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In this theoretical study, we investigate the effect of different harvesting strategies on the discrete Beverton—
Holt model in a deterministic environment. In particular, we make a comparison between the constant,
periodic and conditional harvesting strategies. We find that for large initial populations, constant harvest
is more beneficial to both the population and the maximum sustainable yield. However, periodic harvest
has a short-term advantage when the initial population is low, and conditional harvest has the advantage of
lowering the risk of depletion or extinction. Also, we investigate the periodic character under each strategy
and show that periodic harvesting drives population cycles to be multiples (period-wise) of the harvesting
period.

Keywords: Beverton-Holt model; periodic harvesting; conditional harvesting; optimal harvesting;
periodic discrete systems; periodic solutions

AMS Subject Classification: 39A11; 92D25; 92B99

1. Introduction

Inaworld where the human population increased by approximately 77 million in 2007 according to
the US Census Bureau [31], food demands are rapidly increasing more than ever. This high demand
coupled with aggressive fishing techniques is having a disastrous impact on fish populations.
Many marine fish show a concerning decline in their abundance to the extent of difficult, or even
impossible recovery. The collapse of the Atlantic cod (Gadus morhua) in Eastern Canada in 1992
is a well-known example [26], whereas a more recent example is the collapse of salmon stocks in
California’s major watershed as reported in The New York Times on 13 March 2008 [2]. Such a
collapse often leads to one of the two non-favourable alternatives, either a complete moratorium
on harvesting or population extinction. We refer the interested reader to the work of Hutchings
and Reynolds [20] for exact figures and some details about collapse, recovery and extinction of
fish populations. There is no doubt that harvesting plays a major role in fish-population decline,
though one can attribute some other significant factors. It is our belief that thoughtful and well-
articulate harvesting strategies can help us achieve our current needs without compromising our
future needs.
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In the past three decades, scientists and researchers focused on different harvesting strategies
in models described by differential equations [3,9,18,30,32,33]. Brauer and Sanchez investigated
the effect of constant rate harvesting [6], and periodic harvesting in periodic environments [7]
on the asymptotic behaviour of several continuous population models. In both cases, a great
deal of attention was given to the continuous logistic model. The maximum sustainable yield
(MSY) for the continuous logistic model under different harvesting strategies was widely inves-
tigated in the literature [3,9,18,33]. Let us note that Zhang et al. [33] argued that continuous
harvesting under the logistic model x’'(r) = rx(#)(1 — x(z)/K) is superior when compared with
an impulsive harvesting, and Dong et al. [15] found that continuous harvesting under the periodic
Gompertz model x'(¢) = r(t)x(¢) In K(¢)/x(¢) can be more advantageous. Recently, there has
been a growing interest on the dynamics of discrete models and harvesting strategies thereon.
Sinha and Parthasarathy [28] considered the discrete Ricker model with constant depletion rate
X1 = X, exp(r(1 — x,)) — h and used numerical results to show that populations exhibiting
chaotic oscillations are not necessarily vulnerable to extinction. Chau [8] considered the effect of
periodic harvesting or feeding on the discrete Ricker model and the host—parasite model

r(l—xn/K)—ayn’ Vg1 = X (1 —e"m),

Xp4+1 = Xp€
and provided numerical results to conclude that harvesting tends to destabilize the dynamics,
whereas feeding has a stabilizing effect. In a more general setting, Schreiber [27] investigated the
dynamics of the discrete logistic, Ricker and Beverton—Holt models with constant rate depletion.
Berezansky and Braverman [4] investigated the asymptotic behaviour of the stochastic Beverton—
Holt equation x,,1 = a,x,/(1 + b,x,) under constant and proportional impulsive harvesting.
Tang et al. [29] considered the periodic Beverton—Holt model under periodic impulsive harvesting,
which is a special case of periodic harvesting, and investigated the effect of seasonal environment
on the MSY.

In this article, we focus on the theoretical aspects of constant, periodic and conditional har-
vesting in the discrete Beverton—Holt model in a deterministic environment. In particular, we
investigate the effect of these different strategies on the population oscillations and on the MSY.
This article is organized as follows: In the next section, we discuss the MSY in the case of constant
harvesting. In Section 3, we discuss the MSY in the case of periodic harvesting and investigate the
periodic and stability character of solutions. As an illustrative case, we discuss the Beverton—-Holt
equation with 2-periodic harvest. In Section 4, we discuss the optimal harvest, and the existence
and stability of 2-periodic solutions in the case of conditional harvesting, which is better known
as the threshold catch policy [10,11,25]. Finally, we summarize the conclusion of this article in
Section 5.

2. Constant harvesting

Consider the classical Beverton-Holt model [5], and assume a constant rate harvesting / to obtain

aKy, ~
Yn+1 = f(yn) = K+ (a— 1)yn h, (1)
where K is the population carrying capacity, a > 1 is the inherent growth rate, and 2 > 0 is a
constant representing the intensity of harvesting due to fishing or hunting. The dynamics of this
equation are simple to analyse, and can be found in the literature (see, for instance, [22-24,27]).
However, for the sake of comparison in the next sections, we discuss its dynamics here. We prefer
to use a ‘nonclassical’ approach, which was used for the Riccati equation in [12]. This approach
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helps us to deal with the periodic case in the next section. To simplify our writing, we reduce the
number of parameters by rescaling. Let y, = ax,,« = K/(a — 1) and h = h/«, so Equation (1)

takes the form
ax,

—h. 2
TTx @

Here we emphasize that i does not depend on the density of the population. Observe that we cannot
harvest more than a regardless of the initial population, and by taking the initial population into
account, we cannot harvest more than Ay := axo/(1 + xg). Thus our mathematical analysis is
concerned with 0 < h < hmax < a. Now write Equation (2) as

Xor1 = f(x,) =

Xnt1Znt1 = (@ — h)x, — h, where Zn+l = 14 x,,

which is equivalent to the matrix equation

1 1 1 1 1
B RS [

By mathematical induction, the explicit solution of Equation (2) is given by x,, where

(QZj) o)=le) @

Now, simple computations reveal that det(A) = a > 0, tr(A) = 1 + a — h, the eigenvalues of
A are

tr(A
}‘-j = —r( )
2
and the equilibrium solutions of Equation (2) are

+ %J(trm))z ~adet(A), j = 1,2, (5)

B1i=A — 1 and B2 =Xty — 1. (6)

Obviously, since 111, = det(A) > 0and A; + Ay = tr(A) > 0 for i < hma, then both eigenval-
ues are positive whenever they are real. If 1 # (/a — 1)?, then A1 # A,, and a diagonalization
of A implies that A" = SA"S~1, where

a0 [ 1 1
A._[O )»2] and S'_[/\l—l Az—l]

On the other hand, if 7 = (/a — 1)2, then Ay = A, = /a. Write A = SJS~1, where

_[* 1 _[-Wa-1 1
J._[O k] and S'_[—(ﬁ—l)z O}’

then A" = SJ"S~1. Now, the explicit solution of Equation (2) is given by

L Vaxot (Va— 1o~ (Ja—1n
" Va+ (xo — (Ja —)n

if h = (\/a — 1)? and by

=D —DMR" =1+ 2 —1—(h —DHR")xo
B Rty —1) — A1+ 14+ (1 — R")xo

()

(®)

n

if h € (0, (Va—1)?) U ((Va —1)?, hmax), Where R := 21451
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Next, we assume the MSY as a management objective and proceed to show that it is given by
h=hp = Ka—1? whenxy > i := (Va — 1). 9)

Let us agree to use optimal harvesting for the MSY. Thus we call a constant harvesting optimal if
it is maximized, and the initial population survives indefinitely. Observe that f (x) in Equation (2)
is monotonic with x-intercept at zo = h/(a — h). It is not possible for a population to be less
than zg, and that is equivalent to & < hmax. Thus, we proceed with the assumption xg > zo. If
0 < h < hp, then 0 < R < 1 and from the explicit solution in Equation (8), we obtain
(e —=DA =2 +x)

lim x, = .
n—oo 1—X1+x0 P2

However, when zg < xo < B1, x,, goes negative before it converges to .. In this case, we investi-
gate the first instance where the numerator or denominator of Equation (8) becomes nonpositive.
This implies

_ log((A2 = D1 — 1 —x0) /(A1 — D (A2 — 1 — xp))

= "o logA; — log Az
— log((A1 — 1 —x0)/ (22 — 1 — x0)) (10)
== log A1 — log A, ’

respectively. Thus, a population xo needs min{[ng], [n1]} generations to perish, where [-]
represents the ceiling integer. When i = hy, R = 1, and from the explicit solution in Equation (7),
we obtain

lim x, = Xt (Yo — Xtn) -3

= th-
n—00 X0 — Xth

As before, when zg < xg < X, x, goes negative before it converges to xy. In particular, x,, in
Equation (7) becomes nonpositive in the first instance when

P

n > mg := min { - .
Xth J Xth — X0

Thus, a population xq needs [mg] generations to perish. On the other hand, if xo > xt,, then x,,
converges to Xy, through a positive orbit. Finally, if iy, < A < hmax, then Aq and A, are nonreal;
however, the explicit solution in Equation (8) is still valid, and the population dies out in finite
time. Figure 1 sums up the three possible scenarios.

In conclusion, the intensity of harvesting is bounded between 0 and hmax. One has to decide
whether to preserve stability and keep the population surviving or to maximize harvesting with a
certain control over the number of generations before forcing the population to perish. The latter
scenario can be of particular interest in farms or habitats with finite resources, in which the farm

Tp+1
Tn+1
M |

Figure 1. (a)0 < i < A, (b) h = hyy, (C) htn < h < axo/(1 + xo).
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or habitat will be closed after a certain number of years or generations. On the other hand, if
the indefinite survival of the population is the ultimate objective, then the main deciding factors
are the initial population xg and the intensity of harvesting 4. If xo > %y, then it is obvious that
hopt := hy is the optimal amount of harvesting; however, if xo < X, then the optimal amount of
harvesting is achieved by forcing B, to agree with xo, i.e., solve xo = B; for & to obtain

xo(a — 1 — xo)
hopt := ———— . 11
on T (11)
At this point, it is worth mentioning that /o in Equation (11) gives a possibility of harvesting
from day 1. However, one would argue that it is better not to harvest till the population exceeds
X This argument lies under the strategy of conditional harvesting, but if we allow ourselves to
lucubrate here, we find the time needed for the population to exceed xy, before any harvest,

(a —1Da"xp -
xl’l = Z xth’
a—14 (@ —1xp

a—1-—xg
n=>ng:= |Oga <W)
0

One can immediately ask whether one should wait for the population to grow beyond Xy, before
harvesting. If xo < x,, and we chose to wait for ny seasons before harvesting iy, constantly, then
the total harvesting for m > nq seasons would yield (m — ng)hy. Obviously, one should wait if
(m — no)hw > mhgy, Or equivalently

which implies that

nohn _ nohin(xo + 1)
hin —hi hin + x0(x0 — 2/a +2)

m > mqg =

Now, let us summarize the facts of constant harvesting in the following theorem.

THEOREM 2.1 In Equation (2), let the indefinite survival of the population be the management
objective, and define Xy, = /a — 1.

(i) If xo > %, then by, = (/a — 1)? isthe optimal intensity of harvesting.
(i) If xo < Xtn, then by, := (xo(a — 1 — x0))/(1 + xo) isthe optimal intensity of harvesting.

3. Periodic harvesting
In this section, we allow different quotas of harvesting at different breeding periods, but we force
periodicity on harvesting. Thus, we deal with the p-periodic equation

ax,
1+ x,

Xptl = —h, = fu(x,), neN:={0,1,2,...}, (12)
where h,, is the intensity of harvesting at generation » and 4,4, = h,, Yn € N. It is worth men-
tioning that Tang et al. [29] have considered periodic impulsive harvesting on the Beverton-Holt
model, which is basically a special form of periodic harvesting. Also, we note that Equation (12) is
a special case of the p-periodic Riccati equation. The dynamics of the 2-periodic Riccati equation
was investigated by Grove et al. in [19]; however, the results in [19] are specific for the case p = 2
and do not address the issue of optimal harvesting. Although one can attempt to generalize the
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approach given in [19] to tackle the problem of this article, we find it more convenient to follow
the matrix approach used in Section 2.

To motivate our discussion and emphasize the significance of periodic harvesting, let us give
the following example:

Example 3.1 Fix @ = 4 and let the initial population be xo = 2/3. Under constant harvesting,
hih =1, ¥ = /a — 1 = 1 > xp, and from Equation (11), iy, = 14/15. Now, let us have periodic
harvesting that keeps xo = 2/3 surviving. Can we obtain an average harvest larger than 14/15?
Indeed, if we alternate between hg = 3/5and h; = 4/3, then the average is 29/30, which is larger
than 14/15. At the same time, our initial population xo survives indefinitely.

Example 3.1 shows that periodic harvesting does have some advantages. Our purpose in this
section is to compare the dynamics of periodic harvesting with that of constant harvesting. The
next two results show how population cycles evolve under periodic harvesting. But first, let us list
some simple characteristics of the maps f; in Equation (12).

(1) 0<h; <hjma:=ax;/(1+x;), where hjma, 0 < j < p —1, are determined depending
on the initial population.
(if) 0 <x < yimplies f;(x) < fj(y)and f; o f;(x) < fio fj(y)foralli, j=0,...,p—1.
(iii) h; < h; implies f;(x) < fi(x) forallx > 0.
(iv) The map G;(x, ho, h1,...,h;) = fjo fi—10---0 fo(x) isincreasing in x and decreasing
in the 2 components.

LemMa 3.2 Inasingle-species popul ation with nonoverlapping generations, periodic harvesting
drives population cyclesto be multiples (period-wise) of the phase period.

Proof Consider x,.1 = f(x,) and force a p-periodic harvest to obtain x,.1 = f,(x,) =
f(x,) — h,. Observe that the maps f;(y), j =0,..., p—1, are vertical shifts of f(x), and
consequently, two maps overlap with equal quotas of harvesting and do not intersect otherwise.
On the other hand, if there exists a cycle of period r, which is not a multiple of p, then the

maps fo. fa. foa, -- -, fp—a Must intersect at r/d points, where d is the greatest common divisor
between r and p (cf. [1]). Since this condition is not achievable under periodic harvesting, the
proof is complete. |

Define the maps go(x) = Id(x) = x and g,(x) = f—1) mod p(gn—1(x)) for all n € Z*. The
orbits of Equation (12) are in the form

O(xo) = {x0, g1(x0), g2(x0), - .., gp—1(x0), .. .}. (13)

Also, as in Equation (3), associate each map f;(x) with a matrix A, i.e.,

1 1
A= [—h.z‘ a— hj} '

Define Ay = I, A, = A,_1A,_1 and Xo = [1 x0]", then the equivalent form of orbit (13) in the
matrix notation is given by

O(Xg) = {Xo, A1Xq, A2 X0, ...,.Ap_1X0, . (14)
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THEOREM 3.3 Define A, asin Equation (14) and F;(x) = fp+j—10- -0 fir10 fi(x),0 < j <
p — 1. Each of the following holds true for Equation (12):

(i) 1f tr(A,) > 2aP/?, then there are two p-cycles, one is stable and the other is unstable.
Furthermore, if X < y, arethefixed pointsof Fy(x), thenCy := {xo, g1(x0), ..., gp—1(X0)}
isthe unstable cycle and C; := {yy, 81(3p), - - - » §p—1(¥p)} is the stable one.

(ii) Iftr(A,) = 2a?/2, then Equation (12) has one p-cycle and it is semi-stable. Furthermore, if
X isthefixed point of Fy(x), then the p-cycle satisfies

p—1 p-1
[[(si51 moa po) + 1) = a?? [ ] g;(Fo)- (15)
j=0 j=0

(iii) 1ftr(A,) < 2a?/2, then Equation (12) has no periodic orbits.

Proof To prove part (i), observe that .A,, is the matrix associated with Fo(x). Fo(x) has two fixed
points if and only if the eigenvalues of .A,, are distinct reals. The eigenvalues of .A,, are given by

tr(A,) N V(A2 — 4det(A,)
2 2 ’

where det(A,) = a” by induction. Now letx, < y, be the fixed points of Fy(x) and invoke Lemma
3.2 to obtain the minimal period, consequently C; and C, are the two p-cycles. The stability of
Yo under Fy(x) follows from a simple cobweb diagram, and since f;(x), 0 <j <p—1, are
continuous, then y, is stable under Fy(x) if and only if C; is stable in Equation (12). Now, parts
(i) and (iii) are clear. Equation (15) follows from Fj(x) = 1 at x = X and the orbitin (13). W

The next corollary is straightforward.

CoroLLARY 3.4 Denote the fixed points of f;(x) by 8,1, 8,2, and define hy, as before. Each of
the following holds true.

(i) fh; > hpnforall j =0,..., p— 1, then the population dies out in finite time.
(ii) Ifh; <hpforall j =0,..., p— 1, thenthepopulationsurvivesifxy > max{min{8; 1, B, 2},
j=0,1,...,p—1}.
(iii) Fo(x) =xifandonlyif F;(g;(x)) = g;(x) forall j =0,..., p —1.

We extend the definition of optimal harvesting to the periodic case as follows:

DerNiTION 3.5 The amount of harvesting in Equation (12) is called optimal if the average
harvesting hey = 1/p Z;’;& h; ismaximized and the population survives indefinitely.

LEMMA 3.6 Let hy be the average harvest and the initial population be sufficiently large.
tr(A,) = 2aP/? is a necessary condition for /5, to be optimal.

Proof From Theorem 3.3, tr(A,) > 2a”/?; otherwise, the population eventually dies out.
If tr(A,) > 2a”/?, then Fy(x) = x has two fixed points. From the fact that Fy is decreasing
inh;,j=0,..., p—1, we can increase the harvest for some 7 ; without the risk of extinction.
Thus, hay cannot be optimal without having tr(A,) = 2a”/2. [ ]

THEOREM 3.7 Consider Equation (12), let tr(A,) = 2a”/? and C, := {Xo, ..., X,_1} be the
p-cycle. The average % Zf;é hj/xjr1ismaximizedwhenh; = hy, j =0,1,..., p— 1.
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Proof From Equation (12), in Theorem 3.3, C,, satisfies

p—1 p—1 p—1 .
[[Gisa+n)=a?]]x;. orequivalently | <l + —’) =a’?
j=0 j=0 j=0 Y+l
Now, let y; = h;/(x;41). Using Lagrange multipliers,
1 p—1 p—1
Vav = —Zyj subject to l—[(1+yj) = a?
P j=0

is maximized at y; = /a — 1, Vj, and consequently %; = (y/a — 1)x;11. Substitute /; in
Equation (12) to obtain x;+1 = /ax;/(1 + x;), but this equation has no cycles other than the
fixed points 0, y/a — 1. Hence x; = /a — 1 = i and h; = (Va — 1)? = hy,. [ |

Next, assume the initial population is sufficiently large, and let us compare p-periodic harvest
{ho, ha, ..., hp_1} versus a constant harvest with the same average; i.e., a constant harvest with

hay = 1/]’2?;3}11‘-

LeEMMA 3.8 Lethy =1/p Z;’;& hj 1ftr(A,) > 2a?/?, then hay < hy,. Furthermore, hay = hin
ifandonly if #; = hy, for each ;.

Proof By Theorem 3.3, tr(A,) > 2a”/? assures the existence of a stable p-cycle, say
{x0, x1, ..., xp_]_}. Now,

1072 15( ax; h) P +1PZ_1 ax;
- Xj+1 d = - - j = - - )
P T pig\ty Yrimity

which implies

L lpl( ax; )
av = — —Xj ).
p —~ 1+xj J

Considerthe function g(¢) = (t(a — 1 — 1)) /(1 +1).Sincemax,-q g(t) = (\/a — 1)?> = hy, then
hay < hy. Finally, hyy = Ay, holds only when the p-periodic equation reduces to an autonomous
one. |

THEOREM 3.9 Assume the initial population is sufficiently large. Populations governed by the
Beverton—Holt model attenuate under periodic harvesting, i.e., constant harvesting i, < hy iS
morebeneficial to the population compared with periodic harvestingwithaveragel/ p Zf;g hj=
hav.

Proof If tr(A,) < 2a”~%, then the population attenuates anyway. So we consider tr(A,) >
2a”~% and let the stable cycle (or semi-stable in case tr(A,) = 2a”~Y) be {xg, x1, .. . Xp—1).
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Define xoy = 1/p ij.;é x;j+1 and use Equation (12) to write

Define g1(t) = ¢t/(1 + t) and use Jensen’s inequality on g; (cf. [21]) to obtain

Xav
h . 16
Xav + av<al+Xav ( )

Now consider a constant harvest of iy, in Equation (2) and let y be the associated stable
equilibrium, we obtain

.
I = > — . (17)

Keep in mind that 5y < Ay, ifandonly if y > (/a — 1). From Equations (16) and (17), we obtain

ay _ axay
— =y < —
l+y 1+Xav

— Xav-

Fromthe factsthaty > (\/a — 1) and g»(¢) := at/(1 +t) — t is decreasing on the interval [/a —
1, a — 1], we obtain y > xay, and this completes the proof. |

The next corollary became obvious.

CoroLLARY 3.10 Iftheinitial populationislarger thanthethreshold Xy, thentheoptimal harvest
isthe constant harvest; i.e., h; = h; = h.

Theorem 3.9 and Corollary 3.10 show that constant harvest optimizes the MSY (compared with
periodic harvest) and benefits the surviving population. So one might wonder about the advantages
of periodic harvesting. As shown in Example 3.1, the advantage of periodic harvesting lies in short-
term considerations in the sense that populations are given time to recover before increasing the
harvesting quota. Indeed, an articulate periodic harvesting makes ‘a larger’ basin of attraction
(Figure 2). The basin of attraction of a p-cycle

C, = {Xo, 81(x0), ..., gp—1(x0)}
of Equation (12) is defined as
WS(CP) ={xo € R*: lim Xpp = Xo}.

If Xo < ¥, are the fixed points of Fy(x), then the basin of attraction of the stable cycle C, of
Equation (12) is given by W*(C,) = {x € R" : x > Xo}. Asmall harvest i, gives the population
a chance to grow, then the intensity of harvest can be increased as the population grows to obtain
a total harvest (for the short term) more than the constant harvest. Once the population exceeds
the threshold xy,, then one might switch to the constant harvest policy.

We illustrate the results of this section by considering the 2-periodic case in the next example.
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0 0.5 1 1.5 2 0 0.5 1 1.5 2
o 01

Figure 2. (a and b) Curves of the fixed point xo for different values of #o and i1 when a = 4. The interval (xo, c0)
on the vertical axis gives the basin of attraction for different choices of 2-periodic harvesting. A small initial harvesting
quota (small k) gives a larger basin of attraction, and thus benefits low level populations.

Example 3.11 Consider the 2-periodic case. Obviously, here either hg < hy or hy < hg.
Lemma 3.6 leads us to focus our attention on the condition tr(A4,) = 2a and from which we
obtain #4 as a function of Ay,

(@ —1)2%—hola+1) (a — 1)?
hy = , O0<hg=<-—"". 18
! a+1-—hg =" = a+1 (18)

From this fact, we obtain
l(a—1—ho)a—1+ho)
hav = — .
2 l4a-— /’lo

The maximum average is achieved at

ho = (Va — 1)* = hy,
which implies that 4o = h1 = hy. On the other hand, if

0<h <ﬂ 0<h <(a_1)2_h0(a+1) (19)
== T S T At 1—hy

then we identify the explicit form of the 2-cycles assured by Theorem 3.3. Indeed, the solution of
fifo(x) = x is given by

— _ho—14Mn

ho—1+ X,
Xo = = —
14+a—ho

and v, = T 4a—h (20)

where A1 and A, are the eigenvalues of A, = A;Ag. The fixed point X gives the unstable 2-cycle
{xXo, X1}, where

_ _ hi —1+X1
= == - 21
X1 = fo(xo) —— (21)
and y, gives the stable 2-cycle (semi-stable when tr(A;) = 2a) {y,, ¥;}, where
_ _ hi—1+X
= == 22
yi=/foGo) = T — I (22)

Now assume the initial population is sufficiently large, and let us compare 2-periodic har-
vesting {hg, h1} versus a constant harvest with the same average; i.e. a constant harvest
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h = hay = (ho + h1)/2. After simplifications, we write the attractor in Equation (22) as

-1 1 Irvarace e B
y] = E(a - hj+l(m0d2) - 1) + m tr(Az)Z — 4(12’ ] = 0, 1, (23)

and tr(A4y) = 14 a? — (1 + a)(ho + k1) + hohy. On the other hand, the attractor under constant
harvesting h,, is given by the fixed point

1 1
Xay = E(a —hy — 1)+ E\/(l +a — hy)? —4a.

Now

1 — hay
2xa — (Fo +51) = V(A +a — ha)? — 4da — ( Sl ) VIr(Az)? — 4a?.

AQ+a—-hy)(X+a—hy)

Since multiplying by the conjugate of this quantity will not affect its sign, we multiply by the
conjugate to obtain

a(ho — hy)? -0
I+a—ho)(l+a—hy) ~

Thus xav > 1/2(y, + ¥,) as assured by Theorem 3.9. In the above discussion, we neglected
the role of the initial population; however, as we mentioned before, periodic harvesting can be
beneficial to the basin of attraction (Figure 2). It is possible for a population xq to survive under
periodic harvesting {A¢, h1} while dying out under constant harvesting of the same average, see
region R, in Figure 3. Also, it is possible for a large initial population xo to die out under periodic
harvesting while surviving under constant harvesting of the same average, see regions R. in
Figure 3.

ho (a— 1)2

a+1

Figure 3. Define R, to be the region bounded by ho = 0, hg = k1 and tr(Az) = 2a and R. to be the region in the
first quadrant bounded between tr(Ay) = 2a and hg + h1 = 2hy. In comparing a 2-periodic harvest {hg, h1} with a
constant harvest of the same average, periodic harvesting (o, #1) € R, benefits small initial populations. Otherwise,
constant harvesting is more beneficial. In region R, periodic harvesting forces extinction while constant harvesting keeps
survival.
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4. Conditional harvesting
It is perfectly logical to allow harvesting only when a population exceeds a certain level xy, (a

threshold level). Accordingly, it is natural to consider what we call the Beverton—-Holt model with
conditional harvesting.

axy
1 +x ’ -xn < -xtha
Xnyr = f(xp) = ax " (24)
n
- ha n 2 .
1+x, X Xth

For the motivation behind considering conditional harvesting, we refer the reader to Clark and
Hare [10] and Lande et al. [25]. The main deciding factors in this model are the initial population
X0, the threshold level x4, and the intensity of harvesting 4. It is tempting to suggest that conditional
harvesting is the safest strategy to follow, but in fact, it has its drawbacks. In practice, the decision
maker must have an accurate estimate of the population level at each step to decide whether or
not to allow harvesting. Putting a halt on harvesting or limiting the harvesting level after an over
harvest are hard decisions to make given their socio-economical and political impacts. While
these issues are of paramount importance, we limit our attention to the periodic character and
the total harvest. Let us start by ruling out some obvious scenarios. If we put the threshold xi,
larger than a — 1 (which means larger than the carrying capacity K before our variable rescaling),
then xo < a — 1 means that no harvest will take place at any time. If xo > a — 1, then harvest
will only take place finitely many times before it ceases forever. Thus, such a scenario is far
from being optimal. Also, if we lower the threshold xy, below the carrying capacity, then i <
axtn /(1 + xn) — xi is far from optimal too. So we focus our attention onthe case 0 < xip <a — 1
and axy /(1 4 xtn) — xth < h < axypn /(1 + xin). To simplify our writing in this section, let us agree
to define fo(x) = ax/(1 + x) and f1(x) = fo(x) — h. The next proposition is straightforward.

PrROPOSITION 4.1 Let 0 < xph < a — 1, fo(xtn) — xth < h < fo(xw) and {xg, x1, ..., x,, ...} be
an orbit of Equation (24). Each of the following holds true.

(i) Theinterval I = [ fo(xtn) — h, fo(xw)] isinvariant, and each orbit enters I in finite time.
(i) fotxn) —h <1/n}7_ sxj < folxm) for sufficiently large n.

After an orbit enters the invariant set 7, it oscillates around xy,, and the nature of its oscillation
depends on the intensity of harvesting 4. The more we harvest, the more time needed for the
population to recover.

THEOREM 4.2 Theoptimal harvest for the conditional strategyisachieved at xy = X = +/a — 1
and i = hy.

Proof Let {xg, x1, ...}, x, > 0O, be an orbit of Equation (24). Write

n—1 mp—1

Ly ot zxm zz ,

j=0 j=mq
where mj is the number of times we harvest, and we rearrange terms if necessary. Thus

n—1 1 mp—1 n—2

IR P AP I

j= j=0 J j=m1

s

1+xj
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which implies

n—2
my xg—Xp—1 1 ax;
Yo n +nzj_o(1+xj x’) #)

Since0 <x; <a—1landg(t) =ar/(1+1t) —rhasamaximumats = \/a — 1, then we obtain

—xpq n—1 Xy —(Ja—1)?
hav<x0 an 1+nn g(\/——l)z‘xo Xn—1 n(\/a ) +(\/E—1)2 (26)

Obviously, for sufficiently large n, hy < hy. Inequality (26) shows that ha < Ay in finite time
whenever x,_1 < xo — hy. Finally, by choosing & = hy, and xi = ¥ = +/a — 1, every small
initial population grows beyond x, in finite time and then converges to the fixed point xg,. Thus
harvesting always takes place except possibly a finite number of times for small initial populations

X0 < Xth, and consequently g, = hy. [ |
The next corollary gives the analogue of Theorem 3.9.

CoroLLARY 4.3 Populations governed by system (24) attenuate compared with constant
harvesting of the same average.

Proof Use Equation (25) and the fact that i, < hy, then the proof follows along the same lines

as the proof of Theorem 3.9. [ |

Next, we investigate the existence of 2-cycles. Obviously, any existing cycle has to be in the
invariant set. Furthermore, any 2-cycle of system (24) must be a 2-cycle of the 2-periodic system
Xn41 = fumod2(xn). Thus, we set hy = 0 and h; = A in Equations (21) and (22) to obtain

_)»1—1 _ h—14x1 __A.Z_l and __]’l—l—‘r)»z
yo_a+1 yl_a+1—h’

Xo =

a+1’ = a+1—h’

(@27)
where
A= % (tr(Ag) + (—1)1\/m) . (A =14a—(1+a)h, j=0,1

Recall that inequality (19) implies0 < & < (a — 1)?/(a + 1), and from Equation (24),0 < h <
axt /(1 + xp) — xin. Taking those constraints into consideration, we need to find the circum-
stances where {xo,x1} or {y,, y1} C I. Here, we avoid writing the simple but rather tedious
computations, and summarize the conclusion in the next theorem. Figures 4 and 5 illustrate the
outlines for the computational proof.

THEOREM 4.4 Consider Equation (24), and define the curves

hy (o) = A+ a)xin(a —1 — xin) i (r) = A+ a)xm(a — 1 — xin)
. Axm@—xw) 1+ +a)xm

Let X0, X1, yg, y1 beasin (27). Each of the following holds true.

@) If (xpn, h) € {(x,h) 0<x<a—1, hy(x) <h < ha(x)], then there exists a unique
2-cycle, which isthe stable cycle {y,, ¥4} 5

@) If (xth,h) e {(x,h): 0 <x <a—1, hy(x) < h <min{h,(x),ax/(1+ x)}}, then there
exists a unique 2-cycle, which isthe unstable cycle {xg, x1}.
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[ Y1
1 (N, W "
25 Jo
\.
E N (b,d)
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Figure 4. This figure shows the branches of the stable 2-cycle {yg, y;} and the unstable 2-cycle {xo,x1} of the
2-periodic system with hg =0 and hi =h. In the graph, b= (a — 1)2/(a +1), c=(@-1)/(a+1) and
d = (1/2)(a — 1). By allowing the constant xy to slide along the interval [0,a — 1], the dashed lines jfo(xtn)
and fo(xtn) — h show the circumstances where the cycles of the periodic harvest lie inside the invariant interval

[fo(xth) — A, fo(xin)]-

folaadf
/S
/ (a—1)2
a-+1
4
V2,
3/
3 ,5\
&7
I twvo 2-cycles
I an unstable 2-cycle
a stable 2-cycle

Tth

Figure 5. This figure shows the regions in the xi,, 2 plane where 2-cycles of Equation (24) exist. i, (xt) and i (xth)
are defined in Theorem 4.4. h, (xu) is found from fo(xin) —h =y and fo(xtn) — h = Xo, and ha(xn) is found from
Sfolxtn) =1 and fo(xtn) = ¥1.
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(iii) If

-1 -1 - : —1)?
(xth, h) € {(x,h) : Z+1 <x<? 5 Max{he(x), ha(x)} <h < min {ﬂfx, %”

then two 2-cycles exist, namely, the stable one {y,, y;} and the unstable one {x, x1}.

Finally, we remark that the Beverton—Holt model with conditional harvesting portrays cycles
of periods other than 2. An abstract analysis of its dynamics would be the topic of further
investigation.

5. Conclusion

This article is concerned with constant, periodic and conditional harvesting strategies on the
discrete Beverton—Holt model with constant inheritance growth rate and carrying capacity. A
comparison between the three strategies leads to the conclusion summarized in the next chart.
Here, it is possible to argue that theoretical aspects of these strategies are far from being applicable
in reality. For instance, Clark [9] shows that MSY does not necessarily lead to an optimal policy
in an economic sense. However, this work is not concerned with this issue. Finally, it is worth
mentioning that Cushing and Henson [13,14] found that periodic environment does not benefit
populations governed by the discrete Beverton—-Holt model (see also [16,17]), whereas this study
shows that populations attenuate under periodic harvesting. This motivates us in the near future
to investigate the constant, periodic and conditional harvesting strategies for the periodic discrete
Beverton—Holt model.

Is the initial population zoy > /a — 17

Constant harvesting is the best Can you afford to have

option with hey = (va — 1)? moratorium on harvesting?

Conditional harvesting is the Periodic harvesting is the
best option with z, = v/a — 1 best option provided that
and h = (va — 1) you carefully choose the

harvesting quotas so the
population can survive.
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