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Abstract

In this paper, we study the dynamics of population models of the form xn+1 = xnf(xn−1)
under the effect of constant yield harvesting. Results concerning stability, boundedness,
persistence and oscillations of solutions are given. Also, some regions of persistence and ex-
tinction are characterized. Pielous equation was considered as an example on these models,
and a connection with a Lyness type equation has been established at certain harvesting
level, which is used to give an explicit description of a persistent set.
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1 Introduction

Difference equations of the form xn+1 = xnf(xn), n = 0, 1, 2, ... are used to model single
species with non-overlapping generations [19], where xn denotes the population density at
discrete time n and f(xn) represents the per-capita growth rate of the population. The appro-
priate form of f(x) is usually chosen to reflect known observation about the studied species. For
instance, in fish populations with high fertility rates and low survivorship to adulthood, Bever-
ton and Holt [5] considered f(x) = µK

K+(µ−1)x , where µ > 1 is interpreted as the growth rate per
generation and K is the carrying capacity of the environment. Straightforward re-scaling gives
the simpler one parameter equation xn+1 = bxn

1+xn
. Interestingly, the classical Beverton-Holt

(BH) model can be derived using several arguments and approaches [39, 8, 13, 10]. The BH
model has been generalized to several more sophisticated models such as the Hassell model and
the Maynard Smith-Slatkin model in order to make the model better accommodate certain ob-
servations on real populations. Another prototype model of single species with non-overlapping
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generations is the Ricker model [29, 27], which is obtained when f(x) = exp(r(1− x
k )), r, k > 0.

In populations with substantial maturation time to sexual maturity, certain delay effect
must be included in the function f(x), which motivates considering difference equations with
delay [22] of the form

xn+1 = xnf(xn−m), n = 0, 1, 2, ...,m ≥ 1. (1.1)

For instance, Pielou [28] (page 80) suggested taking f(xn−m) = µK
K+(µ−1)xn−m

in order to
account for oscillations in certain populations. When the delay is one and after re-scaling,
Pielou’s equation takes the form

yn+1 =
byn

1 + yn−1
. (1.2)

Eq. (1.2) was studied in [17, 20] where it was shown that when b > 1, every positive solution
converges to the positive equilibrium ȳ = b − 1. The main objective of this paper is to study
the effect of harvesting on the dynamics of Eq. (1.1) with delay one, i.e., we consider the
difference equation

xn+1 = xnf(xn−1)− h, (1.3)

where h is a fixed harvesting quota and f(x) obeys certain assumptions. In particular, f(x) is
C2([0,∞)) and satisfies the following conditions:

(C1) f(0) = b > 1.

(C2) f(x) is strictly decreasing on [0,∞) and − 1
x ≤ f ′(x) ≤ 0 for all x > 0.

(C3) xf(x)is an increasing concave down function and xf(x) ≤ M for some positive constant
M.

Observe that without condition (C1), there is no long term survival for any population regard-
less of the h value. Also, condition (C3) implies that limx→∞ f(x) = 0.

The effect of harvesting on the dynamics of populations governed by differential equations
has been studied extensively by several authors [30, 31, 32, 33, 34, 35, 36, 37]. In contrast,
the effect of harvesting on populations governed by discrete models has received less attention.
Much of the literature regarding discrete model involves, game-theoretic models in fishery, see
[15] for a nice brief literature survey starting with the work of Levhari and Mirman [23] in the
early 80’s. For example, in [6, 7], it was shown that harvesting in the presence of a reserve area
leads to higher levels of sustainability in exploiting fish stocks. In [14, 15] dynamical models of
commercial exploitations of renewable resources were studied assuming that two agents behave
adaptively. In particular, they obtained results about the existence and stability of the of the
positive equilibrium characterizing the sustainable use of the renewable resource. Recently, Al-
Sharawi and Rhouma have studied the effect of both constant and periodic harvesting for the
BH equation in constant and fluctuating capacity environment and have shown that constant
rate harvesting in constant capacity environment can be the optimal strategy [1, 2]. Under
certain conditions, harvesting was also shown to lead to coexistence in an exclusive competitive
environment with species governed by a discrete model [3].

This paper is structured as follows: We investigated local stability, boundedness and persis-
tence of solutions in sections two and three. In section four, we investigate the global behavior
of solutions. As a particular case of Eq. (1.3), we study the effect of constant harvesting
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on Pielou’s equation with delay one in section five, i.e., xn+1 = bxn
1+xn−1

− h. We characterize
the persistent set, and use a 8-periodic solution of the Lyness type equation to construct an
invariant region for Pielou’s equation when h < 1.

2 Equilibrium solutions and local stability

Without harvesting (h = 0), Eq. (1.3) has two equilibrium solutions, namely, the origin
x̄1,0 = 0 and another positive one, say x̄2,0 = c = f−1(1). A positive h shifts x̄1,0 upward and
x̄2,0 downward till they collide and disappear when h > hmax, where

hmax := max{x(f(x)− 1) : x ∈ [0, c]}. (2.1)

The equilibrium points are determined by the intersections between the curve y = x(f(x)− 1)
and the line y = h. Let 0 ≤ h ≤ hmax. If we assume that we have more than two equilibrium
points, then we can use the Mean Value Theorem to obtain a contradiction with concavity
assumption in (C3). To stress the role of h in the existence of the equilibrium points, we
denote them by x̄1,h and x̄2,h, where x̄1,h ≤ x̄2,h. Thus, we have the following:

Proposition 2.1. Consider hmax as define in Eq. (2.1), and let 0 ≤ h < hmax. Eq. (1.3) has
two equilibrium solutions. The two equilibrium solutions are equal when h = hmax.

The linearized equation associated with Eq. (1.3) at a fixed point x̄ is given by

yn+1 − f(x̄)yn − x̄f ′(x̄)yn−1 = 0.

Let p := f(x̄) and q := x̄f ′(x̄), where x̄ ∈ {x̄1,h, x̄2,h}. The linearized stability theorem [17]
gives the stability of each fixed point depending on the values of p and q. Notice that because
x̄f(x̄) = x̄+ h, then p = 1 + h/x̄ and thus

1 ≤ p ≤ b.

Also, the fact that f is decreasing makes q negative which combined with assumption (C2)
leads to the inequality

−1 ≤ q ≤ 0.

Condition (C3) implies that p+ q > 0 for both fixed points x̄1,h and x̄2,h. However, since the
graph of xf(x) crosses the line y = x with a slope greater than 1 at x̄1,h, then p + q > 1 and
thus x̄1,h is a saddle. On the other hand the graph of xf(x) crosses the line y = x with a
slope less than 1 at x̄2,h, giving p+ q < 1 and thus x̄2,h is locally asymptotically stable when
0 < h < hmax. We summarize these facts in the following proposition.

Proposition 2.2. Consider hmax as defined in Eq. (2.1), and let p = f(x̄), q = x̄f ′(x̄). Each
of the following holds true for Eq. (1.3).

(i) x̄1,h is a saddle and x̄2,h is locally asymptotically stable for all 0 ≤ h < hmax.

(ii) If h = hmax, then x̄1,hmax = x̄2,hmax is nonhyperbolic (one of the eigenvalues is equal to
1.)

(iii) x̄2,h starts as stable at h = 0, then as h varies, it can go to a repeller or a nonhyperbolic
before it disappears.
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3 Persistence and boundedness

Persistence in population models is of paramount importance in general, and harvesting adds
another factor of significance to its characterization in our equation. One can find several defi-
nitions pertaining to persistence (persistence, permanence, uniform persistence, strong persis-
tence,...etc) in the literature (see for instance [16, 38]); however, we give ourselves the liberty
to use the following definition throughout this paper.

Definition 3.1. A solution of Eq. (1.3) is called persistent if the corresponding population
survives indefinitely. We call a persistent solution strongly persistent if lim inf xn > 0. A set
D := {(x, y) : (x, y) ∈ R+2} is persistent if each solution of Eq. (1.3) with (x−1, x0) ∈ D is
persistent. It is called the persistence set if it is the largest persisting set. We use Dh for the
persistence set at a harvesting level h.

If {xn} is a persistent solution of Eq. (1.3), then we have

xn+2 = xn+1f(xn)− h = xnf(xn)f(xn−1)− hf(xn)− h ≤ Mb− hf(xn)− h < Mb− h.

Also,

xn =
(xn+1 + h)

f(xn−1)
>

1

b
(xn+1 + h) >

h

b
.

Thus, the following result becomes clear.

Lemma 3.1. Persistent solutions of Eq. (1.3) are bounded and strongly persistent.

The next results shows that the harvesting quota cannot exceed hmax.

Theorem 3.1. If h > hmax, then Dh is empty.

Proof. Consider h > hmax and start with an initial condition (x−1, x0) such that x0 ≤ x−1,
then

x1 = x0f(x−1)− h ≤ x0f(x0)− h.

Since h > hmax, then the function F (t) = tf(t) − h has no fixed points. In particular,
x1 = x0f(x0) − h < x0 and x1 < x0 ≤ x−1. and thus by induction, we obtain a decreasing
sequence. This decreasing sequence either becomes negative and thus is non persistent or it
converges to a positive fixed point, which is a contradiction. On the other hand, if x0 > x−1,
then either we obtain an increasing sequence or xm ≤ xm−1 for some positive integer m. If the
sequence {xn} is increasing, then it is bounded because xf(x) ≤ M by assumption and thus
must converge to a positive fixed point which is a contradiction. If xm ≤ xm−1, we obtain
that xm+1 ≤ xm ≤ xm−1 and again induction leads to a scenario similar to the first case, and
hence, no population persists.

The next result shows that if a population starting above x̄1,h goes below x̄1,h at a certain
time, then it is doomed to extinction.

Proposition 3.1. Let 0 < h < hmax, and define the set

S0 := {(x, y) ∈ R+2
: y < x̄1,h < x} ∪ {(x, y) ∈ R+2

: y <
h

f(x)− 1
, x ≤ x̄1,h}.

Then S0 ∩ Dh = ϕ.

4



PROOF: Let (x−1, x0) ∈ S0, we show that (x−1, x0) ̸∈ Dh. If x0 < x−1, then

x1 = x0f(x−1)− h < x0f(x0)− h < x0.

By induction, we obtain a strictly decreasing sequence less than x̄1, which implies that (x−1, x0) ̸∈
Dh. If x−1 < x0, then

x0 <
h

f(x−1)− 1
implies x1 = x0f(x−1)− h < x0.

Thus, x1 < x0 and we apply the first scenario on (x0, x1). Hence, the proof is complete. 2

With the convention that empty sum is set to 0 and empty product is set to 1, we use
induction on Eq. (1.3) to obtain

xn =
n−2∏
j=−1

f(xj)x0 − h

n−2∏
j=0

f(xj) +
n−2∏
j=1

f(xj) + · · ·+
n−2∏

j=n−3

f(xj) + f(xn−2) + 1

 . (3.1)

Now, factor the coefficient of x0 and use the summation notation to obtain

xn =
n−2∏
j=−1

f(xj)

x0 − h
n−1∑
k=0

k−1∏
j=−1

(f(xj))
−1

 . (3.2)

for all n ∈ N. Consider {xn} to be a persistent solution, then it is bounded, and the partial
sums of the series in the numerator form an increasing bounded sequence, then

∞∑
k=−1

k∏
j=−1

(f(xj))
−1

must converge. Thus, the limit of the nth term is zero, and consequently

x0
h

=
∞∑

k=−1

k∏
j=−1

(f(xj))
−1. (3.3)

We close this section by giving a result concerning the case when the two fixed points collide
to form a nonhyperbolic fixed point.

Theorem 3.2. Consider Eq. (1.3) with h = hmax. The nonhyperbolic fixed point x̄1,h = x̄2,h
attracts all persistent solutions.

PROOF: Consider h = hmax and suppose that {xn}∞n=−1 is a persistent solution. Define
An = f(xn−1)(xn + h), then

An+1

An
= g(xn), where g(t) =

t

t+ h
f(t).

Observe that g(t) ≤ 1 for all t ∈ [0,∞]. Indeed, if t > c, then

g(t) =
t

t+ h
f(t) < f(t) < f(c) = 1.
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However, if t ∈ [0, c], then

g(t) =
1

t+ h
tf(t) =

1

t+ h
[t (f(t)− 1) + t] ≤ 1

t+ h
[hmax + t] = 1.

That said, we obtain

An+1

An
= g(xn) < 1 whenever xn is not an equilibrium

Thus, An is decreasing. Since any persistent solution {xn} is bounded away from zero, the
sequence An is also bounded and must converge to a positive value, say γ0 > 0. Now,

An+1 = Ang(xn)

implies
lim g(xn) = 1,

and consequently xn is attracted to the nonhyperbolic equilibrium. 2

4 A comparison principle

In this section, we develop a useful comparison principle. Consider the difference equations

xn+1 = F (xn, xn−1) (4.1)

and
xn+2 = F (xn, xn−1), (4.2)

where F (x, y) is increasing in x and decreasing in y. The next result gives a comparison principle
for equations of the form (4.1) and (4.2) in a non-autonomous settings.

Theorem 4.1. Suppose there exist two sequences αn and βn such that αn ≤ xn ≤ βn for all
n ≥ −1, and define fn+1(x) = F (x, αn) and gn+1(x) = F (x, βn), then each of the following
holds true:

(i) The solution xn of Eq. (4.1) satisfies

gngn−1 · · · g0(x0) ≤ xn+1 ≤ fnfn−1 · · · f0(x0)

(ii) The solution xn of Eq. (4.2) satisfies

g2kg2k−2 · · · g0(x0) ≤ x2k ≤ f2k−2f2k−4 · · · f0(x0)

and
g2k+1g2k−1 · · · g1(x1) ≤ x2k+1 ≤ f2k−1f2k−3 · · · f1(x1)

for all k ≥ 1.

PROOF: We use mathematical induction on n to prove part (i). For n = 0,

g0(x0) = F (x0, β−1) ≤ x1 = F (x0, x−1) ≤ F (x0, α−1) = f0(x0).
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Assume the statement is true for n = k − 1, i.e.,

gk−1gk−2 · · · g0(x0) ≤ xk ≤ fk−1fk−2 · · · f0(x0),

then for n = k, we obtain

xk+1 = F (xk, xk−1) ≤ F (xk, αk−1) = fk(xk) ≤ fkfk−1 · · · f0(x0)

and
xk+1 = F (xk, xk−1) ≥ F (xk, βk−1) = gk(xk) ≥ gkgk−1 · · · g0g−1(x0).

The proof of (ii) is similar and omitted. 2

Lemma 4.1. Consider tn+1 =
(tn+h)
f(tn)

such that t0 > 0. The sequence {tn} converges to x̄1,h in
an increasing fashion if 0 < t0 < x̄1,h and on a decreasing fashion if x̄1,h < t0 < x̄2,h.

Proof. Define G(t) := (t+h)
f(t) , then G(t) is increasing with the same fixed points as Eq. (1.3).

Since G(0) = h
b , then G(t) > t for 0 < t < x̄1,h, G(t) < t for x̄1,h < t < x̄2,h and G(t) > t

for t̄ > x̄2,h. Now, the fact that tn = Gn(t0) and a simple stair step diagram completes the
proof.

Theorem 4.2. If t0 = h
b in Lemma 4.1 , then any persistent solution {xn}∞−1 of Eq. (1.3)

satisfies xn ≥ tn for all n ∈ N.

Proof. By definition, “if {xn}∞n=−1 is a persistent solution, then (xn−1, xn) ∈ Dh for all n ≥ 0.”
Indeed, if {xn}∞n=−1 is a persistent solution, then by Proposition 3.1 (xn−1, xn) ̸∈ S0 for all

n ≥ 0. So, for all n ≥ 0, either
(
xn ≥ x̄1 and xn ≥ h

f(xn−1)−1

)
, (xn ≥ x̄1 and xn−1 > x̄1) , or(

xn−1 ≤ x̄1 and xn ≥ h
f(xn−1)−1

)
. As such, for all n ≥ 0,

xn ≥ min

{
x̄1,

h

f (xn−1)− 1

}
.

But h/ (f(x)− 1) is increasing with f(0) = b and f (x̄1) = x̄1. Therefore, xn ≥ h/(b − 1) for
all n ≥ 0. In other words, we established the fact that xn ≥ h/(b− 1) > h/b = t0 for all n ≥ 0.

Now, we assume xn ≥ tk for all n ≥ k, and use induction on k to show that xn ≥ tk+1 for
all n ≥ k + 1. Indeed,

tk ≤ xk+2 = xk+1f(xk)− h ≤ xk+1f(tk)− h ⇒ xk+1 ≥
1

f(tk)
(tk + h) = tk+1,

tk ≤ xk+3 = xk+2f(xk+1)− h ≤ xk+2f(tk+1)− h ⇒ xk+2 ≥
(tk + h)

f(tk+1)
≥ (tk + h)

f(tk)
= tk+1

and similarly xk+j ≥ tk+1 for all j = 3, 4, . . . . Thus, xn ≥ tk+1 for all n ≥ k + 1 and the proof
is complete.

Proposition 3.1 shows that it is necessary for a persistent solution {xn} to have x0 > h
b−1 ;

however, it is not necessarily sufficient. Consider t0 = h
b , and use Lemma 4.1 to obtain a

sequence {tk}. Now, in conjunction with Eq. (3.3), define

sn := h
n∑

i=1

i−1∏
j=0

(f(tj))
−1.
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The sequence {sn} is a strictly increasing sequence bounded above by h
f(x̄1,h)−1 = x̄1,h. Thus,

we define
γ := lim

n→∞
sn

and give the following result.

Proposition 4.1. Define S1 := {(x, y) : y < (γ + h)(f(x))−1}. S1 ∩ Dh = ϕ.

PROOF: Suppose (x−1, x0) ∈ S1 ∩ Dh, and let {xn}∞n=−1 be the associated persistent
solution. We use the comparison principle of Theorem 4.1 to obtain a contradiction. Con-
sider the sequence αn to be the sequence tn obtained in Lemma 4.1 with t0 = h

b , and define
fn+1(x) = f(αn)x − h. By part (i) of Theorem 4.1, xn+1 < fnfn−1 · · · f0(x0). However, when
(x−1, x0) ∈ S1, x1 =

bx0
1+x−1

− h < γ and fnfn−1 · · · f0(x0) goes negative for sufficiently large n.

This contradicts our assumption that {xn} is persistent. 2

Theorem 4.2 and Proposition 3.1 show that persistent solutions with initial conditions below
x̄1,h (if any) either converge to x̄1,h or go up and stay above x̄1,h. Now, we proceed to establish
certain bounds on the asymptotic behavior of persisting solutions.

Lemma 4.2. Let 0 ≤ h < hmax. The function g(t) = h f(t)+1
f(t)f(x̄1,h)−1 is increasing and has

exactly two fixed points in the interval [0, f−1(1/f(x̄1,h)). One of the fixed points is x̄1,h and
the other one (say x∗2,h) is larger than x̄2,h.

Proof. It is clear by observing that g′(t) > 0, g(x̄1,h) = x̄1,h, g(x̄2,h) < x̄2,h and g(t) → ∞ as t
approaches f−1(1/f(x̄1,h)) from the left.

Theorem 4.3. Let 0 ≤ h < hmax. and x∗2,h as in Lemma 4.2. A persistent solution {xn}∞n=−1

of Eq. (1.3) satisfies

x̄1,h ≤ lim inf xn ≤ lim supxn ≤ x∗2,h < f−1

(
1

f(x̄1,h)

)
.

Proof. From Theorem 4.2 and Lemma 4.1, we obtain

lim inf xn ≥ x̄1,h.

Next, write Eq. (1.3) in the form of Eq. (4.1) by taking

F (xn, xn−1) = xnf(xn)f(xn−1)− hf(xn)− h,

then again, consider αn to be the sequence tn with t0 = h
b as given in Lemma 4.1. Now, we

take fn(x) = f(αn)f(x)x− hf(x)− h and use part (ii) of Theorem 4.1 to obtain

x2k ≤ f2k−2f2k−4 · · · f0(x0) ≤ f2k−2f2k−4 · · · f0(x0)

and
x2k+1 ≤ f2k−1f2k−3 · · · f1(x1) ≤ f2k−1f2k−3 · · · f1(x0)

for all k ≥ 1. In both cases, the right hand side is eventually smaller than the larger fixed point
of f∞(x), which is given by x∗2,h as clarified in Lemma 4.2. Thus, we obtain

lim supxn ≤ x∗2,h < f−1

(
1

f(x̄1,h)

)
and the proof is complete.
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Theorem 4.3 shows that a persistent solution is either converging to x̄1,h monotonically or
eventually larger than x̄1,h. Since x̄1,h is a saddle all the time, then orbits that converge to x̄1,h
are the ones assured by the stable manifold theorem. Those orbits show that harvesting can
alter the oscillatory behavior of populations; however, those populations make no significant
contribution to the persistent set, and therefore, we are more concerned about populations
that are larger than x̄1,h. Thus, without further mention, we limit or attention to solutions
that satisfy xn ≥ x̄1,h for all n.

5 Oscillation of solutions

In this section, we discuss the oscillatory character of solutions of Eq. (1.3). If a persistent
solution {xn} of Eq. (1.3) is neither eventually less than nor larger than x̄2,h, then we call it
oscillatory about x̄2,h, or oscillatory for short. Notice that because of Theorem 4.2, we cannot
have solutions oscillating about x̄1,h. We call a solution {xn} of Eq. (1.3) oscillatory about
a curve H(x, y) = 0 if Xn = (xn, xn+1) does not eventually stay on one side of the curve. It
is easy to observe that persistent solutions that are non-monotonic must oscillate about the
curves of y − x = 0 and y − xf(x) + h = 0. Otherwise, if xn+1 < xnf (xn) − h for all n, then
xnf (xn−1) − h < xnf (xn) − h for all n and, consequently, xn−1 > xn for all n, i.e., {xn} is
monotonic which is a contradiction. Other cases can be handled similarly.

Proposition 5.1. A persistent solution of Eq. (1.3) either converges to an equilibrium point

or oscillates about the curve y = (x+h)
f(x) .

Proof. Let {xn} be a persistent solution. If xn eventually stays on one side of the curve, say

xn+1 <
(xn+h)
f(xn)

for all n ≥ n0, then Eq. (1.3) gives

xn+2 = xn+1f(xn)− h < xn

for all n ≥ n0. This leads to convergence to a periodic solution of period 2. If this is the case
then there exists β > α > 0 such that

β = αf(β)− h and α = βf(α)− h.

In particular we have

f(α) =
α+ h

β
<

β + h

α
= f(β)

which contradicts the assumption that f is decreasing. Since Eq. (1.3) has no periodic solutions
of minimal period 2, then the convergence must be to an equilibrium solution. The other side
is similar and omitted.

We associate orbits of Eq. (1.3) in the positive quadrant by the map

T (x, y) = (y, yf(x)− h). (5.1)

It is straightforward to verify that T is one to one on the positive quadrant (the x axis is
not included), and therefore, the action of Eq. (1.3) on a region can be visualized by testing
the action of T on the boundary of that region. For a fixed constant c > 0, points above
y = c are mapped to points on the right of x = c. Also, since T (c, t) = (t, tf(c) − h) and
x1 = x0f(x−1) − h < 0 if and only if x0 < h/f(x−1), then one can square the persistent set
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inside the box Sc = {(x, y) : 0 ≤ x < c, 0 < y < c} provided that f(x) < h/(xf(c) − h).
It is worth stressing again that Theorem 4.2 and Lemma 3.1 limit our interest to the region
{(x, y) : x, y ≥ x̄1,h}. We define the following subregions:

R1 := {(x, y) ∈ R2 : x̄1,h < x < x̄2,h, y ≥ x̄2,h}
R2 := {(x, y) ∈ R2 : x ≥ x̄2,h, y > x̄2,h}
R2i := {(x, y) ∈ R2 : y > x}
R2ii := {(x, y) ∈ R2 : y ≤ x}
R3 := {(x, y) ∈ R2 : x̄1,h < y ≤ x̄2,h, x > x̄2,h}
R4 := {(x, y) ∈ R2 : x̄1,h < x ≤ x̄2,h, x̄1,h < y < x̄2,h}
R4i := {(x, y) ∈ R4 : y < x}
R4ii := {(x, y) ∈ R4 : y ≥ x}.

For our convenience, if (x, y) is in one of the above regions but yf(x) − h ≤ x̄1,h, then the
population with initial conditions (x−1, x0) = (x, y) goes extinct (see Proposition 3.1 ) , and
therefore, we say T (x, y) ∈ {0}. Now, by tracing the action of T on the defined boundaries of
these regions, we conclude the following result:

Proposition 5.2. Let 0 < h < hmax. Each of the following holds true:

(i) T (R1) ⊂ R2i.

(ii) T (R2i) ⊂ R2ii if h = 0 and T (R2i) ⊂ R2i ∪R2ii.

(iii) T (R3) ⊂ R4i ∪ {0}.
(iv) T 2(R2i) ⊂ R2ii ∪R3 ∪ {0}.
(v) T (R4ii) ⊂ R4ii ∪R1.

(vi) T (R4i) ⊂ R4i ∪R4ii ∪ {0}.

Recall [20] that given a fixed point x̄ for a sequence {xn}, a positive semi-cycle is subsequence
of consecutive terms that are all greater or equal to x̄. A negative semi-cycle is subsequence
of consecutive terms that are all less or equal than x̄.

The next result becomes straightforward.

Proposition 5.3. Consider Eq. (1.3) with 0 ≤ h < hmax. Each of the following holds true:

(i) Non-equilibrium persistent solutions that do not converge to x̄1,h monotonically must os-
cillate about x̄2,h.

(ii) When h is zero, a positive semi-cycle has more than two terms (except possibly the first
one) with a maximum in the second term, and decreasing afterwards.

(iii) When h is zero, a negative semi-cycle has at least two terms (except possibly the first
one) with a minimum in the second term, and increasing afterwards.

For h > 0 and by checking the effect of T, T 2 on the regions R1 and R3, one can observe that
an increase in the harvesting quota increases the length of semi-cycles. Therefore, solutions
overshoot or undershoot the stable equilibrium when they oscillate, and consequently, the risk
of extinction for populations governed by Eq. (1.3) becomes high. However, obtaining exact
values of h that do not lead to population extinction remains an extremely challenging task.
Nevertheless, one can use the extreme values of semi-cycles and the approach used in [17, 20, 9]
to prove that certain persistent solutions are attracted to x̄2,h under some mild conditions on h.
Define g1(t) = t(f(t)−1) and g2(t) = (h/f(x̄2,h))f(t), then g1 = g2 at t = x̄2,h. Furthermore, for
small values of h, they intersect at a second positive point smaller than x̄2,h. Thus, g1(t) ≤ g2(t)
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for all t ≥ x̄2,h and for sufficiently small values of h. As we increase h, we continue to obtain
g1(t) ≤ g2(t) for all t ≥ x̄2,h as long as x̄2,h is the largest solution of g1 = g2. This fact gives us
a constraint on h, which we use to obtain the following result:

Lemma 5.1. Assume that tf(t) is increasing. Let 0 ≤ h < hmax such that x̄2,h is the largest
solution of g1 = g2. A positive semi-cycle of a persistent and oscillatory solution of Eq. (1.3)
has at least three terms (except possibly the first one) with a maximum in the second or third
term, and decreasing afterwards.

Proof. We trace the boundary of R1. Since

T 2(x̄2,h, t) = T (t, tf(x̄2,h)− h) = (tf(x̄2,h)− h, (tf(x̄2,h)− h)f(t)− h).

For t > x̄2,h, tf(x̄2,h) − h > t and T (t, t) = (t, tf(t) − h) implies tf(t) − h > x̄2,h. Thus, a
positive semi-cycle has at least three terms. On the other hand,

tf(x̄2,h)− h > (tf(x̄2,h)− h)f(t)− h ⇔ g1(t) < g2(t),

and therefore, the condition on h makes the maximum takes place at the second or third
term.

Next, define the functions

f0(t) = x̄2,hf(t)− h, f1(t) = f(x̄2,h)t− h, G0(t) = f1(f0(t)), and G1(t) = f1(G0(t)).

The motivation behind taking these functions will be clear in the proof of Lemma 5.2 and
Theorem 5.1; however, it is easy to observe that G0 and G1 are both decreasing, and Gj(x̄2,h) =
x̄2,h. For j = 0, . . . , 3, let Cr+j := {xkj+1, xkj+2, . . . , xkj+1

} be four consecutive semi-cycles
starting with the negative semi-cycle Cr. Also, let cr+j , j = 0, . . . , 3 be the extreme values of
the semi-cycles respectively. Next, assume that xf(x) is increasing. If cr+3 and cr+2 lie in the
second term, then

cr+3 = xk3+2 =xk3f(xk3)f(xk3−1)− hf(xk3)− h

≤x̄2,hf(x̄2,h)f(xk3−1)− hf(x̄2,h)− h

≤G0(cr+2)

and

cr+2 = xk2+2 =xk2f(xk2)f(xk2−1)− hf(xk2)− h

≥x̄2,hf(x̄2,h)f(xk2−1)− hf(x̄2,h)− h

≥G0(cr+1).

Which implies
cr+3 ≤ G0(cr+2) ≤ G0(G0(cr+1)) = G2

0(cr+1).

If cr+3 and cr+2 lie in the third term, then

cr+3 = xk3+3 = xk3+2f(xk3+1)− h ≤ f1(xk3+2) ≤ f1 (G0(cr+2))
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and
cr+2 = xk2+3 = xk2+2f(xk2+1)− h ≥ f1(xk2+2) ≥ f1 (G0(cr+1)) .

Which implies
cr+3 ≤ G1(cr+2) ≤ G1(G1(cr+1)) = G2

1(cr+1).

Similarly, if cr+2 and cr+3 lie in the third and second terms respectively, then we obtain

cr+3 ≤ G0(cr+2) ≤ G0(G1(cr+1)),

and if cr+2 and cr+3 lie in the second and third terms respectively, then we obtain

cr+3 ≤ G1(cr+2) ≤ G1(G0(cr+1)).

Now, we can summarize in the following result:

Lemma 5.2. Suppose that xf(x) is increasing. Let cr+j , j = 1, 2, 3 be the extreme values of
three consecutive semi-cycles starting with a positive one. Each of the following holds true:

(i) If cr+2 and cr+3 lie in the second term, then cr+3 ≤ G2
0(cr+1).

(ii) If cr+2 and cr+3 lie in the third term, then cr+3 ≤ G2
1(cr+1).

(iii) If cr+2 and cr+3 lie in the second and third terms respectively, then cr+3 ≤ G1(G0((cr+1))).

(iv) If cr+2 and cr+3 lie in the third and second terms respectively, then cr+3 ≤ G0(G1((cr+1))).

The next result is a classical one, and the proof is straightforward.

Lemma 5.3. Let g ∈ C([0, γ]) be decreasing such that g(γ) = 0 and 0 < g(0) < γ. The map g
has a unique fixed point in (0, c). Moreover, the fixed point is a global attractor for the interval
[0, γ] if and only if g has no periodic points of period two.

Now, we give the main result of this section.

Theorem 5.1. Suppose that tf(t) is increasing, and let 0 ≤ h < hmax such that x̄2,h is the
largest solution of g1 = g2. If G

2
1(0) > 0 and G1 has no periodic points of period two, then for

any persistent solution {xn} of Eq. (1.3), we have lim supxn ≤ x̄2,h.

Proof. From Lemma 5.1, the extreme values of positive semi-cycles take place at the second
or third term. When t > x̄2,h, we have

G1(t) = f1(G0(t)) < G0(t) implies G2
1(t) > G1G0(t) and G0G1(t) > G2

0(t).

Also, since f1(t) > t for t > x̄2,h, then G2
1(t) = f1G0G1(t) > G0G1(t). Thus, Lemma 5.2

narrows down to cr+3 < G2
1(cr+1). Now, for a persistent and oscillatory solution {xn}∞n=−1

take {cm}∞m=0 to be the sequence of extreme values of the positive semi-cycles (ordered as they
appear in {xn}). Then we have cm < G2m

1 (c0) and the conditions on G1 together with Lemma
5.3 give us the conclusion.

Corollary 5.1. Suppose the hypotheses of Theorem 5.1 are satisfied, then persistent and os-
cillatory solutions are attracted to x̄2,h.

We close this section by the following remark:

Remark 5.1. In Theorem 5.1, the conditions on G1 could be stronger than the condition on
x̄2,h to be the largest solution of g1 = g2, and therefore, the latter one could be redundant.
However, keeping the two conditions saved us some deep technicalities in the proof.
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6 Pielou’s equation with harvesting

In this section, we focus on a particular case of Eq. (1.3) and consider Pielou’s Equation with
harvesting

xn+1 =
bxn

1 + xn−1
− h; b > 1. (6.1)

In this equation, we have f(x) = b
1+x . Furthermore, it is straightforward to check that condi-

tions (C1)-(C3) are satisfied if b ≤ 4. Now, we have hmax := (
√
b−1)2, and when 0 ≤ h < hmax,

the two positive equilibria are given by

x̄i,h =
b− 1− h+ (−1)i

√
(b− 1− h)2 − 4h

2
, i = 1, 2. (6.2)

It is worth mentioning that Eq. (6.1) was studied when h = 0 by Kuruklis and Ladas in [21].
In Section 2, we discussed the local stability of these equilibria in general; however, we can be
more specific here. If h < 1, then x̄2,h is stable. At h = 1, x̄2,h is a nonhyperbolic fixed point
and Eq. (6.1) reduces to a Lyness type equation. If h > 1, then x̄2,h is a repeller. x̄1,h is a
saddle for all h < hmax. At h = hmax, x̄1,h = x̄2,h =

√
b − 1 is a nonhyperbolic point. It is

stable when b < 4 and unstable when b > 4.
In the remaining of this section, we first study the special case h = 1 which, as mentioned

earlier, reduces equation (6.1) to Lyness equation allowing us to use previous results to establish
both the persistence set and the general behavior of the solutions. Then, in subsection (6.2)
we find a range of parameters (b, h) where solutions converge to the larger equilibrium x̄2,h.
The last subsection is dedicated to narrowing down the persistence set Dh. While this is
a challenging task requiring tedious calculations, we feel that it is necessary to attempt to
describe the set of initial populations that will survive a certain level of harvesting h.

6.1 A connection with a Lyness type equation

When h = 1, Eq. (6.1) reduces to the well-known Lyness equation (or its conjugate form)
[24, 25, 26]. Indeed, we can use the change of variables byn = 1 + xn, to obtain

yn+1 =
yn − 1

b

yn−1
, n ∈ N. (6.3)

Eq. (6.3) has been extensively studied [4, 12, 11, 18]. Notice that when h = 1 and 1 < b < 4,
then Theorem 3.1 gives an empty persistent set. The case h = 1 and b = 4 has been discussed
in [11] where certain solutions can be written in explicit form. The case h = 1 is of particular
interest to us, since we use one of the 8-periodic solutions of Eq. (6.3) to introduce a trapping
region for Eq. (6.1).

Theorem 6.1. Consider Eq. (6.1) with h = 1 and b ≥ 4. Each of the following holds true.

(i) The curves given by

Ib(x, y) :=
(
1 +

b

1 + x

)(
1 +

b

1 + y

)
(1 + x+ y) = C,

define the invariants of Eq. (6.1), where C is a constant given by Ib(x−1, x0).
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(ii) A population persists if and only if the constant C in (i) is bounded by

C1 := 2 + (b+ 1)2 − x2(b− 4) ≤ C ≤ C2 := 2 + (b+ 1)2 − x1(b− 4).

(iii) The invariant Ib(x, y) = C2 defines the boundary of the persistence set D1.

(iv) x2 is a center and the positive solutions inside D1 oscillate about x2 such that every
semi-cycle (except possibly the first one) has at least three elements.

PROOF: (i) and (ii) can be extracted from [18] and [12]. Since bx̄ = (1 + x̄)2, by direct
computations, which can be checked easily using a symbolic computational language such as
MAPLE,

C1 = Ib(x̄2, x̄2) = 2 + (b+ 1)2 − x2(b− 4)

and
C2 = Ib(x̄1, x̄1) = 2 + (b+ 1)2 − x1(b− 4).

To prove (iii), use (ii) to obtain the persistent set

D1 = {(x, y) : C1 ≤ Ib(x, y) ≤ C2},

and the boundary of this region is given by the invariant Ib(x, y) = C2. Finally, (iv) follows
from (i) and Proposition 5.2. 2

The map in (5.1) rotates the invariants Ib(x, y) = C, C1 < C < C2 clockwise such that each
orbit along the invariant is periodic of the same period or dense in the invariant. For instance,
the orbits along the invariants

I2(b1−2)(x, y) = 18b1 − 24, Ib1(x, y) = 9(b1 − 1), I5(x, y) = 36,

where b1 := 4 +
√
7 are 7-periodic, 7-periodic, 8-periodic respectively. It is worth mentioning

that it is possible for a fixed b > 4 to have two invariants with different periods. For instance,
if we fix b = 5, then I5(x, y) = 36 and I5(x, y) = 75

2 are 8-periodic and 10-periodic respectively.

6.2 Convergence to the large equilibrium

In this subsection, we apply the results of Section 5 on Pielou’s equation.
For Eq. (6.1), the condition g1(t) ≤ g2(t) in Lemma 5.1 simplifies to

t2 + (1− b)t+ h(1 + x̄2,h) ≥ 0,

and that is satisfied as long as

h ≤ (b− 1)2

2(b+ 1)
. (6.4)

This constraint on the harvesting level guarantees that the extreme values of positive semi-
cycles in an oscillatory and persistent solution take place at the second or third term. Next, we
test the conditions of Theorem 5.1. The condition G2

1(0) > 0 implies G1(0) < f−1
0 f−1

1 f−1
1 (0),

or equivalently

f1(f1(bx̄2,h − h)) < f−1
0

(
f−1
1

(
h

(1 + x̄1,h)

))
.
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Keep in mind that f(x) = b
1+x , which implies f(x̄2,h) = 1 + x̄1,h and x̄1,hx̄2,h = h. Further

computations give us,

f1(bx̄2,h − hx̄1,h − 2h+ hb) < f−1
0

(
h(2 + x̄1,h)

(1 + x̄1,h)2

)
,

and consequently

(1 + x̄1,h)(bx̄2,h − hx̄1,h − 2h+ hb)− h <
b(1 + x̄1,h)

2

x̄1,h(2 + x̄1,h + (1 + x̄1,h)2)
− 1. (6.5)

Again, we rewrite this inequality as

(b− h2 + 2h)x̄2,h + h(−h2 + 2h+ bh− 1) + 1 <
b3

((b+ 2)h+ (b2 + b+ 1)x̄1,h + hx̄2,h)

or

x̄2,h >
b2h4 − b2(3 + 2b)h3 + (2b3 + 3b2 − 1 + b4)h2 + (b+ 2)h− 1

−b2h3 + (3b2 + b3 + 1)h2 − (2 + 2b+ 3b2)h+ b2 + b+ 1
. (6.6)

Graph 1 shows the solution of this inequality in the (b, h)-plane.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

b

h

Convergence to an equilibrium

No persistance

h = 1

h = hmax

Figure 1: This figure shows the curves of hmax = (
√
b − 1)2, h = (b−1)2

2(b+1) , h = 1. Also, the red

dashed curve gives the upper boundary of the region given by Inequality (6.6)
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6.3 Characterizing the persistent set

Finding the exact persistent set when h ̸= 1 is a non-easy task; however, in this section, we
characterize the persistent set through bounds, trapping regions and numerical simulations.
We start by the case h = (

√
b− 1)2.

Theorem 6.2. Consider h = (
√
b− 1)2. Each of the following holds true:

(i) If b > 4, then

Dh ⊂ {(x, y) : 0 ≤ x ≤
√
b− 1, (

√
b− 1)(x+ 2−

√
b) ≤ y ≤

√
b− 1}.

(ii) If b = 4, then

Dh ⊂ {(x, y) : y =
−3 + 16x− x2 +

√
49− 148x+ 150x2 − 52x3 + x4

2(x+ 5)
, 0 ≤ x ≤ 1}.

PROOF: From the proof of Theorem 3.2, An = h+xn
1+xn−1

converges to Ā =
√
b − 1 on a

decreasing fashion. Thus, h + xn+1 > (
√
b − 1)(1 + xn), which implies xn+1 ≥ (

√
b − 1)(xn +

2−
√
b), and we obtain (i). (ii) can be obtained from the previous section. In particular, when

h = 1 and b = 4, we obtain one invariant curve given by I4(x, y) = 27. If (xn−1, xn) ∈ I4 where
xn < xn−1, then

xn+1 =
4xn

1 + xn−1
− 1 <

4xn
1 + xn

− 1 < xn.

Thus the population decreases to extinction along the invariant curve. So, the lower branch of
the invariant curve does not belong to the persistent set. If (xn−1, xn) ∈ I4 where xn > xn−1,
then

xn+1 =
4xn

1 + xn−1
− 1 >

4xn
1 + xn

− 1 > xn.

This inequality is obvious due to the fact that xn > 1+xn−1

4 . Hence, the persistent set is the
upper branch of I4, which is what we have in (ii). 2

Theorem 6.3. Consider S0 as defined in Proposition 3.1. If h > 1
3(−b − 2 + 2

√
b2 + b+ 1),

then
Dh ⊂ {(x, y) : 0 < x < b− 1, 0 < y < b− 1} \ S0.

PROOF: Since few iterates of the map T in (5.1) are sufficient to take initial conditions
(x−1, x0) with x0 ≥ b − 1 to (xn0−1, xn0) with xn0 < b − 1 and xn0−1 ≥ b − 1, then we start
with (xn0−1, xn0) and show that we have no persistence. We have

xn0+1 =
bxn0

1 + xn0−1
− h ≤ xn0 − h

xn0+2 =
bxn0+1

1 + xn0

− h

=
b

1 + xn0

(
bxn0

1 + xn0−1
− h

)
− h

≤ b(xn0 − h)

(1 + xn0)
− h.
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(a) The set of initial conditions that survived
1000 iterations at b = 2.0 and h = (

√
2.0 −

1)2, where x = xn−1 and y = xn.
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(b) The set of initial conditions that survived
1000 iterations at b = 3.0 and h = (

√
3.0−1)2,

where x = xn−1 and y = xn.

Figure 2: These figures show numerical simulations of the persistent set at the nonhyperbolic
fixed point. The fixed point is indicated by a bold black dot.
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Figure 3: The shaded region in this figure shows the set of initial conditions that survived 500
iterations at h = 0.90 and b = 4.25, where x = xn−1 and y = xn. The blue circles show an
orbit oscillating and converging to x̄2. The fading loop shows the largest invariant curve at
h = 1, b = 4.25.

Now, the given condition on h implies

b(xn0 − h)

(1 + xn0)
− h <

h

b
(1 + xn0),
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and Proposition 4.1 shows that there is no persistence. 2

In the rest of this section, we use an 8-periodic solution of the case h = 1, to define a trapping
region when h < 1. To achieve this task and avoid complicated computations, we transform
Eq. (6.1) to a new form where the origin becomes the small equilibrium. Take zn = xn − x̄1,h
to obtain

zn+1 =

b
1+x̄1,h

zn − h+x̄1,h

1+x̄1,h
zn−1

1 + zn−1

1+x̄1,h

. (6.7)

Now, define

yn :=
zn

1 + x̄1,h
, α :=

b

1 + x̄1,h
, and β :=

h+ x̄1,h
1 + x̄1,h

to obtain

yn+1 =
αyn − βyn−1

1 + yn−1
, n ∈ N. (6.8)

The positive equilibrium of Eq. (6.8) is given by ȳ = α−β−1 and that should not be confused
with x̄2,h.

Recall the map T introduced in (5.1), which takes the form T (x, y) = (y, αy−βx
1+x ). Next,

define

A := α
√

(α4 − 2α3 + 4αβ − 4β2 + α2 + 4β2α− 2βα2 − 2α3β + β2α2)

s∗ := 1
4β(α−1)(α

3 − α2β − 2αβ − α2 + 4β +A)

and

f1(t) :=
(α− β)t

1 + t
, f2(t) :=

βt

α− 1− t

g1(t) :=
t(α2 − αβ − β − αt)

α− β
, g2(t) :=

t(α2 − α− β − αt)

β(α− 1)
.

To assure that A is real, we need to impose the following constraint on α and β :

α ≥ α0 :=
1

2
(β + 1) +

1

2

√
β2 + (10 + 8

√
2)β + 1. (6.9)

To keep things in perspective of the previous section, we have α = 1 + x̄2,h,
α
β =

x̄2,h

h and
Inequality (6.9) is equivalent to

x̄2,h ≥ 2(2 +
√
2)h

(b− h− 1)
⇔ b ≥ h+ 1 + 2

√
2h. (6.10)

Here, computations are becoming tedious. So, we keep our writing concise and use the MAPLE
computer algebra system to perform computations. Condition (6.9) assures that A is real, and
to assure that s∗ is larger than the positive equilibrium ȳ = α−β− 1, we impose the following
constraint: {

h < b+ 3− 2
√

2(b+ 1), 1 < b ≤ 2(1 +
√
2)

h < b(b−2)
2(b+2) , b > 2(1 +

√
2).

(6.11)
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Proposition 6.1. Each of the following holds true:

(i) If Condition (6.10) is satisfied, then A is real.

(ii) Condition (6.11) assures that s∗ > ȳ = α− β − 1.

(iii) The choice of s∗ assures that T 4(s∗, s∗) lies along the diagonal y = x.

(iv) If h < 1 and Condition (6.11) is satisfied, then T j(s∗, s∗), j = 1, 2, 3, 4 stay in the positive
quadrant.

Proof. (i) Write α = 1 + x̄2,h and

β =
(h+ x̄1,h)x̄2,h
(1 + x̄1,h)x̄2,h

=
h(x̄2,h + 1)

(x̄2,h + h)
,

then we obtain

A =
(1 + x̄2,h)

2

(h+ x̄2,h)

√
(x̄42,h − 6hx̄22,h + h2) =

x̄2,h(1 + x̄2,h)
2

(h+ x̄2,h)

√
(b− h− 1)2 − 8h

and Condition (6.10) makes the radicand positive. (ii) Write s∗ in terms of x̄1,h, x̄2,h and h as

s∗ =
1

4hx̄2,h

(
h− 3hx̄2,h + x̄22,h + x̄32,h + (1 + x̄2,h)

√
(x̄42,h − 6hx̄22,h + h2)

)
(6.12)

=
1

4h

(
x̄1,h − 3h+ x̄2,h + x̄22,h + (1 + x̄2,h)

√
(x̄22,h + x̄21,h − 6h)

)
. (6.13)

s∗ > α− β − 1 if and only if√
(x̄42,h − 6hx̄22,h + h2) >

(3h− x̄2,h)x̄
2
2,h

(h+ x̄2,h)
− h,

which can be written as√
(b− h− 1)2 − 8h >

4h

b
(1 + x̄2,h)− (b− h− 1). (6.14)

The solution of Inequality (6.14) is given by Condition (6.11). (iii) We show that T 4(s∗, s∗)
lies along the diagonal y = x. Computations show that

{(x, y) : x = g2(y)} T
→ {(x, y) : y = f2(x)} T

→{(x, y) : y = x}

and
{(x, y) : y = x} T

→ {(x, y) : y = f1(x)} T
→ {(x, y) : y = g1(x)}.

In particular,

(g2f
−1
2 (s∗), f−1

2 (s∗)) T
→ (f−1

2 (s∗), s∗) T
→ (s∗, s∗) T

→ (s∗, f1(s
∗))

and

(s∗, f1(s
∗)) T

→ (f1(s
∗), g1f1(s

∗)) T
→ (g1f1(s

∗), f2g1f1(s
∗)) T

→ (f2g1f1(s
∗), f2g1f1(s

∗)).

We alert the reader that computations here were tedious; however, if you take y−1 = y0 = s∗

as given in Eq. (6.12) and take x2 for x̄2,h, then use the MAPLE commands
> y[-1]:=s*; y[0]:=s*; alpha:=x[2]+1; beta:=h*(x[2]+1)/(h+x[2]);
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> For j from 0 to 3 do

> y[j+1]:=factor(simplify(expand(rationalize(

(alpha*y[j]-beta*y[j-1])/(1+y[j-1]))))):

> end do;

to obtain

y1 =
x22 + 2x2 − h+

√
h2 + x42 − 6hx22

2(h+ x2)

y2 =
x22 + 2x2h− h−

√
h2 + x42 − 6hx22

2(h+ x2)

y3 =
(1 + x2)(x

3
2 + hx22 − 3x2h+ h2 − (x2 + h)

√
h2 + x42 − 6hx22)

4(h+ x2)x2

y4 = y3.

Thus T 4(s∗, s∗) lies along the diagonal y = x. Finally, to prove (iv), assume conditions (6.10)
and (6.11) are satisfied. Because h = x̄1,hx̄2,h, then it is obvious that y1 > 0. Also, since

2x̄1,h < b ⇔ 2h < bx̄2,h ⇔ (x̄2,h + 1)(h+ x̄2,h) ⇔ (x̄22,h + (1 + h)x̄2,h − h) > 0

and (x̄22,h + (1 + h)x̄2,h − h) > 0 is sufficient condition for y2, y3 > 0, then the proof is
complete.

The next result shows that our choice of s∗ is based on an 8-periodic solution of the case
h = 1.

Theorem 6.4. Let h = 1 and assume that b > 2(1 +
√
2). The initial conditions (y−1, y0) =

(s∗, s∗) define an 8-periodic solution of Eq. (6.8).

PROOF: The proof is computational. When h = 1, we obtain β = 1,

A = α
√

(α2 − 2)(α2 − 4α+ 2) and s∗ =
1

4(α− 1)
(α3 + 4− 2α2 − 2α+A),

and consequently

y1 =
1

2α2
(α3 − 2α+A), y2 = yconj1 , y3 = y4 = yconj0 , y5 = y2, y6 = y1,

where “conj” is used to mean that we replace A with −A. Finally, the strict inequality
b > 2(1 +

√
2) makes the radicand in A positive and the period a minimal period. 2

Consider (x−1, x0) = (g2f
−1
2 (s∗), f−1

2 (s∗)) and define Γj to be the line segment connecting
the point (xj−1, xj) with (xj , xj+1) for all j = 0, 1, . . . , 7. For j = 8 and β < 1, we define Γ8 to
be the line segment connecting (x7, x8) with (x−1, x0). Observe that when β = 1, (x7, x8) =
(x−1, x0), and consequently Γ8 shrinks to a point. Define

s1 := α2 − α− β and s2 =
(α2 − β)

β
− α (6.15)

q1(t) =
β(1− β)t(t− s2)

(β + t)2
+ (α− 1)

(1 + t)2

(β + t)2
(6.16)

q2(t) =
(α− β)β2(t− s2)

(t− s1)
. (6.17)

The next lemma is used in the proof of Theorem 6.5.
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Lemma 6.1. Assume that Condition (6.11) is satisfied, h ≤ 1 and s∗ < s1. Then q2(s
∗) ≥

q1(s
∗).

Proof. First observe that s1− s2 =
1
β (1−β)(β−α2) < 0 for all h < 1. Thus, ȳ < s∗ < s1 < s2.

Also,

q1(ȳ) = q2(ȳ) =
β(α− β)3

(α− 1)2
.

q2(0)− q1(0) =
x̄2,h
h2

(
x̄2,h + h

x̄2,h + 1

)2

> 0.

Next, we write

q1(t)− q2(t) =
(β − 1)(t− ȳ)(At2 +Bt+ C)

(t+ β)2(s1 − t)
,

where

A :=(β + 1)ȳ + 2β

C :=ȳ [β(α+ 1)(β + 1) + α] + β2(α+ 2) + αβ

B :=α
[
2(α+ 1)(β + 1)− α2 − 3

]
− β2(α+ β + 1)− β − 1.

The task will be achieved if we show that p2(t) := At2+Bt+C is positive at t = s∗. Write A,B
and C in terms of x̄2,h and h, then substitute s∗ from Eq. (6.13) and factor p(s∗). Neglect the
positive factors, then substitute x̄1,hx̄2,h in place of h and factor again. Neglect the positive
factors and collect the terms with a radical to obtain[

(1− h)b3 + 2
(
h2 + 2h− 3

)
b2 + (1− h)(h2 − 6h+ 1)b+ 2h(1− h)3

]√
(b− h− 1)2 − 8h+

(1− h)b4 + (3h2 + 4h− 3)b3 + (−3h3 + 5h2 − 13h+ 3)b2−
(1− h)(7h3 + 11h2 − 11h+ 1)b+ 2h(3h− 1)(1− h)3, (6.18)

which must be positive. A graphing utility shows that it is indeed positive when h < 1 and
Condition (6.11) is satisfied.

Theorem 6.5. Let h ≤ 1 and assume that Condition (6.11) is satisfied. The region bounded
by the closed curve defined by the line segments Γj , j = 0, 1 . . . , 8 (Γ8 is a point when h = 1)
defines an invariant region for Eq. (6.8). Moreover, when β < 1, removing the segment Γ8

makes the region a trapping region where orbits can enter through the removed segment and do
not exit.

Proof. Since the map T is one-to-one, then it is sufficient to show that T does not map the
boundary of the closed curve outside. Since

Γ0
T
→ Γ1

T
→ Γ2

T
→ Γ3 and Γ4

T
→ Γ5

T
→ Γ6

T
→ Γ7,

then we need to check T (Γ3) and T (Γ8). Since

Γ3 :=

{
(x, y) : y =

a

1 + s∗
x− bs∗

1 + s∗
, f1(s

∗) ≤ x ≤ s∗
}
,
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Figure 4: This figure shows the trapping region inside the red bold curve when h < 1.

then

T (Γ3) =

{
(x, y) : y =

(α2 − β(s∗ + 1))x− β2s∗

α+ βs∗ + (s∗ + 1)x
,
αf1(s

∗)− βs∗

1 + s∗
≤ x ≤ f1(s

∗)

}
.

Since T (Γ3) defines a concave function, then it is above Γ4. Also, since T (x, y) is below the
diagonal for all points (x, y) such that y < x and x ≥ x̄2, then T (Γ3) is within the region
bounded by the curves Γj , j = 0, . . . , 8. Next, we check T (Γ8). From the one-to-one property
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of T and Proposition 5.2, it is sufficient to show that x−1 ≤ x−7 for all h ≤ 1. Observe that

x−1 ≤ x7 ⇔ g2(f
−1
2 (s∗)) ≤ (α− β)f2(g1(f1(s

∗)))

1 + f2(g1(f1(s∗)))

⇔ [(α− 1) + (β − 1)g1(f1(s
∗))]g2(f

−1
2 (s∗)) ≤ (α− β)βg1(f1(s

∗))

⇔ [(α− 1) + (β − 1)g1(f1(s
∗))]

s∗(s1 − s∗)

(β + s∗)2
≤ (α− β)βg1(f1(s

∗)),

where s1 as defined in (6.15). If s∗ ≥ s1, then it is an obvious case since the intersection of the
region bounded by the nine-gone defined by Γj with the positive quadrant forms an invariance.
So, we proceed with ȳ < s∗ < s1 and obtain

[(1 + s∗)2(α− 1) + (β − 1)βs∗(s2 − s∗)]
(s1 − s∗)

(β + s∗)2
≤(α− β)β2(s2 − s∗) (6.19)

(β − 1)βs∗(s2 − s) + (α− 1)(1 + s∗)2

(β + s∗)2
≤(α− β)β2(s2 − s∗)

(s1 − s∗)
, (6.20)

where s2 as defined in (6.15). Now, Lemma 6.1 completes the proof.

Finally, we remark that when Condition (6.6) is satisfied, then all solutions inside the trap-
ping region as defined above are attracted to the positive equilibrium α−β−1. However, when
Condition 6.6 is not satisfied but h < 1, then we conjecture that the same scenario happens.
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