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Abstract

In this paper, we characterize periodic solutions of p-periodic difference

equations. We classify the periods into multiples of p and nonmultiples of p.

We show that the elements of the set of multiples of p follow the well-known

Sharkovsky’s ordering multiplied by p. On the other hand, we show that the

elements of the set Γp of nonmultiples of p are independent in their existence.

Moreover, we show the existence of a p-periodic difference equation with infinite

Γp-set in which the maps are defined on a compact domain and agree exactly

on a countable set. Based on the proposed classification, we give a refinement

of Sharkovsky’s theorem for periodic difference equations.
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1 Introduction

Consider the p-periodic difference equation

xn+1 = f(n, xn) = fn(xn), n = 0, 1, . . . , (1.1)

where p is the minimal (unless mentioned otherwise) positive integer for which

fn+p = fn, for all n ∈ N := {0, 1, . . .}. We assume fj ∈ C(I, I) for all j =

0, 1, . . . , p− 1, where C(I, I) denotes the space of continuous functions on I := [0, 1]

endowed with the sup-norm. An orbit of Eq. (1.1) through a point x0 ∈ I,

O
+(x0) := {x0,

x1
︷ ︸︸ ︷

f0(x0), . . . ,

xp
︷ ︸︸ ︷

fp−1 · · · f0(x0),

xp+1

︷ ︸︸ ︷

f0fp−1 · · · f0(x0), . . .} (1.2)

is called r-periodic (or forms a r-cycle) if r is the smallest positive integer for which

xn+r = xn,∀n ∈ Z
+, where Z

+ is the set of positive integers. It is worth stressing
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here that cycles of Eq. (1.1) are ordered sets, and we treat them as such throughout

this paper. Although one can use the starting time to be n = n0, we always use

n0 = 0. Define the set of periodic points of Eq. (1.1) as Per(fn, p) :=

{x0 ∈ [0, 1] : O
+(x0) = {x0, x1, . . .} is a periodic orbit of Eq. (1.1)} .

If p = 1, then we have the autonomous case xn+1 = f(xn) and we use Per(f, 1).

Throughout this paper, a r-cycle of a map f(x) is meant to be a r-cycle of the

autonomous equation xn+1 = f(xn). Let P(fn, p) be the set of minimal periods

of Eq. (1.1). We let Mp and Γp denote the minimal periods of multiples and

nonmultiples of p respectively.

One of the most interesting problems concerning Eq. (1.1) is characterizing its

periodic orbits [2, 4, 5, 6, 8, 9, 10, 12, 14, 15]. For more information on the signif-

icance of periodic orbits of periodic difference equations in population biology, we

refer the reader to [10, 11, 12, 13, 15, 17, 18]. On the other hand, the autonomous

form of Eq. (1.1) (p = 1) is becoming a classical topic; however, for readers from

other disciplines, the papers of Sharkovsky [20] and Li & Yorke [19] “Period three

implies chaos” deserve to be acknowledged and recommended for a historical back-

ground reading. Let f ∈ C(I, I), the fascinating result of Sharkovsky’s [20] states

that if f has a periodic point of period k, then it has a periodic point of period r

for all k � r in the following order:

3 ≺ 5 ≺ 7 ≺ · · ·
2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ . . .

...

2n · 3 ≺ 2n · 5 ≺ 2n · 7 ≺ . . .
...

. . . ≺ 2n ≺ . . . ≺ 22 ≺ 2 ≺ 1.

(1.3)

In [4], AlSharawi et al. extended Sharkovsky’s theorem to the p-periodic dif-

ference equation in (1.1). However, the given extension does not give the specific

periods assured by a periodic orbit. Alves [5, 6] approached the problem using the

Zeta function and gave certain characteristics of periodic solutions when the set of

intersections between the maps is finite. Cánovas and Linero [8] focused on the case

p = 2 and described the forcing between periodic solutions. However, as can be

observed in [4, 2], the case p = 2 is a special case since positive integers are either

multiples of 2 or relatively primes with 2. In [2], AlSharawi classified the elements

of P(fn, p) as multiples and non-multiples of p. He showed that it is possible to

determine the set Γp using combinatorial arguments on the common points between

the maps fj. For instance, if the maps fj are rational, then the set Γp is finite. On

the other hand, examples where the set Γp is infinite are available. In particular,
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such examples can be easily constructed if the domain is noncompact or the set of

overlaps of the functions fj has a positive Lebesgue measure. The question whether

there is an example with an infinite Γp set under the conditions that the domain is

compact and the maps fj intersect on a set of zero Lebesgue measure was left open

in [2]. In this paper, we give an affirmative answer to this question. Moreover, we

give a refinement of Sharkovsky’s theorem for periodic difference equations [4].

2 A refinement of Sharkovsky’s theorem for periodic

difference equations

For two positive integers p and q, let lcm(p, q) and gcd(p, q) denote the least common

multiple and greatest common divisor respectively. Let Ap,q be the set defined by

Ap,q = {r ∈ Z
+ : lcm(r, p) = pq}.

The p-Sharkovsky’s ordering, as defined in [4], is given by

Ap,3 ≺ Ap,5 ≺ Ap,7 ≺ ...

Ap,2·3 ≺ Ap,2·5 ≺ Ap,2·7 ≺ . . .
...

Ap,2n
·3 ≺ Ap,2n

·5 ≺ Ap,2n
·7 ≺ . . .

...

· · · ≺ Ap,2n ≺ ... ≺ Ap,22 ≺ Ap,2 ≺ Ap,1.

(2.1)

It is obvious that this ordering reduces to the original Sharkovsky’s ordering given in

(1.3) when p = 1, which we refer to by the 1-Sharkovsky’s ordering. We use r1 � r2

to mean r1 = r2 or r2 follows r1 in the 1-Sharkovsky’s ordering, while r1 ≤ r2 carries

the well-known (less than or equal) meaning. The next result is needed in the sequel.

Theorem 2.1 (AlSharawi et al. [4]). Consider Eq. (1.1) with fi ∈ C(I, I), i =

0, 1, ..., p− 1. If P(fn, p)∩Ap,ℓ 6= φ for some ℓ ∈ Z
+, then P(fn, p)∩Ap,q 6= φ for all

ℓ � q in the 1-Sharkovsky’s ordering.

Let us agree to say an interval is nontrivial if it has positive length. It is possible

for Eq. (1.1) to be of minimal period p on the interval I, but reduces to a periodic

equation of shorter period on a nontrivial subinterval of I. In such case, one can

treat Eq. (1.1) depending on the new shorter period and the partitioned domain.

However, we consider this scenario to be a degenerate one and avoid it throughout

this paper. To clarify the notion, we give a formal definition followed by an example.

Definition 2.1. A p-periodic difference equation of the form (1.1) is called degen-

erate if it reduces to a periodic equation of shorter period on a nontrivial subinterval

of I, and it is called non-degenerate when such a scenario does not happen.
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Example 2.1. Consider

f0(x) =

{

4x(1 − x), 0 ≤ x ≤ 1

x − 1, 1 < x ≤ 2
and f1(x) =

{

f0(x), 0 ≤ x ≤ 1
1
2f0(x), 1 < x ≤ 2,

then xn+1 = fn mod 2(xn) is 2-periodic on the interval [0, 2], but in fact, it reduces

to a 1-periodic equation on [0, 1].

To better understand the forcing between the periods of periodic solutions of

Eq. (1.1), we give the following result:

Theorem 2.2. Let p > 1 be a positive integer. For each r ∈ Z
+ \ {mp : m ∈ Z

+},
there exists a p-periodic difference equation in the form (1.1) with Γp = {r}.

Proof. Given r ∈ Z
+ \ {mp : m ∈ Z

+} and let aj := 1 − 1
j
, j = 1, . . . , r. Define the

map f : I → I by

f(x) =







aj+1 +
aj+2−aj+1

aj+1−aj
(x − aj), aj ≤ x ≤ aj+1, j = 1, . . . , r − 2

ar

ar−1−ar
(x − ar−1) + ar, ar−1 ≤ x ≤ ar

0, ar ≤ x ≤ 1.

For each j = 0, . . . , p − 1, define the map fj : I → I by

fj(x) = f(x) +
j

p
(1 − f(x))

∣
∣
∣
∣
sin

(
π

1 − f(x)

)∣
∣
∣
∣
.

Now, it is straightforward to observe (i) Cr := {a1, a2, . . . , ar} is an r-cycle of each

map fj(x); (ii) fj ∈ C(I, I); (iii) fj(ai) = f(ai) for all j = 0, . . . , p − 1 and i =

1, . . . , r. Next, define d := gcd(r, p) and recall how phase shifts of cycles of Eq. (1.1)

are defined (cf. [2]), then orbits of Eq. (1.1) that start with aj, j = 1, 2, . . . , d give

us d r-cycles. Finally, take j 6= i then fj(x) = fi(x) only when x ∈ {a1, a2, . . . , ar}.
Therefore, Γp = {r}.

Theorem 2.2 has the significance of showing that periodic solutions with periods

in Γp are generic characteristics of the intersections between the maps and not a

result of the iterations. Thus, we have no forcing relation within the elements of Γp.

When assuming Γp = φ, this observation together with Theorem 2.1 shows that a

forcing relation within the elements of Mp is as follows: The existence of kp-cycle

implies the existence of a rp-cycle for all k ≺ r in the 1-Sharkovsky’s ordering. An

elaborative example here is the p-periodic logistic equation xn+1 = µnxn(1 − xn)

[3]. Now, it remains to understand the forcing relation between the elements of Γp

and the elements of Mp. For achieving this objective, we appeal to the notion of a

digraph of a cycle used by Straffin [21] and developed by several others [16, 7, 1].

Let Cr := {a, f(a), f2(a), . . . , f r−1(a)} be a r-cycle of the autonomous equation

xn+1 = f(xn), f ∈ C(I, I). Rearrange the elements of Cr in an increasing order, say
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â0, â1, . . . , âr−1, and define the closed intervals

Ij = [âj , âj+1], j = 0, . . . , r − 2. (2.2)

Now, define a directed graph whose vertices are {Ij , j = 0, . . . , r − 2} such that

Ii → Ij (i.e., there is an edge from Ii to Ij) if Ij ⊆ f(Ii). Now, let L(x) be the

piecewise linear function that connects the points (âj , f(âj)), j = 0, 1, . . . , r − 1.

What is the relationship between the digraph of L(x) and the digraph of f(x)?

Obviously, the digraph of L(x) is a sub-digraph of the one that belongs to f(x) (cf.

Page 852 in [8]). However, since this is a fundamental fact in our latter results and

the proof is not explicitly written in [8], we write it in the following proposition:

Proposition 2.1. Let f ∈ C(I, I). Suppose Cr := {a, f(a), f2(a), . . . , f r−1(a)} is

a r-cycle of f with associated digraph G. The digraph of this r-cycle under the

piecewise linear map L(x) that connects the points (aj , f(aj)), j = 0, 1, . . . , r − 1 is

a sub-digraph of G.

Proof. Order the elements of the r-cycle from smallest to largest as â0, â1, . . . , âr−1

and define Ij as in Eq. (2.2). Then

L(Ij) = [min{f(âj), f(âj+1)},max{f(âj), f(âj+1)}]

and L(Ij) ⊆ f(Ij). Therefore, if Ik ⊆ L(Ij) for some k and j (i.e., Ij → Ik in the

digraph of L), then Ik ⊆ L(Ij) ⊆ f(Ij), and consequently Ij → Ik in G.

Before we proceed, we give the definition of what we call Straffin’s loop.

Definition 2.2. Set Î0 = I0, where I0 as defined in Eq. (2.2), and define recur-

sively În to be the interval which has fn(â0) as one endpoint and is contained in

f(În−1), n ∈ Z
+. The obtained sequence of intervals defines a loop in the associated

digraph, which we call a Straffin’s loop.

We are interested in the relationship between the cycles of f and the cycles of

the digraph. Cycles in the digraph are named in terms of the vertices. To avoid

confusion between cycles of difference equations and cycles of digraphs, we use loops

to call cycles of a digraph, and we always use minimal periods. Thus, an r-loop

means a non-repetitive cycle of period r in the digraph. It is obvious that a r-loop

gives rise to a r-cycle, but the converse is not obvious. In fact, the converse is not

necessarily true. We extract the following result from [21]:

Lemma 2.1. Suppose that xn+1 = f(xn) has a k-cycle for some positive integer

k > 1. Each of the following holds true for the associated digraph of this k-cycle.

(i) At least one of the vertices has a 1-loop.

(ii) If k ≥ 3 is odd, then the diagraph contains a k-loop.

(iii) The existence of a m-loop in the diagraph implies the existence of a m-cycle

for f(x).
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Before we give the next result for periodic difference equations, we need to define

cycle sharing between maps and decomposable loops in diagraphs.

Definition 2.3. Two maps f, g ∈ C(I, I) are said to share the same r-cycle Cr =

{c0, c1, . . . , cr−1} if cj+1 mod r = f j(c0) = gj(c0) for all j ∈ N.

Definition 2.4. Let G be a digraph associated with a r-cycle of a map F. We

call a m-loop of G decomposable into two sub-loops, say m1-loop and m2-loop if

m1 + m2 = m, the vertices of the two sub-loops are exactly the vertices of the m-

loop, and the union of the intervals forming the m1-loop does not equal the union of

the intervals forming the m2-loop.

Lemma 2.2. Suppose that F0, . . . , Fq−1 ∈ C(I, I) share the same r-cycle,

Cr := c0 → c1 → c2 → c3 → · · · → cr−1

such that r > 2. If the digraphs of Cr under the effect of Fj , j = 0, 1, . . . , q − 1 have

a common sub-digraph that has a r-loop, which is decomposable into two sub-loops,

then the periodic equation xn+1 = Fn mod q(xn) (q is not necessarily the minimal

period) has qrm-cycles for all positive integers m.

Proof. Rearrange the elements of the r-cycle in an increasing order, say

ĉ0, ĉ1, . . . , ĉr−1, and as in the paragraph preceding Lemma 2.1, define the closed

intervals Ij = [ĉj , ĉj+1], j = 0, . . . , r − 2. For each map Fk, define a directed graph

whose vertices are {Ij , j = 0, . . . , r − 2}. Since the Cr cycle is shared by all maps,

then the order of the elements of Cr is preserved by all maps. Now, since the r-loop

is common in all digraphs and decomposable into two sub-loops, say r1-loop and

r2-loop, then there must be at least one common vertex between the two sub-loops

(a bridge vertex), say Ii∗ . Start from Ii∗ , and trace the r1-loop qm times using the

maps F0, F1, F2, . . . , F(qr1−1) mod q, i.e., guard the edge that connects Ii∗ to Ii∗+1 in

the r1-loop by the map F0, then guard the edge that connects Ii∗+1 to Ii∗+2 by

the map F1, ... etc. Observe that F(qr1−1) mod q will get you back to the bridge

vertex Ii∗ , and we can cross to the r2-loop using the map Fqmr1
= F0, then as in

the r1-loop, trace the r2-loop qm times. This procedure, defines a chain of length

qmr1 + qmr2 = qrm.

Ii∗
F0−→ Ii∗+1

F1−→ Ii∗+2
F2−→ · · · Fqmr1−1−−−−−→ Ii∗

F0−→ · · ·

where the indexes of F in this chain are (mod q). From the structure of the chain,

and our definition of a decomposable loop, the chain gives a cycle of length qrm

for the periodic equation xn+1 = Fn mod q(xn). Now, it remains to clarify that it is

a qrm-cycle, i.e., qrm is the minimal period. We have two segments in the chain

that we formed, one is coming from the r1-loop and the other is coming from the

r2-loop; however, Definition 2.4 assures us that we have a vertex in one of the

segments that does not show up on the second one. Thus, we have a qrm-loop, and

consequently a qrm-cycle regardless whether or not q is the minimal period for the

periodic equation.
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A reader might think that the condition on all maps to agree on the same cycle

as a stringent condition, but in fact, it is a tangible one as can be seen in Theorems

2.3, 2.4 and 2.5. We emphasize the significance of the other conditions of Lemma

2.2 in the next remark.

Remark 2.1. Although r > 1 is necessary for the digraph approach to be well

defined, we show its necessity in general. Let r = 1 and define Fj(x) = x, j =

0, . . . , q − 2, Fq−1(x) = 1−x. The functions Fj(x) share the 1-cycle {1
2}, but the q-

periodic equation xn+1 = Fn(xn) has no q-cycles. In fact, all non-equilibrium orbits

are of period 2q. About the significance of a r-loop in the digraph: Let r = 2, and

consider F0(x) = 1 − x, F1(x) = 1 − x and F2(x) = (x − 1)2. Then, Fj ∈ C(I, I)

and {0, 1} is a 2-cycle for each map Fj . It is a simple matter to see that the unique

2-cycles of the 3-periodic equation xn+1 = Fn mod 3(xn) are {0, 1} and {1, 0}, and its

unique 3-cycle in [0, 1] is given by {1
2 (3 −

√
5), 1

2(
√

5 − 1), 1
2(3 −

√
5)}. Since

F2 ◦ F1 ◦ F0 ◦ F2 ◦ F1 ◦ F0(x) − x = x(x − 1)(x2 − 3x + 1),

we conclude that the nonautonomous equation has no 6-cycles. Furthermore, one

can show that the 3-periodic equation has no r-cycle for all r ∈ A3,q, q 6= 1, 2.

Remark 2.2. We note that the order of the elements of Cr is crucial in Lemma

2.2. To illustrate this, consider

f0(x) =

{

x + 1
2 0 ≤ x ≤ 1

2

2(1 − x) 1
2 < x ≤ 1

and f1(x) =

{

1 − 2x 0 ≤ x ≤ 1
2

x − 1
2

1
2 < x ≤ 1.

Observe that f0, f1 ∈ C(I, I). Furthermore, {0, 1
2 , 1} is a 3-cycle for both maps, but

the combinatorial structure is different, i.e.,

0
f0−→ 1

2

f0−→ 1
f0−→ 0 and 0

f1−→ 1
f1−→ 1

2

f1−→ 0.

In fact, xn+1 = fn (mod 2)(xn) has no 3-cycle nor a 6-cycle. To prove this simple

fact, it suffices to observe that Ap,2 = {4} ≺ Ap,1 = {1, 2}, and that the 2-periodic

equation has no 4-cycles because f1(f0(x)) ≤ x for all x ∈ I and consequently

Per(f1 ◦ f0, 1) = {1}. However, there are many 2-cycles. Indeed, {1, 0} and {x, x +
1
2}, x ∈ [0, 1

2 ] are all the possible 2-cycles.

Corollary 2.1. Suppose that the non-degenerate p-periodic equation in (1.1) has a

r-cycle for some odd number r > 1. If gcd(r, p) = 1, then Eq. (1.1) has prm-cycles

for all positive integers m.

Proof. Since r and p are relatively prime, then all maps f0, . . . , fp−1 share the same

r-cycle. Also, since r is odd, Lemma 2.1 assures the existence of a r-loop, and we

can take it from the common sub-digraph assured by Proposition 2.1. Furthermore,

we can take it to be the Straffin’s loop (See Definition 2.2). This Straffin’s loop is

decomposable into two sub-loops. Now, Lemma 2.2 completes the proof.
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The existence of a k-loop in the diagraph of a k-cycle plays a major rule in our

proof of Lemma 2.2. As Lemma 2.1 shows, this k-loop is available at our disposal

when k > 1 is odd; however, when k is a power of 2, further assumptions are needed.

For instance, define f(x) to be the piece-wise linear map that connects the points

(0, 2), (1, 3), (2, 1), (3, 0), then we have a 4-cycle. Define I0 = [0, 1], I1 = [1, 2] and

I2 = [2, 3]. As Figure 1 shows, the associated digraph has no 4-loop.

f
f

fI1 I2 I0

Figure 1: The digraph associated with the 4-cycle 0 → 2 → 1 → 3 of the piece-wise
linear map f.

Nevertheless; we use Lemma 2.2 to obtain a result when the shared cycle is of length

r = 2m(2k + 1). But first, we clarify the notion of gluing certain maps together to

reduce the periodicity of Eq. (1.1). For instance, if Eq. (1.1) is 6-periodic, then we

can glue each two consecutive maps as F0 := f1f0, F1 := f3f2, F2 := f5f4 to obtain

a periodic equation of period 3 (not necessarily minimal). In general, we have the

following:

Lemma 2.3. If we have a non-degenerate p-periodic difference equation of the form

given in Eq. (1.1), and we define

Fj := f((j+1)k−1) mod p ◦ f((j+1)k−2) mod p ◦ · · · ◦ fjk mod p, j = 0, 1, . . .

for some positive integer k, then the equation xn+1 = Fn(xn) is q-periodic for some

q that divides p
gcd(p,k) .

Proof. The periodicity of the formed equation here is affected by the rotation of

the indices and by the action of the individual maps. First, we handle the indices.

From the fact that {0, k, 2k, · · · } is a subgroup of (Zp,+) (the additive group of

congruence classes modulo p) of order p
gcd(p,k) , we obtain a periodic equation of (not

necessarily minimal) period p
gcd(p,k) . Now, we come to the effect of the individual

maps. This may create a period shorter than p
gcd(p,k) . However, the minimal period

must be a divisor of p
gcd(p,k) .

The following example illustrates Lemma 2.3:

Example 2.2. (i) Define fj(x) = xj+1, x ∈ [0, 1], j = 0, 1, . . . , 3 and consider k in

Lemma 2.3 to be 2, then the obtained equation xn+1 = Fn(xn) is 2-periodic.

(ii) Define the maps f0, f2 ∈ C([0, 1] to be monotonic such that f0 6= f2, then define

f1 = f−1
0 and f3 = f−1

2 . Again, consider k in Lemma 2.3 to be 2, then the

obtained equation xn+1 = Fn(xn) is 1-periodic.

The next theorem is tailored to address the case when the period of the shared

cycle is a power of 2 times an odd number.
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Theorem 2.3. Suppose that f0, . . . , fq−1 ∈ C(I, I) share the same r-cycle,

Cr := c0 → c1 → c2 → c3 → · · · → cr−1

for some r = 2m(2k+1),m ≥ 0, k ≥ 1. Let d∗ = gcd(2m, q) and Fj = f(j+1)2m
−1◦· · ·◦

fj2m, j = 0, 1, . . . . The periodic equation xn+1 = Fn mod q(xn) (q is not necessarily

minimal) has a q
d∗

(2k + 1)m-cycles for all m ∈ Z
+.

Proof. If m = 0, then r is odd, d∗ = 1 and Fj = fj for all j = 0, 1, . . . , q−1. Thus, all

maps share the (2k+1)-cycle. As in the proof of Corollary 2.1, we obtain the required

result. Now, assume that m ≥ 1. If q = 1, then we have the autonomous case and

the result is obvious. Next, assume q > 1 and consider the maps Fj as defined in the

statement of the theorem. Since F t
j (c0) = c2mt for all j = 0, 1, . . . , q − 1, then the

maps F0, F1, . . . , Fq−1 share a cycle of minimal period 2k+1. By Lemma 2.1, we have

a decomposable (2k + 1)-loop. Now, use Lemma 2.2 to obtain q
d∗

(2k + 1)m-cycles

for the periodic equation xn+1 = Fn(xn).

It is possible to achieve a r-loop in a r-cycle in certain classes of cycles regardless

whether or not r is odd. A simple example here is the class of monotonic cycles. A

r-cycle Cr := {a, f(a), f2(a), . . . , f r−1(a)} of xn+1 = f(xn) is called monotonic if

a < f(a) < · · · < f r−1(a) or a > f(a) > · · · > f r−1(a).

It is straight forward to draw the associated diagraph, and observe that a de-

composable r-loop always exists. Furthermore, the digraphs of both cases are

isomorphic. In Figure 2, we give the digraph of a monotonic 4-cycle.

f f

f

f

I0 I1 I2

Figure 2: The digraph of a monotonic 4-cycle. Observe that I2 → I2 → I2 → I1 → I2

is a decomposable loop, and I0 → I1 → I2 → I2 → I0 is the decomposable Straffin’s
loop.

We generalize this notion to p-periodic difference equations as follows: Let Cr :=

{c0, c1, . . . , cr−1} be a r-cycle of Eq. (1.1). Define d := gcd(r, p). We call Cr

monotonic if {c0, cd, c2d, . . . , cr−d} is a monotonic r
d
-cycle with respect to the map

F0 = fd−1 · · · f1f0. Now, we give the following result:

Theorem 2.4. Suppose that the non-degenerate p-periodic equation in (1.1) has a

monotonic r-cycle. Let d = gcd(r, p) and Fj = f(j+1)d−1◦. . .◦fjd, j = 0, 1, . . . , p
d
−1.

If r
d

> 2, then the periodic equation xn+1 = Fn(xn) has a m-cycle for all m ∈
{p

d

(
r
d

+ j
)

: j ∈ N}. Furthermore, the intersections of the maps fj determine the

exact length of those cycles with respect to Eq. (1.1).

9



Proof. Since we have a monotonic r-cycle of Eq. (1.1), say Cr = {c0, c1, . . . , cr−1},
then F0 = fd−1 · · · f1f0 has a monotonic r

d
-cycle. Furthermore, the maps

F0, F1, . . . , Fp

d
−1 share the same monotonic r

d
-cycle; namely {c0, cd, c2d, . . . , cr−d}.

For the monotonic r
d
-cycle, we have a common r

d
-loop which is decomposable into

1-loop and ( r
d
− 1)-loop. By a construction analogous to that given in the proof

of Lemma 2.2, we obtain p
d
(M1 + ( r

d
− 1)M2)-cycles for the periodic equation

xn+1 = Fn mod p

d
(xn) (p

d
is not necessarily the minimal period), where M1,M2 ∈ Z

+

representing the number of times you loop in the 1-loop and ( r
d
−1)-loop respectively.

This implies p
d
( r

d
+ j)-cycles for the periodic equation xn+1 = Fn(xn). Finally, after

the unfolding of the maps Fj , we obtain cycles for Eq. (1.1), and if the minimal

period of any one of those cycles is not in the form p( r
d

+ j) then the intersections

between the maps fj determine the exact length. In particular, if the formed cycle

is Cr∗ = {c∗0, c∗1, . . . , c∗r∗−1} and r∗ is not a multiple of p, then f0, fd̂
, f3d̂

, . . . f
p−d̂

must intersect at the points c∗0, c
∗

d̂
, c∗

2d̂
, . . . c∗

r∗−d̂
, where d̂ := gcd(r∗, p).

The next result gives a refinement of Theorem 2.1 in certain cases. Notice that

qp ∈ Ap,q, so besides to know that the cluster Ap,ℓ forces the existence of a period

in the cluster Ap,q if ℓ � q, we are able to determine a such period inside this latter

cluster under certain conditions as we illustrate in Example 2.3.

Theorem 2.5. Consider the non-degenerate p-periodic equation in (1.1) with fi ∈
C(I, I), i = 0, 1, ..., p−1, and suppose there exists a r-cycle for some r belongs to the

cluster Ap,ℓ, where ℓ ≥ 3 is an odd number. Let d := gcd(r, p). Each of the following

holds true:

(i) If d = 1 or p, then Eq. (1.1) has a ℓp-cycle.

(ii) If 1 < d < p and d2 < p, then Eq. (1.1) has a r∗-cycle for some r∗ divides pℓ

and r∗ 6= r with gcd(r∗, p) > 1.

Proof. Let Cr = {c0, c1, . . . , cr−1} be a r-cycle of Eq. (1.1) and suppose that r ∈ Ap,ℓ

for some odd number ℓ ≥ 3. Notice that r = dℓ as a consequence of the property

lcm(a, b) ·gcd(a, b) = ab, a, b ∈ Z
+. (i) The case d = p is obvious since r must be ℓp.

So, we proceed with d = 1. In this case, r = ℓ and the maps fj, j = 0, 1, . . . , p − 1

share the cycle Cr. Since r is odd, then we have a common r-loop, and consequently

Eq. (1.1) has a ℓp-cycle. Next, we proceed to prove (ii). Define the maps Fj =

f(j+1)d−1 ◦ . . . ◦ fdj , j = 0, 1, . . . , p
d
− 1. The maps Fj , j = 0, 1, . . . , p

d
− 1 share a

ℓ-cycle. Since ℓ is odd, then we have a common decomposable ℓ-loop and Lemma 2.2

implies the existence of a p
d
ℓ-cycle for the periodic equation xn+1 = Fn mod p

d
(xn),

say B ℓp

d

:= {b0, F0(b0), F1F0(b0), . . .}. Now, unfold the maps Fj into their initial

components (i.e. fj, j = 0, 1, . . . , p− 1) by expanding each element into d-elements

where the order is preserved as follows:

b0 ⇒ b0, f0(b0), f1f0(b0), . . . , fd−2 . . . f0(b0)

F0(b0) ⇒ F0(b0), fdF0(b0), fd+1fdF0(b0), . . . , f2d−2 . . . fd(F0(b0))

... ⇒ ...

10



This process gives a cycle of length ℓp (unknown whether it is minimal or not) for

Eq. (1.1). However, denote the minimal period by r∗, then it is at least p
d
ℓ and

it must divide pℓ. Since d2 < p then r = ℓd < ℓp
d
, and consequently r∗ > r. Also,

gcd(r∗, p) > 1; otherwise, gcd(r∗, p) = 1 and the fact that r∗ divides pℓ implies r∗

divides ℓ, which is not possible since r∗ ≥ ℓp
d

and p
d

> 1.

Remark 2.3. The conditions in part (ii) of Theorem 2.5 are sufficient conditions.

The question of finding a necessary and sufficient condition for this particular case

remains open for further investigations. However, we can conjecture, that r ∈ Ap,ℓ

forces the existence of a ℓp-cycle whenever ℓ takes the form 2k(2t + 1), where k ≥ 0

and t ≥ 1.

We close this section by the following example illustrating Theorem 2.5:

Example 2.3. Consider p = 6, and define

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

x

y

0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

x

y

Figure 3: This figure shows the graphs of the maps in Example 2.3. f0, f2 and
f4 are represented by solid, dashed and dotted black respectively. f1, f3 and f5

are represented by blue, red and green respectively. The graph is separated into
two figures to obtain better visibility by changing the scale of the x-axis when
x ∈ [0.85, 1]. The bullets represent the points (cj , cj+1) where cj, cj+1 ∈ C10.

f(x) =







1
2 + 3

8x 0 ≤ x < 2
3

1
3 + 5

8x 2
3 ≤ x < 4

5
1
4 + 35

48x 4
5 ≤ x < 6

7
1
5 + 63

80x 6
7 ≤ x < 8

9
81
10 − 81

10x 8
9 ≤ x ≤ 1

and g(x) =







2
5 + 8

15x 0 ≤ x < 3
4

2
7 + 24

35x 3
4 ≤ x < 5

6
2
9 + 16

21x 5
6 ≤ x < 7

8

32 − 320
9 x 7

8 ≤ x < 9
10

0 9
10 ≤ x ≤ 1.
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For j = 0, 2, 4, let

fj(x) = f(x) +
j

p
x(1 − f(x))

∣
∣
∣
∣
sin

(
π

1 − f(x)

)∣
∣
∣
∣

and for j = 1, 3, 5, let

fj(x) = g(x) +
j

p
x(1 − g(x))

∣
∣
∣
∣
sin

(
π

1 − g(x)

)∣
∣
∣
∣
.

The graphs of fj, j = 0, 1, . . . 6 are illustrated in Figure 3. It is straightforward

to check that C10 := {0, 1
2 , 2

3 , 3
4 , . . . , 9

10} is a 10-cycle of the 6-periodic equation

xn+1 = fn mod 6(xn). Observe that 10 ∈ A6,5 = {5, 10, 15, 30}. By Theorem 2.1, each

cluster A6,ℓ, ℓ ≥ 5 contains the period of a cycle. Inside the cluster A6,5, Part (ii) of

Theorem 2.5 implies the existence of a 15-cycle or a 30-cycle. Since gcd(6, 15) = 3,

then f0 and f3 must intersect at five elements (say c0, c3, c6, c9, c12) of any 15-cycle,

and if this intersection does not take place, then the forced cycle must be a 30-cycle.

For clusters of the form A6,2k ; if there exists a forced cycle of length r ∈ Γp ∩A6,2k ,

then gcd(r, 6) = 2 and the maps f0, f2, f4 must agree on 2k points of this r-cycle.

However, by solving the equations f0(x) = f2(x) = f4(x), one can find that x ∈
f−1(C10) (the pre-image of the elements of C10). Furthermore, x0 = 0, 2

3 , 4
5 , 6

7 , 8
9

gives us C10, and f1, f3, f5 do not intersect at 0, 2
3 , 4

5 , 6
7 , 8

9 . Therefore, the forced

cycle in A6,2k must be of length 6 ·2k. Also, clusters of the form A6,2k(2t+1), t ≥ 1 are

handled similarly, i.e., cycles of length 2k+1(2t+1) are excluded using the intersection

argument, and the forced cycles must be of length 6 · 2k(2t + 1).

3 Infinite Γp sets

Unlike autonomous equations, in the above section we showed that the existence of

a period r ∈ Ap,3 does not necessarily imply the existence of all periods. However,

it became obvious that most periods are located in the Mp set, which motivates us

to investigate how large the set Γp can be. If the maps in Eq. (1.1) are rational

maps, then the set Γp is finite [2]. In fact, one can strengthen this result and prove

that if the numerators and denominators of each fj, 0 ≤ j ≤ p − 1, are of degrees

at most M and m, respectively, then either card(Γp) ≤ M + m + 1 or there exists

r1, r2 ∈ Γp such that lcm(gcd(r1, p), gcd(r2, p)) = p. We proceed in this section to

construct an example of Eq. (1.1) where the Γp set is infinite for any p, while the

functions fj intersect only on a countable set. This answers the question left open

in [2].

If we consider the logistic function f(x) = µx(1 − x), x ∈ [0, 1], 1 + 2
√

2 < µ <

4, then Per(f, 1) is infinite, countable and dense in I. Therefore, if a continuous

function agrees with f(x) on Per(fn, 1), it must agree with f on I. From this simple

fact, we need the periodic points with periods in Γp to be non-dense in I. The next

lemma makes our task possible.
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Lemma 3.1. Let {an}∞n=1 ⊂ I be a monotonic sequence, then there exists a contin-

uous function f ∈ C(I, I) such that Per(f, 1) ⊃ {an : n ∈ Z
+}.

Proof. Without loosing the general case, we assume that {an} is increasing. For

each q ∈ Z
+, define γ(q) = 1

2q(q− 1)+ 1. For q ≥ 2, define fq : [aγ(q), aγ(q+1)−1] → I

as the polygonal line joining the points (aγ(q), aγ(q)+1), . . . , (aγ(q+1)−1, aγ(q)). Here,

notice that γ(q)+ q = γ(q + 1) and {aγ(q), aγ(q)+1. . . . , aγ(q+1)−1} is a q-cycle for the

map fq. Also, for q ≥ 1, define ℓq : [aγ(q+1)−1, aγ(q+1)] → I as the line segment joining

the points (aγ(q+1)−1, aγ(q)) and (aγ(q+1), aγ(q+1)+1). Since {an} ⊂ I is increasing,

we have lim an := a ≤ 1 and

[0, a) = [0, a1] ∪
∞⋃

j=1

[aj , aj+1].

Define the function φ : [0, a) → I by

φ(x) =







x, 0 ≤ x ≤ a1

fq(x), aγ(q) ≤ x ≤ aγ(q+1)−1, q ≥ 2

ℓq(x), aγ(q+1)−1 ≤ x ≤ aγ(q+1), q ≥ 1.

We claim that φ is uniformly continuous. To show this, let ǫ > 0 be given. Then

there exists q∗ such that

0 ≤ a − aγ(q∗) <
ǫ

2
. (3.1)

By the uniform continuity of φ on [0, aγ(q∗)], there exists δ > 0 such that

|φ(x) − φ(y)| ≤ ǫ

2
whenever x, y ∈ [0, aγ(q∗)] and |x − y| < δ. (3.2)

Next, from the construction of φ(x), it is easy to observe that

|φ(x) − φ(y)| ≤ a − aγ(q∗) <
ǫ

2
whenever x, y ∈ [aγ(q∗), a). (3.3)

Now, given x, y ∈ [0, a) with |x− y| < δ. If x, y ∈ [0, aγ(q∗)] or x, y ∈ [aγ(q∗), a), then

it is obvious from (3.2) and (3.3 ) that |φ(x) − φ(y)| < ǫ. Also, if x ∈ [0, aγ(q∗)] and

y ∈ [aγ(q∗), a), then (3.2) and (3.3) imply

|φ(x) − φ(y)| ≤ |φ(x) − φ(aγ(q∗))| + |φ(aγ(q∗)) − φ(y)| <
ǫ

2
+

ǫ

2
= ǫ.

Finally, let Φ : [0, a] → I be the continuous extension of φ at a. Hence, the required

function f : I → I is defined by

f(x) =

{

Φ(x), 0 ≤ x ≤ a

Φ(a), a < x ≤ 1.
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Now, we give the main result of this section.

Theorem 3.1. For each p = 2, 3, . . . , there exists a p-periodic difference equation

in the form (1.1) such that the maps fj agree on a countable set, and the set Γp has

infinite cardinality.

Proof. We make use of the construction in Lemma 3.1. Let an = 1− 1
n
, and let f(x)

be the function assured by Lemma 3.1. For each j = 0, . . . , p − 1, define the maps

fj : I → I as

fj(x) = f(x) +
j

p
(1 − f(x))

∣
∣
∣
∣
sin

(
π

1 − f(x)

)∣
∣
∣
∣
.

Then it is easy to observe that for each j = 0, . . . , p − 1, fj : I → I, fj(an) =

f(an), ∀n ∈ Z
+, the maps fj agree only on a countable set, and Per(fn, p) ⊃ {an :

n ∈ Z
+}. In particular, Γp = Z

+ \ {mp : m ∈ Z
+}.
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