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Abstract

The problem of optimizing a domain dependent functional, while keeping a domain’s

measure (its volume, perimeter, etc.) fixed, is called an isoperimetric problem. The

isoperimetric inequalities have a long history in mathematics dating back to the Greeks

and Dido’s problem, when the first classical isoperimetric inequality appeared in the

Euclidean geometry. With the introduction of the calculus of variations in the 17th

century, the isoperimetric inequalities found their way into mathematical physics.

Among the isoperimetric problems, here we propose the investigation of those linking

the shape of a membrane to the sequence of its frequencies. The starting point in this

research field is the Faber-Krahn inequality, which states that among all fixed mem-

branes of given area, the first frequency is minimal for the circular membrane. As for

the second frequency of fixed membranes of given area, we know that it is minimized

by the disjoint union of two identical circular membranes (Krahn’s inequality). For

other types of membranes several results are known, but a lot of questions remain

open. In this thesis we are going to present some classical isoperimetric inequalities,

as well as some universal bounds, which are not isoperimetric, but in some cases they

represent the best possible bounds obtained at their time. Finally, we will present

some new universal bounds we have obtained for the frequencies of clamped and

buckled plates.

Keywords: Isoperimetric inequalities; clamped plate; buckled plate; universal bounds;

eigenvalues; frequencies of membranes and plates.
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Chapter 1. Introduction

In this chapter, we are going to give an overview of the main concepts and types

of problems we are dealing with in this thesis. First, we clarify the notion of the

shape optimization problem, whose solutions can always be given in the form of some

isoperimetric inequalities. The definition will be followed by some very suggestive

examples of geometric nature. Next, we will introduce some classical eigenvalue

problems which appear as models for frequencies of different types of membranes.

Finally, we compute these frequencies for some special shapes and present the main

properties of these frequencies, in general.

1.1 Shape optimization problems. Isoperimetry

The word optimum is Latin and means the ultimate ideal, while the Latin word

optimus means the best. An optimization problem is thus the problem of finding the

best solution from all feasible solutions. In this chapter we are interested in a special

type of optimization problems, namely the shape optimization problems, where we

look for the best possible shape of an object which maximize or minimize a certain

quantity related to it. More precisely:

Definition 1.1.1. A shape optimization problem is a problem of the following type:

Find (the shape) Ω∗ ∈ F , solution to the following optimization problem:

F (Ω∗) = min
Ω∈F

/max
Ω∈F

F (Ω), (1.1)

where F ⊆ P (Rn) is the class of all admissible domains from Rn and F : F → R is

a domain-dependent functional.

Obviously, these shape optimization problems can be expressed in terms of so-

called isoperimetric inequalities, as shown in the following examples.

Example 1.1. Among all rectangles of given perimeter P , the square has the largest

area A. This statement can be expressed as an isoperimetric inequality, as follows:

A ≤ 1

16
P 2, (1.2)

where the equality holds for a square.
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Example 1.2. Among all triangles of given perimeter P , the equilateral triangle has

the largest area A. This statement can be expressed as an isoperimetric inequality, as

follows:

A ≤ 1

12
√

3
P 2, (1.3)

where the equality holds for an equilateral triangle.

Example 1.3. Among all closed planar curves of given perimeter P , the circle has

the largest area A (Queen Dido of Cartage). This statement can be expressed as an

isoperimetric inequality, as follows:

A ≤ 1

4π
P 2, (1.4)

where the equality holds for a circle.

1.2 Model Problems: Frequencies of Membranes

In this section we are going to present some model problems for two different

types of vibrating membranes, whose shapes are always represented by a bounded

open set Ω ⊆ RN , with Lipschitz boundary. In what follows we will see that the fre-

quencies of such membranes are directly related to the eigenvalues of the Laplacian

operator on Ω.

1.2.1 Frequencies of a fixed membrane. The model problem for the frequencies

of a fixed membrane is given by the following eigenvalue problem for the Dirichlet-

Laplacian: 
∆u+ λu = 0 in Ω,

u = 0 on ∂Ω.

(1.5)

This problem has a real and purely discrete spectrum

0 < λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ ... ≤ λn(Ω)→ +∞. (1.6)

The normal modes and proper frequencies that characterize the vibrations of a fixed

planar membrane of the given shape Ω are determined by the solutions of this prob-

lem in the case N = 2. More precisely, in this case,
√
λn, with n ∈ N, represent the

11



frequencies of the fixed membrane of given shape Ω. These eigenvalues are explicitly

computable only for special domains (rectangles, disks). Since we cannot compute

the eigenvalues of an arbitrary domain Ω, then we want at least to get optimal es-

timates of them in terms of geometric quantities related to the underlying domain

Ω. For instance, a first conjecture on a possible isoperimetric bound for the first fre-

quency was stated by Lord Rayleigh [10], and it says the following: Among all fixed

membranes of given area, the circular one gives the lowest first frequency. A proof of

this conjecture will be presented in Chapter 2.

1.2.2 Frequencies of a free membrane. The model problem for the frequencies

of a free membrane is given by the following eigenvalue problem for the Neumann-

Laplacian: 
∆u+ µu = 0 in Ω,

∂u

∂n
= 0 on ∂Ω.

(1.7)

This problem also has a real and purely discrete spectrum

0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ ...→∞. (1.8)

The normal modes and the proper frequencies that characterize the vibrations of a

free membrane of given shape Ω are determined by the solutions of this problem,

when N = 2. In such a case,
√
µn, with n ∈ N, represent the frequencies of the free

membrane of given shape Ω. These eigenvalues are again explicitly computable only

for special domains (rectangles, disks). And since we cannot compute the eigenvalues

of an arbitrary domain Ω, then we want at least to get optimal estimates of them in

terms of geometric quantities related to the underlying domain Ω. For instance, a first

conjecture on a possible isoperimetric inequality for the first frequency was stated

by E.T. Kornhauser and I. Stackgold [8] and it says the following: Among all free

membranes of given area, the circular one gives the largest first frequency. Two

proofs of this conjecture will be presented in Chapter 3.

1.3 The Special Case of Rectangles and Disks

In this section we are going to show how one may obtain explicitly the eigenvalues

and the eigenfunctions of the Laplacian in the case of some simple shapes, for which we

12



can do that. To this end, let’s first remind the one dimensional case of the problem given

in equation (1.5), since it will often appear in our computations for the two dimensional

case, when the method of separation of variables is used. More precisely, if we consider

the one dimensional case of the problem given in equation (1.5), that is the following

eigenvalue problem 
∆u+ λu = 0 in Ω,

u = 0 on ∂Ω,

then one can easily notice that the only non-trivial solutions are

λn =
n2π2

L2
, un(x) = sin(

nπx

L
), n ≥ 1. (1.9)

Next, we will use the method of separation of variables to clarify the situation for rect-

angles.

1.3.1 The case of rectangles. Let Ω = (0, L)× (0, l) be a planar rectangle. We then

have:

Proposition 1.3.1. The only non-trivial solutions of the problem given in equation (1.5)

for the planar rectangle Ω are:

λm,n = π2(
m2

L2
+
n2

l2
)

um,n(x, y) =
2√
Ll

sin

(
mπx

L

)
sin

(
nπy

l

) ,m, n ∈ N∗. (1.10)

Proof: For the proof we are using the separation of variables method, which means

that we are looking for a solution of the form

u(x, y) = f(x)g(y). (1.11)

If we plug (1.11) into (1.5), we get

f
′′
(x)g(y) + f(x)g

′′
(y) + λf(x)g(y) = 0. (1.12)

Dividing (1.12) by fg and rearranging the terms, we can rewrite equation (1.12) as

f ′′(x)

f(x)
= −

(
g
′′
(y)

g(y)
+ λ

)
= constant = k. (1.13)

13



Now, taking into account the boundary condition from equation (1.5), one can easily

notice that f and g satisfy the following boundary value problems
f
′′
(x)− kf(x) = 0,

f(0) = f(L) = 0,

(1.14)

respectively, 
g
′′
(y) + (λ+ k)g(y) = 0,

g(0) = g(l) = 0.

(1.15)

Clearly from what is known from the one dimensional case, the problem given in equa-

tion (1.14) will have the following non-trivial solutions, considering a = −k > 0,

a = π2 n
2

L2
and f(x) = c sin

(
nπ

L
x

)
. (1.16)

Next, with the value of k found in (1.16), we get
g
′′
(y) +

(
λ− π2 n

2

L2

)
g(y) = 0,

g(0) = g(l) = 0.

(1.17)

Again, from what is known from the one dimensional case, the problem given in equa-

tion (1.17) will have the following non-trivial solutions, considering b = λ− π2 n
2

L2
,

b = π2m
2

l2
and g(y) = c sin

(
mπ

l
y

)
. (1.18)

In conclusion, the non-trivial solutions for the problem given in equation (1.5) are given

as in (1.10). �

Next, using the same idea we can obtain similar results for the free membrane prob-

lem.

Proposition 1.3.2. The only non-trivial solutions of the problem given in equation (1.7)

for the planar rectangle Ω are:

µm,n = π2

(
m2

L2
+
n2

l2

)

um,n(x, y) =
2√
Ll

cos(
mπx

L
) cos(

nπy

l
)

,m, n ∈ N∗. (1.19)
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1.3.2 The case of disks. Let Ω = BR be the disk of radius R centered at the origin.

Using again the separation of variables method, one may obtain the following.

Proposition 1.3.3. The non-trivial solutions of problem (1.5) on the disk Ω are:

λ0,k =
j2

0,k

R2
, u0,k(r, θ) =

√
1

π

1

R|J ′0(j0,k)|
J0(j0,k

r

R
), k ≥ 1, (1.20)

λn,k =
j2
n,k

R2
, un,k(r, θ) =

√
2
π

1
R|J ′n(jn,k)|Jn(jn,k

r
R

) cos(nθ)√
2
π

1
R|J ′n(jn,k)|Jn(jn,k

r
R

) cos(nθ)

, n, k ≥ 1,

(1.21)

where jn,k is the k − th zero of the Bessel function Jn.

Proof: In polar coordinates problem (1.5) takes the following form
urr + 1

r
ur + 1

r2uθθ + λu = 0

u(R, θ) = 0

, r ∈ (0, R) and θ ∈ [0, 2π]. (1.22)

Now, we are going to use the separation of variables method, which means that we are

looking for a solution of the form

u(r, θ) = f(r)g(θ). (1.23)

By substituting (1.23) into (1.22) and performing some operations we get

r2(f
′′
(r) + 1

r
f
′
(r) + λf(r))

f(r)
= −g

′′
(θ)

g(θ)
= constant = k. (1.24)

Since θ is a cyclic coordinate, we must require that u is periodic with respect to θ, of

period 2π. Therefore, we can take k = p2. In such a case, from what is known from the

one dimensional case, we can easily find that

g(θ) = a cos pθ + b sin pθ. (1.25)

Next, we introduce a new variable

x :=
√
λr, (1.26)

and define a new function

y(x) := f(
x√
λ

) = f(r). (1.27)

15



We then notice that y(x) satisfies the following Bessel Equation of order p

y
′′
(x) +

1

x
y
′
(x) + (1− p2

x2
)y(x) = 0, (1.28)

with the condition on the boundary

y(
√
λR) = 0. (1.29)

In what follows, we will try to solve equation (1.28) by looking for a solution given as

a power series

y(x) = xr
∑
n≥0

Cnx
n, x ∈ R, (1.30)

where the exponent r and the constants Ck are to be determined. We assume that the

series
∑

n≥0Cnx
n has radius of convergence ρ > 0. Then, substituting this power series

into equation (1.28), we obtain∑
n≥0

[(r + n)(r + n− 1) + (r + n)]Cnx
n + (x2 − p2)

∑
n≥0

Cnx
n = 0, (1.31)

or, equivalently, ∑
n≥0

[(r + n)2 − p2]Cnx
n = −

∑
n≥0

Cnx
n+2. (1.32)

Identifying the coefficients in (1.32) we get

(r2 − p2)C0 = 0, [(r + 1)2 − p2]C1 = 0, (1.33)

[(r + k)2 − p2]Ck = −Ck−2, k = 2, 3, 4, ... . (1.34)

Without loss of generality, we take C0 6= 0. Otherwise the series (1.32) starts with the

term C1x
r+1 and with change of notation r + 1 = r1 and n = m+ 1 we will have:

y(x) = xr1
∑
m≥0

Cmx
n, (1.35)

that is a series of the same form as (1.30). Then, using the first equation from (1.33),

we obtain the following algebraic equation

r2 − p2 = 0, (1.36)

which has the roots p and -p. For r = p, the second equation from (1.33) gives

(2p+ 1)C1 = 0⇒ C1 = 0. (1.37)

16



On the other hand, equation (1.34) leads to the following relation of recurrence:

Ck = − Ck−2

k(2p+ k)
, k = 2, 3, 4, ... . (1.38)

Consequently, all the coefficients Cn of odd index are equal to 0. Also, by (1.38), every

coefficient of even index can be expressed by the following relation of recurrence

C2m = − C2m−2

22m(p+m)
, m = 2, 3, 4, ... . (1.39)

The successive application of this recurrent formula allows us to express C2m in terms

of C0, as follows

C2m = (−1)m
C0

2mm!(p+ 1)(p+ 2)...(p+m)
. (1.40)

Using the fact that

(p+ 1)(p+ 2)...(p+m) =
Γ(p+m+ 1)

Γ(p+ 1)
, (1.41)

we then obtain

C2m =
(−1)mΓ(p+ 1)C0

m!2mΓ(p+m+ 1)
, m = 1, 2, 3, ... . (1.42)

In conclusion

y(x) = xp
∑
m≥0

C2mx
2m = Γ(p+ 1)C0

∑
m≥0

(−1)mxp+2m

m!22mΓ(p+m+ 1)
. (1.43)

Since, equation (1.28) is homogeneous, the solutions can be determined up to a multi-

plicative constant, which is chosen to be

C0 =
1

2nΓ(p+ 1)
. (1.44)

We then obtain

y(x) =
∑
m≥0

(−1)m

m!Γ(p+m+ 1)

(
x

2

)p+2m

:= Jp(x), (1.45)

which is the Bessel function of order p and type 1. In a similar way, the following series

J−p :=
∑
m≥0

(−1)m

m!Γ(−p+m+ 1)

(
x

2

)−p+2m

, (1.46)
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corresponding to r = −p represents a second solution of (1.24), linearly independent

of Jp. The series (1.45) and (1.46) are obviously convergent for all values of x. In fact,

if we write

y(x) =

(
x

2

)p∑
m≥0

(−1)m

m!Γ(p+m+ 1)
ζm, for ζ :=

(
x

2

)2

. (1.47)

Then the radius of convergence of the power series given above is

ρ = lim
m→∞

∣∣∣∣ (−1)m

m!Γ(p+m+ 1)

/
(−1)m+1

(m+ 1)!Γ(p+m+ 2)

∣∣∣∣
= lim

m→∞
[(m+ 1)(p+m+ 1)] =∞. �

(1.48)

Remark: For the membrane problem (1.6) in Rn, n ≥ 3, we have a similar situation

because

∆Rn =
∂

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn−1 , (1.49)

and by separation of variables

u(x) = f(r)g(Θ), (1.50)

where r is the radius and Θ is the so-called Winkelvariable, we obtain the equivalent

equations 
∆Sn−1g = µg,

r2f
′′

+ (n− 1)rf
′
+ (µ+ λr)f = 0.

(1.51)

Moreover, one can show that µk are given as follows

µk = −k(n+ k − 2). (1.52)

Finally, using the same idea, we can obtain similar results for the free membrane prob-

lem (see, [5] for more details.)

Proposition 1.3.4. The only non-trivial solutions of the problem given in equation (1.7)

for the disk Ω are:

µ0,k =
j′0,k

2

R2
, u0,k(r, θ) =

√
1

π

1

R|J0(j′0,k)|
J0(j′0,k

r

R
), k ≥ 1, (1.53)

µn,k =
j′n,k

2

R2
, un,k(r, θ) =

√
2
π

j
′
n,k

R
√
j
′
n,k

2−n2|Jn(j
′
n,k)|

Jn(j
′

n,k
r
R

) cosnθ√
2
π

j
′
n,k

R
√
j
′
n,k

2−n2|Jn(j
′
n,k)|

Jn(j
′

n,k
r
R

) sinnθ

, n, k ≥ 1,

(1.54)

where j′n,k is the k − th zero of J ′n (the derivative of the Bessel function Jn).
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1.4 Properties of the Eigenvalues

In this section we are going to present the main properties of the eigenvalues. To

this end we will concentrate on the Dirichlet eigenvalues, similar results being possible

for the Neumann eigenvalues.

Proposition 1.4.1. The eigenvalues λk are real and positive. Therefore, we can arrange

them in an increasing order such that

0 < λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ ... . (1.55)

Proof: Let f = uk and g = uk , we know that:

∇(f∇g) = ∇f∇g + f4g. (1.56)

Thus

∇(ūk∇uk) = (|∇uk|2 + ūk4uk) = |∇uk|2 − λk|uk|2. (1.57)

Integrating this relation over Ω, and using the divergence theorem, we get

0 =

∫
Ω

|∇uk|2dx− λk
∫

Ω

|uk|2dx, k = 1, 2, 3, ..., (1.58)

from which, the following relation follows

λk =

∫
Ω
|∇uk|2dx∫

Ω
|uk|2dx

> 0, k = 1, 2, 3, ... . � (1.59)

Proposition 1.4.2. The eigenfunctions uk and uj associated to the distinct eigenvalues

λk 6= λj are two by two orthogonal, that is∫
Ω

ukujdx = 0, for λk 6= λj. (1.60)

Proof: Integrating the following relation

uk4uj − uj4uk = (λk − λj)ukuj, (1.61)

over Ω, and using the Green’s formula, we obtain

0 =

∫
∂Ω

(
uk
∂uj
∂n
− uj

∂uk
∂n

)
ds = (λk − λj)

∫
Ω

ukujdx, (1.62)

and the proof is achieved, since λk − λj 6= 0. �

Proposition 1.4.3. Each eigenfunction uk is determined up to a multiplicative constant.

Therefore it is always possible to choose an orthonormal system of eigenfunctions, in

such a way that ∫
Ω

ukujdx = δkj =

 0, if λk 6= λj

1, if λk = λj
. (1.63)
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1.5 Variational Characterizations of the Eigenvalues

We know that the eigenvalues are only computable for special domains such as

rectangles and disks. For other domains, when they are not computable, at least we

want to find some bounds for them. To this end, the most important tool is given by the

variational characterizations of the eigenvalues.

First, let us introduce some terminology. Let W k,p(Ω) be the Sobolev space given by

W k,p(Ω) = {u : Ω→ R measurable : ∃Dαu ∈ Lp,∀|α| ≤ k}.

For p = 2 we obtain the space Hk(Ω) = W k,2(Ω), which is a Hilbert space. In what

follows we will often consider the following space

H1
0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}.

The first eigenvalue λ1 of Ω can be characterized as a variational minimum in H1
0 (Ω)

of the following Rayleigh quotient

R[v] =

∫
Ω
|∇v|2dx∫
Ω
v2dx

. (1.64)

This statement is contained in the following variational principle.

Theorem 1.5.1. (Rayleigh’s Variational Principle)

λ1(Ω) = Min
v∈H1

0 (Ω),v 6=0
R(v). (1.65)

Note that the variational minimum is obtained if and only if v = u1(x).

Proof: Let u(x) ∈ H1
0 (Ω) be the function that achieves the minimum m of R(v).

Let us define v(x) := u + εw(x), where ε is an arbitrary real parameter and w(x) is an

arbitrary function in H1
0 (Ω). By the definition of u(x), we have the following relation

d

dε
R(v)

∣∣
ε=0

=
d

dε

∫
Ω

(|∇u|2 + 2ε∇u∇w + ε2|∇w|2)dx∫
Ω

(u2 + 2εuw + ε2w2)dx

∣∣∣∣
ε=0

= 0, (1.66)

which leads to ∫
Ω

u2dx

∫
Ω

∇u∇wdx−
∫

Ω

|∇u|2dx
∫

Ω

uwdx = 0. (1.67)

With R[u] = m, (1.67) becomes∫
Ω

∇u∇wdx = m

∫
Ω

uwdx. (1.68)
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On the other hand, we have∫
Ω

∇u∇wdx = −
∫

Ω

w∆udx+

∫
∂Ω

w
∂u

∂nds
= −

∫
Ω

w∆udx. (1.69)

Combining now the previous two relations, we obtain∫
Ω

(∆u+mu)wdx = 0, ∀w(x) ∈ H1
0 (Ω), (1.70)

which implies that

∆u(x) +mu(x) = 0, ∀x ∈ Ω. (1.71)

We can thus conclude, from (1.71), that

u = uk, m = λk,

for a certain index k. In fact, we must choose k = 1, since we have

0 < λ1 < λ2 ≤ λ3 ≤ ...,

and this achieves the proof. �

The eigenvalues of higher order can be also characterized variationally in the same

way.

Theorem 1.5.2.

λn(Ω) = min
v∈H1

0 (Ω),v 6=0
<v,uk>=0,k=1,...,n−1

R(v). (1.72)

We note again that the variational minimum is obtained if and only if v = un(x).

Proof: The previous calculations remain valid, provided that additional constraints

are imposed, that is

< u, uk >= 0, k = 1, 2, .., n− 1. (1.73)

The eigenfunction u(x) must thus be orthogonal to the first n− 1 eigenfunctions, so we

have

u = un, m = λn,

and the proof is achieved. �
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The variational characterization indicated by theorem (1.5.2) is of considerable theo-

retical interest, but is difficult to apply in practice, since the eigenfunctions uk, k =

1, ..., n − 1 are generally unknown. However, Poincare variational principle have suc-

cessfully overcome this difficulty by developing two variational principles which we

formulate below.

Theorem 1.5.3. (Poincaré Variational Principle)

Let fk(x), k = 1, ..., n, be n linearly independent functions in H1
0 (Ω). Let En be the

vector space generated by these n functions. We then have

λn(Ω) = Min
En

(max
u∈En

R[u]). (1.74)

The variational minimum should be computed with respect to the choice of En, while

the maximum is an ordinary maximum in the vector space En.

Proof: First of all, we have

λn ≤Max
u∈En

R(u). (1.75)

Indeed, there exists some constants c1, ..., cn (not all of them equal to zero), such that

u0(x) :=
n∑
k=1

ckfk(x), (1.76)

is orthogonal on u1(x), ..., un(x), that is∫
Ω

u0(x)uk(x)dx = 0, k = 1, ..., n− 1. (1.77)

u0(x) is thus admissible in the variational characterization of λn according to the theo-

rem (1.5.2), we therefore have

λn ≤ R(u0) ≤ max
u∈En

R(u). � (1.78)

1.6 Eigenvalues Monotonicity Property

Theorem 1.6.1. If Ω1 ⊆ Ω2, then we have

λn(Ω1) ≥ λn(Ω2), ∀n = 1, 2, 3... . (1.79)
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Proof: Let us denote by En the vector space generated by the first n eigenvalues

u1(x), ..., un(x) corresponding to Ω1. Let us define the following function

ũk(x) :=

 uk(x), x ∈ Ω1,

0, x ∈ Ω2 \ Ω1,
(1.80)

Clearly, from the definition, the functions ũk(x) belong toH1
0 (Ω2). Next, let us consider

Ẽn := span{ũ1, ..., ũn}, (1.81)

which is admissible for the Poincaré variational characterization of λn(Ω2). Therefore,

we have

λn(Ω2) ≤ max
u∈Ẽn

RΩ2 [u] = max
u∈En

RΩ1 [u] = λn(Ω1), (1.82)

and the proof is achieved. �

Corollary 1.6.1.1.

λn(Ω)→∞, when n→∞. (1.83)

Proof: Choose a > 0 such that the n-cube Qa contains Ω. The eigenvalues of Qa

are in the following form (
π

a

)2 n∑
k=1

m2
k, (1.84)

where mk are any non-negative integers (not all of them equal to zero). Since these

eigenvalues are not bounded, we have

λm(Ω) ≥ λm(Qa)→∞, (1.85)

and the proof is achieved. �

The goal of this thesis is to show how one may find some similar types of isoperi-

metric bounds for frequencies of vibrating membranes and plates, when such bounds

are possible, or how to find some universal bounds which are not necessarily optimal,

but they are the best known in the literature.
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Chapter 2. Dirichlet Case

One of the main tools in the study of isoperimetric inequalities, which lead to op-

timal shapes that are spherical, is the Schwarz symmetrization, also known as Schwarz

rearrangement. The goal of this section is to give a quick overview of this type of sym-

metrization (see, [7] for more details) and present the results we need later to obtain the

Faber-Krahn inequality and the Hardy-Littlewood-Pólya inequality.

2.1 Schwarz Rearrangements of Functions and Sets

Throughout this chapter, Ω ⊂ Rn will represent a measurable set, while u : Ω→ R

will represent a measurable function.

Definition 2.1.1. (Schwarz Rearrangement of a Set)

The Schwarz rearrangement of Ω is the ball of the same volume as Ω, and it is usually

denoted by Ω∗( see Figure 2.1).

Figure 2.1: Schwarz rearrangement of a set.

Definition 2.1.2. (Schwarz Rearrangement of a Function)

The Schwarz rearrangement of u or the spherical decreasing rearrangement of u, usually

denoted by u∗, is the function defined as follows:

u∗(x) = sup{c : x ∈ Ω∗(c)}, (2.1)

where Ω(c) is the c-level set of u(x), that is

Ω(c) = {x ∈ Ω : u(x) ≥ c}. (2.2)
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To better understand and visualize this definition, let us give an example in the one

dimension case.

Example 2.1. Let us consider Ω = [−1, 3] and f : Ω→ R defined as:

f(x) =



1 + x , x ∈ [−1, 0]

1 , x ∈ [0, 1]

x , x ∈ [1, 3/2]

3− x , x ∈ [3/2, 3]

Then Ω∗ = [−2, 2] and

f ∗(x) = f ∗(−x) =


3/2− x , x ∈ [0, 1/2]

1 , x ∈ [1/2, 1]

2− x , x ∈ [1, 2]

In what follows, we consider some basic notations and functions which will be

helpful in the next section. First, let us consider the set of all functions that satisfy

u(x) ≥ 0, for x ∈ Ω, (2.3)

and

u = 0, for x ∈ ∂Ω, (2.4)

where ∂Ω represents the boundary of Ω, and denote this set by P0(Ω). Moreover, let us

define

a(t) := |Ω(t)|, (2.5)

and

Ω(t) := {x ∈ Ω : u(x) > t}, (2.6)

where a(t) is a decreasing function of t. And note that a(t) is continuous if

|{x ∈ Ω : u(x) = t}| = 0, ∀t ∈ (0, ū), (2.7)
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where ū = sup
Ω
u(x). On the other hand, if

|{x ∈ Ω : u(x) = t}| 6= 0, (2.8)

the function a(t) is discontinuous at t = t0. In this case, its generalized inverse function

t(a) is defined by

t(a) = t0, for a ∈ (a(t+0 ), a(t−0 )), (2.9)

where a(t+0 ) = lim
t→t+0

a(t) and a(t−0 ) = lim
t→t−0

a(t). Now let us establish a formula which

expresses the derivative of the function a(t), which is valid if u(x) is analytical and

|∇u| 6= 0 almost everywhere in Ω. First, we define

Γ(t) := {x ∈ Ω : u(x) = t}. (2.10)

The volume of the domain located between two neighboring level surfaces Γ(t) and

Γ(t+ dt) is given by

a(t)− a(t+ dt) =

∫
Γ(t)

dnds+ o(dn), (2.11)

where ds is the area element on Γ(t), dn measures the distance between Γ(t) and Γ(t+

dt) and dt = |∇u|dn+ o(dn). We then obtain

−da
dt

= lim
dt→0

a(t)− a(t+ dt)

dt
=

∫
Γ(t)

ds

|∇u|
, u < t < ū, (2.12)

where u = inf
Ω
u(x). Moreover, a generalization of the previous formula is given by the

following lemma.

Lemma 2.1.1. If p(x) ∈ C(Ω) and u(x) is an analytical function in Ω. We have

− d

dt

∫
Ω(t)

p(x)dx =

∫
Γ(t)

p(s)
ds

|∇u|
u < t < ū. (2.13)

2.2 Hardy-Littlewood-Pólya Inequality

Theorem 2.2.1. Let us consider

f(t) : R+ → R a convex non-decreasing function,

g(t) : R→ R+ a continuous positive function.

Let u ∈ P0(Ω) be an analytic function such that |∇u| 6= 0 almost everywhere in Ω. We

then have the following inequality∫
Ω∗

g(u∗)f(|∇u∗|)dx ≤
∫
Ω

g(u)f(|∇u|)dx, (2.14)
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with equality when either

Ω = Ω∗ and u = u∗,

or

f ≡ const.

In particular, we have ∫
Ω∗

(u∗)2 dx =

∫
Ω

u2dx, (2.15)

∫
Ω∗

|∇u∗|2 dx ≤
∫
Ω

|∇u|2 dx. (2.16)

For the proof the following two classical inequalities will play an important role.

We state them in the following two lemmas.

Lemma 2.2.1. (Jensen Inequality)

Let f(t) be a convex function of a real variable and E be a measurable set. Then, we

have the following inequality:

f

(∫
E
c(s)x(s)ds∫
E
c(s)ds

)
≤
∫
E
c(s)f(x(s))ds∫
E
c(s)ds

, (2.17)

where x(s) ∈ C1(E), c(s) ≥ 0 is a measurable function. Moreover, if f is strictly

convex, then the equality holds if and only if x(s) is identically constant.

Lemma 2.2.2. (Geometric Isoperimetric Inequality)

Among all bounded domains of class C1 in Rn of given volume |Ω|, the ball Ω∗ has the

smallest area. In other words

|∂Ω|n ≥ |∂Ω∗|n = wn(n|Ω|)n−1, (2.18)

where wn := 2π
n
2

Γ(n
2

)
is the area of the unit sphere in Rn. The equality in (2.18) holds if

and only if Ω = Ω∗.

Proof of Theorem 2.2.1

Now we apply the Jensen’s inequality (lemma 2.2.1) with

E = Γ(t), c(s) =
1

|∇u|
, x(s) = |∇u|.
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We thus obtain ∫
Γ(t)

f(∇u)

|∇u|
ds ≥

∫
Γ(t)

ds

|∇u|
f

( ∫
Γ(t)

ds∫
Γ(t)

ds
|∇u|

)
. (2.19)

Since u ∈ P0(Ω), the level surfaces Γ(t) are closed and the geometric isoperimetric

inequality from Lemma (2.2.2) allows us to write

|Γ(t)| :=
∫

Γ(t)

ds ≥ (na(t))
n−1
n w

1
n
n . (2.20)

Now combining the previous two inequalities and using∫
Γ(t)

ds

|∇u|
= −a′(t) > 0 (2.21)

we get ∫
Γ(t)

f(|∇u|)
|∇u|

ds ≥ −a′(t)f
(

(na(t))
n−1
n w

1
n
n

−a′(t)

)
. (2.22)

Next, multiplying (2.22) by g(u(t)) > 0 and integrating the result from t0 to ū, we

obtain

∫
Ω(t0)

g(u)f(|∇u|)dx =

∫ ū

t0

∫
Γ(t)

g(u)f(|∇u|)
|∇u|

dsdt

≥
∫ ū

t0

g(t)f

(
(na(t))

n−1
n w

1
n
n (− dt

da
)

)
da.

(2.23)

We thus obtain a lower bound for∫
Ω(t0)

g(u)f(|∇u|)dx, (2.24)

which only depends on the function a(t) and u. Therefore, this lower bound also applies

to the quantity ∫
Ω(t0)∗

g(u∗)f(|∇u∗|)dx, (2.25)

since we have a(t) = a∗(t) and u = u∗. Moreover, there is equality in the latter case

since Ω(t)∗ are balls and |∇u∗| = const. on Γ(t)∗, which completes the proof of the

theorem. �

2.3 Faber-Krahn Inequality

Theorem 2.3.1. Among all open bounded sets Ω ⊆ Rn of given volume, the ball min-

imizes the first eigenvalue of the Dirichlet Laplacian. In other words, if c is a positive
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number and B is the ball of volume c, then:

λ1(B) = min{λ1(Ω) : Ω open bounded set of Rn, |Ω| = c}, (2.26)

or, equivalently,

λ1(Ω∗) ≤ λ1(Ω). (2.27)

Proof: To establish the previous result, we apply the Rayleigh’s principle to esti-

mate λ1(Ω∗). More precisely, we choose u∗1, the Schwarz rearrangement of the first

eigenfunction u1, corresponding to Ω, as the test function in the variational characteri-

zation of λ1(Ω∗). We then have

λ1(Ω∗) ≤
∫

Ω∗
|∇u∗1|2dx∫

Ω∗
(u∗1)2dx

. (2.28)

On the other hand, from Hardy-Littlewood-Pólya inequality we know that

∫
Ω∗
|∇u∗1|2dx∫

Ω∗
(u∗1)2dx

≤
∫

Ω
|∇u1|2dx∫
Ω
u2

1dx
= λ1(Ω). (2.29)

In conclusion, combining (2.28) and (2.29), we obtain

λ1(Ω∗) ≤ λ1(Ω). �
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Chapter 3. Neumann Case

3.1 Conformal Transplantation: Szegö’s Inequality

A conformal mapping, also called a conformal transformation, is a transformation

that preserves local angles. To prove isoperimetric inequality for the first frequency

of the free membrane, G.Szegö in [11] considered as test functions in the variational

characterization of µ1 and µ2 some conformal transplantations of the first two eigen-

functions on the unit disk.

Theorem 3.1.1. (Szegö’s Isoperimetric Inequality)

1

µ1(Ω)
+

1

µ2(Ω)
≥ 1

µ1(Ω∗)
+

1

µ2(Ω∗)
. (3.1)

In particular, we have

|Ω|µ1(Ω) ≤ |D|µ1(D), (3.2)

or, equivalently,

µ1(Ω) ≤ µ1(Ω∗). (3.3)

Proof: Let f : D→ Ω be a conformal mapping of the unit disk D into Ω.

We consider two cases:

First Case: Ω is symmetric of order 2, which means

z ∈ Ω⇔ −z ∈ Ω, (3.4)

that is, by doing a rotation of angle π we get the same domain (see Figure 3.1). In such

a case, we clearly have f(0) = 0 and f(−z) = −f(z).

Figure 3.1: Conformal mapping.
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Next, let us define

Uk(z, γ) := uk(f
−1(z), γ), for k = 1, 2, (3.5)

where

u1(z, γ) = J1(j
′

1,1r) cos(θ + γ),

and

u2(z, γ) = J1(j
′

1,1r) sin(θ + γ),

are the known first two eigenfunctions on the unit disk, γ is an arbitrary constant to be

chosen and j ′1,1 ≈ 1.84 is the first positive zero of the derivative of J1(t). Clearly,∫
Ω

U1(z,
π

2
)U2(z,

π

2
)dAz = −

∫
Ω

U1(z, 0)U2(z, 0)dAz. (3.6)

Therefore, by the intermediate value theorem, there exists γ0 ∈ [0, π
2
] such that∫

Ω

U1(z, γ0)U2(z, γ0)dAz = 0. (3.7)

In what follows, we will fix γ = γ0, omit γ as an argument of uk and Uk, k = 1, 2. And

make use of the following immediate properties:

1.
∫

Ω
U1U2dAz = 0 (by the appropriate choice of γ ).

2.
∫

Ω
UkdAz = 0 for k = 1,2 (since Uk(−z) = −Uk(z) ).

3.
∫

Ω
|∇U1|2dAz =

∫
D |∇u1|2dAz =

∫
D |∇u2|2dAz =

∫
Ω
|∇U2|2dAz.

4.
∫

Ω
∇U1∇U2dAz =

∫
D∇u1∇u2dAz = 0 (by conformal invariance).

Using U1 and U2 as test functions in the variational characterization of µ1, we have

µ1(Ω) ≤ R[Uk], (3.8)

where

R[Uk] :=

∫
Ω
|∇Uk|2dAz∫
Ω
U2
kdAz

, k = 1, 2. (3.9)

This implies that

µ1(Ω) ≤ min{R[U1], R[U2]}. (3.10)
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Now, let us consider the following linear combination

U(z) = c1U1(z) + c2U2(z). (3.11)

Then,

R[U ] =

∫
Ω
|∇U |2dAz∫
Ω
U2dAz

= ε1R[U1] + ε2R[U2] ≤ max{R[U1], R[U2]}, (3.12)

with

εk :=
ck
∫

Ω
U2
kdAz

c2
1

∫
Ω
U2

1dAz + c2
2

∫
Ω
U2

2dAz
and ε1 + ε2 = 1. (3.13)

Clearly there exists (c1, c2) 6= (0, 0) such that∫
Ω

U1(z)U2(z)dAz = 0. (3.14)

Using now the variational characterization of µ2, we have

µ2 ≤ R[U ] ≤ max{R[U1], R[U2]}. (3.15)

Next, we will find some lower bounds for R[Uk] where k = 1, 2. With

z = f(z) =
∞∑
n=1

Cnz
n, where z = reiθ, (3.16)

we compute

z
′
=
∞∑
n=1

nCnz
n−1, (3.17)

|z′|2 = z
′
z̄′ =

∞∑
n,k=1

nkCnC̄kr
n+k−2ei(n−k)θ, (3.18)

and

|Ω| =
∫

Ω

dAz =

∫
D
|z′ |2rdrdθ = 2π

∞∑
n=1

n2|Cn|2
∫ 1

0

r2n−1dr = π

∞∑
n=1

n|Cn|2. (3.19)

Moreover, with

u1(z) = J1(j
′

1,1r) cos θ and u2(z) = J1(j
′

1,1r) sin θ, (3.20)

we have ∫
Ω

U2
1dAz =

∫
D
u2

1|z
′|2rdrdθ = π

∞∑
n=1

n|Cn|2Mn + α, (3.21)
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and ∫
Ω

U2
2dAz =

∫
D
u2

2|z
′ |2rdrdθ = π

∞∑
n=1

n|Cn|2Mn − α, (3.22)

where

α := π

∞∑
n=1

n(n+ 2)Re(CnCn+2)

∫ 1

0

J2
1 (j

′

1,1r)r
2n+1dr, (3.23)

and

Mn := n

∫ 1

0

J2
1 (j

′

1,1r)r
2n−1dr. (3.24)

Now, we can easily notice that

M1 < M2 < ... <, (3.25)

which implies

Mn ≥M1 =

∫ 1

0

J2
1 (j

′

1,1r)rdr. (3.26)

In conclusion ∫
Ω

(U2
1 + U2

2 )dAz = 2π
∞∑
n=1

n|Cn|2Mn ≥ 2M1|Ω|,

and ∫
Ω

|∇Uk|dAz =

∫
D
|∇uk|2rdrdθ = µk(D)

∫
D
u2
krdrdθ

= πµk(D)

∫ 1

0

J2
1 (j

′

1,1r)rdr = πM1µk(D), k = 1, 2.

(3.27)

It then follows that
1

µ1(Ω)
+

1

µ2(Ω)
≥ R−1[U1] +R−1[U2] =

∫
Ω
U2

1 + U2
2dAz∫

Ω
|∇u1|2dAz

≥ 2|Ω|
π
.

1

µ1(D)
=
|Ω|
|D|

(
1

µ1(D)
+

1

µ2(D)

)
,

(3.28)

and inequality (3.1) is achieved in this case. Obviously, in particular we have

|Ω|µ1(Ω) ≤ |D|µ1(D).

Second Case: (with no symmetry assumption on Ω )

The orthogonality conditions
∫

Ω
UkdAz = 0, for k = 1, 2, are not satisfied in general.

However, Szegö adjusts the situation replacing z = f(z) by

z = f

(
z− a
1− āz

)
, with |a| < 1,

and using a topological argument which guarantee that there exists z and a such that the

orthogonality conditions mentioned above are satisfied (see, [11] for more details). �
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3.2 Radial Extension: Weinberger’s Inequality

Szegö’s inequality (3.3) was extended to higher dimension by Weinberger in [13].

Theorem 3.2.1. The ball maximizes the second Neumann eigenvalue among Lipschitz

open sets of given volume. In other words,

µ1(Ω) ≤ µ1(Ω∗), (3.29)

where Ω is a Lipschitz bounded domain in RN and Ω∗ is the ball of the same volume.

Proof: Let R be the radius of Ω∗ and µ∗2 its second eigenvalue, which has multiplic-

ity N , and is associated to the following N eigenfunctions:

g(r)

r
xi, for i = 1, 2, ..., N, (3.30)

where g is given by the Bessel function JN/2, that is

g(r) = JN/2(j
′

N/2,1

r

R
), (3.31)

and

µ∗2 =

(
j
′

N/2,1

R

)2

. (3.32)

Now, let us notice that R is the first zero of g′ , while g satisfies the following ordinary

differential equation

g
′′
(r) +

N − 1

r
g
′
(r) + (µ∗2 −

N − 1

r2
)g(r) = 0. (3.33)

Next, we define the continuous extension of g:

G(r) =

 g(r), r ≤ R,

g(R), r > R.
(3.34)

Next, we are going to use the following variational characterization of µ2

µ2(Ω) = min
v∈H1

0 (Ω),v 6=0,∫
Ω v=0

∫
Ω
|∇v(x)|2dx∫
Ω
v2(x)dx

. (3.35)

To this end, we are going to introduce the following functions

fi(x) := G(r)
xi
r
, (3.36)
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and try to use them as test functions in the variational characterization given in (3.35).

Let us now compute

∂fi
∂xj

=
G
′
(r)xixj
r2

− G(r)xjxi
r3

+ δij
G(r)

r
, (3.37)

where δij is the kronecker symbol. We then get, for i = 1, ..., N , the following inequal-

ity

µ2(Ω) ≤
∫

Ω
[G
′2(r)

x2
i

r2 +G2(r)(1− x2
i

r2 )]/r2dx∫
Ω

[G2(r)
x2
i

r2 ]dx
. (3.38)

By multiplying each of these inequalities by the denominator on the right and adding

the resulting inequalities, we obtain

µ2(Ω) ≤
∫

Ω
[G
′2(r) + (N − 1)G

2(r)
r2 ]dx∫

Ω
G2(r)dx

. (3.39)

Now, let us denote by Ω1 the intersection of Ω with the ball Ω∗. Since R is the first zero

of g′ , we have that G(r) is nondecreasing for r > 0. Therefore,∫
Ω

G2(r)dx =

∫
Ω1

G2(r)dx+

∫
Ω�Ω1

G2(r)dx

≥
∫

Ω1

G2(r)dx+G2(R)

∫
Ω�Ω1

dx,

(3.40)

and ∫
Ω∗
G2(r)dx =

∫
Ω1

G2(r)dx+

∫
Ω∗�Ω1

G2(r)dx

≤
∫

Ω1

G2(r)dx+G2(R)

∫
Ω∗�Ω1

dx.

(3.41)

Since Ω and Ω∗ have the same volume, from (3.40) and (3.41) we obtain∫
Ω

G2(r)dx ≥
∫

Ω∗
G2(r)dx =

∫
Ω∗
g2(r)dx. (3.42)

Differentiating now the integrand in the numerator of (3.39), we obtain

d

dr

[
G
′2(r) + (N − 1)

G2(r)

r2

]
= 2G

′
G
′′

+
2(N − 1)(rGG

′ −G2)

r3
, (3.43)

which leads us to

d

dr

[
G
′2(r) + (N − 1)

G2(r)

r2

]
= −2µ∗GG

′ − (N − 1)(rG−G)2

r3
< 0. (3.44)

Therefore, the integrand in the numerator of (3.39) is decreasing, for r > 0, and we can

prove that∫
Ω

[
G
′2(r) + (N − 1)

G2(r)

r2

]
dx ≤

∫
Ω∗

[g
′2(r) + (N − 1)

g
′
(r)

r2
]dx, (3.45)
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where equality holds for the ball. On the other hand, using integration by parts, we get∫
Ω∗

[
g
′2(r) + (N − 1)

g2(r)

r2

]
dx = µ∗2

∫
Ω∗
g2dx. (3.46)

Finally, the combination of (3.45), (3.44), (3.41) and (3.38) yields to the desired result,

that is

µ2(Ω) ≤ µ2(Ω∗),

and the proof is achieved. �
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Chapter 4. Universal Bounds

In this chapter, we are going to present some universal bounds for frequencies of

membranes and plates. In the first section, we will focus on some seminal paper of L.E.

Payne, G. Pólya and H.F. Weinberger in [9]. More precisely, we present the inequalities

obtained in their paper for ratios of low frequencies of membranes and plates. There-

after, in the next section, we present an extension to higher dimension, obtained by C.J.

Thompson in [12]. Finally we will improve and extend PPW’s universal inequalities

for the clamped and buckled plates.

4.1 Payne-Pólya-Weinberger Inequalities

Let Ω be a bounded domain in the xy-plane with a smooth boundary, ∂Ω. Let us

consider the following three eigenvalue problems, related with the fixed membrane, the

clamped plate and the buckled plate, respectively. ∆u+ λu = 0, Ω ⊆ R2,

u = 0, ∂Ω,
(4.1)

 ∆∆u− µu = 0, Ω ⊆ R2,

u = ∂u
∂n

= 0, ∂Ω,
(4.2)

 ∆∆u+ ν∆u = 0, Ω ⊆ R2,

u = ∂u
∂n

= 0, ∂Ω,
(4.3)

where ∆ denotes the Laplace operator and n the outer unit normal to ∂Ω.

The eigenvalues of the above problems are denoted as follows

λ1 < λ2 ≤ λ3 ≤ ... ,

µ1 ≤ µ2 ≤ µ3 ≤ ... ,

ν1 ≤ ν2 ≤ ν3 ≤ ... .

This section will be divided into five subsections. In subsection 1 we present some

general results which apply equally to the case of the fixed membrane problem and the
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clamped plate problem. Subsections 2, 3 and 4 will reveal some universal bounds cor-

responding respectively to the eigenvalue problems (4.1), (4.2) and (4.3) and the proofs

for finding them. Finally, subsection 5 will contain some final remarks.

4.1.1 Membranes and plates. Let us denote by u1, u2, ..., un, the first n eigenfunc-

tions corresponding equally to problems (4.1), (4.2) and (4.3). Clearly, these eigenfunc-

tions satisfy the following properties:

ui = 0 on ∂Ω, i = 1, ..., n, (4.4)

∫
Ω

uiuj =

 1 when i = j,

0 when i 6= j,
i, j = 1, ..., n. (4.5)

Let us choose the direction of the coordinate axes such that:

n∑
i=1

∫
Ω

u2
ixdA =

n∑
i=1

∫
Ω

u2
iydA. (4.6)

where uix denotes
∂ui
∂x

and uiy denotes
∂ui
∂y

. This choice is possible since if we admit

that we have an inequality (4.6), then a rotation of 90◦ with respect to the origin will

interchange the axes and reverse the inequality. Therefore, there is an intermediate

position in which (4.6) holds. Now, let us build n functions ϕ1, ϕ2, ..., ϕn which satisfy:

ϕi = 0 on ∂Ω, (4.7)∫
Ω

ϕiujdA = 0, i, j = 1, ..., n. (4.8)

To this end, we choose

ϕi = xui −
n∑
k=1

aikuk, (4.9)

where aik are some appropriate constant to be chosen. Clearly (4.7) is satisfied by the

virtue of (4.4). We will now choose aik such that (4.8) is satisfied too. We then have

aij =

∫
Ω

xuiujdA = aji. (4.10)

Moreover from (4.8) and (4.9) we have:∫
Ω

ϕ2
i dA =

∫
Ω

xuiϕidA. (4.11)
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Next, let us compute the following sum, which will be useful in later computations.

−2
n∑
i=1

∫
Ω

uixϕidA = −
n∑
i=1

∫
Ω

2xuiuixdA+ 2
n∑
i=1

aik

∫
Ω

uikukdA, (4.12)

Now, let us note that

(uiuk)x = uixuk + uiukx, (4.13)

so ∫
Ω

uixukdA = −
∫

Ω

uiukxdA. (4.14)

Therefore, we can conclude that
∫

Ω
uixukdA is antisymmetric. In addition, using the

fact that aik = aki, we get:

n∑
i,k=1

aik

∫
Ω

uikukdA = 0. (4.15)

On the other hand,

(2xuiui)x = (2xui)xui + 2xuiuix = 4xuiuix + 2u2
i , (4.16)

so

−2

∫
Ω

xuiuixdA =

∫
Ω

u2
i dA = 1. (4.17)

Now, using (4.17) and (4.15), we obtain

−2
n∑
i=1

∫
Ω

uixϕidA =
n∑
i=1

1 = n. (4.18)

Using now, Schwarz’s inequality, we can derive the following useful inequality

n2 ≤ 4
n∑
i=1

∫
Ω

ϕ2
i dA

n∑
i=1

∫
Ω

u2
ixdA = 2

n∑
i=1

∫
Ω

ϕ2
i dA. (4.19)

4.1.2 Universal bounds for the eigenvalues of the fixed membrane.

Theorem 4.1.1. If λ1 < λ2 ≤ λ3 ≤ ..., are the eigenvalues for problem (4.1), then

λn+1 ≤ λn +
2(λ1 + ...+ λn)

n
, n ≥ 1. (4.20)

In particular, we have

λn+1 ≤ 3λn, n ≥ 1. (4.21)

39



Proof: We regard as known the first n eigenfunctions u1, u2, ..., un and the corre-

sponding eigenvalues λ1, λ2, ..., λn of problem (4.1). Obviously, these eigenfunctions

also satisfy the additional property:

∆ui + λiui = 0 on Ω. (4.22)

Now, by (4.22) and (4.5), we obtain∫
Ω

∆ui.uidA = −λi
∫

Ω

u2
i dA = −λi. (4.23)

On the other hand, using Green’s theorem, we have∫
Ω

ui∆uidA+

∫
Ω

|∇u|2dA = 0, (4.24)

since ui = 0 on ∂Ω. Combining the previous two equations, we obtain∫
Ω

|∇ui|2dA =

∫
Ω

(u2
ix + u2

iy)dA = λi. (4.25)

Next, from the variational characterization of λn+1, we have

λn+1 ≤
−
∫

Ω
ϕi∆ϕidA∫

Ω
ϕ2
i dA

, (4.26)

which is valid for any function ϕi, i = 1, ..., n, since it satisfies (4.7) and (4.8).

Next, let us compute

∆ϕi = ∆xui + 2∇x∇ui + x∆ui −
n∑
k=1

aik∆uk

= 2uix − λixui + λk

n∑
k=1

aikuk.

(4.27)

Then, from (4.8) and (4.11), it follows that

−
∫

Ω

ϕi∆ϕidA = λi

∫
Ω

xuiϕidA− 2

∫
Ω

uixϕidA− λk
n∑
k=1

aik

∫
Ω

ukϕidA. (4.28)

So, by (4.15), we have

−
∫

Ω

ϕi∆ϕidA = λi

∫
Ω

ϕ2
i dA− 2

∫
Ω

uixϕidA. (4.29)
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Substituting (4.29) into (4.26), we get

λn+1 ≤ λi −
2
∫

Ω
uixϕidA∫

Ω
ϕ2
i dA

≤ λn −
2
∫

Ω
uixϕidA∫

Ω
ϕ2
i dA

. (4.30)

Finally, using (4.18), (4.19) and (4.25), we obtain successively

λn+1 − λn ≤ −
2
∫

Ω
uixϕidA∫

Ω
ϕ2
i dA

=
n∫
ϕ2
i dA

≤
2
∑n

i=1

∫
Ω
|∇ui|2dA
n

=
2
∑n

i=1 λi
n

,

(4.31)

which implies

λn+1 ≤ λn +
2(λ1 + ...+ λn)

n
, (4.32)

and the proof is achieved. �

4.1.3 Universal bounds for the eigenvalues of the clamped plate.

Theorem 4.1.2. If µ1 ≤ µ2 ≤ ..., are the eigenvalues for problem (4.2), then

µn+1 ≤ µn +
8(µ1 + ...+ µn)

n
, n ≥ 1. (4.33)

In particular, we have

µn+1 ≤ 9µn, n ≥ 1. (4.34)

Proof: We regard now as known the first n eigenfunctions u1, u2, ..., un and the cor-

responding eigenvalues µ1, µ2, ..., µn of problem (4.2). Obviously, these eigenfunctions

also satisfy the following two additional properties specific to this problem:

∆∆ui − µiui = 0 on Ω, (4.35)

and
∂ui
∂n

= 0 on ∂Ω. (4.36)

Clearly, by Green’s theorem and the boundary conditions, we have∫
Ω

∆ui∆uidA−
∫

Ω

ui∆∆uidA = 0, (4.37)
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which leads us to

µi = µi

∫
Ω

u2
i dA =

∫
Ω

(∆ui)
2dA. (4.38)

Moreover, from the variational characterization of µn+1, we have

µn+1 ≤
∫

Ω
(∆ϕi)

2dA∫
Ω
ϕ2
i dA

=

∫
Ω
ϕi∆∆ϕidA∫

Ω
ϕ2
i dA

, (4.39)

which is valid for any function ϕi, satisfying (4.4) and (4.5).

Next, let us compute successively,

ϕi = xui −
n∑
k=1

aikuk, (4.40)

∆ϕi = 2uix + x∆ui −
n∑
k=1

aik∆uk, (4.41)

and

∆∆ϕi = 4∆uix + µixui −
n∑
k=1

µkaikuk. (4.42)

Now, multiplying (4.42) by ϕi and integrating the result, we get∫
Ω

ϕi∆∆ϕidA = 4

∫
Ω

ϕi∆uixdA+ µi

∫
Ω

xuiϕidA−
n∑
k=1

µkaik

∫
Ω

ukϕidA, (4.43)

which yields to ∫
Ω

ϕi∆∆ϕidA = 4

∫
Ω

ϕi∆uixdA+ µi

∫
Ω

ϕ2
i dA. (4.44)

Substituting now (4.44) into (4.39), we obtain

µn+1 ≤ µi +
4
∫

Ω
ϕi∆uixdA∫
Ω
ϕ2
i dA

, (4.45)

so

µn+1 ≤ µn +
4
∑n

i=1

∫
Ω
ϕi∆uixdA∑n

i=1

∫
Ω
ϕ2
i dA

. (4.46)

Next, let us compute the numerator of the right hand side of (4.46). Using (4.40), we

get

2
n∑
i=1

∫
Ω

ϕi∆uixdA = 2
n∑
i=1

∫
Ω

xui∆uixdA− 2
n∑
i=1

aik

∫
Ω

uk∆uixdA. (4.47)
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On the other hand, since

(uk∆ui)x = uk∆uix + ukx∆ui, (4.48)

we have ∫
Ω

uk∆uixdA = −
∫

Ω

ukx∆uidA = −
∫

Ω

ui∆ukxdA. (4.49)

Moreover, since the matrix aik is symmetric, we have

n∑
i,k=1

aik

∫
Ω

uk∆uixdA = 0. (4.50)

Next, let us compute

Ji = 2

∫
Ω

xui∆uixdA. (4.51)

To this end, we first note that

(xui∆ui)x = xui∆uix + ui∆ui + xuix∆ui, (4.52)

so

2

∫
Ω

xui∆uixdA = −2

∫
Ω

ui∆uidA− 2

∫
Ω

xuix∆uidA

= −2

∫
Ω

(ui + xuix)∆uidA

= −2

∫
Ω

(ui + xuix)uixxdA− 2

∫
Ω

(ui + xuix)uiyydA.

(4.53)

Moreover, we also note that

[(xui)xuiy]y = (xui)xyuiy + (xui)xuiyy, (4.54)

yields to ∫
Ω

(ui + xuix)uiyydA = −
∫

Ω

(uiy + uiyx)uiydA. (4.55)

In conclusion, using (4.55) and (4.53), we have

Ji = −2

∫
Ω

uiuixxdA− 2

∫
Ω

xuixuixxdA+ 2

∫
Ω

u2
iydA+ 2

∫
Ω

xuixyuiydA. (4.56)

Next, the identity

(uiuix)x = uiuixx + u2
ix,
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implies ∫
Ω

uiuixxdA = −
∫

Ω

u2
ixdA, (4.57)

while the identity

(xu2
ix)x = 2xuixuixx + u2

ix,

implies

2

∫
Ω

xuixuixxdA = −
∫

Ω

u2
ixdA. (4.58)

Also, in a similar way, the identity

(xu2
iy)y = 2xuiyuiyy + u2

iy,

leads to

2

∫
Ω

xuixyuiydA = −
∫

Ω

u2
iydA. (4.59)

Therefore substituting (4.57), (4.58) and (4.59) into (4.56), we obtain

Ji = 3

∫
Ω

u2
ixdA+

∫
Ω

u2
iydA, (4.60)

Combining now (4.60), (4.50) and (4.47), we get

2
n∑
i=1

∫
Ω

ϕi∆uixdA = 2
n∑
i=1

Ji = 2
n∑
i=1

(u2
ix + u2

iy)dA. (4.61)

Finally, using (4.46), (4.61) and Schwarz’s inequality, we have

µn+1 − µn ≤
4
∑n

i=1

∫
Ω
|∇ui|2dA∑n

i=1

∫
Ω
ϕ2
i dA

=
−4
∑n

i=1

∫
Ω
ui∆uidA∑n

i=1

∫
ϕ2
i dA

=
8[
∑n

i=1

∫
Ω
ui∆uidA]2

2
∑n

i=1

∫
Ω
ϕ2
i dA.

∑n
i=1

∫
Ω
|∇ui|2dA

≤
8
∑n

i=1

∫
Ω
u2
i dA.

∑n
i=1

∫
Ω

(∆ui)
2dA

n2
=

8
∑n

i=1 µi
n

,
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and the proof is achieved. �

4.1.4 Universal bounds for the eigenvalues of the buckled plate.

Theorem 4.1.3. If ν1 ≤ ν2 ≤ ..., are the eigenvalues for problem (4.3), then

ν2 ≤ 3ν1. (4.62)

Proof: We regard as known the first eigenfunction u and its corresponding eigen-

value ν1 of problem (4.3). Obviusly, this eigenfunction satisfies ∆∆u+ ν1∆u = 0, Ω ⊆ R2,

u =
∂u

∂n
= 0, ∂Ω.

(4.63)

Next, let us introduce the following notations:

D(f, g) :=

∫
Ω

∇f∇gdA, D(f) := D(f, f). (4.64)

It then follows, from (4.64) and Green’s theorem, that∫
Ω

∆∆udA =

∫
Ω

(∆u)2dA = D(ux) +D(uy) = ν1D(u). (4.65)

On the other hand, from the variational characterization of ν2, we have

ν2 ≤
∫

Ω
(∆ϕ)2dA

D(ϕ)
=

∫
Ω
ϕ∆∆ϕdA

D(ϕ)
, (4.66)

provided that a trial function ϕ satisfies

ϕ =
∂ϕ

∂n
= 0 on ∂Ω, (4.67)

and

D(u, ϕ) = 0. (4.68)

Next, we know that there exists a system of coordinates such that ϕ = xu is admissible

for the variational characterization of ν2. Indeed, let us cover Ω with matter of surface

density u2
x + u2

y . So we can assume that the center of gravity of this mass is at the

origin. Hence we can find a system of coordinates such that∫
Ω

x(u2
x + u2

y)dA =

∫
Ω

y(u2
x + u2

y)dA = 0. (4.69)
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Therefore,

D(u, ϕ) =

∫
Ω

[ux(xux +u) +uyxuy]dA =

∫
Ω

uuxdA+

∫
Ω

x(u2
x +u2

y)dA = 0. (4.70)

In conclusion ϕ = xu is indeed admissible for the variational characterization of ν2.

Now, let us compute

D(ϕ) =

∫
Ω

[(xux + u)2 + (xuy)
2]dA =

∫
Ω

x2(u2
x + u2

y)dA =

∫
Ω

x2|∇u|2dA. (4.71)

Next, we also compute

∆ϕ = ∆(xu) = x∆u+ 2ux, (4.72)

and

∆∆ϕ = x∆∆u+ 4∆ux = −xν1∆u+ 4∆ux. (4.73)

Multiplying now (4.73) by ϕ and integrating the result, we get∫
Ω

ϕ∆∆ϕdA = −ν1

∫
Ω

x2u∆udA+ 4

∫
Ω

ϕ∆uxdA. (4.74)

In addition, since

∇(x2u∇u) = x2u∆u+ 2xuux + x2|∇u|2, (4.75)

we have

−
∫

Ω

x2u∆udA = 2

∫
Ω

xuuxdA+

∫
Ω

x2|∇u|2dA

= D(ϕ)−
∫

Ω

u2dA < D(ϕ).

(4.76)

Similarly, since

∇(ϕ∇ux) = ϕ∆ux +∇ϕ∇ux, (4.77)

we also have

2

∫
Ω

ϕ∆uxdA = −2D(ϕ, ux) = −2

∫
Ω

[(xux + u)uxx + xuyuxy]dA

= −
∫

Ω

x(2uxuxx + 2uyuyx)dA− 2

∫
Ω

uuxxdA

= 3

∫
Ω

u2
xdA+

∫
Ω

u2
ydA.

(4.78)
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Now, substituting (4.78) into (4.74) and using (4.66), we have

ν2 ≤
∫

Ω
ϕ∆∆ϕdA

D(ϕ)
= −ν1

∫
Ω
x2u∆udA

D(ϕ)
+

4
∫

Ω
ϕ∆uxdA

D(ϕ)
. (4.79)

We hence derive, by using (4.74), (4.76)and (4.79), that

ν2 < −ν1

∫
Ω
x2u∆udA

−
∫

Ω
x2u∆udA

+
4
∫

Ω
ϕ∆uxdA

D(ϕ)

= −ν1 +
8(
∫

Ω
ϕ∆uxdA)2

D(ϕ)[3
∫

Ω
u2
xdA+

∫
Ω
u2
ydA]

.

(4.80)

Next, using Schwarz’s inequality in the numerator of (4.80), we get

ν2 < ν1 +
8D(ux)

3
∫

Ω
u2
xdA+

∫
Ω
u2
ydA

. (4.81)

Finally, we note that all that we have computed so far, with the help of the trial function

ϕ = xu, remain valid for the trial function ψ = yu, so that we also have

ν2 < ν1 +
8D(uy)∫

Ω
u2
xdA+ 3

∫
Ω
u2
ydA

. (4.82)

Combining now (4.81) and (4.82), we obtain

ν2 < ν1 +
8[D(ux) +D(uy)]

4
∫

Ω
u2
xdA+ 4

∫
Ω
u2
ydA

= ν1 +
2[D(ux) +D(uy)]

D(u)
= 3ν1,

(4.83)

and the proof is achieved. �

4.1.5 Remarks. Let us consider as known the first eigenvalue λ1 and the corre-

sponding eigenfunction u := u1 of problem (4.1), normalized so that
∫

Ω
u2dA = 1. We

then have

λ1 =

∫
Ω

|∇u|2dA. (4.84)
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Now, let us cover Ω with a matter of surface density u2, and choose the coordinate axes

such that the center of gravity of this mass coincides with the origin and the principal

axes of interia coincide with the coordinate axes, that is∫
Ω

xu2dA =

∫
Ω

yu2dA =

∫
Ω

xyu2dA = 0. (4.85)

Next, we consider a trial function that depend linearly on 3 parameters α, β and γ,

ϕ = αaux+ βbuy + γu. (4.86)

Clearly, from this definition, we have ϕ = 0 on ∂Ω. Moreover, we choose a and b such

that:

a2

∫
Ω

u2x2dA = b2

∫
Ω

u2y2dA = 1. (4.87)

Then we compute the following∫
Ω

ϕ2dA = α2a2

∫
Ω

u2x2dA+ β2b2

∫
Ω

u2y2dA+ γ2

∫
Ω

u2dA

+ 2αβab

∫
Ω

u2xydA+ 2αγa

∫
Ω

u2xdA+ 2βγ

∫
Ω

u2ydA.

(4.88)

Substituting (4.85) and (4.87) into (4.88), we get∫
Ω

ϕ2dA = α2 + β2 + γ2. (4.89)

In addition, let us note that

∆(ux) = x∆u+ 2ux (4.90)

and

∆(uy) = y∆u+ 2uy. (4.91)

Therefore,

∆ϕ = −λ1u(αax+ βby + γ) + 2αaux + 2βbuy, (4.92)

implies, by using (4.86), that

ϕ∆ϕ = −λ1αau
2(αax+ βby + γ) + 2α2a2xuux + 2αβabxuuy

− λ1βbu
2(αax+ βby + γ) + 2αβabuuxy + 2β2b2yuuy

− γλ1u
2(αax+ βby + γ) + 2αγauux + αβγbuuy.

(4.93)
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Integrating now (4.93), we get

−
∫

Ω

ϕ∆ϕdA = α2(a2 + λ1) + β2(b2 + λ1) + λ1γ
2. (4.94)

Next, according to Poincaré’s variational characterization of λ3, we have

λ3 = Min
L3

max
ϕ∈L3

D(ϕ)∫
Ω
ϕ2dA

. (4.95)

As ϕ ∈ L3 = span{u, ux, uy}, we obtain

λ3 ≤ max
ϕ∈L3

∆(ϕ)∫
Ω
ϕ2dA

≤ max
α2(a2 + λ1) + β2(b2 + λ1) + λ1γ

2

α2 + β2 + γ2
. (4.96)

Therefore, we can conclude that

λ1 + λ2 + λ3 ≤ a2 + λ1 + b2 + λ1 + λ1 = 3λ1 + a2 + b2, (4.97)

and taking into account that

1 = (

∫
Ω

u2dA)2 = (−2

∫
Ω

xuuxdA)2 ≤ 4

∫
Ω

u2x2dA

∫
Ω

u2
xdA, (4.98)

we obtain

a2 ≤ 4

∫
Ω

u2
xdA, (4.99)

and

b2 ≤ 4

∫
Ω

u2
ydA. (4.100)

Adding these two last inequalities, we obtain

a2 + b2 ≤ 4D(u) = 4λ1. (4.101)

Finally, substituting (4.101) into (4.97), we obtain

λ1 + λ2 + λ3 ≤ 3λ1 + 4λ1 = 7λ1, (4.102)

which implies

λ2 + λ3 ≤ 6λ1. (4.103)

Clearly, as immediate consequences of (4.103), we have

λ2 ≤ 3λ1, (4.104)

and

λ3 ≤ 5λ1. (4.105)

Finally, we also note that one can prove in the same analog of (4.103), for the clamped

and buckled plates. However, we should replace 6 by a less sharp constant.
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4.2 Thompson’s Inequality

4.2.1 On the ratio of consecutive eigenvalues in N -dimensions. Let us consider

the N -dimensional eigenvalue problem of the fixed vibrating membrane, that is ∆u+ λu = 0, Ω ⊆ RN ,

u = 0, ∂Ω,
(4.106)

where Ω is a bounded domain with smooth boundary. From the previous section the

following Payne-Pólya-Weinberger inequality is known in the case N = 2:

λ2 ≤ 3λ1,

where λ1 and λ2 are the first two eigenvalues of problem (4.106). In the following theo-

rem C.J. Thompson [12] obtained an extension of this inequality to higher dimensions.

Theorem 4.2.1. If λ1 < λ2 ≤ ..., are the eigenvalues of problem (4.106), then

λ2 ≤ (1 +
4

N
)λ1. (4.107)

Proof: First we choose the center of coordinates axes to be the center of gravity of

Ω, with mass distribution u2, where u := u1. We then have∫
Ω

xlu
2dA = 0 for l = 1, 2, ..., N. (4.108)

Therefore, ϕl = xlu, l = 1, ..., N , become legitimate test functions for the variational

characterization of λ2, as

ϕl = 0 on ∂Ω, (4.109)

and ∫
Ω

ϕludA =

∫
Ω

xlu
2dA = 0. (4.110)

Therefore,

λ2 ≤
∫

Ω
|∇ϕl|2dA∫

Ω
(ϕl)2dA

=
−
∫

Ω
ϕl∆ϕldA∫

Ω
(ϕl)2dA

. (4.111)

Clearly,

∆ϕl = ∆(xlu) = −λ1ϕ
l + 2uxl . (4.112)

Now, multiplying (4.112) by −ϕl and integrating the result, we get

∫
Ω

−ϕl∆ϕldA = λ1

∫
Ω

(ϕl)2dA− 2

∫
Ω

ϕluxldA. (4.113)
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On the other hand, we also have

−2

∫
Ω

ϕluxldA = 2

∫
Ω

xluuxldA =

∫
Ω

xl(u
2)xldA =

∫
Ω

u2dA = 1, (4.114)

where the last equality follows from the normalization of u. Using now (4.114) and

(4.113) in (4.111), we get

λ2 ≤ λ1 +
1∫

Ω
(ϕl)2dA

. (4.115)

Next, using Schwarz’s inequality, we have

4

∫
Ω

(ϕl)2dA

∫
Ω

u2
xl
dA ≥ (−2

∫
Ω

ϕluxldA)2, (4.116)

which implies
1∫

Ω
(ϕl)2dA

≤ 4

∫
Ω

u2
xl
dA. (4.117)

Finally, substituting (4.117) into (4.115), we obtain

N∑
l=1

(λ2 − λ1) ≤
N∑
l=1

1∫
Ω

(ϕl)2dA
≤ 4

N∑
l=1

∫
Ω

u2
xl
dA = 4

∫
Ω

|∇u|2dA, (4.118)

which implies the desired inequality

λ2 ≤ (1 +
4

N
)λ1,

and the proof is thus achieved. �

4.3 New Results

4.3.1 The clamped plate problem. Let us consider the N -dimensional eigenvalue

problem of the clamped plate ∆∆u− µu = 0, Ω ⊆ RN ,

u =
∂u

∂n
= 0, ∂Ω,

(4.119)

where Ω is a bounded domain with a smooth boundary. We order and denote the eigen-

values of this problem as

0 < µ1 ≤ µ2 ≤ ...,

and its corresponding eigenfunctions

u := u1, u2, u3, ... .
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From section (4.1) we know that in the caseN = 2 the following Payne-Pólya-Weinberger

holds

µ2 ≤ 9µ1.

Our goal here is to improve and extend this result to higher dimensions. We thus have:

Theorem 4.3.1. If µ1 ≤ µ2 ≤ ..., are the eigenvalues of the problem given in equation

(4.119), then

µ2 ≤ (1 +
8

N
)µ1. (4.120)

In particular, when N = 2 we have

µ2 ≤ 5µ1. (4.121)

Proof: We first choose the center of coordinates axes to be the center of gravity of

Ω with mass distribution u2, that is∫
Ω

xlu
2dA = 0 for l = 1, 2, ..., N. (4.122)

Thus, ϕl = xlu, l = 1, ..., N , become legitimate test functions for the variational char-

acterization of µ2, since

ϕl = 0 on ∂Ω, (4.123)

and ∫
Ω

ϕludA =

∫
Ω

xlu
2dA = 0. (4.124)

We hence derive, using the variational characterization of µ2, the following inequality

µ2 ≤
∫

Ω
(∆ϕl)2dA∫
Ω

(ϕl)2dA
=

∫
Ω
ϕl∆∆ϕldA∫
Ω

(ϕl)2dA
. (4.125)

Next, we compute

∆(ϕl) = ∆(xlu) = xl∆u+ 2u,l, (4.126)

and

∆∆(ϕl) = ∆(xl∆u) + ∆(2u,l) = 4∆u,l + µ1xlu, (4.127)

where u,l =
∂u

∂xl
. Then multiplying (4.127) by ϕl and integrating the result, we obtain

∫
Ω

ϕl∆∆ϕldA = 4

∫
Ω

ϕl∆u,ldA+ µ1

∫
Ω

ϕlxludA. (4.128)
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On the other hand, since

(xlu∆u),l = u∆u+ xlu,l∆u+ xlu∆u,l, (4.129)

we have∫
Ω

ϕl∆u,ldA = −
∫

Ω

u∆udA−
∫

Ω

xlu,l∆udA = −
∫

Ω

(u+ xlu,l)∆udA

= −
∫

Ω

(xlu),l∆udA = −
N∑
k=1

∫
Ω

(xlu),lu,kkdA.

(4.130)

Similarly, since

[(xlu),lu,k],k = (xlu),lku,k + (xlu),lu,kk, (4.131)

we also have∫
Ω

(xlu),lu,kkdA = −
∫

Ω

(xlu),lku,kdA = −
∫

Ω

u2
,kdA−

∫
Ω

xlu,klu,kdA

= −
∫

Ω

u2
,kdA+

1

2

∫
Ω

u2
,kdA = −1

2

∫
Ω

u2
,kdA.

(4.132)

Now, using (4.132) and (4.130) into (4.128), we get

∫
Ω

ϕl∆∆ϕldA = 2

∫
Ω

|∇u|2dA+ µ1

∫
Ω

(ϕl)2dA. (4.133)

Next, substituting (4.133) into (4.125), we obtain

µ2 ≤ µ1 +
2
∫

Ω
|∇u|2dA∫

Ω
(ϕl)2dA

, (4.134)

so

µ2 − µ1 ≤
2N
∫

Ω
|∇u|2dA∑N

l=1

∫
Ω

(ϕl)2dA
. (4.135)

Next, let us find an upper bound for the denominator of the right hand side of (4.135).

To this end, we first note that we have

(xlu
2),l = u2 + 2xluu,l, (4.136)
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so, by integration, we get

−2

∫
Ω

xluu,ldA =

∫
Ω

u2dA = 1, (4.137)

where the last equality follows from the normalization of u. This implies

4

[ N∑
l=1

∫
Ω

xluu,ldA

]2

= N2. (4.138)

Next, using Schwarz’s inequality, we have

N2 ≤ 4
N∑
l=1

∫
Ω

(ϕl)2dA
N∑
l=1

∫
Ω

u2
,ldA

= 4
N∑
l=1

∫
Ω

(ϕl)2dA

∫
Ω

|∇u|2dA,

(4.139)

which yields to
N∑
l=1

∫
Ω

(ϕl)2dA ≥ N2

4
∫

Ω
|∇u|2dA

. (4.140)

Substituting (4.140) into (4.135), we obtain

µ2 − µ1 ≤
8

N

[ ∫
Ω

|∇u|2dA
]2

. (4.141)

On the other hand, by Schwarz inequality, we have[ ∫
Ω

|∇u|2dA
]2

=

[ ∫
Ω

−u∆udA

]2

≤
∫

Ω

(−u)2dA

∫
Ω

(∆u)2dA. (4.142)

Finally, using (4.142) in (4.135), we are lead to

µ2 − µ1 ≤
8

N
µ1,

and the proof is thus achieved. �

Remarks: We note that other results on the ratio of the first two frequencies of a

clamped plate are already known in the literature. For comparison with our result and

completeness, we list them below. First, let us recall that L.E. Payne, G. Pólya and H.F.

Weinberger in [9] proved in two dimensions inequality (4.34), that is

µ2 ≤ 9µ1.
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However, if we take N = 2 in our inequality (4.120), we obtain

µ2 ≤ 5µ1,

which is clearly a better inequality than that of Payne, Polya and Weinberger.

Next, G.N. Hile and R.Z. Yeh in [6] proved that

µ2 ≤
(

1 +
4

N

)2

µ1, (4.143)

which is clearly weaker than our inequality (4.121). The same preceding inequality has

been obtained later by Q.M. Cheng and H. Yang in [2]. In fact they proved something

more general, that is

µk+1 −
1

k

k∑
i=1

µi ≤
[

8(N + 2)

N2

] 1
2 1

k

k∑
i=1

[
µi(µk+1 − µi)

] 1
2 , (4.144)

which in the case k = 1 becomes (4.143). Finally, in 2013 Q.M. Cheng and G. Wei

conjectured in [4] that the following inequality should hold:

k∑
i=1

(
µk+1 − µi

)2 ≤ 8

N

k∑
i=1

(µk+1 − µi)µi. (4.145)

If we take k = 1 in (4.145), we get exactly our inequality (4.121). In conclusion we

have proved that the case k = 1 of this conjecture is indeed true.

4.3.2 The buckled plate problem. Let us now consider the N -dimensional eigen-

value problem of the buckled plate ∆∆u+ ν∆u = 0, Ω ⊆ R2,

u =
∂u

∂n
= 0, ∂Ω,

(4.146)

where Ω is a bounded domain with a smooth boundary. We order and denote the eigen-

values of this problem as

0 < ν1 ≤ ν2 ≤ ...,

and its corresponding eigenfunctions

u = u1, u2, u3, ... .
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From section (4.1), we know that in the case N = 2 the following Payne-Pólya-

Weinberger inequality holds:

ν2 ≤ 3ν1.

Our goal here is to extend this inequality to higher dimensions.

Theorem 4.3.2. If ν1 ≤ ν2 ≤ ..., are the eigenvalues of problem (4.146), then

ν2 ≤ (1 +
8

N + 2
)ν1. (4.147)

In particular, when N = 2 we have

ν2 ≤ 3ν1. (4.148)

Proof: First of all, let us cover Ω with matter of density |∇u|2 and choose the coordinate

axes such that ∫
Ω

xl|∇u|2dA = 0 for l = 1, 2, .., N. (4.149)

Next, we consider ϕl := xlu, l = 1, ..., N , which become legitimate test functions in

the variational characterization of ν2, since

ϕl =
∂ϕl

∂n
= 0 on ∂Ω. (4.150)

Next, let us compute∫
Ω

|∇ϕl|2dA =

∫
Ω

[ N∑
k=1

xlu
2
,k + 2xluu,l + u2

]
dA =

∫
Ω

x2
l |∇u|2dA, (4.151)

and note that by Green’s theorem we have∫
Ω

ϕl∆∆ϕldA =

∫
Ω

(∆ϕl)2dA. (4.152)

Now using the fact that

∆ϕl = ∆(xlu) = xl∆u+ 2u,l, (4.153)

and

∆∆ϕl = ∆(xl∆u) + ∆(2u,l) = 4∆u,l − ν1xl∆u, (4.154)

we get ∫
Ω

ϕl∆∆ϕldA = 4

∫
Ω

ϕl∆u,ldA− ν1

∫
Ω

x2
l u∆udA. (4.155)
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On the other hand, since

∇(x2
l u∇u) = x2

l u∆u+ 2xluu,l + x2
,l|∇u|2, (4.156)

we also have

−
∫

Ω

x2
l u∆udA = 2

∫
Ω

xluu,ldA+

∫
Ω

x2
l |∇u|2dA. (4.157)

Moreover, using ϕl in the variational characterization of ν2, we have

ν2 ≤
∫

Ω
ϕl∆∆ϕldA∫

Ω
|∇ϕl|2dA

=
4
∫

Ω
ϕl∆u,ldA∫

Ω
|∇ϕl|2dA

− ν1

∫
Ω
x2
l u∆udA∫

Ω
|∇ϕl|2dA

. (4.158)

Now, let us compute
∫

Ω
ϕl∆u,ldA. First, we note that

∇(ϕl∇u,l) = ϕl∆u,l +∇ϕl∇u,l, (4.159)

so

2

∫
Ω

ϕl∆u,ldA = −2

∫
Ω

∇ϕl∇u,ldA = 2

∫
Ω

u2
,ldA+

∫
Ω

|∇u|2dA. (4.160)

We hence derive, by using (4.158), (4.157), (4.160), Schwarz’s inequality and Green’s

theorem, that

ν2 ≤ ν1 +
8
[ ∫

Ω
ϕl∆u,ldA

]2∫
Ω
|∇ϕl|2dA

[
2
∫

Ω
u2
,ldA+

∫
Ω
|∇u|2dA

]

≤ ν1 +
8
∫

Ω
|∇u,l|2dA

2
∫

Ω
u2
,ldA+

∫
Ω
|∇u|2dA

.

(4.161)

Next, we compute

8

∫
Ω

|∇u,l|2dA = 8

∫
Ω

u,l∆u,ldA = 8

∫
Ω

u∆u,lldA. (4.162)

Substituting it into (4.161), we get

(ν2 − ν1)
[
2

∫
Ω

u2
,ldA+

∫
Ω

|∇u|2dA
]
≤ 8

∫
Ω

u∆u,lldA, (4.163)
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which implies

(ν2 − ν1)
[
2

∫
Ω

|∇u|2dA+N

∫
Ω

|∇u|2dA
]
≤ 8

∫
Ω

u∆∆udA = 8ν1

∫
Ω

|∇u|2dA,

or, equivalently,

ν2 − ν1 ≤
8

N + 2
ν1,

and the proof is thus achieved. �

Remarks: Some results related to our work, about bounds for the ratio of the first two

frequencies of the buckled plate, have been already obtained before. For comparison

with our result and completeness we mention them below. First let us recall that L.E.

Payne, G. Pólya and H.F. Weinberger in [9] proved in two dimensions inequality (4.62),

that is

ν2 ≤ 3ν1.

If we take N = 2 in our inequality we obtain (4.147) the same inequality, so our result

represents a natural extension to any higher dimension of (4.62).

Next, M.S. Ashbaugh proved in [1] the following general inequality

N∑
k=1

νk+1 ≤ (N + 4)ν1, (4.164)

which implies in particular that

ν2 ≤ (1 +
4

N
)ν1. (4.165)

This result gives a better bound than (1.147). Moreover, it proves for k = 1 the follow-

ing recent conjecture, presented by Q.M. Cheng and H. Yang in [3],

k∑
i=1

(νk+1 − νi)2 ≤ 4

N

k∑
i=1

(νk+1 − νi)νi. (4.166)

Therefore, some more work should be done by using other test functions to improve not

only our inequality, but also (4.164).
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Conclusion and Future Work

In this thesis, we tried to find some universal bounds for the eigenvalues of the

clamped and buckled plate problems. On one hand, I hope that what we presented was

as straightforward and clear as possible. On the other hand, it required background

on the eigenvalues of different differential operators, mathematical tools and some pre-

proven results.

That being said, this thesis was divided into four chapters. In chapter 1, we have

provided an overview of isoperimetric inequalities and modal problems for frequencies

of free, fixed and elastically supported membranes. Moreover, we interpreted an impor-

tant tool, which was very useful in our work, that is the Variational Characterizations.

In both chapters 2 and 3, we introduced two additional main tools in the study

of isoperimetric inequalities, Schwarz rearrangements and conformal mappings respec-

tively. These tools were mainly used in the proof of many important inequalities such

as Faber-Krahn’s inequality, Hardy-Littlewood-Pólya inequality, Szegö’s inequality and

Weinberger’s inequality.

Finally, in chapter 4, we presented some of the pre-proven results about univer-

sal bounds for the eigenvalues of the fixed membrane, clamped plate and buckled plate,

obtained by L.E. Payne, G. Pólya and H.F. Weinberger, respectively C.J.Thompson. In

addition to that, we have included our new related results.

In our future work, we will try to extend our results to higher order eigenvalues

or improve some known results.
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