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Abstract

In computer vision, models and methods for facial expression recognition are contin-

ually in development. Several models aim to describe the highly complex structure of

different faces, which in turn allows researchers to digitally process the faces based on

these models for various tasks. With the rise of deep learning in 2012, many works have

since used deep networks to learn facial expressions through both static and dynamic

images. One main source of information for dynamic features are optical flow algo-

rithms. These algorithms predict, from a sequence of frames, where each pixel moves

from one frame to the next. The recent optical flow algorithms based on deep learning

employ frameworks that are similar to those of deep convolutional autoencoders. Faces

have a peculiar structure. Hence, it makes sense to think that this optical flow should be

constrained based on the physically allowable movements of facial features. Combined

with robust facial alignment algorithms, good optical flow estimation for faces can be

used as features for emotion recognition in robots. These vision-based techniques can

aid the robot to better interact with humans by incorporating affect recognition in the

interaction, adding a psychological element to it. To carry out this investigation, we

propose to construct a dataset with ground truth optical flow generated by observing the

deformation of face keypoints and their neighborhoods between any two consecutive

face images. The dataset is then used to train the FlowNetS deep network specialized

in learning optical flow, aiming to infer the constrained optical flow from a given pair

of face images. The network trained with the dataset is then compared to other setups

in the testing phase, and the overall results show that using the generated data during

training helps the network predict better optical flow representations on face sequences.

The results of this thesis can be used as a precursor to obtain and make use of the dy-

namic features for unsupervised learning of facial expressions, which are important in

applications such as human robot interaction, online learning, and electronic consumer

relationship management.

Keywords: Facial expression recognition, human-robot interaction, deep learn-

ing, optical flow, image warping
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Chapter 1. Introduction

Computer vision researchers have been interested in face biometrics for a vari-

ety of reasons. The tasks of describing, tracking, face recognition, and facial expression

analysis are quite complex for computers compared to humans [1]. Research has been

ongoing in the field for decades in attempts to narrow the gap between human level

and machine competence. Over the last decade, recent advances in deep networks have

unlocked a new era for potential advancements in this field. The use of deep convolu-

tional neural networks (CNNs) to abstract high level features in images has been very

promising. Many networks have outperformed previous algorithms in the same task,

and amongst those algorithms is motion learning in video sequences.

Facial expressions are generated due to non-rigid movement in faces. From the

perspective of automatic facial expression recognition (FER), the motion information

has been well explored for the task of both micro and macro expression analysis. Op-

tical flow information on faces can help characterize both micro and macro expressions,

which are useful in expression recognition. A major motivation for using the motion

information for FER is based on what is known as the facial feedback hypothesis [2],

which, in summary, suggests that facial actions can both encode current emotions as

well as induce or amplify emotions. An example of this would be that the furrowing

of the brow could increase anger. It has also been demonstrated that some facial mus-

cle movements are linked to the compound facial expression of negation [3]. Also, the

relation between motion information extracted from the eyes and mouth has been stud-

ied in its association with the facial expressions of psychopaths [4]. Facial and head

movements are also important in social contexts, such as head motion used to indicate

particular social cues, or the famous twitching of the lip corners that suggest lying [5].

One primary motivation for this work is the application of facial optical flow

in human-robot interactions. Facial motion information can be combined with facial

detection and alignment in the preprocessing stage to help the robot separate multiple

faces and infer the optical flow motion using the proposed approach. This is necessary

in contexts where faces are not frontal or occluded, as is typically the case in human-

robot interaction. The robust motion information can be used as input features for

emotion classification, which aids the quality of the robot’s interaction with humans.
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Faces have a peculiar structure. Hence, in this work, we focus on learning op-

tical flow specialized for faces which will attempt to constrain the algorithm to learn

only lifelike expressions on faces, and in doing so we explore how well a CNN can

perform in this task. We demonstrate that the proposed architecture will work well for

faces compared to traditional optical flow algorithms. The results can serve as a pre-

cursor to designing motion-based features for supervised and unsupervised learning of

facial expressions by drawing on existing research linking facial motion information to

facial expression and emotion recognition.

1.1. Thesis Objectives

While there has been improvement with the recent advent of deep learning for

computer vision, Chollet [6] explains that the field is still behind human level intelli-

gence in many tasks. Although we have come a long way in face analysis, there still

remain many open problems. Problems related to face dynamics are particularly inter-

esting. In this work, we build on the existing deep optical flow algorithms and attempt

to learn structures that are specialized to faces, as faces have a peculiar structure of

motion. To achieve our objectives, we automatically generate optical flow data from

existing facial sequences and to use the generated dataset as ground-truth to learn accu-

rate constrained optical flow on faces using a convolutional autoencoder architecture.

We use the BP4D-Spontaneous dataset [7] consisting of videos of 41 partici-

pants with different facial expressions to generate the ground-truth optical flow between

every pair of consecutive frames in the dataset. We then use this facial optical flow

ground truth to train an optical flow-based convolutional autoencoder, FlowNetS [8],

to learn optical flow specialized for facial motions, meaning that the motion learned

should exhibit local coherency as would be expected on faces. To our knowledge, this

is the first dataset for facial expression optical flow of this kind. We also modify the

neural network by adding a cyclic loss to help the network reconstruct the latter image

in the image pairs using the optical flow predicted by the network. We argue that adding

this reconstruction in the learning framework improves the predicted optical flow.
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1.2. Problem Formulation and Proposed Solution

The temporal information obtained from faces is important, since it provides

essential information for facial expression recognition that is lost in static images [5].

Thus, to serve as a component for a comprehensive facial expression recognition sys-

tem that can be used in computer vision applications such as real-time computer-human

interaction, the motion that represents the temporal information must be accurately rec-

ognized. We emphasize that the motion that is predicted or recognized must be legal in

the sense that it constitutes a realistic deformation of local facial features. For example,

the region at both ends of the lips should deform along the same vertical direction in

most cases. In light of the above, the problem can be formulated as follows: how can

optical flow information, constrained to match realistic motion of facial features, be ac-

curately inferred from consecutive face images to provide temporal information that is

useful for facial expression and emotion recognition? The objective of this thesis, then,

is to provide a solution to this problem that meets the criteria stated above and is robust

and accurate enough to achieve state of the art results that can aid in facial expression

recognition. The proposed solution can be described by the following tasks, defining

the research objectives:

1. Generation of a ground-truth dataset for constrained optical flow across faces to

allow training of the chosen network structure.

2. Construction of a convolutional neural network that can achieve reasonably high

accuracy with the task of learning constrained (in the sense discussed above)

optical flow across faces.

3. Quantitative evaluation of the predictions of the neural network based on optical

flow performance evaluation techniques as well as qualitative evaluation, which

can be done by studying how realistic the predictions are.

1.3. Thesis Organization

For the remainder of the thesis, the chapters are organized as follows. Chapter

2 provides a literature review on important topics related to FER, deep learning, op-
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tical flow, and their applications on analysis of faces. It also contains some preliminary

theory of deep networks relevant to this thesis. Chapter 3 introduces some related con-

cepts from image warping and feature extraction and describes the algorithm used for

automatic generation of the face optical flow dataset. Chapter 4 includes the details

of the convolutional autoencoder architecture and the different experiments conducted

to learn the optical flow. Chapter 5 contains important results from the trained net-

works and a discussion of their implications, and chapter 6 concludes the research and

provides suggestions for extensions to this work.
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Chapter 2. Background and Literature Review

To gain a better understanding of how motion tracking for facial expression

analysis can be used in convolutional neural networks, it is necessary to formulate a

basis for each of the topics that go into the development of such algorithms. This is

laying out the research that forms the theoretical and practical groundwork relevant to

this project. First, work related to facial expression analysis and motion tracking are

presented, followed by a survey of convolutional neural networks and different deep

learning architectures, including those used to learn motion. We then present some

of the general works related to optical flow and the challenges faced. In addition, we

review current methods used for facial optical flow and some of their advantages and

drawbacks.

2.1. Topics in Facial Detection and Expression Analysis

Before presenting the literature on convolutional neural networks, the face de-

tection, modelling, and tracking methods are important fundamentals in the study of

facial expression analysis. To understand the different classes of problems faced in fa-

cial expression analysis, face detection, modelling, and tracking are briefly introduced,

in addition to a survey of the classical and more contemporary methods for facial anal-

ysis. Some of the difficulties and methods in facial recognition topics are also common

to facial expression analysis, which is why we present the former prior to discussing the

latter.

2.1.1. Face detection, modelling, and tracking. Face detection algorithms are

very important in facial recognition, since they are the backbone in many of the more

specialized tasks. There are several methods to use computer vision to detect faces

and provide a suitable description of them, which are sometimes divided into two cat-

egories: feature-based or CNN-based recognition. Feature-based methods are usually

based on extracting salient features from an image. One of the classical feature-based

methods is the Viola-Jones algorithm [9], which is based on Haar-like features and a

boosting technique to classify the salient points. Viola-Jones has been implemented in
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many tasks requiring face recognition as a prior to another task, or been modified for

improvement in other instances, such as in [10]. Klemm et al. [11] demonstrate differ-

ent methods for detection and description, such as using scale-invariant feature trans-

form (SIFT) feature extraction and speeded up robust features (SURF) which uses Haar

wavelets, and then a comparison of these local feature descriptors with global ones.

Vinay et al. [12] describe an improved approach for SIFT and SURF feature detection

on faces, and Kim et al. [13] also use SURF and support vector machines (SVM) to de-

tect facial features. CNN-based face recognition is also more recently very popular, and

there have been many successful CNNs for face recognition. One example by Bai et.

al. [14] is based on what is known as ”generative adversarial networks” (GANs), which

have proven very successful in surpassing the benchmarks for two datasets of faces in

the wild, which usually contain images of a large number of low-resolution faces that

makes recognition more difficult to achieve [14]. Other successful CNN-based face

recognition implementations can be found in [15], [16], and more.

Popular face models are given in [5], such as the statistical shape model, active

shape models, and active appearance models. Face models can also be constructed

by dimensionality reduction using principal component analysis (PCA) to decompose

the faces into the set of eigenfaces with highest variance [5], [17]. Li and Jain [5]

also present nonlinear subspaces and manifold learning for facial recognition instead

of linear subspaces, due to the complexity of face images. Zadeh et al. [18] use a

convolutional experts network along with Tadas et al.’s [19] constrained local neural

fields to track facial keypoints, with their implementation made widely available in the

open source project OpenFace [20]. We use their work to track the keypoints during

automatic dataset generation.

Other techniques are more involved with the alignment and orientation of faces

prior to feature extraction. Jourabloo et al. [21] and Kazemi and Sullivan [22] deal with

the problem of aligning faces when the head is in different orientations or poses. The

problems of occlusion and pose are also addressed in [5]. Face motion tracking, which

is essential to our research, is also a widely researched topic. Yu et al. [23] describe a

novel approach using a particle filter and face/pose models for the task of facial motion
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tracking. Particle filters and Markov chains are used by Dornaika and Davoine in [24]

for the same task.

2.1.2. Facial expression analysis. A survey of facial expression analysis can be

found in [5], in which the authors describe common problems in facial expression anal-

ysis as well as classification of different descriptions for expressions, such as intensity,

deliberate vs. spontaneity, and scene complexity. These factors usually influence the

performance of facial expression recognition techniques. From a psychological view-

point, Zheng et al. [25] describe how care should be taken in understanding human emo-

tions, or affects, from data. They observe that many of the techniques that work well

for deliberate expressions do not generalize as well in recognizing more spontaneous

and subtle emotions. Combining static visual cues with audio and motion information,

i.e. multimodal fusion, yields more information about the person’s emotion than purely

visual cues [26]. The authors provide detailed lists for emotion recognition systems and

algorithms based on purely visual, purely auditory, and audiovisual-based techniques,

as well as relevant databases. Corneanu et al. [27] provide an exhaustive survey of

different facial expression analysis techniques, systematically classified as either RBG,

3D, thermal, or multimodal under several different tasks. For example, one of the lists

is based on static 3D local, geometric, predesigned feature-extraction techniques. Dy-

namic techniques, particularly for feature extraction and expression analysis, are im-

portant for our research. They also offer valuable insight on emotion analysis based on

facial expression from an evolutionary vantage point.

2.2. Optical Flow and Motion Tracking

Optical flow in images is used to estimate the motion of sets of pixels across

images. To do this, the assumption of brightness constancy is used, meaning that a

pixel with a certain intensity I(x,y, t) is expected to have the same intensity after some

time dt [25]. This can also be expressed as

dI(x,y, t)
dt

= 0. (1)
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Denoting the velocity of the pixels by V = [vx,vy]T and taking the total derivative, we

get
dI(x,y, t)

dt
=

∂ I
∂x

∂x
∂ t

+
∂ I
∂y

∂y
∂ t

+
∂ I
∂ t

= 0

∂ I
∂x

vx +
∂ I
∂y

vy +
∂ I
∂ t

= 0,
(2)

which can be solved with another constraint equation, typically some energy minimi-

sation functional as in [28], [29] for the velocities to obtain the optical flow. Gradient

image operators such as those defined in [30] are commonly used to get the intensity

derivatives.

2.2.1. Motion tracking algorithms. Many algorithms have been developed for

motion tracking besides optical flow. Cremers et al. [31] estimate the motion by dis-

cretizing an image into segments and applying a Bayesian probabilistic approach to

the motion along with geometric constraints. On the other hand, Goh and Vidal [32]

exploit the fact that distinct motions are contained in different manifolds to precisely

detect these distinct motions. For optical flow, other methods try to compensate for the

different problems that might come up in the general optical flow framework. Chen

et al. [33] develop a method using quaternions to deal with the possible inconsistency

among the RGB channel intensities, Portz et al. [34] propose an algorithm to compute

optical flow in blurred environments, and Porikli et al. [35] modify the optical flow

algorithm to deal particularly with low frame-rate applications. Finally, Zappella et

al. [36] present a comprehensive literature review and evaluation of motion tracking

algorithms, including their advantages and applications. Some of those optical flow

algorithms are specifically used to learn facial actions, such as in [37] and [38].

2.2.2. Face optical flow. More relevant to our topic is motion tracking methods

used for faces, usually for facial expression analysis. One important work in learning

optical flow for facial expressions by Snape et al. is Face Flow [39], which minimizes

a proposed energy to learn the flow field for a sequence of frames consisting of facial

expressions. Another highly relevant work is optical flow dataset generation done by Le

et al. [40] who are also concerned with producing optical ground-truth data for general

video sequences. According to them, there is very little prior work in the literature on
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how the performance of CNNs is influenced by optical flow datasets, and their main

focus is that of non-rigid motion. Our work can be considered to be a contribution to

the study of optical flow’s effects on CNNs, with the difference being that we focus on

facial datasets instead.

Koelstra et al. [37] use a ”dynamic texture-based approach” to estimate the fa-

cial rigid and nonrigid motion to learn facial action units. In [41], Allaert et al. propose

a post-processing methodology for filtering noisy facial optical flow, which is useful

when optical flow is used for facial expression recognition. They also suggest in [42]

that motion-based approaches are useful for recognition of both macro and micro ex-

pressions. Hsieh et al. [43] use a probabilistic framework to estimate constrained optical

flow, which accounts for illumination variation, to allow them to perform face recogni-

tion with just one training sample. Duthoit et al. [44] use the classical Lucas-Kanade

method to find flow fields on faces and then, subsequently, for emotion recognition.

Other ways of finding the optical flow on faces are model-based methods, such as in [45]

which use a deformable face model along with uncertainty estimation using a Kalman

filter to find the facial flow. Finally, a review and evaluation of different optical flow

techniques specialized for facial expression recognition can be found in [46].

2.3. Deep neural networks

In machine learning, artificial neural network algorithms have been developed

starting in the 40’s by modelling neurons and then by successively developing single

and multilayer learning [47]. This section will introduce the formulation of deep neural

networks, specifically artificial neural networks, convolutional neural networks, and

convolutional autoencoders, along with related works.

2.3.1. Artificial neural networks. Artificial neural networks are mathematical

systems that define a function f : U 7!V , where U,V are the spaces in which the input

and output data, respectively, are elements of. In general, this function f depends on

a collection of intermediate operations g(a) and is a composition of these operations.

Typically, for a multi-input neural network, the input vector x 2 Rm is defined at the

”input layer”. The second layer contains nodes which are functions of the input [48].
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The weighted sum z(1)j 2 R of x at node j in the second layer can be expressed as

z(1)j = (W (1)
j )Tx+b(1)j (3)

where W (1)
j =

h
w(1)

1 j w(1)
2 j · · · w(1)

m j

iT
2 Rm denote the weights of node j, denoted by

the subscripts, in hidden layer 1, denoted by the superscripts. The b1
j term represents

a bias term added to the weighted sum. To find the value a(1)j of this node, a nonlinear

activation function g : R 7! R is specified, and then a(1)j = g(z(1)j ). This process for

one node can be represented by Figure 1 [49], which shows a network, the perceptron,

consisting of only one such sequence of operations.

Figure 1. The perceptron, showing an example of the operations described in equation
(3) (image source - [49]).

If there are a total of ni nodes at this layer, then the input to the next layer

is a(1) =
h
a(1)0 a(1)1 · · · a(1)ni

iT
. This combination of a nonlinear activation and bias

allows the network to learn representations that are more complex than just a linear

transformation [47]. This is continued for the subsequent layers i, possibly with a dif-

ferent number of nodes ni for each layer, and the output vector for some layer i can then
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be expressed as

a(i) = g
⇣
W T(i�1)a(i�1) +b(i�1)

⌘
(4)

where W (i�1) 2Rni�1⇥ni contains the weight vector for every node j from the previous

layer. An example ANN architecture with two hidden layers is shown in Figure 2 [49].

Figure 2. An example of a deep neural network with two hidden layers (image source
- [49]).

The network output would be the output a(N) of the activation function(s) of the

last layer N, which could be a scalar or multidimensional. In a classification problem

with k classes, for example, the output space V would be the set {0,1, · · · ,k�1}.

To train a neural network to learn a function for a specific task, a suitable choice

of architecture and parameters of the architecture, which are the weights and biases of

the connections stored in matrices, should be chosen to accurately map the inputs to the

outputs. This accuracy is determined by how the user trains the network. In a supervised

problem, the inputs {x(t)}M
t=0 to the network in a training set with M elements are paired

with ground-truth quantities {y(t)}M
t=0. The loss is defined to be a suitable measure

of the network outputs compared to the ground-truth y. An objective function which
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quantifies this loss is chosen such that it is large when the output of the network does not

match the true output and small otherwise. This is similar to a least-squares regression

problem in which parameters qi are selected to minimize the least-squares error (the

objective function)

J(✓) =
1

2M

M

Â
m=0

kf(x(m);✓)�y(m)k2
2 (5)

where ✓ contains all the weights and biases of the network, M is the number of training

data, and f(x(m);✓) is the network output for the current ✓. This is an optimization

problem, and gradient-based methods such as gradient descent, stochastic gradient de-

scent, and other variants are used to find the set of parameters ✓ that minimize J(✓) [6].

Books such as [50] and [51] contain more details on different types of optimization

techniques. The operations in the neural networks should be differentiable to allow

optimization, and then an algorithm known as backpropagation is used to compute the

gradients of the loss function for optimization [48].

2.3.2. Convolutional neural networks. The problem in training these kinds of

classical neural networks on datasets comprised of images, such as our optical flow

dataset, lies in the fact that the number of parameters is simply too large to learn. For

example, a single greyscale image I 2Rh⇥w will require an operator with h⇥w distinct

parameters to connect to a single node in one hidden layer [6], rendering the compu-

tation infeasible. Instead, the weighted-sum operations described earlier are replaced

by other operations which reduce the number of parameters required. 2D convolu-

tions (⇤) are very commonly used, which are defined for functions f : R2 7! Rh⇥w and

g : R2 7! Rp⇥q to be

f ⇤g =
h

Â
a=�h

w

Â
b=�w

f (a,b)g(x�a,y�b). (6)

If h = w and p = q in the equation (6), then the convolution f ⇤ g 2 R(h�q+1)⇥(h�q+1)

[52]. It is clear that in the special case where dim( f ) = dim(g), then f ⇤g2R. It is more

standard to use the notations na, nb, and nc for the dimensions of f , g, and f ⇤g, and we

will adopt them from here onwards. A visual representation of this operation is shown at

the top left in Figure 3 [52]. f and g are square here of sizes 4⇥4 and 3⇥3, respectively,
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and the operation is visualized by starting from the upper left corner, taking a window

of size min(na,nb), and taking the sum of the elementwise product of this window. This

process is repeated for all such possible windows, which in this case is 4, resulting in a

2⇥ 2 image, since na � nb + 1 = 4� 3+ 1 = 2. When dim(g) < dim( f ), it is called a

kernel by many texts, and serves as a basis for different image processing techniques.

For example, horizontal edge-detectors can be 3⇥ 3 kernels with known entries and

can be convolved with any image to produce a new image with pixels at the horizontal

edges brighter than other pixels [1].

Figure 3. The top row (left to right) shows a single part of a convolution and max
pooling operation ( f 2 R4⇥4, g 2 R3⇥3) (image source - [52]). The bottom right image
shows a common sequence of operations (image source - [48]).

In this first example, the stride s of the moving window, which is the number

of cells it shifts after every computation, is 1. Increasing the stride to some s0 in a

convolution would result in the window sliding to the right or down by s0 units after each

computation, visualized in the top right of Figure 3 for s = 3. Higher strides decrease

the output size to
⌅na�nb

s +1
⇧

[52]. Since the dimensions of f do not accommodate the

window with stride s = 3, only the first window can be computed, and the output is a

scalar. In fact,
⌅5�3

3 +1
⇧
=
⌅5

3
⇧
= 1. It is not too difficult to see that the addition of a
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stride decreases nc, since

�
na �nb

s
+1
⌫
=

�
na �nb

s

⌫
+1

 na �nb

s
+1

 na �nb +1,

(7)

since
j

p
q + k

k

j

p
q

k
+k when k 2 Z and s > 1. To circumvent this, a padding of size p

may be added to the image, which expands the input dimensions from na ⇥na to (na +

2p)⇥ (na +2p) by adding zeros next to and above every element in the boundary [52].

The output dimension is then nc =
j

na+2p�nb
s +1

k
, and one can choose p depending on

the desired nc. For example, to preserve the input dimensions, we can find p by setting

the actual dimension and desired dimension equal and solving for p

�
na +2p�nb

s
+1
⌫
= na �nb +1

�
na +2p�nb

s

⌫
= na �nb.

(8)

which is satisfied by setting p =
⌃1

2(s�1)(na �nb)
⌥
. If p 2 Z, it is easy to check by

substitution in equation (8). If p 62 Z, i.e. both s� 1 and na � nb are odd, then it still

works. In fact, let s�1 = 2k1 +1 and na �nb = 2k2 +1 for some k1,k2 2 Z, both odd.

Then
p =

⇠
1
2
(2k1 +1)(2k2 +1)

⇡
=

⇠
1
2
[4k1k2 +2(k1 + k2)+1]

⇡

=

⇠
2k1k2 + k1 + k2 +

1
2

⇡

= 2k1k2 + k1 + k2 +1.

(9)

Substituting equation (9) into equation (8) and with na �nb, s as defined, we get

�
na +2p�nb

s

⌫
=

�
2(2k1k2 + k1 + k2 +1)+2k2 +1)

2(k1 +1)

⌫

=

�
2k2(k1 +1)+ k1 +1

k1 +1
+

1
2(k1 +1)

⌫

= 2k2 +1 = na �nb,

(10)
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as desired.

In CNNs, it is typical to convolve a color image I 2 Rh⇥w⇥3 with a number nk

of filters for every layer. One of the motivations in using convolutions is that the choice

of kernel elements translate to outputs with different features, and are referred to as

feature maps. The convolution so far described can be extended by applying each of the

nk filters onto the color image, and the output feature map is the concatenation of the

results of each convolution [52]. A nonlinear activation function is also used in CNNs

on the elements of the feature maps, such the ReLU activation g(x) = max(0,x) for

every element x. An example of a layer and visualization of a CNN for digit recognition

is shown in Figure 4.

Figure 4. Top image shows a typical convolution in a CNN (image source -
[52]), and bottom shows a visualization of an entire CNN for digit recognition
using the tool by Harley (tool source - [53]).
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Analogous to the ANN, the CNN’s weights to be optimized are the elements of

the filters, and it can be shown that they are significantly less than a fully connected

network, as in a typical ANN case. The weights are chosen such that the feature maps

learn useful abstractions depending on the learning task, which helps provide as close

outputs as possible. The loss functions should be suitably chosen depending on the

learning problem.

CNNs gained popularity with the ground-breaking success of AlexNet in 2012

[54], which inspired a large number of CNN architectures such as in [55], [56], [57],

and many more. The Universal Approximation Theorem states that any continuous

function over a compact set in Rm can be approximated, up to any desired accuracy,

by any arbitrary activation function g and a finite number N of nodes in a single-layer

neural network [58]. Analogous results for convolutional neural networks have been

proven as well, and the reader is referred to [59] and [60] for the exact statements.

For our purposes, these results imply the existence of a suitable convolutional neural

network for the task at hand, although they are inconclusive in terms of computational

feasibility.

2.3.3. Deep learning for videos and optical flow. Although convolutional neu-

ral networks are known to allow transfer learning, which means that the same network

architecture can be used to learn tasks different than the one it was originally trained

on, there are several network architectures proposed specifically for learning of mo-

tion across frames in videos. In [61], Janai et al. use a CNN architecture known as a

Siamese Triplet Network is used to predict the motion of objects by training on three

different patches X1, X2, and X3, where X1 and X2 are two subsequent frames of an

object in motion and X3 is a random sample of something different than the object. A

distance metric d(x,y) is learned by minimizing d(X1,X3) and maximizing d(X1,X2)

during training. Alternatively, in [62], Datta et al. use the Siamese Triplet Network to

learn facial representations to identify whether or not two faces are similar by compar-

ing bounding boxes of faces in every 10th frame to track faces. Although both these

works are not strictly in the same domain as ours, their data mining procedure and

ground truth labelling in an unsupervised manner is a shared attribute, as we also aim
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to generate ground truth datasets algorithmically. The latter [62] is also a precedent

in using a CNN to detect motion, which contain possible methods that we could draw

inspiration from in our work for facial motion tracking. Other works such as [63], [64],

and [65] also use novel CNN architectures to specifically learn facial expressions.

Other networks learn to track motion in dynamic environments. Zhang et al.

[66] demonstrate a CNN which learns micro facial expressions in long videos, and Silva

et al. [67] use static and dynamic inputs of video frames, with their respective results

averaged at the end for action recognition. Sun et al. [68] use the pyramid-structure

CNN architecture PWC-Net for optical flow prediction, which we use in this work to

test on the face optical flow dataset as a benchmark implementation and compare with

our performance.

With the surge and success of deep learning applications this decade, there has

also been a rise in using convolutional neural networks to learn optical flow, beginning

with the seminal work of Fischer et al. [8] with their FlowNet CNN architecture. Build-

ing on the success of FlowNet, FlowNet2.0 [69] was introduced a few years later to

improve performance by stacking networks, scheduling the training data, and learning

small-motion datasets. For our experiments, we use the FlowNetS architecture adapted

from [8]. By demonstrating how we can adapt FlowNetS to perform well on datasets

consisting of only faces, we can later improve even further by incorporating refinements

in the same way the FlowNet developers have, as well as solutions proposed to handle

difficulties encountered in optical flow estimation.

While FlowNet is one of the more popular optical flow deep learning architec-

tures, several other architectures have since been proposed to deal with certain chal-

lenges. Janai et al. [61] deal with the problem of unsupervised learning of optical flow

in occluded settings by considering a triplet instead of a pair of frames and a ’photomet-

ric’ loss to handle the occlusions. Ren et al. [70] also use the photometric loss to learn

optical flow, with their focus being how well image warping techniques can be used for

unsupervised training on optical flow datasets. Meister et al. [71] build on these con-

cepts by applying their own loss function to improve results of unsupervised learning of

optical flow, as well as learning the flow in the forward and reverse directions as in [61].
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In their seminal work , Zhu et al. [72] develop the cycleGAN, which is a type of

generative adversarial network, that implements a cyclic loss function which is used as

a metric to evaluate the network’s prediction as compared with one of the inputs. This

loss function is also used in the context of optical flow learning. Yu et al. [73] use this

cyclic loss, which they dub ”warp loss”, to train a Flownet architecture for optical flow

learning. It is also adapted by Lai et al. [74] also in the context of optical flow but using

instead a generative adversarial network. Both latter architectures use a differentiable

spatial transformer layer with learnable parameters, adapted from Jaderberg et al. [75].

Finally, we mention a few implementations of deep learning to the learning of

microexpressions using optical flow. Liong et al. [76] exploit the optical flow in a video

sequence between the frame with the highest intensity, called the apex, and each of the

rest of the frames, using the optical flow as input to learn microexpressions by a deep

network. Just as we do, they assume small motion across short times between frames as

well as brightness constancy. It also serves as a precedent for the effectiveness of facial

optical flow as features for expression recognition, which is one of the motivations of

our work. Taking a different approach, Li et al. [77] also use facial optical flow to

learn microexpressions, but they obtain their flow features by first passing the facial

images through the FlowNet2.0 architecture which we referred to earlier and then using

a support vector machine for microexpression detection. Peng et al. [78] and Liu et

al. [79] also use a deep CNN to learn microexpressions with optical flow ground-truth

computed based on a modified version of the traditional Lucas-Kanade algorithm from

[80].

2.3.4. Autoencoders. One interesting class of neural networks are autoencoders.

Autoencoders are used to accept an input image and reconstruct it at the output. To

avoid trivial reconstruction (identity mapping), the dimensions in the hidden layers are

generally less than the dimension of the inputs, and so with the goal of reconstructing

the input image, the autoencoder attempts to learn the most significant features of the

image [81]. Autoencoders can also employ weight sharing and sparse connectivity in

CNNs, and are also referred to as convolutional autoencoders [82]. Figure 5 shows
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a typical structure of a convolutional autoencoder [82] used to reconstruct the input

images.

Figure 5. A convolutional autoencoder network architecture, showing the encoder and
decoder layers (image source - [82]).

The encoder downsamples the input image into the latent space representation,

which is at the intermediate fully-connected layer, before being passed as a latent input

to the decoder, whose output is an image. The objective function would measure the

error between the reconstructed image and the input image, in this case. The FlowNetS

architecture that we use in this work is a type of convolutional autoencoder, with one

difference being that the optical flow field is reconstructed instead of the input image at

the output and compared with the ground-truth flow field of the two input images.

There are several variants of convolutional autoencoders in the literature. For

example, Alejandro et al. [57] describe a “stacked hourglass” architecture used for the

task of pose estimation, achieved by detecting the motion of the limbs in addition to the

posture. This architecture is composed of downsampling and pooling layers (reducing

the image size) followed by upsampling layers to make a single hourglass. The idea

behind this type of architecture is that the successive downsampling and upsampling

allows the network to learn features at different resolutions [57]. Other networks have

also used hourglass-type architectures, such as in [83], [84], and [85]. This practice

of combining high and low level information during training has been shown to be

effective in such architectures.
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2.4. Performance Evaluation

To evaluate the performance of our network in learning optical flow representa-

tions for faces, we look to quantitative methods to measure the performance. Baker et

al. [86] define two such measures, which have become standard in later works on op-

tical flow, termed the average endpoint error (EPE) and average angular error (AAE).

In addition to these standard flow errors, the structural similarity index (SSIM) [87] is

a widely-used metric to quantify thow similar two images are, which can be used to

quantitatively compare the image warped by the predicted flow with the actual image.

A variant of SSIM for video sequences, the V-SSIM, can be found in [88].

Consider two optical flow fields U1, U2 2 Rh⇥w⇥2, with the i jth element given

by [U1]i j = (Vi j)1 = (ui j,vi j)1. The average endpoint error between EPE(u1,u2) is

EPE(U1,U2) =
1

h⇥w

h

Â
i=1

w

Â
j=1

��(ui j,vi j)1 � (ui j,vi j)2
��

2 , (11)

which is the pixelwise Euclidean norm for each optical flow vector [86]. This is one of

the most commonly used measures in flow field comparisons, and is used in FlowNetS

to construct the loss function for the neural network.

The other flow field measure, the average angular error, is similar to the EPE but

it instead measures pixelwise angular difference rather than flow magnitude. Specifi-

cally, for one pair of flow vectors, it is defined to be the average of the angle between

the two flow vectors in the i jth pixel on the z = 1 plane, denoted by (Vi j)1 = (ui j,vi j,1)1

and (Vi j)2 = (ui j,vi j,1)2. Dropping the i j subscript, the angle q between V1 and V2 can

found using
kV1 ⇥V2k2 = kV1k2kV2k2 sinq

V1 ·V2 = kV1k2kV2k2 cosq .
(12)

By averaging equation (12) over all pixels, we get

AAE(u1,u2) =
1

h⇥w

h

Â
i=1

w

Â
j=1

arctan

 ��(ui j,vi j,1)1 ⇥ (ui j,vi j,1)2
��

2
(ui j,vi j,1)1 · (ui j,vi j,1)2

!
, (13)
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where the operators (·) and (⇥) denote the usual vector dot and cross products, respec-

tively. The AAE(V1,V2) in homogeneous coordinates for two vectors V1,V2 2R2 and in

the plane, denoted by a , is shown in Figure 6.

Figure 6. The angular error AAE(V1,V2) for two vectors in R2 compared to their angle
difference in the plane.

It is defined this way to more accurately represent the actual difference between

two flow vectors in computer vision due to the projective nature of images. The EPE

and AAE are later used to construct the loss functions that we use in our experimental

setups to train our deep network. They are also used to measure the performance on our

test sets by comparing predicted flow fields with the generated ground-truth flow fields.

In addition to the flow performance measures, we will also compare the result

of the image deformed by the predicted flow field to the actual image. For two input

images X1,X2, we use the predicted flow field to deform X1 to X̂2 and compare X2, X̂2
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using the structural similarity index. Two images X and Y are compared by luminance,

contrast, and structure, which are given by [87]

l(X ,Y ) =
2µX µY +C1

µ2
X +µ2

Y +C1

c(X ,Y ) =
2sX sY +C2

s2
X +s2

Y +C2

s(X ,Y ) =
sXY +C3

sxsY +C3
,

(14)

where µX ,µY ,sX ,sY are the discrete mean and standard deviations of the images X ,Y

and sXY is the correlation coefficient between X and Y . Ci = (KiLi)2 for small Ki,

and Li is equal to the range of possible pixel values in the image, which are used to

prevent division by zero [87]. By defining C3 = C2/2 and taking the product of the

three quantities in equation (14), the SSIM between X and Y is

SSIM(X ,Y ) =
(2µX µY +C1)(2sXY +C2)�

µ2
X +µ2

Y +C1
��

s2
X +s2

Y +C2
� . (15)

We also use the standard L1 and L2 norms for further quantification of the image results.
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Chapter 3. Face Dataset Generation Using Image Warping

In this chapter, the preliminaries for the methods we use in data generation are

first introduced, followed by a detailed account of the procedure used to generate the

ground-truth optical flow based on the BP4D-Spontaneous face dataset from [7].

3.1. Image Warping and Morphing

In addition to convolutional neural networks, basics of image warping and mor-

phing are a prerequisite to our plan to generate a ground-truth constrained optical flow

dataset for faces. Only the relevant essentials that we use in our dataset generation algo-

rithm are discussed in this subsection, and the reader is referred to [89], [90], and [91]

for a more complete treatment.

Image warping is the process of generating a target image from a source im-

age by applying some sort of transformation on the source image, which is usually a

bijective mapping with a continuous inverse (or, to use the topological term, a home-

omorphism) [90]. Several transformations exist, such as contractions, expansions, and

isometries, which respectively shorten, extend, or preserve the distance norm between

any two points in the target image. An operation T : U ⇢Rn 7!W ⇢Rn is a contraction,

expansion, or isometry if 8x,y 2 Rn,

kT (y)�T (x)k  aky� xk (16)

where |a| < 1 for a contraction, |a| > 1 for an expansion, and a = 1 for an isometry

[92]. One class of such functions of interest in this work is affine transformations, which

map lines to lines and, by extension, convex sets to convex sets.

3.1.1. Affine transformation and barycentric coordinates. A barycenter of a

collection of K points {vi}K
i=0 in R2 is the point y 2 R2 associated with {li}K

i=0 such

that

y = v0 +
K

Â
i=0

li(vi � v0)

Â
i

li = 1,
(17)

34



for any choice of v0 2 R2 [92]. This is closely related to the convex combination of the

set of points {vi}K
i=0, which is defined as

K

Â
i=0

livi (18)

with the li as in equation (17). When K = 1, all the possible convex combinations

yield the points on the line segment between v0 and v1, and for K = 2, all possible

convex combinations yield all the points in the closure of the triangle with vertices

{v0,v1,v2} [92]. In other words, by taking all convex combinations of {v0,v1,v2} on the

plane satisfying l0 +l1 +l2 = 1, we can obtain all points in the interior and boundary

of a triangle. This motivates the idea of barycentric coordinates, which is treated in

more detail in [92] and [90]. For any given point v 2R2, if it can be written as a convex

combination of the vertices of a triangle, the lis in the combination are the barycentric

coordinates of v relative to the set {v0,v1,v2} and are unique [92]. This allows the

determination of all points in the interior of a triangle.

Affine maps are a special class of warping maps that preserve barycentric coor-

dinates for all points in a given triangle. In some works, such as [92], they are defined

as such. Affine maps can in general be represented by

T : U 7!W

T (x) = Ax+b
(19)

where U,W ⇢ R2, A 2 R2⇥2, and b 2 R2. They preserve several geometric quantities,

one which is of interest in this work is the mapping of n-gons to n-gons, and in partic-

ular, triangles to triangles [92]. A sufficient condition for uniquely defining an affine

map is a priori knowledge of how three points are mapped. Thus, if we know where

a triangle’s vertices V = {v0,v1,v2} are mapped to, we can define the affine map that

sends these vertices to their values. Moreover, since the map preserves barycenters,

we can also determine where every point in the interior of the triangle formed by the

vi 2 V is sent to as well by taking the same convex combinations of the mapped ver-

tices. Given a triangle with these vertices, we can infer an affine map by defining the
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homogeneous coordinates v⇤ 2R3, v⇤ = [vT 1]T , which represents the set of all points in

R3 on the plane P = {(x1,x2,x3)|x3 = 1}. By applying a linear transformation A⇤ that

maps points in P to other points in P, we can accomplish both translation and the other

warping performed by A and b from equation (19). The affine map can be written, then,

as
T ⇤ : P 7! P

T ⇤(x⇤) =

0

@ A b

02⇥2 1

1

A

0

BBB@

x1

x2

1

1

CCCA
.

(20)

By defining A⇤ to be the matrix in equation (20) and known that each v⇤i 2V ⇤ is mapped

to some known w⇤
i 2W ⇤, we can write the equations mapping the v⇤i to w⇤

i to get

A⇤
⇣

v⇤1 v⇤2 v⇤3
⌘
=
⇣

w⇤
1 w⇤

2 w⇤
3

⌘

A⇤ =
⇣

v⇤1 v⇤2 v⇤3
⌘�1⇣

w⇤
1 w⇤

2 w⇤
3

⌘
,

(21)

which exists since the {vi} are linearly independent [90]. A and b can then be obtained

using equation (20). In general, A is a composition of several fundamental geometric

transformations, including rotations, shears, and scaling [93].

3.1.2. Resampling. Affine maps (and in general, image warping maps) are nicely

behaved when the range of the mapping, the target set, is continuous. However, prob-

lems of reconstruction arise when the target set is discrete, since some of the pixels can

be warped to points that are not on the target image grid (i.e. the range of the affine

map W 6⇢ Z+⇥Z+) [90]. To handle this, resampling is performed on the target image

on the discrete image grid Wd = [0,h]⇥ [0,w]⇢ Z+⇥Z+ for an h⇥w image to recover

all pixel values on the digital grid.

Recovering the values can be done by a choice of different interpolation schemes,

as in [94], over the mapped values. In this work, bicubic spline interpolation is used

for this task to construct functions f (x,y) for any pair (x,y) based on known values

of (xi,yi). Cubic interpolation is the construction of some cubic piecewise function

f (x) which passes through a set of N points {xi}N
i=1. Specifically, for x 2 [xi,xi+1],
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1  i  N � 1, we have fi(x) = aix3 + bix2 + cix + di. f (x) is well-defined when

some conditions are imposed to solve for the coefficients ai,bi,ci,di, which are con-

tinuity of the function and its first and second derivatives at the endpoints of every

interval [xi,xi+1] [95]. Extending this to the 2D case for images, the problem be-

comes that of constructing a function f (x,y) which passes through a known set of

h⇥w points {xi,y j}i=w, j=h
i, j=0 . Analogous to the 1D case, the function is piecewise de-

fined for every region Mi, j with vertices {(xi,y j),(xi+1,y j),(xi,y j+1,(xi+1,y j+1))} for

0  i  w � 1,0  j  h � 1 [96]. The continuity conditions imposed at all ver-

tices (xi,y j) of each such region are continuity of f (xi,y j),
∂ f
∂x (xi,y j),

∂ f
∂y (xi,y j), and

∂ f
∂xy(xi,y j), and for each region Mi, j the function fi, j(x,y) is defined as

fi, j(x,y) =
3

Â
m,n=0

cmn(x� xi)
m(y� y j)

n (22)

which reduces to a series of cubic spline problems after imposing the continuity con-

ditions for every vertex on the mesh [96]. In images, the gradients ∂ f
∂x (xi,y j),

∂ f
∂y (xi,y j)

can be approximated using finite difference or image operators, methods which can be

found in any standard textbook on image processing such as [1].

To apply bicubic interpolation to image warping and reconstruction, consider

the source image mesh IS and a target, discrete image mesh IT (normally, IT = IS when

the source and target images have equal sizes). We seek a warping function T : IS 7! IT

which maps quantities qi, j defined on IS to IT , with possibly different locations. In the

case of image warping, qi, j = (r,g,b)i, j represents the color values at the pixel pi, j =

(i, j). When a warping function T is applied on pi, j, the quantity qi, j is mapped to

some pixel pi+di, j+d j given by equation (19), but it is not necessary that pi+di, j+d j 2 IT

if the mapped pixel locations lie on an irregular mesh [90]. The irregular mesh is then

used to define all the vertices to form the approximating function f (x,y) using bicubic

interpolation, defined piecewise as in equation (22) over the mapped pixels pi+di, j+d j .

If the quantity qi, j 2 Rn, n such functions are necessary to interpolate each component

of qi, j at the discrete pixel locations in IT . In the cases of color values or 2D flow fields,

we require three or two such functions each, respectively.
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In this thesis, image warping and reconstruction is used on face images to gen-

erate the ground-truth optical flow based on learning affine maps that warp one face

frame to the next, from which the optical flow can be inferred by taking the position

difference for all mapped pixels (section 3.2). Inferring those affine maps will be based

on facial keypoints that are detected for each frame.

3.2. Dataset Generation Algorithm

Our method is inspired by the progress in self supervised learning techniques

for action recognition [97] and eye gaze prediction [98]. We introduce the notation

that we’ll use throughout this section to generate the optical flow ground truth from the

BP4D-Spontaneous dataset [7]. We define Si j to be sequence j for the subject indexed

by i, where 0  j  7 and 0  i  40. For each Si j, we denote the frames contained

in that sequence by Fi j = { f0, ..., fNf }i j, where fk 2 RH⇥W⇥3 are the ordered frames,

0  k  Nfi j . Our aim in this section is to compute the optical flow field Ui j separately

for each video, represented by the sequence of frames Fi j, where Ui j = {u0, ...,uNf }i j

contains the optical flow fields uk = (uk,vk) : RH⇥W 7! RH⇥W⇥2 for every frame fk.

The uk are vector-valued functions defined on the image grid. Lastly, given a se-

quence Si j, we denote the facial landmarks tracked on the face in each frame fk by

Pk = (p0 . . .p68)
T
k 2R68⇥2. Concisely, the tuple {Si j,Fi j,Pi j,Ui j} encodes the frames,

landmarks, and flow fields for Si j.

We use the BP4D-Spontaneous dataset [7], which consists of 41 subjects with 8

video sequences, each containing videos of elicited emotions. The motivation for using

BP4D-Spontaneous stems from its environment as there is little head movement across

frames. Our aim is to let the network learn the facial movements. It should be noted

that for FER, head pose in-variance is useful in real-world conditions, though this is not

the focus of this paper. Figure 7 shows example images taken from the dataset from six

different subjects [7].
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Figure 7. Sample images from the BP4D-Spontaneous showing different subjects from
varying sequences (image source - [7]).

We describe the procedure for some frame Si j and we drop the i, j for brevity.

Landmarks P on the face in S are tracked for each frame using the open source Open-

Face pipeline [19], which uses the Convolutional Experts Constrained Local Model [18]

to obtain 68 landmarks per face. Next, we completely partition the first face f0 into a

triangular mesh using Delaunay triangulation on P0. This was done using Scipy’s De-

launay triangulation package. Theoretical background related to Delaunay triangula-

tion can be found in [93], and descriptions of different algorithms can be found in [99]

and [100]. This mesh divides the face into Nt disjoint triangles T0 = {t0, ...,tNt}, where

each tl = (v0,v1,v2)
T
l 2 R3⇥2 is the set of vertices of triangle l. After triangulating f0,

we use similar triangulation on the remaining frames in the sequence, yielding the set

of triangulations {Tk}
Nf
k=0 for subject i, sequence j.

We use the triangulation to capture the local motion on every triangle in the face

partition from frame fk�1 to frame fk. Given a triangle tl
k�1, we infer an affine map

Al
k�1,k 2 R3⇥3 that sends its vertices to the vertices in tl

k. Recalling that three known

mappings are sufficient to uniquely specify an affine map from equation (21), we can

define t⇤ 2 R3⇥3 to be t in homogeneous coordinates by appending the scalar 1 to the
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end of each vertex v 2 t. Then, for triangles k and k�1, A is uniquely determined:

A=
�
t⇤k�1

��1
t⇤k (23)

This gives the required matrix for the affine map. Note that if t⇤k�1 is singular, this

means the triangle is degenerate. Once the correspondence between the two triangles

in the frames is known, A also maps the interior of tl
k�1 to the interior of tl

k, since

barycentric coordinates are invariant under affine maps.

We use the barycentric coordinates to compute the interiors of all the triangles

in f0, and then learn each affine map Al
k�1,k as described above to map all the trian-

gle interiors from f0 to f1. To compute the interior of the triangle using barycentric

coordinates, an efficient algorithm from [101] can be used to test if an arbitrary point

v is contained in a given triangle by taking the convex combination with the triangle

vertices
v = (1�l1 �l2)v0 +l1v1 +l2v2

v�v0 = l1(v1 �v0)+l2(v2 �v0).
(24)

By taking the dot product of equation (24) with v1 �v0 and v2 �v0, a 2⇥2 system of

equations can be solved for l1,l2, and l3 = 1�l1 �l2 [101],

0

@ kv1 �v0k2
2 (v2 �v0) · (v1 �v0)

(v2 �v0) · (v1 �v0) kv2 �v0k2
2

1

A

0

@l1

l2

1

A=

0

@(v�v0) · (v1 �v0)

(v�v0) · (v2 �v0)

1

A

(25)

and if 0  li  1 8i, then v is in the triangle of interest. We test all points in this way

using a digital grid surrounding the triangle. Repeating this for every frame in a given

video is overall computationally expensive, so we only do it for triangles in the first

frame of that video. By invariance of barycentric coordinates under the affine maps

Al
k�1,k, we know the barycentric coordinates for all subsequent frames fk, k > 0.

After determining the affine maps and mapping the triangles and their interior

pixels pk�1 to pk, we compute the per-pixel optical flow vector uk�1 by

ũk�1 = pk �pk�1. (26)
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However, it is not guaranteed that the dom(A) ⇢ Z+⇥Z+ for each affine map A, as

discussed in 3.1.2, and so the optical flow fields ũk are defined on points that are not

necessarily pixel coordinates. Note that this affects the frames after the first frame f0;

the optical flow field uk�1 from equation (26) is defined on a discrete grid, but the pixels

that are mapped from f0 to f1 will subsequently be mapped from f1 to f2, in which case

it is not guaranteed that they lie on a regular mesh. However, if the pixel locations

were resampled to learn the next affine map, the barycentric coordinates will have to

be recomputed, and so we learn the mappings on the irregular mesh for all frames. We

use resampling on the flow field quantities ũk�1 to determine the actual flow field on

the discrete mesh using bicubic spline interpolation. The flow fields are stored in .flo

formats for later use in the experiments.

Together with the resampling stage, this procedure gives us the ground-truth

vector field for all pixels of frame fk�1. The details can be summarized as follows:

1. Starting from frame f0, determine the interiors of all triangles tl using barycentric

coordinates.

2. Learn the affine maps sending all tl
0 to tl

1 and transform the entire face to obtain

the first optical flow field u0.

3. For all frames starting from f1, again infer the affine maps sending all tl
1 to tl

2

and apply the transformation on all the pixels which have already been mapped

from frame f0. This removes the need to compute the triangle interiors for frame

f1 while still finding the optical flow field ũ1.

4. From ũ1, resample the flow field over a discrete grid to yield the ground-truth

flow u1.

5. Repeat step 3 for the remaining frames in the sequence { fk}
Nf
k=2, for all sequences

and subjects.

Figure 8 shows examples of ground-truth flow field visualizations with their corre-

sponding images and triangulations. The color coding which determines direction by

color and magnitude by intensity is commonly used to visualize optical flow [86]. In

the top left image, the flow directions near the mouth region capture the local motion

representing the opening of the mouth with arrows surrounding the mouth pointing al-

most radially outwards. The top right example shows a more global head motion in the
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directions of the streamlines (counterclockwise head motion). In the color-coded flow

visualizations, it is easier to see the intensity of motion in certain regions relative to

other regions.

In both images, the local motion near the eye region is more intense compared

to other facial motions. In the first of the two color examples, the local motion of the

opening eyelids is clearly demarcated by the color and intensity opposite to the rest of

the motion, which is global head motion moving slightly downwards. From this, we

get a qualitative validation that the algorithm is successful based on the choice of face

mesh. A keypoint tracker with more feature points would allow for more accurate and

dense motion capture.

Figure 8. Examples of automatically generated facial (noisy) ground-truth flow visual-
izations for pairs of images, along with their triangulations. Top row shows a flow field
representation using streamlines, middle row shows the visualization using the color
code (image source - [86]) shown in the bottom row.

The total number of images in the generated dataset is 325720, and these were

partitioned into 228171, 65130, and 32419 for training, validation, and test data re-

spectively. The dataset generation was completed in a total of about five days using

multicore CPU prallel processing with four parallel processes running at a time.
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Chapter 4. Methodology

In this chapter, we describe the methodology by which we adapt the FlowNetS

[8] architecture to train a CNN to learn optical flow from the automatically generated

dataset. The network architecture is introduced, followed by the details of the three

conducted experiments.

4.1. CNN Architecture and Training Details

The CNN architecture used is described in this section, followed by the training

details of the different experimental setups implemented to test the network on the face

datasets. These details include the different hyperparameters used in the different exper-

imental setups, such as the choices of loss functions, the loss weights, and training/test

data split.

4.1.1. CNN architecture: FlowNetS. To test the effects of having a large, ”noisy”

ground-truth optical flow dataset specialized for faces on CNNs, the FlowNetS [8] ar-

chitecture was used. FlowNetS is one of the pioneering CNNs on optical flow learning,

and while more sophisticated optical flow architectures were developed, our purpose is

to demonstrate the effect of training a CNN with face data compared with other datasets,

namely the FlyingChairs dataset, as a proof of concept. Should we discover an improve-

ment, it will be left for future work to further tackle other problems (e.g. robustness to

occlusion) which were discussed in Section 2.2.2.

FlowNetS is a convolutional autoencoder architecture which consists of a se-

quence of downsampling layers in the encoder followed by upsampling layers in the

decoder. Figure 9 shows the encoder architecture from [8]. We use the same architec-

ture as shown, except we replace the cross-correlation layer, indicated by the yellow

arrow fusing the two inputs, by a simple concatenation. This is the main difference be-

tween FlowNetS (with concatenation) and FlowNetCorr (with cross-correlation). The

difference in performance reported in [8] is not too significant, and including the cross-

correlation layer during training resulted in the inconvenience of much longer training

times.
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Figure 9. FlowNetS architecture encoder layers, showing the separate input region,
redirected layers, and the convolution sizes (image source - [8]).

The network accepts two images and outputs the per-pixel optical flow. In the

encoder layer, identical but separate convolutions operate on the first few layers where

each layer uses same padding, has strides of 2, and has a ReLU activation. This means

that the resolution is divided by 2 at every layer. Filters are fewer at the beginning with

larger size, followed by the converse as the network gets deeper. Note that the layer

weights are shared during training in the separate streams. At layer three, the two sep-

arate streams are concatenated together. This feature map is concatenated with the left

feature map in the earlier layer (labelled conv redir in the figure). More convolutional

layers are applied until it reaches a low resolution in the latent space before entering the

decoder part of the network.

In the decoder, the convolutions are identical to those in the encoder except they

are transposed, meaning that the strides of 2 will result in upsampling instead of down-

sampling, also known as deconvolution. Additionally, each feature map in the decoder

that shares its resolution with a layer in the encoder (for example, layer 2 of the decoder

with layer 5 of the encoder) are concatenated together after its encoder counterpart un-

dergoes a 1D convolution. Intermediate predictions are made in the decoder as well,

and each of these predictions are concatenated with the layers. The decoder is shown

in Figure 10. The output resolutions of each of the flow predictions in our network are

also slightly different than the ones shown. Specifically, the ratio of our flow heights

to theirs is 24
17 and our widths to theirs is 4

5 . Bilinear upsampling is used to allow the

concatenation of the intermediate flow predictions with the main pipeline by increasing

their resolution to those of the main feature maps.
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Figure 10. FlowNetS decoder layer, showing the upsampling operations and the inter-
mediate predictions (image source - [8]).

For some of the experiments described in the next section, a cyclic loss is im-

plemented to minimize the difference between the output predicted using the flow pre-

diction and the second input image. This resulted in an additional warping layer to the

network that acts on the largest flow prediction. The warping layer uses the predicted

per-pixel flow field vectors to warp the first input image, and the result is recovered

using bilinear interpolation. We note that structures inherent to the second input can-

not be reproduced in the warped output, since the warping function only changes pixel

locations from the first input and does not contain any learnable parameters. Figure 11

shows two examples of this phenomena from FlyingChairs and our face dataset, show-

ing the original input image pair (X1, X2), the image X 0
2 deformed using the flow field,

and visualization of the flow field Y .

For the FlyingChairs image pair, the predominant motion from the flow field is

rightward motion of the left armchair to the right. The location of the armchair in the

warped image is correct, but the reconstruction of the warped portion is missing. This

is also present in the smaller desk chair, making a copy of itself at the warped location

during reconstruction. Due to these large differences in the images, adding a warping

layer while training on the chairs dataset is likely to worsen the network’s performance.

However, this effect is much more subtle in our face dataset due to the higher frame rate

of the sequences, which causes lower magnitude motion between every two frames.
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Figure 11. The top row of each example consists of two inputs X1 and X2. The second
row shows the warped output (left) and the flow field visualization (right).
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For the face example in Figure 11, the deformed image X 0
2 is perceptually similar

to the actual X2, particularly in the upwards motion of the eyes and the slight rightward

motion caused by the furrowing of the brow. Since the time difference between two

frames is very small in the face dataset, it is very unlikely for new structures to be

introduced in X2. A notable exception to this is the opening (closing) of the mouth due

to revealing (hiding) teeth, which cannot be reproduced by pixel rearrangement alone.

Another exception would be the squinting or widening of the eyes for the same reason,

since the eyelid or eyeball would not be present in the first image. Although the artifacts

caused by the warping produced a flawed image in the chairs dataset, we hypothesize

that it will still help guide the directions of the predicted flow when training on faces

since the undesirable effects are considerably less due to the considerably lower amount

of new structure.

4.1.2. Training details. The training details of the aforementioned architecture

are described in this section. We denote by (Xi,Xi+1) the pair of successive input frames,

where Xi,Xi+1 2 R384⇥512⇥3, Yi 2 R384⇥512⇥2 is the ground-truth flow field, and Ŷi =

{(Ŷi)k}5
k=1 contains the intermediate flow field predictions, where each element (Ŷi)k 2

RHk⇥Wk⇥2. The i ennumerates the entire training set, and successive image frames are

input to the network at every iteration. The resolutions of the flow predictions are

(Hk,Wk) = (384⇥ 2�k,512⇥ 2�k) for k 2 {1,2,3,4,5}, as defined by the decoder in

the network architecture. (Ŷi)1 is the largest flow prediction, and we drop the added

subscript and call it Ŷi when referring to it later.

Since we assume that the background is stationary, much of the ground-truth

flow field outside of the boundaries defined by the keypoints are zero vectors. To make

the training more practical, we zoom on the box with vertices defined by the keypoints

with maximal and minimal coordinates plus some offset in the x and y directions, and

the images and flow fields are resized using bilinear interpolation. To preserve the units

of the flow vectors as pixels, they are scaled accordingly in the horizontal and vertical

directions. If a flow field U1 of size H1,W1 is to be rescaled to a flow field U2 of size
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H2,W2, the flow vector in U2 at pixel j is (u2) j = (u j,v j)T
2 , and is rescaled by setting

(u j,v j)
T
2 =

✓
W2

W1
u j,

H2

H1
v j

◆T

1
. (27)

The different experimental setups used to train the networks are next described.

4.1.2.1. Experimental setup 1: no cyclic loss. In this experiment, the archi-

tecture is used without the additional warping layer. The network was trained for 30, 40,

and 400 epochs on the face, FlyingChairs, and Sintel datasets respectively, with 15000,

21592, and 870 training and 1000, 640, and 271 validation input image pairs each. The

batch size used for training is 16 input pairs. The loss function is the average endpoint

error L1(Yi, Ŷi), defined for one output by using equation (11)

L1(Yi, Ŷi) =
5

Â
k=1

wk

Hk ⇥Wk

Hk⇥Wk

Â
j=1

��yi j � (ŷi j)k
��

2 . (28)

Here, the wk are loss weights for each intermediate flow prediction loss, given

by wk = 2�k. Hk,Wk are the sizes of the intermediate predictions and the yi j,(ŷi j)k are

the flow vectors for the jth pixel of ground-truth and kth predicted flow fields Yi and

(Ŷi)k. The flow fields Yi are resized to compute the error for each intermediate predic-

tion. The optimizer used is Adam, with b1 = 0.9 and b2 = 0.999 as in [8], since it

performed better than alternatives such as RMSprop and Stochastic Gradient Descent

(SGD). The learning rate a was initialized at 1e�4 for faces and 5e�5 for FlyingChairs

and scheduled similar to [8]. The schedule initializes the learning rate at the initial value

for 10k iterations, is then multiplied by 100 and kept constant for 100k iterations, and

halved afterwards for every 100k iterations. Given our training data and number of

epochs, the schedule only halves the learning rate once. No data augmentation is per-

formed. The network was trained once on the face data and once using the FlyingChairs

dataset. Each trained network was then tested on both datasets each, as well as the Sin-

tel dataset [102]. After this initial test, the same network was trained on the same data

partition as the next two experiments, making them comparable.
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4.1.2.2. Experimental setup 2: with cyclic loss. When the warping layer

at the end of the network is included, it is necessary to define a cyclic loss function

for the warped output X̂i+1 and the second input Xi+1. From this we expect to see

an improvement in the flow prediction. For this experiment, an additional cyclic loss

function L2(Xi+1, X̂i+1) is defined for one output as

L2(Xi+1, X̂i+1) =
1

H ⇥W

H⇥W

Â
j=1

kXi+1 � X̂i+1kH1

kxkH1 =

8
><

>:

1
2x2 |x| d

1
2d2 +d(|x|�d) |x|> d

(29)

which uses the Huber loss function kxkH1 [103], a variant of the L1 loss that is every-

where differentiable, since it is quadratic for small values of x. This makes the loss

function differentiable for x = Xi+1 � X̂i+1. We also note that X̂i+1 is a function of Xi

and Ŷi (the largest flow prediction). The total loss function J(Yi, Ŷi, X̂i+1) is then

J(Yi, Ŷi, X̂i+1) =
1
M

M

Â
m=0

l1(L1)m +l2(L2)m (30)

with L1,L2 defined as in equations (28) and (30) and l1,l2 to be specified, averaged

over all M training examples. In this experiment, the network was trained on both faces

and chairs datasets using two different sets of loss weights l1,l2. One network with

more emphasis on reconstruction and hence a higher weight for the cyclic loss, and the

other with higher weight assigned to the endpoint error. Note that the wi in equation (28)

should sum to l1. In the following, Âwi represents the weights of only the intermediate

low-resolution flow predictions, which are all the flow predictions except for the final

output. They are a designated fraction of the final flow prediction, and their combined

sum is lower than the one assigned to the largest flow prediction, since the latter is the

primary output of the network. The values for each case are

1. More reconstruction weights (Case I): l1 = 0.4, l2 = 0.6, Âwi = 0.1

2. Less reconstruction weights (Case II): l1 = 0.75, l2 = 0.25, Âwi = 0.25
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For both cases, the network was trained on faces for 15 epochs and 228160 training

pairs, and on chairs for 100 epochs and 21592 pairs. Learning rates were kept constant

for these experiments throughout training, since scheduling them as previously done

lead to very large gradients halfway through training. In Case I, the learning rates were

2.5e�6 and 1.25e�6 for faces and chairs respectively, and in Case II, they were both

set to 2.5e�6. The results were then tested on the test sets of nearly 31k image pairs.

4.1.2.3. Experimental setup 3: with cyclic loss, smoothness constraint, and

average angular error. In this experiment, an additional loss function L3(Ŷi) was

added. In Case I, a smoothness constraint was imposed on the flow prediction by mini-

mizing the flow gradients, defined as

L3(Ŷi) =
1

H ⇥W

H⇥W

Â
j=1

����
∂ ûi j

∂x

����
H1

+

����
∂ ûi j

∂y

����
H1

+

����
∂ v̂i j

∂x

����
H1

+

����
∂ v̂i j

∂y

����
H1

(31)

where (ûi j, v̂i j) are the components of the predicted flow vector ŷi j at every pixel j.

Another common metric to quantify performance of optical flow algorithms

[86] is the average angular error (AAE). The average angular error between two flow

vectors is the average of the angle difference between every ground-truth and pre-

dicted flow vectors in the homogeneous coordinates, which are y⇤
j = (u j,v j,1)T and

ŷ⇤
j = (û j, v̂ j,1)T respectively. In Case II of this experiment, the loss function L3(Yi,Ŷi)

is defined using equation (13) as

L3(Yi,Ŷi) =
1

H ⇥W

H⇥W

Â
j=1

arctan

 
ky⇤

i j ⇥ ŷ⇤
i jk

y⇤
i j · ŷ⇤

i j

!
. (32)

The total loss function is then a weighted sum of the loss functions,

J(Yi, Ŷi, X̂i+1) =
1
M

M

Â
m=0

l1(L1)m +l2(L2)m +l3(L3)m. (33)

The network was trained on only the faces dataset for 14 epochs and 228160 training

pairs, with l1 = 0.3, l2 = 0.5, l3 = 0.2, and learning rate 2.5e�6. The weights were

initialized from the results of Experiment 2, Case I, to see if there is any improvement in

flow prediction after adding L3. Table 1 summarizes the experimental setups described
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with li for i = 1,2,3 as defined in equation (33) and Âwi again denoting the weights of

the intermediate flow predictions, along with other training details.

Table 1. Summary of the loss weights, training/validation/testing splits, and learning
rates used for each of the experiments described in sections 4.1.2.1-4.1.2.3.

Experiment 1 Experiment 2 Experiment 3

— Case I Case II Case I Case II
l1 (EPE) 1 0.4 0.75 0.375 0.3

l2 (Cyclic) 0 0.6 0.25 0.625 0.5
l3 (AAE) 0 0 0 0 0.2

Âwi 0.46875 0.1 0.25 0.075 0.06
Training data 15k 228k 228k 228k 228k

Validation data 1k 65k 65k 65k 65k
Testing data 1k 31k 31k 31k 31k

No. of epochs 30 15 15 15 15
Learning rate 1e�4 1.25e�6 1.25e�6 1.25e�6 1.25e�6

4.1.3. Evaluation of performance. The evaluation of both of the constrained op-

tical flow data generation and the neural network performance in predicting the optical

flow should be based on objective and informative criteria. The optical flow perfor-

mance can be quantitatively analyzed by the loss reported by the neural network on test

datasets as well as the flow metrics, the EPE and AAE. In addition to the flow metrics,

the structural similarity index (SSIM), L1, and L2 errors between the warped output im-

age X̂i+1 and the actual input image Xi+1 is also computed during testing but separately

and for 500 image pairs. The SSIM [87] S(Xi+1, X̂i+1) is computed using equation (15)

S(Xi+1, ˆXi+1) =
(2µXi+1 µX̂i+1

+C1)(2sXi+1X̂i+1
+C2)

(µ2
Xi+1

+µ2
X̂i+1

+C1)(s2
Xi+1

+s2
X̂i+1

+C2)
(34)

where µXi+1 ,µX̂i+1
,sXi+1 ,sX̂i+1

are the discrete mean and standard deviations of the im-

ages Xi+1, X̂i+1 and sXi+1X̂i+1
is the correlation coefficient between Xi+1 and X̂i+1. In

addition to these metrics, the test dataset of 31k images was also passed through an-

other optical flow CNN implementation [68], and we compute the EPE and AAE for

the predicted flows to compare with our results.
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Chapter 5. Experimental Results and Discussion

5.1. Results for Setup 1: No Cyclic Loss

The results of Experiment 1, which comprises of the network trained and tested

on faces, chairs, and Sintel dataset, are first described. We report the performance in

terms of average endpoint error. In addition, we also show a pair of face images for

visualization. Table 2 shows the first experiment’s overall statistics for each network

when tested on 3000 samples from our face dataset. In addition, we also show the

performance comparison when trained and tested on other datasets. It is worth noting

that the subjects that appear in the training set do not appear in the validation or test set

of our face data.

Table 2. The average endpoint errors for each network described in subsection 4.1.2.1,
trained and tested on all three datasets.

Tested on

Faces Chairs Sintel
Faces 0.4054 5.8495 5.1731

Trained on Chairs 1.4040 1.4413 3.0300
Sintel 0.8282 7.7613 6.2358

The error values in Table 2 are in pixels, averaged over each of the test sets.

Row 1 shows the results when the network was trained on faces and tested on the data

from the other three datasets. Similarly, rows 2 and 3 are trained on chairs and Sintel

and tested on all three. From Table 2, we observe that the network trained on our

BP4D-derived face dataset performs best when tested on faces. This is likely due to the

nature of the dataset the network was trained on. The flow fields on our face dataset

consist of small, non-rigid motions, especially when the head motion is lacking, whilst

the motion fields in the chair dataset has larger magnitude and is more rigid. The Sintel

dataset is also different in nature than the face dataset, but has smaller overall motion,

and thus it is likely that the network trained on chairs is overestimating the motion on

the face dataset. Note that the results showed in Table 2 are comparable to state of the

art methods on the Sintel dataset, as can be seen in [102].

52



We show an example in Figure 12 of predicted flow from each dataset on an

image pair from the face dataset to better understand the network performances. We

Figure 12. A pair of input images from BP4D-Spontaneous (top row); flow ground-
truth and flow field generated from face-trained network, left to right (middle row); and
flow field predictions from networks trained on chairs and Sintel, left to right (bottom
row). The EPE for networks trained on faces, chairs, and Sintel are 1.16, 2.78, and
1.35 respectively. This shows the effectiveness of the learnt representation from the
proposed method.

note that the visualizations are not to scale in pixel units; that is, only the directions and
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relative magnitudes are of importance. In the prediction from the face network, we see

that the flow arrows are well-aligned with the ground-truth arrows in most locations of

the face, except for the left cheek, which is also where the triangles were largest during

dataset generation. The arrows are steeper around the mouth region, also showing how

the network was able to capture the local motion in addition to the global upwards

head movement. In contrast, the chairs prediction also captures the general upwards

global motion, but does not discriminate between the global and local motion in the

mouth regions. Finally, the Sintel prediction did not yield a very good optical flow

representation for the face image at all locations. However, although the directions are

different, the local steepness around the mouth region is also captured. From this pair

amongst others and the data in Table 2, we can conclude that the network trained on

faces does a better job at capturing both global and local motions than the other two

networks.

5.2. Results for Setups 2 and 3: With Cyclic Loss

After adding the cyclic loss and training for more data and epochs, we expect to

observe a difference in performance compared with Experiment 1. In this section, we

show the results of the networks with cyclic loss trained as described in sections 4.1.2.2

and 4.1.2.3.

Table 3 summarizes the statistics computed based on the results of Experiments

2 and 3. The statistics related to the flow fields (AAE and EPE) are computed for all

31k image pairs in the test set, and the other quantities, namely SSIM, L1 loss, and L2

loss are based on a test set of 500 images.

Table 3. Values of the different performance measures for each experimental setup.

Experiment 1 Experiment 2 Experiment 3 PWC-Net

— Case I Case II Case I Case II —
AAE 0.1987 0.3141 0.1698 0.3471 0.3251 0.4749
EPE 0.2895 0.5331 0.2493 0.5291 0.6001 1.7722

SSIM 0.9504 0.9865 0.9805 0.9814 0.9858 0.9770
L1 3.9823 2.9162 3.6797 3.1087 2.8809 6.1260
L2 2.5008 1.8685 2.3245 1.9842 1.8496 3.7648
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Case I and II under Experiment 2 represent, respectively, the higher and lower

reconstruction weight experiments, and Case I and II under Experiment 3 represent the

experiment with smoothness constraint and the experiment with average angular error.

There are several observations to be made from these results. Adding the cyclic

loss but with lower reconstruction weights (Experiment 2, Case II) improves the flow

prediction compared to using only the EPE loss (Experiment 1), since both EPE and

AAE decrease significantly. The image statistics also improve in that case with an

increase in SSIM and a decrease in L1 and L2 losses. When there is higher weight

on reconstruction loss (Experiment 2, Case I), the image statistics also improve as the

network alters the predicted flow to improve the structural similarity and the warped

output’s semblance to X2. However, the higher focus on reconstruction worsens the

performance of the AAE and EPE. One reason could be that the noisy ground truth

does not necessarily reconstruct X2 from X1 very well, which makes the change in

SSIM adversarial to the change in flow EPE and AAE. The flow representations learned

after adding the cyclic loss are better at reconstruction, as verified by all of the image

statistics from Table 3.

Experiment 3 with the smoothness and AAE losses yields worse outcomes than

the other two in terms of predicted flow, particularly compared to Experiment 2, Case

I, since Experiment 3 weights are initialized from there to test any change in perfor-

mance. This could be due to the decreased weight in the EPE loss, which suggests that

the EPE is a stronger indicator of flow performance than the AAE. The EPE encodes

the direction in addition to the magnitude information. Another explanation would be

that training data with angular error as a loss metric does not generalize well to test

data, unlike the other metrics. By decreasing the reconstruction weight l2 from 0.6

to 0.5, the SSIM value decreases slightly as well. The decrease in SSIM is larger in

Experiment 3, Case I, which is likely due to the imposed smoothness constraints, since

some regions of the face do not have necessarily small flow gradients necessary to re-

construct the second image. For example, upwards global motion of the face coupled

with downwards motion of the upper lip when closing the mouth means that the flow

field will experience abrupt changes in direction and magnitude. These abrupt changes
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necessary for reconstruction are restricted by the smoothness constraints, which may

explain the decrease in SSIM.

For all cases, the networks trained on our automatic face dataset perform better

than PWC-Net [68], which is a successful optical flow implementation using a different

architecture than FlowNetS that we use as a benchmark for our results. The high EPE is

likely due to an overestimation of the flow prediction magnitudes. The reconstruction

errors are also worse, as seen from the SSIM value as well as L1 and L2 losses.

To visualize this comparison, Figure 13 shows color-coded flow predictions for

each of the experimental setups, as well as the output from PWC-Net for cases with

both global and local motion. The first two columns are the input pair X1 and X2, third

column is ground-truth, and rest are the experiments in the same order as in Table 3.

Figure 13. Color coded optical flow prediction comparisons for the networks trained in
each of the experimental setups, with examples to highlight how each network learns
local motions.

As in the flow visualizations in Figure 12, the flow fields are not to scale from

one prediction to the other. The saturation intensity in a given image is only represen-

tative of the intensity of that region relative to the other pixels of the same image. The

same intensity in two images may have substantially different optical flow vector val-

ues. This is common practice in optical flow visualization, since it places emphasis on
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which motion is more salient for a given image. In images with small motion, as is the

case in many frames in the BP4D dataset, the visualization would not convey important

local motion information.

The image pairs in rows 2 and rows (4-6) all contain local motion, mainly in the

eye region except for the jaw region in the last row. The network trained using only the

EPE (Experiment 1) also magnifies the eye motion in the images with little eye action.

It could be that the shape of the eyes from the input images is a markedly distinct feature

than other regions, and is thus more easily abstracted by the network.

Both predictions from the network with the cyclic loss function in Experiment

2 (columns 5 and 6) seem to exhibit different learned motion. When the reconstruction

weights are higher than the EPE weights (Case I), the motion varies more frequently

across the face than when compared to the reverse case (Case II). The results from

Table 3 show that the flow predictions are better in Case II, and that could be because

the increased focus on the cyclic loss in Case I leads to a more dense flow representation

due to the network attempting to reconstruct the input X2 at every pixel. However, the

ground-truth is sparse and shows the general direction of motion per face region, which

leads to higher error when compared with a denser flow field (Experiment 2, Case I)

than with a similarly sparse flow field (Experiment 2, Case II). This is also supported

by the data in Table 3.

The flow predictions from PWC-Net show perceptually similar flow fields com-

pared to the ground-truth and other predictions. One notable difference is that the pre-

dicted flow field in the areas outside the face are nonzero, which likely contributed to

the much higher EPE and AAE compared to the other cases. Otherwise, the motion

directions in the other regions seem reasonable.

Figure 14 shows another set of examples of predicted optical flow on examples

with more global motion compared to Figure 13. Due to the enormity of the test set, it

is difficult to visualize all the different examples. However, we focus on comparing the

networks’ abilities to capture local and global motion in addition to the density of the

flow to infer the qualitative differences of the learned representations that complement

the statistics in Table 3 earlier.
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Figure 14. Color coded optical flow prediction comparisons for the networks trained in
each of the experimental setups, with examples to highlight how each network learns
global motions.

The three examples from rows (2, 4, 6) are characterized by predominantly

global motion in one direction. Two examples from rows (1, 3) are characterized by

global motion with varying directions, and row 5 contains both global and local motion.

For the examples with uniform global motion, all of the network predictions correctly

estimate the motion direction and magnitudes in different regions of the face except for

the prediction from Experiment 1. This exemplifies the advantage of adding the cyclic

loss to the network by showing how the emphasis on reconstruction helps guide the

flow to learn the global head motion. This observation will vary across test images, but

it helps explain how adding the cyclic loss improved the statistics in Table 3. In rows (1,

3), the flow visualizations indicate that the representations can learn optical flow fields

of various types. The optical flow fields in the cases with higher reconstruction weights

(Experiment 2, Case I, and both cases of Experiment 3), the network learns a denser

flow field in its attempt to reconstruct the second input, while the higher focus on EPE

makes the network learn flow field similar to the nature of the ground-truth flow. More

examples are shown in Figures 16 and 17 showcasing a mix of both global and local

motions.
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Figure 15. More optical flow comparisons for all the trained networks, with mixed
examples of both local and global motion.

From the overall results of the experiments, our network trained on the auto-

matically generated face dataset is better-suited at predicting the optical flow on faces

compared to other networks. Even if the ground-truth is not the best representation

of the actual optical flow, it is demonstrated that the network can adapt to the type of

ground-truth, and will likely outperform other networks when trained on denser face

optical flow ground-truth.
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Chapter 6. Concluding Remarks

In this thesis, we explore the possibility of using a facial expression dataset to 

learn optical flow representations based on a self-supervised technique. Motion infor-

mation on faces has been shown to be useful in facial expression analysis, which is 

particularly useful in human-robot interaction when combined with multimodal fusion 

techniques for better emotion recognition.

The dataset is generated by using the image sequences from the BP4D-

Spontaneous dataset to compute the optical flow ground-truth. The OpenFace 2.0 

toolbox, which uses a constrained local model, is used to locate the facial landmarks on 

every image. Delaunay triangulation is then used on the resulting set of points to form 

the face mesh and allow the computation of the optical flow for every pair of images 

using triangle-to-triangle affine maps to develop an automatic facial optical flow 

dataset. The generated dataset, with a total of nearly 324k image pairs, is used as a 

”noisy ground-truth” for optical flow to train the FlowNetS convolutional autoencoder 

architecture with 228k pairs in the training partition.

It was observed that training the state of the art FlowNetS architecture for op-

tical on this automatically generated noisy ground-truth data improved the network’s 

ability to predict optical flow on face data in particular. The learned representations also 

helped the network give good accuracy on the FlyingChairs and Sintel datasets. This 

demonstrates that the facial movements are nicely encoded in our data which en-ables 

the network to learn subtle movements that are useful on the challenging Sintel dataset 

as well. A cyclic loss was also added for optimization to help the network use the 

predicted flow to reconstruct the second image, and the flow results from different 

experimental setups are compared. It was seen that the flow predictions are best when 

there is less emphasis on reconstruction, due to denser representations learned with re-

construction that are not present in the ground-truth flow fields. Compared with an 

implementation by PWC-Net, which is another high performing optical flow CNN, it 

was shown that the networks trained on the generated dataset predict better flow repre-

sentations, as quantified by the flow error metrics. This implies that a network trained 

on good face optical flow ground-truth have the propensity to outperform networks 

trained on other datasets.
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For further investigation and improvement, future work related to this thesis can

include the following:

1. Use a denser tracker such as Zface to track a higher number of keypoints for a

finer triangulation and denser optical flow ground-truth after implementing our

automatic data generation algorithm.

2. Compare the denser optical flow with several state of the art implementations for

a more rigorous quantification of the network performances.

3. Train the optical flow network on faces with some head rotation, such as pan and

tilt, to learn optical flow for non-frontal faces.

4. Tackle challenges in optical flow learning, such as in environments with occlusion

and illumination, to increase the robustness of facial optical flow.

In addition to these improvements for optical flow learning, we can also use the

optical flow generated from the network to train a system for emotion recognition on

the BP4D-Spontaneous and other datasets. Obtaining finer optical flow by using the

aforementioned improvements will be useful as well in other facial expression analysis

tasks, like action-unit recognition and microexpression detection.
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