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Abstract 

 

Attribute control charts are used extensively in many industries to detect assignable 

causes for many processes. They are particularly useful in the service industries due to 

difficulty of evaluating services using variable scale. In addition, several critical-to-

quality characteristics in manufacturing and service can be combined to determine 

whether to accept or reject the product. The optimization of fraction non-conforming 

p-chart has been mainly addressed from either statistical or economic prospective or 

considering only single assignable cause. In this research, we propose an economic-

statistical model that considers the process history of the nonconforming units to design 

a p-chart for processes with multiple assignable causes. The method is demonstrated 

using a drinking water bottling case and shows improved results compared to existing 

methods. When comparing the results of the proposed method with traditional methods, 

the proposed method is expected to reduce poor quality cost by 0.86% per unit. For a 

mass production company such as the water bottling company with half a million 

bottles filled every day, the proposed method is expected to provide significant 

monetary savings along with improved reputation.  

 

Keywords: nonconforming chart, p-chart, optimization 
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Chapter 1. Introduction 

 

Control chart is one of the most powerful tools used in Statistical Process 

Control (SPC). It is one of the seven basic tools which include histogram, check sheet, 

Pareto chart, cause-and-effect diagram, defect concentration diagram and the scatter 

diagram. SPC tools are mainly used to detect abnormal behavior of processes caused 

by assignable causes, and to improve process capability through the reduction of 

variability.  

In almost any production process, a certain level of inherent natural variability 

will always exist, which results from the cumulative effect of small unavoidable causes. 

One the other hand, there is another type of variability that arises mainly from three 

sources: improperly adjusted machines, operator errors, or non-conforming raw 

material. SPC aims at detecting these assignable causes of variation, so that corrective 

actions are taken before many non-conforming units are manufactured [1].  

The concept of control charts was first introduced by Walter Shewhart in 1931. 

He proposed a variable control chart the monitors the mean of the quality characteristic 

[2]. Later, many researchers have proposed different types of control charts, which can 

be classified into two categories: variable control charts and attribute control charts. 

A typical control chart is shown in Figure 1. It consists of three parameters: a 

center line (CL), an upper control limit (UCL), and a lower control limit (LCL). 

 

Figure 1: Typical Control Chart 
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If a point exceeds the control limit, an investigation should be carried out, and 

correction must be taken if a true assignable cause is found. Otherwise, the process is 

considered to be in control. Moreover, a heuristic introduced by Shewhart known as 

Western Electric Rules, is used to indicate the possibility of a shift from the sequence 

and pattern of the plotted points.  

1.1. Variable and Attribute Control Charts 

There are many types of variables control charts used in manufacturing and 

other business processes. Some of them are suitable for detecting moderate to high 

processes shifts like the 𝑋̅-R chart, 𝑋̅-S chart and X-MR. Moreover, other are applied 

when it is desired to detect small shifts, like the Exponentially Weighted Moving 

Average (EWMA) chart and the Cumulative Sum (CUSUM) control charts. 

On the other hand, there are different types of attribute charts that are used when 

it is required classify the units as conforming and non-conforming like the p-chart and 

np-chart. Moreover, for processes that monitor multiple non-conformities per unit, the 

c-chart and u-charts are applied. 

1.2. Fraction Non-conforming p-chart 

The fraction non-conforming or percentage of defective is defined as the ratio 

of the number of non-conforming items in a population to the total number of items in 

that population. If the items do not conform to the standard of one or more pre-specified 

quality characteristics during the inspection, it is classified as non-conforming. 

The fraction non-conforming p-chart is one of the most used types of attribute 

charts. It is particularly useful in the service industries and in transactional business 

processes because many of the characteristics in those fields are not easily measured on 

a numerical scale.  

The statistical principles underlying the p-chart is based on the binomial 

distribution. Its structure consists of a center line, lower and upper limits. Figure 2 

shows an example of a p-chart. 
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Figure 2: Example of a p-chart 

The equations for constructing a p-chart: 

𝑝̅ = ∑ 𝑝𝑖𝑚𝑖=1𝑚                                                                        (1.1) 

𝑈𝐶𝐿𝑝 = 𝑝̅ + 3√𝑝̅(1 − 𝑝̅)𝑛                                                (1.2) 

𝐿𝐶𝐿𝑝 = 𝑝̅ − 3√𝑝̅(1 − 𝑝̅)𝑛                                                 (1.3) 

where: 𝑝𝑖 ≡ fraction non-conforming at interval 𝑖 𝑝̅ ≡ average fraction of non-conforming based on m subgroups 𝑛 ≡ sample size within each subgroup 𝑚 ≡ number of subgroups 𝑈𝐶𝐿𝑝 ≡ Upper Control Limit for p chart 𝐿𝐶𝐿𝑝 ≡ Lower Control Limit for p chart 

The two main decision variables in the design of p-chart are n and m. Ideally, 

more frequent samples with large sample size will detect assignable causes fast. 

However, such approach is expensive. The economic design of control chart aims at 
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determining the optimum sample size and sampling interval that corresponds with the 

minimum quality and production cost. However, the statistical design of control charts 

aims at finding the optimum sample size and sampling interval that corresponds with 

the desired Average Run Length (ARL), which is defined as the average number of 

subgroups taken before the process goes out of control. ARL will be discussed in the 

next section. 

On the other hand, the economic-statistical design gives the optimum sample 

size and sampling interval that corresponds with the minimum cost, while having a 

constraint for the ARL. 

1.3. Average Run Length (ARL) 

One way to measure the sensitivity of a control chart is by using the Average 

Run Length (ARL). It is the number of subgroups taken before a point plots out of 

control. In another words, it is the number of subgroups inspected before flagging an –

out of control state. The ARL is calculated as the reciprocal of probability of detecting 

the assignable cause or shift in average fraction of nonconforming. In control chart 

decision making context, ARL is the reciprocal of the probability of having a sample 

point out of control. The probability of detection is estimated as the complement of 

probability of incorrectly accepting the hypothesis of statistical control (i.e., type II or 

β error). The probability of type II error or not detecting the shift β which can be 

estimated using binomial distribution as shown in equation 1.6.  Alternatively, another 

metric called the Average Time to Signal (ATS) is also applied, which is the time units 

that pass before a point plots out of control. 

𝐴𝑅𝐿 = 11 − 𝛽                                                         (1.4) 𝐴𝑇𝑆 = 𝐴𝑅𝐿 ℎ                                                        (1.5) 𝛽 = Pr{𝑝̂ < 𝑈𝐶𝐿 | 𝑝} − Pr{𝑝̂ ≤ 𝐿𝐶𝐿 | 𝑝} =                                              Pr{𝐷 < 𝑛𝑈𝐶𝐿 | 𝑝} − Pr{𝐷 ≤ 𝑛𝐿𝐶𝐿 | 𝑝}                                           (1.6) 

where: 𝛽 ≡ probability of not detecting a shift 

D≡ number of defectives in a subgroup sample n ℎ ≡ Sampling interval 



15 
 

In order to reduce ATS, either control limits are tightened or number of samples 

(n) are increased or sampling interval is reduced. Tightening control limits will increase 

false alarms, flagging a special cause when there is none while increasing n or reducing 

h will increase sampling cost.  

It is worth noting here that one should differentiate between ARL interpretation 

during two states: state of in control and state of out of control. If the process is in 

control, 𝐴𝑅𝐿0 is: 

𝐴𝑅𝐿0 = 11 − 𝛽0 = 1𝛼                                           (1.7) 

However, if the process is out of control, then: 

𝐴𝑅𝐿1 = 11 − 𝛽1                                                     (1.8) 

A typical Shewhart control chart would have a minimum 𝐴𝑅𝐿0 of  270 and a low 𝐴𝑅𝐿1. 

This means that the control chart will have a false alarm every 270 samples when 

process is in control and few samples when process is out of control. 

Despite the wide spread of p-chart in service and manufacturing, few attempts 

were made to design and select the optimal settings of chart parameters.  The objective 

of this research is to propose a method to select the optimum sample size n and sampling 

interval h for the p-chart using economical-statistical optimization design. The method 

considers both ability of chart to flag faulty states early on and minimizes total cost as 

well. The remainder of this report is as follows: Chapter two summarizes surveyed 

literature while chapter three outlines the problem on hand. Chapter four outlines the 

proposed method and model while a proof of concept and a case study are presented in 

chapters five and six respectively. 
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Chapter 2. Literature Review 

 

Control chart are one of the main Statistical Quality Control (SPC) tools that is 

used to monitor and improve process stability and reduce variability. Several 

researchers proposed different ways to design control charts. Usually designs of charts 

addressing ARL criterion only are called statistical designs which mainly result in 

minimizing false alarm rate. Alternatively, economical design results in charts that 

minimize poor quality and sampling costs associated with the process. As a result, few 

researchers used a hybrid statistical economic design that accounted for both costs and 

ARL. Various assumptions have been used by different authors. One of the major 

assumptions is that process experiences a shift either due to single or multiple 

assignable causes. The multiple assignable causes assumption is more realistic than 

single. 

2.1. Design of Variable Control Charts 

Following Shewhart [2] introduction of the concept of control charts, many 

researchers built on his work and provided models for an efficient design of these 

charts. Most of these models focused on obtaining the optimal statistical properties of 

these charts, like the ARL and ATS without consideration of cost associated with these 

designs. 

Since then, many researchers have addressed the design of control chart from 

an economic prospective, as the statistical design does not take into consideration the 

costs of sampling, treating the assignable causes or the cost of producing defective 

items [1]. Duncan [3] was the first to address the design of control charts from an 

economic prospective [1]. He proposed a model for the design of X̄ charts that obtains 

the optimum design parameters by maximizing the average net income of the process.  

Table 1 summaries surveyed literature focused on variable control charts based 

on chart type and design criteria.  

Lorenzen and Vance [4] elaborated on Duncan’s [3] work and derived the 

following function expected cost per time, that is applicable to different types of control 

charts. 
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Table 1: Summary of review papers on variable charts 

No 
Chart 

type 
Authors Statistical Economic 

Economic

-statistical 

single 

assignable 

cause 

Multiple 

assignable 

causes 

Method 

1 

EWMA 

Borror et al. 

1998 
√     √   

Markov 

Chain/Poisson 

distribution 

2 
Montgomer

y et al. 1995 
    √ √   

Minimizing 

cost function 

3 
Amiri et al. 

2015 
    √ √   

robust design 

using genetic 

algorithm 

4 

Linderman 

and Love 

2000 

    √ √   
Multivariate 

model 

5 

X chart 

Duncan 

1956 
  √   

 

√ 

Maximizing 

net income of 

the process. 

6 
Lee et al. 

2016 
    √ √   

Surrogate 

variable using 

GA/VSI 

model 

7 

X & R 

chart 

Saniga 1989     √ √   

Minimizing 

expected cost 

per hour 

8 

Bakir and 

Altunkayna

k 2004 

    √   √ 

Genetic 

Algorithm/Mu

lti-objective 

model 

9 

X-R & 

X-S 

charts 

Sangia and 

Davis 2001 
    √ √   

FORTRAN 

Program 

10 

CUSU

M 

Goel and 

Wu 1973 
  √   √   

Long-run 

average 

cost/Pattern-

search 

technique 

11 
Pan and 

Chen 2005 
  √   √   

Revised 

Inverted 

Normal Loss 

Function 

(RINLF)/Esti

mate the 

expected cost 

of pollution. 

12 
ML 

Chart 

Wu et al. 

2004 
    √ √   

Taguchi's Loss 

Function 

 

Lorenzen and Vance [4] model considered the following types of costs: 

𝐸(𝐶) = 𝐸(𝐶1) + 𝐸(𝐶2) + 𝐸(𝐶3)𝐿                                       (2.1a) 

where: 𝐸(𝐶1) ≡ Expected cost per cycle due to nonconformities 𝐸(𝐶2) ≡ expected cost of false alarm and locating and repairing the true assignable 

cause 
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𝐸(𝐶3) ≡ the expected cost per cycle for sampling 𝐿 ≡ the expected length of a production cycle 

The costs identified in equation (2.1a) were estimated in [4] by the 

corresponding terms: 

𝐸(𝐶) = {𝐶0𝜆 +𝐶1(−𝜏+𝑛𝐸+ℎ(𝐴𝑅𝐿2)+𝛿1𝑇1+𝛿2𝑇2)}+{ 𝑠𝑌𝐴𝑅𝐿1+𝑊}+{(𝑎+𝑏𝑛)(1𝜆−𝜏+𝑛𝐸+ℎ(𝐴𝑅𝐿2)+𝛿1𝑇1+𝛿2𝑇2)ℎ }1𝜆+(1−𝛿1)𝑠𝑇0𝐴𝑅𝐿1 −𝜏+𝑛𝐸+ℎ(𝐴𝑅𝐿2)+𝑇1+𝑇2  

(2.1b) 

where: 𝐶0 ≡ Quality cost while producing in control 𝐶1 ≡ Quality cost while producing out of control (𝐶1 > 𝐶0) 𝜆 ≡ 1 mean time process is in control⁄  𝜏 ≡ Expected time for the occurance of the assignable cause 𝑛 ≡ Sample size 𝐸 ≡ Time to sample and chart one item ℎ ≡ Sampling interval 𝐴𝑅𝐿1 ≡ average run length while in control (1 𝛽⁄ ) 𝐴𝑅𝐿2 ≡ average run length while process out of control (1 1 − 𝛽⁄ ) 𝛿1 = {1 if production continues during searches0 if production ceases during searches        𝛿2 = {1 if production continues during repair    0 if production ceases during repair           𝑇1 ≡ Expected time to discover the assignable cause 𝑇2 ≡ Expected time to repair the process 𝑠 ≡ Expected number of samples taken while process in control 𝑌 ≡ Cost per false alarm 𝑊 ≡ Cost to locate and repair the assignable cause 

Lorenzen and Vance assumed that the process experiences only a single 

assignable cause. In reality processes usually undergoes multiple assignable causes 

with different times of occurrences.  
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Saniga [5] pioneered the economic statistical design by proposing a model for 

the design of X̄ and R charts, in which he used constraints for type I error, power, and 

the ATS. Later on, Saniga and Davis [6] developed a comprehensive FORTRAN 

program for the economic statistical design of X̄–R charts and X̄–S charts, using 

Lorenzen and Vance’s model. These two papers assumed a single assignable cause. 

Nenes et al. [7] proposed a general model for the design of fully adaptive 𝑋̅ Shewhart control chart for processes subject to multiple assignable causes, using 

Markov chain model. They considered the following costs in their design: 

 𝐸(𝐶) = 𝐸(𝐶1) + 𝐸(𝐶2) + 𝐸(𝐶3) + 𝐸(𝐶4)𝐿                             (2.2a) 
where:  𝐸(𝐶1) ≡ the expected cost of sampling 𝐸(𝐶2) ≡ the expected cost of operating in the out of control states 𝐸(𝐶3) ≡ the expected cost of false alarms 𝐸(𝐶4) ≡ the cost of restoring the process to the in control state 𝐿 ≡ the expected cycle time 

The costs identified in equation (2.2a) were estimated in [7] by the 

corresponding terms: 𝐸(𝐶) = [𝑏+𝑐𝑛1 ∑ (𝜋𝑖0+𝜋𝑖2)]+[𝑐𝑛2 ∑ 𝜋𝑖1]+[∑ (𝜋𝑖0𝐾𝑖(ℎ1)+𝜋𝑖1𝐾𝑖(ℎ2)+𝜋𝑖2𝐾0(ℎ1))]+[∑ 𝜋𝑖2𝐿𝑖]𝑖𝑖𝑖𝑖 ℎ1 ∑ 𝜋𝑖0𝑖 +∑ (𝜋𝑖2𝑖 (ℎ1+𝑇𝑖))+ℎ2 ∑ 𝜋𝑖1𝑖   (2.2b) 

Where: 𝑏 ≡ fixed sampling cost 𝑐 ≡ variable sampling cost per unit 𝑛1 ≡ relaxed sampling size ℎ1 ≡ relaxed sampling interval 𝑛2 ≡ tightened sampling size ℎ2 ≡ tightened sampling interval 𝜋𝑖𝑘 ≡ Steady state probabilities; i ∈ {0,1,…,m} represents the current state of the 

process and k ∈ {0,1,2} represents the decision that should be taken. 
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𝐾𝑖 ≡ Mean cost of operating under the effect of an assignable cause, given that the 

process is under the effect of assignable cause i at the beginning of a sampling 

interval. 𝐿𝑖 ≡ cost of removing assignable cause i 𝑇𝑖 ≡ time to search and remove assignable cause i 
Unlike the previously discussed models, the above model considers the cost 

when it is possible for a process to shift from an already detected assignable cause to 

another assignable cause. Although, the fully adaptive design of control charts results 

in higher cost savings than the fixed parameter chart, it is often complex and difficult 

to administer in reality.  

Bakir and Altunkaynak [8] proposed a multi-objective economic statistical 

design (MOESD) model for the X̄ and R charts, using a genetic algorithm, assuming 

multiple assignable causes. Lee et al. [9] developed an economic statistical design of 

variable sample interval (VSI) X̄ chart based on surrogate variable and using a genetic 

algorithm, assuming a single assignable cause. 

A statistical design for the EWMA was proposed by Borror et al. [10] for 

processes that employ the Poisson distribution, using Markov chain approach. They 

concluded that the ARL for the Poisson EWMA chart is smaller than that of the c-chart. 

Goel and Wu [11] provided a model for the design of CUSUM control charts, 

that gives the long-run average cost of the process, using the pattern-search technique. 

Pan and Chen [12] developed an economic design of the CUSUM chart to monitor 

environmental performance and estimate the expected cost of pollution, using the 

Revised Inverted Normal Loss Function (RINLF) for unilateral specification: 

𝐿(𝑦) = { 0                                      𝐴{1 − exp (− (𝑦 − 𝑈)22𝜎𝐿2 )}             0 ≤ 𝑦 ≤ 𝑈𝑦 > 𝑈                       (2.3) 

where: 𝐴 ≡ the maximum loss if the process mean is deviated from the target 𝑈 ≡ the upper bound under which no loss in incured 𝜎𝐿 ≡ the shape parameter of the loss function of the RINLF for unilateral specification 
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Both of these papers addressed the design of CUSUM charts assuming a single 

assignable cause. 

Similarly, Montgomery et al. [13] presented a statistically constrained 

economic model for the design of EWMA control chart by minimizing the cost function 

proposed by Lorenzen and Vance [4]. Linderman and Love [14] have provided an 

economic statistical model for the multivariate EWMA chart, using also Lorenzen and 

Vance’s [4] model. Amiri et al. [15] built on Montgomery’s [13] work by developing 

a robust design for the statistical-economic model for EWMA control chart by using a 

genetic algorithm as an optimization method. All of these three papers assumed a single 

assignable cause. 

Wu et al. [16] have proposed an economic statistical design by minimizing the 

overall mean of Taguchi’s loss function for what they called an ML control chart, with 

constraints to the ATS0 and the inspection rate, assuming a single assignable cause. 

2.2. Design of Attribute Control Charts 

The attribute control charts are very popular in practice, specifically the fraction 

non-conforming p-chart, since they could combine several failure modes, and they are 

easy to administer and implement. Hence, reduce the complexity and errors during 

inspection. Table 2 provides a summary of surveyed literature based on type of attribute 

charts and design criteria. 

Ladany [17] pioneered the economic design of attribute control charts [18] by 

developing a model for the design of p-charts which minimizes the total cost within an 

interval: 𝑇𝐶 = 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4                                          (2.4)                                    

where: 𝐶1 ≡ cost of sampling in the interval 𝐶2 ≡ cost of not detecting a shift 𝐶3 ≡ cost of false alarm 𝐶4 ≡ cost of correction 
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Table 2: Summary of reviewed papers on attribute charts 

No. 
Chart 

type 
Authors Statistical Economic 

Economic

-statistical 

single 

assignable 

cause 

Multiple 

assignable 

causes 

Method 

1 

c-chart 

Inghilleri 

and Lupo 

2015 

  √       Double sampling 

2 Lupo 2014     √ √   

Multi-objective 

design/Taguchi's loss 

function 

3 

np-

chart 

Wu and Luo 

2004 
√         

Based on ASI & 

ASS/Optimizing ATS 

4 
Jolayemi 

2002 
√         Multiple control regions 

5 
Kooli and 

Limam 2011 
  √   √   

Based on VSS/Adaptive 

design 

6 
Kooli and 

Limam 2015 
  √   √   

Based on VSI/Adaptive 

design 

7 
Kooli and 

Limam 2009 
  √   √   

Based on VSS/Bayesian 

model  

8 Gibra 1978   √   √   
Minimizing expected cost 

per unit 

9 Gibra 1981   √     √ 
Minimizing expected cost 

per unit 

10 Chiu 1976   √     √ Grid search method 

11 Chung 1995   √     √ 
Algorithm for solving 

Chiu's model 

12 
Williams et 

al. 1985 
  √       Curtailed sampling 

13 
Wang and 

Chen 1995 
    √     Fuzzy-set theory 

14 
Bashiri et al. 

2013 
    √ √   

Data Envelopment Analysis 

(DEA)/Multi-objective 

model 

15 Collani 1989   √   √   
Maximizing profit/Poisson 

distribution 

16 

p-chart 

Ladnay 

1973 
  √   √   

Minimizing expected cost 

per time 

17 
Ladnay 

1976 
  √       Optimal setup policy 

18 
Cozzucoli 

2009 
√         

Two-sided multivariate p 

chart 

19 
Abooie and 

Nayeri 2009 
√     √   

Heuristic using Bayesian 

rule 

20 
Montgomer

y et al. 1975 
  √     √ Minimizing cost per unit 

21 
Duncan 

1978 
  √   √   Minimizing expected cost 

22 
Kethley and 

Peters 2004 
  √   √   Genetic Algorithm 

23 
Calabrese 

1995 
  √   √   Bayesian Rule 

24 
Sangia and 

Davis 1995 
    √     FORTRAN Language 

25 
Gunay and 

Kula 2016 
  √       

Sample Average 

Approximation Algorithm 

(SAA) 

26 
Makis et al. 

2016 
  √   √   

An algorithm using 

Bayesian Rule, semi-

Markov chain processes. 

27 

Namin and 

Hasanzada 

2016 

    √ √   

Cornish-Fisher Expansions 

and Non-linear 

Lexicography programming 

NLGP 

28 
Genera

l model 

Lorenzen & 

Vance 1986 
  √   √   

Minimizing expected cost 

function 

29 
Nenes et al. 

2015 
    √   √ 

Markov Chain/Adaptive 

model 
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Similarly, Ladany and Bedi [19] presented a model for the selection of the 

optimal setup policy for a process that uses the p-chart, based on the minimum expected 

cost per unit of time. 

Montgomery et al. [20] developed an economic model for the design of p-chart 

assuming a multiplicity of assignable causes, through the minimization of the following 

expected cost function per unit of product: 𝐸(𝐶) = 𝐸(𝐶1) + 𝐸(𝐶2) + 𝐸(𝐶3)                                       (2.5a) 

where: 𝐸(𝐶1) ≡ the expected cost of sampling and testing per unit  𝐸(𝐶2) ≡ the unit cost of investigation and correction when process is out of control 𝐸(𝐶3) ≡ the expected cost per unit of producing defective product 

The costs identified in equation (2.5a) were estimated in [20] by the corresponding 

terms: 

𝐸(𝐶) = 𝑎1 + 𝑎2𝑛𝑘 + (𝑎3𝑘 )∑𝑞𝑖𝑠
𝑖=0 𝛼𝑖 + 𝑎4 ∑𝑝𝑖𝛾𝑖𝑠

𝑖=0                     (2.5b) 

where: 𝑎1 ≡ fixed cost of sampling 𝑎2 ≡ variable cost of sampling 𝑛 ≡ sample size 𝑘 ≡ number of units produced between the first items included in the successive 

samples. 𝑎3 ≡ cost of investigating, correcting the process plus the cost of lost production  𝑞𝑖 ≡ conditional probability that process  is out of control when it is at state 𝑝𝑖  𝛼𝑖 ≡  probability  the process is in state 𝑝𝑖 when taking the sample 𝑎4 ≡ the penalty cost of producing a defective unit 𝑝𝑖 ≡ fraction defective corresponding with state 𝑖 𝛾𝑖 ≡ probability that the process in state 𝑝𝑖 at any point in time  
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It is worth noting that Montgomery et al. model does not consider the cost of 

investigating false alarms, which for some processes might be significant. Moreover, 

they assumed that when the process is out of control due to an assignable cause, it 

remains free from the effect of other assignable causes, which is unrealistic. If the 

process remains out-of-control for a significant amount of time, other faults may arise 

and is often associated with costs. In addition, Montgomery et al. model used a state 

matrix describing the probability of transitioning from one state to another. Such matrix 

is complex and requires prior knowledge of processes under investigation. Moreover, 

their model is purely economical, and does not consider any constraint for important 

statistical parameters such as the ARL. 

Chiu [21] developed an economic model for the design of np-charts, for a 

process that involved multiple assignable causes. The optimal design parameters are 

obtained through the maximization of the following function of the expected net profit 

per production cycle: 𝐸(𝑃1) + 𝐸(𝑃2) − 𝐸(𝐶1) − 𝐸(𝐶2) − 𝐸(𝐶𝑗)𝐿                          (2.6a) 

where: 𝐸(𝑃1) ≡ the expected profit when the process is in control 𝐸(𝑃2) ≡ the expected profit when the process is out of control 𝐸(𝐶1) ≡ the expected cost of investigating a false alarm 𝐸(𝐶𝑗) ≡   the expected cost of investigating a true alarm assignable cause 𝑗 (𝑗 =1,2, … , 𝑘) 𝐸(𝐶3) ≡ the expected cost of sampling 𝐿 ≡ the expected length of a production cycle 

The costs identified in equation (2.6a) were estimated in [21] by the corresponding 

terms: 

𝐸(𝑃) = 𝑉0+ℎ ∑𝜆𝑗𝑉𝑗𝐵𝑗−ℎ𝐴0𝐵0−ℎ ∑𝜆𝑗𝐴𝑗−ℎ(𝑏+𝑐𝑛)(1+∑𝜆𝑗𝐵𝑗)1+∑𝜆𝑗𝐵𝑗+𝑡0𝐵0+∑𝜆𝑗𝑡𝑗                  (2.6b)                   

where: 𝑉0 ≡ Average profit from process when in control 
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ℎ ≡ Sampling interval 𝜆𝑗 ≡ Occurance rate of assignable cause 𝑗 𝑉𝑗 ≡ Average profit from process when shifting to out of control state due to 

assignable cause j 𝐵𝑗 ≡ Time before a true alarm is signalled due to assignable cause 𝑗 𝐴0 ≡ the cost of investigating a false alarm 𝐵0 ≡ Expected number of false alarms when process is in control 𝐴𝑗 ≡ The cost of detecting and eliminating assignable cause 𝑗 𝑏 ≡ Fixed cost of sampling 𝑐 ≡ Variable cost of sampling 𝑛 ≡ Sample size 𝑡0 ≡ The average time needed for the search of a false alarm 𝑡𝑗 ≡ The average time needed for detecting and eliminating assignable cause j 

Chiu’s model considers the cost of false alarms but fails to include the cost of 

producing defective items, which is often quite significant. Moreover, like Montgomery 

et al. the above model assumes that the process when out of control, remains under the 

effect of only one assignable cause, which is often unrealistic and associated with costs. 

Number of defective or non-conforming when the sample size is constant is known as 

np charts. Gibra [22] proposed two models for the economic design of np-charts for the 

case when process ceases during the search for a single assignable cause, and also for 

the case when the process continue to operate while the search for the assignable cause. 

Later, Gibra [23] developed a model for the design of np-charts by minimizing the 

following function of the expected total cost per unit time, when the process continues 

to operate during the search and assuming multiple assignable causes: 𝐸(𝐶1) + 𝐸(𝐶2) + 𝐸(𝐶3) + 𝐸(𝐶4)𝐿                                  (2.7a) 

where: 𝐸(𝐶1) ≡ the expected cost of inspection and charting 𝐸(𝐶2) ≡ the expected cost of searching due to false alarm 𝐸(𝐶3) ≡ the expected cost of search for true alarm, downtime and repair 
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𝐸(𝐶4) ≡ the cost incurred due to a higher rate of defectives when process is out of 

control 𝐿 ≡ the expected cycle time 

The costs identified in equation (2.7a) were estimated in [23] by the corresponding 

terms: 

𝐸(𝐶) = (ℎ+𝑏𝑛)[1+∑𝜆𝑗𝜙𝑗𝜆𝑣 +𝜏𝑣]+[ 𝑠𝛼𝜏[exp(𝜆𝑣)−1]+𝑠𝑡]+∑𝜆𝑗𝑡𝑗(𝑑+𝑐𝑗)𝜆 +∑𝑢𝑟(𝑝𝑗−𝑝0)(𝜙𝑗+𝜏)𝜆𝑗/𝜆1𝜆+∑(𝜆𝑗/𝜆)(𝜙𝑗+𝑡𝑗)+𝜏      (2.7b) 

where: ℎ ≡ Overhead cost of maintaining a np chart per inspected sample 𝑏 ≡ Cost of inspection and charting per unit sampled 𝑛 ≡ Sample size 𝜆𝑗 ≡ Occurance rate of assignable cause 𝑗 𝜆 ≡  ∑𝜆𝑗  𝜙𝑗 ≡ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒 𝑐𝑎𝑢𝑠𝑒  𝑗 𝑣 ≡ Sampling interval 𝜏 ≡ Expected search time 𝑠 ≡ Cost per unit time of searching for an assignable cause 𝛼 ≡ Probability of false alarm when process in control 𝑡 ≡ Expected repair time of an assignable cause 𝑡𝑗 ≡ Expected repair time due to the ocuurance of assignable cause 𝑗 𝑑 ≡ cost of downtime per unit time 𝑐𝑗 ≡ cost of repair per unit time due to the occurance of assignable cause 𝑗 𝑢 ≡ penalty cost incured per defective item 𝑟 ≡ production rate per unit time 𝑝𝑗 ≡ Fraction defective when the process is out of control due to assignable 

cause j 𝑝0 ≡ Fraction defective when the process is in control 
Unlike the previously discussed models, Gibra’s model considers the cost of 

operating an np-chart and also the cost of repair. However, it assumes that when the 
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process is out of control, it remains under the effect of only one assignable cause and 

cannot shift further, which is often not realistic. In the same paper, Gibra [23] developed 

another model similar to the above-mentioned, where the process continues to operate 

during the search of assignable causes.  

Chung [24] applied an algorithm for the economic design model of np-charts 

that was proposed by Chiu [21]. The algorithm overcomes some drawbacks in Chiu’s 

model, makes it easy to solve the model and provide more accurate results. Similarly, 

Collani [25] developed a model for the economic design of both c- and np-charts, by 

maximizing the process profit and based on the Poisson distribution. Goh [26] 

developed an alternative charting technique for the p-chart, to be implemented in 

processes that have low-defective rate. Saniga and Davis [27] presented an economic-

statistical model for the design of p-charts, that is optimized using FORTRAN 

language. Wang and Chen [28] have presented a statistical economic design of np-

charts, using Lorenzen and Vance model and Chung results by using fuzzy-set theory 

as an optimization method. 

Some researchers addressed the design of attribute charts using the Bayesian 

rule. For example, Kooli and Limam [29] economically optimized a Bayesian np-chart 

with a variable sample size for finite production runs, based on the probability that the 

process is operating under the out of control state. Similarly, Calabrese [30] developed 

a Bayesian model for the economic design of p-charts, that is based on the posterior 

probability of a process shift, which optimizes the control limit at any period during the 

process. Similarly, Abooie and Nayeri [31] proposed a heuristic for detecting small 

shifts in the p-chart, using the Bayesian rule. Makis et al. [32] developed an algorithm 

for the economic design of Bayesian p-charts, using semi-Markov chain processes. 

Both of these models use the prior probability of an out of control state, in order to 

update the posterior probability of a process being out of control. 

Recently, some researchers proposed adaptive models for the design of attribute 

charts. For example, Wu and Luo [33] optimized the ATS for the np-chart using an 

Adaptive Sampling Interval (ASI) and an Adaptive Sample Size (ASS), which improve 

the effectiveness significantly in detecting small or moderate process shifts.  Kooli and 

Limam [34] & [35] have developed an adaptive economic design of np-charts based on 
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variable sampling size (VSS) and variable sampling interval (VSI), respectively. 

However, there are some practical difficulties when it comes to adaptive charts, as they 

are usually complex and hard to administer in reality. 

Different approaches for the design of attribute charts have been proposed. For 

example, Jolayemi [36] developed a model for the statistical design np-chart that has 

multiple control regions. Cozzucoli [37] presented a two-sided multivariate p-chart to 

monitor the defined categories of non-conformities in the process.  

Williams et al. [38] have presented an economic model for the design of np-

charts based on curtailed sampling, which is based on the premise that sampling can be 

terminated once enough information has been acquired to render a decision. Their 

sampling plan is that the randomly selected items are inspected one at a time until either 

m defectives are observed or until n items are inspected. They showed that their model 

results in higher cost saving that the traditional models. However, curtailed sampling 

models are often complex and difficult to apply in practice. 

Duncan [39] presented another model for the economic design of p-charts, 

similar to the model that he proposed earlier for the 𝑋̅ chart. His model focused on 

minimizing the expected cost of the process, assuming a single assignable cause. 

Recently new types charts were also proposed. Chan et al. [44] introduced the 

cumulative quantity control chart (CQC-Chart), and showed that it is more suitable than 

the c- or u-charts when process defect rate is low or moderate. Similarly, Bashiri et al. 

[40] developed an MOESD of np-charts by applying the Data Envelopment Analysis 

(DEA) as an optimization approach, and using Duncan’s [39] model, which assumes a 

single assignable cause. Kethley and Peters [41] optimized the economic model of the 

loss-cost function presented by Duncan [39], for the design of p-chart using a genetic 

algorithm. 

Namin and Hasanzadeh [42] have proposed an MOESD for the p-chart based 

on Cornish-Fisher expansions and by applying nonlinear lexicography goal 

programming (NLGP), assuming a single assignable cause. 

Finally, Inghilleri et al. [45] proposed a double sampling scheme for the design 

of c-charts that resulted in a reduction for the number of observations required. Lupo 



29 
 

[46] has developed an economic statistical multi-objective model for the design of c-

charts that incorporated the labor cost and included a constraint for the ATS0: min𝐶𝑇 (𝑛, ℎ, 𝑘) min𝐴𝑅𝐿𝛿 (𝑛, ℎ, 𝑘) 

Subject to: 𝐴𝑅𝐿0 ≥ 𝐴𝑅𝐿𝐿 𝐿𝑅𝑚𝑖𝑛 ≤ 𝐿𝑅 ≤  𝐿𝑅𝑚𝑎𝑥 ℎ, 𝑘 > 0 𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                                     (2.8) 

where: 𝐶𝑇 ≡ Hourly total quality and labor costs 𝐴𝑅𝐿0 ≡ In control average run length 𝐴𝑅𝐿𝛿 ≡ Out of control average run length 𝐴𝑅𝐿𝐿 ≡ Lower limit of the average run length 𝐿𝑅 ≡ Capacity of labor resource 𝑛 ≡ Sample size ℎ ≡ Sampling interval 𝑘 ≡ Control limit width 

He used the 𝜀-constraint method and Taguchi’s loss function to solve the model. 

However, he assumed a process with a single assignable cause, which is often not 

realistic. 

Montgomery et al. [20] assumed that the values of the input parameters 𝜋 (index 

for the probability distribution of shifting from 0 to state 𝑖 ) and 𝜆  (the average 

occurrence rate of the assignable causes) used for equation (2.5b) are given. They did 

not show how a method to be used to obtain these values. 

In [20] they calculated the probability that the process remains in control, 

assuming a an exponential distribution: 𝑃00 = 𝑒−𝜆𝑘/𝑅                                               (2.9)                                      
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But, in equation (2.9) the distribution is memory-less, as it does not take into 

consideration the history of the process. Also, the same was used in calculating 𝛾𝑖 –the 

probability that the process is out of control at any point in time –without considering 

the previous information of the process being out of control. 

Moreover, [20] did not include any statistical constraints for the ARL in their 

economic model. This would actually make the process subjected to frequent false 

alarms, which could increase the process variability. Woodall [43] pointed out some 

weaknesses of the economic design of control charts. He noted that the economically 

designed charts have considerably higher false alarm rates than those designed purely 

on statistical basis.  

Calabrese [30] proposed a model to optimize the p-chart by minimizing the 

expected cost that is based on the posterior probability that the process is out of control. 

However, his model does not present a method to calculate the posterior probability 

that the process is out of control given the previous information of the non-conformities 

recorded. Moreover, like [20], it does not include statistical constraints for the ARL, 

and assumes a process with a single assignable cause. 

2.4. Concluding Remarks 

To our knowledge, very little research, if any, is done on economic-statistical 

design of p-charts for processes with multiple assignable causes. Moreover, few 

researches have considered taking into account the previous history of the process being 

out of control, in the design of control charts. 

The multi-objective economic statistical design of control charts has been 

recently used by many researchers through the application of goal programming 

techniques, which offer flexibility in adjusting the ranges of the design parameters, as 

well as ranking the objectives as desired by the decision-maker. 
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Chapter 3. Problem Statement 

The process of process p-chart design includes the determination of sampling 

size and sampling interval. The impact of this decision is critical since it impact the 

efficiency of the process, as the sampling process is both costly and sometimes requires 

production interruption. Hence, there is a need for design approaches that result in the 

optimum size of sample and interval length. 

Many researches tried to optimize the design of p-charts by solely minimizing 

the quality and production costs. However, there have been a growing need to consider 

the statistical parameters like the ARL, as pure economic designs increased the false 

alarm rate. Moreover, the complexity of modern processes manifested in diverse 

assignable causes, which puts another reason for considering the design of p-charts 

considering multiple out-of-control states. 

3.1. Research Objective 

The objective of this research is to develop an economic-statistical Bayesian 

model for the design of p-charts for processes with multiple assignable causes. 

Moreover, there are a set of specific objectives that will be targeted in order to achieve 

the main goal. It starts by identifying an optimization algorithm to be used for solving 

our proposed model, followed by coding the model formulation using GAMS software. 

Also, a numerical study will be conducted to verify the model, and finally a sensitivity 

analysis will be performed to test how sensitive the output parameters are, to changes 

in the inputs. 

3.2. Research Motivation and Contribution 

It is usually the case that many processes undergo multiple out of control states. 

Moreover, economic models have resulted in less quality and production cost compared 

with the statistical models, but they usually make the processes subjected to increased 

rate of false alarms. So, to tackle this problem, we propose an economic-statistical 

model for the design of p-charts, for processes with multiple assignable causes. In 

addition, we will include the process history of the quantity non-conforming recorded 

at different intervals in order to determine the probability that the process is out of 

control. 



32 
 

Chapter 4. Proposed Methodology  

In this research, we present a model that is used to optimally design a p-chart 

for processes with multiple assignable causes. Unlike the model shown in [20], the 

proposed model considers a finite production horizon, constraints for the ARL and a 

sampling frequency in units of time rather than in units produced. Moreover, our model 

incorporates the history of the process. 

4.1 Assumptions 

Several assumptions were made to simplify and manage the implementation of 

the proposed methodology: 

1. The sample size used for inspecting the quality of the product or process n is 

constant. 

2. The number of standard deviations of fraction nonconforming is fixed to 3 when 

developing the upper and lower control limits. This assumption will result in fixed 

control limits which is easier to understand and implement in the shop floor.  

3. Process can shift from in control to out of control due to multiple assignable 

causes. 

During an interval – the process can shift from any assignable cause 𝑖 to any 

assignable cause 𝑗, but it does not return to the in-control state without intervention. 

The probability of shifting from assignable cause i to assignable cause j is estimated 

using equation 4.1: 

𝑝𝑖𝑗 = 𝑝𝑖    𝑝𝑗𝑝𝑖 + 𝑝𝑗                                                      (4.1) 

where: 𝑝𝑖 ≡ the probability of occurrence of assignable cause 𝑖 
4. Using the same approach in [3], the expected time for the occurrence of an 

assignable cause 𝜏 within an interval ℎ can be expressed by: 

𝜏 = ∫ 𝑒−𝑡(𝑡 − 𝑗ℎ)𝑑𝑡(𝑗+1)ℎ𝑗ℎ ∫ 𝑒−𝑡(𝑗+1)ℎ𝑗ℎ 𝑑𝑡 = 1 − (1 + ℎ)𝑒−ℎ(1 − 𝑒−ℎ)                           (4.2) 
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The probability of false alarm when the system is in control (no shift) and the average 𝑃̅ = 𝑃0 is estimated using the binomial distribution as shown in equation 4.3: 𝛼𝑖 = 1 − Pr{[𝐶𝑛𝑈𝐶𝐿𝑛 𝑝𝑖𝑛𝑈𝐶𝐿(1 − 𝑝𝑖)(𝑛−𝑛𝑈𝐶𝐿) − 𝐶𝑛𝐿𝐶𝐿𝑛 𝑝𝑖𝑛𝐿𝐶𝐿(1 − 𝑝𝑖)(𝑛−𝑛𝐿𝐶𝐿)] | 𝑃̅ = 𝑃0} 
(4.3) 

where: 𝛼𝑖 ≡  the probability of false alarm, i.e. plotting a sample outside the control limits 

while the process is in control (𝑃̅ =  𝑃0) 

Alternatively, the p-chart may fail to detect the presence of cause i. The probability of 

failing to detect the cause when it happens is 𝛽𝑖: 𝛽𝑖 = Pr{[𝐶𝑛𝑈𝐶𝐿𝑛 𝑃𝑛𝑈𝐶𝐿(1 − 𝑃)(𝑛−𝑛𝑈𝐶𝐿) − 𝐶𝑛𝐿𝐶𝐿𝑛 𝑃𝑛𝐿𝐶𝐿(1 − 𝑃)(𝑛−𝑛𝐿𝐶𝐿)] |   𝑃 = 𝑃𝑖} (4.4) 

Figure 3 shows the process stages of sampling and detection. The process starts from 

in-control state and decisions are made after sampling and inspection every h period. If 

production rate is R, then number of units produced between samples is hR. It is 

assumed that time process will take to switch to out of control is state follows an 

exponential distribution with an average τ. As a result number of defective units 

produced due to cause i is 𝑅(ℎ −  𝜏) units. Finally it is assumed that time it taken for 

sampling and investigation to detect cause is g. 

 

Figure 3: Process stages of sampling and detection of assignable causes 
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Keep in mind that the sample inspected may fail to detect the shift which in this 

case leads to an external cost of poor quality. In this case, the defective parts produced 

will be released to customer. Such cost is hard, i.e. monetary in addition to soft 

manifesting itself to reputation damage. Since soft cost may transfer into hard one in 

terms of liability or complaints or reduction of sales,  the total external cost is higher 

than cost of detecting a defective product and fixing it. The latter is referred to as 

internal cost. 

4.2 Objective Function 

In this model, we are considering five types of costs, and the objective is to 

minimize the total cost per unit: 𝑀𝑖𝑛 𝐸(𝐶1) + 𝐸(𝐶2) + 𝐸(𝐶3) + 𝐸(𝐶4) + 𝐸(𝐶5)                    (4.5) 

where: 𝐸(𝐶1) ≡ the cost of sampling per unit produced 𝐸(𝐶2) ≡ expected cost of producing defective items when process is out of control 𝐸(𝐶3) ≡ the expected cost of investigating and correcting a true alarm.  𝐸(𝐶4) ≡ the expected cost of not detecting a shift of an occurrence of true failure, i.e. 

external cost 𝐸(𝐶5) ≡ the expected cost of false alarm 

The sampling cost per unit produced is expressed by:  (𝑎1 + 𝑎2𝑛) ℎ𝑅                                                           (4.6) 

where: 𝑎1 ≡ fixed cost of sampling 𝑎2 ≡ variable cost of sampling 𝑛 ≡ sample size 

The cost of producing defective items per interval, when the process is out of control is 

expressed by: 
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∑ ∑ 𝑏𝑖𝑗𝑠𝑗=1 𝑝𝑖𝑗(ℎ − 𝜏𝑗)𝑠𝑖 ℎ𝑅                                                (4.7) 

where: 𝑏𝑖𝑗 ≡ cost of producing a defective unit due to shifting from state 𝑖 to state 𝑗 
The expected cost of investigating and correcting a true alarm (cause is detected) per 

interval is expressed by: 

     ∑ 𝑤𝑖(1 − 𝛽𝑖)𝑠𝑖=1 ℎ𝑅                                                      (4.8) 

where: 𝑤𝑖 ≡ cost of investigating and correcting a true alarm due to assignable cause 𝑖 1 − 𝛽𝑖 ≡ the probability of detecting a shift of a true alarm due to assignable cause 𝑖 
The expected cost of releasing a defective product to the customer. In this case, the 

system shifted due to cause 𝑖 and the p-chart fail to detect this shift. This cost can be 

expressed: 

     ∑ 𝑧𝑖  𝛽𝑖𝑠𝑖=1 (ℎ − 𝜏𝑖)ℎ𝑅                                                           (4.9) 

where: 𝑧𝑖 ≡ cost of releasing one defective product due to assignable cause 𝑖 to customer 

The expected cost of investigating a false alarm per interval is expressed by: 

     ∑ 𝑐𝑖 𝛼𝑖𝑠𝑖=1    ℎ𝑅                                                              (4.10) 

where: 𝑐𝑖 ≡ cost of investigating and correcting a false alarm due to assignable cause 𝑖 and 𝛼𝑖 ≡ false alarm rate due to cause i 

4.3 Constraints 

The model includes a constraint for 𝐴𝑅𝐿𝑖 which is the Average Run Length when the 

process is out-of-control:  
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𝐴𝑅𝐿1𝑖 = 11 − 𝛽𝑖 ≥ 𝑢   ∀ 𝑖 = 1,2, … , 𝑠                            (4.11) 

where: 𝑢 ≡  minmum number of points after which the chart plots a point out of control 

Additionally, another constraint for the sample size taken in each interval, which 

should be at least one sample, and less than or equal to the quantity produced during 

the interval ℎ𝑅: 1 ≤ 𝑛 ≤ ℎ𝑅                                                                 (4.12)  

Moreover, adding a constraint for the sampling interval to be greater than time it takes 

to inspect samples ℎ ≥ 𝑔                                                                     (4.13) 𝑔 ≡ the time taken for sampling and inspection 

As a result, the model can be summarized as follows: 

 (𝑎1 + 𝑎2𝑛) ℎ𝑅 + ∑ ∑ 𝑏𝑖𝑗𝑠𝑗=1 𝑝𝑖𝑗(ℎ − 𝜏𝑗)𝑠𝑖 ℎ𝑅 + ∑ 𝑤𝑖(1 − 𝛽𝑖)𝑠𝑖=1 ℎ𝑅 + ∑ 𝑧𝑖  𝛽𝑖𝑠𝑖=1 (ℎ − 𝜏𝑖)ℎ𝑅  
+ ∑ 𝑐𝑖 𝛼𝑖𝑠𝑖=1    ℎ𝑅                                                                                            (4.14) 

Subject to: 

𝐴𝑅𝐿1𝑖 = 11 − 𝛽𝑖 ≥ 𝑢   ∀ 𝑖 = 1,2, … , 𝑠   ℎ𝑅 ≥ 𝑛 ≥ 1 ℎ ≥ 𝑔  
In the next chapter, the proposed model will be verified using a published case study. 

The results of the proposed model will be compared with the results of another model.  
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Chapter 5. Proof of Concept 

In the paper by Montgomery et al. [20], their model is applied on a production 

process that is characterized by seven states, and described by the following parameters: 𝑝𝑖 = [ 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64 ] 𝑎1 = $5 𝑎2 = $0.1 𝑎3 = $20  𝑎4 = $10 

where: 𝑝𝑖 ≡ fraction defective corresponding with state 𝑖 𝑎1 ≡ fixed cost of sampling 𝑎2 ≡ variable cost of sampling 𝑎3 ≡ cost of investigating, correcting the process plus the cost of lost production 𝑎4 ≡ the penalty cost of producing a defective unit 
 

The resulting optimal solution for Montgomery’s model, using a proposed search 

chart technique outlined in [20] is as follows: 𝑛 = 14 𝑘 = 81 0.376 ≤ 𝐿 ≤ 2.31 𝐸(𝐶) = $0.35 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 

where: 𝐿 ≡ units of standard deviation 𝑘 ≡ sampling interval in terms of units produced 

As a proof of concept for the proposed model, we will apply it on the same 

production process that is used in Montgomery et al. [20]. It is worth noting the 

following differences between Montgomery’s approach and our proposed model: 

• Montgomery’s model is purely economical, i.e. unconstrained cost objective. The 

proposed model is both statistical and economical since it includes constraints on 

the ARL.  
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• The decision variables in Montgomery’s model includes k, n and control limits 

(L), while in our proposed model, the limits are fixed to ±3. Fixing the limits will 

make it more user-friendly for the inspector on the line. 

• The proposed approach cost model is more comprehensive since it includes two 

additional cost terms. Namely, 𝐸(𝐶4) and 𝐸(𝐶5) .        
• The probability of transitioning from one assignable cause to another in 

Montgomery’s approach requires the estimation of several terms x, y, z. The 

proposed model utilizes a simpler approach. 

The formulation of the case is as follows: 𝑎1 = $5 𝑎2 = $0.1 𝑅 = 81 units per hour  𝐾 = 81 planned production 𝑝̅ = 0.1 𝑔 = 0 

𝑏𝑖𝑗 = [  
   10 20 20 20 20 20 2020 10 20 20 20 20 2020 20 10 20 20 20 2020 20 20 10 20 20 2020 20 20 20 10 20 2020 20 20 20 20 10 20]  

    

𝑝𝑖𝑗 =
[  
   
  0.005  0.007  0.008  0.009  0.009  0.010  0.010  0.007  0.010  0.013  0.016  0.018  0.019  0.019  0.008  0.013  0.020  0.027  0.032  0.036  0.038  0.009  0.016  0.027  0.040  0.053  0.064  0.071  0.009  0.018  0.032  0.053  0.080  0.107  0.128  0.010  0.019  0.036  0.064  0.107  0.160  0.213  0.010  0.019  0.038  0.071  0.128  0.213  0.320 ]  

   
 
 

𝑤𝑖 = [  
   202020202020]  
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Since Montgomery’s model does not include false alarm and external cost elements, 

the cost coefficients 𝑍𝑖 and 𝑐𝑖 are assumed to be zero. The proposed model is re-

written in 5.1: (𝑎1 + 𝑎2𝑛) ℎ𝑅  + ∑ ∑ 𝑏𝑖𝑗𝑠𝑗=1 𝑝𝑖𝑗(ℎ − 𝜏𝑗)𝑠𝑖 ℎ𝑅   + ∑ 𝑤𝑖(1 − 𝛽𝑖)𝑠𝑖=1 ℎ𝑅    + ∑ 𝑧𝑖  𝛽𝑖𝑠𝑖=1 (ℎ − 𝜏𝑖)ℎ𝑅   
+ ∑ 𝑐𝑖 𝛼𝑖𝑠𝑖=1    ℎ𝑅                                                                                               (5.1) 

subject to: 

𝐴𝑅𝐿1𝑖 = 11 − 𝛽𝑖 ≥ 𝑢   ∀ 𝑖 = 1,2, … , 𝑠   ℎ𝑅 ≥ 𝑛 ≥ 1 ℎ ≥ 𝑔  
The model was coded using GAMS and summarized in Appendix A. The resulting 

optimal solution is: 𝑛 = 68 𝑢𝑛𝑖𝑡𝑠 ℎ = 3 ℎ𝑜𝑢𝑟𝑠 𝐸(𝐶) = $0.32 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 

From the above result, we notice that the total cost per unit produced from the 

proposed model, is less than Montgomery et al. [20] model by is $0.03. This suggests 

that the proposed model brings about more savings per unit produced compared with 

Montgomery’s model during a particular production cycle. This is because the proposed 

model includes a false alarm term in the objective function and a constraint for  𝐴𝑅𝐿𝑖. 
Such constraint results in false alarm rate reduction and hence saves on the production 

downtime and process investigation. The fifth cost term related to external failure did 

not make an impact since we assume 𝑧𝑖 = 0.  
Moreover, the proposed model adds two costs that are not considered in 

Montgomery’s model, which is the cost of releasing a defective product to the customer, 

and the cost of investigating a false alarm. Also, the cost of producing defective units 

is calculated considering the expected time for the occurrence of an assignable cause 

for the proposed model, and it include a constraint for the ARL, unlike Montgomery’s.  
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In order to put things into prospective, the improvement of the proposed model 

in terms of reduced cost per unit produced (CPU) can be estimated by comparing CPU 

of proposed method 𝐶𝑃𝑈𝑃𝑃 with CPU provided by Montgomery model 𝐶𝑃𝑈𝑀𝑜𝑛𝑡𝑔: 

% 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝐶𝑃𝑈𝑀𝑜𝑛𝑡𝑔 − 𝐶𝑃𝑈𝑃𝑃𝐶𝑃𝑈𝑀𝑜𝑛𝑡𝑔 𝑋100% = 0.35 − 0.320.35 𝑋100% = 0.86% 

The improvement percentage might seem small. However, considering mass 

production industries such as the water bottling case which will be discussed in the next 

chapter, the total cost reduction adds up. For example, for annual production of 

1,000,000 units per year, the expected savings in quality inspection and improvement 

is $30,000. 

 In the next chapter, we apply the new proposed model on a production process 

of a local water bottling company (WBC) in UAE, with a daily production of 542,286 

bottles. 
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Chapter 6. Case Study: Water Bottling Company (WBC) 

The new proposed model is applied to a local water bottling company (WBC) 

in UAE. The average daily production of WBC is 542,286 bottles. Table 3 below shows 

historical data for WBC’s inspection during the month of September 2017. 

Table 3: Daily rejections and net production of WBC Sept 2017 

 Bottles 

Date 
Low Fill  

rejections 

Misapplied caps 

 rejections 

Label misalignment  

rejections 

Net Production  

Volume 

1-Sep 786 2,144  590,400 

2-Sep 946 3,785  572,688 

3-Sep 1,582 6,329  316,248 

4-Sep 2,552 10,190  347,208 

5-Sep 1,004 4,014  331,032 

6-Sep 1,103 4,414  434,592 

7-Sep 1,104 4,414  490,176 

8-Sep 1,498 5,985  449,208 

9-Sep 3,033 12,134  628,776 

10-Sep 2,983 11,934  658,080 

11-Sep 3,257 13,032  653,496 

12-Sep 2,753 11,013  559,176 

13-Sep 1,058 4,231  547,656 

14-Sep 1,788 7,152  664,848 

15-Sep 1,877 7,508  759,984 

16-Sep 1,538 6,153  634,224 

17-Sep 931 3,722  399,384 

18-Sep 2,124 8,495  563,328 

19-Sep 2,053 8,214  637,512 

20-Sep 1,102 4,407  609,240 

21-Sep 2,205 8,821  720,360 

22-Sep 1,622 6,489  568,848 

23-Sep 2,383 9,534  515,304 

24-Sep 1,255 5,022  409,632 

25-Sep 2,253 9,011  537,264 

26-Sep 2,501 10,005  615,312 

27-Sep 2,056 8,223  469,776 

28-Sep 1,722 6,886 70 691,200 

29-Sep 1,027 4,109  487,800 

30-Sep 1,780 7,199  405,840 

Total 53,876 214,569 70 16,268,592 
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There are three main failure modes with bottling process: misapplied cap which 

require either high or low torque to open the cap (79.91% of the total rejections), low 

fill (20.06% of the total rejections) and label misalignment (0.03% of the total 

rejections). This data will be used to demonstrate the effectiveness of the proposed 

model. 

The proposed mathematical model was used and coded using GAMS to find the 

optimal sample size and inspection interval. The code is summarized in Appendix A. 

The case parameters, objective function and constraints are as follows: 𝑎1 = 𝐴𝐸𝐷 2 𝑎2 = 𝐴𝐸𝐷 0.1 𝑅 = 28,244 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 𝐾 = 677,858 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝̅ = 0.0165 𝑣 = 0.5 𝑠 = 3 𝑝1 = 0.0033  where 𝑝1 is the probability of ocurrance of low fill 𝑝2 = 0.013  where 𝑝2 is the probability of ocurrance of misapplied cap 𝑝3 = 0.000004 is where 𝑝2 the probability of occurrence of label misalignment 

𝑏𝑖𝑗 = [40 50 4350 10 1343 13 03] 

𝑐𝑖 = [156008] 
𝑤𝑖 = [256512] 
𝑧𝑖 = [507015] 
Recalling from chapter 4, the transition probability matrix is obtained as follows: 
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𝑝𝑖𝑗 = 𝑝𝑖    𝑝𝑗𝑝𝑖 + 𝑝𝑗    𝑤ℎ𝑒𝑟𝑒 𝑗 ≠ 0
𝑝𝑖𝑗 = [0.00165   0.000668  0.0032960.010368   0.0065   0.0129960.00000    0.00000  0.000002 ]
𝑢 = 370
Solving for the WBC case using GAMS, the resulting optimal solution is: 𝑛 = 34 𝑢𝑛𝑖𝑡𝑠ℎ = 2 ℎ𝑜𝑢𝑟𝑠𝐸(𝐶) = 𝐴𝐸𝐷 0.003/𝑢𝑛𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑢 = 1

In the following section, we perform sensitivity analysis to check how the 

sample size and sampling frequency change with respect to the total cost. 

6.1. Sensitivity Analysis 

For the new proposed model, we examine the sensitivity of the optimal sample 

size n and the sampling frequency h against the input cost coefficients to the model.  

Starting with making gradual increases to the variable cost of sampling 𝑎2, we notice

that the resulted optimal sample size decreases, as shown in Figure 4. 

Figure 4: Variable sampling cost per unit vs sample size 
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Similarly, the resulting optimal sampling interval decreases when the unit cost 

of producing defectives increases. Relationship chart is shown is Figure 5. 

 
Figure 5: Cost of producing a unit with misapplied cap vs sampling frequency 

Also, when checking the relationship between the cost of investigation and 

correction and the optimal sample size, we find that as the cost of investigation and 

correction increases, the resulting sample size increases as well. 

 
Figure 6: Cost of investigation and correction vs sample size 
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Also, it is shown in Figure 7 and Figure 8 that as the probability of failure due 

to the assignable cause of low fill and the misapplied caps becomes higher, the 

sampling interval h increases, but the resulting optimal sample size n decreases. 

 

Figure 7: Probability of failure due to low fill vs n, h 

 

Figure 8: Probability of failure due to misapplied caps vs n, h 

When comparing our model with the ones presented by Montgomery et al. [20] 

and Gibra [23], we notice that their model does not contain constraints for the ARL, 

and rather uses trial and error method to reach an optimal solution. In addition, the 
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model is memoryless of the process history, and assumes that over time the process 

tends to move to an out-of-control state. 
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Chapter 7. Conclusion and Future Work 

In this thesis, a statistical-economical model is proposed for the design of 

fraction of non-conforming control charts with multiple assignable causes. The 

effectiveness of the model is demonstrated by comparing it to a previous model and 

shows a reduction in the cost per unit produced by 0.86%. In practical applications, one 

of the most concerning issue -which is addressed by proposed model, is how to 

dynamically determine the optimal sample size and sampling frequency for a process 

with multiple assignable causes and random shift, that corresponds with the minimum 

expected cost. Previous modes have focused on p-chart optimization, considering only 

economical terms. However, the new proposed model considers both the economic and 

statistical parameters of control chart like the ARL, which allows for controlling the 

sensitivity of a p-chart by setting the probability of not detecting a shift to a specific 

desired value and getting the corresponding sample size and sampling frequency.  

As future work, it would be more efficient to consider the dynamic sampling 

interval, proportional to the probability of failure. In the dynamic sampling, both sample 

size and sample interval are constantly changing based on inspection results. Another 

area that warrants further investigation is relaxing the constant control limits 

assumption. Although this assumption simplify the implementation of p-charts by 

operators on the shop floor, a comparison between constant and variable control limits 

is worth investigating in terms of cost and easiness of implementation. Finally, another 

limitation arises in processes where the production rate is not uniform across the 

production cycle, which makes it effective for the sampling interval to be in terms of 

unit produced rather than in units of time. 
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Appendix A 

 

Proposed model coded in GAMS: 

$funclibin stolib stodclib 

Functions cdfnorm / stolib.cdfnormal /; 

 

Sets i assignable cause state i /state1, state2, state3, state4, state5, state6, state7/ 

j assignable cause state j /state1, state2, state3, state4, state5, state6, state7/; 

 

Scalar a1 fixed cost of sampling /5/; 

Scalar a2 variable cost of sampling /0.1/; 

Scalar R rate of production per hour /81/; 

 

Variables 

n sample size 

h sampling frquency in hours 

s units of standard deviation 

y total cost per unit produced 

c1 sampling cost 

c2 cost of producing defective items 

c3 cost of investigating and correcting true alarm 

c4 cost of releasing defective product to customer 

c5 cost of false alarm; 

 

Positive Variables n, h, s; 

 

Scalar pbar overall mean of rejections in the last production cycle /0.1/ ; 

 

Table b(i,j) cost of producing a defective unit when shifting from assignable cause i to 

assignable cause j 

state1  state2  state3  state4  state5  state6 state7 

state1      10      10      10      10      10      10   10 

state2      10      10      10      10      10      10   10 

state3      10      10      10      10      10      10   10 

state4      10      10      10      10      10      10   10 

state5      10      10      10      10      10      10   10 

state6      10      10      10      10      10      10   10 

state7      10      10      10      10      10      10   10; 

 

Table p(i,j) probability of shifting from assignable cause i to assignable cause j 
state1         state2         state3         state4         state5         state6         state7 

state1       0.005          0.007          0.008          0.009          0.009          0.010          0.010 

state2       0.007          0.010          0.013          0.016          0.018          0.019          0.019 
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state3       0.008          0.013          0.020          0.027          0.032          0.036          0.038 

state4       0.009          0.016          0.027          0.040          0.053          0.064          0.071 

state5       0.009          0.018          0.032          0.053          0.080          0.107          0.128 

state6       0.010          0.019          0.036          0.064          0.107          0.160          0.213 

state7       0.010          0.019          0.038          0.071          0.128          0.213          0.320; 

 

Parameters  d(i) probability of occurance of assignable cause i 

/state1 0.01 

state2 0.02 

state3 0.04 

state4 0.08 

state5 0.16 

state6 0.32 

state7 0.64/ 

 

w(i) cost of investigating and correcting a true alarm due to assigable cause i 

/state1 20 

state2 20 

state3 20 

state4 20 

state5 20 

state6 20 

state7 20/ 

 

z(i) cost of releasing one defective product due to assigable cause i to customer 

/state1 0 

state2 0 

state3 0 

state4 0 

state5 0 

state6 0 

state7 0/ 

 

c(i) cost of false alarm due to assigable cause i 

/state1 0 

state2 0 

state3 0 

state4 0 

state5 0 

state6 0 

state7 0/; 

 

Equations 

cost objective function 

sample_lower sampling lower limit 
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sample_upper sampling upper limit 

frequency_lower frequency lower limit 

frequency_upper frequency upper limit 

sd_upper units of standard deviation upper limit 

sd_lower units of standard deviation lower limit 

cost_of_sampling cost of sampling 

cost_of_producing_defective_items cost of producing defective items 

cost_of_investigating_and_correcting_true_alarm cost of investigating and correcting 

true alarm 

cost_of_releasing_defective_product cost of releasing defective product to customer 

cost_of_false_alarm cost of false alarm 

ARL1 average run length state1 

ARL2 average run length state2 

ARL3 average run length state3 

ARL4 average run length state4 

ARL5 average run length state5 

ARL6 average run length state6 

ARL7 average run length state7; 

 

cost.. y  =e=  (a1 + a2*n)/(h*R + 0.0001) + sum((i,j), b(i,j) *  p(i,j) * (h - (1-

(1+h)*exp(-h))/(1-exp(-h)+0.001)))/(h*R + 0.0001) + sum(i,  w(i) * (  (cdfnorm(  d(i) 

+ s* sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))) - (cdfnorm(  d(i) - s* 

sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))))   )/(h*R + 0.0001) + sum(i,  

z(i) * (1 -  ((cdfnorm(  d(i) + s* sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  

))) - (cdfnorm(  d(i) - s* sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  )))))   

)/(h*R + 0.0001) + sum(i,  c(i) * (  (cdfnorm(  pbar + s* sqrt(pbar*(1-pbar)/(n+0.001)  

),  pbar,  sqrt(pbar*(1-pbar)  ))) - (cdfnorm(  pbar - s* sqrt(pbar*(1-pbar)/(n+0.001)  ),  

pbar,  sqrt(pbar*(1-pbar)  ))))   )/(h*R + 0.0001); ; 

sample_lower.. n =g= 1; 

sample_upper.. n =l= h*R; 

frequency_lower.. h =g= 0; 

frequency_upper.. h =l= 3; 

sd_upper.. s =g= 1; 

sd_lower.. s =l= 3; 

cost_of_sampling.. c1 =e= (a1 + a2*n)/(h*R + 0.0001); 

cost_of_producing_defective_items.. c2 =e= sum((i,j), b(i,j) *  p(i,j) * (h - (1-

(1+h)*exp(-h))/(1-exp(-h)+0.001)))/(h*R + 0.0001); 

cost_of_investigating_and_correcting_true_alarm.. c3 =e= sum(i,  w(i) * (1- ( 

(cdfnorm(  d(i) + s* sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))) - 

(cdfnorm(  d(i) - s* sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))))   

))/(h*R + 0.0001); 

cost_of_releasing_defective_product.. c4 =e= sum(i,  z(i) * ( ( (cdfnorm(  d(i) + s* 

sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))) - (cdfnorm(  d(i) - s* 

sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  )))))   ) * ((h - (1-(1+h)*exp(-

h))/(1-exp(-h)+0.001)))/(h*R + 0.0001); 
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cost_of_false_alarm.. c5 =e=  sum(i,  c(i) * (  (cdfnorm(  pbar + s* sqrt(pbar*(1-

pbar)/(n+0.001)  ),  pbar,  sqrt(pbar*(1-pbar)  ))) - (cdfnorm(  pbar - s* sqrt(pbar*(1-

pbar)/(n+0.001)  ),  pbar,  sqrt(pbar*(1-pbar)  ))))   )/(h*R + 0.0001); 

ARL1.. 1/(1-  ((cdfnorm(  d('state1') + s* sqrt(d('state1')*(1-d('state1'))/(n+0.001)  ),  

d('state1'),  sqrt(d('state1')*(1-d('state1'))  ))) - (cdfnorm(  d('state1') - s* 

sqrt(d('state1')*(1-d('state1'))/(n+0.001)  ),  d('state1'),  sqrt(d('state1')*(1-d('state1'))  

))) + 0.0001 )) =g= 1; 

ARL2.. 1/(1-  ((cdfnorm(  d('state2') + s* sqrt(d('state2')*(1-d('state2'))/(n+0.001)  ),  

d('state2'),  sqrt(d('state2')*(1-d('state2'))  ))) - (cdfnorm(  d('state2') - s* 

sqrt(d('state2')*(1-d('state2'))/(n+0.001)  ),  d('state2'),  sqrt(d('state2')*(1-d('state2'))  

))) + 0.0001 )) =g= 1; 

ARL3.. 1/(1-  ((cdfnorm(  d('state3') + s* sqrt(d('state3')*(1-d('state3'))/(n+0.001)  ),  

d('state3'),  sqrt(d('state3')*(1-d('state3'))  ))) - (cdfnorm(  d('state3') - s* 

sqrt(d('state3')*(1-d('state3'))/(n+0.001)  ),  d('state3'),  sqrt(d('state3')*(1-d('state3'))  

))) + 0.0001 )) =g= 1; 

ARL4.. 1/(1-  ((cdfnorm(  d('state4') + s* sqrt(d('state4')*(1-d('state4'))/(n+0.001)  ),  

d('state4'),  sqrt(d('state4')*(1-d('state4'))  ))) - (cdfnorm(  d('state4') - s* 

sqrt(d('state4')*(1-d('state4'))/(n+0.001)  ),  d('state4'),  sqrt(d('state4')*(1-d('state4'))  

))) + 0.0001 )) =g= 1; 

ARL5.. 1/(1-  ((cdfnorm(  d('state5') + s* sqrt(d('state5')*(1-d('state5'))/(n+0.001)  ),  

d('state5'),  sqrt(d('state5')*(1-d('state5'))  ))) - (cdfnorm(  d('state5') - s* 

sqrt(d('state5')*(1-d('state5'))/(n+0.001)  ),  d('state5'),  sqrt(d('state5')*(1-d('state5'))  

))) + 0.0001 )) =g= 1; 

ARL6.. 1/(1-  ((cdfnorm(  d('state6') + s* sqrt(d('state6')*(1-d('state6'))/(n+0.001)  ),  

d('state6'),  sqrt(d('state6')*(1-d('state6'))  ))) - (cdfnorm(  d('state6') - s* 

sqrt(d('state6')*(1-d('state6'))/(n+0.001)  ),  d('state6'),  sqrt(d('state6')*(1-d('state6'))  

))) + 0.0001 )) =g= 1; 

ARL7.. 1/(1-  ((cdfnorm(  d('state7') + s* sqrt(d('state7')*(1-d('state7'))/(n+0.001)  ),  

d('state7'),  sqrt(d('state7')*(1-d('state7'))  ))) - (cdfnorm(  d('state7') - s* 

sqrt(d('state7')*(1-d('state7'))/(n+0.001)  ),  d('state7'),  sqrt(d('state7')*(1-d('state7'))  

))) + 0.0001 )) =g= 1; 

 

Model sampling /all/; 

Solve sampling using NLP minimizing y; 

Display y.l, n.l, h.l, c1.l, c2.l, c3.l, c4.l, c5.l, ARL1.l, ARL2.l, ARL3.l, ARL4.l, 

ARL5.l, ARL6.l, ARL7.l, s.l; 

 

GAMS code of the new proposed model applied on Montgomery’s case: 

$funclibin stolib stodclib 

Functions cdfnorm / stolib.cdfnormal /; 

 

Sets i assignable cause state i /low_fill, misapplied_cap, label_misalignment/ 

     j assignable cause state j /low_fill, misapplied_cap, label_misalignment/; 
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Scalar a1 fixed cost of sampling /2/; 

Scalar a2 variable cost of sampling /0.1/; 

Scalar R rate of production per hour /28244/; 

 

Variables 

         n sample size 

         h sampling frquency in hours 

         s units of standard deviation 

         y total cost per unit produced 

         c1 sampling cost 

         c2 cost of producing defective items 

         c3 cost of investigating and correcting true alarm 

         c4 cost of releasing defective product to customer 

         c5 cost of false alarm; 

 

Positive Variables n, h, s; 

 

Scalar pbar overall mean of rejections in the last production cycle /0.1/ ; 

 

Table b(i,j) cost of producing a defective unit when shifting from assignable cause i to 

assignable cause j 

                               low_fill   misapplied_cap  label_misalignment 

         low_fill              40         50              43 

         misapplied_cap        50         10              13 

         label_misalignment    43         13              03; 

 

Table p(i,j) probability of shifting from assignable cause i to assignable cause j 

                               low_fill   misapplied_cap  label_misalignment 

         low_fill              0.002         0.003           0.000004 

         misapplied_cap        0.003         0.007           0.000004 

         label_misalignment    0.000004      0.000004        0.000002; 

 

Parameters  d(i) probability of occurance of assignable cause i 

         /low_fill 0.0033 

          misapplied_cap 0.013 

          label_misalignment 0.000004/ 

 

         w(i) cost of investigating and correcting a true alarm due to assigable cause i 

         /low_fill 25 

          misapplied_cap 65 

          label_misalignment 12/ 

 

         z(i) cost of releasing one defective product due to assigable cause i to customer 

         /low_fill 50 

          misapplied_cap 70 
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          label_misalignment 15/ 

 

         c(i) cost of false alarm due to assigable cause i 

         /low_fill 15 

          misapplied_cap 60 

          label_misalignment 08/; 

 

Equations 

         cost objective function 

         sample_lower sampling lower limit 

         sample_upper sampling upper limit 

         frequency_lower frequency lower limit 

         frequency_upper frequency upper limit 

         sd_upper units of standard deviation upper limit 

         sd_lower units of standard deviation lower limit 

         cost_of_sampling cost of sampling 

         cost_of_producing_defective_items cost of producing defective items 

         cost_of_investigating_and_correcting_true_alarm cost of investigating and 

correcting true alarm 

         cost_of_releasing_defective_product cost of releasing defective product to 

customer 

         cost_of_false_alarm cost of false alarm 

         ARL1 average run length state1 

         ARL2 average run length state2 

         ARL3 average run length state3; 

 

cost.. y  =e=  (a1 + a2*n)/(h*R + 0.0001) + sum((i,j), b(i,j) *  p(i,j) * (h - (1-(1+h)*exp(-

h))/(1-exp(-h)+0.001)))/(h*R + 0.0001) + sum(i,  w(i) * (  (cdfnorm(  d(i) + s* 

sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))) - (cdfnorm(  d(i) - s* 

sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))))   )/(h*R + 0.0001) + sum(i,  

z(i) * (1 -  ((cdfnorm(  d(i) + s* sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  

))) - (cdfnorm(  d(i) - s* sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  )))))   

)/(h*R + 0.0001) + sum(i,  c(i) * (  (cdfnorm(  pbar + s* sqrt(pbar*(1-pbar)/(n+0.001)  

),  pbar,  sqrt(pbar*(1-pbar)  ))) - (cdfnorm(  pbar - s* sqrt(pbar*(1-pbar)/(n+0.001)  ),  

pbar,  sqrt(pbar*(1-pbar)  ))))   )/(h*R + 0.0001); ; 

sample_lower.. n =g= 1; 

sample_upper.. n =l= h*R; 

frequency_lower.. h =g= 0; 

frequency_upper.. h =l= 2; 

sd_upper.. s =e= 3; 

sd_lower.. s =e= 3; 

cost_of_sampling.. c1 =e= (a1 + a2*n)/(h*R + 0.0001); 

cost_of_producing_defective_items.. c2 =e= sum((i,j), b(i,j) *  p(i,j) * (h - (1-

(1+h)*exp(-h))/(1-exp(-h)+0.001)))/(h*R + 0.0001); 
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cost_of_investigating_and_correcting_true_alarm.. c3 =e= sum(i,  w(i) * (1- ( 

(cdfnorm(  d(i) + s* sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))) - 

(cdfnorm(  d(i) - s* sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))))   ))/(h*R 

+ 0.0001); 

cost_of_releasing_defective_product.. c4 =e= sum(i,  z(i) * ( ( (cdfnorm(  d(i) + s* 

sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  ))) - (cdfnorm(  d(i) - s* 

sqrt(d(i)*(1-d(i))/(n+0.001)  ),  d(i),  sqrt(d(i)*(1-d(i))  )))))   )/(h*R + 0.0001); 

cost_of_false_alarm.. c5 =e=  sum(i,  c(i) * (  (cdfnorm(  pbar + s* sqrt(pbar*(1-

pbar)/(n+0.001)  ),  pbar,  sqrt(pbar*(1-pbar)  ))) - (cdfnorm(  pbar - s* sqrt(pbar*(1-

pbar)/(n+0.001)  ),  pbar,  sqrt(pbar*(1-pbar)  ))))   ) * ((h - (1-(1+h)*exp(-h))/(1-exp(-

h)+0.001)))/(h*R + 0.0001); 

ARL1.. 1/(1-  ((cdfnorm(  d('low_fill') + s* sqrt(d('low_fill')*(1-d('low_fill'))/(n+0.001)  

),  d('low_fill'),  sqrt(d('low_fill')*(1-d('low_fill'))  ))) - (cdfnorm(  d('low_fill') - s* 

sqrt(d('low_fill')*(1-d('low_fill'))/(n+0.001)  ),  d('low_fill'),  sqrt(d('low_fill')*(1-

d('low_fill'))  ))) + 0.0001 )) =g= 1; 

ARL2.. 1/(1-  ((cdfnorm(  d('misapplied_cap') + s* sqrt(d('misapplied_cap')*(1-

d('misapplied_cap'))/(n+0.001)  ),  d('misapplied_cap'),  sqrt(d('misapplied_cap')*(1-

d('misapplied_cap'))  ))) - (cdfnorm(  d('misapplied_cap') - s* 

sqrt(d('misapplied_cap')*(1-d('misapplied_cap'))/(n+0.001)  ),  d('misapplied_cap'),  

sqrt(d('misapplied_cap')*(1-d('misapplied_cap'))  ))) + 0.0001 )) =g= 1; 

ARL3.. 1/(1-  ((cdfnorm(  d('label_misalignment') + s* 

sqrt(d('label_misalignment')*(1-d('label_misalignment'))/(n+0.001)  ),  

d('label_misalignment'),  sqrt(d('label_misalignment')*(1-d('label_misalignment'))  ))) 

- (cdfnorm(  d('label_misalignment') - s* sqrt(d('label_misalignment')*(1-

d('label_misalignment'))/(n+0.001)  ),  d('label_misalignment'),  

sqrt(d('label_misalignment')*(1-d('label_misalignment'))  ))) + 0.0001 )) =g= 1; 

 

Model sampling /all/; 

Solve sampling using NLP minimizing y; 

Display y.l, n.l, h.l, c1.l, c2.l, c3.l, c4.l, c5.l, ARL1.l, ARL2.l, ARL3.l, s.l; 

 

 

 

 

 

 

 

 



58 
 

Vita 

 

Emad Aldin Mohammed Abdelkreem Mohammed was born in 1992 in Libya. 

He received his B.Sc. degree in Chemical Engineering from the University of Khartoum 

in 2013. From 2013 to 2014, he worked as an Occupational Health, Safety and 

Environmental Engineer in DAL Group – Sayga company in Sudan. 

In August 2016, he joined the Engineering Systems Management master's 

program in the American University of Sharjah as a graduate teaching assistant. During 

his master's study, he co-authored a paper which was presented in the UAE Graduate 

Students Research Conference (GSRC) in April 2018. His research interests are in the 

statistical quality control field, and optimization modelling for industrial processes. 

 

 

 

 

 

 

 

 

 

 


