
Palestine Journal of Mathematics

Vol. 5(Special Issue: 1) (2016) , 238–249 © Palestine Polytechnic University-PPU 2016

Harvesting and stocking in discrete-time contest competition
models with open problems and conjectures

Ziyad AlSharawi and A.M. Amleh

Communicated by Ayman Badawi

MSC 2010 Classifications: 39A10, 92D25.

Keywords and phrases: Contest competition, global stability, harvesting, persistence, stocking.

Abstract. In this survey, we present a class of first and second-order difference equations rep-
resenting general form of discrete models arising from single-specieswith contest competition.
Then, we consider various harvesting/stocking strategies and discuss their effect on stability,
persistence and maximum sustainable yield. The main aim of this work is to give an account of
recent results on the subject within a unified framework, then present some open questions and
conjectures that deserve further investigation.

1 Introduction

Difference equations of the formxn+1 = xnf(xn), n ∈ N := {0,1,2, . . .} are used in modeling
single-species populations with non-overlapping generations that reproduce at discrete timen,
wherexn is the population size at the start of thenth breading season, and the functionf repre-
sents the net reproductive rate per individual [9, 25, 26, 32]. The formxf(x) is used to stress the
zero steady state, and the recruitment functionf must be chosen to reflect known observations
or facts about the modeled species. For instance, to reflect the limited resources available to a
given population,f must be decreasing where resources can be food, water, shelter, mates,...
etc. Other characteristics off may reflect competition for resources among individuals within
a species. This type of competition is known as the intra-specific competition,and it is a sig-
nificant factor for the growth of a population. When individuals among a population exploit a
common resource, several factors can influence the amount of resource available to an individual.
However, we are interested in a general form of models that reflect twotypes of intra-specific
competition, namely contest and scramble competitions [41, 23, 24]. In brief, when individuals
among a population compete for resources that are not available to all individuals, then supe-
rior or dominant individuals achieve their needs and survive, while others fail to achieve their
needs and consequently vanish. Such a competition is known as contest competition [41]. On
the other hand, when resources are evenly distributed among the population, individuals have
almost equal chances to exploit the resources, and when the resources become scarce, success
becomes incomplete. This form of intra-specific competition is known as scramble competition.
For more details about contest and scramble competitions as well as somespecific examples
of the two forms, we refer the interested reader to [7, 23, 24, 41, 8]. Although the borderline
between the two forms of competition is not always sharply defined [8], we are interested in
quantifying the scenario of a contest competition, which mostly leads to compensatory models
[8, 10, 7]. Therefore, it is natural to confine the recruitment functionf so as to obey the following
assumptions [1, 2].

(A1) f ∈ C([0,∞)) andf is decreasing;
(A2) f(0) = b > 1;
(A3) xf(x) is increasing and bounded by a constantM .

As we proceed with our discussion and analysis, other smoothness assumptions onf can be
added as necessary for the sake of developing a mathematical theory.

When time lag occurs between spawning and recruitment, for instance dueto substantial
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maturation time to sexual maturity, the model must include a delay effect [21]. Thus, it is logical
to replacexn+1 = xnf(xn) with the more general equation

xn+1 = xnf(xn−k), (1.1)

wherek is a nonnegative integer. For instance, the baleen whale modelyn+1 = αyn + f(yn−k)
due to Clark [11] can be transformed to the form in Eq. (1.1). It is known that a delay can have
a negative impact on populations by causing oscillations and destabilizing steady states. See
[27, 29, 40] for more details. Here, we limit our attention to the casek ≤ 1 in Eq. (1.1).

When a species goes through controlled or uncontrolled exploitation due to hunting, fishing,
emigration or immigration, it is necessary to accommodate these factors bymodifying Eq. (1.1),
and therefore, it is natural to subtract (or add) a harvesting (or stocking) term. Thus, Eq. (1.1)
becomes

xn+1 = xnf(xn−k)±Hn(xn, xn−1), k = 0 or 1, (1.2)

where the exact form or character ofHn has to reflect the nature of harvesting/stocking. Har-
vesting and stocking strategies can be used to prevent species extinctions, to improve the total
yield over time, or to force coexistence between different species. AlSharawi and Rhouma [4, 6]
considered the discrete Beverton-Holt model in a deterministic environment and investigated the
effect of various harvesting strategies. They found that constant harvest is more beneficial to
both the population and the maximum sustainable yield (MSY) when the size of the population
is sufficiently large, while periodic harvesting has a short-term advantagewhen the size of the
population is low. On the other hand, conditional harvesting (harvesting when the size of pop-
ulation is higher than a certain level and stopping otherwise) has the advantage of lowering the
risk of depletion or extinction. Also, AlSharawi and Rhouma used variousharvesting/stocking
strategies in [5] to show that it is possible to guarantee the survival of the weaker species in a
competitive exclusion environment. In other studies [28, 33, 34, 37, 38, 39], constant stocking is
found to have the effect of suppressing chaos, reversing the perioddoubling phenomena, lower-
ing the risk of extension and stabilizing the population steady state.

In the following two sections, we give an account of recent results on difference equa-
tions of the form (1.2) modeling single species populations under the effect of various stock-
ing/harvesting strategies. Several open problems and conjectures thatdeserve further investiga-
tion are given throughout the paper.

2 Constant yield harvesting/stocking

In this section, we discuss the dynamics of Eq.(1.2) whenHn(xn, xn−1) is a constant, sayh.
When±h is taken negative, the strategy is known as constant catch or constant yield harvesting
[12, 35, 16]. On the other hand, the constant is taken positive when the species is affected by
stocking due to, for example, refuge or immigration [28, 39].

2.1 No delay in recruitment (k = 0)

Consider the difference equation

xn+1 = xnf(xn) + h, h ∈ R. (2.1)

At h = 0, we have the two equilibrium solutions ¯x1,0 = 0 and x̄2,0 = f−1(1). Whenh is
positive (stocking), ¯x1,h shifts below zero while ¯x2,h shifts abovef−1(1). Thus,x̄1,h is beyond
our interest and we are left with the positive equilibrium ¯x2,h, which is increasing inh. Using
a simple cobweb diagram, we observe that ¯x2,h is globally attractive. On the other hand, if the
constant term is taken negative due to harvesting, i.e.,−h is taken in place of+h, thenx̄1,h shifts
upward and ¯x2,h shifts downward till they collide at a maximum harvesting level

hmax := x(f(x)− 1), 0 ≤ x ≤ f−1(1). (2.2)
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This level of harvesting gives what is known as the maximum sustainable level. A harvesting
level beyondhmax leads to a total collapse of the population, while a harvesting level belowhmax

assures the survival of all initial populations that are larger than or equal to the small equilibrium
x̄1,h. Again, a cobweb diagram can be used to show that(x̄1,h,∞) is the basin of attraction of
x̄2,h. Thus, the dynamics of Eq. (2.1) is easily characterized; however, further illustrations and
discussion can be found in [4, 13].

2.2 One-unit time delay in recruitment (k = 1)

Consider the difference equation

xn+1 = xnf(xn−1)± h, (2.3)

whereh is a positive parameter representing a constant stocking or harvesting quota. Eq.(2.3) has
the same equilibrium solutions as in the casek = 0; however, the dynamics becomes a bit more
challenging. Ath = 0, the delay in the recruitment function does not change the boundedness
character of solutions; however, in this case, monotonic convergencechanges into oscillatory
convergence. A solution is called oscillatory about an equilibrium ¯x if it does not stay on one
side ofx̄ indefinitely. In a solution{xn}, a full consecutive segment of terms above or equal to ¯x
defines the so-called positive semi-cycle. On the other hand, a full consecutive segment of terms
below x̄ defines a negative semi-cycle. One way to establish the oscillatory nature of solutions
of Eq. (2.3) is by setting a new coordinate system at the positive equilibrium ¯x, then use the map

Th : R
+2 → R

+2
defined by Th(x, y) = (y, yf(x)± h) (2.4)

to show thatTh rotates the quadrants of the new coordinate system [1].

Next, we proceed by taking stocking and harvesting as separate cases.

Stocking

Here Eq.(2.3) becomes

xn+1 = xnf(xn−1) + h, h > 0. (2.5)

Solutions of Eq.(2.5) are bounded as we can see from the fact thatxn+1 ≥ 0 and

xn+2 = xnf(xn)f(xn−1) + hf(xn) + h ≤ Mb+ hb+ h,

where b is given in Assumption (A2) andM is the bound given in Assumption (A3). The
mapTh defined byTh(x, y) = (y, yf(x) + h) can be used to portray solutions of Eq.(2.5) as
orbits in the positive quadrant. A regionRh is called invariant for Eq.(2.5) if Th(Rh) ⊆ Rh. It
was shown in [2] that a bounded and invariant region can be obtained by connecting the points
(0,0), (0, h), (ch, bch + h), (bch + h, bch + h), (bch + h,0) and (0,0), respectively with line
segments, wherech is taken to be1

b
supt(bt+ h)f(t). Since solutions are positive and bounded

away from zero, we denote

I = lim inf{xn} and S = lim sup{xn}.

From the second iteratexn+2 = xnf(xn)f(xn−1) + hf(xn) + h, we obtain

S ≤ Sf(S)f(I) + hf(I) + h and I ≥ If(I)f(S) + hf(S) + h.

Now, multiply the first inequality byI and the second byS to obtainSf(S) + S ≤ If(I) + I.
Thus,I = S, and consequently, the positive equilibrium ¯x2,h is globally attractive. This approach
to prove global attractivity was used by Nyerges in [30]. Another approach can be extracted from
[22]. Thus, we have the following result.

Theorem 2.1. Every solution of Eq.(2.5) is oscillatory about̄x2,h and satisfies

lim
n→∞

xn = x̄2,h.
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Alternatively, sinceF (x, y) = yf(x) + h maps[0,∞) × [0,∞) into (0,∞), the semi-cycle
approach can be used to prove the global stability as shown by Kocic and Ladas in [18] (Theorem
2.1.1, page 27).

Harvesting

Here we consider the difference equation

xn+1 = F (xn, xn−1) = xnf(xn−1)− h, (2.6)

whereh > 0 represents a harvesting quota. This equation was considered by AlSharawi et al.
in [1]. A prototype example of Eq. (2.6) is the well-known Pielou’s equation with constant
effort harvesting. The dynamics of Eq. (2.6) turns out to be interesting and challenging. Before
we proceed further, we give the definitions of persistence and strong persistence. A solution
of Eq.(1.2) is called persistent if the corresponding population survives indefinitely. We call a
persistent solution strongly persistent if lim infxn > 0. A setD := {(x, y) : (x, y) ∈ R+2} is
persistent if each solution of Eq.(1.2) with (x−1, x0) ∈ D is persistent. In Eq.(2.6), we useDh

to denote the largest persisting set at the harvesting levelh. From Eq.(2.6), persistence implies
xn ≥ h

f(xn−1)
, and consequentlyxn ≥ h

b
. Thus, persistence implies strong persistence. The next

result is obtained from [1] and gives an attempt to characterize the setDh.

Theorem 2.2. Consider Eq.(2.6) and definehmax as given in Eq.(2.2). Each of the following
holds true.

(i) Persistence implies strong persistence.

(ii) Persistent solutions are bounded.

(iii) If h > hmax, thenDh is empty.

(iv) If h = hmax, then all elements ofDh are attracted tox̄hmax
:= x̄1,h = x̄2,h.

Computer simulations show thatDh shrinks ash increases, which is in accord with the fact
provided about the basin of attraction of ¯x2,h in the absence of time lag; however, a mathematical
proof is missing in case of Eq.(2.6). We formalize this observation in the following conjecture.

Conjecture 2.3. Consider Eq.(2.6). The setDh is decreasing inh, i.e., if h1 ≤ h2 thenDh2 ⊆
Dh1.

The equilibrium ¯x1,h is a saddle for all 0≤ h ≤ hmax. At h = 0, the stable manifold does not
appear in the positive quadrant, and therefore, ¯x1,h can be ignored. However, whenh > 0, the
stable manifold of ¯x1,h becomes in the persistent set, which spices up the dynamics of Eq.(2.6).
A comparison principle was developed and used by AlSharawi et al. in [1] to show that persistent
solutions are eventually larger than or equal to ¯x1,h. The following three results are obtained from
[1].

Theorem 2.4. Let{xn} be a solution of Eq.(2.6) and suppose there are two sequencesαn andβn

such thatαn ≤ xn ≤ βn for all n ≥ −1. Definewn+1(x) = F (x, αn) andgn+1(x) = F (x, βn),
then we obtain

gngn−1 · · · g0(x0) ≤ xn+1 ≤ wnwn−1 · · ·w0(x0).

Theorem 2.5. Consider the initial conditiont0 := h
b

in the first-order difference equationtn+1 =
tn+h
f(tn)

, thentn converges monotonically tōx1,h. Furthermore, any persistent solution{xn}∞−1 of
Eq.(2.6) satisfiesxn ≥ tn for all n = 0,1, . . . .

Theorem 2.6. A persistent solution{xn}∞n=−1 of Eq.(2.6) satisfies

x̄1,h ≤ lim inf xn ≤ lim supxn ≤ x∗
2,h,

wherex∗
2,h is the largest fixed point of the function

g(t) = h
f(t) + 1

f(t)f(x̄1,h)− 1
in the interval

[

0, f−1 (1/f(x̄1,h))
)

.
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Next, we consider a specific case of Eq.(2.6). The authors in [1] forced harvesting on Pielou’s
equation [31, 20] to obtain

yn+1 =
Kbyn

K + (b− 1)yn−1
− h∗, b > 1,K > 0, h∗ > 0. (2.7)

Let xn−1 := b−1
K

yn−1 andh := b−1
K

h∗. We obtain

xn+1 =
bxn

1+ xn−1
− h, b > 1, h > 0. (2.8)

Thusf(t) = b
1+t

in Eq.(2.6). We extract the following facts from [1] and provide some questions
that worth further investigation. Ath = 1 andb ≥ 4, Eq.(2.8) is related to Lyness equation
[14, 15, 19] and has the invariants

Ib(xn, xn−1) :=
(

1+
b

1+ xn

)(

1+
b

1+ xn−1

)

(1+ xn + xn−1) = Ib(x0, x−1). (2.9)

In this case, the persistence setD1 can be found explicitly. Indeed,(x, y) ∈ D1 if and only if

2+ (b+ 1)2 − x̄2(b− 4) ≤ Ib(x, y) ≤ 2+ (b+ 1)2 − x̄1(b− 4).

Whenh = 1 andb > 2(1+
√

2), an 8-periodic solution of Eq.(2.8) was found and used to define
a trapping region for Eq.(2.8) with 0 < h < 1. A subset of the persistent setDh is called a
trapping region if it is invariant and all persistent solutions enter the regionin finite time. We
close this section by giving a conjecture and two open problems.

Conjecture 2.7. Consider Eq.(2.8) with 0 < h < 1. All persistent solutions larger than ¯x1,h are
attracted to ¯x2,h.

Open Problem 2.1. Consider Eq.(2.8) with 0 < h < 1. Show thatD1 ⊆ Dh.

Open Problem 2.2. Consider Eq.(2.8) with h > 1. CharacterizeDh. Is Dh closed? IsDh con-
nected?

3 Periodic Harvesting/Stocking

Harvesting or stocking can be controlled or regulated to prevent speciesextinction or to im-
prove the total yield over a period of time. However, the question on how to regulate harvest-
ing/stocking is widely open for research and debate [4, 17, 12, 16, 36, 42]. For instance, De
Klerk and Gatto considered a continuous multi-cohort Beverton-Holt model in [17] and argued
that adopting a periodic fishing strategy instead of a constant effort strategy is worthwhile when
there is a significant economy of scale, and when older fish are much more valuable than younger
ones. Another interesting example is given by AlSharawi and Rhouma in [4], in which the dis-
crete Beverton-Holt modelxn+1 = bxn

1+xn
was investigated under the effect of several harvesting

strategies. We quote Figure1, which summarizes the conclusion of their work.
In this section, we consider periodic stocking/harvesting in Eq.(1.2) and discuss the dynamics

for bothk = 0 andk = 1. We stress here that the period of a periodic sequence is always meant
to be minimal. Before we proceed, it is worth mentioning that population cycles evolve under
periodic stocking/harvesting and become multiples of the stocking/harvesting period. This result
was provided in [2] and we formalize it in the following theorem.

Theorem 3.1. [2] If there exists anr-periodic solution of thep-periodic difference equation
xn+1 = F (xn, xn−1)± hn, thenr is a multiple ofp.

3.1 No time lag (k = 0)

Consider thep-periodic equation

xn+1 = xnf(xn)± hn, hn ≥ 0, (3.1)
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Is the initial populationx0 >
√

b− 1?

Yes

Constant harvesting is the best

option withh = (
√

b− 1)2

No

Can you afford to have

moratorium on harvesting?

No

Periodic harvesting is the best

option provided that you carefully

choose the harvesting quotas

so the population can survive.

Yes

Conditional harvesting is the best

option withxth =
√

b− 1 and

h = (
√

b− 1)2

Figure 1. This diagram summarizes the conclusion of the results obtain by AlSharawiand
Rhouma in [4] for various harvesting strategies applied to the Beveton-Holt model.

where{hn} is ap-periodic sequence representing periodic stocking or harvesting. Although it is
possible not to have stocking in some seasons (hj = 0 for somej), we want to avoid reducing
Eq.(3.1) to xn+1 = xnf(xn), and therefore, we assume

∑

hn > 0.

Periodic Stocking

In this case, Eq.(3.1) becomes
xn+1 = xnf(xn) + hn, (3.2)

wherehn ≥ 0 andhn+p = hn for all n ∈ N. Define the mapsfn(x) = xf(x) + hn. Since each
mapfn is an upward shift ofy = xf(x), the period of any periodic solution has to be a multiple of
p [2], also follows from Theorem3.1. Define thep-fold functionsGj := fp+j−1◦fp+j−2◦ · · · fj,
then for eachj = 0,1, . . . , p− 1, Gj is increasing and bounded withGj(0) > 0. Thus,Gj has a
unique positive fixed point, say ¯xj,hn

. Furthermore,

lim
n→∞

xnp+j = x̄j,hn
.

Now, {x̄0,hn
, x̄1,hn

, · · · , x̄p−1,hn
} is ap-periodic solution of Eq.(3.2) which is a global attractor.

Let {hn} be ap-periodic sequence of stocking quotas. Define

hav :=
1
p

p−1
∑

j=0

hj.

Now, sum Eq.(3.2) over the periodic attractor to obtain

p−1
∑

j=0

x̄j =
p−1
∑

j=0

(x̄jf(x̄j) + hj) .
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If y = tf(t) is concave, then we can use Jensen’s inequality to conclude that

x̄av ≤ x̄avf(x̄av) + hav.

Thus,x̄av ≤ x̄2,hav
, wherex̄2,hav

is the globally stable equilibrium at a constant stocking level
h = hav. This phenomenon is known as attenuance, and in this case, we say populations attenu-
ate under periodic stocking. However, a more ambiguous notion that needs deep investigation is
the following. How does the order of the stocking quotas affect the population average? Before
we formulate this question into an open problem, we consider an illustrative example. Consider
the Beverton-Holt model withp-periodic stocking

xn+1 =
Kµxn

K + (µ− 1)xn

+ hn, K > 0, µ > 1, hn ≥ 0 and
∑

hn > 0. (3.3)

This equation has a globally asymptotically stable periodic solution of periodp, which can be
written explicitly. If p = 2, then a rearrangement ofh0 andh1 does not affect the periodic
solution. However, as clarified above, populations attenuate. To be morespecific, fixµ =
2, K = 3, h0 = 0 andh1 = h. Then, it is a simple algebraic computation to find the globally
asymptotically stable equilibrium of the equation

xn+1 =
6xn

3+ xn

+ hav =
6xn

3+ xn

+
1
2
h.

Indeed, it is given by

x̄2,hav
:=

3
2
+

1
4
h+

1
4

√

h2 + 36h+ 36.

On the other hand, the globally asymptotically stable periodic solution of the 2-periodic equation

xn+1 =
6xn

3+ xn

+ hn mod 2

is given by

{x̄1, x̄2} :=

{

1
2
(3+ h+

√

h2 + 10h+ 9),
(27+ 3h+ 9

√
h2 + 10h+ 9)

2(h+ 9)

}

,

which has an average smaller than or equal to ¯x2,hav
. Next, we proceed to illustrate the re-

arrangements problem. Considerp = 3, then the rearrangements of the stocking quotas are
[h0, h1, h2], [h0, h2, h1] and their rotations. Since rotations do not change periodic solutions
[3], then we need to compare the averages of the global attractor obtained by taking {hn} =
[h0, h1, h2] or [h0, h2, h1]. For instance, considerµ = 2,K = 3, h0 = 1, h1 = 2 andh2 = 2+ h,
then the sequence{hn} = [1,2,2+ h] gives a global attractor with an average sayX̄av1. On the
other hand, the sequence{hn} = [1,2+ h,2] gives a global attractor with an average sayX̄av2.
Now, it is a computational matter to find that

X̄av1 = X̄av2 +
27h(h+ 1)

46(11h+ 103)(5h+ 46)
> X̄av2.

Now, it is logical to pose the next open problem.

Open Problem 3.1. Let {hn} be ap-periodic sequence of stocking quotas, and let{ĥn} be a
permutation of{hn}. Define x̄av and x̂av to be the average of the global attractors associated
with {hn} and{ĥn}, respectively. How does ¯xav relate to ˆxav?

Periodic Harvesting

In this case, Eq.(3.1) becomes

xn+1 = xnf(xn)− hn, (3.4)

wherehn ≥ 0,
∑

hj > 0 andhn+p = hn for all n ∈ N. Obviously, sufficiently large values
of hn lead to a total collapse of the population. Thus, finding a maximum sustainableyield
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(MSY) is an issue of particular interest here. Define the mapsfn(x) = xf(x) − hn andGj :=
fp+j−1 ◦ fp+j−2 ◦ · · · fj. Now, the MSY can be found from the following constraints

Gj(x) = x and G′
j(x) = 1, for all j = 0,1, . . . , p− 1. (3.5)

We use the Beverton-Holt model to illustrate the above results, see [9].

Example 3.2. Consider the Beverton-Holt model with 2-periodic harvesting given by

xn+1 =
Kµxn

K + (µ− 1)xn

− hn = fn(xn), (3.6)

wherehn+2 = hn for all n ∈ N andh0, h1 > 0. Based on the constraints in Eqs.(3.5), we can
eliminatex and obtain a relationship betweenh0 andh1. Indeed, we obtain

K2 −Kβ(h0 + h1) + h0h1 = 0, β =
µ+ 1
µ− 1

,

or equivalently

h1 =
K(K − βh0)

Kβ − h0
, h0 <

K

β
.

We use the relationship betweenh0 andh1 to find

x̄0 =
K(K + h0)

K(µ+ 1)− h0(µ− 1)
and x̄1 =

1
2
(K − h0).

At h0 =
(
√
µ−1)√
µ+1 K, we obtainh0 = h1 and x̄0 = x̄1, which is the constant harvesting case.

Observe that a swap ofh0 andh1 leads to a swap of ¯x0 and x̄1, which seems to be of little
mathematical effect, but in fact, it has a dramatic effect when the size ofthe population is low.
Whenh0 < h1, we have ¯x0 < x̄1 and populations in[x̄0,∞) persist. On the other hand,h0 > h1

implies x̄0 > x̄1 and[x̄0,∞) is the persistent set. Therefore, one can investigate the advantage
of having 0≤ h0 ≤ h1 ≤ hmax at all times. See Figure2 for an illustration.

xn

xn+1

f0(x)

f1(x)

f0(f1(x))

f1(f0(x))

Figure 2. This figure shows the curves off0(x), f1(x), f1(f0(x)) andf0(f1(x)) together with
the 2-cycle{x̄0, x̄1}. The parameters are fixed asK = 4, µ = 9, h0 = 1 andh1 =

11
4 .

Results presented in Example3.2 motivate investigating the following open problems. We use
D(h0, h1, . . . , hp−1) to denote the persistent set of Eq.(3.6).
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Open Problem 3.2. Let {hn} be ap-periodic sequence of harvesting quotas in Eq.(3.6) that give
a nonempty persistent setD(h0, h1, . . . , hp−1). Let {ĥn} be a permutation of{hn}. Definex̄av

and x̂av to be the average of the attractors associated with{hn} and{ĥn}, respectively. How
does ¯xav relate to ˆxav?

Open Problem 3.3. In Eq.(3.6), let {hn} be a fixedp-periodic sequence of harvesting quotas
that give a nonempty persistent setD(h0, h1, . . . , hp−1). Which permutation of{hn} gives the
largest persistent set?

Open Problem 3.4. What happens to the invariants given in Eq.(2.9) whenhn = 1± ǫn?

In conjunction with these three open questions, it is worth mentioning that AlSharawi and
Rhouma investigated in [5] the effect of permuting a periodic carrying capacity on the maximum
sustainable yield. In particular, they considered the equation

xn+1 =
kjnµxn

kjn + (µ− 1)xn

− h, n ∈ N, (3.7)

where(j0, j1, . . . , jp−1) is a permutation of the set{0,1,2, . . . , p − 1} andkjn+p
= kjn for all

positive integersn, and obtained the following two results:

Theorem 3.3. [5] Fix a p-periodic sequence of carrying capacities[k0, k1, . . . , kp−1]. All equa-
tions of the form (3.7) with permutations(j0, j1, . . . , jp−1) in the dihedral group of orderp give
the same maximum constant harvesting level.

Theorem 3.4. [5] Consider Eq. (3.7) and assume the initial population is sufficiently large.
Without loss of generality, letk0 ≤ k1 ≤ · · · ≤ kp−1. Each of the following holds true:

(i) For p = 2 or 3, a permutation of the carrying capacities does not change the maximum
harvesting level.

(ii) For p = 4, there are three different levels of maximum harvesting through permutations of
the carrying capacities. In particular,(j0, j1, j2, j3) = (0,2,1,3) or (3,1,2,0) and their
cyclic permutations give the largest, and(j0, j1, j2, j3) = (3,2,0,1) or (1,0,2,3) and their
cyclic permutation give the smallest.

(iii) For p = 5, there are twelve different levels of maximum harvesting through permutations
of the carrying capacities. In particular,(j0, j1, j2, j3, j4) = (1,2,3,0,4) or (4,0,3,2,1)
and their cyclic permutations give the largest, and(j0, j1, j2, j3, j4) = (3,1,0,2,4) or
(4,2,0,1,3) and their cyclic permutation give the smallest.

3.2 One-unit time lag (k = 1)

Consider thep-periodic second-order difference equation

xn+1 = xnf(xn−1)± hn, (3.8)

wherep is the minimal positive integer for whichhn+p = hn for all n. By considering peri-
odic stocking or harvesting in addition to the delay, we add another factor ofcomplexity to the
equation.

Periodic Stocking

In this case we have
xn+1 = xnf(xn−1) + hn, (3.9)

wherehn ≥ 0 is ap-periodic sequence representing stocking quotas (
∑

hj > 0). Eq. (3.9) was
investigated by AlSharawi in [2]. To capture the main results in [2], we need to cite part of the
developed machinery. Define the two dimensional mapsTj(x, y) = (y, yf(x) + hj), then the
iterates of thep-periodic sequence of mapsTj : j = 0,1, . . . , p − 1 portray the dynamics of
Eq.(3.9) in the positive quadrant. It is possible to define a compact regionRhj

that serves as a
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compact invariant for each individual mapTj . However, we need a compact invariant for thep-
fold mapT = Tp−1◦Tp−2◦· · ·◦T0. It was shown thathi ≤ hj impliesRhi

⊆ Rhj
, which suggests

defining one invariant for all mapsTj . Indeed, considerhm := maxj{hj, j = 0,1, . . . , p − 1}
and

cm := max
j

{

1
b

sup
t≥0

(bt+ hj)f(t) : j = 0,1, . . . , p− 1

}

,

then usehm andcm to define a regionRhm
as the polygon of consecutive vertices(0,0), (0, hm),

(cm, bcm + hm), (bcm + hm, bcm + hm), (bcm + hm,0). The regionRhm
is a compact invariant

for each mapTj , and consequently it is a compact invariant for thep-fold mapT. Using Brouwer
Fixed-Point Theorem,T has a fixed point inRhm

. Based on Theorem3.1, Eq.(3.9) has ap-
periodic solution. These facts furnish the ground for the following result,which is the main
result obtained in [2].

Theorem 3.5. Thep-periodic difference equation in Eq.(3.9) has ap-periodic solution. Further-
more, thep-periodic solution is globally attracting whenp = 2.

Conjecture 3.6. Thep-periodic solution of Eq.(3.9) obtained in Theorem3.5is globally attract-
ing for all p > 2.

Finally, after verifying this conjecture, then Problem3.1can be investigated for Eq.(3.9).

Periodic Harvesting

In this case, Eq.(3.8) takes the form

xn+1 = xnf(xn−1)− hn, hn ≥ 0. (3.10)

To the best of our knowledge, Eq.(3.10) has not been studied yet. Define

hmin = min{h0, h1, . . . , hp−1},

then

xn+2 = xnf(xn)f(xn−1)− hnf(xn)− hn+1 ≤ Mb− hmin(b+ 1).

Since persistent solutions must satisfyxn ≥ hmin

b
, persistent solutions are bounded and strongly

persistent, which is similar to the result in Theorem2.2. Furthermore, we give the following.

Proposition 3.7. Considerhmax as defined in Eq.(2.2). If hn > hmax for all n = 0,1, . . . , p− 1,
then the persistent set of Eq.(3.10) is empty.

Proof. Let {xn} be a persistent solution such thatx−1 ≥ x0. We obtainx1 = x0f(x−1) − h0 <
x0f(x0) − h0 < x0. By induction, we obtain a decreasing and bounded sequence that must
converge to a value, sayα. For j = 0,1, . . . , p− 1, we have

xnp+j = xnp+j−1f(xnp+j−2)− hj−1,

which impliesα is a fixed point of this equation. Sincehj−1 > hmax, we obtain a contradiction.
Next, start with(x−1, x0) such thatx−1 < x0, then either we obtain a monotonic sequence which
leads us to a contradiction, or we obtainxm−1 ≥ xm for some fixedm and we use the first case
to obtain a contradiction.

Now, we close this section by posing the following open problem.

Open Problem 3.5. Investigate the dynamics of Eq.(3.10).



248 Ziyad AlSharawi and A.M. Amleh

References

[1] R. Abu Saris, Z. AlSharawi, M. Rhouma, The dynamics of some discrete models with delay under the
effect of constant yield harvesting, Chaos, Solitons and Fractals, 54 (2013) 26–38.

[2] Z. AlSharawi, A global attractor in some discrete contest competition models with delay, Abstract and
Applied Analysis. Volume 2013 (2013), Article ID 101649, 7 pages.

[3] Z. AlSharawi, Periodic orbits in periodic discrete dynamics, Computers & Mathematics with Applications,
56 (2008) 1966–1974.

[4] Z. AlSharawi and M. Rhouma, The Beverton-Holt model withperiodic and conditional harvesting, Journal
of Biological Dynamics,3(2009), 463 - 478.

[5] Z. AlSharawi and M. Rhouma, The Discrete Beverton-Holt Model with Periodic Harvesting in a Pe-
riodically Fluctuating Environment, Advances in Difference Equations, (2010), Article ID 215875,
doi:10.1155/2010/215875.

[6] Z. AlSharawi and M. Rhouma, Coexistence and extinction in a competitive exclusion Leslie/Gower model
with harvesting and stocking, Journal of Difference Equations and Applications,15 (2009) 1031–1053.

[7] M. Anazawa, The mechanistic basis of discrete-time population models: The role of resource partitioning
and spatial aggregation, Theoretical Population Biology,77 (2010) 213–218.

[8] T. S. Bellows JR, The descriptive properties of some models for density dependence, Journal of Animal
Ecology,50 (1981) 139 – 156.

[9] Beverton, R. J. H., Holt, S. J.: On the Dynamics of Exploited Fish Populations, The Blackburn Press, New
Jersey (2004).

[10] A. Brannstrom, and D. J. T. Sumpter, The role of competition and clustering in population dynamics,
Proc. R. Soc. B272 (2005) 2065 – 2072.

[11] C. W. Clark, A delayed-recruitment model of populationdynamics, with an application to baleen whale
populations,3 (1976) 381 – 391.

[12] J. Deroba, J. Bence, A review of harvest policies: Understanding relative performance of control rules,
Fisheries Research94 (2008) 210–223.

[13] S. Elaydi, An introduction to difference equations, Springer, New York, 1996.

[14] L. Gardini, G. I. Bischi and C. Mira, Invariants curves and focal points in a Lyness iterative process,
International Journal of Bifurcation and Chaos13 (2003) 1841–1852.

[15] E. A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall, Boca Raton,
2005.

[16] O. Hjerne, S. Hansson, Constant catch or constant harvest rate? The Baltic Sea cod (Gadus morhua L.)
fishery as a modelling example, Fisheries Research53 (2001) 57–70.

[17] P. De Klerk, M. Gatto, Some remarks on periodic harvesting of a fish population, Mathematical Bio-
sciences56 (1981) 47–69.

[18] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Appli-
cations, Kluwer Academic Publishers, The Netherlands, 1993.

[19] M. R. S. Kulenovíc and G. Ladas, Dynamics of Second Order Rational DifferenceEquations with Open
Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, 2002.

[20] S. A. Kuruklis, G. Ladas, Oscillations and global attractivity in a discrete delay logistic model, Quarterly
of Applied Mathematics1 (1992) 227–233.

[21] S. A. Levin and R. M. May, A note on Difference-Delay Equations, Theoretical Population Biology9
(1976) 178–187.

[22] E. Liz, V. Tkachenko, S. Trofimchuk, Global stability indiscrete population models with delayed-density
dependence, Mathematical Biosciences199 (2006) 26–37.

[23] A. Lomnicki, Scramble and contest competition, unequal resource allocation, and resource monopoliza-
tion as determinants of population dynamics, EvolutionaryEcology Research11 (2009) 371–380.

[24] A. Lomnicki, Population Ecology of Individuals, Princeton University Press, New Jersey 1988.

[25] R. M. May, Simple mathematical models with very complicated dynamics, Nature261 (1976) 459–467.

[26] R. M. May, Biological populations with nonoverlappinggenerations: Stable points, stable cycles and
chaos, Sciences186 (1974) 645–647.

[27] R. M. May, Time-delay versus stability in population models with two and three trophic levels, Ecology
54 (1973) 315–325.

[28] H. Mccallum, Effects of immigration on chaotic population dynamics, J. Theor. Biol.154 (1992) 277–284.

[29] L. Nunney, Short time delays in population models: A role in enhancing stability, Ecology,66 (1985)
1849–1858.



Harvesting and stocking in discrete-time contest· · · 249

[30] G. Nyerges, A note on a generalization of Pielou’s equation, Journal of Difference Equations and Appli-
cations14 (2008) 563–565.

[31] E. C. Pielou, Population and Community Ecology, Gordonand Breach, New York 1974.

[32] W. E. Ricker, Stock and recruitment, Journal of the Fisheries Research Board of Canada11 (1954) 559–
623.

[33] G. D. Ruxton, Low levels of immigration between chaoticpopulations reduce system extinctions by in-
ducing asynchronous regular cycles, Proc. R. Soc. Lond. 256(1994) 189–193.

[34] G. D. Ruxton, The effect of emigration and immigration on the dynamics of a discrete-generation popu-
lation, J. Biosci., 20 (1995) 397-407.

[35] D. Sanches, Populations and Harvesting, SIAM Review19 (1977) 551–553.

[36] P. Shelton, A comparison between a fixed and a variable fishing mortality control rule used to manage
the cod stock off southern Labrador and the east coast of Newfoundland, Fisheries Research37 (1998)
275–286.

[37] S. Sinha, P. K. Das, Dynamics of simple one-dimensionalmaps under perturbation, PRAMANA Journal
of Physics 48 (1997) 87–98.

[38] L. Stone, Period-doubling reversals and chaos in a simple ecological models, Nature 365 (1993) 617–620.

[39] L. Stone and D. Hart, Effects of immigration on the dynamics of simple population models, Theoretical
Population Biology,55 (1999) 227–234.

[40] C. E. Taylor, R. R. Sokal, Oscillations in housefly population size due to time lags, Ecology57 (1976)
1060–1067.

[41] G. C. Varley, G. R. Gradwell, M. P. Hassell, Insect population ecology. Oxford: Blackwell Scientific,
1973.

[42] C. Walters, P. Bandy, Periodic harvest as a method of increasing big yields, The Journal of Wildlife
Management36 (1972) 128–134.

1 Author information

Ziyad AlSharawi, Department of Mathematics and Statistics, American University of Sharjah, PO Box 26666,
University City, Sharjah, U.A.E..
E-mail:zsharawi�aus.edu

A.M. Amleh, Sciences and Engineering, Paris-Sorbonne University Abu Dhabi, P. O. Box 38044, Abu Dhabi,
U.A.E..
E-mail:Amal.Amleh�psuad.a
.ae

Re
eived: De
ember 27, 2015.

A

epted: February 27, 2015

1Corresponding author: A.M. Amleh, E-mail: Amal.Amleh@psuad.ac.ae


	1 Introduction
	2 Constant yield harvesting/stocking
	2.1 No delay in recruitment (k=0)
	2.2 One-unit time delay in recruitment (k=1)
	Stocking
	Harvesting


	3 Periodic Harvesting/Stocking
	3.1 No time lag (k=0)
	Periodic Stocking
	Periodic Harvesting

	3.2 One-unit time lag (k=1)
	Periodic Stocking
	Periodic Harvesting



