Palestine Journal of Mathematics

Vol. 5(Special Issue: 1) (2016) , 238-249 © Palestine Polytechnic University-PPU 2016

Harvesting and stocking in discrete-time contest competition
models with open problems and conjectures

Ziyad AlSharawi and A.M. Amleh
Communicated by Ayman Badawi

MSC 2010 Classifications: 39A10, 92D25.

Keywords and phrases: Contest competition, global stghilarvesting, persistence, stocking.

Abstract. In this survey, we present a class of first and second-orderetiife equations rep-
resenting general form of discrete models arising from single-spetileontest competition.
Then, we consider various harvesting/stocking strategies and disaisgfflect on stability,
persistence and maximum sustainable yield. The main aim of this work isé@giaccount of
recent results on the subject within a unified framework, then presem spen questions and
conjectures that deserve further investigation.

1 Introduction

Difference equations of the form, ;1 = z,, f(z,,), n € N:={0,1,2,...} are used in modeling
single-species populations with non-overlapping generations thatdwat discrete time,
wherez,, is the population size at the start of thé breading season, and the functipnepre-
sents the net reproductive rate per individ@s, 26, 32]. The formz f(x) is used to stress the
zero steady state, and the recruitment functfanust be chosen to reflect known observations
or facts about the modeled species. For instance, to reflect the limitearces available to a
given population,f must be decreasing where resources can be food, water, sheiteg,m
etc. Other characteristics gfmay reflect competition for resources among individuals within
a species. This type of competition is known as the intra-specific compettimhit is a sig-
nificant factor for the growth of a population. When individuals among@jaupation exploit a
common resource, several factors can influence the amounboiroesavailable to an individual.
However, we are interested in a general form of models that reflectypes of intra-specific
competition, namely contest and scramble competitiddsg3, 24]. In brief, when individuals
among a population compete for resources that are not available to igltirals, then supe-
rior or dominant individuals achieve their needs and survive, whilerstfa! to achieve their
needs and consequently vanish. Such a competition is known as camtgsttition f1]. On
the other hand, when resources are evenly distributed among the fapuiadividuals have
almost equal chances to exploit the resources, and when the resdigcome scarce, success
becomes incomplete. This form of intra-specific competition is known rasrdde competition.
For more details about contest and scramble competitions as well asspaTific examples
of the two forms, we refer the interested readerto23, 24, 41, 8]. Although the borderline
between the two forms of competition is not always sharply defi@gdwe are interested in
quantifying the scenario of a contest competition, which mostly leads to eosapory models
[8, 10, 7]. Therefore, itis natural to confine the recruitment functfcso as to obey the following
assumptions]], 2].

(A1) f € C([0,00)) andf is decreasing;
(A2) f(0)=b> 1,
(A3) zf(z) is increasing and bounded by a constant

As we proceed with our discussion and analysis, other smoothnegs@gss onf can be
added as necessary for the sake of developing a mathematical theory.

When time lag occurs between spawning and recruitment, for instancéodidstantial
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maturation time to sexual maturity, the model must include a delay e##&ctThus, it is logical
to replacer,, ;1 = =, f (z,) with the more general equation

Tn+l = mnf(mn—k); (11)

wherek is a nonnegative integer. For instance, the baleen whale model oy, + f(yn—r)
due to Clark L1] can be transformed to the form in EdL.{). It is known that a delay can have
a negative impact on populations by causing oscillations and destabiliziadyss¢éates. See
[27, 29, 40] for more details. Here, we limit our attention to the case 1 in Eq. (.1).

When a species goes through controlled or uncontrolled exploitation dusting, fishing,
emigration or immigration, it is necessary to accommodate these factansdlijying Eq. (.1),
and therefore, it is natural to subtract (or add) a harvesting (orisigcterm. Thus, Eq. 1.1)
becomes

Tn+l = xnf(xn—k) + Hn(mnwxnfl)v k=0 or l (12)

where the exact form or character &f, has to reflect the nature of harvesting/stocking. Har-
vesting and stocking strategies can be used to prevent species extineiionprove the total
yield over time, or to force coexistence between different species.aidBh and Rhoumad] 6]
considered the discrete Beverton-Holt model in a deterministic envinohamel investigated the
effect of various harvesting strategies. They found that constames$tais more beneficial to
both the population and the maximum sustainable yield (MSY) when the size gbipulation
is sufficiently large, while periodic harvesting has a short-term advantage the size of the
population is low. On the other hand, conditional harvesting (harvestimmwhe size of pop-
ulation is higher than a certain level and stopping otherwise) has the ageasftiowering the
risk of depletion or extinction. Also, AlSharawi and Rhouma used vari@urgesting/stocking
strategies in§] to show that it is possible to guarantee the survival of the weaker spece
competitive exclusion environment. In other studiz8 B3, 34, 37, 38, 39, constant stocking is
found to have the effect of suppressing chaos, reversing the piwidaling phenomena, lower-
ing the risk of extension and stabilizing the population steady state.

In the following two sections, we give an account of recent results derdiice equa-
tions of the form {.2) modeling single species populations under the effect of various stock-
ing/harvesting strategies. Several open problems and conjectureesieave further investiga-
tion are given throughout the paper.

2 Constant yield harvesting/stocking

In this section, we discuss the dynamics of Efwhen H,,(x,,z,_1) IS a constant, say.
When=h is taken negative, the strategy is known as constant catch or constartgtieesting
[12, 35, 16]. On the other hand, the constant is taken positive when the speciesétedfby
stocking due to, for example, refuge or immigrati@8,[39].

2.1 Nodelay in recruitment (k = 0)

Consider the difference equation
Tpa1=Znf(xn) +h, heR (2.1)

At h = 0, we have the two equilibrium solutions g = 0 andazo = f~1(1). Whenh is
positive (stocking)zy, shifts below zero whiler;, shifts abovef—1(1). Thus,z1, is beyond
our interest and we are left with the positive equilibriugy,, which is increasing irk. Using

a simple cobweb diagram, we observe tha}, is globally attractive. On the other hand, if the
constant term is taken negative due to harvesting-+kis taken in place of-h, thenzy ;, shifts
upward andz; ;, shifts downward till they collide at a maximum harvesting level

hmax:= z(f(z) —1), 0<z < f~Y1). (2.2)
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This level of harvesting gives what is known as the maximum sustainal@é I& harvesting
level beyondhmax leads to a total collapse of the population, while a harvesting level bialgw
assures the survival of all initial populations that are larger than aleéqahe small equilibrium
x1,,. Again, a cobweb diagram can be used to show that,, co) is the basin of attraction of
x25. Thus, the dynamics of Eq2(1) is easily characterized; however, further illustrations and
discussion can be found id4,[13].

2.2 One-unit timedelay in recruitment (k = 1)

Consider the difference equation

Tn+l = J:nf(x'nfl) + h7 (23)

whererh is a positive parameter representing a constant stocking or harvesgtitay &q.2.3) has

the same equilibrium solutions as in the case 0; however, the dynamics becomes a bit more
challenging. Ath = 0, the delay in the recruitment function does not change the boundedness
character of solutions; however, in this case, monotonic converggrargges into oscillatory
convergence. A solution is called oscillatory about an equilibriuihit does not stay on one
side ofz indefinitely. In a solutio{z,, }, a full consecutive segment of terms above or equal to
defines the so-called positive semi-cycle. On the other hand, a fukkcotige segment of terms
below z defines a negative semi-cycle. One way to establish the oscillatory ndtsofutons

of Eq. (2.3 is by setting a new coordinate system at the positive equilibtiuthen use the map

T,: RY? 5 R*®  definedby Ty (z,y) = (y,yf(z) £ h) (2.4)

to show thaff}, rotates the quadrants of the new coordinate sysigm [

Next, we proceed by taking stocking and harvesting as separate cases.

Stocking
Here Eq.2.3) becomes

Tor1 = Tnf(Tn_1) +h, h>0. (2.5)
Solutions of Eq2.5) are bounded as we can see from the factthat > 0 and

whereb is given in Assumption (A2) and/ is the bound given in Assumption (A3). The
map 7}, defined byT},(z,y) = (y,yf(z) + h) can be used to portray solutions of Ef5) as
orbits in the positive quadrant. A regidgy, is called invariant for EqQ.5) if T, (Ry) C Rp. It
was shown in2] that a bounded and invariant region can be obtained by connectingitis p
(0,0),(0,h), (ch,bep, + h), (ben, + h,be, + k), (bey, + h,0) and (0,0), respectively with line
segments, where, is taken to b(% sup (bt + h) f(t). Since solutions are positive and bounded
away from zero, we denote

= liminf{z,} and S =limsup{z,}.
From the second iterate,.» = z,, f(x,) f (zn_1) + hf(zn) + h, we obtain
S<SFS)f(I)+hf(I)+h and I>1T1f(I)f(S)+hf(S)+h.

Now, multiply the first inequality by and the second by to obtainSf(S)+ S < If(I)+ 1.
Thus,I = S, and consequently, the positive equilibrium, is globally attractive. This approach
to prove global attractivity was used by Nyerges3f][ Another approach can be extracted from
[22]. Thus, we have the following result.

Theorem 2.1. Every solution of EqQ.5) is oscillatory aboutz, ;, and satisfies

lim z, = a?z’h.
n— oo
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Alternatively, sinceF'(z,y) = yf(z) + h maps|0, o) x [0, 00) into (0, 0o), the semi-cycle
approach can be used to prove the global stability as shown by Kocicaatas$lin L8] (Theorem
2.1.1, page 27).

Harvesting
Here we consider the difference equation
Tn+l = F(J?n, mnfl) - xnf(mnfl) - h7 (26)

whereh > 0 represents a harvesting quota. This equation was considered byr@\sled al.

in [1]. A prototype example of Eq. 2(6) is the well-known Pielou’s equation with constant
effort harvesting. The dynamics of EQ.§) turns out to be interesting and challenging. Before
we proceed further, we give the definitions of persistence and strergisfence. A solution

of Eq.(1.2) is called persistent if the corresponding population survives indefinitéty call a
persistent solution strongly persistent if liminf > 0. A setD := {(z,y) : (z,y) € R*z} is
persistent if each solution of E4.Q) with (z_1,z) € D is persistent. In EqX.6), we useD,,

to denote the largest persisting set at the harvesting levelom Eq.@.6), persistence implies

Ty > ﬁ, and consequently,, > % Thus, persistence implies strong persistence. The next
result is obtained froml]] and gives an attempt to characterize thezgt

Theorem 2.2. Consider Eq2.6) and defineh,,., as given in EqZ.2). Each of the following
holds true.

(i) Persistence implies strong persistence.

(ii) Persistent solutions are bounded.

(i) If 7 > hinas, thenDy, is empty.

(iv) If b = humas, then all elements db;, are attracted tacy,,,, ‘= z1., = 22,5

Computer simulations show th@, shrinks as: increases, which is in accord with the fact
provided about the basin of attraction:6f;, in the absence of time lag; however, a mathematical
proof is missing in case of EQ.(6). We formalize this observation in the following conjecture.

Conjecture 2.3. Consider EqZ.6). The setD,, is decreasing ik, i.e., if hy < hy thenD;, C
Dy, .

The equilibriumzy 5, is a saddle for all 6< h < hyyq,. At h = 0, the stable manifold does not
appear in the positive quadrant, and therefakg, can be ignored. However, whén> 0, the
stable manifold of1 ;, becomes in the persistent set, which spices up the dynamics @ &q.(
A comparison principle was developed and used by AlSharawi et d] ia Ehow that persistent
solutions are eventually larger than or equati@. The following three results are obtained from
[1].

Theorem 2.4. Let{x,} be a solution of EqZ.6) and suppose there are two sequenegand g,
such thatw,, < z,, < 8, for all n > —1. Definew,,+1(x) = F(z, ) andg,1(z) = F(z, Bn),
then we obtain

Ingn-1--9o(x0) < Tpi1 < Wpwy_1 -+ wo(wo).
Theorem 2.5. Consider the initial conditior, := % in the first-order difference equatian. 1 =
tath “thent, converges monotonically to ;. Furthermore, any persistent solutidn,, }> of

f(tn)’
Eq.(2.6) satisfiest,, > ¢, foralln =0,1,....

Theorem 2.6. A persistent solutiofz,, }>° , of Eq.@.6) satisfies

n=
z1p < liminf 2, <limsupz, <3,
wherezs , is the largest fixed point of the function

fl) +1

90 = h ) o) — 1

in the interval [0, f~* (1/f(21.)))-
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Next, we consider a specific case of Eygj. The authors inf] forced harvesting on Pielou’s
equation B1, 20] to obtain

_ Kby,
Ynt1 = K + (b - 1)yn—1

Leta,_1:= 22y, 1 andh := 2L h*. We obtain

—h*, b>1,K>0,h*>0. 2.7)

bx,,
1 +Tp-1
Thusf(t) = lL-&-t in Eq.(2.6). We extract the following facts from] and provide some questions

that worth further investigation. At = 1 andb > 4, Eq.@.9) is related to Lyness equation
[14, 15, 19] and has the invariants

Tpil = —h, b>1h>0. (2.8)

L b b _
To(wn, Tn_1) i= <1+ 1+33n) <1+ ir $n1> (14 xn +xp-1) = Ip(zo,2-1). (2.9)

In this case, the persistence #gtcan be found explicitly. Indeedy, y) € D, if and only if
24+ (b+1)2 —22(b—4) <Tp(z,y) <2+ (b+1)% —22(b— 4).

Whenh = 1 andb > 2(1+v/2), an 8-periodic solution of Eq(8) was found and used to define
a trapping region for Eq(8) with 0 < h < 1. A subset of the persistent sBj, is called a
trapping region if it is invariant and all persistent solutions enter the regidinite time. We
close this section by giving a conjecture and two open problems.

Conjecture 2.7. Consider EqZ.8) with 0 < h < 1. All persistent solutions larger than ; are
attracted tacy j,.

Open Problem 2.1. Consider EqZ.8) with 0 < i < 1. Show thatD; C Dy,

Open Problem 2.2. Consider EqZ.8) with » > 1. CharacterizeD,,. Is Dy, closed? 1sD;, con-
nected?

3 Periodic Harvesting/Stocking

Harvesting or stocking can be controlled or regulated to prevent spexiiestion or to im-
prove the total yield over a period of time. However, the question on howgolate harvest-
ing/stocking is widely open for research and debdtel[r, 12, 16, 36, 42]. For instance, De
Klerk and Gatto considered a continuous multi-cohort Beverton-Holteiiod17] and argued
that adopting a periodic fishing strategy instead of a constant efforegyras worthwhile when
there is a significant economy of scale, and when older fish are muehvaloiable than younger
ones. Another interesting example is given by AlSharawi and Rhound,im[which the dis-
crete Beverton-Holt model,, .1 = % was investigated under the effect of several harvesting
strategies. We quote Figutewhich summarizes the conclusion of their work.

In this section, we consider periodic stocking/harvesting inZE8.and discuss the dynamics
for bothk = 0 andk = 1. We stress here that the period of a periodic sequence is alway$ mean
to be minimal. Before we proceed, it is worth mentioning that population sy&kelve under
periodic stocking/harvesting and become multiples of the stocking/harggeiiod. This result
was provided in2] and we formalize it in the following theorem.

Theorem 3.1.[2] If there exists anr-periodic solution of thep-periodic difference equation
Tpr1 = F(xn, 1) + hy, thenr is a multiple ofp.
3.1 Notimelag (k = 0)

Consider they-periodic equation

Tntl = xnf(xn) £ hy, by > 07 (31)
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Is the initial populationzg > v/6 — 1?

Yes No
Constant harvesting is the best Can you afford to have
option withh = (v/b — 1)2 moratorium on harvesting?
Yes No
Conditional harvesting is the best Periodic harvesting is the best
option withz,, = vb — 1 and option provided that you carefully
h= (Vb —1)? choose the harvesting quotas

so the population can survive.

Figure 1. This diagram summarizes the conclusion of the results obtain by AlSharaivi
Rhouma in §] for various harvesting strategies applied to the Beveton-Holt model.

where{h,} is ap-periodic sequence representing periodic stocking or harvesting. gthibis
possible not to have stocking in some seasans={ 0 for someyj), we want to avoid reducing
Eq.B.) to z,11 = zn f(x,), and therefore, we assumé h,, > 0.

Periodic Stocking

In this case, Eq3.1) becomes
Tptl = xnf(xn) + hnp, (32)

whereh,, > 0 andh,,.,, = h,, for all n € N. Define the mapg,,(xz) = zf(z) + h,. Since each
mapf,, is an upward shift of = = f(x), the period of any periodic solution has to be a multiple of
p [2], also follows from Theoren8.1 Define thep-fold functionsG; := f,1j_10 fprj—20--- fj,
then foreacly = 0,1,...,p — 1, G, is increasing and bounded with; (0) > 0. Thus,G; has a
unique positive fixed point, say; 5, . Furthermore,

Nim 5 =2,

Now, {zo n,,Z1n,, " »ZTp—1n, } IS ap-periodic solution of Eq3.2) which is a global attractor.
Let {h,} be ap-periodic sequence of stocking quotas. Define
152
hop == — h;.
P Z ’
7=0

Now, sum Eq.8.2) over the periodic attractor to obtain

p—1
-
Jj=0

S @ @) + ).

J

I
o
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If y = tf(¢) is concave, then we can use Jensen’s inequality to conclude that
Eav S x_avf(x_av) + htw~

Thus,z,, < z24,,, Wherex, ;. is the globally stable equilibrium at a constant stocking level
h = hqy. This phenomenon is known as attenuance, and in this case, we saytjoosudtenu-
ate under periodic stocking. However, a more ambiguous notion thds meep investigation is
the following. How does the order of the stocking quotas affect the ptipnlaverage? Before
we formulate this question into an open problem, we consider an illustratarapde. Consider
the Beverton-Holt model witp-periodic stocking

Kuxy,
K+ (p— 1)z,
This equation has a globally asymptotically stable periodic solution of petiadich can be
written explicitly. If p = 2, then a rearrangement af and h; does not affect the periodic
solution. However, as clarified above, populations attenuate. To be spewfic, fixy =
2, K =3, hg = 0andhy = h. Then, itis a simple algebraic computation to find the globally
asymptotically stable equilibrium of the equation

6z, bz, 1
m + hgy = h.

+hn, K>0,u>1h,>0and) h, >0. (3.3)

Tn+1 =

Tp+1 —

Indeed, it is given by

T2h,, = 3 %h + %\/hZ + 36h + 36.

2
On the other hand, the globally asymptotically stable periodic solution of thei@elic equation

_ bay, h
Tptl = 3+$n n mod 2
is given by
— .. 1 V2T 100 19 (274 3h + 9vVh2+ 10 + 9)
{z1, 22} ._{§(3+h+ h? +10h + 9), ) )

which has an average smaller than or equat4q, . Next, we proceed to illustrate the re-
arrangements problem. Consider= 3, then the rearrangements of the stocking quotas are
[ho, h1, h2), [ho, h2, ha] @and their rotations. Since rotations do not change periodic solutions
[3], then we need to compare the averages of the global attractor obtajrtedibg {%,,} =

[ho, ha, k] OF [ho, ko, hy]. For instance, consider =2, K = 3,ho = 1,h; = 2 andhy = 2+ h,

then the sequendg:,, } = [1, 2,2 + k] gives a global attractor with an average s&y,;. On the
other hand, the sequenék, } = [1,2 + h, 2] gives a global attractor with an average s&y,,.

Now, it is a computational matter to find that

_ 27h(h + 1)
Xyt = X
avl = Xav2 * 281, 1 103)(5h + 46)

Now, it is logical to pose the next open problem.

> Xgu2-

Open Problem 3.1. Let {h,} be ap-periodic sequence of stocking quotas, and{iet} be a
permutation of{%, }. Definez,, and,, to be the average of the global attractors associated
with {%,,} and{h,}, respectively. How does,, relate toz7,?

Periodic Harvesting

In this case, Eq3.1) becomes

Tp+1 = -Tnf<xn> - hna (34)

whereh,, > 0, >~ h; > 0 andh,, = h, for all n € N. Obviously, sufficiently large values
of h, lead to a total collapse of the population. Thus, finding a maximum sustaigebie
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(MSY) is an issue of particular interest here. Define the maps) = = f(z) — h, andG, :=

fp+j—10 fprj—20--- f;. Now, the MSY can be found from the following constraints
Gj(z)=2z and Gj(z)=1, foral j=01,...,p—1 (3.5

We use the Beverton-Holt model to illustrate the above results Bee [

Example 3.2. Consider the Beverton-Holt model with 2-periodic harvesting given by

Kuz,
K+ (p—1z,

whereh,,.» = h, foralln € N andhg, hy > 0. Based on the constraints in Egs5), we can
eliminatex and obtain a relationship betweggpandh;. Indeed, we obtain

Tnt+l =

1
K2~ KB+ ) + hohy =0, 5= 10,
or equivalently
K (K — Bhg) K
hi=—-—"2 0 hp< —.
1 Kﬁ — hO ) o< B
We use the relationship betweggandh; to find
_ K(K + ho) -1
= = Z(K — ho).
S R D) —ho(u—1) 29 =K o)

At hg = (ﬁli) K, we obtainhg = h; andzg = 1, which is the constant harvesting case.
Observe that a swap dfy and h; leads to a swap afy and z1, which seems to be of little
mathematical effect, but in fact, it has a dramatic effect when the siteegfopulation is low.
Whenhg < hi, we havery < z; and populations ificg, co) persist. On the other hanty > b
implies zg > 27 and|zg, 00) is the persistent set. Therefore, one can investigate the advantage

of having 0< hg < h1 < hinae at all times. See Figur2for an illustration.

xn+lA

fo(@)

fa(fo(x))

V7

Figure 2. This figure shows the curves @§(z), fi(x), f1(fo(z)) and fo( f1(x)) together with
the 2-cycle{zo, z1}. The parameters are fixed &s= 4, u = 9, hg = 1 andhy = .

Results presented in ExamBe2 motivate investigating the following open problems. We use
D(ho, h1, - .., h,—1) to denote the persistent set of EXjf).
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Open Problem 3.2. Let {h,,} be ap-periodic sequence of harvesting quotas in &g)(that give
a nonempty persistent sB{ho, h1, ..., h,—1). Let{h,} be a permutation ofh,}. Definexz,,
and,, to be the average of the attractors associated Wit} and {,,}, respectively. How
doesz,, relate tox;,,?

Open Problem 3.3.In Eq.(3.6), let {h,,} be a fixedp-periodic sequence of harvesting quotas
that give a nonempty persistent g@tho, h1, . . ., hp—1). Which permutation of,,} gives the
largest persistent set?

Open Problem 3.4. What happens to the invariants given in g whenh,, = 1+¢,?

In conjunction with these three open questions, it is worth mentioning thataAd8@h and
Rhouma investigated irb] the effect of permuting a periodic carrying capacity on the maximum
sustainable yield. In particular, they considered the equation

kj, pxy

— h, eN, 3.7
Bt (Do, " 37

Tnt+l =

where (jo, j1, - - -, jp—1) is @ permutation of the s¢0,1,2,...,p — 1} andk;,,, = k;, for all
positive integers:, and obtained the following two results:

Theorem 3.3. [5] Fix a p-periodic sequence of carrying capacitigs, 1, . . ., k,_1]. All equa-
tions of the form§.7) with permutations jo, j1, . - ., j,—1) in the dihedral group of ordep give
the same maximum constant harvesting level.

Theorem 3.4.[5] Consider Egq. 8.7) and assume the initial population is sufficiently large.
Without loss of generality, léf < k1 < --- < k,_1. Each of the following holds true:

() For p = 2 or 3, a permutation of the carrying capacities does not change the maximum
harvesting level.

(ii) For p = 4, there are three different levels of maximum harvesting through permuosatib
the carrying capacities. In particulatjo, j1, 72, 73) = (0,2,1,3) or (3,1,2,0) and their
cyclic permutations give the largest, af, j1, 72, j3) = (3,2,0,1) or (1,0, 2, 3) and their
cyclic permutation give the smallest.

(iii) For p = 5, there are twelve different levels of maximum harvesting through permusatio
of the carrying capacities. In particulatgo, j1, j2, j3,74) = (1,2,3,0,4) or (4,0,3,2,1)
and their cyclic permutations give the largest, af, j1,j2,73,74) = (3,1,0,2,4) or
(4,2,0,1,3) and their cyclic permutation give the smallest.

3.2 One-unittimelag (k = 1)

Consider they-periodic second-order difference equation

Tptl = xnf(xn—l) £ hy, (38)

wherep is the minimal positive integer for which,,,, = h,, for all n. By considering peri-
odic stocking or harvesting in addition to the delay, we add another factmroplexity to the
equation.

Periodic Stocking

In this case we have
T = T f(Tn_1) + I, (3.9)

whereh,, > 0 is ap-periodic sequence representing stocking qudtas ( > 0). Eq. 8.9 was
investigated by AlSharawi ir2]. To capture the main results i2]] we need to cite part of the
developed machinery. Define the two dimensional mBgs, y) = (y,yf(z) + h;), then the
iterates of thep-periodic sequence of magg : j = 0,1,...,p — 1 portray the dynamics of
Eq.@.9) in the positive quadrant. It is possible to define a compact regigrthat serves as a
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compact invariant for each individual map. However, we need a compact invariant for the
fold mapT’ = T),_10T),_z0- - -oTp. Itwas shown thak; < h; impliesR;,, C Ry, which suggests
defining one invariant for all mags;. Indeed, considek,, := max;{h;,j = 0,1,...,p — 1}
and

J t>0

Cm = max{%suyibt+hj)f(t): j:O,l,...,p—l},

then user,,, andc,, to define a regioi?;,,, as the polygon of consecutive vertid€s0), (0, i, ),
(Cms bCm + hum)s (bCm + By b + B )5 (bem + him, 0). The regionRy,,, is a compact invariant
for each may¥;, and consequently it is a compact invariant for field map7'. Using Brouwer
Fixed-Point Theorem? has a fixed point inR; . Based on Theorer.1, Eq.@3.9 has ap-
periodic solution. These facts furnish the ground for the following resiiich is the main
result obtained inZ].

Theorem 3.5. Thep-periodic difference equation in EQ.Q) has ap-periodic solution. Further-
more, thep-periodic solution is globally attracting when= 2.

Conjecture 3.6. The p-periodic solution of EqJ.9) obtained in Theorer.5is globally attract-
ing for all p > 2.

Finally, after verifying this conjecture, then Probléi can be investigated for EQ.Q).

Periodic Harvesting
In this case, Eq3.8) takes the form

Tl = Tnf(Tn_1) — hpn, hy >0. (3.10)
To the best of our knowledge, E§.(0 has not been studied yet. Define
Romin = min{ho, hl, e hp_l},

then
Tpy2 = 33nf(517n)f(113n—1) - hnf(xn) - hn+1 < Mb— hmin(b + 1)-

Since persistent solutions must satisfy > hmT, persistent solutions are bounded and strongly
persistent, which is similar to the result in Theorgrd Furthermore, we give the following.

Proposition 3.7. Considerh,,,.. as defined in EqA.2). If h,, > hpee foralln =0,1,... ,p—1,
then the persistent set of E§.L0 is empty.

Proof. Let {x,,} be a persistent solution such that; > . We obtainz, = zof(z_1) — ho <
zof (w0) — ho < zo. By induction, we obtain a decreasing and bounded sequence that must
converge to avalue, say Forj =0,1,...,p — 1, we have

Tnp+j = xnp+j—1f<xnp+j—2) - hj—la
which impliesc is a fixed point of this equation. Sinég_1 > hmax, We obtain a contradiction.
Next, start with(x_1, zp) such thatr_; < o, then either we obtain a monotonic sequence which

leads us to a contradiction, or we obtaif_; > z,,, for some fixedn and we use the first case
to obtain a contradiction. O

Now, we close this section by posing the following open problem.

Open Problem 3.5. Investigate the dynamics of E§.(0O.
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