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Abstract 

 

Healthcare sector has advanced tremendously in the past few years. With the 

advancement in technology, many image diagnostic techniques have been introduced 

to help doctors in identifying diseases and abnormalities inside the human body. 

However, the increase in population and access to affordable healthcare have increased 

the patient population significantly, which requires a bigger infrastructure in medical 

diagnostics. The demand and supply imbalance of expert doctors in the field had led to 

the increase in healthcare bills. As a solution to the scarcity problem, one of the 

advancements that has been introduced to this sector is automated diagnostics using 

artificial intelligence (AI). The automated systems are made to help doctors in two 

ways. Firstly, they decrease the time required by the doctor to diagnose the patient and, 

secondly, they act as a second layer of diagnostic verification. This thesis aims to 

automate the classification of endoscopic images to eight disease and non-disease 

classes using a deep network architecture that would detect the salient region and 

classify the images accordingly. This thesis further studies the effect of jointly 

performing both tasks on the overall quality of attention masks and the classification 

results. The automated system is achieved by concatenating a U-net architecture to a 

dense-net architecture to jointly predict the salient medical masks and classify them to 

their respective classes. Furthermore, the automated system proved that medical image 

masks can be achieved by transfer learning the knowledge learned from natural images. 

Additionally, jointly predicting the masks and reusing the masks for classification 

demonstrated that the joint behavior would increase the classification accuracy. 

 

Keywords: Autoencoders, Convolutional Neural Networks, Deep learning, 

Endoscopy, Medical Diagnosis 
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Chapter 1. Introduction 

 

Healthcare sector has developed rapidly in the previous years with the 

tremendous advancements in technology. The advancements in technology have 

brought several diagnostic tools and methods for the doctors to help them in assessing 

the health state of an individual. As a result of the improvements in modern medicine, 

the average life expectancy of humans has increased in the past century from 47 to 76 

years [1]. Additionally, healthcare has become more affordable for the ever-increasing 

population. Consequently, there has been a disproportionate increase in patient 

population relative to medical experts. Therefore, increments in the number of experts 

are needed in the medical field [2]. Artificial Intelligence (AI) can help experts in their 

diagnostic tasks making it more efficient and reducing their workload [3]. AI have 

proven its significant contributions in different sectors of the medical field such as 

disease diagnosis, drug interaction, radiology, and medicine creation.  

Continuous researches are made to automate the process of finding various 

types of diseases and abnormalities in different parts of the body, such as detecting 

disease from endoscopic images or videos. Endoscopy is the process of detecting 

diseases and abnormalities in the Gastrointestinal (GI) tract by inserting a camera 

ending tube inside the body to observe the internal organs and tissues. An example of 

the significant abnormalities detected by endoscopy is polyps. Polyps are abnormal 

tissue growth in the GI tract that could develop into cancerous cells if not detected 

through endoscopy and treated. A challenge associated with endoscopy is the vast 

number of images or long videos that a specialist must go through to detect and mark 

the abnormalities investigated in these images. This process is very time consuming 

and is prone to human vision errors. Hence, AI can help to assist or automate the process 

of detecting and classifying these diseases. This would contribute in reducing the errors 

and time needed by the physicians for classification of these diseases. Therefore, the 

purpose of this research is to program an automated endoscopic image classifier that 

would be used in identifying the salient part of the GI tract image and classifying it to 

its corresponding label.  
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1.1  Thesis Objectives 

Motivated by previous contributions done in the field of biomedical image 

processing, the main aim of this work is to build an automated classifier of GI 

endoscopic images; additionally, the classifier is further modified to detect salient 

regions. The purpose of the image classifier is to provide a diagnostic tool that could 

assist in the medical analysis by highlighting the salient regions in GI tract. Such 

augmentation would help provide accurate results to the medical examiner while 

drawing his attention to salient regions which might, also, speed up the process of visual 

classification. Furthermore, this paper will examine the effect of jointly predicting both 

saliency and classification on the overall classification results and attention maps 

predictions. 

1.2 Research Contribution 

 The contribution of this thesis are two-folds: First, we develop a U-net 

architecture that was built, trained, and tuned to predict saliency map in natural images. 

The trained model was utilized to predict saliency maps from medical images. From 

the experimental results, we concluded that saliency networks trained on natural images 

can also perform well for medical images that look drastically different. 

 Second, we study the difference in performance between the usage of a 

classification network, and the usage of a classification network that is merged with a 

saliency network. To elaborate more, we study the effect of having a network that 

would predict its own mask from the medical input and utilizes this mask along with 

the input through further classification layers to predict the class label. This contrasts 

with, utilizing only the original input in classification layers to predict the class label. 

After several experiments we concluded that combining saliency prediction and 

classification network improves the overall classification performance. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 discusses various 

architectures in deep learning; neural networks, convolutional neural networks, 

autoencoders and convolutional autoencoders. Additionally, the chapter mentions the 

contributions of deep learning in the field of medical diagnostics. Subsequently, a brief 

introduction of endoscopy followed by the contributions of deep learning in the GI tract 

diagnostics is covered. Chapter 3 illustrates the different datasets, architectures and the 
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evaluation metrics that will be used in both stages, saliency detection and image 

classification. Chapter 4 discusses the results achieved from predicting saliency maps 

of medical images using networks trained on natural image. Furthermore, this chapter 

discusses the results obtained from jointly detecting saliency maps and predicting class 

labels from different inputs and architectures variations. Finally, Chapter 5 includes the 

concluding remarks and the future work to follow.  
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Chapter 2. Background and Literature Review 

 

This chapter introduces the concept of deep neural networks, convolutional 

neural networks and autoencoders. Subsequently, the chapter proceeds to the 

contributions of deep learning in the field of medical diagnostics. Then it advances to 

discuss different gastrointestinal diseases and the algorithms proposed to detect them.  

2.1 Deep Neural Networks 

 Artificial Neural Networks are inspired from the structure of neurons in the 

brain. Originally these neural networks were proposed as a set of algorithms that imitate 

the human brain in recognizing patterns. Patterns in real world data, such as images, 

sound, and time series, are translated into numerical vectors and then recognized using 

neural networks. Neural networks are also known for their capability of adapting to 

changing inputs, where the network can generate satisfying results without changing 

the output criteria. They are made of layers of interconnected perceptron known as 

nodes. A perceptron is a simple model of how a biological neuron operates. Each multi-

layered perceptron has an input layer, output layer, and intermediate/hidden layer(s). 

The target of the network is to maximize a performance criterion during learning, and 

this is done by propagating the errors back through the hidden layer to match the inputs 

to the desired outputs by changing the weights of the network. The higher the number 

of levels in the network the deeper it is; hence, the name deep learning represents 

architectures composed of numerous hidden layers. There are different architectures in 

deep networks. One more famous in image recognition and processing is known as 

Convolution Neural Networks (CNNs). 

2.2 Convolutional Neural Networks 

CNNs are very popular in the field of deep learning and machine learning due 

to their capability of achieving satisfying results in different applications such as: image 

recognition, segmentation, saliency detection and many more. From its name it can 

deduced that the operation of the CNN relies mainly on convolution. An example of a 

CNN classification network is shown in Figure 1 [4]. The network consists of three 

main components similar to the feed-forward neural network, which are the input 

layer/s, hidden layer/s, and the output layer/s. The difference is that the hidden layers 

constitutes of convolutional layer, pooling layer, sometimes a fully connected layer and 
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occasionally skipped connections. On the contrary, traditional feed forward neural 

network consists of fully connected layers, only. 

 

 

Furthermore, each layer in the CNNs is characterized by multiple parameters. 

For instance, the convolution layer has a kernel/filter size, kernel numbers, and strides. 

The filter size is used to determine the part of the input that will undergo convolution, 

and the filter number governs the number of learnt filters that will help to achieve the 

goal of the network. Finally, the strides determine the number of units that filter window 

would slide while convolving it [5].  

A pooling layer may be used to aggregate the filter responses. Hence it 

facilitates the extraction of the most important features that would help in later layers.  

Max pooling is a common pooling that is used heavily in several papers, and it extracts 

the maximum value on a local neighborhood in feature maps. However, there are other 

pooling categories such as average and L2-norm pooling.  

The fully connected layers are often used at the end of a CNN, especially when 

the function of the network is classification as seen in Figure 1. In these layers each 

neuron in one hidden layer is connected to all neurons in the subsequent hidden layer.  

The output size of the final fully connected layer in a network is usually equal to the 

number of classes that the network is set to classify. However, if the problem pertains 

to segmentation or saliency, the CNN may end with a convolutional layer, and the 

output may be the segmentation labels or saliency maps (to be described later).  

Figure 1: Classification CNN example [4] 



 17  

2.3  Autoencoder 

Autoencoders are self-supervised learning algorithms whose main aim is to 

retrieve an output value that is similar, to the input with the least distortions [6]. 

Autoencoders (AE) are made mainly from an encoder (reduction) and a decoder 

(reconstruction) section. Autoencoders may be used for various kind of data; images 

are one such example. Its mechanism focuses on extracting the most important features 

of the image in the encoding process and then reconstruct an output image in the 

decoding process from the learned important features as shown in Figure 2.  

 

 

Figure 2: Auto-encoder 

 

The main aim is to teach the neural network the important features that would 

help in reconstructing the image. There are different types of AE such as denoising AE, 

convolutional AE, etc. The denoising AE is used mainly to reconstruct an output image 

from a noisy input image. Additionally, the convolutional AE is made mainly from 

convolution layers similar to a CNN [7]. The encoder is constructed from convolutional 

layers along with pooling layers. On the contrary, the decoder is constructed from 

transposed convolution and up-sampling to counter the encoder effect (i.e. the decoder 

would retrieve the image back).   

2.4 Related Work in Medical Field 

This section starts with different contributions of machine learning in medical 

images various applications such as lesion segmentation and classification. We also 

discuss selected examples. Then, the procedure of the endoscopy is discussed, followed 

by the different GI tract diseases and their detection methods. 

2.4.1 Lesion segmentation. A lesion is an abnormal appearance in regions of 

a tissue or an organ due to disease or injury, such as ulcer, abscess, tumor, or a wound. 

Lesion segmentation is the process of identifying the set of voxels that makes up the 

interior or the contour of a lesion. To elaborate, the process delineates the boundaries 
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of a lesion. Lesion segmentation of neuronal structure and prostate volume are some 

examples discussed in [8-13]. 

One of the most popular architectures for biomedical segmentation is the U-net 

architectures made by Ronneberger et al. [8]. The architecture is a Full Convolutional 

Neural Network (FCNN) and has similar characteristics of an AE in feature extraction, 

where the output of the network is a segmented image. The network has equal down-

sampling using convolution and max pooling and then up sampling using transposed 

convolution. Furthermore, satisfactory results are obtained with this architecture while 

having a very few training images. For instance, Ronneberger et al. [8] applied the 

architecture on Electron Microscope (EM) segmentation challenge dataset which was 

composed of 30 images of size 512 × 512 pixels of microscopic cells. The images were 

augmented, and weighted loss was added to tackle the touching cells. Furthermore, the 

model’s performance was evaluated using warping error, rand error (the recurrence 

with which a couple of segmentations disagree over two pixels belonging to different 

or same object) and pixel error (the ratio of the number of disagreeing pixels over the 

total number of pixels). Additionally, the architecture was also applied on ISBI 

(International Symposium on Biomedical Imaging) cell neuronal structure tracking 

challenge 2014 dataset, in which the algorithm achieved an IOU(intersection over 

union: the overlap area of the predicted bounding box and the ground truth box over 

the union of these boxes) of 92%. Due to its significant performance, a similar 

architecture is considered in the work of this paper. 

A tuned version of U-net, V-net is introduced by Milletari et al. in [9] for 

segmenting 3D Prostate images using 3D fully convolutional architecture. Furthermore, 

the architecture is applied on 50 MRI prostate scans from PROMISE2012 challenge 

dataset and is used to extract a volume segmented image as an output of the network. 

The performance of segmentation was evaluated using dice coefficient, and Hausdorff 

distance. Additionally, a comparison of the performance of the V-net with other 

competitors is provided in the paper. In this thesis, localizing the endoscope using 

anatomical landmarks will help us detect, classify, and highlight the lesions.  

As for brain lesions, Kamnitas et al. [14] proposes a three-dimensional CNN for 

segmenting traumatic brain injuries, brain tumors and ischemic stroke. Moreover, the 

network consists of a dual pathway for multiple scale processing of the input image. 

One pathway is fed with normally sized images to capture the detailed appearance of 
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the structure of the lesion, and the second pathway is devoured with down sampled 

images to be able to capture the location of the lesion within the brain. Hence, the 

network was able to integrate both regional and contextual information. The outputs of 

the parallel convolutional layers are fed to a fully connected conditional Markov 

Random Field model to segment the tumor areas and decline the effect of noise in the 

input images. The proposed architecture by [14] outperformed the benchmark results 

on the dataset obtained from the Brain Tumor Segmentation Challenge (BRATS). 

A combination between supervised and unsupervised deep representation 

learning approach was tackled by Baur et al. [15] for segmenting white matter lesion in 

the brain. The framework works on modeling abnormality with an unsupervised 

abnormality detection deep learning algorithm. Additionally, the detected abnormality 

targets are used as labels for training a supervised segmentation model. The model is 

first trained on reconstructing images of a healthy brain. Then it is used to detect any 

abnormalities in unlabeled brain data. Finally, a U-net is trained for jointly segmenting 

labeled brain data with their predefined ground truths along with the predicted ground 

truths from the unlabeled data. The experiments were conducted on the public datasets 

such as MICCAI 2008 challenge dataset and a private dataset retrieved from the 

University of North Carolina [16]. 

2.4.2 Lesion classification. A lesion is an abnormal appearance in regions of 

a tissue or an organ due to disease or injury, such as ulcer, abscess, tumor, or a wound. 

Lesion detection is the process of detecting key objects in classifying and labelling 

abnormalities in tissue’s or organ’s image. Some examples of different lesion detection 

in medicine, such as skin lesion detection, lung nodule classification, and 

Angiodysplasia detection can be found in [17-25].  

 Kawahara and Harmana in [17] classified 10- skin lesion classes with an 

accuracy of 81.8%. The team had 1300 captured images labelled to 10 different classes. 

Their network utilized transfer learning by using a pretrained Alex-Net that was trained 

on natural images, and then it was applied on the skin images. The network, also, used 

a multi-stream approach in which different resolutions were concatenated. More 

specifically, they extracted features from 227 × 227 and 339 × 399-pixel images and 

then concatenated both feature vectors to obtain the accuracy result stated earlier. 

Similar to Kawahara, Shen et al.. [19] used a multiscale approach for classifying 

lung nodule as benign or malignant. In their approach, they had 3 CNNs working 
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simultaneously. Each CNN were input 3D-CT scanned images of size 32, 64 and 96 

pixels of length, width, and height, respectively. Moreover, feature vectors were 

extracted by the 3 CNNs and then concatenated to one vector which was then processed 

using random forest technique. The multiscale tackle was done due to the varying size 

of the nodule, thus making the model flexible in detecting the different sizes and to 

accurately classify the nodule. Additionally, the simulation was done on LIDC-IDRI 

datasets which contains 1010 CT scanned lung images. The dataset was modified by 

having 5 modules rated from 1 to 5, where 1 being least malignant and 5 being the most 

malignant, to fit the binary classification; images that had a rating of 3 were deleted and 

images having a rating less than 3 were classified as benign and the rest were classified 

as malignant. The model achieved an average accuracy of 86.84%.  

Another type of lesion classification is breast cancer mammographic images 

classification which was tackled by Ting et al. [26]. They proposed a modified 

convolutional neural network for classifying medical images into malignant, benign, 

and healthy patients. The CNN consists of an input layer, followed by 28 convolutional 

layers, and an output dense layer for classification. The data assessed in this study 

consisted of 221 patient subjects that were collected from the Mammographic Image 

Analysis society. Furthermore, data Augmentation was applied as an image 

preprocessing step to overcome the overfitting problems of the network. The 

framework succeeded to achieve an average accuracy of 90.5%. 

In brain lesion classification, Dou et al. [22] focuses on detecting cerebral 

microbleeds (CMB) in the brain from magnetic resonance images. Utilizing 3D 

convolutional neural networks, the author proposes a multistage framework to firstly 

screen the candidates with highest probability of CMB and secondly distinguish 

between CMBs and their mocks using a discrimination model. The author focuses on 

building an architecture that could be able to achieve a high sensitivity and decrease the 

prediction time per subject. The architecture was applied on 320 volumetric MR scans 

and managed to achieve 98.29% sensitivity and 1.0725 minutes pers subject. After 

focusing on different problems in medical applications now the focus will be on GI 

tract diseases and their detection techniques. 

2.4.3 GI tract diseases and detection. GI tract consists of a group of organs 

that are part of the digestive system. They are responsible for: digesting and absorbing 

minerals from foods and liquids, and excreting wastes as feces. According to the 
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national institute of diabetes and digestive and kidney diseases, 60 to 70 million 

Americans are affected by gastrointestinal diseases [27]. This subsection will discuss 

the endoscopy procedure and then will explore some well-known diseases and how are 

they detected.  

An Endoscope is a tool that is used in a procedure called an endoscopy. 

Endoscope is mainly an illuminated optical tubular which is used to examine deep body 

parts by capturing images of internal organs. The tube is inserted from the mouth and 

the images are recorded throughout its trip inside the body. A doctor is then able to 

diagnose the patient without referring to a surgery [28].  In this thesis, deep learning 

algorithms are used to classify, and label images extracted from an endoscopy dataset. 

Colorectal Polyp is a clump of cells that forms on the lining of the colon, which 

has a chance to develop to a colon cancer [29]. A CNN architecture was made by 

Komeda et al. in [23] to classify if the colorectal Polyp is adenomatous or non-

adenomatous. Adenomatous means that the polyp is highly prone to turn cancerous 

[30]. Therefore, it is important to classify if it is adenomatous or not to avoid 

unnecessary resection operations. The CNN architecture is made of two layers, 

including convolutional and pooling, followed by a flattening layer, then a SoftMax 

function to present the output as a probability. The measure of success was 10-fold 

cross validation which resulted in an accuracy of 75.1%. 

Hookworm is a parasite which grows inside the intestines of humans [31]. The 

worm threatens human health as it could cause maternal and child morbidity. Two deep 

convolutional networks based on CNN and Inception models has been adapted by [24] 

to detect and classify the hookworm from, 440k wireless capsule, endoscopy images. 

The first network is known to be edge detection network and the second one, inception 

based, is used mainly for classification. Inception module is used mainly to tackle the 

changing dimensions, sizes, and shapes of the worm. Furthermore, this paper utilizes 

two edge pooling sides which transfers features from edge extraction model to the low 

level and the high-level parts of the classification network. The concatenation of the 

feature and tubular maps regions is done to enhance the performance of classification. 

Accuracy, sensitivity, specificity, and ROC were used to evaluate the performance of 

the network. 

Angiodysplasia is an asymptomatic disease that could lead to anemia and or 

gastrointestinal bleeding [32]. A comparison between four different networks of 
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detecting the disease was conducted by A. A. Shvets in [25]. The four adopted networks 

are U-net, Ternaus-Net 11, and Ternaus-Net 16 (like U-net but uses pretrained VGG 

(11 or16) as encoder) and AlbuNet-34 (uses pretrained ResNet34 as encoder). The four 

networks were applied on a dataset in the form of 1200, 576 × 576-pixel images split 

equally between training and validation. Additionally, the images had the salient points 

as white pixels in binary masks for disease localization. IOU, Dice co-efficient, and 

inference time were used, as evaluation metrics, to compare between the four networks. 

Moreover, AlbuNet-34 outperformed the rest of the networks achieving an IOU of 

75.35, Dice of 84.98 and inference time of 21 MS.  

Another approach for lesion detection and classification of several diseases was 

proposed by Zhu and his team in [33]. They had 180 endoscopy images of bleeding, 

ulcer, oncoids, polyps, umbilication and anabrosis, that were gathered by the 

department of gastroenterology in Anhui Medical University. The RGB images were 

resized from 390 × 390 pixels to 32 × 32 pixels to be fed to the network. Furthermore, 

the network consisted of a LeNet-5 famous architecture for feature extraction and 

followed by SVM for predicting patch labels. The model used accuracy, true positive 

rate, and true negative rate to evaluate the performance of the network. However, no 

numeric results were provided. 

Our research focuses on three main diseases in the GI tract, which are Polyps 

(discussed earlier), Esophagitis, and Ulcerative Colitis. Esophagitis is the inflammation 

in the esophagus (the tube between the mouth and stomach) that might harm the tissues, 

while the Ulcerative Colitis is the inflammation in the lining of large intestine and 

rectum and can cause ulcers in the digestive tract. A modified Inception V3 model made 

by Andrea et al. [34] classifies these three diseases along with other non-disease classes 

that are found in the Kvasir dataset (used in current thesis). The paper utilizes transfer 

learning and data-augmentation to improve the performance of the classification. 

Additionally, they transfer weights learned from ImageNet dataset and augment the 

images in the dataset to increase the amount of data that the network will train on. The 

evaluation measurements of the paper were accuracy and F1 measure. Results of the 

training set has achieved approximately 91.5 percentile for both measurements.  

Another approach for the same classification problem (Kvasir dataset 

classification) was tackled by Chathurika et al. [35]. Their framework composes of 

three different popular CNN models: VGG-16, ReNet-18 and DenseNet-201. The three 
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architectures are pretrained on ImageNet and are connected in a parallel fashion. 

Moreover, the features extracted from each architecture is passed through a 

corresponding global average pooling layer; the output from the three global pooling 

layers are appended and fed to a truncated singular value decomposition layer that acts 

as a noise filter. The output of the single decomposition layer is fed to a small neural 

network composed of a hidden layer and an output layer of 8 classes. The proposed 

framework managed to achieve an accuracy of 97.28% and F1 score of 0.9721,  

The same problem was further tackled by Syed et al. [36] utilizing the concept 

of feature engineering. They developed their work based on features that were 

supported with the dataset such as: JCD, Tamura, Color Layout Edge Histogram, Auto 

Color Correlogram and PHOG. In addition to the provided features the authors compute 

the texture of the image. Moreover, they feed the features to logistic regression models 

and combine the votes by all models to contribute in the final decision of the class. The 

proposed model achieves a 94% accuracy and an F1 score of 0.76.  

Another framework that also utilizes the baseline features is adopted by 

Agrawal et al. [37]. Their framework incorporates the features extracted from the fully 

connected layer of VGG-Net, the output features of the Inception-V3 and the baseline 

features. The set of features are combined and fed to a support vector machine (SVM) 

algorithm, linear kernel, for classification. Applying the combined set of features, they 

managed to achieve 96.1% accuracy and 0.847 F1 score. Our research interest stems 

out of [34]’s problem statement; however, as will be discussed soon in the methodology 

section, this paper discusses a different method of classification. The main aim of this 

work will be to jointly predict saliency map and classify the medical input images to 

their corresponding labels.  
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Chapter 3. Methodology 

 

Our work is divided into two phases, which is saliency image detection followed 

by medical image classification. A U-net architecture will be selected from different 

variant to predict salient images from natural images. The transferred weights learned 

from training on natural images will be used to predict attention maps for medical 

images. The attention maps are used as ground truth label for a merged network that 

will jointly perform salient map prediction and class label classification for the medical 

dataset. This chapter discusses the problem of saliency in computer vision, then 

introduces the datasets used to train the proposed networks. Moreover, the architectures 

that are tested for saliency prediction will be discussed. Then the metrics used to 

evaluate the performance are explained. For the second phase, the dataset that will be 

used to train the proposed network for classification will be discussed. The chapter 

proceeds into the proposed adjustments to the saliency network, that are added, to 

output the labels for the images.  

3.1 Saliency Detection 

It is a process that trains the network to detect and highlight the most important 

object in an image or a video from a human visual system perspective [38]. Methods of 

saliency detections can be branched into two categories: bottom-up and top-down 

models. Bottom-up, named after its mechanism, focuses on making deductions based 

on low-level vision features inspired from human visual system such as, compactness 

prior [39], background prior [40] and contrast prior [41]. On the other hand, top-down 

means that the detection is based on previously known information in the image and is 

task driven. Therefore, it focuses on utilizing supervised learning using labeled images 

that is planned to be used throughout this research trained on two saliency datasets. 

3.1.1 Saliency datasets. The two datasets that are used for training and 

validating the architectures are DUTS [42] and DUTSOMRON [43]. The DUTS dataset 

is known for its large-scale data, in which 10,553 training images and 5019 validation 

are included. The images are collected from, the well-known, ImageNet DET [44] and 

SUN [45] datasets. Additionally, the images are accompanied with their pixel-level 

ground truth labels that are manually annotated by 50 subjects. An example of the image 

and its pixel-level ground truth label is shown Figure 2.  
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The DUTOMRON dataset is mainly used in evaluating saliency detection 

networks for its characteristic of being one of the largest evaluation datasets with 5168 

images along with their pixel level ground truths. The images are known for their 

relativly challenging complexity in saliency prediction compared to other datasets such 

as MIT [46] and NUSEF [47]. Additionally, the dataset can also help evaluate the 

network ability in predicting multiple salient objects in one image.  

3.1.2 Saliency architectures. The well-known, U-net architecture has been 

utilized in many image segmentation applications such as nodule segmentation in low 

dose CT scans of chest [48], nuclei segmentation in microscopy images [49], liver 

segmentation in abdominal CT [50] and many more. This section will discuss the 

original U-net architecture along with its different variants that were built for this study.  

The original U-net architecture consists of contractive path and an expansive 

path, left half, and right half in the Figure 4, respectively. The contractive path consists 

Figure 4: U-net architecture [23] 

Figure 3: Salient image example, right is ground truth [46] 
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of layers of two 3 × 3 unpadded convolutions. These layers are followed by a rectified 

linear unit and a 2 × 2 max pooing operation with a stride of 2 for down sampling by 

half, which also means doubling the feature channels number.  

On the other hand, the expansive part starts from the first 2 × 2 up-sampling and 

a 2 × 2 convolution layer, that would half the feature channels and up-sample by a factor 

of 2. The convolution layer that precedes the up sampling is also concatenated with 

corresponding feature map from the contractive path, followed by two 3 × 3 

convolution, in which each is followed by a ReLU. The skip connections are presumed 

to improve the results of the network as it would transfer feature maps (information) 

from the contractive path to the expansive path before being lost in down sampling.  

We additionally propose two extra U-net architectures, U-net dense and U-net 

skip, which has some slight additions relative to the original architecture. 

In contrast to the original architecture, the U-net dense has an extra 3 × 3 

convolutional layer in all layers as shown in the Figure 5. Dense U-net has also been 

constructed as to study and observe the relative performance of denser and deeper 

networks in saliency detection applications. 

Figure 5: U-net Dense architecture 
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U-net Skip defining feature would be the supplemental skip connection in the 

contractive part that down sample by a factor of 4 using a max pooling 4 × 4 and stride 

2. The result is concatenated to a layer in the contractive region by skipping some 

connections in the same region as shown in Figure 6. This is to check the effect of 

transferring information from earlier layers to deeper layers in the down sampling side 

on the overall performance. 

The normal network and the U-net skip outperformed the U-net dense 

architecture and hence they were considered for more tuning. Since both had very close 

results and the skip connection did not contribute much in the results the rest of the 

experimentations was applied on the normal U-net. The normal U-net was further 

modified to improve its saliency prediction results by replacing the max pooling layers 

with stride convolutional layers. The results did show a bit of improvement, hence the 

modified U-net architecture with no max pooling was used further.  

 3.1.3 Input preprocessing. After choosing the architecture from the above 

experimentations, the focus is shifted to experimenting if inputting a different color 

space of the same image would improve the result of predicting the saliency masks. The 

different color spaces that are experimented are the RGB and Hue, Saturation, Value 

Figure 6: U-net Skip architecture 
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(HSV) color spaces. The difference between the two was retrieved from [51] and is 

demonstrated below. 

RGB images are the ones which constitutes of three main channels: red, green, 

and blue. Each color component represents 8 bits of a 24-bit image, which results that 

each channel has a range of values from 0 to 255. Each color that the eye can see is 

basically a weighted combination of these three primary colors which is represented 

numerically.  

HSV on the other hand, represents the image in a different perspective. It tries 

to imitate how the humans view colors: where hue represents the color, saturation 

represents the shade, and the value represents the brightness. The ranges of these 

components are different from the RGB color space, as hue ranges from 0 to 360 

degrees, while saturation and value ranges from 0 to 255 [51]. The Hue, saturation and 

value of an image can be retrieved from the RGB channel components using the 

following calculations:  

 𝑅′ = 𝑅/255, 𝐺′ = 𝐺/255, 𝐵′ = 𝐵/255  

 

(1) 

 𝐶𝑚𝑎𝑥 = max(𝑅′, 𝐺′, 𝐵′) , 𝐶𝑚𝑖𝑛 = min(𝑅′, 𝐺′, 𝐵′) 

 

(2) 

 𝛾 = 𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛 

 

(3) 

 

𝐻 =

{
 
 
 

 
 
 60° ∗ (

𝐺′ − 𝐵′

𝛾
∗ 𝑚𝑜𝑑 6) , 𝐶𝑚𝑎𝑥 = 𝑅′ 

60° ∗ (
𝐵′ − 𝑅′

𝛾
+ 2) , 𝐶𝑚𝑎𝑥 = 𝐺′

60° ∗ (
𝑅′ − 𝐺′

𝛾
+ 4), 𝐶𝑚𝑎𝑥 = 𝐵′

0°,                                 𝛾 = 0

 

 

(4) 

 
𝑆 = {

0           𝐶𝑚𝑎𝑥 = 0
𝛾

𝐶𝑚𝑎𝑥
  𝐶𝑚𝑎𝑥 ! = 0 

 

(5) 

 𝑉 = 𝐶𝑚𝑎𝑥 (6) 
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𝑅′, 𝐺′, 𝐵′ are the normalized values of the original 𝑅, 𝐺, 𝐵 points. 𝐶𝑚𝑎𝑥 and 

𝐶𝑚𝑖𝑛 contains the maximum and the minimum value of the normalized points, 

respectively. 𝛾 is the difference between the maximum value and the minimum value 

amongst the normalized 𝑅′, 𝐺′, 𝐵′ values. The 𝐻, 𝑆, 𝑉 represents the hue saturation and 

value points being calculated from the 𝑅, 𝐺, 𝐵 values.The input combinations that were 

assessed are RGB, Hue and Saturation only (HS), and Value alone. The performances 

from the combination of architecture and input to the network were evaluated based on 

the perceptual sense of the mask and defined evaluation metrics that will be discussed 

shortly.  

3.2 GI Classification 

 We now proceed to the discussion of the dataset that is used to train the network 

for classification, followed by the demonstration of the suggested architecture. It is 

notable to mention that the same evaluation metrics used in the saliency detection stage 

will be used to evaluate the network performance in classification. Finally, the section 

is concluded with a summary of the whole process.  

3.2.1 GI classification dataset. The training dataset, Kvasir dataset [52], 

consists of 8000 images that are classified to 8 different classes. The classes show 

anatomical landmarks, pathological findings, and different dyed margins in GI tract. 

The images and their labels are collected and presented by GI endoscopists annotations. 

An image of each class along with a brief description is shown in Table 1.  

Table 1: Target GI Tract endoscopy images for classification 

LABEL Sample Description 

Anatomical Landmarks: 

Features present consistently in a 

tissue that helps in indicating its 

structure or position 

Z-line  
Dark thin bands across a striated 

muscle fiber 

Pylorus  

Muscular opening from the 

stomach into the intestine 



 30  

Cecum  

A pouch connected to the junction 

of the small and large intestines. 

Pathological Finding: 

Abnormal alteration in tissues 

caused by a disease 

Esophagitis  Inflamation in the esophagus 

Polyp  

Abnormal tissue growth that 

sometimes looks like a small 

pump, and can be flat in cases that 

are hard to detect 

Ulcerative Colitis  

Inflammotary disease of the 

colon/bowel 

Others:  

Dyed-lifted-polyps  

The polyp is dyed by a saline 

solution to give a clearer vision for 

the margins, making it easier to 

detect 

Dyed-resection-

margins  

Surgical margins of tissues that 

will be removed for examination 

(biopsy) are dyed 

  

3.2.2 Basic classification network. The architecture that is considered as the 

baseline for classification is the Dense-net network [53]. The Dense-net was chosen 

due its interesting advantages such as: strong feature propagation and re-usage which 

reduces the number of trainable parameters. In addition, this architecture helps in 

reducing the possibility of the vanishing gradient problem occurrence. 
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The strong feature propagation and re-usage is established by the connectivity 

pattern of the network. Each layer of a dense block is connected directly to all the 

subsequent layers in the same dense block, as observed in Figure 7. To elaborate more, 

let us assume that the dense block consists of L layers and the output of each layer ℓ is 

xℓ. Additionally, the non-linear transformation, 𝐻,applied to a layer output (which is 

the input to the next layer ℓ) is denoted by:  

 𝑋ℓ = 𝐻ℓ(𝑥ℓ − 1)   
 

(7) 

Normally without skip connection the equation of the information movement 

from one layer from the previous layer is presented by equation (7). However, in the 

Dense-net architecture, the ℓth layer receives the information concatenated from all the 

previous layers which can be denoted as: 

 𝑋ℓ = 𝐻ℓ ([𝑥0, 𝑥1, 𝑥2, … , 𝑥ℓ−1])  
 

(8) 

Each dense block that adapts the aforementioned skip connection feature shares 

the same size of feature maps throughout the whole block in order to be able to conduct 

the concatenation task. Moreover, the feature maps outputs are down sampled using the 

transition layers found in the middle which is made up mainly of a 1 × 1 convolutional 

layer followed by a 2 × 2 average pooling layer. Except the last dense block which is 

followed by a global average pooling layer and a SoftMax classifier to predict the label. 

The interconnection of layers within the dense block allows each layer to access the 

gradients from the input signal and the loss function, leading to an improved implicit 

supervision and reduces the chances of the loss of gradient within the training process. 

The classification results score of this architecture was chosen as a baseline 

score for comparison with the proposed architecture. Our composed architecture 

merges the U-net architecture that is pretrained on saliency prediction of the DUTS 

dataset and the Dense-net architecture. The concept of reusing the weights of a 

previously trained architecture is known as transfer learning.     

Figure 7: Dense-net architecture [53] 
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 3.2.3 Transfer learning. The use of pre-trained networks, on different image 

datasets, to serve the purpose of a different task that the original one was trained to 

fulfill is a type of transfer learning. This method helps in improving the learning of the 

new task, as knowledge is transferred from the pretrained task [54]. Different transfer 

learning strategies that were discussed in papers [17] and [32] in the literature are 

identified: 1) fine-tuning a pretrained network on its new target purpose and 2) using 

the pretrained network as a feature extractor technique. Moreover, in this paper transfer 

learning will be utilized after training the network on detecting saliency map. The 

architecture utilized for saliency detection with its learned weights will be transferred 

and modified. Additionally, the network is retrained and restructured for class 

prediction along with saliency map detection, as seen in the proposed architecture in 

Figure 8. 

 3.2.4 Proposed architecture for medical image classification. This section 

will discuss the proposed architecture that will be utilized for jointly predicting the 

attention maps and the classification labels of the medical images. 

Figure 8: Proposed final architecture for joint saliency and prediction 
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The network shown in Figure 7 is a result merging the U-net architecture and 

Dense-net architectures. As seen by the figure, the network will have two outputs which 

is the output mask after the U-net architecture and the output label at the end of the 

network. We further study the effect of concatenating, or multiplying, the saliency mask 

of the medical image that is a product of the U-net architecture with the original input 

image to check if these actions would actually improve the performance of 

classification or will it deteriorate it. Concatenating the input with the mask, is like 

adding an extra layer of information to the network to base its decision upon. While 

multiplying the input with the mask is like focusing the framework to predict the label 

based on a selected product of the original input that is highlighted by the mask.  The 

summary of the whole procedure will be discussed with the hypothesis that is applied 

in current research. 

3.3 Cost Functions and Evaluation Metric 

Cost functions are used to quantify the error between the predicted output and 

the actual output. These errors are used to guide the network to find the set of weights 

for their neurons in the neural network layers. Since the model objective is to perform 

two different tasks, each one was performed using a certain cost function. The saliency 

prediction was guided using the mean square error (MSE) per pixel, and the label 

classification was guided by the categorical cross entropy (CE) function. A combined 

weighted loss function, consisting of MSE and CE was then used to update the weights 

of the overall architecture 

MSE is the measure of squared mean difference between the original label pixel, 

𝑌𝑖, and the predicted label pixel, 𝑌̂𝑖, of all pixels, 𝑁, and is defined by the following 

equation: 

 

𝑀𝑆𝐸 =
1

𝑁
∗∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑁

𝑖=1

 

 

(9) 

CE function is calculated using the probability of each class that is fed to the 

function. The probability of each class is calculated using SoftMax function shown by 

equation 10. The ‘𝑡’ represents the output label and 𝐶 is the total number of classes, 

and the function works by dividing the exponential of a label, 𝑒𝑡𝑖, by the sum of all the 

exponentials.  
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𝑓(𝑡)𝑖 =

𝑒𝑡𝑖

∑ 𝑒𝑡𝑗𝐶
𝑗

 

 

(10) 

The results from the SoftMax function is fed to the categorical cross entropy to 

calculate the network loss over the total number of classes, 𝐶:  

 
𝐶𝐸 = −∑ 𝑡𝑖log (𝑓(𝑡)𝑖)

𝐶

𝑖
 

 

(11) 

Hence the overall weighted loss function used can be illustrated in the following 

equation, where 𝑤1and 𝑤2 resembles the weight assigned to each cost function.  

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑤1 ∗ 𝑀𝑆𝐸 + 𝑤2 ∗ 𝐶𝐸 

 

(12) 

The variation of these weights and their effect on the overall performance will 

be discussed in the results section. Additionally, the performance of these networks is 

then evaluated using three main evaluation metrics that are the Mean Absolute Error, 

F-measure and Accuracy.  

Mean Absolute Error is a measure of the sum of the absolute difference 

between two variables: it computes the difference across each image pair (predicted 

and expected), sum up the values and divide by the number of pixels. Its equation is 

given below:  

 
𝑀𝐴𝐸 =

∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑|𝑛

𝑛
     

(13) 

 

F-measure is a method of measuring the robustness of classification. It is also 

known as the harmonic mean of precision and recall. Precision is the fraction of relevant 

instances (true positives) among the retrieved instances (true positives+ false positives). 

Additionally, recall is known as the fraction of fraction of relevant instance (true 

positive) over the relevant instances (true positive + false negative). The β in F-measure 

is a weight distributor, to choose, which one from the precision or recall would have 

more effect on the overall score. For instance, if β is 2, the weight of recall will be 

higher than precision on the overall score, hence more emphasis will be focused on the 

false negative. On the other hand, if β is less than 1 the weight of precision will be 

higher than recall, therefore less influence of false negative. However, β was set to one, 

to have a balanced weight distribution to both precision and recall, in the results attained 
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(discussed later). The equations of precision, recall and the general F-measure are 

shown respectively below:  

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
              

(14) 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(15) 

 

 
Fβ measure =  (1 + 𝛽

2) ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(16) 

 

 Accuracy is a measure of the number of correct predictions to the total number 

of input samples. This metric is used mainly the dataset is balanced; i.e. equal number 

of images distributed among all labels. It can be presented using the following equation:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑎𝑔𝑡𝑖𝑣𝑒
 

 

(17) 

Stage 1, choosing the best architecture and input variation, was evaluated using 

the MAE and F1 measure guided by [55] . Stage 2, jointly training the network on 

saliency prediction and label classification, was evaluated using the MAE to show the 

change in the mask prediction behavior for the mask output. As for the label output it 

was evaluated using Accuracy and F1 score. A summary of the whole procedure will 

be illustrated to connect the steps and ideas of the project.  

3.4 The Procedure Summary 

 To begin with, saliency prediction is implemented using different U-net 

architecture variations and different input types. The U-net architectures were trained 

on DUTS and DUTSOMRON. We then check the performance of each architecture 

relative to the paper discussed by Liu et al. [55]. The best performing network in terms 

of the MAE, F1 score on the DUTS and DUTSOMRON datasets was then selected. We 

then used the pre-trained network to generate the saliency masks labels for the medical 

image dataset KVASIR, to evaluate the ability of network in highlighting the salient 

regions in the medical image dataset subjectively. This was done using the perceptual 

of the human eye, by checking if the masked area corresponds to the key features of a 

certain label. This presents an interesting result that the network trained on natural 
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images also gives reasonable results in medical image dataset. Different input 

variations, RGB, HS and Value only, were used to predict corresponding masks. 

Moreover, the best predicted masks were then used as the ground truth labels for the 

second stage.  

 The second stage merges the best U-net architecture of the first stage, along 

with Dense-net architecture as shown in Figure 7. Additionally, the effect of 

multiplying or concatenating the input image with the masks is examined. The network 

is guided using a weighted combined loss function, where the effect of changing the 

weights on the overall score and the predicted mask was also studied. We can ensure 

that saliency layer output does not deviate much by adding a term corresponding to the 

MSE between the predicted saliency mask and the ground truth in the loss function at 

the last layer. Additionally, this work’s classification results are compared with the 

results obtained from the Dense-net to see if jointly predicting saliency and classes 

helps in enhancing the classification. The results from the different iterations were 

tabulated and the best ones of each iteration were collected and applied to a five-fold 

cross validation to ensure that the results are not biased, and the network is not over 

fitting.  
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Chapter 4. Results and Discussion 

 

 The following sections encompasses the results gathered through the different 

stages of the thesis. Moreover, section 4.1 will discuss the saliency prediction and 

section 4.2 will discuss the results obtained from training the combined network.  

4.1 Saliency Prediction  

 This section will discuss the results obtained in each stage in finding the best U-

net architecture, then will discuss the different input combinations and their 

corresponding medical mask output.  

 4.1.1 Selection of U-net architecture. The following section encompasses 

results gathered from the training of the saliency detection of objects. Moreover, the 

outputs of the three architectures, discussed in the methodology section, are collected 

after running through different learning rates, training datasets and validation datasets. 

Furthermore, the results are compared with results retrieved from a paper by Liu et al. 

[55]. Our aim is to get results that are close to the benchmark results and could predict 

masks that are reasonable and acceptable.  

 The three proposed architectures (U-net, U-net skip, and U-net dense) for 

saliency detection are trained on DUTS training dataset and tested on two different 

datasets: DUTS test and DUTOMRON. Moreover, the three architectures are trained 

over 60 epochs and with three different learning rates. These three learning rates are 

chosen after running the network on 7 logarithmic learning rates (i.e. 1e-1, 1e-2…) from 

1e-1 to 1e-7. The results from these 7 learning rates showed acceptable results between 

1e-4 and 1e-6, hence they are demonstrated in this paper. Additionally, the evaluation 

metrics that were used are mean absolute error and F1 measure. 

 The yellow and green highlighting are used as an indication for the 

outperforming learning rates and the best performing architecture score for the 

convenience of the reader. Yellow highlight is used to highlight the row of best learning 

rate. Green highlight with bold font is used to highlight the architecture’s name and 

value of best metric score.   
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Table 2: Training: DUTS Training | validation: DUTS Test | metric: MAE & F1 

Training: DUTS Train | Validation: DUTS Test | Metric: MAE & F1 

Learning 

rate 

U-net U-net skip U-net dense 

MAE F1 MAE F1 MAE F1 

1e-4 0.1615 0.5943 0.1617 0.5865 0.4759 0.5527 

1e-5 0.1172 0.6568 0.1282 0.6550 0.1334 0.6244 

1e-6 0.4963 0.0000463 0.2534 0.5207 0.3103 0.4541 

 

Table 2 shows results that are obtained after the network has been trained on 

DUTS train and validated on DUTS test. In that event, U-net architecture outperformed 

in both the MAE and the F1 measure scores, where the scores achieved were 0.1172 

and 0.6568, respectively. 

Table 3: Training: DUTS Train | validation: DUTSOMRON | metric: MAE & F1 

Training: DUTS Train | Validation: DUTSOMRON | Metric: MAE & F1 

Learning 

rate 

U-net U-net skip U-net dense 

MAE F1 MAE F1 MAE F1 

1e-4 0.1268 0.6732 0.1193 0.6864 0.1451 0.6716 

1e-5 0.1779 0.5852 0.1685 0.6197 0.1348 0.6118 

1e-6 0.2728 0.5005 0.2557 0.5220 0.3029 0.4816 

 

Table 3 shows results that are obtained after the network has been trained on 

DUTS train and validated on DUTSOMRON. The results show that the U-net skip 

architecture outperformed in both the MAE and the F1 measure scores, where the scores 

achieved were 0.1193 and 0.6864, respectively. 

Additionally, to be able to visualize the network output 8 images were extracted 

from the DUTS training test dataset and were excluded from training and validation of 

any of the networks. This was done to ensure that the networks would have a fare 

comparison between them, and that none of the networks is biased toward a single 

network. Below are the visual results of the best performing and the poorest performing 

networks from all iterations. The best performing network was extracted from Table 2 

and was found to be the U-net architecture with a learning rate of 1e-4. On the other 

hand, the worst performing network was found to be the U-net architecture with a 

learning rate of 1e-6. Noticeably, the networks that had the best scores shows images 

that are very close to the expected output images. On the other hand, the network with 
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the poorest results gave unacceptable predictions that resembles distorted or noisy 

images with no visual knowledge that can be deducted from them. The information 

collected from the tables and the images were able to provide some important 

deductions that helped in the thesis’s later work. 

Table 4: Visual output of selected architectures 

Expected  

Best 

Prediction  

Poorest 

Prediction  

 

 From the above results it is noticeable that the proposed U-net skip and U-net 

have very close results in both metrics. Additionally, it is safe to deduce that the 

optimum learning rate lies between 1e-4 and 1e-5 as the best performance network 

varied between these two learning rates. Results obtained from these simulations are 

compared with the results extracted from the U-net architecture built by [54]. The 

author’s architecture has the same architecture the original U-net utilized in this 

research but with different hyper parameters. The numerical comparison is 

demonstrated in 5 Table: 

Table 5: Comparison between Liu et al. [55] and current results 

 DUTs test DUTSOMRON 

 MAE F measure MAE F measure 

Liu et al. [55] 0.060 0.819 0.073 0.761 

Thesis result 0.1172 0.6568 0.1193 0.6864 

 

  As seen from the results of the first trial, they were a bit far off from the results 

obtained by the author as shown in Table 5. The deduction from the above results, in 

different tables is the adding skip connections might improve the results but not 

significantly hence the other U-net architectures were excluded from current work.  
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The original U-net architecture was further modified by changing the max 

pooling with strided convolution layers to allow more flow of information of the 

network and additional hyperparameter tuning were applied such as adaptive learning 

rate and increasing dropout layers. All of these has contributed in improving the 

performance of the U-net architecture which is shown in Table 6:  

Table 6: Comparison between U-net with and without max pooling and with strided 

convolution 

 DUTs test DUTSOMRON 

 MAE F measure MAE F measure 

Liu et al. [55] 0.060 0.819 0.073 0.761 

Previous U-

net 0.1172 0.6568 0.1193 0.6864 

U-Net (with 

strided 

convolution) 0.098 0.7258 0.086 0.732 

 

 Table 6 shows that the results have improved, yet it did not reach the paper 

results. However, in the paper they were using image sizes of 256 × 256 while in this 

research 128 × 128 images are utilized instead due to hardware limitation. The decrease 

in the size of the image means that less information is supplied to the network which 

might lead to the degradation in the results. Hence, the modified U-net was set to be 

utilized for further practical experimentation without extra hyper parameter 

modifications. 

 4.1.2 Saliency mask from input combinations. After reconstructing the U-

net architecture with stride convolution, replacing the max pooling layers, different 

color space variations of the input were experimented to check if they affect the 

classification evaluation metrics and the predicted medical masks. The images were 

first resized to 128 × 128 and different input variations were experimented, such as the 

RGB, HS and Value inputs on the DUTSOMRON dataset only, and their results are 

illustrated in table 7. The RGB input had shown that it has a better evaluation scores 

when compared to HS and Value. Additionally, the HS mask showed and average 

behavior between both value and RGB. However, as the scores’ differences are not 

major, the medical masks were predicted using these three inputs. 
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Table 7: Comparison between different color space inputs on DUTSOMRON 

Input Type MAE F measure 

U-Net RGB 0.086 0.732 

U-Net HS 0.0921 0.7198 

U-Net Value 0.098 0.7111 

 

 A comparison between the results of the RGB, HS and value masks was 

conducted in terms of which one had the best perceptual sense visually to be chosen as 

the ground truth for the medical images’ saliency map label for stage 2. A sample image 

will be shown from each class label and will be compared with the original image if it 

does cover the important marks of the image. The images initially showed inaccurate 

masks as the black spaces in the images had an effect of finding the salient region using 

the network. A sample is shown in table 8.  

Table 8: Mask predicted before and after zoom + crop 

Label Image Mask 

Original Image   

Zoomed and Cropped 

Image   
 

 Table 8 shows the image of esophagitis and its predicted saliency mask before 

and after zooming in and cropping by a factor of 1.275. The masks, after cropping, have 

a more focused attention maps highlighting certain parts of the image instead of being 

distorted by the black spaces in the image. 

Furthermore, the difference between the predicted attention maps of different 

color spaces were assessed. The original input medical image with its corresponding 

mask that is a result of the RGB, HS and Value inputs are illustrated in the Table 9.   
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Table 9: Input image, and mask outputs for RGB, HS and Value 

 

 In order to recap the explanation of each label please refer to Table 1. The dyed 

lifted polyp saliency mark is the pigmented cells in blue showed in the image. We can 

Label 

Name 

Original 

Input Image RGB output HS Output Value 

Dyed 

Lifted 

polyps     

Dyed 

Resection 

margins     

Esophagitis     

Normal 

Cecum     

Normal 

Pylorus     

Normal 

Z-Line     

Polyps     

Ulcerative 

Colitis     
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see from the images above that masks predicted from RGB and HS inputs show a decent 

behavior in extracting it out of the image, while the value fails drastically. Additionally, 

the masks from RGB input gets attracted by the trap of the bottom left window and 

merely highlights it which should not be the case and should be ignored by the 

architecture. 

 Dyed Resection Margin on the other hand shows the pigmented surgical 

margins that should be removed for examination. The RGB input shows the inverse of 

the salient region by highlighting the clear region instead of highlighting the pigmented 

region. The HS input, on the other hand highlights the area of the darkest pigment 

present. While the Value highlights the dark hole along with the sides of the hole, which 

does not show anything that could be of importance to the examiner.  

As for esophagitis, it is known to be the inflammation of the esophagitis and it 

is very hard to capture by any of the three networks, as the color pigment or the 

variations in the pixels is not significant. As for the RGB input it highlights a semi-

circular shape as shown, while the HS highlights only a dot of the highly pigmented 

hole of esophagitis. Value, also, highlights the darker area along with an unrelated 

region. 

 Cecum is just a connecting junction between small and large intestine. As seen 

in the above image, it is having a rutted shape and would be challenging for the network 

to predict as well. We can observe from the Table 9 that HS input somehow manages 

to mimic the image, while the RGB and Value inputs fails to highlight anything that is 

useful. 

 Pylorus is just an opening from the stomach to the intestine and can be 

represented as a hole. The HS and Value succeeds in highlighting these holes, while the 

RGB fails to highlight what is important in this task.  

 Z-line is the dark thin bands across a muscular fiber which can be observed in 

the image above darks lines. The networks do not precisely highlight the lines; however, 

the HS and Value succeeds in highlighting the region in which the z-line is present 

while the RGB input shows a poor performance.  

 Polyps are abnormal tissue growth and sometimes look as a small pump in the 

image and this pump would sometimes have the same color as the surrounding healthy 
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tissues, hence it is hard to predict using saliency networks. As seen above the three-

color inputs are having trouble in finding the polyp which is deep inside the cecum 

lookalike tissues. The value only might be highlighting the region in which a surgeon 

would search for the polyps. However, the three variations had shown their weakness 

in finding the polyp inside the image for other examples.  

 Ulcerative colitis (UC) is an inflammatory disease in the colon and is the 

shrinking of the size of the colon hole that is observed in the image above. The masks 

corresponding to the labels above show that output saliency masks due to HS inputs 

and Value inputs are a bit precise about their prediction as there is a bit of green 

pigmented element present in the element which  could attract the attention of the 

viewer and hence supports the theory of attention maps. 

 Overall, the saliency masks due to HS inputs outperformed the RGB even 

though the evaluation score for the RGB input is higher than HS and value as shown in 

Table 7. The RGB and value masks showed an overall poor performance, which made 

it reasonable to use the masks predicted from the HS input to be used as the medical 

mask labels for stage 2. 

4.2 Combined Saliency predictions with labels classification 

In this section, the results obtained from concatenating and multiplying the input 

layer with the generated mask from the U-net architecture will be discussed. Different 

tables will be used to illustrate the numerical results. Then the behavior of the masks 

with the different variations will be demonstrated. As mentioned earlier, the images fed 

to the U-net architecture for saliency were of size 128 × 128, however due to the 

increased complexity of the network and the computational limitation, for this section 

the images were resized to 64 × 64. The weight assigned for each cost function was 

changed in a sense that the summation of both weights should equate to one, and the 

change in step size was 0.1. 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: 𝑤1 + 𝑤2 = 1     𝑤1, 𝑤2 = [0, 0.1, 0.2, …1]              (18) 

 Even though RGB inputs did not perform well initially in the previous phase 

while predicting the medical masks, trials are still set on RGB and HS images, while 

Value images were excluded. Therefore, the search narrowed to 4 combinations which 

are shown in Table 10. 
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Table 10: Different iteration executed 

Network: Input Operation in middle layers with input 

1 RGB Concatenation 

2 RGB Multiplication 

3 HS Concatenation 

4 HS Multiplication 

 

The dataset was randomly shuffled and then kept constant for all the different 

operations, to ensure fair comparison between all networks. The results of these 

networks were assessed upon two main criteria:  first, their ability of outperforming the 

results obtained from Dense-net, second, if their masks’ prediction ability improved, 

maintained same quality, or deteriorated. The best combination of weights for each 

network was extracted with limited testing and then applied on five-fold cross 

validation to ensure that the results are not biased and performs well on different 

selections of the data. 

4.2.1 Concatenated RGB input. The evaluation results obtained from the 

network of RGB input and that is concatenated with masks on different set of weights 

are shown in Table 11.  

Table 11: Results obtained from concatenated RGB model 

U-NET Dense-net MAE Acc F1m 

1 0 0.1392 0.1288 0 

0.9 0.1 0.1446 0.875 0.8765 

0.8 0.2 0.1567 0.8875 0.8859 

0.7 0.3 0.1725 0.8975 0.899 

0.6 0.4 0.1957 0.8938 0.8934 

0.5 0.5 0.2038 0.8888 0.8841 

0.4 0.6 0.2105 0.9012 0.8983 

0.3 0.7 0.2596 0.8925 0.8961 

0.2 0.8 0.2925 0.8852 0.8829 

0.1 0.9 0.3163 0.8738 0.8757 

0 1 0.4319 0.88 0.881 

Untrained joined network 0.219 12.5 12.49 

Dense-net results - 0.8662 0.8685 

 

The overall view of the results shows that concatenating an extra mask that is 

generated while training would improve the results of the network. The concatenated 
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mask acts as extra information that is supplied to the network in order to make its final 

decisions. Additionally, the MAE enumerates the change in mask predicted from the 

mask label present. However, the quantity of the number does not show if the masks 

improved or did it worsen, hence the masks were assessed visually for each label and 

was given scores accordingly, scores varied between -2 and 1 integers. Furthermore, (-

2) represented an equally highlighted mask without any detectable discrepancy, (-1) 

represents that the masks prediction quality has worsen, (0) stayed the same, and (1) 

improved. A glimpse of each score label is shown in Table 12. 

Table 12: Saliency masks labeling illustration 

Label 

Name 

Original 

Input Image 

Ground 

Truth 

worsen 

(-1) 

Same 

quality 

(0) 

Improved 

(1) 

Dyed 

Lifted 

Polyps      

Dyed 

Resection 

Margins      

Esophagiti

s      

Normal 

Cecum     - 

Normal 

Pylorus     - 

Normal 

Z-Line     - 

Polyps    -  



 47  

  

Table 12 extracts the variations in the ground truth from all the trials that has 

been implemented through this thesis. It is noticeable that some labels did not improve 

from the original ground truth, only four labels have shown improvement in some of 

the trials, such as Dyed Lifted Polyps (DLP), Dyed Resection Margin (DRM), 

Esophagitis (Esoph), and the polyps. The networks improved in the sense of capturing 

the key features of a certain label by increasing its highlighting intensity on these 

features while giving the rest of the regions less importance. As seen by DLP, 

esophagitis and polyps for example, it captures more suspectable regions of DLP, 

esophagitis and polyps featured cells. As for DRM, it gives more intensity for the dyed 

region which is the key feature of the label and gives less label to the non-dyed part as 

opposed to the original ground truth highlighting both. The rest of the labels showed 

same or lower quality mask than the ground truth. The deteriorated masks were labeled 

based on their lack or decrease of the important key features highlighted as seen 

throughout all the labels. In most of the cases it shows the disability of the network in 

figuring out what is important in the network. The process of labeling the output masks 

was performed to enumerate the effect of changing the weight on the overall visual 

output. An example of the enumeration process is shown in Table 13.  

Table 13: Saliency mask enumeration results for RGB concatenated network 

U- 

NET 

Dense- 

Net DLP DRM Esoph 

Norm. 

cecum 

Norm. 

pylorus 

z- 

line polyps UC 

1 0 - - - - - - - - 

0.9 0.1 0 0 0 0 0 0 1 0 

0.8 0.2 -1 -1 0 -1 0 0 0 0 

0.7 0.3 -1 -1 1 0 0 0 -1 0 

0.6 0.4 -1 -1 0 0 0 0 -1 -1 

0.5 0.5 -1 -1 1 0 -1 0 -1 -1 

0.4 0.6 -1 -1 -1 0 0 0 -1 0 

0.3 0.7 -1 -1 -1 0 -1 0 -1 -1 

0.2 0.8 -1 -1 -1 0 -1 -1 -1 -1 

0.1 0.9 -2 -2 -2 -2 -2 -2 -2 -2 

0 1 -2 -2 -2 -2 -2 -2 -2 -2 

Ulcerative 

Colitis     - 
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 The first iteration in terms of giving full attention to U-net was excluded from 

the calculations, as its classifications results were highly unacceptable. Moreover, the 

Table illustrates that increasing the weight of Dense-net and decreasing the weights of 

the U-net results in reducing the performance of the masks. This is observed by the 

increase in the negative label numbers, showing an inverse proportionality between 

classification and saliency prediction. As more weight percentage is shifted toward the 

classification loss function, the masks start to disappear as shown by the -2 labels. The 

summation of all the labels with respect to weights was made to show the total 

improvement in the masks and could be evaluated as the more positive the value the 

better it is. The summation is attached to Table 12 forming the final Table format that 

will be used to discuss the further results in this thesis. There is a tradeoff between the 

performance of the saliency mask prediction and the performance of the classification 

as shown in Table 14. 

Table 14: Enumerated saliency and classification results for concatenated RGB 

framework 

U-NET 

weight 

Dense-net 

weight MAE Acc F1m Mask Score 

1 0 0.1392 0.1288 0 - 

0.9 0.1 0.1446 0.875 0.8765 1 

0.8 0.2 0.1567 0.8875 0.8859 -3 

0.7 0.3 0.1725 0.8975 0.899 -3 

0.6 0.4 0.1957 0.8938 0.8934 -3 

0.5 0.5 0.2038 0.8888 0.8841 -4 

0.4 0.6 0.2105 0.9012 0.8983 -4 

0.3 0.7 0.2596 0.8925 0.8961 -6 

0.2 0.8 0.2925 0.8852 0.8829 -7 

0.1 0.9 0.3163 0.8738 0.8757 -16 

0 1 0.4319 0.88 0.881 -16 

Untrained joined network 0.219 12.5 12.49 - 

Dense-net results - 0.8662 0.8685 - 

 

 When higher portion of the weights was applied for the U-net it had better mask 

prediction yet lower classification score. However, the scores are close to each other in 

term of classification accuracy with a little bit of fluctuation. This behavior shows that 

the extra layer of masks being concatenated has improved the performance of the 
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network over the Dense-net architecture alone. However, the behavior of the mask in 

terms of improvement or depreciation does not seem to affect the classification results. 

In other words, extra information provided would lead in improving classification 

despite its condition. The untrained joined network’s result was added to test the 

behavior of the just using the pretrained U-net and pretrained dense-net on the overall 

performance without synching between both networks. The classification accuracy and 

F1 score shows that the network without training is unable to perform the joint task 

hence it was applied for further training to do so. The highlighted weights were to act 

as a middle ground between classification and saliency prediction as it has high 

classification value, with close importance between loss functions’ weights. Further 

examination using five-fold cross validation are conducted on chosen weights to 

compare with the other results obtained from different settings.  

 

 4.2.2 Multiplied RGB input. In this subsection the effect of multiplying the 

RGB inputs with predicting masks architecture is examined. This will study the 

behavior of focusing the inputs on what is classified as important by the saliency masks. 

Different weight variation on loss functions are applied and studied, like the previous 

section. Table 15 will be used as the source of information to discuss the effect.  

Table 15: Saliency and classification results for multiplied RGB framework 

U-NET 

weight 

Dense-net 

weight MAE Acc F1m Mask Score 

1 0 0.1443 0.1288 0 - 

0.9 0.1 0.1582 0.8588 0.8555 -1 

0.8 0.2 0.1865 0.8688 0.8671 -3 

0.7 0.3 0.2177 0.87 0.8721 -3 

0.6 0.4 0.2486 0.8862 0.8848 -4 

0.5 0.5 0.1146 0.8925 0.8934 -16 

0.4 0.6 0.1146 0.8762 0.875 -8 

0.3 0.7 0.3124 0.88 0.8814 -8 

0.2 0.8 0.3155 0.8888 0.8864 -16 

0.1 0.9 0.3156 0.8862 0.887 -16 

0 1 0.4796 0.8888 0.8905 -16 

Untrained joined network 0.206 16.43 15.06 - 

Dense-net Results - 0.8662 0.8685 - 
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 The multiplication effect clearly shows the mask effect on the classification 

results. As the mask turns clear and empty, the classification results increase as shown 

in Table 15. This is similar to multiplying the RGB input by 1 and allowing it to pass 

on all the information it carries. However, there may be minor variations that may 

explain the increase in performance. Additionally, as the Dense-net’s cost function gets 

a higher portion of the weight the mask starts fading away and showing less information 

which reflects the behavior of concentrating the weights for classification. Hence, this 

proves that both classification and saliency prediction cost functions are contradicting 

cost functions and they do not support each other. The predicted masks from this 

framework also contains some white noise in the background which can be considered 

as a rebelling behavior of the classification cost function to allow more information to 

pass for classification. An example can be shown in Table 16.   

Table 16: Examples of distortions caused by multiplications 

Label Image Ground Truth Predicted Mask 

DLP    

DRM    
 

 The predicted masks in Table 16 shows that the networks highlight the 

important information with higher intensity of white color and contains some distortion 

noise. This proves that the multiplication layer acts as a bottleneck layer of the 

information that could pass through, in which the framework tends to expand in order 

to achieve higher classification results. However, the extra guidance provided had 

shown that the network with extra layers and guided information outperforms the 

normal Dense-net benchmark. The regions which has a unified color with no salient 

information, denoted with -16 mask score, appears to act as a weighting factor which 

helps in improving the classification results. The highlighted results are then used for 

further investigation using five-fold cross validation.  
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 4.2.3 Concatenated HS input. The following section shows the results of 

jointly predicting saliency labels and classification using HS input. Similar to RGB 

concatenation, the results in this section supports the hypothesis that adding an extra 

layer of information will be valuable for the classification purpose. The results of 

training the whole framework on saliency prediction and classification are shown in 

Table 17.  The network succeeded in achieving results higher than the Dense net in 

most weights. It can be observed that, similar to the previous networks, as the weights 

are shifted toward classification, the performance of the masks worsens. Additionally, 

the masks output in this configuration happens to worsen faster in terms with reduction 

in weight. Once the classification weights are higher than saliency cost function, the 

saliency masks become very poor. However, the masks information seems to be 

contributing significantly while concatenation as it achieves very similar classification 

score even when masks perform relatively with -2 score and -16 score. However, the 

overall performance of the network in classification has improved as proven by the 

results illustrated.  

Table 17: Saliency and classification results for concatenated HS framework 

U-NET 

weight 

Dense-net 

weight MAE Acc F1m Mask Score 

1 0 0.1543 11.66 0 - 

0.9 0.1 0.1537 87.62 87.71 0 

0.8 0.2 0.1653 87.5 87.43 -3 

0.7 0.3 0.1827 88.38 88.05 -3 

0.6 0.4 0.2046 89.75 89.72 -2 

0.5 0.5 0.2399 88.12 88.05 -3 

0.4 0.6 0.3067 89.12 89.15 -16 

0.3 0.7 0.307 87.62 87.91 -16 

0.2 0.8 0.5662 88 87.95 -16 

0.1 0.9 0.3012 89.38 89.37 -16 

0 1 0.3732 88.25 88.3 -16 

Untrained joined network 0.209 18.775 17.12 - 

Dense-net Results - 0.8662 0.8685 - 

 

 4.2.4 Multiplied HS input. This section shows the results obtained from 

using the same U-net weights used in the previous section for HS saliency prediction. 

The difference is that the merging layer between the networks is a multiplication layer. 

The results obtained are shown in Table 18. 
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Table 18: Saliency and classification results for multiplied HS framework 

U-NET 

weight 

Dense-net 

weight MAE Acc F1m Mask Score 

1 0 0.1496 12.88 0 0 

0.9 0.1 0.1728 0.8617 0.8625 -1 

0.8 0.2 0.1792 0.8588 0.8594 -2 

0.7 0.3 0.2097 0.8562 0.8573 -5 

0.6 0.4 0.2159 0.8875 0.885 -6 

0.5 0.5 0.2569 0.87 0.8716 -5 

0.4 0.6 0.2735 0.855 0.8579 -7 

0.3 0.7 0.2828 0.8788 0.876 -8 

0.2 0.8 0.2962 0.87 0.8672 -7 

0.1 0.9 0.7142 0.8938 0.894 -16 

0 1 0.6955 0.8888 0.8892 -16 

Untrained joined network 0.203 16.9 15.89 - 

Dense-net Results - 0.8662 0.8685 - 

 

The results mimics the behavior of multiplication RGB mentioned in section 

4.2.2 in terms of the noise present in the masks, and that increasing the weights toward 

classification would actually cause the network to have a more noisy, closer to a clear, 

mask to allow more information flow. This variation of network however did maintain 

much better classification results than the Dense-net architecture.  

4.3 Five-Fold Cross Validation 

A technique to avoid overfitting and biasing of the data is five-fold cross 

validation. It ensures that the model is trained and tested on different variations of the 

overall dataset every time. Five-fold cross validation means that the data will be split 

into 5 equal segments, and it will be trained on 4/5 of this data and will be tested on the 

remaining 1/5. Training and testing will occur 5 times in a way that each segment will 

have a chance to be used as a testing set. The average and the standard deviation of this 

mechanism is recorded and used to compare between different results. In this research 

it will be applied on the Dense-net framework and to the combined architectures with 

the selected best as weights highlighted in section 4.2. The results for five-fold cross 

validation are illustrated in Table 19. The results show that adding an extra network 

that predicts a saliency mask improves the overall results of the network. The RGB 

input models outperform the HS input models in both multiplication and concatenation 
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operation. The value for classification accuracy has decreased as tests are now done on 

the entire dataset, which may be more challenging than the subset we used earlier. 

Table 19: Five-fold cross validation results 

Label MAE Acc F1m 

RGB – CAT 0.196 86.25 86.18 

RGB - MUL 0.2168 85.675 85.57 

HS - CAT 0.2097 85.325 85.323 

HS - MUL 0.2108 84.6125 84.608 

Dense-net - 83.025 82.86978 

 

Additionally, The RGB concatenation model had the highest classification 

accuracy and F1 measure which shows that adding in more information the network 

would lead to better classification results. The MAE results from the past tables can be 

safely associated with the degradation in the overall performance of the attention map 

prediction. The least performance was achieved by the HS multiplication model which 

showed a poor performance in terms of mask prediction as well due to the shared 

weights.  
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Chapter 5. Conclusion and Future Work  

 

This thesis addressed two main contributions which are: predicting medical 

masks from saliency architecture trained on natural images, and the improvement of 

classification accuracy when a network jointly predicts salient masks with classification 

labels. As for the first contribution, four different U-net variants were introduced: U-

net original, U-net Skip, U-net Dense, U-net with strided convolution. The first three 

mentioned architectures were examined on DUTS and DUTOMRON natural image 

datasets to check their performance using accuracy and F1 scores. The U-net original 

showed very close results to the U-net Skip architecture. Hence, the original U-net was 

further modified and introduced as the fourth variant which is U-net strided convolution 

which showed that replacing max-pooling layer with strided convolution would 

improve the results of predicting saliency masks for natural images.  

The U-net with strided convolution trained on natural images was utilized to 

predict the saliency masks of the medical images. Different input variation of the same 

inputs, RGB, HS and Value, were analyzed to check the effect of changing the color 

space on the quality of the predicted masks visually. The medical masks quality was 

analyzed subjectively. The HS input showed the best quality of masks in term of 

capturing the proper attention regions from the medical inputs. The masks of the best 

predicted quality were saved as ground truths for the next step. 

As for the second contribution: four different variations of the framework were 

explored. U-net architecture was merged with a Dense-net architecture for jointly 

predicting saliency masks and classifying input images to their corresponding labels. 

The different variation were as follows: RGB input concatenated with predicted mask 

and fed to Dense-net, RGB input multiplied with predicted mask and fed to Dense-net, 

HS input concatenated with predicted mask and fed to Dense-net and HS input 

multiplied with predicted mask and fed to Dense-net. Different weights for the cost 

function of these architectures were applied to check the behavior of assigning different 

weights on classification accuracy and on masks prediction on a subset of images. The 

best set of weights which had a decent improvement in classification accuracy and a 

visually acceptable mask were chosen then for each of the frameworks for final 

comparison using 5-fold cross validation. It is fair to conclude that changing the weights 
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toward the classification loss function would increase the classification accuracy yet 

worsen the mask’s quality showing that both loss functions are competing.  

The networks which had multiplication layers in the middle illustrated that as 

the weights of the cost functions shift towards classification, the mask becomes more 

speckle like, which shows that the network is trying to get further data from the input 

image. Networks constituting concatenation in their middle layer, showed the 

classification would improve no matter the overall quality of the mask. Therefore, we 

can conclude that adding masks by multiplication or concatenation had illustrated an 

overall performance enhancement compared to classifying input images only using the 

classification network (Dense-net).  

  For future work, different classification architectures other than the Dense-net 

should be tried to validate the theory that providing extra mask information improves 

overall classification results even further. Additionally, the masks could be assigned a 

non-linear learnable weight factor, as a function for mask intensity values, which may 

improve the results further. Moreover, the work could be expanded to study other types 

of medical images, other than GI tract images, to achieve similar improvement in 

classification with addition of saliency inputs.  
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Appendix 

 

Table 20: Training: DUTS Training | validation: DUTS Test | metric: validation loss 

Training: DUTS Training | Validation: DUTS Test | Metric: validation loss  

Learning rate U-net  U-net skip U-net dense 

1e-4 0.0862 0.0870 0.2367 

1e-5 0.0810 0.0835 0.0773 

1e-6 0.2472 0.1168 0.1329 

 

Table 21: Training: DUTS Training | validation: DUTSOMRON | metric: validation 

loss 

Training: DUTS Training | Validation: DUTSOMRON | Metric: validation loss  

Learning rate U-net  U-net skip U-net dense 

1e-4 0.0830 0.0811 0.0742 

1e-5 0.0857 0.0828 0.0766 

1e-6 0.1170 0.1201 0.1300 

 

Table 22: Training: DUTS Training + Test | validation: DUTSOMRON | metric: 

validation loss 

Training: DUTS Training + Test | Validation: DUTSOMRON | Metric: validation 

loss  

Learning rate U-net  U-net skip U-net dense 

1e-4 0.0653 0.0624 0.0656 

1e-5 0.0760 0.0711 0.0703 

1e-6 0.1184 0.1026 0.2462 
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