
VIDEO STREAMING OVER COGNITIVE

RADIO NETWORKS

by

Maram Wahed R. Helmy

A Thesis Presented to the Faculty of the

American University of Sharjah

College of Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in

Electrical Engineering

Sharjah, United Arab Emirates

July 2020



 

Declaration of Authorship 

 

I declare that this thesis is my own work and, to the best of my knowledge and belief, 

it does not contain material published or written by a third party, except where 

permission has been obtained and/or appropriately cited through full and accurate 

referencing. 

 

 

Maram Wahed R. Helmy 

 

08/06/2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Year 2020 

 Maram Wahed R. Helmy 

ALL RIGHTS RESERVED 



Approval Signatures  
 

We, the undersigned, approve the Master’s Thesis of Maram Wahed R. Helmy 
 

Thesis Title: Video Streaming over Cognitive Radio Networks 
 

Date of Defense: 29/07/2020  

                
 

Name,  Title and Affiliation 
 

 

Signature 

Dr. Mohamed S. Hassan 

Professor, Department of Electrical Engineering 

Thesis Advisor 

 

 

Dr. Mahmoud H. Ismail Ibrahim 

Associate Professor, Department of Electrical Engineering 

Thesis Co-Advisor 

 

 

Dr. Hassan Mir 

Associate Professor, Department of Electrical Engineering     

Thesis Committee Member 

 

 

Dr. Yasmin Aly Hassan Fahmy 

Professor, Department of Electronics and Communication 

University of Cairo     

Thesis Committee Member 

 

 

Dr. Nasser Qaddoumi 

Head, 

Department of Electrical Engineering 

 

 

Dr. Lotfi Romdhane 

Associate Dean for Graduate Studies and Research,                    

College of Engineering 

 

 

Dr. Sirin Tekinay 

Dean                     

College of Engineering 

 

 

Dr. Mohamed El-Tarhuni 

Vice Provost for Graduate Studies 

Office of Graduate Studies 

 

 

 



Acknowledgements

I would like to thank Allah for His blessings and for giving me the strength to

complete my degree.

I would like to express my sincere gratitude and thanks to my research advisors;

Dr. Mohamed S. Hassan and Dr. Mahmoud H. Ismail, who provided valuable feedback,

continuous support and guidance throughout the research process. Many thanks also to

committee members for their valuable comments and feedback, and to my family and

my supportive husband for their encouragement which helped me in completion of this

work.

I would like to extend my special thanks to Prof. Nasser Qaddoumi, the Head of

Electrical Department at AUS for all of his continuous support, and for all the profes-

sors in the Electrical Engineering Department who taught me and shared their valuable

knowledge. Finally, I want to thank the American University of Sharjah and the Depart-

ment of Electrical Engineering for granting me Graduate Teaching Assistantship (GTA)

to continue my studies.



Dedication

To

My parents for their love and support

My beloved husband for his encouragement

My beloved coming baby . . .



Abstract

The exponential increase in the demand for streaming video in wireless communication

is obstructed by the problem of spectrum scarcity. In an effort to mitigate this problem,

cognitive radio (CR) technology was proposed as a solution since it offers a great ad-

vantage to unlicensed users, also known as secondary users (SUs), by allowing them

to opportunistically access the licensed primary bands. However, it is more challeng-

ing to deliver video services over CR networks not only because of the intermittent

availability of the PU channels but also due to the challenges stemming from wireless

channels and the quality requirements of the videos. In this work, several frameworks

are proposed to stream scalable video sequences from a base station to multiple SUs

over CR networks. One approach is a moments matching-based approach that enabled

us to quantify the total amount of data that can be provided by the available PU chan-

nels. Specifically, a closed-from approximation for the distribution of the total amount

of data available for SU over all the available PU channels during any arbitrary interval

of time was obtained. The correctness of the obtained closed-form approximation is

verified using simulations and numerical investigations. Another approach is employ-

ing the CR network over long-term evolution (LTE) standard platform. The objective of

this work is to guarantee continuous playback at the SUs end with acceptable perceptual

quality. To achieve this objective, different resource allocation schemes are introduced

to adaptively assign the available radio channels to SUs while taking into considerations

the quality of their assigned channels as well as their buffer occupancies. In addition,

a streaming algorithm is introduced to guarantee the delivery of scalable video frames,

with base and enhancement layers, within the delay constraints with priority given to the

base-layer frames to guarantee the continuity of video playback. Furthermore, adaptive

modulation is used based on the channel state information (CSI) as fed-back by SUs.

The performance of the proposed schemes is evaluated through extensive evaluation

and Monte-Carlo simulations in Matlab.

Search Terms: Cognitive radio networks, video streaming, Markov chain, method of

moment, dynamic resource allocation, CRN over LTE, scalable vidoe coding
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Chapter 1: Introduction

In this chapter we briefly introduced cognitive radio network along with the

motivation of this work. Then, the problem addressed in this work and our contribution

are described. The organization of this thesis is given at the end of this chapter.

1.1. Overview

Over the past few years, the demand for bandwidth-hungry applications (e.g.

Netflix, Youtube, etc.,) has been exponentially growing. These applications have gen-

erated the majority of wireless and wired networks’ traffic in the last decade, it is an-

ticipated by Cisco that 82% of all IP traffic (both business and consumer) will be video

traffic by 2020 [3]. Therefore, despite the recent advances in the wireless technology,

multimedia applications will continue their increase in the demand for more bandwidth.

As a result, the expected growth in wireless multimedia applications will always be

challenged by their stringent quality-of-service (QoS) requirements in addition to the

expected shortage of the radio spectrum, also known as the spectrum scarcity problem

and caused by the static assignment of the licensed spectrum. According to [4], spec-

trum scarcity is not mainly due to shortage in the availability of the resources, but due to

how they are licensed and how they are utilized. Recent measurements have shown that

generally less than 5% of the statistically assigned spectrum is efficiently used [5]. Con-

sequently, it was proposed to improve the spectrum utilization by allowing unlicensed

users, known as secondary users (SUs) to opportunistically access the licensed bands of

the licensed users, also known as primary users (PUs) [4]. Opportunistic dynamic spec-

trum access (DSA) is a paradigm that was first introduced in [6]. In DSA, the licensed

radio spectrum is made accessible to SUs, when the PUs are idle. The absence of a PU

from a specific frequency band at different points in time and space is called spectrum

hole [7], which is a reserved portion of the spectrum that is not in use. Cognitive radio

(CR) technology is a DSA technique that is expected to help to overcome the expected

scarcity problem by efficiently utilizing the spectrum and hence pervasively meet the

increasing demand for new wireless services. This inspired many researchers to study

different schemes with which the inefficiently utilized spectrum can be dynamically al-
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located to SUs. Therefore, Cognitive Radio Networks (CRNs) were introduced as a

promising solution for an efficient spectrum utilization by enabling interactive wireless

users to sense and learn the surrounding environment and correspondingly adapt their

transmission strategies [8].

1.2. Motivation and Thesis Objectives

Driven by the developing interest in streaming videos over wireless networks,

and the advantages that CR networks can offer, we will focus on the problem of re-

source management and allocation of the inefficiently utilized spectrum to enable SUs

to opportunistically access the PU channels. The objective of this work is moving to-

ward two parallel directions. Firstly, to quantify the total amount of data that can be

provided by the available PU channels using moment method. Secondly, to employ an

LTE-based CR network. In the second direction, different resource allocation schemes

are proposed to efficiently allocate the available resources among SUs. Our framework

satisfied the SUs’ requirements including fairness, the stringent quality requirements of

the video applications, and provisioned quality of experience (QoE).

1.3. Research Contribution

We study and solve the problem of quantifying the total amount of data that can

be provided by the available PU channels, how to allocate those available channels to

SUs, and how to stream scalable video coding over CR networks.

• We propose a closed-from approximation for the distribution of the total amount

of data available for SUs over all the available primary channels during any arbi-

trary interval of time.

• We propose an infrastructure LTE-based CR network that operates on LTE plat-

form.

• We propose a dynamic resource allocation algorithms that adaptively assign the

available channels to SUs based on their updated feedback information (SNR and

buffer state) to avoid buffer starvation and guarantee continuous playback at the

SUs end.
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• We Propose a streaming algorithm that take the advantages of Scalable Video

Coding (SVC) techniques to schedule video frames from different codded layers

on the allocated channels for receiving the delivered frames correctly by their

deadlines, and hence improve QoE.

1.4. Thesis Organization

The organization of this thesis is: Chapter 2 provides a background about CR

network technology, recent resource allocation techniques, overview of LTE technol-

ogy, SVC video coding. Moreover, related works in the literature are presented. Chap-

ter 3 discusses the proposed probabilistic expression for the amount of data provided

to SUs in CR networks. Chapter 4 discusses the proposed LTE-based CR network, the

proposed dynamic allocation and streaming algorithms, and simulation results. Finally,

conclusion is discussed in Chapter 5.
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Chapter 2: Literature Review and Related Work

In this chapter, we briefly introduce the fundamentals of cognitive radio net-

works along with its architecture components, its challenges, and the advantages of

applying this technology in video streaming applications. Then, recent techniques in

the literature for resource allocation in CR networks are discussed. After that, a brief

review about scalable video encoding technique is presented. Finally, the motivation of

this work is introduced.

2.1. Cognitive Radio Networks: Definition, Architecture, and Challenges

The current spectrum allocation policy grants a fixed spectrum bands to licensed

users for exclusive access for a long-term over large geographic areas [9]. While this

policy has worked well in the past decades, recently, its drawbacks started to reveal.

Such allocation policies have caused what is known today by spectrum scarcity. Recent

measurements have reported that generally less than 5% of static licensed spectrum are

used at any given time and location [5]. According to [4], the spectrum scarcity is not

due to the availability of the resources, but how they are utilized. Consequently, new al-

location policies were needed, and [4] proposed to improve the spectrum utilization by

efficiently allowing unlicensed users, also known as secondary users (SUs), to oppor-

tunistically access the licensed primary bands of PUs. This inspired many researchers to

study different schemes with which the inefficiently utilizing spectrum can be allocated

to secondary users. Therefore, CR Networks were introduced as a promising solution

for an efficient spectrum utilization by enabling interactive wireless users to sense and

learn the surrounding environment and correspondingly adapt their transmission strate-

gies [8].

2.1.1. CR networks architecture. Figure 1 [1] shows the components of a CR

network architecture, which can be classified as primary and secondary network. The

primary network is known as the legacy network in which the users have an exclusive

right to access their licensed spectrum bands. Conversely, users in the cognitive network

don’t need a license to operate in the desired band. The basic components of the CR

network are defined as follows [1]:
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• Primary Users: Users with prerogative right to operate in a certain spectrum band.

This access is only controlled by their base-station and operations of any other

unlicensed user should not affect it.

• Primary Base-Station: It is a fixed infrastructure network component which has

a spectrum license. It does not have any cognitive radio capability, however, it

may be required to have both legacy and cognitive radio protocols for the primary

network access of SUs.

• Secondary User: Users with no spectrum license. They are only allowed to oppor-

tunistically access the licensed band. SUs should be capable of spectrum sensing,

spectrum decision, spectrum handoff and cognitive radio MAC/routing/transport

protocols. In addition, they should be able to communicate with other SUs.

• Secondary Base-Station: It is a fixed infrastructure component with cognitive

radio capabilities. It provides single hop connection to SUs without spectrum

access license.

2.1.2. CR network challenges. Generally, there are four main challenges arise

in CR networks. These challenges are spectrum sensing, spectrum decision, spectrum

Figure 1: CR network architecture [1].
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handoff, and spectrum mobility. Each challenge will be discussed in the next subsec-

tions.

• Spectrum sensing: Users with prerogative right to operate in a certain spectrum

band. This access is only controlled by their base-station and operations of any

other unlicensed user should not affect it.

• Primary Base-Station: It is a fixed infrastructure network component which has

a spectrum license. It does not have any cognitive radio capability, however, it

may be required to have both legacy and cognitive radio protocols for the primary

network access of SUs.

• Secondary User: Users with no spectrum license. They are only allowed to oppor-

tunistically access the licensed band. SUs should be capable of spectrum sensing,

spectrum decision, spectrum handoff and cognitive radio MAC/routing/transport

protocols. In addition, they should be able to communicate with other SUs.

• Secondary Base-Station: It is a fixed infrastructure component with cognitive

radio capabilities. It provides single hop connection to SUs without spectrum

access license.

2.1.2.1. Spectrum sensing. Spectrum sensing plays a crucial role in deploying

an effectual CR network. A SU should monitor the PU’s activity pattern to detect spec-

trum holes before any transmission. While, during transmission a continuous sensing

should be maintained to detect if any PU is accessing the band [10].

Several spectrum techniques were proposed in the literature. Most of these tech-

niques can be categorized into three classes: non-cooperative detection, co-operative

detection, and interference detection.

• Non-cooperative detection: It is the most basic technique where each SU inde-

pendently senses the surrounding spectrum environment and then selects the best

suitable spectrum band based on his own measurements. Such detection is for-

mulated using hypothesis testing, where null hypothesis implies the absence of

PU and the alternate hypothesis implies its presence [11]. One way is an energy

detection based, where a SU measures the average energy in a certain band and

compares it to a predefined threshold [12]. This technique has low computation
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complexity and can be easily implemented. A second approach is the matched

filter detection where a prior information about the PU’s signals such as the mod-

ulation type and order, pulse shaping, and the packet format is required [13].

Other approaches such as cyclostationary feature detection [14–17] and eigen-

value based detection are also used [18] [19]. In general, the non-cooperative

detection technique is inconvenient as it requires high reception sensitivity so a

SU can be able to differentiate and detect the PU’s signals from noise signals.

• Cooperative detection: Non-cooperative spectrum sensing approaches are insuf-

ficient to provide accurate detection due to the effect of fading, shadowing, and

other issues of wireless channels. Thus, cooperative sensing was proposed to im-

prove the detection accuracy through cooperation among SUs. This technique is

implemented in a decentralized mode or centralized mode. In the decentralized

mode, SUs exchange the results of the individual sensing with each other, and

then each SU takes its own decision. While, in the centralized mode a central

node such as a base station is used to collect the sensing results from all SUs,

then take the decision of spectrum band accessibility [9].

• Interference-based detection: this technique is based on identifying the presence

and the position of PUs through the measurement of Interference Temperature

(IT) [20]. By using this technique, PUs and SUs can simultaneously transmit as

long as the interference from SUs is beyond the IT of PUs. However, there are

many practical issues related with this technique.

2.1.2.2. Spectrum decision. After the spectrum is being sensed and the avail-

able bands are detected, then a SU can allocate a channel. Channel allocation is not a

straightforward procedure as it involves internal and external polices. Wrong decisions

might cause a large degradation in the performance of SUs. Hence, efficient resource

management and allocation schemes have great impact on the performance of CR net-

works.

2.1.2.3. Spectrum sharing. In general, any CR network will have multiple SUs

who are trying to access the available spectrum, thus there should be a coordination

policy to avoid collision between them in the overlapping portion of the spectrum.
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2.1.2.4. Spectrum mobility. SUs should immediately evacuate the portion of the

spectrum in use if it is required by a PU. This might cause a large degradation in the

performance of SUs. Thus, CR network should be capable of transferring the ongoing

communication to another unused portion of the spectrum.

2.2. Resource Allocation Techniques

Resource allocation is a key mechanism that determines an optimal assignment

of available resources among different SUs such that the performance of CR network

is optimized based on some criteria such as maximize throughput, fairness, spectral

efficiency [21]. However, the most basic requirement of a CR network is that SUs

should not cause any interference to PUs. The most common techniques that are used

in literature for resource allocation in CR networks are presented.

2.2.1. Heuristics based. Finding an optimal solution for the resource alloca-

tion problem is highly complex. According to [22] the channel assignment problem

is an NP-complete problem, thus there is no known way to find a solution quickly.

To overcome this issue, heuristic techniques are often used to find near-optimal solu-

tion at reasonable computational cost for algorithmically complex and time-consuming

problems [21]. There is no a specific algorithm solution for resource allocation prob-

lem in CR network. Most of the approaches in the literature are problem-specific as

in [23–25]. Heuristic techniques are iterative algorithm, which finds at each iteration

the best local solution, which can be, in the resource allocation context, the SU with the

highest priority for accessing the spectrum, the channel with highest SINR or lowest

traffic, etc.

For example, in [24] they proposed a heuristic channel allocation to lower the

complexity of the optimization problem they obtained, which is in O(n3), where n is the

number of the active SUs in the network. The proposed algorithm randomly selects a

PU and a SU at each iteration. During each iteration, the selected SU scans the selected

primary channel to gather information about the transmission power of the PU and

channel status. By assuming that PUs are less than SUs, after some iterations all the

primary channels will be scanned and SUs can select their channels.
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In [26], the resource allocation problem was expressed as an Integer Linear

Programming (ILP) problem and a heuristic scheme was proposed. The idea of the

scheme is to divide the available bands into M sets and each SUi forms a preferable

channel list for the other SUs. Based on the distance from the i− th user and the SINR

of the channel, the channels with lower SINR will be assigned to the closest users.

Heuristic techniques are simple and can be easily implemented to find near-

optimal solutions [27], however, the solutions are problem-dependent, there is no ana-

lytical methodology to study their convergence, and they can get stuck in local optimal

solution, which can be far from global optimal solution.

2.2.2. Game theory based. Game theory is a mathematical framework that is

extensively used in the literature to model the cooperation and conflict between rational

users. The concept of game theory fits well with the resource allocation problem as the

action of one player (SU) directly affects the action of others. [28–30] used game theory

to solve the resource allocation problem to find the optimal solution through the Nash

equilibrium. The resource allocation can be formulated as a set of players (SUs) who are

competing for the set of the available primary channels in order to maximize their utility

function and meet their requirements. The utility function may account for selfish users

(evaluating each channel based on the level of interference observed by that particular

channel), cooperative users (by taking into account the interference to neighbors SUs

as well) [29], fairness among users [31], minimize spectrum hand-off [32], etc.

Generally, the game theory model is a powerful decision making framework that

can be applied in cooperative and non-cooperative SUs, however, the game formulation

and utility function must be very well structured to guarantee equilibrium.

2.2.3. Linear programming based. Another technique that is used in the lit-

erature to solve the resource allocation problem is the Linear programming method

[33–35]. LP is a technique for optimizing a linear objective function subject to linear

constrains. Resource allocation problem can be formulated as a Mixed Integer Non-

Linear Programming (MINLP) problem. The MINLP problem can be translated into a

Binary Linear Program (BLP) that contains only binary parameters and linear objective

function with linear constrains. Such transformation is applied to simplify the MINLP
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problem to BLP problem that can be solved using standard linear programming (LP)

techniques. However, transforming MINLP into BLP is not guaranteed and requires

several assumptions [21].

2.2.4. Fuzzy logic based. Fuzzy logic is a used technique for decision making

and optimization algorithms in resource allocation [36, 37]. A fuzzy logic controller

(FLC) is composed of four modules: a fuzzy rule base (a set of rules in the form of

”IF-THEN”), a fuzzy inference engine, a fuzzification and defuzzification module.

The input of the FLC can be the arrival rate of PUs or SUs, the channel avail-

ability, the distance between users, the velocity (if SUs are moving), etc [21]. Then,

the controller takes a decision based on predefined rules on which SU will select which

available band. This technique can be only used when the configuration of the CR

network is known a prior. The disadvantages of FLC are its limited functionality as it

requires pre-defined rules and the large number of rules that need to be considered for

the dynamic nature CR networks.

2.2.5. Evolutionary algorithms based. Evolutionary algorithms (EAs) are

stochastic search techniques that mimic evolution and social behavior. The most popu-

lar type of EA is Genetic Algorithms (GAs). In [38–42] they used genetic algorithms

to find optimum solution for resource allocation in CR network. GAs are different

from other algorithms that they reflect the process of natural selection where the fittest

individuals are selected for reproduction in order to produce offspring of the next gen-

eration. The process begin with a set of individuals, called population, where each

individual is a solution of the optimization problem that is characterized by a set of

parameters to form chromosomes. Chromosomes usually specify a possible conflict

free channel assignment matrix, that is encoded in a way to avoid redundancy of ele-

ments. To evaluate the fitness of the chromosome, it should be mapped to the channel

assignment matrix [21].

Another approach that is used is swarm intelligence. [43] proposed the following

model: the probability of a successful transmission of a user is broadcasted and used

as a pheromone, where SUs received the broadcast massage and adjust their parameter
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accordingly. If the channel transmission probability decreases, then SUs wil have lower

probability of accessing it.

Another algorithm that is used in the literature is the Artificial Bee Colony

(ABC) that is inspired by honey bee foraging. The ABC algorithm consists of three

groups of bees: employed bees, onlookers and scouts. The number of employed bees

in the colony are equal to the number of food resources. Onlookers explore and share

the information of food resources. Scouts search for new food sources after abandoning

their own. The possible solutions are introduced by the location of the employed bees,

while the quality of the solution is represented by the amount of nectar of the source. In

resource allocation context, the location of one onlooker represents a possible channel

assignment, while the amount of nectar is the maximized utility function [44].

2.3. Overview of LTE Network

Long-Term Evolution (LTE) is a network technology which was developed by

the 3rd Generation Partnership Project (3GPP) to provide high data rate, low latency

and support flexible bandwidth [2]. LTE applies Orthogonal Frequency Division Mul-

tiplexing (OFDM) which allocates multiple resource blocks of 180 kHz each to each

user [45]. LTE bandwidth ranges from 5 MHz to 20 MHz. It supports both Time Divi-

sion Duplexing (TDD) and Frequency Division Duplexing (FDD). The eNodeB is the

part that is responsible for resource allocation based on network configuration, network

load and user requests. [46]. LTE Downlink (DL) adopts Orthogonal Frequency Divi-

sion Multiple Access (OFDMA) and the resources are specified in frequency and time

domain [46]. The resource element is defined as the smallest resource unit with a dura-

tion of 66.667 microseconds which represents one symbol. Resources are assigned to

a user in term of Resource Block (RB). One resource block groups seven consecutive

symbols and occupies one time slot with a duration of 0.50 ms. Every two time slots

form a sub-frame with a duration of 1 ms and 10 sub-frames represent one frame with a

period of 10 ms. The eNodeB performs scheduling every 1 ms Transmit Time Interval

(TTI) [45]. Figure 2 illustrates the structure of the LTE resource grid in the time and

frequency domains.
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Figure 2: Structure of the LTE resource grid in the time and frequency domains [2].

2.4. Overview of Video Structure

Video is a sequence of images (frames) displayed in a sequence order. Three

types of frames (pictures) are used in video compression

• Intra-Coded picture (I frame): contain an entire image and coded independently

without reference to any other frame except themselves.

• Predicted picture (P frame): coded relative to the content of the preceding frame

either P or I. It holds only the changes in the image from the previous frame.

• Bi-directional predicted picture (B frame): coded with the reference to previous

and future frame either I or P. Group of Pictures (GOP) defines how the order of

I, P, and B frames are arranged.

2.4.1. Scalable video coding.Video streaming has become the dominant traffic

in wireless network. The bandwidth-hungry nature of multimedia applications allows

it to become one of the candidates that are going to fully benefit from the potential

of CR networks. The main challenge of streaming a video over a CR network is to

maintain stable and optimal video quality under the time-varying nature of a wireless

channel. To overcome this challenge, the idea of layered video coding was introduced.
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Scalable Video Coding (SVC) is a standard technique for video compression that al-

lows encoding a video stream into multiple layers; the base layer (BL) which contains

the essential bits required to decode the video sequence at an acceptable quality level,

and the enchantment layer(s) (EL) which contains bits that are used to improve stream

quality. However, the ELs can’t be decoded without receiving the BLs. SVC works as a

source control mechanism , where source rate is adopted according to the variations of

channel bandwidth to guarantee continuous playback and avoid buffer starvation which

results in degradation in quality of the received video [47]. By applying SVC, the video

is encoded once and it can be decoded in different ways depending on the network

conditions and user capabilities (i.e CPU capabilities and bandwidth). Recently, differ-

ent scalable video coding (SVC)techniques have been studied and proposed to support

heterogeneous networks with diverse users.

Scalable video coders are of different implementations, this includes coarse-

grained scalable (CGS), medium grained scalable (MGS) and fine-grained scalable

(FGS). H.264/SVC is the standard for scalable video coding [48]. SVC supports three

types of scalability, temporal, spatial and quality SNR scalability. First, temporal scal-

ability refers to the extraction of the video content at different temporal resolutions

(frame rate). Second, spatial scalability allows incorporating multiple spatial resolu-

tions (e.g., HD, SD) of the same video in a single bit stream. Finally, quality scalability

(or SNR scalability) refers to the possibility of extracting different quality variations of

the same video from a single bit stream trading off visual distortion [49].

Recently, researchers have been interested to take the advantages offered by

CR networks to stream multimedia survives. In multimedia services, the Quality of

Service (QoS) at the application layer is the most important factor from user’s prospec-

tive. Some of the works that have been done in CR networks focused on maximiz-

ing the throughput of SUs. However, other studies have showed that maximizing the

throughput dose not necessarily guarantee maintaining the required QoS at the applica-

tion layer [50].

The work in [8] focused on delay-sensitivity multimedia applications and con-

sider a scenario where SUs share a single-hop wireless adhoc network. A priority vir-

tual queue interface was proposed for heterogeneous multimedia users. In this scheme,
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the SUs exchange their information and time share the various frequency channels in

a decentralized fashion. A dynamic learning algorithm is then developed based on the

priority queue analysis which assists the SUs to track the actions of the other users and

adequately adapt their own strategies and actions.

2.5. Related Works

2.5.1. Multimedia services over CR networks. In [51–53], they focused on

streaming scalable encoded video-on-demand over CR networks. They consider an

infrastructure-based CR system. They proposed a channel allocation scheme that jointly

consider the status of the playback buffers at the SUs and the quality of the available

channels while allocating channels among active SUs. They also proposed a streaming

algorithm that schedules the video frames by taking the benefit of SVC and the adaption

of the used modulation level on the channel conditions to meet a predetermined target

bit error rate (BER).

In [54], they proposes an opportunistic switching-based and delay-aware sched-

uler that maximizes the total throughput for centralized CRNs. The scheduler is an

inter-frame scheduler that helps in reducing the effect of hardware switching delay by

excuting the scheduling and allocation for multiple consecutive time slots. The pro-

posed scheduler jointly considers the delay associated with the scheduling process as

well as the effect of spectrum switching delay. They formulated an optimization prob-

lem to find the optimum scheduler while taking into account the switching delay, the PU

activity, historical information on the PU behavior, the channel quality, and the status

of the SUs.

In [55], they proposed a novel low complexity stochastic based rate control ap-

proach for streaming SVC video sequences. The approach is applied by obtaining an

exact closed-form expression for the statistical distribution of the total amount of data

that can be transmitted over the available PU channels for any arbitrary interval of time.

Then, thr rate control mechanism was devised to fit SUs’ data in the available data

budget. A comprehensive study was conducted to study the effect of the proposed rate

control scheme on the continuity and quality of the reconstructed video sequences.
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In [56] , they proposed a content driven proportionate channel allocation scheme

for streaming SVC over CR network. The proposed allocation scheme takes into con-

sideration the various requirements of secondary applications while maintaining the

long term fairness among SUs. The main aim of the work was to improve the overall

satisfaction of the SUs (QoE) especially for rapid motion (RM) type of video users.

In [57], they investigated the problem of multicast multimedia streaming in

multi-hop CR networks. They proposed an intelligent multicast routing protocol for

multi-hop ad hoc CRNs that can supports multimedia streaming. The proposed proto-

col performs path selection and channel assignment phases for the different multi-cast

receivers. Path selection is based on the shortest path tree (SPT) that performs the ex-

pected transmission count metric (ETX). While, channel selection is based on the ETX,

which is a function of the probability of success (POS) over the different channels that

depends on the channel-quality and availability.

In [58], they focused on multimedia transmissions over multi-hop CR networks.

They proposed a cross layer routing scheme for transmitting adaptive bitrate video

where the best path is chosen based on the value of end-to-end path stability time and

end-to-end path delay along with the real time multimedia QoS requirements. Also,

they introduced a periodic path updation scheme to guarantee path continuity, avoid the

interference with the PU, improve the channel utilization and error resilience.

The work in [59] addresses the problem of estimating and/or identifying the

achievable quality of service (QoS)-levels over the available licensed channels. They

proposed a novel channel quantification and QoS-levels identification scheme which

is known as NOn-parametric Bayesian channEls cLustering (NOBEL). The proposed

scheme exploits the PUs’ channel usage features and models them by using an infinite

Gaussian mixture model and collapsed Gibbs sampling model. The proposed scheme

assists SUs to find an appropriate channel to meet the requirements of their multimedia

application.

2.5.2. LTE-based CR network. CR networks are considered to be the future

of the cellular networks in the context of spectrum sharing between different operators.

Spectrum sharing allows lightly loaded operator to share their unused spectrum with

24



another operator to efficiently utilize the spectrum. This is relevant in the context of the

4G cellular standard 3GPP LTE-A due to the recently introduced carrier aggregation

(CA) feature [60, 61]. LTE is chosen as the implementation platform of CR networks

due to its desirable characteristics, such as spectrum flexibility, fast adaptation to time-

varying channel conditions, high spectral efficiency and robustness against interference

[62, 63].

Authors in [60] presented a case of sensing for dynamic spectrum sharing in

Cognitive LTE-A cellular networks. They developed and analyzed energy detectors that

is designed to solve the problem of sensing in presence of a desired signal in presence

of a desired signal in the context of an LTE-A based system.

The target of the work done in [64] was to implement a spatial interweave LTE-

TDD based cognitive radio. They argued that using LTE as the physical layer of the CR

network would results in a high spectral efficiency network. They focused on spatial in-

terweave CR network in which a SU uses an antenna array to perform null-beamforming

in the PU’s direction in order to spatially reuse the spectrum. They proposed innovative

solutions to avoid interference to the primary system where they designed at the sec-

ondary base station an over-the-air calibration technique and a beamforming strategy

based on the channel reciprocity hypothesis inherent in TDD systems.

Authors in [65] proposed a coordinated dynamic spectrum access scheme for

LTE based on cognitive radio (CR) technology ,where a central entity and Spectrum

Policy Server (SPS) is responsible for spectrum management in a LTE multi operator

heterogeneous network (HetNet). They found that their proposed architecture improved

spectral efficiency and enhanced data rates.

Authors in [63] studied the problem of transmission power and bandwidth allo-

cation in a cognitive LTE based network consisting of secondary eNBs with different

requirements on SINR and application-layer QoS. They proposed a novel resource al-

location strategy in which the total queue size in enhanced NodeBs (eNBs, primary and

secondary) is minimized subject to interference requirements and queue stability con-

straints of the primary eNBs. Their proposed algorithm showed low complexity and

outperformed previously proposed schemes.

25



Chapter 3: A Probabilistic Expression for the Amount of Data

Provided to Cognitive Users in CR Networks

In this chapter, we formulate the problem of quantifying the total amount of data

that can be provided by the available PU channels using moment method.

3.1. Problem Formulation

The problem we investigate in this chapter is to quantify the total amount of data

that can be provided by the available PU channels using moment method. Specifically,

a closed-from approximation for the distribution of the total amount of data available

for SUs over all the available primary channels during any arbitrary interval of time was

obtained.

3.2. Primary User Activity Model

In CR networks, SUs shares the radio spectrum with PUs. Higher priority is

giving to PUs, and SUs have to vacate the spectrum whenever the PU is detected to

avoid any possibility of causing an interference. Hence, the performance of SUs in CR

networks is highly dependent upon modeling the behavior of PUs (their traffic charac-

teristics). There are different types of PUs and each type has different traffic model.

For example, when traffic is assumed to be bursty (e.g. TV channels) the PU activ-

ity pattern in each channel can be modeled as 2-state ON / OFF Markov model where

ON-period represents the time when a channel is busy i.e. occupied by PU, and an

OFF-period represents the time where a channel is idle (SUs can opportunistically ac-

cess the channel). ON/OFF periods are assumed to be exponentially distributed with

rate parameters λON and λOFF [66–69]. On the other hand, when the traffic of PU is

more dynamic and time variant (e.g. cellular networks), the 2-state model might not

be the best option. Thus, models as Poisson process [70–73] and First-difference filter

clustering model might be more accurate as it consider the short-term fluctuations and

the bursty and spiky features of the PU activities [74]. Another widely used model is

the M/G/1 queue model in which arrivals are Markovian, service times have a general

distribution, and the packet arrival process is a Poisson random process with average

packet arrival rate λ [8] [75].
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3.3. System Model

Our system model in Figure 3 shows a CR base station that multicasts the en-

coded video sequences to multiple SUs during the idle intervals on subset of the M chan-

nels. There are M-PUs with M designated frequency channels; PU = PU1, . . . ,PUM,

and N-SUs; SU = SU1, . . . ,SUN . The primary channel is modeled as a 2-state Markov

model. In state 1, the channel is idle and a SU can access the spectrum and transmit

with a transmission rate R while in state 0, the channel is busy and occupied by the PU.

Figure 4 shows the system model of the mth channel. Primary channels are assumed to

be independent.

Figure 3: System model.

I Bβm

γm

Figure 4: Primary channel model.

3.4. The Distribution of the Total Amount of Data

In this section,the proposed closed-from approximation for the distribution of

the total amount of data available for SU over all the available primary channels during

any arbitrary interval is presented. The main derivation is adopted from [76], but the
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equations were adjusted to serve our problem. The accuracy of the obtained closed-

form approximation is verified using simulations and numerical investigations.

3.4.1. Statistical analysis. Let I(t) represents the random process of the total

amount of data that can be transmitted over all the available channels during an arbitrary

interval of time, t. Thus, I(t) can be expressed as

I(t) =
∫ t

0
R(τ) dτ, (1)

and

R(t) =
M

∑
m=1

R×Am (t), (2)

where R(t) is the random process that represents the total rate available over all idle

primary channels at time instant t, R is the transmission rate, and Am (t) is the 2-state

Markov process that models the availability of the primary channel with γ and β denot-

ing the transition rates from state 0 to state 1 and from state 1 to state 0, respectively.

Now, let’s define

Zm(t) =
∫ t

0
Am(τ)dτ, (3)

where Zm(t) represents the amount of time available at the m− th channel during an

arbitrary interval of duration t. Figure 5 illustrates the time space of the system. The

amount of time available in each frequency channel F1, F2, . . . , FM is a random process,

then the total amount of time available over all the available primary channels is another

random process that is the summation of the individual random processes.

Hence, the total amount of time available over all available channels can be

written as

Z(t) =
M

∑
m=1

Zm(t). (4)
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Therefore, I(t) can be written as

I(t) = RZ (t) . (5)

Once the distribution of Z(t) is obtained, the distribution of I(t) can be easily obtained

through transformation of random variables as

FI(t) (i) = FZ(t)

(

i

R

)

, (6)

fI(t) (i) =
1

R
fZ(t)

(

i

R

)

, (7)

where FI(t) (i) and FI(t) (i) are their cumulative distribution functions (CDFs) of the

process I(t) and Z(t). While, fI(t) (i) and fZ(t)

(

i
R

)

are the probability density functions

(PDFs).

Figure 5: Accumulated time available over M channels.

Due to the difficulty of obtaining the exact distribution of Z(t), the moment

matching method can be used to get an approximated version of the distribution. As

matching the moments is equivalent to matching the cumulants, we will approximate

the distribution through matching its cumulants. To obtain the n− th cumulants we use

κn = Kn (0) Where K(v) is the n− th derivative of the cumulant generating function
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(CGF), which is found for Z(t) by K (v) = ln
(

E
[

evZ(t)
])

, where E(.) is the expectation

operator.

As the sampled process Am

(

t j

)

∼ Bernoulli
(

γm

γm+βm

)

the process Z(t) can be

treated as the limit of a stochastic sequence of a partial sum of Bernoulli RVs. There-

fore, Z(t) can be written as

Z (t) =
M

∑
m=1

Zm (t) = lim
k→∞

M

∑
m=1

k

∑
j=1

Am

(

t j

)

∆t. (8)

When the Bernoulli RVs are independent or uncorrelated the sequence of the partial

sum converges to a deterministic function according to the strong law of large numbers.

However, in our case the RVs are assumed to be correlated over a short window of time

and the sequence of partial sums converges to a distribution that might be a skew nor-

mal. From the third cumulant, when γ 6= β , or the time interval t is relatively small

compared to 1
γ +

1
β , the PDF that results from sampling Z(t) can be approximated by

a mixture of a skew normal distribution, however, as the number of the accumulated

independent channels increases the normal distribution can be used to provide an ac-

curate approximation for the distribution of Z(t) by the central limit theorem. While,

when γ and β are reasonably large or approximately when they are equal the normal

distribution can be used irrespective of the number of accumulated channels. Based on

this and using the Markov property, the PDF of Z(t) can be approximated by

fZ(t)(z) =
2

ω(t)
φ

(

z−ξ (t)

ω(t)

)

Φ

(

α(t)

(

z−ξ (t)

ω(t)

))

, (9)

where φ and Φ are the PDF and the CDF of N (0,1) distribution, respectively. The

parameters of the skew normal part of Z(t) are given by:

ω (t) =
√

πκ2 (t)/(π−2ζ 2 (t)),

α (t) = ζ (t)/
√

1−ζ 2 (t),
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and

ξ (t) = κ1 (t)−ω (t)ζ (t)
√

2/π, (10)

where ζ 2(t) = π
2
× |κ3 (t)|

2
3 /

(

|κ3 (t)|
2
3 +

(

2− π
2

)
2
3 κ2(t)

)

and κ1 (t), κ2 (t), and κ3 (t)

are the first three cumulants of the skew normal part of the distribution of Z(t), where

κ1 (t)=E[Z (t)], κ2 (t)=E[Z2 (t)]−E2[Z (t)], and κ3 (t)=E[Z3 (t)]−3E[Z2 (t)]E[Z (t)]+

2E3[Z (t)]. Therefore, we need to calculate the first three moments of Z(t) in order to

calculate the required cumulants. The first moment is

E[Z (t)] =
M

∑
m=1

∫ t

0
E[Am(τ)]dτ =

M

∑
m=1

γm

γm +βm
t, (11)

The second moment of Z(t) is obtained as follows

E[Z2(t)] =
M

∑
m=1

∫ t

0

∫ t

0
E[Am(τ)Am(s)]dτ ds, (12)

Clearly, the second moment of Z(t) is simply the correlation of the process A(t). In

fact, all higher order moments will depend on how the samples of the process Am(t) are

correlated. Hence, the second moment is

E[Z2 (t)] =
M

∑
m=1

(

γm

γm +βm

)2

t2 +
2γmβm

(γm +βm)
4
×

(

e−(γm+β m)t +(γm +βm)t−1

)

, (13)

Similarly, the third moment is obtained by

E[Z3(t)] =
M

∑
m=1

∫ t

0

∫ t

0

∫ t

0
E[Am(τ)Am(s)]dτ ds dr, (14)

Due to symmetry, the above integration can be simplified by considering the cases

where τ ≤ s ≤ r then multiplying the result by 3! which is the number of permuta-
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tion. Thus, the result is

E[Z3 (t)] =
M

∑
m=1

(

γm

γm +βm

)3

t3 +
6γm

2βm

(γm +βm)
4
t2 (15)

+

6γmβ 2
m

(

e−(γm+β m)t +1

)

−12γm
2βm

(γm +βm)
5

t

+

12γmβm(γm−β m)

(

1− e−(γm+β m)t

)

(γm +βm)
6

.

Now, using (9), the CDF can be straightforwardly obtained as,

FZ(t)(z) = Φ

(

z−ξ (t)

ω(t)

)

−2T

(

z−ξ (t)

ω(t)
,α(t)

)

(16)

where T (., .) is the Owen’s T function, and Φ is the CDF of N (0,1) distribution . The

distribution of the total amount of data I(t) can be obtained easily by using (6) and (16).

3.4.2. Analytical and simulation results. In this work, Monte-Carlo simu-

lations was used to investigate the accuracy of the proposed distribution in modeling

the total amount of data that can be obtained from all the available primary channels.

In simulation, wireless channels were assumed to be independent and identically dis-

tributed random processes, and a 2-state Markov chain was used to model each channel.

In all the presented graphs lines and markers (circles) indicate analytical and simulation

results, respectively.

Figure 6 illustrates how the proposed skew normal distribution perfectly matches

the PDF of the total amount of time available for all SU, Z(t) for different number of

channels M and different sampling time t. Clearly, γ and β highly influence the direc-

tion of the skewness of the distribution as it can be noticed from Figures 6(a)-(c). When

γ < β the distribution is skewed left while it is skewed right when γ > β . However,

as the number of channels increases the distribution will become more symmetric. In

addition, when γ = β the distribution of Z(t) will always be symmetric irrespective of

the accumulated number of channels.
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(a) γ < β .

(b) γ > β .

(c) γ = β .

Figure 6: Analytical and simulated PDF of Z(t) for different number of primary

channels, different sampled time, and different transition rates.
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Chapter 4: LTE-based Cognitive Radio Network

In this chapter, we formulate the problem of streaming scalable video sequences

from a base station (BS) to multiple secondary users (SUs) over an LTE-based CR

network. The proposed system model and assumptions are introduced first, then rate

calculations and resource allocation and streaming algorithms are discussed.

4.1. Problem Formulation

The problem we investigate in this chapter is to implement an LTE-based CR

network, solve the problem of resource allocation, and stream SVC video sequences

over the proposed system.

4.2. System Model

In our work, we implemented a CR system using an LTE platform, where PUs

and SUs share a set of M orthogonal channels with K resource blocks (RBs). An in-

terweave mode of transmission was assumed, where the primary and secondary users

can’t simultaneously access the CR spectrum. Therefore, once a channel is declared as

idle by the BS, it will remain available until the end of a certain period of time denoted

as Tslot with no interference to the PUs. RBs are scheduled every Tslot which is equal

to 1 ms duration. Equal power allocation is adopted such that all RBs have the same

transmission power, which is equal to the maximum power assigned to the base station

divided by the total number of RBs [77–79].

The available RBs are allocated to SUs based on their feedback information,

which include their buffer occupancies as well as the measured SNR. The channel gain

between BS and SU (hBs,SU) is assumed to be constant within each Tslot . Micro urban

channel model introduced in [80] is adopted in simulation. A distance-based path loss,

shadow fading and Rayleigh fading is assumed. Shadow fading is modeled by log-

normal random variable and the path loss for the BS-SU link is defined as 36.7 log10

(d[m]) + 22.7+ 26 log10( f [GHz]). We assume that the availability of each time slot

follows a discrete-time two-state Markov model with a transition probability matrix Pm

where m is the channel index. The duration of an idle time slot Tslot is assumed to be

fixed and equal to TTI.
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Once the channel is declared to be idle at any TTI, the BS then schedules the

video frames from different coded layers under the constraints of maximum bit bud-

get that is offered to the user and the delay deadline using streaming algorithm. We

assess the performance of the proposed video streaming scheme using the Peak Signal

to Noise Ratio (PSNR) and average PSNR , which are typically used to quantify the

spatial aspect of the video quality. The scalability coding techniques allow the BS to

adapt to the dynamic network conditions and the intermittent availability of the PUs’

channels to deliver the video sequences with the highest possible quality and minimum

discontinuities. Video frames form different coded layers are sent on the available time

slots by the BS according to proposed channel allocation and streaming algorithms that

will be discussed later. Figure 7 shows the proposed video streaming scenario. In this

work, available channels and available RBs will be used interchangeably.

Figure 7: Proposed video streaming scenario.

4.3. Rate Calculation

Considering channel conditions and the minimum required rate by each user,

RBs are allocated to each SU in a round robin fashion. Prior to allocation, the feedback

channel state information (CSI) are provided to the BS by SUs including their buffer

occupancies as well as the measured SNR over each RBs. After that, the BS estimates
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the number of RBs required by each user using the following metric

RBReq
n =

rn

1
N ∑

N
j=1 r j

×
R

req
n

1
N ∑

N
j=1 R

req
j

, (17)

where rn is defined as

rn =
1

K

K

∑
k=1

SNRn,k (18)

SNRn,k is the signal to noise ratio of user n on RB k over a specific Tslot , K is the total

number of available RBs, and R
req
n is the required throughput of user n.

The achievable rate of any user will depend on the nature of its communications

link and it can be calculated as

Rachievable
n = Bnlog2(1+

PBS|hBS,SU |
2

N0Bn
) (19)

where N0 is the Additive White Gaussian Noise (AWGN) power spectral density and

Bn is the bandwidth allocated to SUn and it can be found using

Bn = Kn×BW (20)

where Kn is the number of resource blocks allocated to user n and BW represents the

RB bandwidth in LTE, which is 180 kHz.

In LTE network, rate calculations may follow two approaches, one based on

Shannon’s capacity theorem, and the second scheme based on LTE Transport Block

(TB) structure.

1. Shannon’s capacity can be used to predict the maximum theoretical rate of infor-

mation transmitted through a channel using:

RT heoretical
n = Bnlog2(1+SNRn) (21)

2. Based on LTE standard specifications, the rate can be calculated as follows:

• 1 Time-slot (1 RB) occupies 0.5 ms.
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• There are 7 modulation symbols per 1 time-slot.

• 1 Modulation symbol is used to transfer x bits, based on modulation scheme

(QPSK, 16-QAM, or 64-QAM).

Therefore, based on LTE standard Release 13 each user is assigned a Transport

Block (TB) over the system physical layer to transmit data. Each TB is transmitted

over 1 TTI (Tslot). The size of a TB, known as Transport Block Size (TBS), is cal-

culated based on the Modulation and Coding Scheme (MCS) and the number of RBs

allocated to a SU by the BS as defined in the LTE Technical Specification in [62] Sec-

tion 7.1.7.1,(Table 3). To find the rate, the BS collects the CQI from the feedback sent

(measured SNR) by the SU, then the BS maps the measured SNR to CQI [81], (Table

2). All RBs allocated to the same user should be assigned the same MCS index IMCS.

The size of TB to be allocated to a SU is found based on a mapping relation between

IMCS, TBS index (IT BS) and the number of resources RB
Req
n,t allocated by BS as defined

in the LTE Technical Specification. Consequently, the rate is found by

Rn,t = f (IMCSn,t ,RB
Req
n,t ) (22)

where f (IMCSn,t ,RB
Req
n,t ) is a mapping function between the number of resource blocks

allocated and TBS.

4.4. Dynamic Resource Allocation

The goal of our proposed video streaming algorithms is to maintain continuity

of the playback at the SUs end and enhance the quality of the streamed scalable video

sequences. Two algorithms are introduced to achieve the goal; channel allocation and

streaming algorithms. The channel allocation algorithm is designed to adaptively sense

and allocate the available channels (RBs). While, streaming algorithm is responsible

for scheduling video frames within the slots of the allocated RBs based on certain con-

strains (frames deadlines).

4.4.1. Allocation algorithm. The available RBs identified by the BS are allo-

cated to SUs based on their feedback information, received regularly every Tslot (TTI)

on a reliable error free reverse channel, which includes their buffer occupancies as
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well as the measured SNR of different RBs. Three allocation schemes are applied;

buffer-based, SNR-based, and joint buffer and SNR based where the buffer state and

the reported SNR are used to establish the allocation policy. The pseudocodes for the

allocation techniques used are explained in Algorithms (1),(2), and (3).

4.4.1.1. Buffer-based allocation. The BS allocates the available RBs to SUs

by comparing their buffer occupancies with a predefined occupancy threshold ∆th to

determine the urgency of sending the video frames to each SU. Thus, SUs with lower

occupancies are served first to avoid starvation, however, they may not be allocated a

good quality RBs. The algorithm follow the two following scenarios:

• All SUs have their buffer occupancies larger than the threshold (∆n > ∆th , ∀n =

1,2, .., N), or all their buffer occupancies are below or equal the threshold ∆n ≤

∆th, ∀n = 1,2, .., N. In this case the available RBs are equally allocated over all the

SUs in a Round Robin fashion, starting with the SU with the minimum occupancy.

The procedure is repeated until all the available RBs are fully allocated to the SUs.

• Some SUs are underflowing (∆n ≤ ∆th n = 1, 2, .., Nu) where NU ≤ N, thus, the

available RBs are only allocated to the needed SUs starting with the SU of the

minimum occupancy. The procedure is repeated until all the available RBs are

fully allocated to the SUs.

4.4.1.2. SNR-based allocation. The second scheme is solely based on the re-

ported SNR of the different RBs as seen by the SUs. Each SU reports to the BS a vector

of the measured SNR over all the available RBs, SNRn = [SNRn,1,SNRn,2, ...,SNRn,K].

To elaborate, assume that the nth SU has the largest SNR reported for the kth RB, thus,

SNRk,n = max (SNRk,1,SNRk,2, ..,SNRk,N). Hence, the BS will allocate the kth RB to

the nth user who can achieve the maximum quality when assigned the RB. If two or

more SUs have the same level of quality on a RB, then that RB is randomly allocated to

one of them. While the allocation that is based only on reported SNRs may assign the

RBs with good quality to SUs, the ignorance of the buffer state may result in starvation

and interruptions in the playback for some SUs. The procedure is repeated until all the

available RBs are fully allocated to the SUs.
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Figure 8: Joint based channel allocation algorithm flow chart.

4.4.1.3. Joint allocation. The third scheme is a joint scheme where allocation is

based on both channel quality and buffer occupancy. The BS allocates SUs with buffer

occupancies below the threshold (∆n) the RBs with the maximum quality. Figure 8

summarizes the algorithm.

4.4.2. Streaming algorithm. Our video sequences are encoded using the H.264/SVC

encoding standard into one BL and two ELs. Receiving only BL provides the basic ac-

cepted quality level, however, the quality level can be enhanced by transmitting more

ELs. If the buffer occupancy of a SU is below the threshold , a base layer is transmitted

to maintain the continuity. After all BLs for all the scheduled SUs are transmitted, if

there still available RBs ELs will be scheduled. EL layers will be transmitted when all

lower dependent layers have been transmitted and correctly received. To decide how

many EL layers to transmit, the number of layers L of a frame f should be received be-

fore their deadlines. This is done by adding the current time slot t to the time required
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Algorithm 1: Buffer-Based Allocation

Input : K, ∆n,n = 1,2, ...,N., RB
Req
n

Output: RBSU1
,RBSU2

, ...,RBSUN
// Vector of RBs allocated to each SU.

Set : ∆th = x; // Buffer threshold.

1 if ∆n > ∆th or ∆n ≤ ∆th, ∀n = 1,2, .., N then

2 sort (∆1,∆2, ...,∆N) // sort in the ascending order. Allocate required RBs

to all SUs on Round Robin basis;

3 K ← K - RB
Req
n // the remaining available RBs

4 end if

5 else if ∆n ≤ ∆th, n = 1, 2, .., Nu then

6 sort (∆1,∆2, ...,∆Nu
) // sort in the ascending order. Allocate required

RBs to all SUs on Round Robin basis;

7 K ← K - RB
Req
n // the remaining available RBs

8 end if

Algorithm 2: SNR-Based Allocation

Input : K, SNRn,n = 1,2, ...,N, RB
Req
n .

Output: RBSU1
,RBSU2

, ...,RBSUN
// Vector of RBs allocated to each SU.

1 for k = 1,2, ..,K // for each available RB do

2 SNRk,n = max(SNRk,1,SNRk,2, ..,SNRk,N); // Allocate the required RBs

to SUn with max SNR

3 K ← K - RB
Req
n // the remaining available RBs

4 SNR(:,n) = 0 // remove SUn

5 end for

to transmit ELs as below:

t +
(∑L

l=1 b
f ,l
n )

rn
< display time of frame f (23)

where b
f ,l
n is the number of bits in the lth EL that is corresponding to frame f an rn is

the average rate of the nth SU.

4.5. Simulation Results

In this chapter, we evaluate the performance of the proposed architecture through

extensive simulations. We consider a single LTE cell with a BS located at the center of

the cell with a radius of 500 m and has 3 PUs. PUs and SUs are distributed randomly.
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Algorithm 3: Joint buffer and SNR Based Allocation

Input : K, SNRn,n = 1,2, ...,N, RB
Req
n .

Output: RBSU1
,RBSU2

, ...,RBSUN
// Vector of RBs allocated to each SU.

Set : ∆th = x; // Buffer threshold.

1 if ∆n > ∆th or ∆n ≤ ∆th, ∀n = 1,2, .., N then

2 sort (∆1,∆2, ...,∆N) // sort in the ascending order. Allocate the required

RBs to all SUs on Round Robin basis;

3 for k = 1,2, ..,K // for each available RB. do

4 SNRk,n = max(SNRk,1,SNRk,2, ..,SNRk,N); Allocate the required

RBs to SUn with max SNR;

5 K ← K - RB
Req
n // the remaining available RBs

6 SNR(:,n) = 0 // remove SUn

7 end for

8 end if

9 else if ∆n ≤ ∆th, n = 1, 2, .., Nu then

10 sort (∆1,∆2, ...,∆Nu
) // sort in the ascending order. Allocate RB to only

in need SUs on Round Robin basis according to their ascending order;

11 for k = 1,2, ..,K // for each available RB. do

12 SNRk,n = max(SNRk,1,SNRk,2, ..,SNRk,Nu
); Allocate required RBs

to SUn with max SNR;

13 K ← K - RB
Req
n // the remaining available RBs

14 SNR(:,n) = 0 // remove SUn

15 end for

16 end if

Available RBs are uniformly distributed among PU channels by the BS. For example,

if the BS operate at 20 MHz, thus, in total there are 100 RBs available to be distrusted

among the 3 PUs. The total amount RBs available for SUs depends on the total avail-

able PUs’ channels. If only one PU channel available then 33 RBs are available, if 2

PUs’ channels are available then 66 RBs are available, and if the three PUs’ channels

are available then 100 RBs.

4.5.1. Simulation parameters. In this section, MATLAB has been used as a

simulation environment and the numerical results are averaged over 50 runs, each run

last for 30 seconds. In all our simulations, the BS transmits video sequences that are

encoded to N = {3,8,15} SUs over M = 3 PU’ channels that are opportunistically

accessed by SUs according to the discrete-time two-state Markov chain model with

transition matrix P = [0.957 0.043 ;0.9 0.1] with limiting probability π1 of 30%. The
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transmission power of the BS to the maximum value 46 dBm (39.8 W). Moving to

video streaming parameters, two video sequences have been used from trace file library;

Sony Demo and Ghandhi. Video sequences are encoded into one BL and two ELs with

playback rate of 30 frames per second, and the GoP structure of the layer is G16B15.

4.5.2. Streaming single-layered video. We used the H.264 single layer encoded

trace file for the video sequences Sony Demo with playback rate of fp = 30 frame per

second. The GoP structure of the layer is G16B15. Our main objective is to maintain

continuous playback at the SUs end by avoiding starvation moments at the buffer, to

provide SUs with the best possible channel quality, and maximum guaranteeing fairness

among SUs. To evaluate the performance of proposed allocation schemes, two metrics

were applied: Jain’s fairness index and the average buffer occupancy per user in frames.

Jain’s fairness index is a metric that is used in network engineering to determine fairness

among users. The result ranges from 1
N

(worst case) to 1 (best case). Jain’s fairness

index is calculated by:

J(R
Req
SU1

,R
Req
SU2

, . . . ,R
Req
SUN

) =
(∑N

i=1 R
Req
SUi

)2

N×∑
N
i=1(R

Req
SUi

)2
(24)

In Figure 9 fairness is calculated using Eq. 24. Two scenarios were applied

for the case of using the reported SNR as an allocation scheme, greedy SNR and SNR-

based allocation. The only difference between the two techniques is that in greedy SNR,

SUs can be allocated RBs as long as they report the highest SNR during TTI. However,

in the other technique, SUs could be assigned RBs only once in every TTI. Greedy SNR

is the worst for all the cases, thus it will be ignored. Whereas, the joint buffer and SNR

based technique outperforms when the number of SUs decreases as in Figures 9 (a), 9

(b) and 9 (c). Buffer-based allocation technique seems to have comparable performance

to the joint buffer and SNR based when the number of SUs is equal to 15 and 8 as in

Figures 9 (a) and 9 (b) .

Figures 10 (a), 10 (b) and 10 (c) show the effect of the limiting (i.e. steady state)

probability of finding channel m as idle (i.e. π1,m) on the average buffer occupancy per

user. In this test, the number of RBs was fixed to be 6 and the simulation was run for
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different number of SUs {3,8,15}. We notice that joint buffer and SNR based approach

outperforms the SNR and buffer-based in most of the cases. Also, increasing the number

of SUs decreases the average number of frames at SUs’ buffer. Such behaviour is

expected as the number of shared resources is fixed. Also, we notice that increasing

π1,m will increase the average number of frames at SUs’ buffer which is expected as the

probability of the channel being available increase and more transmission can occur .

Figures 11 (a), 11 (b) and 11 (c) show the effect of increasing the number of RBs

on the average number of frames at SUs’ buffer. Based on Figure 11, we again notice

that SNR-based scheme performs the worst. The reason is that our main objective which

is avoiding buffer underflow is completely ignored when BS allocates RBs among SUs.

The allocation is completely done based on the reported SNR irrespective of the buffer

state. To understand this more, lets assume the following scenario: there are only two

active SUs in the network; SU1 and SU2. Lets assume that SU1 has enough frames at the

buffer (∆1 >> ∆th) and SU2 is starving (∆2 < ∆th), however, SU1 reports better SNR,

thus the BS will allocate the available RBs to SU1 and not to the starved user SU1. On

the other hand, we can notice that joint buffer and SNR based scheme performance is

comparable and sometimes better than the buffer-based scheme in almost all the cases.

The reason is that our main objective is met by maintaining a number of frames at buffer

as well as taking into consideration the SNR seen by the user to guarantee a successful

transmission. Another important observation that when the number of SUs increases

from 3 to 15 the performance gap between each scheme increases and this shows that

the joint buffer and SNR based is definitely outperforming buffer-based scheme. Also,

we can notice that the trend is more obvious when the maximum number of available

RBs is small (e.g. 15 and 25) and less obvious for bigger number of available RBs. The

reason is when there are plenty of resources available there are less compromises to be

done, and all the users get the chance to meet the objective of avoiding starvation in

both schemes. On the other hand, when the number of available RBs is restricted the

joint buffer and SNR based outperforms. This shows that under limited resources and

when more SUs are active, joint buffer and SNR based technique performance is the

best.

43



(a) Jain’s index when a maximum of 6 RBs available.

(b) Jain’s index when a maximum of 15 RBs available.

(c) Jain’s index when a maximum of 25 RBs available.

Figure 9: Jain’s index for greedy SNR, SNR, buffer, and joint buffer and SNR based

allocation techniques Vs. the number of active SUs for different number of available

RBs.
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(a) SUs = 3.

(b) SUs = 8.

(c) SUs = 15.

Figure 10: The effect of probability of PUs’ channels availability on the number of

frames at the SUs’ buffer.
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(a) SUs = 3.

(b) SUs = 8.

(c) SUs = 15.

Figure 11: The effect of the number of RBs on the average buffer occupancy per user.
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4.5.3. Streaming SVC video. In this section, all previous network set up was

applied. PUs and SUs are distributed randomly in the network. Available RBs are

uniformly distributed among PU channels by the BS and total amount of RBs available

for SUs depends on the total available PUs’ channels. If one PU channel available, then

33 RBs are available, if 2 PUs’ channels then 66 RBs are available, and if the three

PUs’ channels then 100 RBs. Coarse-Grained video sequences (CGS) are used, Sony

Demo and Ghandhi video sequences that consist of 250 total number of frames which is

encoded into one BL and two ELs. The resolution of the videos is 352x288, GoP pattern

is G16B15, and 30 frame/sec. The evaluation metric used to compare the performance

of the three allocation method is PSNR. Previously, we explained the effect of changing

the number of available RBs (LTE channel bandwidth) and as expected, increasing the

number of RBs increases the opportunity of transmitting video frames. Thus, in this

section we only study two case scenarios: operating at 20 MHz (maximum of 100 RBs

available) and at 3 MHz (maximum of 15 RBs available). Buffer threshold (∆th) is set

to 5 frames .

Figure 12 shows the average PSNR of the received video when BS operates

at 20 MHz, and Sony Demo video sequences are transmitted to all SUs. Comparing

Figures 12 (a),12 (b), and 12 (c) we can notice that increasing the number of SUs from

3 to 15 decreases the quality of the received video as less resources will be available

for each use. In addition, we can notice that the worst performance in Figures 12 (a),12

(b), and 12 (c) was achieved by SNR-based and this is similar to the conclusion we got

in the section 4.5.2. The reason is due to the unfairness of the algorithm where RBs

are allocated based on only quality seen by SUs irrespective of their buffer state and the

urgency of receiving frames. Thus, SUs who are not in need (not in starvation mode)

can continue to receive RBs as long as the maximum quality RBs are seen by them.

The Avg. PSNR value in SNR allocation reflects that on average users were able to

maintain the minimum quality (as if receiving only the base layer) with PSNR of 37

dB. However, on a user basis some SUs were not even able to be allocated any RBs due

to their poor CSI reported as we will show later. Moreover, on average, all SUs were

able to receive the video with the highest quality (original quality: receiving both ELs)

when joint buffer and SNR based allocation was applied as seen in Figure 12 (a) with
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an average PSNR of 57 dB. Similar quality was achieved using buffer-based allocation,

but there was a slight drop in quality at frame 100, which reflects that some SUs were

not able to receive the two ELs due to lack of available RBs at this Tslot . Moreover,

in Figure 12 (b), when increasing the number of available SUs, joint buffer and SNR

based was clearly outperforming buffer-based. There was huge degradation in quality

using buffer-based allocation. The reason is due to the ignorance of the RBs’ quality.

SUs with the lowest buffer occupancy are guaranteed to be served first, however, they

are not guaranteed to get a good quality RBs that can support their required rate and

this may result in starvation and interruptions in the playback. On the other hand, this

is not the case for joint buffer and SNR based as the buffer state and quality of RBs are

considered while allocation is performed. Figure 12 (c) shows the achieved Avg. PSNR

when the number of SUs is increased to 15 SUs. Although the performance trend

of buffer and joint buffer and SNR based is similar, the joint buffer and SNR based

performance shows that more SUs were able to receive frames with higher quality, and

this reflects that even when the number of RBs to be allocated to each SUs decreased (as

number of SUs increased) the joint buffer and SNR based allocation was quantitatively

and qualitatively better. The reason of the deep drop in some frames is due to their large

sizes (BLs and ELs) and the limited available resources .

Figures 13 shows the average PSNR of the received video when BS operates

at 20 MHz, and Ghandhi video sequences are transmitted to all SUs. Comparing the

results obtained from Figure 12 and Figure 13, we can notice that the general trend was

similar. The joint buffer and SNR based allocation outperform the other two schemes

in most of the cases and SNR allocation achieved the minimum performance. However,

we can notice that the Avg. PSNR was decreasing when the number of SUs increases in

the case of SNR allocation, which was not the case when Sony Demo video sequences

were used. The reason that Ghandhi video sequences have larger frame size, that is why

even the minimum quality (receiving only BLs) was not achieved by some SUs when

the number of SUs is increased .

Figure 14 shows the average PSNR when the BS operates at 3MHz (maximum

of 15 RBs available) for Sony Demo video sequences. Obviously, there is a huge degra-

48



dation in the received video quality compared with Figure 12 which is expected as the

number of RBs decreased. Generally, the same trend is happening where SNR-based

had the worst performance and the joint buffer and SNR based performed the best. In

Figures 14 (b) and (c) we can notice that SUs using SNR allocation are suffering from

huge degradation in quality (not even receiving BLs). The first reason is due to the very

limited number of RBs (15 RBs if the 3 PUs’ channels available) available for SUs, by

which the level of competition among SUs is increased. The second reason is due to the

unfairness of the algorithm itself as explained earlier. While buffer and joint allocation

are having comparable performance. On the other hand, joint buffer and SNR based

allocation shows slightly better performance than buffer-based in the three cases. Fig-

ure 15 shows the average PSNR when the BS operates at 3MHz (maximum of 15 RBs

available) for Ghandhi video sequences. Similar trend to Figure 14 was achieved .

To study this more, we selected a single user to see how each allocation perform

for a single case and not on average as seen in Figures 12,14, 13, and 15. We selected

the user with the ID number SU2 when Sony Demo video sequences were transmitted

and we monitored the changes that occurred when more SUs joined the network for the

three allocation schemes. For Figure 16 (a), SU2 experienced similar conditions (highest

quality and smooth continuity) when buffer and joint buffer and SNR based allocation

were used. While, when SNR allocation was used, SU2 was only able to watch its video

sequences in the basic quality (only BLs were received). While, when the number

of available SUs increases, the joint buffer and SNR based allocation outperform the

buffer-based as seen in Figures 16 (b) and 16 (c). Figures fig:PSNRsu215 (a), (b), and

(c) shows the quality received by SU2 when the BS operates at 3 MHz (with maximum

of 15 RBs available). Again, we can notice that joint buffer and SNR based allocation

offered better quality to SU2. Also, Figures 17 (b) and (c) explain the degradation in

the average quality seen in Figures 14 (a) and (b), as SU2 was only able to receive only

20 frames in case of having 8 SUs active and 40 when 15 SUs were active. This shows

that some SUs were not able to receive the full video sequences and get in starvation

mode. Such case is not applicable in the use of joint and buffer based, and thus, they

outperformed SNR in all the scenarios.
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(a) SUs = 3.

(b) SUs = 8.

(c) SUs = 15.

Figure 12: Average PSNR when a maximum of 100 RBs (20 MHz) available (Sony

Demo video sequences).
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(a) SUs = 3.

(b) SUs = 8.

(c) SUs = 15.

Figure 13: Average PSNR when a maximum of 100 RBs (20 MHz) available (Ghandhi

video sequences).
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(a) SUs = 3.

(b) SUs = 8.

(c) SUs = 15.

Figure 14: Average PSNR when a maximum of 15 RBs (3 MHz) available (Sony

Demo video sequences).
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(a) SUs = 3.

(b) SUs = 8.

(c) SUs = 15.

Figure 15: Average PSNR when a maximum of 15 RBs (3 MHz) available (Ghandhi

video sequence).
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(a) SUs = 3.

(b) SUs = 8.

(c) SUs = 15.

Figure 16: The PSNR of SU2 when a maximum of 100 RBs (20 MHz) available (Sony

Demo video sequences).
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(a) SUs = 3.

(b) SUs = 8.

(c) SUs = 15.

Figure 17: The PSNR of SU2 when a maximum of 15 RBs (3 MHz) available.
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Chapter 5: Conclusion and Future Work

5.1. Conclusion

Cognitive Radio Networks (CRNs) were introduced as a promising solution for

an efficient spectrum utilization by enabling interactive wireless users to sense and learn

the surrounding environment and correspondingly adapt their transmission strategies. In

an effort to mitigate spectrum scarcity problem, cognitive radio (CR) technology was

proposed as a key solution.

The focus of this thesis is moving toward two parallel directions. Firstly, to

quantify the total amount of data that can be provided by the available PU channels

using moment method as in Chapter 3. Secondly, to employ an LTE-based CR network

as in Chapter 4. In Chapter 3, a closed-from approximation for the distribution of the

total amount of data available for SUs over all the available primary channels during any

arbitrary interval of time is obtained. In Chapter 4, three resource allocation algorithms

are proposed to efficiently allocate the available resources among SUs. The goal is

to avoid buffer starvation and maintain continuous playback at the SUs end with the

maximum possible quality. SVC video coding is used to provide the video with high

quality to SUs with good channel conditions while maintaining the basic video quality

for SUs experience bad conditions.

Simulation and analytical results from Chapter 3 proved the accuracy and flex-

ibility of the proposed closed-form approximation of the distribution of Z(t) in quanti-

fying the total amount of data available for transmission. In addition, simulation from

Chapter 4 aim to guarantee the continuity of the video playback at the SUs end with

acceptable perceptual quality when an LTE-based CR network is employed. To achieve

such a goal, a scalable video coding technique is considered to adapt to the dynamic

nature of the PUs’ channels. Scalable video coding is employed to enhance the quality

of the received video by transmitting ELs of the video frames if the conditions set by the

streaming algorithm are met. The complexity of the proposed approach is reduced com-

pared to other source rate control approaches as it doesn’t require any reconfiguration

for the codec parameters. Three allocation schemes (Buffer, SNR, Joint) are proposed

and their performance was compared using Jain’s index, average buffer occupancy per
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user, and average PSNR. In summary, we found that joint buffer and SNR based allo-

cation outperformed the other approach for all the different proposed scenarios.

5.2. Future Work

The work in this thesis can be extended in multiple direction. The obtained

approximation of the distribution of the total amount of data can be used to devise a

rate control mechanism with the objective of maintaining continuous playback at the

SUs end while streaming multimedia applications. For the proposed LTE-based CRN,

the system model can be extended to a more complicated scenario where there are

multiple LTE cells instead of single cell. Another possible extension is by investigating

the effect of packet loss on frame quality when the loss is larger than the tolerance level

at the decoder.
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Appendix

In this section, we present tables used in rate calculation in section 4.3. Table 1

maps modulation order index to the TBS index ITBS. SUs report the measured CQI to

the BS by mapping the measured SNR according to Table 2. The transport block size is

found using the number of RBs assigned to the SU and TBS index IT BS based on Table

3, that reveals part of the Transport block size table provided by LTE specifications.

Table 1: Modulation and TBS index table

IMCS Modulation IT BS

0 2 0

1 2 1

2 2 2

3 2 3

4 2 4

5 2 5

6 2 6

7 2 7

8 2 8

9 2 9

10 4 9

11 4 10

12 4 11

13 4 12

14 4 13

15 4 14

16 4 15

17 6 15

18 6 16

19 6 17

20 6 18

21 6 19

22 6 20

23 6 21

24 6 22

25 6 23

26 6 24

27 6 25

28 6 26
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Table 2: SNR to CQI mapping and IMCS

CQI SNR Modulation IMCS

1 -6.7 QPSK 0

2 -4.7 QPSK 0

3 -2.3 QPSK 2

4 0.2 QPSK 5

5 2.4 QPSK 7

6 4.3 QPSK 9

7 5.9 16-QAM 12

8 8.1 16-QAM 14

9 10.3 16-QAM 16

10 11.7 64-QAM 20

11 14.1 64-QAM 23

12 16.3 64-QAM 25

13 18.7 64-QAM 27

14 21 64-QAM 28

15 22.7 64-QAM 28

Table 3: Transport block size table.

IT BS
NPRB

1 2 3 4 5 6 7 8 9 10

0 16 32 56 88 120 152 176 208 224 256

1 24 56 88 144 176 208 224 256 328 344

2 32 72 144 176 208 256 296 328 376 424

3 40 104 176 208 256 328 392 440 504 568

4 56 120 208 256 328 408 488 552 632 696

5 72 144 224 328 424 504 600 680 776 872

6 328 176 256 392 504 600 712 808 936 1032

7 104 224 328 472 584 712 840 968 1096 1224

8 120 256 392 536 680 808 968 1096 1256 1384

9 136 296 456 616 776 936 1096 1256 1416 1544

10 144 328 504 680 872 1032 1224 1384 1544 1736
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