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We consider discrete models of the form 𝑥
𝑛+1

= 𝑥
𝑛
𝑓(𝑥
𝑛−1

) + ℎ
𝑛
, where ℎ

𝑛
is a nonnegative p-periodic sequence representing

stocking in the population, and investigate their dynamics. Under certain conditions on the recruitment function 𝑓(𝑥), we give a
compact invariant region and use Brouwer fixed point theorem to prove the existence of a p-periodic solution. Also, we prove the
global attractivity of the p-periodic solution when 𝑝 = 2. In particular, this study gives theoretical results attesting to the belief that
stocking (whether it is constant or periodic) preserves the global attractivity of the periodic solution in contest competition models
with short delay. Finally, as an illustrative example, we discuss Pielou’s model with periodic stocking.

1. Introduction

In mathematical ecology, difference equations of the form
𝑥
𝑛+1

= 𝑥
𝑛
𝑓(𝑥
𝑛
), 𝑛 ∈ N := {0, 1, . . .} are used to model single

species with nonoverlapping generations [1, 2], where 𝑥
𝑛

denotes the number of sexually mature individuals at discrete
time 𝑛, and 𝑓(𝑥

𝑛
) is the density-dependent net growth rate of

the population. The form of the function 𝑓(𝑥) is chosen to
reflect certain characteristics of the studied population such
as intraspecific competition. For some background readings
about models obtained by the various choices of 𝑓(𝑥), we
refer the reader to [1, 3, 4] in the discrete case. Also, we refer
the reader to [5] and the references therein for the continuous
case. Two classical types are known as the scrambled and
contest competition models [4]. Our attention in this work
is limited to the contest competition models where 𝑓(𝑥) is
assumed to be decreasing, 𝑥𝑓(𝑥) is increasing, and 𝑥𝑓(𝑥) is
asymptotic to a certain level at high population densities. A
prototype of such models is the Beverton-Holt model [6],
which is obtained by considering 𝑓(𝑥) = 𝜇𝐾𝑥/(𝐾 + (𝜇 −

1)𝑥). Here, 𝜇 > 1 is interpreted as the growth rate per
generation, and𝐾 is the carrying capacity of the environment.
In populations with substantial time needed to reach sexual

maturity, certain delay effectmust be included in the function
𝑓(𝑥), which motivates us to consider difference equations of
the form

𝑥
𝑛+1

= 𝑥
𝑛
𝑓 (𝑥
𝑛−𝑘

) , (1)

where 𝑘 is a fixed positive integer [7]. In general, it is widely
known that long time delay has a destabilizing effect on
the population’s steady state, while short time delay can
preserve stability [8–10]. However, when the delay is large,
the dynamics of (1) is less tractable [11]. Furthermore, we are
more interested here in the effect of stocking than the effect of
delay, and therefore, we keep the time delay short to preserve
stability in the absence of stocking. In particular, we fix the
delay to be 𝑘 = 1.

A substantial body of research has explored the effect of
constant stocking on population models without delay [12–
19]. In brief and general terms, it has been found that constant
stocking can be used to suppress chaos, reverse the period
doubling phenomena, lower the risk of extinction, and have a
stabilizing effect on the population steady state. On the other
hand, and to the best of our knowledge, little (if any) has
been done to explore the effect of stocking (whether constant
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or periodic) on models with delay. So, our work here has a
twofold objective which motivates us to consider difference
equations of the form to study the effect of periodic stocking
on contest competitionmodels with delay and to complement
the work of the author and his collaborators in [20], where
the dynamics of (1) with 𝑘 = 1 was studied under the
effect of constant yield harvesting. Recall that we have some
accumulating restrictions on the function 𝑓(𝑥) due to the
nature of associating our equation with contest competition
models. So, in an abstract mathematical form, our problem
can be posed as follows. Consider the difference equation

𝑥
𝑛+1

= 𝑥
𝑛
𝑓 (𝑥
𝑛−1

) + ℎ
𝑛
, (2)

where {ℎ
𝑛
} is a nonnegative𝑝-periodic sequence representing

stocking due to refuge, immigration, feeding, and so forth,
and the function 𝑓(𝑥) obeys the following conditions:

(C1) 𝑓(0) = 𝑏 > 1,

(C2) 𝑓 ∈ 𝐶
1

([0,∞)) and 𝑓(𝑥) is decreasing on [0,∞),
(C3) 𝑥𝑓(𝑥) is increasing and bounded.

The condition in (C1) is a generic one in the absence of
stocking, that is, if 𝑏 ≤ 1 and ℎ

𝑛
= 0, then there is no

long-term survival regardless of the initial density of the
population.

This paper is organized as follows. In Section 2, we give
some preliminary results concerning local stability, bounded-
ness, and global stability of (2) when the stocking sequence is
1-periodic, that is, when ℎ

𝑛
= ℎ > 0 for all 𝑛 ∈ N. In Section 3,

the period of the stocking sequence is taken to be larger than
one. A compact invariant region has been established and a
characterization of the periodic solutions is given. Also, the
global asymptotic behavior of solutions has been investigated
when 𝑝 = 2. As a particular case of (2), we discuss Pielou’s
equation with delay one in Section 4.

2. Preliminary Results: The Autonomous Case

In this section, we focus on the autonomous case, that is, ℎ
𝑗
=

ℎ > 0 for all 𝑗 = 0, 1, . . . , 𝑝 − 1. Thus, (2) becomes

𝑥
𝑛+1

= 𝑥
𝑛
𝑓 (𝑥
𝑛−1

) + ℎ. (3)

Some results concerning (3) can be found in the literature
[21]; however, for the sake of completeness and usage in
the nonautonomous case, we give the following preliminary
results.

2.1. Local Stability and Boundedness. Equation (3) has two
equilibrium solutions at ℎ = 0, namely, 0 and 𝑓

−1

(1). For
ℎ > 0, the origin slides downward to become negative, while
the other equilibrium stays positive and slides upward. This
fact becomes clearwhenwewrite 𝑡 = 𝑡𝑓(𝑡)+ℎ as 1−ℎ/𝑡 = 𝑓(𝑡).
The left hand side is increasing in 𝑡 while the right hand side
is decreasing. Thus, we have only one positive equilibrium in
the positive quadrant, which we denote in the sequel by 𝑥

2,ℎ
.

Since 𝑥
2,ℎ

is positive and increasing in ℎ, 𝑓(𝑥
2,ℎ

) < 1 for all

ℎ > 0. The linearized equation associated with (3) at a fixed
point 𝑥 is given by

𝑦
𝑛+1

− 𝑓 (𝑥) 𝑦
𝑛
− 𝑥𝑓


(𝑥) 𝑦
𝑛−1

= 0. (4)

Define 𝑝 := 𝑓(𝑥) and 𝑞 := −𝑥𝑓


(𝑥). For 𝑥 = 𝑥
2,ℎ
, we have

0 < 𝑝 < 1 and 𝑞 is nonnegative. The roots of 𝜆2 − 𝑝𝜆 + 𝑞 = 0

determine the local stability of our equilibrium point. Since
𝜆
𝑗,ℎ

= (1/2)(𝑝 + (−1)
𝑗
√𝑝
2
− 4𝑞), 𝑗 = 1, 2, 𝑥

2,ℎ
starts as stable

at ℎ = 0 and stays stable as long as 𝑞 < 1. Figure 1 clarifies
the relationship between 𝑝, 𝑞 and the magnitude of 𝜆

𝑗,ℎ
. We

summarize these facts in the following proposition.

Proposition 1. Assume that conditions (C1) to (C3) are satis-
fied and ℎ > 0. The positive equilibrium 𝑥

2,ℎ
of (3) is locally

asymptotically stable.

Proof. Since 𝑥
2,ℎ

> 𝑥
2,0
, we have 𝑝 < 1. Also, since 𝐹(𝑡) =

𝑡𝑓(𝑡) is increasing, we obtain 𝐹


(𝑡) = 𝑡𝑓


(𝑡) + 𝑓(𝑡) > 0 and
consequently −𝑞 + 𝑝 > 0. Thus, we have 𝑞 < 𝑝 < 1. Now,
Figure 1 makes the rest of the proof clear.

It is obvious that 𝑥
𝑘
≥ ℎ for all 𝑘 ≥ 1. On the other hand,

since

𝑥
𝑛+1

= 𝑥
𝑛−1

𝑓 (𝑥
𝑛−1

) 𝑓 (𝑥
𝑛−2

) + ℎ𝑓 (𝑥
𝑛−1

) + ℎ

≤ 𝑥
𝑛−1

𝑓 (𝑥
𝑛−1

) 𝑏 + ℎ𝑏 + ℎ,

(5)

the boundedness of 𝑦 = 𝑡𝑓(𝑡) assures the boundedness of all
solutions of (2).

2.2. Oscillations and Global Stability. A solution of (3) is
called oscillatory if it is neither, eventually, less than nor larger
than 𝑥

2,ℎ
[11]. Also, one can consider oscillations about a

curve [20]. A solution {𝑥
𝑛
} of (3) is called oscillatory about a

curve 𝐻(𝑥, 𝑦) = 0 if the sequence {𝑢
𝑛
= (𝑥
𝑛−1

, 𝑥
𝑛
)} does not

eventually stay on one side of the curve. The latter definition
can be more convenient in some cases; however, in (3), both
are equivalent when we consider𝐻(𝑥, 𝑦) = 𝑦 − 𝑥 as we show
in the following result.

Proposition 2. A solution of (3) is oscillatory if and only if it
is oscillatory about the curve 𝑦 = 𝑥.

Proof. Assume that {𝑥
𝑛
} oscillates about 𝑥

2,ℎ
, but it is not

oscillatory about 𝑦 = 𝑥. So, {𝑥
𝑛
} is either eventually

increasing or eventually decreasing, which contradicts the
assumption that 𝑥

𝑛
is oscillatory about 𝑥

2,ℎ
. Conversely,

suppose {(𝑥
𝑛−1

, 𝑥
𝑛
)} oscillates about 𝑦 = 𝑥, but {𝑥

𝑛
} does not

oscillate about 𝑥
2,ℎ
. First, we consider the case𝑥

𝑛
≤ 𝑥
2,ℎ

for all
𝑛 ≥ 𝑛
0
. If 𝑥
𝑚

> 𝑥
𝑚−1

for some𝑚 > 𝑛
0
, then 𝑓(𝑥

𝑚
) < 𝑓(𝑥

𝑚−1
)

and consequently

𝑥
𝑚+1

= 𝑥
𝑚
𝑓 (𝑥
𝑚−1

) + ℎ > 𝑥
𝑚
𝑓 (𝑥
𝑚
) + ℎ > 𝑥

𝑚
. (6)

So, we can induce an eventually increasing sequence
which contradicts our assumption. If 𝑥

𝑚
≤ 𝑥
𝑚−1

for some
𝑚 > 𝑛

0
, then 𝑥

𝑚+1
≤ 𝑥
𝑚
𝑓(𝑥
𝑚
) + ℎ. Thus, either 𝑥

𝑚+1
≤ 𝑥
𝑚
,

and the induction leads to a decreasing sequence that must
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Figure 1: This figure shows the magnitude of the characteristic
roots of (4) depending on the location of the (𝑝, 𝑞) values, where
𝑝 = 𝑓(𝑥) and 𝑞 = −𝑥𝑓



(𝑥). Also, |𝜆
1,ℎ

| > 1 and |𝜆
1,ℎ

| > 1 when
𝑝, 𝑞 > 1; |𝜆

1,ℎ
| < 1 and |𝜆

1,ℎ
| < 1 when 𝑝 < 1 and 𝑞 < 1.

converge which is not possible, or 𝑥
𝑚+1

> 𝑥
𝑚
, and we go back

to the first scenario. Finally, the case 𝑥
𝑛
≥ 𝑥
2,ℎ

for all 𝑛 ≥ 𝑛
0

can be handled similarly.

Next, we define the map

𝑇 (𝑥, 𝑦) = (𝑦, 𝑦𝑓 (𝑥) + ℎ) . (7)

The map 𝑇 portrays the solutions of (3) geometrically in
the nonnegative quadrant, and therefore, it plays a prominent
role in the sequel. Here, we used the nonnegative quadrant
to denote the positive quadrant union of the axes on the
boundary. By applying the map 𝑇 on the regions above and
below the curve𝑦 = 𝑥, one can observe that a nonequilibrium
solution of (3) must be oscillatory. Also, using the map 𝑇,
one can observe that stocking increases the frequency of
oscillations in the following sense.The length of semicycles in
the absence of stocking is longer than the length of semicycles
in the existence of stocking, where a semicycle is used to
denote the string of consecutive terms above or below the
equilibrium.

Since solutions of (3) are bounded, we define

𝑆 := lim sup𝑥
𝑛
, 𝐼 := lim inf 𝑥

𝑛
. (8)

From the equation 𝑥
𝑛+2

= 𝑥
𝑛
𝑓(𝑥
𝑛
)𝑓(𝑥
𝑛−1

) + ℎ𝑓(𝑥
𝑛
) + ℎ

and using the fact that 𝑡𝑓(𝑡) is increasing, we obtain

𝑆 ≤ 𝑆𝑓 (𝑆) 𝑓 (𝐼) + ℎ𝑓 (𝐼) + ℎ,

𝐼 ≥ 𝐼𝑓 (𝐼) 𝑓 (𝑆) + ℎ𝑓 (𝑆) + ℎ.

(9)

When ℎ > 0, we have 𝑆 ≥ 𝐼 > 0. So, we can multiply the
first inequality by 𝐼 and the second one by 𝑆 to obtain

𝑆 (𝑓 (𝑆) + 1) ≤ 𝐼 (𝑓 (𝐼) + 1) . (10)

Since 𝑡(𝑓(𝑡) + 1) is increasing, we obtain 𝐼 = 𝑆. This
approach was used by Camouzis and Ladas in [22], and it was
used byNyerges in [21] to prove that 𝑥

2,ℎ
is globally attractive.

This fact together with the local stability established in
Proposition 1 shows the global asymptotic stability of 𝑥

2,ℎ
as

we summarize in the following proposition.

Proposition 3. The equilibrium solution 𝑥
2,ℎ

of (3) is globally
asymptotically stable.

Next, it is obvious that the positive quadrant forms an
invariant for (3); however, since solutions are bounded, we
are interested in a bounded invariant that can be developed
to serve us in the periodic case. Notice that by invariance here
we always mean forward invariance, that is, 𝑅

ℎ
is an invariant

of (3) if 𝑇(𝑥, 𝑦) ∈ 𝑅
ℎ
for all (𝑥, 𝑦) ∈ 𝑅

ℎ
. To establish the

existence of a bounded invariant region, we need to have in
mind the following simple fact.

Proposition 4. There exists a finite constant 𝑐
ℎ
≥ ℎ such that

𝐺
ℎ
(𝑡) = (𝑏𝑡 + ℎ)𝑓(𝑡) ≤ 𝑏𝑐

ℎ
for all 𝑡 ≥ 0. Furthermore, 𝑐

ℎ
can

be taken as 𝑐
ℎ
:= (1/𝑏)sup

𝑡
𝐺
ℎ
(𝑡).

Proof. Use the fact that 𝑡𝑓(𝑡) is bounded and 𝑓(𝑡) is decreas-
ing with 𝑓(0) = 𝑏 and lim

𝑡→∞
𝑓(𝑡) = 0 to obtain the

result.

Next, define the curves Γ
𝑗
, 𝑗 = 0, 1, 2, 3, 4 to be the line

segments that connect the points (0, 0), (0, ℎ), (𝑐
ℎ
, 𝑏𝑐
ℎ
+ ℎ),

(𝑏𝑐
ℎ
+ℎ, 𝑏𝑐

ℎ
+ℎ), (𝑏𝑐

ℎ
+ℎ, 0), and (0, 0), respectively.Now, define

𝑅
ℎ
to be the region bounded by the curves of Γ

𝑗
, 𝑗 = 0, . . . , 4

including the boundary, then the following result gives a
bounded invariant of (3). Here, it is worth mentioning that
Γ
0
shrinks to a point at ℎ = 0; however, our notation and

arguments about the invariant region are still valid except
that the boundary of 𝑅

ℎ
becomes a quadrilateral rather than

a pentagon.

Theorem 5. The region 𝑅
ℎ
as defined above gives a compact

invariant for (3).

Proof. Consider themap𝑇(𝑥, 𝑦) as defined in (7).𝑇 is one-to-
one on the positive quadrant.Thus, all we need is to test 𝑇 on
the boundary of𝑅

ℎ
. It is straightforward computations to find

that𝑇(Γ
0
) ⊆ Γ
1
. Since horizontal line segments are mapped to

vertical line segments under 𝑇, we test the end points of Γ
2
to

find

𝑇 (𝑐
ℎ
, 𝑏𝑐
ℎ
+ ℎ) = (𝑏𝑐

ℎ
+ ℎ, (𝑏𝑐

ℎ
+ ℎ) 𝑓 (𝑐

ℎ
) + ℎ) ,

𝑇 (𝑏𝑐
ℎ
+ ℎ, 𝑏𝑐

ℎ
+ ℎ)

= (𝑏𝑐
ℎ
+ ℎ, (𝑏𝑐

ℎ
+ ℎ) 𝑓 (𝑏𝑐

ℎ
+ ℎ) + ℎ) .

(11)

By the choice of 𝑐
ℎ
given in Proposition 4, we have

(𝑏𝑐
ℎ
+ ℎ) 𝑓 (𝑏𝑐

ℎ
+ ℎ) + ℎ

≤ (𝑏𝑐
ℎ
+ ℎ) 𝑓 (𝑐

ℎ
) + ℎ ≤ 𝑏𝑐

ℎ
+ ℎ.

(12)
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Thus, 𝑇(Γ
2
) ⊂ Γ
3
. Next, 𝑇(Γ

3
) ⊂ 𝑅
ℎ
and 𝑇(Γ

4
) = (0, ℎ) are

straightforward to observe. Finally, we show that 𝑇(Γ
1
) ⊂ 𝑅
ℎ
.

For 0 ≤ 𝑡 ≤ 𝑐
ℎ
, we have

𝑇 (𝑡, 𝑏𝑡 + ℎ) = (𝑏𝑡 + ℎ, (𝑏𝑡 + ℎ) 𝑓 (𝑡) + ℎ) ; (13)

however, ℎ ≤ 𝑏𝑡+ℎ ≤ 𝑏𝑐
ℎ
+ℎ and (𝑏𝑡+ℎ)𝑓(𝑡)+ℎ ≤ 𝑏𝑐

ℎ
+ℎ by the

choice of 𝑐
ℎ
, which completes the proof. Figure 2 illustrates

the region𝑅
ℎ
and its image under themap𝑇when (𝑏𝑡+ℎ)𝑓(𝑡)

is increasing.

3. Periodic Stocking

In this section, we force periodic stocking on (3) to obtain

𝑥
𝑛+1

= 𝑥
𝑛
𝑓 (𝑥
𝑛−1

) + ℎ
𝑛
, (14)

where ℎ
𝑛
is a 𝑝-periodic sequence of stocking quotas, and 𝑝

denotes the minimal period. Observe that some consecutive
values of the stocking sequence can be zero; however, it is
natural to assume that∑𝑝−1

𝑗=0
ℎ
𝑗
> 0. As in the constant case, we

associate (14) with a 𝑝-periodic sequence of two dimensional
maps that we use in the sequel, namely {𝑇

𝑗
, 𝑗 = 0, 1, . . . , 𝑝−1},

where 𝑇
𝑗
(𝑥, 𝑦) = (𝑦, 𝑦𝑓(𝑥) + ℎ

𝑗
). It is obvious that if we

replace ℎ by ℎ
𝑗
in Theorem 5, then 𝑅

ℎ𝑗
forms a compact and

invariant region for the individual map 𝑇
𝑗
, which enables us

to build a suitable machinery for establishing the existence
of a periodic solution. It is convenient now to develop the
notations of the previous section so it can suit the periodic
case. We denote the line segments that form the boundary
of 𝑅
ℎ𝑗
by Γ
𝑗,𝑖
, 𝑖 = 0, . . . , 4, where Γ

𝑗,𝑖
corresponds to Γ

𝑖
in the

autonomous case and that are associated with the individual
map𝑇

𝑗
. Also, the constant 𝑐

ℎ
in Proposition 4will be replaced

by 𝑐
ℎ𝑗
, and this is associated with the individual map 𝑇

𝑗
.

3.1. Existence of a Periodic Solution. We start by establishing
a compact invariant region for (14). Define

ℎ
𝑚

:= max {ℎ
0
, ℎ
1
, . . . , ℎ

𝑝−1
} ,

𝑐
𝑚

:= max {𝑐
ℎ𝑗

: 𝑗 = 0, . . . , 𝑝 − 1} ,

(15)

where 𝑐
ℎ𝑗

is as taken in Proposition 4; that is, 𝑐
ℎ𝑗

=

(1/𝑏)sup
𝑡
𝐺
ℎ𝑗
(𝑡); then use ℎ

𝑚
and 𝑐
𝑚
to define the region 𝑅

ℎ𝑚

as in the paragraph preceding Theorem 5. Now, we have the
following result.

Lemma 6. Consider (14) together with the associated 𝑝-
periodic sequence ofmaps {𝑇

𝑗
}. Each of the following holds true.

(i) One has 𝑅
ℎ𝑖

⊆ 𝑅
ℎ𝑗
whenever ℎ

𝑖
≤ ℎ
𝑗
.

(ii) 𝑅
ℎ𝑚

is a compact invariant for each individual map 𝑇
𝑗
.

(iii) 𝑅
ℎ𝑚

is a compact invariant for the map ̂
𝑇 := 𝑇

𝑝−1
∘

𝑇
𝑝−2

∘ ⋅ ⋅ ⋅ ∘ 𝑇
0
.

Proof. (i) When ℎ
𝑖
≤ ℎ
𝑗
, we obtain 𝐺

ℎ𝑖
(𝑡) ≤ 𝐺

ℎ𝑗
(𝑡) for all

𝑡 ≥ 0. Thus, 𝑐
ℎ𝑖

≤ 𝑐
ℎ𝑗
, and the result becomes obvious from

Proposition 4 and the geometric structure of the regions 𝑅
ℎ𝑖

and𝑅
ℎ𝑗
. To prove (ii), let (𝑥, 𝑦) ∈ 𝑅

ℎ𝑚
, we show that𝑇

𝑗
(𝑥, 𝑦) ∈

𝑅
ℎ𝑚
. Since

𝑇
𝑗
(𝑥, 𝑦) = (𝑦, 𝑦𝑓 (𝑥) + ℎ

𝑗
)

= (𝑦, 𝑦𝑓 (𝑥) + ℎ
𝑚
) − (0, ℎ

𝑚
− ℎ
𝑗
)

= 𝑇
𝑚
(𝑥, 𝑦) − (0, ℎ

𝑚
− ℎ
𝑗
) ,

(16)

then the first component of 𝑇
𝑗
(𝑥, 𝑦) is the same as the first

component of𝑇
𝑚
(𝑥, 𝑦) and the second component of𝑇

𝑗
(𝑥, 𝑦)

is lower than the second component of 𝑇
𝑚
(𝑥, 𝑦). Now, the

fact that 𝑇
𝑚
(𝑥, 𝑦) ∈ 𝑅

ℎ𝑚
and the geometric structure of 𝑅

ℎ𝑚

assures that𝑇
𝑗
(𝑥, 𝑦) ∈ 𝑅

ℎ𝑚
. Finally, (iii) follows from (ii).

Periodic stocking (or harvesting) has the effect of forcing
population cycles to evolve and become multiples of the
stocking/harvesting period aswe show in the following result,
which is more general than (14).

Theorem 7. Consider the general difference equation 𝑥
𝑛+1

=

𝐹(𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

) with 𝑝-periodic stocking (or harvesting).
If a periodic solution exists, then the period is a multiple of 𝑝.

Proof. The proof is a contradiction; suppose that we have an
𝑟-periodic solution of the equation 𝑥

𝑛+1
= 𝐹(𝑥

𝑛
, 𝑥
𝑛−1

, . . . ,

𝑥
𝑛−𝑘

) + ℎ
𝑛
for some 𝑟 that is not a multiple of 𝑝. Then, the

greatest common divisor between 𝑟 and 𝑝 (𝑑 := gcd(𝑟, 𝑝)) is
not 𝑝. Define the maps 𝐹

𝑖
:= 𝐹 + ℎ

𝑖
, 𝑖 = 0, 1, . . . , 𝑝 − 1; then

for each 0 ≤ 𝑖 ≤ 𝑑 − 1, the maps {𝐹
𝑘𝑑+𝑖

, 𝑘 = 0, 1, . . . , 𝑝/𝑑 − 1}

must agree at the point 𝑋
𝑖
:= (𝑥
𝑖
, 𝑥
𝑖−1

, . . . , 𝑥
𝑖−𝑘

), where the
components 𝑥

𝑖−𝑘
, 𝑥
𝑖+1−𝑘

, . . . , 𝑥
𝑖
are consecutive elements of

the 𝑝-periodic solution. This implies

ℎ
𝑖
= ℎ
𝑑+𝑖

= ℎ
2𝑑+𝑖

= ⋅ ⋅ ⋅ = ℎ
(𝑝/𝑑−1)𝑑+𝑖

(17)

for all 𝑖 = 0, 1, . . . , 𝑑 − 1, which contradicts the minimality of
the period of the 𝑝-periodic difference equation.

Theorem 7 shows that (14) has no equilibrium solutions,
and therefore, our previous notion of characterizing oscil-
latory solutions based on the oscillations about 𝑦 = 𝑥 is
the valid one here. Thus, solutions of (14) are oscillatory
about 𝑦 = 𝑥 because they cannot be monotonic. Although
it is natural for fluctuations in the environment to create
fluctuations in the population, we find it appropriate here
to connect the loosely-defined term “fluctuation” with the
mathematically well-defined term “oscillation.” Next, we use
the Brouwer fixed theorem [23] (page 51) to prove the
existence of a periodic solution of (14).

Lemma 8 (Brouwer fixed-point theorem [23], page 51). Let
𝑀 be a nonempty, convex, and compact subset of R𝑛. If 𝑇 :

𝑀 → 𝑀 is continuous, then 𝑇 has a fixed point in 𝑀.

Theorem 9. The 𝑝-periodic difference equation in (14) has a
𝑝-periodic solution.
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xn

Γ1

Γ0

Γ2

Γ3

Γ4

Rh

xn−1

xn

xn−1

T(Rh)

Figure 2: The figure on the left shows the choice of the compact region 𝑅
ℎ
when 𝑦 = (𝑏𝑡 + ℎ)𝑓(𝑡) is increasing, and the one on the right

shows 𝑇(𝑅
ℎ
) with blue boundary inside 𝑅

ℎ
.

Proof. Consider the map ̂
𝑇 := 𝑇

𝑝−1
∘𝑇
𝑝−2

∘ ⋅ ⋅ ⋅ ∘𝑇
0
, then using

Lemma 6, we obtain ̂
𝑇 : 𝑅

ℎ𝑚
→ 𝑅
ℎ𝑚
. Furthermore, 𝑅

ℎ𝑚
is

nonempty, compact, and obviously convex. So, by Lemma 8,
̂
𝑇 has a fixed point in 𝑅

ℎ𝑚
. This fixed point establishes a

periodic solution of (14) with minimal period that divides 𝑝;
however, Theorem 7 shows that the period must be 𝑝.

3.2. Global Attractivity of the Periodic Solution When 𝑝 = 2.
Consider the periodicity of (14) to be 𝑝 = 2 and suppose
ℎ
0

+ ℎ
1

̸= 0. We partition the solutions of (14) into two
subsequences, the one with even indices {𝑥

2𝑛
} and the one

with odd indices {𝑥
2𝑛
}. Thus, we have

𝑥
2𝑛+1

= 𝑥
2𝑛
𝑓 (𝑥
2𝑛−1

) + ℎ
0
,

𝑥
2𝑛+2

= 𝑥
2𝑛+1

𝑓 (𝑥
2𝑛
) + ℎ
1
.

(18)

Since the solutions are bounded, we define

lim inf {𝑥
2𝑛+𝑖

} = 𝐼
𝑖
, lim sup {𝑥

2𝑛+𝑖
} = 𝑆
𝑖
, 𝑖 = 0, 1. (19)

Now, the second iterate of (18) gives us

𝑥
2𝑛+2

= 𝑥
2𝑛
𝑓 (𝑥
2𝑛
) 𝑓 (𝑥

2𝑛−1
) + ℎ
0
𝑓 (𝑥
2𝑛
) + ℎ
1
, (20)

𝑥
2𝑛+3

= 𝑥
2𝑛+1

𝑓 (𝑥
2𝑛+1

) 𝑓 (𝑥
2𝑛
) + ℎ
1
𝑓 (𝑥
2𝑛+1

) + ℎ
0
. (21)

Use the fact that 𝑓(𝑡) is decreasing and 𝑡𝑓(𝑡) is increasing
in (20) to obtain

𝑆
0
≤ 𝑆
0
𝑓 (𝑆
0
) 𝑓 (𝐼
1
) + ℎ
0
𝑓 (𝐼
0
) + ℎ
1
, (22)

𝐼
0
≥ 𝐼
0
𝑓 (𝐼
0
) 𝑓 (𝑆
1
) + ℎ
0
𝑓 (𝑆
0
) + ℎ
1
. (23)

Also, (21) gives us

𝑆
1
≤ 𝑆
1
𝑓 (𝑆
1
) 𝑓 (𝐼
0
) + ℎ
1
𝑓 (𝐼
1
) + ℎ
0
, (24)

𝐼
1
≥ 𝐼
1
𝑓 (𝐼
1
) 𝑓 (𝑆
0
) + ℎ
1
𝑓 (𝑆
1
) + ℎ
0
. (25)

Multiply inequality (22) by 𝐼
0
and inequality (23) by 𝑆

0
to

obtain
𝑆
0
𝐼
0
𝑓 (𝐼
0
) 𝑓 (𝑆
1
) + 𝑆
0
(ℎ
0
𝑓 (𝑆
0
) + ℎ
1
)

≤ 𝐼
0
𝑆
0
𝑓 (𝑆
0
) 𝑓 (𝐼
1
) + 𝐼
0
(ℎ
0
𝑓 (𝐼
0
) + ℎ
1
) .

(26)

Since 𝐼
0
(ℎ
0
𝑓(𝐼
0
) + ℎ
1
) ≤ 𝑆
0
(ℎ
0
𝑓(𝑆
0
) + ℎ
1
), we obtain

𝑓 (𝐼
0
) 𝑓 (𝑆
1
) ≤ 𝑓 (𝑆

0
) 𝑓 (𝐼
1
) . (27)

Also, multiply inequality (24) by 𝐼
1
and inequality (25) by

𝑆
1
to obtain

𝑆
1
𝐼
1
𝑓 (𝐼
1
) 𝑓 (𝑆
0
) + 𝑆
1
(ℎ
1
𝑓 (𝑆
1
) + ℎ
0
)

≤ 𝐼
1
𝑆
1
𝑓 (𝑆
1
) 𝑓 (𝐼
0
) + 𝐼
1
(ℎ
1
𝑓 (𝐼
1
) + ℎ
0
) .

(28)

Since 𝐼
1
(ℎ
1
𝑓(𝐼
1
) + ℎ
0
) ≤ 𝑆
1
(ℎ
1
𝑓(𝑆
1
) + ℎ
0
), we obtain

𝑓 (𝐼
1
) 𝑓 (𝑆
0
) ≤ 𝑓 (𝐼

0
) 𝑓 (𝑆
1
) . (29)

Using inequalities (27) and (29), we obtain the following
result.

Lemma 10. Consider 𝐼
0
, 𝐼
1
, 𝑆
0
, 𝑆
1
as defined in (19); then

𝑓(𝐼
0
)𝑓(𝑆
1
) = 𝑓(𝐼

1
)𝑓(𝑆
0
).

Next, we give the following result.

Theorem 11. For 𝑝 = 2, the 2-periodic solution of (14) is a
global attractor.

Proof. Use the result of Lemma 10 in inequality (26) to obtain

𝑆
0
(ℎ
0
𝑓 (𝑆
0
) + ℎ
1
) ≤ 𝐼
0
(ℎ
0
𝑓 (𝐼
0
) + ℎ
1
) . (30)

Since 𝑔(𝑡) = 𝑡(ℎ
0
𝑓(𝑡) + ℎ

1
) is increasing and 𝐼

0
≤ 𝑆
0
, we

must have 𝐼
0

= 𝑆
0
. Similarly, use the result of Lemma 10 in

inequality (28) to obtain

𝑆
1
(ℎ
1
𝑓 (𝑆
1
) + ℎ
0
) ≤ 𝐼
1
(ℎ
1
𝑓 (𝐼
1
) + ℎ
0
) , (31)

and consequently 𝑆
1

= 𝐼
1
. Hence, 𝐼

𝑖
= 𝑆
𝑖
, 𝑖 = 0, 1, and the

proof is complete.

Remark 12. Observe that the approach of this section proves
not only the global attractivity of the 𝑝-periodic solution but
also its existence; however, Theorem 7 is still significant here
because it proves the minimality of the period. Also, estab-
lishing the compact invariant region in Lemma 6 deserves
embracing regardless of the global attractivity of the periodic
solution. Finally, proving the global attractivity for general 𝑝
will be the topic of some future work.
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4. Pielou’s Equation with Stocking

As an illustrative example to our results, we consider the
function 𝑓 in (14) to be 𝑓(𝑡) = 𝑏𝑡/(1 + 𝑡). It is worth
mentioning that in the absence of stocking, Pielou ([24], page
80) suggested taking 𝑓(𝑥

𝑛−𝑚
) = 𝜇𝐾/(𝐾 + (𝜇 − 1)𝑥

𝑛−𝑚
) to

account for certain fluctuating populations, which cannot
be modeled by the Beverton-Holt equation. So, here we are
dealing with the dimensionless Pielou’s equation 𝑦

𝑛+1
=

𝑏𝑦
𝑛
/(1 + 𝑦

𝑛−1
), which takes the following form after forcing

stocking:

𝑦
𝑛+1

=

𝑏𝑦
𝑛

1 + 𝑦
𝑛−1

+ ℎ
𝑛
. (32)

When ℎ
𝑛

= 0, (32) has the positive equilibrium 𝑥
2,0

=

𝑏 − 1 which is globally asymptotically stable. When ℎ
𝑛
= ℎ >

0, 𝑥
2,ℎ

= (1/2)(𝑏 + ℎ − 1) + (1/2)√(𝑏 + ℎ − 1)
2

+ ℎ inherits
the global asymptotic stability of 𝑥

2,0
as shown in [21]. Now,

consider {ℎ
𝑛
} to be 2-periodic. To find the 2-periodic solution

assured by Theorem 9, we substitute 𝑦
−1

= 𝑥 and 𝑦
0
= 𝑦 in

(32) to obtain

(𝑦 − ℎ
0
) (1 + 𝑦) = 𝑏𝑥, (𝑥 − ℎ

1
) (1 + 𝑥) = 𝑏𝑦. (33)

Now, the solution is obvious graphically (it is the point of
intersection between the two curves in the positive quadrant).
However, the solution is not simple to write explicitly, and
therefore, we proceed by choosing ℎ

0
= 𝑏 + 1/(𝑏 − 1) and

ℎ
1
= 𝑏. In this case, the 2-periodic solution {𝑥, 𝑦} is given by

𝑥 = 𝑏 − 1 +

𝑏
3/2

√𝑏 − 1

, 𝑦 = 𝑏 +

1

𝑏 − 1

+ √𝑏 (𝑏 − 1). (34)

Next, use the function 𝑓(𝑡) = 𝑏/(1 + 𝑡) in Section 3.2 and
follow the same steps to find

lim inf {𝑦
2𝑛
} = 𝐼
0
= 𝑆
0
= lim sup {𝑦

2𝑛
} ,

lim inf {𝑦
2𝑛+1

} = 𝐼
1
= 𝑆
1
= lim sup {𝑦

2𝑛+1
} .

(35)

Thus, the odd iterates converge to a point, say 𝑢, while the
even iterates converge to a point, say V. Substitute 𝑢 and V in
(18); then compare it with (33) to find that {𝑢, V} is indeed
{𝑥, 𝑦}. Finally, Figure 3 shows the convergence to the 2-cycle
for the specific values of the parameters.

Another interesting notion that can be observed here is
the resonance of the solutions of (32).The arithmetic average
of the globally attracting 2-periodic solution is

𝑥
𝑠V :=

1

2

(𝑥 + 𝑦)

=

1

2

(2𝑏 − 1 +

1

𝑏 − 1

+

𝑏
3/2

√𝑏 − 1

+ √𝑏 (𝑏 − 1)) .

(36)

On the other hand, when we take the constant stocking
ℎ = (1/2)(ℎ

0
+ ℎ
1
) = 𝑏 + 1/2(𝑏 − 1), we obtain the globally

attracting equilibrium

𝑥 =

4𝑏
2

− 6𝑏 + 3 + √16𝑏
4
− 32𝑏
3
+ 28𝑏
2
− 12𝑏 + 1

4 (𝑏 − 1)

. (37)

Figure 4 shows that 𝑥
𝑎V > 𝑥.
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Figure 3: This graph shows the stable 2-cycle for the 2-periodic
equation in (32) when ℎ

0
= 𝑏 + 1/(𝑏 − 1) and ℎ

1
= 𝑏, where 𝑏 is

fixed at 5/2.

1 2 3
3

4

5

6

7

b

y

Figure 4: This graph shows the average of the attracting 2-cycle
(blue color) in contrast with the equilibrium that results from
constant stoking equals the average of ℎ

0
and ℎ

1
, where ℎ

0
= 𝑏 +

1/(𝑏 − 1) and ℎ
1
= 𝑏.

5. Conclusion and Discussion

In this paper, we investigated the dynamics of the periodic
difference equation 𝑥

𝑛+1
= 𝑥
𝑛
𝑓(𝑥
𝑛−1

) + ℎ
𝑛
, where 𝑓(𝑥)

is differentiable and decreasing on [0,∞), while 𝑥𝑓(𝑥) is
increasing and bounded. This equation can be used as a
discrete model to represent contest competition in species
with periodic stocking. We found that periodic stocking
forces the existence of a periodic solution that has the same
period as the stocking period. In addition to the unbounded
invariant given by the positive quadrant, we constructed
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a bounded invariant region, which we used to prove the
existence of the periodic solution. Also, we proved that the
periodic solution is globally attractive when the stocking
period is 2. We conjecture that the periodic solution is
globally attractive regardless of the stocking period. Although
the steady state has evolved to become the periodic solution
of the same period as the stocking period, our results show
that periodic stocking preserves the global attractivity of the
periodic solution.
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