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Abstract. Considering European call options, we prove that CRR-type bino-
mial trees systematically underprice the value of these options, when the spot
price is not near the money. However, we show that, with a volatility premium
to compensate this mispricing, any arbitrarily high order of convergence can
be achieved, within the common CRR-type binomial tree framework.

1. Introduction and Setting

Let volatility σ, and risk free rate r be the standard parameters in the Black-
Scholes model, and consider a European call option with maturity T and strike
K, with K expressed in the form K = S0 exp(α r T ) for α = ln (K/S0) r

−1T−1,
where S0 is the spot price of the underlying asset. Also let

{
S(n)

}
n∈N denote

risk neutral binomial schemes such that, at every positive time t in (T/n)N, the
random walk S(n) has a probability p (n) of jumping from its current state S(n)t to
the state S(n)t u (n), and a probability 1 − p (n) of jumping to the state S(n)t d (n).
We will say that risk neutral binomial schemes are of the CRR-type if u (n) =

exp(σ
√
T/n+λ (n)T/n) and d (n) = exp(−σ

√
T/n+λ (n)T/n), for some bounded

real valued function λ (n).
Let C (n) := C (ϕ, n) be the price of a European option with payoff ϕ under

the CRR-type scheme and let C0 := C0 (ϕ) be the price of the same option in
the Black-Scholes model. Considering call options in [4] and digital options in [5],
Diener and Diener showed how coeffi cients C` (n) can be explicitly calculated such
that

(1.1) C (n) = C0 +

i0∑
`=2

C` (n)n−
`
2 +O(n−

i0+1
2 ).

Analyzing the convergence behavior of binomial schemes to calculate option
prices has been a popular topic, in particular for the European, American, Contin-
uously Paying, Lookback, Digital, Game, and Barrier option types. Let us mention
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27]. There is a vast literature about binomial trees:
we refer to Joshi [12] for an exhaustive and detailed description of binomial trees
and how they relate to one another.
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The natural questions of smoothing and accelerating the convergence has been the
subject of several papers published in top journals over recent years. The question
of how fast a convergence can be achieved with binomial trees was answered for
vanilla European options by Joshi [11] for n odd, and his work was extended by
Xiao [28] to n even. Eclipsing any other result in the literature, they showed that,
using special trees, any arbitrarily high order of convergence can be attained. Unlike
the CRR-type trees, these trees have exactly half of their nodes above the strike. In
contrast, the best acceleration and smoothing results obtained so far for CRR-type
trees, are bn−1 + o

(
n−1

)
in [2], and, in the best case, o

(
n−1

)
in [14].

This raises the natural question of whether or not high order convergence can be
achieved with common CRR-type trees? Remarkably, as we show in this paper, the
answer to this question is ‘no’because CRR-type trees systematically underprice
European options when the underlying is away from the strike! Indeed, we prove
that, for CRR-type trees with constant volatility, systematic high order convergence
is impossible to achieved, because these trees uniformly underprice European call
options by an error of magnitude m2/n + O

(
n−3/2

)
when the spot price is not

near enough the money! To the best of our knowledge, this remarkable fact was
unknown so far.
However, we describe in this paper a method to give the binomial scheme an

appropriate "volatility premium" to offset that bias, allowing to achieve any ar-
bitrarily high order convergence in the binomial scheme, after the drift parameter
λ(n) as been chosen carefully. While the method to reach high order of conver-
gence in [11] and [28] depends on the value of the strike K for constructing the
binomial tree, our approach applies to any situation – regardless of the existence
of a strike– where an expansion of the error exists, such as for the general payoffs
in [21].
For simplicity we restrict our attention here to call options in the setting of [4],

described now. Let i0 ≥ 2 be an integer, and let
−→
λ = (λ2, ... , λi0). Consider

binomial schemes of the form

u(n,
−→
λ ) = exp

(
σ

√
T

n
+ λ2 σ

2T

n
+

i0∑
`=3

λ`
2σ

T

√
T

n

`)
,

d(n,
−→
λ ) = exp

(
−σ
√
T

n
+ λ2 σ

2T

n
+

i0∑
`=3

λ`
2σ

T

√
T

n

`)
,

p(n,
−→
λ ) =

exp( r Tn )− d(n,
−→
λ )

u(n,
−→
λ )− d(n,

−→
λ )

,

and set

a(n,
−→
λ ) =

ln
(
K
S0

)
− nln

(
d(n,

−→
λ )
)

ln
(

u(n,
−→
λ )
)
− ln

(
d(n,

−→
λ )
) ,

κ(n,
−→
λ ) = frac

(
a(n,

−→
λ )
)
.
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Note that a(n,
−→
λ ) simplifies to

(1.2) a(n,
−→
λ ) =

T

2

(
T

n

)−1
− λ2σ

2T − αrT
2σ

(
T

n

)− 1
2

−
i0∑
`=3

λ`

√
T

n

`−3

.

The result below is obtained by using the method for computing the asymptotic
expansion of call options in powers of n−1/2 described in [4]. We note that the
multivariate polynomials P` of (1.4) are of degree one in λ`, for ` ≥ 3. The proof
is in the appendix.

Theorem 1. For every integer i0 ≥ 2, the value C(n,
−→
λ ) of the call option in the

binomial schemes described above can be written as

C(n,
−→
λ ) = C(n,

−→
λ , κ(n,

−→
λ ))

with

(1.3) C(n,
−→
λ , κ) = C0 +

i0∑
`=2

C`

(−→
λ , κ

)
n−

`
2 +O

(
n−

i0+1
2

)
,

where, for ` = 2, ..., i0, the functions C` have the form

(1.4) C`

(−→
λ , κ

)
= exp(−T (−2α r + σ2 + 2 r)2

8σ2
)P`(

−→
λ , κ),

and P` is a multivariate polynomial in σ−1, σ, λ2, ... , λ`, κ. The terms O(n−(i0+1)/2)
are uniform over 0 ≤ κ ≤ 1, L−1 ≤ σ ≤ L, and |λ`| ≤ L, ` = 2, ..., i0, for any real
number L > 0. For ` ≥ 3, P` is a polynomial of degree one when seen as a function
of λ`, and the coeffi cient of λ` in P` is

(1.5) −1

3

√
2√
π
S0T

`
2

(
−3λ2σ

2 + 2r + rα
)
.

It is sometimes convenient to write P` (λ2, ... , λ`, κ) := P`(
−→
λ , κ) and we will use

a similar convention for C and the C`’s. The polynomials P` are calculated using a
Maple worksheet similar to the one available on Diener and Diener’s webpage. For
instance, specializing to i0 = 3, one gets

P2 (λ2, κ) = −
√

2T S0
96
√
π σ

P2 (λ2, κ) ,(1.6)

P3 (λ2, λ3, κ) = −
√

2 S0
3
√
π

P3 (λ2, λ3, κ) ,

where

P2 (λ2, κ) = σ4 T 2 − 32λ2 σ
2 T 2 r + 12T 2 r2 + 4α2 r2 T 2

+ 8α r2 T 2 + 12 σ2 T − 96T σ2 κ + 24λ22 σ
4 T 2

+ 96T σ2 κ2 − 16α r T 2 λ2 σ
2,

P3 (λ2, λ3, κ) = − 4 κ3 r T + 4α r T κ3 + 6κ2 r T − α r T λ3

+ 2α r T κ+ 3 λ2 σ
2 T λ3 − 2κ r T − 2λ3 r T

− 6α r T κ2.
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2. Acceleration with a constant volatility

Given i0 and n, we describe in this section a method allowing to map the
parameters (λ

(n)
2 , ... , λ

(n)
i0

) =:
−→
λ n of the random walk S(n)t into the coeffi cients

C`(
−→
λ n, κ(n,

−→
λ n)) of n−`/2 in (1.3), in such a way that {−→λ n} remains bounded

and that, for every n, C`(
−→
λ n, κ(n,

−→
λ n)) = 0, for ` = 2, ..., i0. As a result, (1.3) re-

duces to C(n,
−→
λ n) = C0+O(n−(i0+1)/2), and a convergence of order O(n−(i0+1)/2)

is achieved.
First, we consider the coeffi cient C2 (λ2, κ). In order for it to vanish, one must

have P2 (λ2, κ) vanishing. This is a quadratic equation in λ2, yielding

λ2 =
8Tr + 4αrT ±

√
D (κ)

12Tσ2
,

where

D (κ)
def
= −8T 2r2 (α− 1)

2 − 6σ4T 2 − 72Tσ2 + 576Tσ2κ (1− κ) .

We choose (arbitrarily) the "+" solution and define the function

λf2 (κ)
def
=

8Tr + 4αrT +
√
D (κ)

12Tσ2
.

Now in order to have P3(λ2, λ3, κ) vanishing, it suffi ces to have

λ3 =
−2κr (2κ− 1) (κ− 1) (α− 1)

3λ2σ2 − (2 + α) r
,

and we define the function

λf3 (κ)
def
=
−2κr (2κ− 1) (κ− 1) (α− 1)

3λf2 (κ)σ2 − (2 + α) r
.

Continuing this way, that is isolating λ` in the equation P`(λ2, ... , λ`, κ) = 0, and
substituting λj by λfj (κ), for j = 2, ..., ` − 1, one defines functions λf` (κ), for
` = 2, ..., i0. This is easily done since, for ` ≥ 3, P` is of degree one in λ`. Because
for ` ≥ 3 the coeffi cient of λ` in P` is (1.5), it follows that λf` (κ) has the form

λf` (κ) =
Q`

(
σ, λf2 (κ) , ..., λf`−1 (κ) , κ

)
3λf2 (κ)σ2 − 2r − rα

,

for some multivariate polynomial Q`. In order to keep λ
f
` (κ) bounded, it suffi ces

to keep the denominator in the right hand side of the above equation away from
zero as a function of κ. Solving 3λf2 (κ)σ2−2r−rα = 0 yields D (κ) = 0, for which
the solution is

κ =
1

2
± 1

24σ

√
∆D,

with
∆D

def
= 72σ2 − 8Tr2 + 16αr2T − 8α2r2T − 6σ4T.

Hence, for any 0 < f < 1/2, restricting the values of κ to the interval

I0
def
=

[
1

2
− f(1 ∧ 1

24σ

√
∆D),

1

2
+ f(1 ∧ 1

24σ

√
∆D)

]
,

guarantees that, when ∆D > 0, the functions λf` (κ) are all real-valued and bounded
on I0, for ` = 2, ..., i0.
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Recall that

(2.1) κ(n, λ2, ..., λi0) = frac

(
n

2
− λ2σ

2T − αrT
2σ
√
T

√
n−

i0∑
`=3

λ`

√
T

n

`−3)
and define the function

κf (n, κ)
def
= κ

(
n, λf2 (κ) , ..., λfi0 (κ)

)
.

If, for all n suffi ciently large, we can solve the equation

κn = κf (n, κn) ,

with κn ∈ I0, then, setting
λ
(n)
`

def
= λf` (κn) ,

for ` = 2, ..., n, and defining
−→
λ n

def
=
(
λ
(n)
2 , ..., λ

(n)
i0

)
one gets κn = κ(n,

−→
λ n) and C`(

−→
λ n, κ(n,

−→
λ n)) = 0, for ` = 2, ..., i0, so that

C(n,
−→
λ n) = C0 +O(n−

i0+1
2 ),

as wanted.
A glance at (2.1) reveals that solving κ = κf (n, κ), is the same as solving

κ̊f (n, κ) ∈ N, where

κ̊f (n, κ)
def
=

n

2
− λf2 (κ)σ2T − αrT

2σ
√
T

√
n−

i0∑
`=3

λf` (κ)

√
T

n

`−3

− κ.

Note that for suffi ciently large values of n, κ̊f (n, κ) behaves (as a function of κ ∈ I0)
as n/2−(λf2 (κ)σ2T−αrT )

√
n/(2σ

√
T ), and it is obvious that, as n tends to infinity,

the number of solutions κn ∈ I0 to κ̊f (n, κn) ∈ N tends to infinity. It is trivial to
find such solutions numerically in a logarithmic time by exploiting the intermediate
value theorem.
Note also that

−→
λ n exists if and only if there is a subinterval I of (0, 1) on which

the concave parabola D (κ) > 0. Because D (κ) has the form aκ (1− κ)− b, where
a, b > 0, its real roots, if any, have to be in the interval (0, 1), as D (κ) is negative
for κ outside (0, 1). Clearly D (κ) has real roots when its discriminant is positive,
which occurs when

(2.2) ∆D = 72σ2 − 8Tr2 + 16αr2T − 8α2r2T − 6σ4T > 0.

This condition will be satisfied in most practical circumstances. Indeed, finding
the interval in α for which condition (2.2) holds, and substituting this into S0 =
K exp(−α r T ), one gets that an arbitrarily fast convergence can be achieved when
the spot price is in the interval

K exp

(
−Tr ± 3σ

√
T

√
1− σ2T

12

)
.

In practical applications, it will almost always be the case that σ2T/12 is negligible
and that 3

√
Tσ is several times larger than Tr. Suppose that, for some a > 0,

3σ
√
T

√
1− σ2T

12
= (1 + a)Tr.
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Then arbitrarily fast convergence for CRR-type random walks can be achieved when
the spot price is in the interval[

Ke−(a+2)Tr,KeaTr
]
≈ [K (1− (a+ 2)Tr) ,K (1 + aTr)] .

Typically a will be big enough so that this interval is large enough for most practical
applications.
Obviously, if one wants to use our technique in a systematic manner, or to eval-

uate American options for instance, this limitation would be a more serious issue,
and we show in section 4 how a volatility premium resolves the problem. But first
we derive in the next section an important consequences of this limitation: CRR-
type binomial scheme with constant volatility, such as the original CRR scheme,
systematically underprice European options when the spot price is away from the
strike.

3. Systemic underpricing by CRR-type trees with constant
volatility

Assume that condition (2.2) is not met. More precisely, assume that there is no
real solution to P2(λ2, κ) = 0 as a function of λ2, for every κ in (0, 1). Because the
coeffi cient of λ22 in P2(λ2, κ) is positive, that means that only a strictly positive
minimum can be reached. This minimum of P2(λ2, κ) is in fact

m∗2
def
=

1

3
T
(
4Tr2 − 8Tαr2 + 4Tα2r2 + 3Tσ4 + 36σ2 − 288σ2κ+ 288σ2κ2

)
.

Obviously because P2 has no roots, that means that m∗2 remains positive if we
replace −288σ2κ+ 288σ2κ2 by its minimum −72σ2. Hence,

m∗2 > m∗∗2
def
=

1

3
T
(
4Tr2 − 8Tαr2 + 4Tα2r2 + 3Tσ4 − 36σ2

)
> 0.

If follows that no matter what is the choice of λ (n),

C(n,
−→
λ n) < C0 −

√
2T S0

96
√
π σ

exp

(
−T (−2α r + σ2 + 2 r)2

8σ2

)
m∗2
n

+O(n−
3
2 ),

showing that, for these values of the spot price for which condition (2.2) is not met,
up to a negligible term O(n−3/2), every CRR-type binomial tree with constant
volatility underestimate the true price C0 by a quantity which is larger than m2/n,
for some m2 > 0.

4. Full acceleration with a volatility premium

In this section we show how, with a volatility premium, arbitrary fast acceleration
can be achieved even when condition (2.2) is not met. Making the volatility σ
explicit in the Black-Scholes price C0 of the call option, we write C0 (σ) and we use
a similar convention whenever needed.
Define c∗2 (σ) by

c∗2 (σ)
def
=

1

3
T
(
4Tr2 − 8Tαr2 + 4Tα2r2 + 3Tσ4 + 36σ2

)
.

Note that c∗2 (σ) is obtained by replacing in the minimum m∗2 of P2(σ, λ2, κ) the
quantity −288σ2κ+ 288σ2κ2 by 0. Note that m∗2 has the form aκ2− aκ− b, a > 0,
so its minimum occurs at κ = 1/2 and its maximum value in [0, 1] occurs at the
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end points. Hence for any value of κ in the interval (0, 1), c∗2 (σ) is bigger than m∗2
and thus the quadratic equation

(4.1) P2(σ, λ2, κ)− c∗2 (σ) = 0

has a real-valued solution in λ2. Since c∗2 (σ) has no real roots in α, c∗2 (σ) > 0.
Now define c2 (σ) by

c2 (σ)
def
=

√
2T S0

96
√
π σ

exp(−T (−2α r + σ2 + 2 r)2

8σ2
)c∗2 (σ) > 0.

It is easy to see that there exists σn → σ such that, at least for n large enough,

(4.2) C0 (σn) = C0 (σ) +
c2 (σn)

n
.

Note that σn > σ can be calculated by a binary search with any arbitrary precision
in a logarithmic time.
Define now

P∗2(σ, λ2, κ)
def
= P2(σ, λ2, κ)− c∗2 (σ) .

Multiplying each term by

−
√

2T S0
96
√
π σ

exp(−T (−2α r + σ2 + 2 r)2

8σ2
),

set
C∗2 (σ, λ2, κ)

def
= C2(σ, λ2, κ) + c2 (σn) .

Set also P∗2 as in (1.6) with P∗2 replacing P2. We seek to find
−→
λ n such that

0 = P∗2 (σn,
−→
λ n, κn) = P3(σn,

−→
λ n, κn) = ... = Pi0(σn,

−→
λ n, κn),

which implies that

0 = C∗2 (σn,
−→
λ n, κn) = C3(σn,

−→
λ n, κn) = ... = Ci0(σn,

−→
λ n, κn),

from which, in particular,

(4.3) C2(σn,
−→
λ n, κn) = −c2 (σn) .

Note that unlike P2 which we essentially replaced by P∗2 , for ` ≥ 3 the coeffi cients
P` are kept unchanged except for the fact that σ is replaced by σn. To find

−→
λ n we

can proceed exactly as in section 2. Doing so we define recursively the functions
λf` (σn, κ), ` = 2, .., i0, such that

0 = P∗2 (σn, λ
f
2 (σn, κ) , κ),

0 = P3(σn, λf2 (σn, κ) , λf3 (σn, κ) , κ),

...

0 = Pi0(σn, λ
f
2 (σn, κ) , ..., λfi0 (σn, κ) , κ).

In particular, this gives

λf2 (σ, κ)
def
=

2
√
Tr +

√
Trα+ 6σ

√
κ (1− κ)

3
√
Tσ2

.

As in section 2, we need to keep 3λf2 (σ, κ)σ2 − 2r − rα away from zero. This
function has roots κ = 0 and κ = 1. Restricting the values of κ to the interval

I0 = [f1, f2],
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for any 0 < f1 < f2 < 1, guarantees that for ` = 2, ..., i0, the functions λ
f
` (σn, κ)

are all real valued and bounded.
Solving now

κn = κf (n, κn) ,

with κn ∈ I0, and defining

λ
(n)
`

def
= λf` (σn, κn) ,

−→
λ n

def
=
(
λ
(n)
2 , ..., λ

(n)
i0

)
,

we get

0 = C∗2 (σn,
−→
λ n, κn) = C3(σn,

−→
λ n, κn) = ... = Ci0(σn,

−→
λ n, κn).

Therefore

C(n, σn,
−→
λ n) = C0 (σn) + C2(σn,

−→
λ n, κn)n−1 +O(n−

i0+1
2 ).

Using (4.3) and (4.2) yields

C(n, σn,
−→
λ n) = C0 (σn)− c2 (σn)n−1 +O(n−

i0+1
2 )

= C0 (σ) +O(n−
i0+1
2 ).

In other words, the CRR-type binomial scheme with parameters σn and
−→
λ n pro-

duces option prices converging at a rate O(n−(i0+1)/2) to the true option price value
C0 (σ).

5. Numerical Illustration

To demonstrate the performance of our acceleration method we consider the case
of i0 = 4. Using σ = 0.5, T = 1, r = 0.05, S0 = 100 we choose K in such a way that
condition (2.2) fails. This requires S0 to be away from the strike, which is obtained
for instance when α = −29, yielding K ≈ 23.45702881. Figure 1 compares the
option convergence in our accelerated CRR schemes with the one in the classical
CRR scheme where λ2 = λ3 = λ4 = 0. We define the error ErrnT (K) as

ErrnT (K)
def
= C(n, σn, λ

(n)
2 , λ

(n)
3 , λ

(n)
4 )− C0.

As shown in Figure 2, the quantity n5/2ErrnT (K) oscillates heavily but remains
bounded, illustrating numerically that the convergence is of order O(n−5/2).

6. Appendix

We prove here Theorem 1. Apart from the fact the coeffi cient of λ` in P` is given
by (1.5), the rest is a textual application of the method described in Diener and
Diener [4] with simple observations. The method is briefly summarized here.
Note first that, obviously, u(n,

−→
λ ) and d(n,

−→
λ ) have a convergent expansion in

powers of n−1/2, hence our binomial schemes are part of the general class described
in [4]. To see that the coeffi cients C` have the form (1.3) with P` a multivariate
polynomial in σ−1, σ, λ2, ..., λ`, κ, we follow the method described in [4]. More
specifically, the authors obtain the asymptotic expansion of C(n) by replacing the



HIGH ORDER CONVERGENCE WITH COMMON CRR-TYPE TREES 9

Figure 1. The convergence in our accelerated CRR scheme versus
the classical CRR scheme. Note the underpricing of the classical
CRR scheme as described in section 3.

Figure 2. The quantity n
5
2ErrnT (K) remains bounded.

"frozen" parameter κ by κ(n,
−→
λ ) in the asymptotic expansion of function C(n, κ)

which, in the notation of [4], is defined as

C(n, κ)
def
= S0c(n, κ)Iq(n, κ)−Ke−rT c(n, κ)Ip(n, κ),

c(n, κ)
def
=

21−n√
n

k (n, κ)

(
n

k (n, κ)

)
,

k (n, κ)
def
= a(n,

−→
λ ) + 1− κ,

and where Ip is defined by [4, eq. (3.9)] and Iq is defined similarly. Diener and
Diener write the expansion of k (n, κ) as

(6.1) k (n, κ) = k−2n+ k−1
√
n+ k0 + ...+ ki0−3n

i0−3
2 ,
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where the kj are obtained from (1.2). Note that k−2 = 1/2 and k0 = 1 − κ.
Following Diener and Diener we write

c(n, κ) = exp((1− n) ln 2− 1

2
lnn+ ln (k (n, κ))

+ ln (n!)− ln ((n− k (n, κ))!)− ln (k (n, κ)!))

and use Stirling’s formula and (6.1), to see that c(n, κ) has an asymptotic expansion
in powers of

√
n
−1, where the coeffi cients are an exponential term, exp

(
−2k2−1

)
,

multiplying multivariate polynomials in k−1, ..., ki0−3. The latter translate into
polynomials in σ−1, σ, λ2, ... , λi0 , κ. This asymptotic expansion is uniform not only
over 0 ≤ κ ≤ 1 as pointed out in [4], but also over k−1, ..., ki0−3 in any compact
set and, therefore, over L−1 ≤ σ ≤ L, and |λ`| ≤ L, ` = 2, ..., i0 for any L >

0. As for the asymptotic expansions of Ip(n, κ) and Iq(n, κ) in powers of
√
n
−1,

they are treated in an analogous manner, resulting in a trivial extension of [4,
theorem 3.4]. The explicit expression of each P` needs to be calculated using
a computational algebra system such as Diener and Diener’s Maple worksheet,
available at http://math.unice.fr/∼diener, which we adapted to calculate the P`’s
needed for our numerical illustration.
In order to show that P` is of degree one when seen as functions of λ`, we intro-

duce a new "frozen" parameter µ. More specifically, we write C(n) = C(n, µ (n)),
where C(n, µ) is the value of the call option in the binomial scheme

u(n, λ2, µ) = exp

(
σ

√
T

n
+
(
λ2 σ

2 + µ
) T
n

)
,

d(n, λ2, µ) = exp

(
−σ
√
T

n
+
(
λ2 σ

2 + µ
) T
n

)
,

and where

µ (n) =

i0∑
`=3

λ`
2σ

T

√
T

n

`−2

.

Note that C(n, µ) is a particular case of C(n,
−→
λ ) with λ2 replaced by λ2 + µ/σ2,

and λ` replaced by 0 for ` ≥ 3. Proceeding just as in [4] we get a "new" asymp-
totic expansion of C(n) by substituting our "frozen" parameter µ by µ (n) in the
asymptotic expansion of C(n, µ). Obviously our "old" expansion of C(n) given in
(1.3) can be obtained by collecting together, from the "new" expansion, all the fac-
tors of n−`/2 for ` = 2, ..., i0. Now fix ` ≥ 3 and concentrate on λ`. Obviously, any
polynomial in λ2+µ (n) /σ2 translates into a polynomial in λ`n−(`−2)/2. Therefore,
collecting the factors of n−`/2 from the "new" expansion of C(n) involves only the
terms for which the degree of λ` is one in the "new" P2, since for every j ≥ 2, Pj
is itself a factor of n−j/2. Doing so, one easily gets that the coeffi cient of λ` in the
"old" P` is given by (1.5). Note that, clearly, for j < `, λ` does not appear in the
"old" Pj .
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