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Abstract 

 

Genuineness of smiles is one aspect of the field of deception recognition, one that is 

prevalent in myriad social situations, and it is not easy to tell when a person’s smile is 

genuine or not for the average person. Machine learning techniques, such as support 

vector machines or artificial neural networks, can allow better distinction between fake 

and real smiles by making use of electroencephalograms (EEG) from subjects with a 

simple experimental protocol, in which the subject’s response is known by the 

experimenters. Machine learning techniques were previously used in affect recognition, 

though not for distinguishing real and fake smiles through EEG signals. The objective 

of this study is to distinguish between fake and real smiles using deep learning 

techniques, more specifically shallow neural networks, convolutional neural networks, 

and support vector machines (SVMs) as a baseline from EEG signals. The experimental 

approach involved presenting subjects with visual stimuli and recording their physical 

response and their EEG, which was used with the aforementioned algorithms. The SVM 

classifier used the radial basis function kernel, with optimized parameters, the simple 

neural network was a three-layer pattern recognition network with 150 hidden units 

using scaled conjugate gradient as the training function, the convolutional neural 

networks used stochastic gradient descent with a momentum of 0.95 for all the different 

architectures, and the optimal one was selected based on the results. The accuracies of 

the simple neural network, convolutional neural network, and SVM are 88.879 %, 

90.446 %, and 48.387 % respectively for subject-dependent classification, and the 

convolutional neural network yielded 53.418 % for subject-independent classification.  

Keywords: Electroencephalogram; machine learning; support vector machines; deep 

learning; artificial neural networks; convolutional neural networks; subject-

dependent analysis; subject-independent analysis. 
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Chapter 1. Introduction 

 

Emotions vary in range and intensity among people. Automated methods for 

emotion recognition are important due to the significance of detecting affect in social 

situations, in addition to giving further insight into understanding the human brain, 

among other reasons. Narrowing down emotions represented by facial expressions by 

decomposing them into simple action units (groups of muscles that move together on 

faces) can make studying them simpler, to some extent. For example, simplifying anger 

into brow furrowing, or surprise into widening of the eyes, or sadness into frowning, 

makes experimentally discerning between discrete emotions easier, and by the same 

token, happiness can be simplified into smiling. However, some of those actions can be 

easily faked. 

Smiling is one of the simplest acts a person could do to convey joy or 

satisfaction, among other feelings in social situations. Detecting fake smiles can be 

generally useful in behavioral studies involving social cues and can pave the way for 

better classification of discrete emotions. One side benefit of detecting fake smiles is 

encouraging genuine interaction in the workplace environment, as smiles perceived to 

be honest tend to instigate trust and subsequently entail better earning opportunities [1].  

In this section, a brief overview of the problem is given, including the 

motivation behind the work and the means with which the work would be done, 

followed by the thesis contribution, then the general outline of the thesis is presented.  

1.1. Overview 

Affect deception recognition is generally a difficult task that requires personnel 

trained in psychology. When studying facial expression for affect recognition, a 

researcher must always account for the fact that emotions can easily be disguised, 

whether consciously or subconsciously. Machine learning techniques, such as support 

vector machines or artificial neural networks, can allow better distinction between 

faked emotions and real ones by making use of electroencephalograms (EEG) from 

subjects with a simple experimental protocol, in which the subject’s response is known 

by the experimenters. The EEG contains features that can help identify patterns in the 

subjects’ behaviors reflected via brain waves. 
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Emotions, in this case, the authenticity of a smile, can be quantified through 

somewhat subjective methods such as expert observation and analysis, or through more 

objective, quantitative methods. 

Experiments for affect/emotion recognition often involve the use of facial 

expressions, electroencephalogram readings, and sometimes eye-tracking mechanisms 

(for visual stimuli, naturally) and functional magnetic resonance imaging. These 

techniques are used in a setup where the subjects are exposed to stimuli (visual, 

auditory, or both), and their responses are recorded by cameras, EEG, and eye-tracking 

software/fMRI if applicable [2, 3]. Machine learning can be used in addition to the 

techniques stated previously to utilize their results to give a definitive class to each 

emotion presented.  

1.2. Problem Formulation 

Many problems warrant the need for better means of deception recognition, 

such as depression, lie detection, and integrity of psychological studies.  

Depression affects many around the world, and they usually handle that illness 

in silence, due to the stigma surrounding mental illness in many communities, or other 

individual factors. It may not be easy for most to seek necessary help with depression, 

so some external way to detect it can be a catalyst to getting them the help they may 

need. 

Moreover, lie detection is more of an art than an exact science [4]. Polygraphs 

use physiological measures such as blood pressure, heart rate, and skin conductivity as 

an indicator of whether a subject is lying or not. These measures are variable to the 

extent that they can be unreliable sometimes, and can often be masked, albeit with some 

training. Not to mention the need for an expert who can read the results and give 

accurate conclusions based on them. Moreover, the method of reading them has no 

scientific basis [4]. 

Another issue arises in masking emotions in psychological studies, due to fear 

of embarrassment or change in moral self-image [5]. This, of course, requires a method 

to detect deception to main the integrity of the study, and even undertake reliable studies 

concerning deception in this field. 
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After analyzing the relevant works, and considering the problems associated 

with EEG in general, we concluded that distinguishing smiles was to be done in two 

“phases”. The first phase comprised of 28 subjects performing an exercise in which we 

showed them stimuli that elicited a genuine response and they would press a button on 

the keyboard. The subjects would fake a smile and press a different button upon seeing 

the image of a book and press the third button if the displayed image elicited a neutral 

feeling or no response. The results of this experiment were to be taken mainly in the 

form of EEG readings. Eye-tracking data and some facial expression data are available, 

but they will not be utilized in our analysis. These results would be processed to clean 

the signals and for optimal manual feature extraction, and to exclude subjects whose 

data was not suitable (17 subjects remain), and put through kth nearest neighbor (KNN) 

and support vector machines (SVMs) [6]. 

The second phase involved using deep learning techniques, primarily support 

vector machines, shallow neural networks, and convolution neural networks, with long-

short-term-memory neural networks under consideration. For the neural networks, we 

propose four-fold cross-validation, where the data is divided into randomly selected 

folds, three for training and one for testing from the remaining events after minor pre-

processing for each subject. Four-fold cross-validation also entails performing this split 

four times, randomly or manually changing the blocks. Deep neural networks allow the 

use of all 28 subjects, as they significantly simplify processing “by allowing automatic 

end-to-end learning of preprocessing, feature extraction and classification modules,” 

while providing fairly accurate results [7]. 

1.3. Thesis Objectives 

Due to the aforementioned need for a reliable means of classifying smiles, and 

the growing interest in deep learning in the field of affect recognition, we propose the 

utilization of artificial neural networks, as opposed to other machine learning 

techniques, such as kNN or SVM. The main objective of this thesis is to implement 

neural network architectures and concepts that have been used for other applications 

before with EEG data obtained from the dataset to be described with its complementary 

protocol, in order to distinguish between real and fake smiles. We will focus on using 
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simple neural networks and convolutional neural networks for this purpose, as we 

predict they would yield the most optimal results, from what we saw in [8-11]. 

1.4. Research Contribution 

The contribution of this thesis is summarized below: 

Contribution to the field of study: 

 Propose neural network architectures and algorithms to distinguish between real 

and fake smiles in place of other machine learning algorithms to apply to the 

dataset obtained. This novel dataset includes 28 subjects, for which EEG data 

was obtained following the protocol described later. 

 The proposed networks achieve better accuracy in contrast with machine 

learning algorithms, namely SVM when classifying smiles using EEG 

exclusively, and allow the omission of some steps in pre-processing. 

 The proposed networks forego the need for feature engineering. 

 The proposed networks are used for both subject-dependent and subject-

independent analysis and are compared. 

 The proposed networks can also use time-frequency information obtained via 

wavelet transform of the EEG data for classification in the future. 

Contribution to society: 

 Provide a more automated method of detecting depression. 

 Encourage honest social and professional interaction. 

 Provide a building block to pave the way for methods to detect deceit in lie 

detector tests and psychological studies.  

 

1.5. Thesis Organization 

The remainder of the thesis proceeds as follows: the next chapter, Chapter 2 

provides background information and includes the literature review regarding the 

human brain, electroencephalography, and machine learning algorithms. Chapter 3 

presents the experimental and machine learning setups used to obtain the data and 

Chapter 4 explains the methodology that is applied using these setups. Finally, Chapter 

5 includes the discussion of the results, concludes the thesis, and describes future work. 
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Chapter 2. Background and Literature Review 

 

This chapter gives the readers some needed background to follow the later 

material. Furthermore, we reviewed some works related to emotion recognition and 

their relationship with EEG. 

2.1. Background 

2.1.1. The human brain. In this work, our focus is on brain signals. Hence, it 

is a good idea to give readers some background in the human brain. The human brain 

is the main organ of the nervous system and makes up the central nervous system along 

with the spinal cord. The brain is split into three parts, namely the cerebrum, 

cerebellum, and the brainstem, all three of which contain different structures that have 

different functions that the body requires, such as temperature regulation and sensory 

relay by the brainstem. However, our focus in this research will be the cerebrum, as it 

includes the cerebral cortex, which in turn, is divided into the four main lobes: frontal, 

parietal, temporal, and occipital [12].  

Each of these lobes is responsible for different base functions, the frontal and 

occipital lobes, for example, are responsible for cognitive skills and short-term 

memory, and vision, respectively. Whereas the temporal lobe is responsible for 

olfactory and auditory senses and complex visual stimuli, and the parietal lobe is 

responsible for integrating sensory information. Furthermore, one important feature of 

the cerebral cortex is its proximity to the cranium, and by extension the scalp, which is 

where EEG electrodes record electrical activations. The EEG reads these activations as 

micro-voltage, so a means of reducing the impedance between the scalp and the 

electrodes is generally always necessary. Hair, dust, and sweat can accumulate and 

increase the impedance, as they hinder the connection between the scalp and the 

electrodes. Therefore, gels are often used to simply complete the circuit from the scalp 

to the electrode and correctly measure brain activity. Some electrodes are placed nearby 

other brain structures, such as the upper area of the cerebellum as a reference (near the 

subjects’ ears). 

Figure 2.1 shows the four main lobes of the human brain and Figure 2.2 shows 

the structure of the brain and some functions of the cerebral cortex [13]. 
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Figure 2.1: Main lobes of the cerebrum [14]. 

 

 

Figure 2.2: Anatomy and functions of the brain [13]. 

 

The signals observed from the scalp, or brain waves, are usually split into five 

different bands; delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12 – 35 Hz), 
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and gamma (>35 Hz). Though the frequency ranges are not agreed upon in literature, 

the cut-offs and bandwidths are similar with only 1 Hz or so differences [15]. Each band 

is more active in certain activities. Delta waves are associated with deep sleep, theta 

waves are associated with sleep and dreaming, alpha waves are associated with relaxed 

brain states, beta waves are associated with normal activity and focused mental activity, 

and gamma waves are associated with brain hyperactivity [16]. Most of these activities 

are relevant to the experimental protocol, and as such, are used in the analysis, save for 

gamma waves. Figure 2.3 shows these five brain waves. 

  

 

 

Figure 2.3: The five brain waves [14]. 

 

The brain is still vastly enigmatic, but we do understand that stimuli yield 

responses from a healthy brain. We also understand that, as stated earlier, smiling is a 
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measure of happiness. Emotional brain activity is normally associated with the 

prefrontal cortex [14], hence an emphasis on the electrodes in that general area.  

2.1.2. Electroencephalography. Electroencephalography or EEG is a method 

of reading brain activity that relies on electrical sources in the brain to obtain data.  

It belongs to a class of methods that use other electrical activations to read 

biometric information, such as heart rhythm (electrocardiography), eye movement 

(electrooculography), muscle contraction and relaxation (electromyography), and as 

such, involves placing electrodes (usually Ag/AgCl) on the subject’s scalp, from which 

data is read. Consequently, the data is recorded as voltage waveforms, as shown in 

Figure 2.4.  

EEG signals are more random, and have lower amplitude, in general, as opposed 

to ECG, EOG, or EMG which rely mostly on predictable or directable muscle 

movement. This entails the need for more extensive pre-processing than ECG, EOG, 

and to a lesser extent than those two, EMG, to obtain the desired information from the 

EEG. 

Figure 2.4 also showcases an important feature of EEG, and electrical activation 

reading methods in general, and that is event triggers. The figure shows epochs of data 

that begin a certain amount of time before the event, and end a certain amount after, 

which makes analyzing the EEG easier and more meaningful. 

 

 

Figure 2.4: 19-channel EEG showing 5 epochs of data. 
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Since it retains information on brain activity, EEG data can be used to read how 

the brain acts when the person smiles genuinely or not and can thus be used to translate 

that into a somewhat definitive real/fake answer. An EEG cannot be faked as easily as 

a smile or another facial expression, if at all possible. 

There are challenges with using EEG with machine learning, such as the 

possibility of low signal-to-noise ratio (SNR) if pre-processing is not done correctly 

[17], the non-stationary nature of EEG signals, and subject variability. The latter is more 

problematic in global, inter-subject schemes [7]. Some recently developed machine 

learning algorithms that make up deep learning have the potential to bypass these 

challenges, while also reducing the factor of human error, due to “automatic” feature 

learning and extraction. 

2.1.3. Machine learning. We have a supervised machine learning problem at 

hand in this work. We hope to differentiate between acted and actual smiles using EEG 

signals. We use three machine learning algorithms in this work; support vector 

machines (SVMs), Artificial Neural Networks (ANNs) and Convolutional Neural 

Networks (CNNs). This work involves having an experimentally acquired dataset, in 

which the condition corresponding to a class is known, that is used as the training input 

and output. In this case, it is known at which trial or image the subjects’ smile was real, 

fake, or if they did not smile at all.  

This aids a machine learning algorithm in classifying; when a training set is 

available, it has a precedent to learn from. In this particular case, which EEG signal 

epoch belongs to which of these three classes. This work is concerned with three 

algorithms; SVMs, simple artificial neural networks, and convolutional neural 

networks. 

A support vector machine, or a kernel machine, is a supervised learning, kernel-

based, linear algorithm that can be applied to numerous classification and regression 

applications through the use of kernel functions [18]. A support vector machine is meant 

to find an optimal hyperplane that separates the different classes, making that 

hyperplane the decision boundary. The points closest to the hyperplane are called 

support vectors and are used to maximize the margin and build the model. The 

dimensionality of the hyperplane depends on the number of features available; if two 
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classes are available then it is a 2-D problem and the hyperplane is simply a line. Figure 

2.5 shows an example of a two-class problem.  

 

 

Figure 2.5: A two-class problem, where the classes are pluses and dots. Circled points are less than the 

margin (shown by dashed lines) away from the line, and are called support vectors [18]. 

 

In some cases, the data is not linearly separable, and consequently, a separating 

hyperplane is not possible. Hence, a hyperplane is selected such that the classification 

error is minimal. This means that a plus can be on the side where the dot class is. This 

is still a misclassification, but it helps build the model. Another way to solve nonlinear 

problems involves making them linear in another space; this is done by mapping them 

to a new space using a nonlinear transformation that depends on the basis function.  

Support vector machines have various kernel functions that perform differently 

for different problems. The three most popular kernel functions are polynomial 

functions, Gaussian kernel/radial basis functions (RBF), and sigmoid functions [18]. 

Polynomial functions are represented by (1), RBF by (2), and sigmoid by (3), 

where K is the matrix of kernel values or Gram matrix, q is the polynomial order, D is 

some distance function, and s is a spread value [18]. 

K(xt , x) =  (xTxt  +  1)q    (1)  

K(xt , x) = exp (−
D(xt ,x)

2s2 )   (2)  
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K(xt , x) =  tanh(2xTxt  +  1)  (3) 

    

The main kernel function we are concerned with is RBF, as it generally fits more 

situations than polynomial kernel and is more commonly used compared to sigmoid 

kernel. For optimal classification results, the hyperparameters of the algorithm need to 

be optimized. These hyperparameters include the kernel scale, also known as gamma 

or sigma, and box constraint for radial basis functions. The kernel scale is the scale 

factor that is multiplied by the distance function and the box constraint is a parameter 

that controls the penalty on data points that violate the margin. 

SVMs are usually used for binary classification but can also be used for multi-

class problems by dividing them into binary problems. Binary problems can be made 

in two ways; using a one-vs-one approach in which a model is fit for every two classes, 

or using a one-vs-all approach, in which a model is fit for every class against all of 

them. Both approaches require binary classification.  

SVMs are simple to use and remain one of the most popular machine learning 

techniques to date. However, they present one drawback that can be time-consuming in 

many research areas, and that is feature extraction and engineering. Feature engineering 

is not a difficult process, but it can be tedious. This is because not all features could 

perform well or are as simple to extract and process, so it is also a matter of 

optimization. 

Essentially, an artificial neural network functions in a manner similar to the 

human brain; it takes in an input, processes it through hidden “neuronal” units, and 

gives out an output.  

However, it is not entirely known how the brain processes information; we 

know that through impulse transmissions between complex neuronal networks, the 

brain gives an output, such as sensory perception, for input like visual signals through 

the eyes or mechanical vibrations through the ear, and that is where it is similar to 

artificial neural networks. Artificial neural networks learn from the input by extracting 

features and minimizing error in the output, updating network parameters in the 

process. 
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Figure 2.6 shows how an artificial neural network generally looks like; it has an 

input layer, as many hidden layers as its designer desires, and an output layer whose 

size equals the number of classes. 

 

 
Figure 2.6: General architecture of an artificial neural network. 

 

Artificial neural networks generally depend on the use of a backpropagation 

algorithm for learning. Backpropagation is simply a gradient descent algorithm that 

works to minimize a cost function by feeding forward, estimating the error, and 

propagating backward to reduce that error. The cost function is application dependent. 

Famous cost functions are mean squared error for regression and cross-entropy for 

classification. 

Input goes through the input layer, which feeds into the hidden layers where the 

activation functions are applied, and the weights are constantly updated to minimize the 

cost function of the backpropagation algorithm. These optimal weights are the essence 

of the trained model. Finally, the result of classification or regression is output through 

the output layer.  

Artificial neural networks differ from SVMs in hyperparameter optimization, as 

well. Since a neural network does most of the work, the user need not optimize 
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hyperparameters on their own, or automatically prior to training with the dataset. 

However, other parameters arise because of this, such as the activation functions, 

number of hidden layers, number of hidden units in each layer, mini-batch size for 

batchwise training, training function, and any parameters associated with the training 

function. Training functions include scaled conjugate gradient, stochastic gradient 

descent, and stochastic gradient descent with momentum (the momentum is an example 

of a training function parameter). These parameters apply to convolutional neural 

networks as well, in addition to filter number, filter size, and convolution strides. 

These parameters are defined by the user, though most are usually set to a 

default value that generalizes well by software tools such as MATLAB. The activation 

function is applied to the weights, the number of which is defined by the number of 

hidden layers and hidden units. The mini-batch size represents the number of instances 

used for training and validation at a time. 

CNNs are artificial neural networks that deal primarily with images. Many 

computer vision applications utilize them, CNNs can also be used with bio-electric 

measurements, such as EEG, ECG, EMG, EOG, etc.  

Figure 2.7 shows the architecture of a typical convolutional neural network. Its 

fundamental layer is a convolutional layer, and as such it performs convolution. It takes 

in data like images or reshaped EEG data and convolves this data with the defined filter 

banks. This results in several "feature maps" which are the result of the convolution of 

the input with the defined filters. Afterward, pooling is done to reduce the size of the 

feature maps, in order to keep the computations in check and to learn more complex 

features. This can be done by max-pooling or average pooling. Pooling works to 

downsample feature maps by summarizing feature presence. The use of pooling, 

however, is not a requirement for a convolutional neural network, as we show later on. 

Moreover, a layer must be added for the activation function to reduce nonlinearity, 

which can be rectified linear units (ReLU), sigmoid, among a few other activation 

functions. 

A batch normalization layer may also be added to normalize the input across a 

mini-batch by re-scaling and re-centering it. This speeds up CNN training, decreases 

sensitivity to network initialization, and has a regularization effect; it adds some noise 
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to the activations. Following that, a fully connected layer is added to combine 

information across several feature maps. One advantage deep learning has over 

machine learning is that the user does not need to extract or even know what features 

to use; the network learns and does that automatically. The latter three layers can be 

duplicated and stacked with some alterations to the layers; this is not necessary but can 

be helpful in some cases. The final fully connected layer must have as many units as 

the classes defined by the input, no more and no less. In code, a SoftMax layer and a 

classification layer are added to classify. A SoftMax layer applies a SoftMax function, 

which is an activation function that turns numbers into probabilities with a sum of one. 

Simply put, its output is a vector denoting the probability distribution of potential 

outcomes.  

 

Figure 2.7: Typical convolutional neural network architecture [19]. 

 

The network in Figure 2.7, for example, has an input layer of size 28x28x1, two 

convolution layers with 5x5 convolutions, two 2x2 max-pooling layers, one ReLU 

layer, two fully connected layers, one with n3 units, as we can see underneath the green-

colored units, and with 9 units for digit recognition, in addition to a flatten layer 

preceding it to collapse the dimensions of the input.  

2.2. Literature Review 

Generally, emotion recognition is a subjective field that requires extensive 

human involvement. Though people can innately and routinely perceive and analyze 
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emotions in social settings, observation requires more quantitative measures to produce 

reliable results. 

Scientists collect data for human emotion recognition by labeling images and 

videos with the perceived emotion category. Furthermore, many times scientists record 

people watching stimuli that are designed to elicit an emotional response. The recorded 

data is then labeled with the emotion category using self-reports and/or expert labeling. 

There may be various modalities through which the felt emotion of a person may be 

detected. These may include facial expressions, speech, or even body gestures. Recently 

there has been some interest in measuring emotions using brain signals, such as EEG. 

Before moving on to studies involving EEG, studies that focus on using facial 

expressions are investigated. Zhang et al. [20] investigated the use of involuntary facial 

expressions to detect deceit in a system that represents expressions as facial Action 

Units (AUs).  

Smiles can be both socially-motivated, as Crivelli et al’s study involving 

observing judo competitors has concluded [21], or spontaneous as evidenced by one 

study by Kawakami et al. [22]. This study involved observing five infants for over 30 

hours and simply counting the number of spontaneous smiles and laughs. Results show 

seven spontaneous smiles and one laugh in the time of observation, meaning smiles are 

not just social utensils but can occur spontaneously. 

Affect in general, can be defined in terms of valence, arousal, and dominance, 

the latter of which is generally disregarded for affect recognition studies [8-10, 23, 24]. 

Valence is a measure of attractiveness or repulsion, and scales from ‘sad’ (1) to ‘happy’ 

(9), and arousal is a measure of activity and scales from ‘bored’ (1) to ‘alert’ (9) [25].  

These ranges could include most of the six basic emotions described by Ekman 

and Friesen [26] (shown in Figure 2.8). One study explores how accurately people can 

identify emotions through ambiguous facial expressions using event-related brain 

potentials (ERPs) and showing the participants discrete facial expressions (angry, 

happy, fearful, and neutral) and blended ones (angry-happy, fearful-happy, neutral-

happy, and so on) [2]. The study concluded that coupled with certain emotions, people 
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tend to be able to distinguish genuine smiles from an ingenuine one, though it was faster 

with angry eyes, slower with fearful or neutral eyes.  

 

 

Figure 2.8: Six basic emotions [27]. 

 

This work does not directly study these emotions, valence, or arousal, but uses 

a simple measure; a person’s smile. Unless trained in some way or prepared for an 

exercise, one cannot always distinguish between genuine and ingenuine smiles, though 

one part of a study involving three and four-year-old children identifying smiles has 

found that four-year-old children were able to correctly identify genuine smiles in 75% 

of the trials on average, which is better than chance (50%), whereas the three-year-old 

children only managed to do so in 51% of the trials, almost similar to chance [28]. The 

authors of [20] strove to detect deceit using involuntary facial expression combinations 

that pertain to certain emotions, obtaining great results for differentiating true emotions 

from acted ones, as stated in Section 1.1.  

Moreover, there has been some interest in detecting deceit. For example, a study 

that uses facial expression was mentioned in 2.1 [20]. Their work is based on the fact 
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that not all AU combinations (such as AU 23 or lip tightener) can be faked by someone 

feigning a certain emotion. AUs are represented by Major Components (MCs), such as 

AU 23 as MC 16 or “red parts of lips narrowed”, which support vector machines 

(SVMs) are trained for [20]. Using time-based features yielded better results than using 

distance-based features in testing. In the end, they managed to detect deceit with 

accuracies of 86.02%, 73.16%, 80.46%, and 90.15% for anger, enjoyment, fear, and 

sadness respectively [20]. An example of works that use both facial expressions and 

EEG with deep learning is Soleymani et al’s [29]. They use LSTM networks with the 

annotated videos and face tracking data and with the extracted power spectral density 

of EEG data and concluded that facial expression yields better results for emotion 

detection than EEG. The LSTM architecture with two hidden layers yielded a p-value 

of 0.49 ± 0.37 and a root mean square error (RMSE) of  0.043 ± 0.025 with 10 hidden 

units for facial expression data and yielded a p-value 0.26 ± 0.33 and an RMSE of 0.052 

± 0.029 with 32 hidden units for EEG data [29]. 

Despite having worse results than facial expression in the previously described 

experiment, EEG with deep learning remains a viable solution to detecting emotions, 

since the EEG still includes emotional information in addition to facial expression brain 

signals, and recording subjects may not always be possible [29]. 

Furthermore, smile detection is a more specific form of emotion detection. It 

would be interesting to detect if a person is faking a smile or is genuinely smiling, as 

this can yield interesting metrics that may be used as a proxy for happiness. 

In a study, Hossain and Gedeon [30] used kNN, SVM, simple neural networks, 

and ensemble classifiers to classify smiles from videos in the MAHNOB [31] and 

AFEW [32] datasets by human observers. The gauged responses included the papillary 

response and Galvanic skin response. After pre-processing, the former yielded an 

accuracy of 97.8% and the latter 96.6% for the ensemble classifiers with leave-one-out 

cross-validation, which outperformed the other classifiers. However, they also compare 

this classifier to the observers’ classification through self-reports, which “correctly 

judged smiles as real only 58.9% of the time (on average) to 68.4% (by voting)” [30].  

Deep learning has been widely used in affect recognition as of late due to that 

potential, with many variations on similar networks for various purposes. Miranda and 
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Patras [23], for instance, use both convolutional and recurrent neural networks together 

to predict positive and negative affective behavior, in addition to the big five personality 

traits. For valence and arousal, they obtained average-F1 scores of 0.59, and 0.61 

respectively using EEG while the subjects watched videos (audiovisual stimuli) [23]. 

Another study that is similar in objective was done by Xu and Plataniotis [33]. Their 

objective involved investigating semi-supervised learning, stacked denoising 

autoencoders, and deep belief networks for affective state classification, and has 

achieved higher average-F1 scores, at 86.60% for valence and 86.67% for arousal. 

Other studies about EEG classification include Williams’ investigation on deep 

learning and transfer learning used multi-layer perceptrons, convolutional neural 

networks, LSTM, and LSTM-fully convolutional networks to classify positive/negative 

affect [11]. Williams’  best technique, the LSTM + fully convolutional neural network, 

yielded a maximum accuracy of 64.36%. More studies that use the AMIGOS dataset 

[34] or DEAP dataset [35] using convolutional neural networks with three different 

setups that use 2,5, and 10 fully connected layers [36], LSTM [8], deep convolutional 

neural networks [9], and 3-D convolutional neural networks [10], yielding maximum 

accuracies of, respectively, 99.72%, 85.65% for arousal and 85.45% for valence, 76% 

for arousal and 75% for valence, and 88.49% for arousal and 87.44% for valence. 

Mehmood et al. use various algorithms for emotion recognition, but we are concerned 

with their multilayer perceptron algorithm [37]. They use Weka after feature extraction 

and made two tests, one with all features, and the other with optimal features, which 

yielded 50.1% and 73.6%, respectively [37]. Despite manual feature extraction, the best 

among these methods is evidently [36] at 99.72%, which uses 5 fully connected layers, 

and phase-locking values as features. Phase locking values “represent the phase 

synchronization between two time series by taking the absolute average of phase 

differences over temporal windows” [36]. 

Though valence and arousal can be used as indicators for certain emotions and 

to provide a holistic picture for smile recognition, it is simpler to use the EEG or facial 

expressions to directly classify emotions. Jang, Gunes, and Patras proposed a deep 

learning algorithm called SmileNet that detects smiling faces in real-time using fully 

convolutional neural networks with a testing accuracy of 95.76±0.56 % [38]. Their 
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work does not distinguish fake smiles from genuine ones, but it is a decent precedent 

of using convolutional neural networks to detect smiles with facial expression. 

The aforementioned works mostly show promising results with new techniques. 

However, none of them are identical in scope to our work. Our work is concerned with 

detecting fake smiles from true ones, meaning our focus is a motor response that 

corresponds to a discrete emotion instead of valence and arousal, with the distinction 

between a genuine response and an acted one. As a motor response, it is reasonable to 

assume that a fake smile is identical to a true one in appearance or even in the brain 

signal. However, a true smile would appear more pronounced in brain activity and 

involuntary facial expression, as the stimulus elicited a genuine emotional reaction. 

Therefore, it is sound to hypothesize that a fake smile would look different from a 

genuine one in an EEG and observation, paving the way for machine learning to be 

used in distinction. 

There are fewer works that are concerned with detecting fake emotions from 

real ones with deep learning than valence and arousal or singular expressions opposed 

to no expression. One such work is by Huynh and Kim, in which they combine mirror 

neural modeling and LSTM networks with parametric bias (PB) with facial expression 

[39]. Facial features are extracted and are split into either genuine or fake. Using just 

the LSTM-PB yielded a validation accuracy of 71 % for the six basic emotions and a 

testing accuracy of 66.7 % [39]. Another example would be Kumar et al’s work, in 

which they use a convolutional neural network with three convolutional layers followed 

by a fully connected layer to detect fake and true smiles from images of facial 

expression from the FERC-2013 dataset [40]. The first two convolutional layers had 64 

5x5 filters and the third had 128 4x4 filters with 3x3 max pooling between them, and a 

rectified linear units (ReLU) layer before the first max-pooling layer. Their algorithm 

could detect a real smile from an image with 100 % accuracy and a fake smile with an 

accuracy of around 90 %, but they do not pit true smiles against fake smiles with their 

labels unknown [40]. Furthermore, Bahkt et al’s work has a similar objective to [40], 

but focuses on the zygomatic major and orbicularis oculi muscles in videos from the 

ChaLearn LAP dataset [41] and use SVMs for classification between true and fake 
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smiles. They obtain a maximum accuracy of 79.2 % focusing on those two muscles as 

their image features [42]. 

Deep learning and EEG can also be used together for other applications such as 

brain-computer interface (BCI) for purposes such as motor imagery. Though motor 

imagery is somewhat different from this work, it is similar in one fundamental aspect; 

brain activity causing a motor response. In one paper, Dose et al. propose a 

convolutional neural network with temporal convolution followed by spatial 

convolution using the Physionet EEG Motor Movement/MI Dataset [43] for motor 

imagery [44]. Their aim was stroke rehabilitation, and to that end, the protocol they had 

involved three tasks, the most notable is the 2-class distinction between left and right 

foot motor imagery. For this task, the authors obtained 80.01% accuracy for global 

classification and 86.13% accuracy for subject-dependent classification. This shows 

promise for the use of convolutional neural networks in particular for tasks that involve 

motor responses, such as smiling. 

All of these works and our work do classification or regression offline, meaning 

that all of these algorithms are used after the data is collected, and not in real-time. It is 

best to have an online classification system, but an offline-developed algorithm that 

shows promising results can be used in online classification. Developing and adjusting 

models and algorithms online is difficult and bothersome to the subjects, hence the 

focus on offline algorithms. 

After reviewing the aforementioned works, we note that few of them address 

the issue of deception recognition with EEG and machine learning. This demonstrates 

the need for more data that is concerned with deception recognition with EEG. 

We apply deep learning algorithms on EEG data that was collected in our lab. 

This work demonstrates the strength of these algorithms on data as difficult as EEG 

data. We do three-way subject-dependent and subject interdependent classification for 

recognizing acted smiles, genuine smiles, or neutral expression. We achieve strong 

results, particularly in subject-dependent classification. 

We will now review the experimental setup and methodology in the next 

chapter.  
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Chapter 3. Experimental Setup and Methodology 

 

In this chapter, the subjects, the equipment and experimental protocol used to 

obtain the EEG data, and the algorithms used to analyze it are described. Eye 

movements are also available in the data obtained but will not be used in this work. The 

inclusion/selection criteria are mentioned, followed by the set up used to display the 

visual stimuli. This chapter mainly describes the protocol developed in [6]. 

Furthermore, we formulate the problem of using artificial neural networks in classifying 

smiles with EEG inputs. We also present the proposed networks for classification. 

3.1. Subjects 

We gathered a pool of 8 female subjects and 20 male subjects ranging between 

18- 26 in age, with no known mental illnesses. Most subjects were from the Electrical 

Engineering bachelor’s program. The subjects chose their preferred timing to perform 

the experiment, to ensure they were in a more relaxed state, and because it was not 

hypothesized that Circadian rhythm would affect the outcome of the experiment. The 

study was approved by the Institutional Review Board (IRB) of the American 

University of Sharjah. The subjects were informed of the experiment prior and their 

informed consent was obtained. 

The entirety of the protocol was safe and non-invasive; the only associated risks 

were discomfort with the cap and gel, and possible fatigue, though that was unlikely. 

In addition to minimal risk, the rewards for participating in the experiment were 

minimal and included providing participants with snacks after the experiment, or in 

some cases bonus assignments for their coursework. Benefits to the subject include 

furthering their understanding of the technology used for the experiment. 

3.2. Visual Stimuli and Delivery Protocol 

The stimuli came from a set of 247 images, carefully selected from the Geneva 

Affective Picture Database (GAPED) image dataset [6, 45], expected to elicit a positive 

reaction (a genuine smile) or no reaction (neutral response), and images of a book 

randomly placed now and then where the subject was asked to fake a smile. The 

GAPED is a vast emotional stimulus database that is comprised of 730 pictures that are 

meant to induce positive, neutral, and negative emotions. Images meant to elicit positive 
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emotions include, but are not limited to baby humans and animals, whereas the neutral 

set includes inanimate objects. The negative set is not necessary for this particular work 

and includes images of human or animal rights violations in addition to images of 

snakes and spiders [45]. All of these pictures are divided based on their valence and 

arousal scores. The book is an additional image and can be seen in the instructions 

window onscreen in Figure 3.2.  

Firstly, the subjects would learn where three keys are on the keyboard, each 

corresponding to a response; “P” when they genuinely smiled, “N” for neutral 

responses, and “Q” for fake smiles. To clarify, the subject was asked to fake a smile 

and press the key whenever they would see the book image. Images only remain for 2 

seconds or until the subject pressed a key, followed by 1 second of the “focus” cross. 

The full description of the experimental protocol can be found in [46]. 

3.3. EEG Data Collection 

The setup can be seen in Figure 3.1 and Figure 3.2 below and the task sequence 

is shown in Figure 3.3 following it. Figure 3.2 shows a subject wearing a 64-electrode 

EEG cap connected to a parallel port and computer, and it also shows the eye tracker 

set up to gauge eye motions. This device is not pertinent to this work, though its 

software was used for the protocol. The subjects are placed on a chair, put on the 10-20 

64-electrode EEG cap, then the experimenters fill in the electrodes with Ag/AgCl gel 

to reduce the impedance between the electrodes and the scalp, and when ready, the EEG 

is recorded using ANTNeuro software with the help of the 64-channel parallel port 

shown in Figure 3.1. 

 The computer used in this protocol delivery had an Intel Core i5 processor using 

a Windows XP operating system, whereas the computer used for data collection had an 

Intel Core i5 processor using a Windows 7 operating system. Stimulus delivery and 

response was performed and recorded using the eye tracker software on the former 

computer, but can also be done on other software, such as MATLAB, by simply writing 

code that emulates this protocol. The code displays the instruction page until any key 

is pressed, then shows the focus cross for a set amount of time, followed by an image 

for a set period or until a key is pressed, then another focus cross, and so on until the 

image set is displayed to the subject. Simultaneously, the code sends the trigger to the 
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parallel port each time a key is pressed, and that is shown on the EEG. Using MATLAB 

instead of the eye-tracking software eliminates the need for the eye-tracking kit if eye-

tracking data is not used in the analysis, thus eliminating a possibly unnecessary cost to 

the experiment.  

 

 

Figure 3.1: Experimental setup [6]. 

 

 

Figure 3.2: Hardware setup for the experimental protocol [6]. 
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Figure 3.3: Task presentation sequence [47]. 

 

3.4. EEG Pre-processing 

Though pre-processing is minimally required (manual artifact removal and 

filtering) with artificial neural networks, some steps are undertaken to maintain 

similarity with Alex’s experiment [6]. Pre-processing goes as follows: To begin with, 

channels M1 and M2 – the channels corresponding to the two electrodes just above the 

ears- are removed leaving 62 channels. This would change the electrode scheme from 

the default 64-electrode scheme to Figure 3.4. M1 and M2 are the reference channels, 

and are located right beneath the subjects’ ears, and, as such, show as a constant 0 in 

the EEG signals. Therefore, keeping them would skew the data especially when 

performing independent component analysis (ICA). Afterward, the EEG data is 

chopped, to remove time segments where motion artifacts were too dominant or 

distortive to the signal. What remained was filtered using finite impulse response (FIR) 

filtering in the EEGLAB [48] MATLAB plugin, with the lower cut-off frequency being 

0.5 Hz and the upper cut-off frequency being 40 Hz.  

FIR filters were the main filtering technique applied throughout this work, 

primarily due to their simplicity of implementation on EEGLAB in contrast with 

infinite impulse response (IIR) filters. The default order of the filter is 3000 (3 ∗

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐿𝑜𝑤 𝐶𝑢𝑡−𝑜𝑓𝑓 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
), where the sampling frequency is 500 Hz, and the low cut-off is 

0.5 Hz), which is relatively large. However, that is not a deterrent to using FIR, as the 
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filtering does not occur in real-time. After filtering, the data is re-referenced to the 

average of all electrodes. The frequency response of this filter is shown in Figure 3.5. 

 

 

Figure 3.4: Electrode scheme after M1 and M2 were removed. 

 

Figure 3.5: Bandpass filter response, Fc1 = 0.5 Hz, Fc2 = 40 Hz. 
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After filtering, the data is almost ready to be used as input to either network, 

only the eye blink artifacts must be removed. This is done using independent component 

analysis (ICA). Each channel is decomposed into 62 independent components and the 

first 3 components were removed, as we could tell by inspection that they were the root 

cause behind blinks. The inspection involved looking at the components that were 

extremely distorted in addition to trial and error while looking at the components and 

the resulting signal after removal. This is also done with EEGLAB. Finally, the epochs 

are extracted to make classification easier; that way we have as many epochs as the 

number of events remaining after chopping the signal, each of which corresponds to 

one of the three classes. 

In addition to using the entirety of each dataset as the input, different frequency 

bands are input into the simple neural network and the selected architecture of the 

convolutional neural network. Each band corresponds to the four brain wave bands: 

beta between 12 and 35 Hz, alpha between 8 and 12 Hz, theta between 4 and 8 Hz, and 

delta between 0.5 and 4 Hz. The frequency responses are shown in Figure 3.6 through 

Figure 3.9. 

 

Figure 3.6: Beta (12-35Hz, order = 150) bandpass filter response. 
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Figure 3.7: Alpha (8-12Hz, order = 150) bandpass filter response. 

 

Figure 3.8: Theta (4-8Hz, order = 150) bandpass filter response. 
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Figure 3.9: Delta (0.5-4Hz, order = 150) bandpass filter response. 

 

3.5. Setup of Machine Learning Algorithms 

In our research, three main machine learning algorithms are used. These 

algorithms include support vector machines (SVMs), simple neural networks, and 

convolutional neural networks.  

As stated in Chapter 2, SVMs are used for binary classification, but multiple 

SVM classifiers can be combined for multi-class problems. This is done by splitting the 

n-class problem, for instance, into n binary classification problems in a one-vs-one 

manner or a one-vs-all manner. The outcomes of each classifier can be combined using 

the output probabilities.  

Simple neural networks involve using three-layer artificial neural networks, 

where the data is input after pre-processing to the input layer and fed forward to the 

hidden layer and then the output layer.  

Convolutional neural networks differ primarily to the simple network in one 

aspect; the inclusion of a convolutional layer after the input layer. The architecture can 

be more complex if desired; more hidden layers can be added, in addition to activation 
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operations, and normalization. All of their parameters should be optimized to give the 

best possible result. 

3.5.1. Support vector machines. Before moving on to the main focus of the 

thesis, we establish a baseline as both a basis for comparison with the neural networks 

and comparison with previous work. This baseline simply involves support vector 

machines. SVMs are binary classifiers, but, as stated earlier, we can combine multiple 

binary classifiers to give us three-class classification. We achieve this using built-in 

functions in MATLAB. We use the radial basis function (RBF) kernel and tune its 

parameters on part of the training set. Hyperparameter tuning was done using two 

methods, grid search, and trial-and-error with a part of the training set. The latter 

yielded a better result and was less time-consuming. 

3.5.2. Simple neural network. Following SVM, a simple three-layer network 

is trained using the data of each subject individually using scaled conjugate gradient as 

the training function, with 150 neurons in the hidden/middle layer. The network 

architecture is shown below in Figure 3.10.  

 

Figure 3.10: Three-layer network visualization. 

3.5.3. Convolutional neural network architectures. The architecture and 

layers of the proposed convolutional neural network are shown in Figure 3.11 through 

Figure 3.15 below. It can be noted that there are no max or average pooling layers, 

instead, the convolutional layer(s) were in strides of 3 to 4, depending on the 

architecture. 

The size of the input for the first subject was 62 × 750 × 1 × 180. It was 

reshaped from 62 × 750 × 180 (channel number x time samples from extracted epochs 

from -0.5 to 1-second × training events, 75% of the total 240 events for this subject) 

for 2-D convolution to work in MATLAB. The solver used was stochastic gradient 

descent with momentum (0.95) or SGDM, the batch size was 128, and the initial learn 
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rate was 0.01. Also, L2-regularization was used with a factor of 0.0005. All five 

architectures are described in the next paragraph. 

The architectures are fairly simple with only 10 to 13 layers and minor 

differences between them; the first architecture includes a single convolutional layer 

with 128 11×11 filters and strides of 4×4, followed by a batch normalization layer, a 

rectified linear units (ReLU) layer, a fully connected layer with 150 hidden units, a 

second batch normalization layer, a second ReLU layer, and a final fully connected 

layer with as many hidden units as our classes (3), followed by a softmax layer. The 

second and third architectures differ from this one in the convolutional layer; the second 

has 70 3×3 filters, and the third has 90 5×5 filters, also with 4x4 strides. The fourth 

and fifth architectures, however, have an additional convolutional layer, a batch 

normalization layer, and a ReLU layer after the first ReLU layer. The convolutional 

layers in the fourth architecture have 128 5×5 filters and 90 11×11 filters respectively, 

both with strides of 4×4, and the convolutional layers in the final architecture have 70 

2×2 filters and 40 3×3 filters respectively, but with strides of 3x3 instead.  

 

 

 Name Type Activations Learnables 

1 Input 

62×750×1 images with 

‘zerocenter’ normalization 

Image Input 62×750×1 - 

2 Conv_1 

128 11×11×1 convolutions 

with stride [4 4] and 

padding [0 0 0 0] 

Convolution 13×185×128 Weights 

11×11×1×128 

Bias 1×1×128 

3 BN_1 
Batch Normalization with 

128 channels 

Batch 
Normalization 

13×185×128 Offset 

1×1×128 
Scale 

1×1×128 

4 ReLU_1 ReLU 13×185× 128 - 

5 FC_1 

150 fully connected layer 

Fully 

Connected 
1×1× 150 Weights 

150×307840 

Bias 150×1 

6 BN_2 

Batch Normalization with 
150 channels 

Batch 

Normalization 
1×1× 150 Offset 

1×1×150 

Scale 

1×1×150 

7 ReLU_2 ReLU 1×1× 150 - 

8 FC_2 
3 fully connected layer 

Fully 
Connected 

1×1×3 Weights 

3×150 

Bias 3×1 

9 softmax Softmax 1×1×3 - 

10 Output 

crossentropyex 

Classification 

Output 

- - 

 

Figure 3.11: CNN architecture 1. 
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Figure 3.12: CNN architecture 2. 

 

 

 Name Type Activations Learnables 

1 Input 

62×750×1 images with 

‘zerocenter’ normalization 

Image Input 62×750×1 - 

2 Conv_1 

90 5×5×1 convolutions with 

stride [4 4] and padding [0 0 0 

0] 

Convolution 15×187×
90 

Weights 5×5×1×90 

Bias 1×1×90 

3 BN_1 - Batch Normalization 

with 128 channels 

Batch 

Normalization 
15×187×
90 

Offset 1×1×90 

Scale 1×1×90 

4 ReLU_1 ReLU 15×187×
90 

- 

5 FC_1 

150 fully connected layer 

Fully Connected 1×1× 150 Weights 150×252450 

Bias 150×1 

6 BN_2 

Batch Normalization with 150 
channels 

Batch 
Normalization 

1×1× 150 Offset 1×1×150 

Scale 1×1×150 

7 ReLU_2 ReLU 1×1× 150 - 

8 FC_2 

3 fully connected layer 

Fully Connected 1×1×3 Weights 3×150 

Bias 3×1 

9 softmax Softmax 1×1×3 - 

10 Output  - crossentropyex Classification 

Output 

- - 

 

Figure 3.13: CNN architecture 3. 

 

 Name Type Activations Learnables 

1 Input 62×750×1 images with 

‘zerocenter’ normalization 

Image Input 62×750×1 - 

2 Conv_1 

70 3×3×1 convolutions with 

stride [4 4] and padding [0 0 

0 0] 

Convolution 15×187×70 Weights 

11×11×1×70 

Bias 1×1×70 

3 BN_1  

Batch Normalization with 

128 channels 

Batch 
Normalization 

15×187×70 Offset 

1×1×70 

Scale 1×1×70 

4 ReLU_1 ReLU 15×187×70 - 

5 FC_1 

150 fully connected layer 

Fully Connected 1×1× 150 Weights 

150×196350 

Bias 150×1 

6 BN_2 

Batch Normalization with 
150 channels 

Batch 
Normalization 

1×1× 150 Offset 

1×1×150 

Scale 

1×1×150 

7 ReLU_2 ReLU 1×1× 150 - 

8 FC_2 

3 fully connected layer 

Fully Connected 1×1×3 Weights 

3×150 

Bias 3×1 

9 softmax Softmax 1×1×3 - 

10 Output 

crossentropyex 

Classification 

Output 

- - 

 

 



42 

 

 

Figure 3.14: CNN architecture 4. 

  Name Type Activations Learnables 

1 Input 

62×750×1 

images with 

‘zerocenter’ 

normalization 

Image Input 62×750×1 - 

2 Conv_1 

128 5×5×1 

convolutions 

with stride [4 

4] and padding 

[0 0 0 0] 

Convolution 15×187×12

8 

Weights 

5×5×1×128 

Bias 1×1×128 

3 BN_1 

Batch 

Normalization 

with 128 

channels 

Batch 

Normalizatio

n 

15×187×12

8 

Offset 

1×1×128 

Scale 1×1×128 

4 ReLU_1 ReLU 15×187×12

8 

- 

5 Conv_2 

90 11×11×1 

convolutions 

with stride [4 

4] and padding 

[0 0 0 0] 

Convolution 2×45× 90 Weights 

11×11×128×9

0 

Bias 1×1×90 

6 BN_2 

Batch 

Normalization 

with 90 

channels 

Batch 

Normalizatio

n 

2×45× 90 Offset 1×1×90 

Scale 1×1×90 

7 ReLU_2 ReLU 2×45× 90 - 

8 FC_2 

150 fully 

connected 

layer 

Fully 

Connected 
1×1× 150 Weights 

150×8100 

Bias 150×1 

9 BN_3 

Batch 

Normalization 

with 150 

channels 

Batch 

Normalizatio

n 

1×1× 150 Offset 

1×1×150 

Scale 1×1×150 

10 ReLU_3 ReLU 1×1× 150 - 

11 FC_3 

3 fully 

connected 

layer 

Fully 

Connected 
1×1×3 Weights 3×150 

Bias 3×1 

12 softmax Softmax 1×1×3 - 

13 Output 

crossentropye

x 

Classification 

Output 

- -  
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Figure 3.15: CNN architecture 5. 

  Name Type Activations Learnables 

1 Input 

62×750×1 images 

with ‘zerocenter’ 

normalization 

Image Input 62×750×1 - 

2 Conv_1 

70 2×2×1 

convolutions with 

stride [3 3] and 

padding [0 0 0 0] 

Convolution 21×250×70 Weights 

2×2×1×70 

Bias 

1×1×70 

3 BN_1 

Batch Normalization 

with 128 channels 

Batch 

Normalization 
21×250×70 Offset 

1×1×70 

Scale 

1×1×70 

4 ReLU_1 ReLU 21×250×70 - 

5 Conv_2 

40 3×3×1 

convolutions with 

stride [3 3] and 

padding [0 0 0 0] 

Convolution 7×83×40 Weights 

3×3×70×40 

Bias 

1×1×40 

6 BN_2 

Batch Normalization 

with 90 channels 

Batch 

Normalization 
7×83×40 Offset 

1×1×40 

Scale 

1×1×40 

7 ReLU_2 ReLU 7×83×40 - 

8 FC_2 

150 fully connected 

layer 

Fully 

Connected 
1×1× 150 Weights 

150×23240 

Bias 150×1 

9 BN_3 

Batch Normalization 

with 150 channels 

Batch 

Normalization 
1×1× 150 Offset 

1×1×150 

Scale 

1×1×150 

10 ReLU_3 ReLU 1×1× 150 - 

11 FC_3 

3 fully connected 

layer 

Fully 

Connected 
1×1×3 Weights 

3×150 

Bias 3×1 

12 softmax Softmax 1×1×3 - 

13 Output 

crossentropyex 

Classification 

Output 

- - 
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3.6. Training and Testing Sets 

For all aforementioned architectures and algorithms, 4-fold cross-validation 

was used, meaning three folds were reserved for training and the remaining fold was 

used for testing. 

Taking inter-subject variability into consideration, we preliminarily focused on 

subject-dependent classification.  Later we extended our experimentation to be subject 

independent analysis as well. In the subject-dependent training and testing scenario, we 

trained on the data of the same subject and tested on the data from the same subject. 

While in the subject-independent setting, training and testing data came from different 

subjects. 

After pre-processing was done for all subjects, (see Section 3.4), some of the 

initial 247 events are removed, and the remaining events range from 229 to 244 for 

different subjects. The rejected events were removed mainly due to motion artifact 

during the time of the event, which differs between subjects. Some subjects moved quite 

a lot, so more events had to be rejected due to motion artifact, such is the case with the 

subject whose EEG included 229 events. Others did not move as much, so fewer events 

had to be rejected, as is the case with the subject whose EEG included 244 events. 

In the subject-dependent analysis, these events- ranging from 229 to 244- refer 

to the subject’s key presses, and by extension, tells us their response at the instant of 

the event in the EEG. For each subject, the events were divided into four folds, so, for 

instance, the subject with 244 events would have 183 event epochs in the training folds 

and 61 event epochs in the testing fold, all of which are shuffled following each 

iteration. 

The experimental protocol contained 247 images for all subjects instead of 

being time-limited and thus there were variations in completion time between subjects, 

and that was coupled with differences in motion artifact (and subsequently events to be 

removed). One way of doing subject-independent analysis involves splitting the data 

with the number of events selected to be 229 for all subjects to make a 62×750×229×28 

matrix with all the data, that was reduced with PCA to 41×750×229×28. However, 

this caused the additional removal of some events for some subjects. Hence, for the 

subject-independent approach, the data of all subjects was concatenated into a 
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62×750×6673 matrix and the same method of cross-validation was applied. Note that 

the number of channels remains 62, the number of time samples per epoch remains 750, 

but the number of epochs becomes 6673, which is the sum of the number of epochs for 

all subjects. This means that the 3 training folds would include the data of 21 subjects 

(3/4 of 28), and the testing fold will have the data of 7 subjects. LeaveOneOut cross-

validation- a special case of K-fold cross-validation with K = 28- was also a possibility 

for subject-independent analysis, but it significantly increased training time with little 

improvement to the overall result, thus we used 4-fold cross-validation for it, as well. 

The metrics used for analysis include accuracy, sensitivity, specificity, 

precision, and F-score or F1-measure.  The accuracy was obtained by calculating the 

number of correctly classified instances and dividing that by the total number of 

instances, sensitivity was obtained by calculating the true positive rate for each class 

and taking the mean, and specificity was similar but used the true negative rate instead. 

Precision was computed by finding the positive predictive value for each class and 

taking the mean, and F-score was obtained using this formula 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =

 
2(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
.
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Chapter 4. Results and Discussion 

 

In this chapter, we present the results obtained from classification with the EEG 

data using the various classifiers described earlier. We then compare them with each 

other for subject-dependent analysis.  

4.1. Classification Results 

Hence, we moved on to develop our classification paradigm with SVMs and 

neural networks for our data. The results with SVM with an RBF kernel were not 

impressive on our EEG data, showing an accuracy of 48.387% ± 7.57%, which, without 

proper feature engineering, makes them completely uncompetitive in the scope of this 

work. 

With 4-fold cross-validation, three folds were used to train the convolutional 

neural network and the remaining fold was used for testing. Figure 4.1 shows the 

training progress of the selected convolutional neural network architecture for one of 

the training folds for one subject as an example of the training progress plot. For the 

other folds, this training progress plot would be identical to this one and continue until 

all the training folds are through. K-1 folds are used for training and one is used for 

testing. 

 

 

Figure 4.1: Progress of one training fold with a convolutional neural network. 
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With the simple neural network and the CNN architecture described earlier in 

3.5, the testing outcomes are shown in Table 4.1 through Table 4.4. 

 

Table 4.1: Comparison of results of all algorithms for subject-dependent classification. 

Algorithm Used CNN 

1 

CNN 

2 

CNN 

3 

CNN 

4 

CNN 

5 

Simpl

e NN 

SVM 

Numb

er of 

Layer

s 

Convolutiona

l 

1 1 1 2 2 N/A N/A 

Fully 

Connected 

2 2 2 2 2 1 

Total 

Number of 

layers 

10 10 10 13 13 3 

Number of filters in 

convolutional layer(s) 

128 70 90 128 & 

90 

70 & 

40 

N/A N/A 

Number of hidden 

units in fully 

connected layers 

150 & 

3 

150 & 

3 

150 & 

3 

150 & 

3 

150 & 

3 

150 N/A 

Filter size(s) / Box 

Constraint (SVM) 
[11×1

1] 

[3x3] [5x5] [5x5] 

& 

[11x11

] 

[2x2] 

& 

[3x3] 

N/A 1 

Stride(s) / Kernel 

Scale (SVM) 

[4x4] [4x4] [4x4] [4x4] [3x3] N/A Auto 

Mean Accuracy (%) 90.446 

± 3.11 

89.376 

± 2.81 

89.513 

± 2.34 

89.279 

± 3.15 

89.629 

± 3.14 

88.879 

± 2.78 

48.387 

± 7.57 

Mean Sensitivity (%) 89.352 

± 5.54 

87.618 

± 6.25 

88.012 

± 6.45 

89.766 

± 7.14 

90.106 

± 7.27 

88.084 

± 2.33 

N/A 

Mean Specificity (%) 92.868 

±  4.22 

92.007 

± 4.26 

91.559 

± 3.84 

89.489 

± 6.01 

89.991 

± 5.50 

93.806 

± 1.22 

N/A 

Mean Precision (%) 90.978 

± 4.39 

88.799 

± 4.38 

88.311 

± 4.46 

86.717 

± 6.30 

87.907 

± 5.39 

88.313 

± 2.56 

N/A 

Mean F-score (%) 90.028 

± 3.76 

88.036 

± 4.09 

88.005 

± 4.42 

87.918 

± 4.61 

88.748 

± 4.63 

88.197 

± 2.41 

N/A 
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Table 4.2: Results of the simple network for all subjects. 

Subject Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F-score 

(%) 

1 
88.8 89.0 93.9 90.3 89.6 

2 
84.7 84.0 91.9 84.9 84.5 

3 
86.9 87.1 93.4 87.1 87.1 

4 
91.8 92.3 95.3 92.3 92.3 

5 
87.9 88.6 93.2 88.5 88.5 

6 
87.7 88.0 93.8 87.7 87.8 

7 
87.5 87.6 93.6 87.2 87.4 

8 
93.8 93.9 96.7 94.7 94.3 

9 
83.2 83.0 90.8 82.2 82.6 

10 
87.7 88.1 93.6 88.7 88.4 

11 
88.1 89.2 94.1 89.2 89.2 

12 
89.8 89.0 94.2 89.7 89.3 

13 
85.0 85.3 92.0 84.8 85.1 

14 
91.0 87.6 94.3 87.5 87.6 

15 
87.7 87.8 93.1 88.1 87.9 

16 
94.3 90.1 96.1 91.1 90.6 

17 
87.3 87.6 93.5 87.2 87.4 

18 
91.2 88.1 94.5 87.1 87.6 

19 
93.8 91.4 95.3 93.6 92.5 

20 
91.8 87.3 94.3 87.5 87.4 

21 
90.3 86.1 93.2 87.0 86.5 

22 
91.4 90.7 94.8 90.1 90.4 

23 
90.1 88.4 94.3 89.2 88.8 

24 
84.4 84.4 92.2 86.0 85.2 

25 
87.3 86.6 93.1 87.4 87.0 

26 
89.4 89.8 94.3 89.3 89.6 

27 
87.7 88.2 93.5 87.6 87.9 

28 
88.1 87.4 93.4 86.9 87.2 

Mean 88.879 88.085 93.806 88.313 88.197 

Standard 

Deviation 
2.781 2.329 1.221 2.558 2.414 
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Table 4.3: Results of CNN1 for all Subjects. 

Architecture 1 

Subject Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F-score 

(%) 

1 
87.5 85.3 90.8 88.6 86.9 

2 
87.7 90.2 89.6 86.8 88.5 

3 
90.7 90.7 92.1 89.8 90.2 

4 93.1 93.6 94.9 93.6 93.6 

5 
90.1 90.5 98.8 96.6 93.4 

6 
92.3 88.3 95.6 94.2 91.2 

7 
88.5 83.5 95.1 89.2 86.3 

8 
88.8 90.5 91.1 88.8 89.6 

9 
86.1 86.6 90.2 88.2 87.4 

10 89.0 94.3 88.5 83.0 88.3 

11 89.4 88.0 93.5 91.3 89.6 

12 91.1 74.1 99.4 97.7 84.3 

13 83.8 81.0 90.4 81.9 81.4 

14 96.7 88.4 100.0 100.0 93.8 

15 86.9 84.3 92.3 88.7 86.4 

16 95.1 98.0 92.9 95.4 96.7 

17 89.8 95.1 89.6 86.6 90.7 

18 
91.3 94.6 86.6 92.7 93.6 

19 
95.5 97.4 92.1 95.5 96.5 

20 
94.7 95.7 93.3 95.0 95.3 

21 
88.3 93.9 80.4 88.5 91.1 

22 95.1 88.9 98.9 96.0 92.3 

23 88.5 82.7 96.2 86.0 84.3 

24 86.9 86.8 91.3 88.5 87.6 

25 91.1 95.5 91.2 92.7 94.1 

26 89.8 90.5 91.3 86.9 88.7 

27 92.7 92.3 95.8 91.1 91.7 

28 
92.2 81.4 98.4 94.1 87.3 

Mean 90.446 89.352 92.868 90.978 90.028 

Standard 

Deviation 
3.105 5.539 4.215 4.385 3.762 
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Table 4.4: Average results of the subject-independent analysis with CNN1. 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F-score 

(%) 

53.4 56.7 62.9 52.7 54.6 

 

The confusion matrices of one iteration of testing of subject-dependent analysis 

with the simple neural network and CNN1 and subject-independent analysis with 

CNN1 are shown in Figure 4.2 through Figure 4.4. The confusion matrix shows whether 

or not the predicted class matched target class, and what other classes it was confused 

for. Class 1 corresponds to a true smile, 2 corresponds to a fake smile, and 3 corresponds 

to neutral. These matrices are discussed in more detail in 4.2. 

 Accuracy, specificity, sensitivity, precision, and F-score can all be acquired 

through the confusion matrices, as described in 3.6. 

 

 

Figure 4.2: Confusion matrix of the simple neural network. 
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Figure 4.3: Confusion matrix of CNN1. 

 

 

Figure 4.4: Confusion matrix of subject-independent analysis using CNN1. 
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 CNN1 was selected over the other architectures due to its superior performance. 

This is due to the large number of filters and filter size in its convolutional layer, though 

our testing shows filter size has a larger effect on performance than the number of 

filters. For instance, reducing the number of filters from 128 to 70 while keeping the 

size 11×11 reduced the accuracy from 90.45 % to 90.21 %, whereas reducing the filter 

size from 11×11 to 3×3 reduced the accuracy from 90.45 % to 89.15 %. The effect of 

adding an extra convolutional layer (and subsequent batch normalization and ReLU 

layers) can be seen in Table 4.1 as we go from CNN1 to CNN4. It can be noted that the 

number of filters decreased as the network went deeper and that the filter size increased, 

meaning that the second convolutional layer has fewer filters with a larger size than the 

first. From CNN4 and CNN5, we can see that adding more convolutional and 

subsequent layers decreases performance. However, reducing the stride size could 

mitigate this decrease at the expense of significantly increased training time. 

 The first three architectures are shallower than the latter two. These 

architectures were tested first because it is faster to train shallow networks than deeper 

ones. Furthermore, decreasing the strides in convolutional layers, as seen in CNN5, 

increases training time even further. 

To evaluate the performance of different clinical bands of the EEG data, we 

extracted alpha, beta, theta, and delta bands and used them for four-fold cross-validation 

with CNN1 architecture. Filtering was performed on the full spectrum after motion and 

eye blink artifacts are rejected for the four bands. The range of the full spectrum was 

0.5 to 40 Hz as mentioned earlier, meaning it includes the four investigated bands in 

addition to some gamma wave components. 

As explained earlier, beta waves include the frequencies ranging from 12-35 

Hz, alpha waves from 8-12 Hz, theta from 4-8 Hz, and delta from 0.5-4 Hz and are 

obtained using the filters described in 3.4.  

Gamma waves are not tested on their own in our work, but their results can be 

inferred when the results of the four tested bands are compared with those of the full 

spectrum. This is because the remainder of the full spectrum, excluding these four bands 

includes some frequencies of gamma waves. The results are shown in Table 4.5 through 

Table 4.9. 
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Table 4.5: Results of Beta (12-35Hz) and Alpha (8-12Hz) Bands Using the Simple Neural Network. 

B

Band 

Beta Alpha 

Subject Acc

urac

y 

(%) 

Sensit

ivity 

(%) 

Specif

icity 

(%) 

Precis

ion 

(%) 

F-

Score 

(%) 

Accu

racy 

(%) 

Sensit

ivity 

(%) 

Specif

icity 

(%) 

Precis

ion 

(%) 

F-

Score 

(%) 

1 
84.2 83.0 91.3 82.7 82.8 78.8 78.3 89.0 78.6 78.4 

2 
82.6 82.3 91.0 82.4 82.3 82.2 81.6 91.1 82.1 81.9 

3 
81.6 81.3 90.5 81.7 81.5 86.9 86.9 93.4 87.1 87.0 

4 
85.7 84.9 92.3 85.1 85.0 86.5 87.4 92.9 86.7 87.1 

5 
84.5 83.9 92.0 84.8 84.3 78.0 78.4 88.8 77.8 78.1 

6 
86.9 86.4 93.1 86.2 86.3 80.0 79.7 89.2 80.7 80.2 

7 
82.9 82.9 91.3 82.6 82.7 78.8 78.4 89.3 78.9 78.6 

8 
86.3 86.5 93.1 89.7 88.1 82.9 82.8 91.1 83.1 82.9 

9 
83.2 81.9 90.6 82.0 81.9 85.3 84.5 92.3 85.0 84.8 

10 
87.3 86.8 93.3 87.3 87.0 79.7 80.2 89.6 80.0 80.1 

11 
84.8 85.6 92.2 84.7 85.2 84.0 84.7 91.9 84.0 84.3 

12 
85.6 83.4 91.7 83.1 83.3 84.8 84.3 92.5 83.8 84.1 

13 
84.6 84.2 91.8 84.1 84.1 84.2 84.0 91.9 84.8 84.4 

14 
88.1 84.0 92.5 83.8 83.9 82.4 78.9 89.3 81.1 80.0 

15 
84.0 83.5 91.7 83.5 83.5 87.7 87.9 93.8 88.8 88.4 

16 
89.8 84.3 92.3 83.9 84.1 88.6 83.2 91.6 83.6 83.4 

17 
84.8 83.9 91.9 83.8 83.8 83.7 83.6 91.6 83.2 83.4 

18 
88.2 81.6 90.2 80.1 80.8 86.4 81.3 91.2 82.1 81.7 

19 
92.5 88.7 93.8 94.3 91.4 87.9 84.9 92.2 85.7 85.3 

20 
89.3 85.3 92.7 87.4 86.3 91.4 87.5 94.0 89.8 88.7 

21 
91.5 84.6 92.6 85.0 84.8 86.0 79.9 89.5 81.9 80.9 

22 
88.5 85.1 92.6 86.1 85.6 84.0 83.4 91.4 82.0 82.7 

23 
88.4 84.9 92.6 85.3 85.1 81.9 80.5 90.2 81.4 80.9 

24 
85.7 85.0 92.7 84.9 84.9 84.8 83.7 91.9 84.1 83.9 

25 
86.1 83.4 91.1 86.7 85.0 82.4 81.9 90.9 82.3 82.1 

26 
84.8 84.4 92.0 85.5 85.0 78.4 79.1 89.3 79.4 79.3 

27 
85.7 83.9 92.0 84.1 84.0 80.0 80.6 90.1 79.9 80.2 

28 
85.7 83.7 92.0 84.3 84.0 82.0 80.7 89.5 80.0 80.4 

Mean 

(%) 

86.1

80 

84.26

3 

92.03

8 

84.82

4 84.537 

83.56

0 

82.44

3 

91.04

6 

82.78

2 

82.61

0 

Standa

rd 

Deviati

on (%) 

2.57

4 1.614 0.856 2.661 2.075 3.365 2.870 1.513 2.977 2.891 



54 

 

Table 4.6: Results of Theta (4-8Hz) and Delta (0.5-4Hz) Bands Using Simple Neural Network. 

B

Band 

Theta Delta 

Subject Acc

ura

cy 

(%) 

Sensit

ivity 

(%) 

Speci

ficity 

(%) 

Preci

sion 

(%) 

F-

Score 

(%) 

Accu

racy 

(%) 

Sensit

ivity 

(%) 

Speci

ficity 

(%) 

Preci

sion 

(%) 

F-

Score 

(%) 

1 
88.8 88.8 94.1 89.6 89.2 85.0 84.3 91.9 84.4 84.4 

2 
86.0 85.6 92.6 87.3 86.4 84.3 84.3 91.9 84.9 84.6 

3 
87.3 87.7 93.7 87.9 87.8 89.0 88.2 94.6 88.2 88.2 

4 
88.1 88.7 93.5 88.6 88.6 85.7 85.8 92.4 85.9 85.9 

5 
82.3 82.4 90.8 82.0 82.2 84.9 84.9 91.6 85.4 85.2 

6 
85.3 85.1 91.7 86.2 85.7 86.1 86.2 92.5 85.1 85.6 

7 
83.0 83.6 91.3 82.5 83.1 84.2 84.3 92.3 83.3 83.8 

8 
88.3 87.7 93.9 88.3 88.0 88.8 88.5 94.4 88.9 88.7 

9 
82.0 81.7 90.9 83.4 82.5 81.6 81.8 90.8 81.4 81.6 

10 
88.1 88.8 94.0 88.2 88.5 83.1 83.5 91.2 84.2 83.8 

11 
85.3 84.9 92.4 84.7 84.8 87.7 88.4 93.6 88.4 88.4 

12 
79.3 77.6 88.7 78.3 77.9 86.1 85.3 92.7 83.8 84.6 

13 
87.5 88.5 93.3 88.2 88.3 81.7 80.9 90.3 81.3 81.1 

14 
86.1 83.6 92.2 82.7 83.2 85.7 83.1 91.7 84.5 83.8 

15 
87.7 86.7 93.5 88.1 87.4 88.5 88.8 93.5 89.1 88.9 

16 
89.4 84.5 92.4 85.8 85.1 91.8 88.5 95.4 88.6 88.6 

17 
87.7 88.6 93.7 87.6 88.1 84.5 84.9 91.8 87.0 86.0 

18 
89.0 86.1 92.9 85.4 85.8 91.7 89.8 95.4 89.3 89.5 

19 
93.8 89.1 95.1 88.5 88.8 89.6 85.8 93.2 87.9 86.8 

20 
91.4 89.4 94.5 88.3 88.8 91.8 89.0 94.6 88.5 88.8 

21 
89.8 86.6 93.6 87.3 86.9 86.9 84.5 92.1 84.3 84.4 

22 
89.8 89.0 94.1 89.5 89.3 93.9 92.4 95.9 91.6 92.0 

23 
84.9 84.0 91.9 83.5 83.8 85.4 84.8 92.4 84.9 84.8 

24 
86.1 85.3 92.9 85.1 85.2 85.7 86.1 92.7 85.0 85.6 

25 
78.8 79.5 89.0 77.5 78.5 83.3 82.3 90.8 82.8 82.5 

26 
88.1 87.7 93.9 88.6 88.2 86.1 86.5 92.7 86.8 86.7 

27 
90.2 89.5 94.8 90.2 89.8 86.5 86.6 92.8 87.5 87.0 

28 
88.1 86.4 92.5 87.8 87.1 87.7 86.2 92.4 87.9 87.0 

Mean 

(%) 

86.8

64 

85.96

9 

92.77

9 

86.11

3 86.038 

86.68

1 

85.92

1 

92.77

1 

86.10

8 

86.01

2 

Standa

rd 

Deviati

on (%) 

3.35

0 3.002 1.542 3.196 3.065 3.027 2.559 1.430 2.492 2.486 
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Table 4.7: Results of Beta (12-35Hz) and Alpha (8-12Hz) Bands Using CNN1. 

B

Band 

Beta Alpha 

Subject Acc

ura

cy 

(%) 

Sensit

ivity 

(%) 

Speci

ficity 

(%) 

Preci

sion 

(%) 

F-

Score 

(%) 

Accu

racy 

(%) 

Sensit

ivity 

(%) 

Speci

ficity 

(%) 

Preci

sion 

(%) 

F-

Score 

(%) 

1 
82.5 85.3 85.5 83.0 84.2 87.1 88.1 88.5 86.5 87.3 

2 86.4 86.3 88.8 85.4 85.9 87.3 92.2 87.3 84.7 88.3 

3 88.2 84.1 92.8 90.0 87.0 91.5 92.5 95.7 94.3 93.4 

4 87.8 89.0 89.0 86.6 87.8 86.9 87.2 91.2 88.8 88.0 

5 81.5 74.6 94.1 82.5 78.3 81.0 74.6 95.9 87.0 80.3 

6 
89.4 90.1 94.8 93.5 91.7 92.7 91.9 94.8 93.6 92.7 

7 88.9 87.3 94.5 88.5 87.9 86.8 78.5 93.9 86.1 82.1 

8 87.9 92.4 89.6 87.4 89.8 85.0 88.6 84.4 81.6 84.9 

9 85.3 86.6 88.7 86.6 86.6 86.5 86.6 91.0 89.0 87.8 

10 87.7 92.0 88.5 82.7 87.1 87.3 92.0 88.5 82.7 87.1 

11 89.0 88.0 93.5 91.3 89.6 89.8 90.7 93.5 91.6 91.2 

12 
88.6 72.4 96.6 87.5 79.2 91.1 77.6 97.8 91.8 84.1 

13 87.1 83.3 94.2 88.6 85.9 84.6 85.7 92.3 85.7 85.7 

14 93.1 86.0 97.5 88.1 87.1 91.5 88.4 97.5 88.4 88.4 

15 82.9 83.3 90.2 85.9 84.6 85.7 85.3 90.2 86.1 85.7 

16 90.7 94.6 88.8 92.7 93.6 91.9 97.3 84.7 90.6 93.8 

17 88.2 88.2 92.4 89.1 88.7 88.2 92.2 87.5 83.9 87.9 

18 
88.2 93.9 85.4 92.0 92.9 94.8 98.6 87.8 93.5 96.0 

19 91.4 96.1 87.6 93.1 94.6 90.9 95.5 85.4 91.9 93.6 

20 91.0 93.5 87.6 90.9 92.2 91.0 96.4 84.8 89.3 92.7 

21 87.0 92.5 79.3 87.7 90.1 89.5 95.9 80.4 88.7 92.2 

22 88.9 81.5 96.3 86.3 83.8 90.6 83.3 95.8 84.9 84.1 

23 84.3 78.8 92.9 75.9 77.4 88.9 84.6 95.6 84.6 84.6 

24 
86.9 85.8 92.8 90.1 87.9 84.0 84.0 88.4 84.8 84.4 

25 88.2 91.0 88.5 90.3 90.6 89.0 91.0 92.0 93.1 92.0 

26 83.7 83.2 88.0 81.4 82.3 87.8 89.5 91.3 86.7 88.1 

27 86.1 83.3 91.6 82.3 82.8 84.5 83.3 88.6 77.4 80.2 

28 
85.2 78.0 97.3 90.2 83.6 86.9 78.0 95.1 83.6 80.7 

Mean 

(%) 87.4 86.5 91.0 87.5 86.9 88.3 88.2 90.7 87.5 87.8 

Standard 

Deviation 

(%) 2.7 5.8 4.1 4.0 4.4 3.0 6.1 4.4 4.0 4.3 
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Table 4.8: Results of Theta (4-8Hz) and Delta (0.5-4Hz) Bands Using CNN1. 

B

Band 
Theta Delta 

Subject Acc
urac
y 
(%) 

Sensit
ivity 
(%) 

Specif
icity 
(%) 

Precis
ion 
(%) 

F-
Score 
(%) 

Accu
racy 
(%) 

Sensit
ivity 
(%) 

Specif
icity 
(%) 

Precis
ion 
(%) 

F-
Score 
(%) 

1 
87.1 87.2 90.8 88.8 88.0 87.5 85.3 90.8 88.6 86.9 

2 
88.6 91.2 88.8 86.1 88.6 88.6 91.2 89.6 86.9 89.0 

3 
90.7 92.5 91.4 89.2 90.8 91.5 91.6 92.8 90.7 91.2 

4 
89.0 86.2 92.6 90.4 88.3 91.4 90.8 92.6 90.8 90.8 

5 
85.3 79.4 97.0 90.9 84.7 87.5 88.9 98.2 94.9 91.8 

6 
91.1 91.9 91.9 90.3 91.1 89.8 89.2 91.9 90.0 89.6 

7 
88.9 83.5 92.7 84.6 84.1 88.9 84.8 95.1 89.3 87.0 

8 
89.2 90.5 91.9 89.6 90.0 86.3 86.7 88.1 85.0 85.8 

9 
84.5 87.5 85.7 83.8 85.6 86.5 85.7 89.5 87.3 86.5 

10 
88.1 94.3 87.2 81.4 87.4 91.1 93.2 91.9 87.2 90.1 

11 
91.1 90.7 94.2 92.5 91.6 90.7 90.7 93.5 91.6 91.2 

12 
86.5 72.4 98.3 93.3 81.6 90.3 74.1 97.2 89.6 81.1 

13 
90.8 85.7 94.2 88.9 87.3 87.1 86.9 91.0 83.9 85.4 

14 
92.7 88.4 98.0 90.5 89.4 95.5 88.4 99.0 95.0 91.6 

15 
87.8 89.2 88.8 85.0 87.1 88.2 86.3 93.0 89.8 88.0 

16 
91.9 95.9 86.7 91.6 93.7 95.9 98.0 94.9 96.7 97.3 

17 
91.5 95.1 91.7 89.0 91.9 89.8 93.1 93.1 90.5 91.8 

18 
91.7 95.2 85.4 92.1 93.6 93.9 97.3 90.2 94.7 96.0 

19 
93.4 98.1 88.8 93.8 95.9 93.4 96.1 88.8 93.7 94.9 

20 
91.8 97.1 84.8 89.4 93.1 93.4 93.5 93.3 94.9 94.2 

21 
91.6 97.3 83.7 90.5 93.8 86.2 92.5 78.3 87.2 89.8 

22 
95.1 87.0 97.9 92.2 89.5 93.4 88.9 97.4 90.6 89.7 

23 
86.8 78.8 95.1 82.0 80.4 88.9 84.6 95.6 84.6 84.6 

24 
86.5 90.6 89.1 86.5 88.5 86.1 83.0 92.8 89.8 86.3 

25 
90.2 94.0 88.5 90.6 92.3 89.8 91.0 91.2 92.4 91.7 

26 
90.2 91.6 92.7 88.8 90.2 87.3 90.5 89.3 84.3 87.3 

27 
89.4 84.6 94.0 86.8 85.7 90.6 92.3 96.4 92.3 92.3 

28 
90.2 79.7 96.2 87.0 83.2 90.2 86.4 95.7 86.4 86.4 

Mean 

(%) 89.7 89.1 91.4 88.8 88.8 90.0 89.3 92.5 90.0 89.6 

Standa

rd 

Deviati

on (%) 2.5 6.2 4.1 3.2 3.8 2.8 4.8 4.0 3.5 3.6 
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Table 4.9: Results of the Four Clinical Bands for Subject-Independent Classification Using 

CNN1. 

Beta Alpha 

Accur

acy 

Sensitiv

ity 

Specific

ity 

Precisi

on 

F-

score 

Accur

acy 

Sensitiv

ity 

Specific

ity 

Precisi

on 

F-

score 

48.7 53.6 60.5 49.7 51.6 46.6 55.4 58.4 49.3 52.2 

Theta Delta 

Accur

acy 

Sensitiv

ity 

Specific

ity 

Precisi

on 

F-

score 

Accur

acy 

Sensitiv

ity 

Specific

ity 

Precisi

on 

F-

score 

49.8 52.8 62.4 50.5 51.6 50.6 56.8 61.0 51.5 54.0 

 

Figure 4.5 shows a summary of Table 4.2 to Table 4.8 in the form of a bar chart. 

The mean accuracy and standard deviation of subject-dependent analysis and the 

accuracy of four-fold cross-validation with all events and subject-independent analysis 

for all clinical bands and the full spectrum are included, with the exclusion of SVM in 

this case. The performance of the four brain waves was not measured for SVM due to 

its comparatively inferior performance with the full spectrum. 

 

 

 

Figure 4.5: Final summary of results. 
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4.2. Discussion 

In the following, we discuss our results. Note that, only the average accuracy of 

the SVMs was recorded for all 28 subjects, but the metrics used to evaluate simple 

neural network and convolutional network performance also included the average 

sensitivity, specificity, precision, and F-score. The results are collectively shown in 

Table 4.1. Firstly, ECOC SVM and simple neural networks were verified with the 

Fashion-MNIST dataset [49]. The results achieved on these datasets were comparable 

to the other published works. As stated earlier, five architectures of convolutional 

neural networks are tested. The architectures were mostly similar with the differences 

being the convolutional layer; the first three had the same layers but with different 

convolutional layers, and the last two had two convolutional layers instead of one like 

the other three. Optimal architecture is selected based on cross-validation accuracy and 

its standard deviation, and architecture complexity/computation time, both factors were 

equally important. It is important to note that the results shown for SVM are those of 

the one-vs-one coded classifier, as that set of results was better than one-vs-all using 

the RBF kernel, as the linear and polynomial kernels both yielded lower accuracies 

(47.43± 8.58 % and 43.5233 ± 7.92 % respectively). Note that there is only one work 

on the discrimination of genuine vs acted smiles with EEG data by Alex [6, 46]. 

However,  [6] only does two-way classification and extracts a multitude of features 

(power spectral density, Pearson correlation coefficient, phase-locking value, and phase 

lag index). Since [6] follows a different method of analysis, the results cannot be 

compared. We do three-way classification, which is a harder problem. Moreover, we 

extract features from a dataset that are learned algorithmically. 

It is evident from Table 4.1 that convolutional neural networks, in general, do 

perform better than, though similarly to the simple neural network. However, both are 

vastly superior to SVM, given the same pre-processing steps for this three-class 

problem. This is due to the lack of feature extraction and engineering for all algorithms, 

and due to the fact that SVMs perform better for binary problems. It is also evident that 

architecture 1 yields better results in terms of accuracy, specificity, precision, and F-

score than the other architectures. Hence, we selected CNN1 as the optimal architecture, 

due to these metrics, and due to the less complex nature of the architecture, hence 

shorter computation time and fewer required resources. The results of all subjects for 
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this architecture are shown in Table 4.3 and the results of all subjects with the simple 

neural network are shown in Table 4.2 to provide a better picture on how these networks 

perform overall, and more importantly, to showcase subject variability and how it 

translates to classification differences.  

Despite having lower overall performance than CNN1, the simple network 

performs well enough and takes less time to train than the convolutional networks, and 

on MATLAB, it provides a wider variety of options, such as various training functions 

as opposed to just SGDM, ADAM, and RMSProp, and the ease of changing all network 

parameters, not to mention the fact that it does not require high-end hardware to train 

and obtain results. This makes it a better choice than the other algorithms discussed if 

hardware resources present an issue. 

As we can see from Table 4.4, the accuracy of the subject-independent analysis 

is lower than the average accuracy for subject-dependent analysis. This is mainly 

attributed to subject variability. Subject variability is concerned with physiological 

differences between the subjects. Meaning different brains could react differently to the 

same stimuli. Subject variability is also concerned with differences in subject motion 

and blinking during the experiment; each subject moves differently from the others and 

they blink at different times. 

The confusion matrices in Figure 4.2, Figure 4.3, and Figure 4.4 show what each 

of the algorithms confuses the target classes with. From  

Figure 4.2, which shows the confusion matrix of the simple neural network, we 

can see that the algorithm could generally correctly classify the events in that instance, 

as it has an accuracy of 88.879 %. We also note that the algorithm confuses fake smiles 

with the neutral class and the neutral class with fake smiles more than the other class 

pairs. The confusion matrices shown in Figure 4.3 and Figure 4.4 also show a higher 

rate of confusion between the neutral class and fake smiles than other class pairs. 

However, CNN1 yields higher accuracy than the simple neural network, and 

consequently a lower confusion rate even among fake and neutral classes than the 

simple network. That is not the case for subject-independent analysis with CNN1. 

Although the confusion rate among fake and neutral classes is higher than the rest, this 

algorithm shows a large discrepancy in accuracy compared to the previous subject-
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dependent algorithms. This is because it confuses fake for neutral and neutral for fake 

a lot more frequently than the other algorithms. As stated before, the reason for this 

discrepancy is subject variability. However, we conjecture the reason for higher 

confusion rates between fake and neutral is the similarity of fake and neutral class 

stimuli. The stimulus presented for the fake smile prompt is simply an image of a book 

and this image can generally be thought of as neutral, as it would not generally elicit a 

genuine response based on its valence and arousal scores. Hence, a fake smile would 

appear on the EEG as a neutral response coupled with the brain’s signal to the body to 

move the required facial muscles to smile. This makes it slightly more difficult to 

distinguish those two classes than others in subject-dependent analysis and makes it 

tremendously difficult in subject-independent analysis, where it confuses fake for 

neutral and neutral for fake almost as much as it correctly classifies neutral and fake. 

For each frequency band (beta, alpha, theta, and delta) we can see that the 

average performance is, in fact, slightly subpar when compared with using the entire 

pre-processed spectrum (0.5-40 Hz). This entails the loss of some features or patterns 

as some of those frequencies are filtered out. It is noted that despite all four bands 

showing a lower accuracy than the entire spectrum for all algorithms, theta and delta 

perform almost equivalently for the simple architecture, and delta performs better than 

the other three for the selected CNN architecture for subject-dependent and subject-

independent analysis. We note the pattern of delta performing well throughout the three 

algorithms, despite theta coming close with the simple network. Delta waves are usually 

associated with deep sleep, yet show the best, or close to the best, performance, 

excluding the full spectrum, for all algorithms. We speculate this is due to the low 

frequency of delta waves, meaning they do not get affected by noise as much as the 

higher frequency bands, which translates to a lower error or higher accuracy. However, 

the superior performance obtained with the full spectrum could mean smiles are related 

to gamma waves more closely than beta, alpha, theta, and delta waves. Gamma waves 

are associated with brain hyperactivity, which the experimental protocol could fall 

under in terms of brain stimulation. This could also mean that smile expression is not 

frequency-specific. 
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Chapter 5. Conclusion 

 

In conclusion, the purpose of this research was finding a method to detect fake 

smile using EEG data with machine learning and deep learning techniques. To that end, 

we developed an experiment with which to obtain the EEG data of 28 healthy subjects 

between the ages of 18 and 26 with normal or corrected to normal vision, where they 

would respond to a stimulus with a fake smile, a true smile, or neutrally. After the data 

is collected, it was pre-processed to ensure the significant parts of the EEG remain. The 

signal was first inspected manually, and distorted regions were rejected, then the signal 

was bandpass filtered from 0.5 to 40 Hz, then it was pruned with independent 

component analysis (ICA) to remove eye blink artifacts, and finally the epochs were 

extracted. Three machine learning algorithms were used for classification, SVMs, 

simple NNs, and CNNs. SVMs perform worse than both deep learning techniques for 

this dataset, showing an accuracy of 48.387 % compared to simple NN’s 88.879 % and 

CNN’s 90.446 % for subject-independent analysis. 

From Chapter 4, CNNs show an improvement over the simple network, 

showing almost a 1.6% increase in accuracy for the selected convolutional network 

architecture. Though both the first CNN architecture and the simple network do not 

take long to train, and their computation time is comparable, we recommend the use of 

the simple neural network over the convolutional one, especially for lower-end 

machines where a GPU is not available.  

To sum up, convolutional neural networks are slightly better than simple neural 

networks, but both proved to be vastly superior to SVMs for this three-class problem, 

and with this particular dataset.  

Future work includes subject-independent analysis with the same methods 

stated earlier with the simple neural network, and eliminating some of the pre-

processing steps, such as eye blink removal, which can be time-consuming. 

Furthermore, the use of time-frequency data (obtained via wavelet transform) might 

give an improvement in results, particularly using convolutional neural networks. 

Finally, the use of LSTM networks remains a prospect worth looking into. 
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