phase equilibria for chain molecules,” Fluid 

Phase Equilib., vol. 104, pp. 195–206, Mar. 1995. 

[80] F. M. S. S. Fernandes and R. P. S. Fartaria, “Gibbs ensemble Monte Carlo,” Am. 

J. Phys., vol. 83, no. 9, p. 809, 2015. 

[81] N. B. Wilding, “Critical-point and coexistence-curve properties of the Lennard-

Jones fluid: A finite-size scaling study,” Phys. Rev. E, vol. 52, no. 1, pp. 602–

611, July 1995. 

[82] P. Virnau, M. Müller, L. G. MacDowell, and K. Binder, “Phase diagrams of 

hexadecane-CO 2 mixtures from histogram-reweighting Monte Carlo,” 

Comput. Phys. Commun., vol. 147, no. 1, pp. 378–381, 2002. 

[83] G. C. Boulougouris, L. D. Peristeras, I. G. Economou, and D. N. Theodorou, 

“Predicting fluid phase equilibrium via histogram reweighting with Gibbs 

ensemble Monte Carlo simulations,” J. Supercrit. Fluids, vol. 55, no. 2, pp. 

503–509, 2010. 

[84] D. A. Kofke, “Direct evaluation of phase coexistence by molecular simulation 

via integration along the saturation line,” J. Chem. Phys., vol. 98, no. 5, pp. 



84 

 

4149–4162, Mar. 1993. 

[85] T. E. Gartner, T. H. Epps, and A. Jayaraman, “Leveraging Gibbs Ensemble 

Molecular Dynamics and Hybrid Monte Carlo/Molecular Dynamics for 

Efficient Study of Phase Equilibria,” J. Chem. Theory Comput., vol. 12, no. 11, 

pp. 5501–5510, 2016. 

[86] J. A. Anderson, E. Jankowski, T. L. Grubb, M. Engel, and S. C. Glotzer, 

“Massively parallel Monte Carlo for many-particle simulations on GPUs,” J. 

Comput. Phys., vol. 254, pp. 27–38, Dec. 2013. 

[87] B. Barney, Introduction to Parallel Computing, Lawrence Livermore National 

Laboratory, 2019. Accessed on: Nov. 28, 2019. [Online]. Available: 

https://computing.llnl.gov/tutorials/parallel_comp/ 

[88] F. Arute et al., “Quantum supremacy using a programmable superconducting 

processor,” Nat.  Int. Wkly. J. Sci., vol. 574, no. 7779, pp. 505–510, 2019. 

[89] A. Jewett, Z. Zhuang, and J. Shea, “Moltemplate a Coarse-Grained Model 

Assembly Tool,” Biophys. J., vol. 104, p. 169, Jan. 2013. 

[90] “Scienomics - Materials and Process Simulations (MAPS),” 2019. [Online]. 

Available: https://www.scienomics.com/. Accessed on: Mar. 21, 2019. 

[91] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. 

Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995. 

[92] B. Knapstad, P. A. Skjoelsvik, and H. A. Oeye, “Viscosity of pure 

hydrocarbons,” J. Chem. Eng. Data, vol. 34, no. 1, pp. 37–43, Jan. 1989. 

[93] T. Klein et al., “Liquid Viscosity and Surface Tension of n-Hexane, n-Octane, 

n-Decane, and n-Hexadecane up to 573 K by Surface Light Scattering,” J. 

Chem. Eng. Data, vol. 64, no. 9, pp. 4116–4131, Sep. 2019. 

[94] H. G. Yucel and A. Uysal, “Measurements of viscosity and density Of n-alkane 

and their mixtures,” Semant. Sch., 2005. 

[95] D. L. Hogenboom, W. Webb, and J. A. Dixon, “Viscosity of Several Liquid 

Hydrocarbons as a Function of Temperature, Pressure, and Free Volume,” J. 

Chem. Phys., vol. 46, no. 7, pp. 2586–2598, Apr. 1967. 

[96] D. NguyenHuynh, C. T. Q. Mai, and S. T. K. Tran, “Free-volume theory 

coupled with modified group-contribution PC-SAFT for predicting the 

viscosities. I. Non-associated compounds and their mixtures,” Fluid Phase 

Equilib., vol. 501, Dec. 2019. 

[97] P. H. Gross and H. K. Zimmerman, “Properties of the liquid state : II: 

Description of viscosity over the entire liquid range,” Rheol. Acta  An Int. J. 

Rheol., vol. 3, no. 4, pp. 290–294, 1964. 

[98] D. Ambrose and C. Tsonopoulos, “Vapor-Liquid Critical Properties of 

Elements and Compounds. 2. Normal Alkanes,” J. Chem. Eng. Data, vol. 40, 

no. 3, pp. 531–546, May 1995. 

[99] C. Avendaño, T. Lafitte, C. S. Adjiman, A. Galindo, E. A. Müller, and G. 

Jackson, “SAFT-γ Force Field for the Simulation of Molecular Fluids: 2. 

Coarse-Grained Models of Greenhouse Gases, Refrigerants, and Long 

Alkanes,” J. Phys. Chem. B, vol. 117, no. 9, pp. 2717–2733, Mar. 2013. 

[100] K. A. M. Gasem, C. H. Ross, and R. L. Robinson JR., “Prediction of ethane and 

CO2 solubilities in heavy normal paraffins using generalized-parameter soave 

and peng-robinson equations of state,” Can. J. Chem. Eng., vol. 71, no. 5, pp. 

805–816, Oct. 1993. 

[101] G. Vakili-Nezhaad and H. Sabbaghian-Bidgoli, “Prediction of Critical 

Properties of Normal Alkanes Using Pakmakar−Ivan Topological Index,” J. 



85 

 

Chem. Eng. Data, vol. 56, no. 4, pp. 1042–1046, Apr. 2011. 

[102] A. S. Teja, R. J. Lee, D. Rosenthal, and M. Anselme, “Correlation of the critical 

properties of alkanes and alkanols,” Fluid Phase Equilib., vol. 56, no. 1, pp. 

153–169, 1990. 

[103] C. Tsonopoulos and Z. Tan, “The Critical Constants of Normal Alkanes From 

Methane to Polyethylene: II. Application of the Flory Theory,” Fluid Phase 

Equilib., vol. 83, pp. 127–138, Feb. 1993. 

[104] C. Tsonopoulos, “Critical constants of normal alkanes from methane to 

polyethylene,” AIChE J., vol. 33, no. 12, pp. 2080–2083, Dec. 1987. 

[105] K. G. Joback And R. C. Reid, “Estimation Of Pure-Component Properties From 

Group-Contributions,” Chem. Eng. Commun., vol. 57, no. 1–6, pp. 233–243, 

Jul. 1987. 

[106] A. L. Lydersen and E. E. Station, Estimation of critical properties of organic 

compounds by the method of group contibutions. Madison: University of 

Wisconsin, 1955. 

[107] K. M. Klincewicz and R. C. Reid, “Estimation of critical properties with group 

contribution methods,” AIChE J., vol. 30, no. 1, pp. 137–142, Jan. 1984. 

[108] R. F. Fedors, “A method to estimate critical volumes,” AIChE J., vol. 25, no. 1, 

p. 202, Jan. 1979. 

[109] D. Ambrose, Correlation and Estimation of Vapour-Liquid Critical Properties : 

I, Critical Temperatures of Organic Compounds. London: National Physics 

Laboratory Division of Chemical Standards, 1978. 

[110] D. Ambrose, Correlation and Estimation of Vapour-Liquid Critical Properties : 

II, Critical Pressures and Critical Volumes of Organic Compounds. London: 

National Physics Laboratory Division of Chemical Standards, 1979. 

[111] S. W. I. Siu, K. Pluhackova, and R. A. Böckmann, “Optimization of the OPLS-
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Appendix A 

Snapshots of the development of the density profile at different stages of the 

simulation. 
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Appendix B 

Critical temperatures (Tc) as predicted by different correlations for n-decane, n-

pentadecane and n-eicosane. 

Table B-1: Prediction of Tc for the three hydrocarbons from different correlations (all 

values are in K). 

Hydrocarbon Expt. Values Gasem Riazi&Sahhaf Vakili Teja Tsonopoulous (1993) 

n-decane 617.7 618.2 628.0 620.0 617.9 618.2 

n-pentadecane 708.0 707.1 725.0 707.4 707.8 708.1 

n-eicosane 768.0 766.6 788.0 766.6 770.9 768.4 

Table B-2: Prediction of Tc for the three hydrocarbons from different correlations (all 

values are in K). 

Hydrocarbon Expt. Values Tsonopoulous (1987) Joback Lydersen Klincewicz Ambrose 

n-decane 617.7 618.3 617.0 615.2 627.0 617.8 

n-pentadecane 708.0 708.0 703.7 700.3 725.0 708.4 

n-eicosane 768.0 768.0 766.7 763.6 784.5 770.2 
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Appendix C 

Critical densities (ρc) as predicted by different correlations for n-decane, n-

pentadecane and n-eicosane. 

Table C-1: Prediction of ρc for the three hydrocarbons from different correlations (all 

values are in g/cm3) 

Hydrocarbon Expt. Values Riazi&Sahhaf Vakili Teja Tsonopoulous (1993) 
Tsonopoulous 

(1987) 

n-decane 0.228 0.255 0.232 0.228 0.228 0.233 

n-pentadecane 0.22 0.253 0.222 0.221 0.220 0.234 

n-eicosane 0.212 0.251 0.214 0.214 0.214 0.234 

Table C-2: Prediction of ρc for the three hydrocarbons from different correlations (all 

values are in g/cm3) 

Hydrocarbon Expt. Values Joback Lydersen Klincewicz Ambrose Fedors 

n-decane 0.228 0.239 0.241 0.243 0.241 0.248 

n-

pentadecane 
0.22 0.243 0.246 0.247 0.245 0.254 

n-eicosane 0.212 0.245 0.248 0.248 0.247 0.257 
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Appendix D 

Critical pressures (Pc) as predicted by the different correlations for n-decane, n-

pentadecane and n-eicosane. 

D-1: Prediction of Pc for the three hydrocarbons from different correlations (all values 

are in MPa) 

Hydrocarbon Expt. Values Gasem Riazi&Sahhaf Vakili Teja Tsonopoulous (1993) 

n-decane 2.11 2.11 2.42 1.97 2.10 2.10 

n-pentadecane 1.48 1.48 1.67 1.49 1.49 1.49 

n-eicosane 1.07 1.07 1.14 1.10 1.18 1.17 

D-2: Prediction of Pc for the three hydrocarbons from different correlations (all values 

are in MPa) 

Hydrocarbon Expt. Values Tsonopoulous (1987) Joback Lydersen Klincewicz Ambrose 

n-decane 2.11 2.10 2.11 2.12 4.98 2.11 

n-pentadecane 1.48 1.42 1.42 1.53 3.96 1.53 

n-eicosane 1.07 0.996 1.02 1.20 3.26 1.20 
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