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Abstract 
We have previously reported that ultrasonic drug release at 70 kHz was found to correlate with the presence of subharmonic emissions. No evidence of 
drug release or of the subharmonic emissions were detected in experiments at 500 kHz. In an attempt to understand the difference in drug release behavior 
between low- and mid-frequency ultrasound, a mathematical model of a bubble oscillator was developed to explore the difference in the behavior of a 
single 10-lm bubble under 500- and 70-kHz ultrasound. The dynamics were found to be fundamentally different; the 500-kHz bubble follows a period-
doubling route to chaos while a 70-kHz bubble follows an intermittent route to chaos. We propose that this type of ‘‘intermittent subharmonic’’ oscillation 
behavior is associated with the drug release observed experimentally. 

1. Introduction

In recent years, our research group has focused on studying the design of
micelles that can be utilized in reducing the side effects of conventional 
chemotherapy [1–8]. One of the most important aspects of such design is 
optimizing the drug release which is achieved by choosing the optimal 
ultrasonic parameters (frequency, power density, pulse length, mechanical 
index, etc.). To achieve this goal, experimental measurements [5,9,10] as well 
as modeling techniques have been employed. The latter include two different 
mechanistic models to study the kinetics and thermodynamics of Doxorubicin 
(Dox) release from Pluronic P105 micelles [3,11,12], and artificial neural 
networks to capture the extent of release and to design model predictive 
controllers [13,14]. 

We have recently modeled the dynamic oscillation of bubbles under low 
frequency (70 kHz) ultrasound [15] in pursuit of a correlation between 
microbubble oscillations and drug release from Pluronic P105 micelles at 70 
kHz. In the present paper, we extend our previous analysis to higher 
frequencies (namely 500 kHz) and embark on examining the possible reasons 
why micellar drug release from polymeric micelles was observed 
experimentally at lower frequencies (20 and 70 kHz), while such release was 
absent at 500 kHz. As with our previous publication [15], we use the Parlitz 
modification of the Keller–Miksis model to study bubble oscillations and 
dynamics at several acoustic amplitudes at 500 kHz and compare our results 
with those obtained at 70 kHz. 

2. Experimental methods

2.1. Drug encapsulation in Pluronic unstabilized/stabilized micelles 

Stock solutions of Pluronic (BASF, Mount Olive, NJ) were prepared by 
dissolving P105 in a PBS solution to a final concentration of 10 wt%. 
Doxorubicin (Dox) was obtained from the University of Utah Hospital (Salt 
Lake City, UT) in a 1:5 mixture with lactose and from Pharmacia & Upjohn 
Company (Kalamazoo MI), in dosage form; it was dissolved in phosphate 
buffered saline (PBS) and sterilized by filtration through a 0.2 lm filter. Dox 
was dissolved into the P105 solutions at room temperature to produce a final 
Dox concentration of 10 lg/ml in 10 wt% Pluronic. The same drug 
concentration was also prepared in PBS. The average size of the micelles 
was 10 ± 2 nm. 

2.2. Ultrasound 

Ultrasound (US) at 476 kHz (nominal 500 kHz) was applied using a 
focused transducer (H-104B, Sonic Concepts, Woodinville, WA). A 
sinusoidal waveform was generated using a function generator (HP 33120A, 

Hewlett–Packard) and amplified with a RF power amplifier (240L ENI, 
Rochester, NY). The signal was sent to the transducer from the amplifier 
through a matching network (Sonic Concepts, Woodinville, WA) to 
minimize reflected power. These experiments were carried out in an 
aluminum chamber (16 cm  13 cm  17.8 cm) filled with degassed water and 
containing acoustically absorbing rubber on the bottom and sides of the box 
in order to minimize reflections and standing waves. 

2.3. Fluorescence detection 

The apparatus previously used to measure drug release [4] was modified 
in order to capture fluorescence emission from a small volume (Fig. 1). A 
branch of a bifurcated fiber optic bundle directed a 488 nm beam of an argon 
ion laser (Ion Laser Technology, 5476 A) into a transparent (both optically 
and acoustically) plastic tube of cellulose butyrate containing the drug 
solution. Dox molecules absorbed the light at 488 nm and emitted 
fluorescent light between 530 and 630 nm. This emitted fluorescence was 
then captured by fibers in the fiber optic bundle and directed through its 
second branch to a silicon detector (EG&G 450–1). A dielectric bandpass 
filter (Omega Optical 535DF35) was used to eliminate emissions below 517 
nm and above 552 nm. Finally, the signal from the photodetector was 
captured on an oscilloscope (Tektronix TDS 3012) and stored. The amount 
of drug release from the micelles was calculated from the data acquired by 
the system described above by using the same analysis as Husseini et al. [4]. 
It was assumed that the decrease in fluorescence of the solution was linearly 
related to the amount of drug released. Dox fluorescence at 100% release 
was approximated by the measured fluorescence of Dox in PBS while the 
Dox fluorescence at 0% release was approximated by the measured 
fluorescence of Dox in the carrier without the action of US. 

To quantify the amount of drug released, the decrease in fluorescence 
after the drug was released from micelles was assumed to be directly 
proportional to the amount of the drug released relative to a known baseline. 
For instance, the fluorescence from the drug was measured in the absence of 
Pluronic to simulate 100% release into an aqueous solution. The percentage 
release was calculated using the following equation: 

% 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝐼𝐼𝑃𝑃105 − 𝐼𝐼

𝐼𝐼𝑃𝑃105 − 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃
In Eq. (1), I is the instantaneous fluorescence intensity, IPBS refers to the 

fluorescence intensity recorded when the drug was introduced in a solution 
of PBS which corresponds to 100% release or no encapsulation, while IP105 

refers to the intensity recorded when the drug was encapsulated in Pluronic 
P105 which corresponds to 0% release or 100% encapsulation. It is 
important to note that the fluorescence levels detected (IPBS, IP105, I) come 
primarily from the insonated area. 
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The experimental procedure is described below. First, the fluorescence 
intensity of the drug in PBS was measured both with and without ultrasound 
exposure, until no significant difference in the fluorescence intensity was 
observed; then, without changes in the experimental set-up, the PBS solution 
was carefully removed and replaced with the drug solution of the same 
concentration in Pluronic micelles. The new baseline fluorescence intensity 
was measured, after which CW or pulsed ultrasound was applied. 

Since the US transducer at 500 kHz is focused, the most acoustically 
intense spot (or focal point) is unique and was carefully located before 
experiments began. The acoustic field of the transducer was mapped out with 
a calibrated needle hydrophone (HNR-1000, Onda, Sunnyvale, CA) 
mounted on a three axes micrometer stage. The drug-in-micelle samples 
were placed at the most acoustically intense site and the experiments 
proceeded as described previously [4]. Acoustic emissions from the samples 
were collected by the hydrophone placed 3 mm from the focal spot and 
laterally perpendicular to the axis of the transducer. Acoustic emissions were 
collected and Fourier-transformed to obtain the frequency spectra. 

2.4. Monitoring radical formation 

A collapse cavitation event is strong enough to produce free radicals 
whose rate of production can provide a quantifiable measure of collapse 
cavitation activity. The rate of OH radical formation under 500-kHz 
ultrasound was monitored by the reaction of hydroxyl radicals with iodide 
(I) ions in order to form iodine (I2). A 70 mL solution of 0.03 wt% KI 
was sonicated for an hour with the same 500 kHz transducer described 
above at three different average intensities (374, 666, and 1040 W/cm2) 
and circulated into a spectrophotometer (DU-640, Beckman Coulter, 
Fullerton, CA) which scanned the absorbance at 355 nm every fifteen 
seconds. This absorbance data was used to calculate a rate of iodine (and 
hence, hydroxyl radical) formation. 

2.5. Mathematical model of a bubble oscillator 

As previously described [15], we used the Parlitz modification of the 
Keller–Miksis model to study spherical bubble oscillation dynamics for 
the results presented in this paper. The equation is: 

 
 

 
 
 
 
 
 

where R is the bubble radius, c is the speed of sound in the liquid, and P is 
given by 

 
 
A is the acoustic pressure amplitude 

We can now introduce the variables u = R_ and Ѳ = ft mod 1 just as before 
to transform the Keller–Miksis–Parlitz equation into a system of three 
autonomous differential equations:  

 

More details on the bubble dynamic model, and its numerical solution 
were previously published [15]. 

The dynamics of this system were calculated using a Runga– Kutta routine 
in a standard MATLAB adaptive solver (ode45). 

Our main goal was to model the bubble behavior and correlate it with the 
emissions observed experimentally. In particular, frequency spectra generated 
by the numerical solution of the bubble oscillator equations were compared 
to those found experimentally. 

First the numerical models were integrated to obtain the bubble radii vs. 
acoustic pressure (orbit diagram trajectories) at various pressure amplitudes 
for a bubble with a 10-lm equilibrium bubble diameter.  

 
 
 

 
 
 

 

Fig. 1. Ultrasonic exposure chamber with fluorescence detection capable of simultaneously insonate micelles and collect acoustic and fluorescence emissions at 476 kHz. 
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To facilitate comparison with other data, the pressure amplitudes (A) are 
reported in terms of the mechanical index (MI) parameter, in which MI = 
(A/MPa)/(f/MHz)1/2 [16–19]. The MI is often used by experimentalists and 
practitioners to estimate the probability and intensity of inertial cavitation 
[20–22]. To aid in visual comprehension of the numerical results, Poincar´e 
maps of the dynamic system were prepared [23]. Bifurcation values of the MI 
parameter and the resulting routes to chaos were identified and compared to 
the experimental values (both subharmonic and collapse cavitation 
thresholds). 

 
3. Results 

We have reported drug release from micelles subjected to low frequency 
ultrasound using a fluorescent technique [4,5,9,10]. The technique was based 
on an observed decrease of fluorescence when Dox was transferred from the 
hydrophobic core of P105 micelles to the surrounding aqueous solution. There 
was pronounced fluorescence decrease at 20 kHz, 45 kHz, 70 kHz and 90 kHz 
in the case of non-stabilized as well as stabilized micelles, indicating definite 
drug release [4,5,9,10]. However, no decrease in Dox fluorescence was 
detected at 476 kHz for intensities ranging from 0 to 20 W/cm2 (MI from 0 to 
1.1). Typical fluorescence profiles (at 476 and 70 kHz) are shown in Fig. 2. The 
lack of change in fluorescence indicates that Dox molecules remained in the 
hydrophobic environment provided by the core of the P105 micelles when 
exposed to 476 kHz ultrasound. This data implies that no Dox was released 
from P105 micelles at 476 kHz within this range of intensity. The decrease in 
fluorescence during the ‘‘ON’’ phase (at 70 kHz) suggests that the drug is 
released from the hydrophobic environment of Pluronic micellar cores into the 
aqueous environment, which may result from ultrasound-induced drug 
diffusion out of the micelles. Additionally, Fig. 2 (bottom) reveals the rapid re-
encapsulation of the released drug during the ‘‘OFF’’ phase of ultrasound. This 
is an important finding because it indicates that non-internalized and non-
extravasated (in the tumor) drug would re-enter the micelles and circulate in the 
encapsulated form upon leaving the sonicated volume, which will reduce 
unwanted drug interactions with normal tissues. 

 
 
Experimental acoustic spectra reveal the behavior of the bubbles by 

displaying the acoustic intensity as a function of frequency. For a group of 
bubbles driven at a given frequency f, it is expected that the strongest intensity 
reading will belong to f, the fundamental frequency. This behavior is seen in 
Fig. 3, a representative spectrum at 476 kHz and for an applied average 
intensity of 1.53 W/cm2. As the applied intensity increases, the peak grows 
stronger and the baseline shifts up (Fig. 3, applied intensity of 195.8 W/cm2). 
A shift in non-harmonic background emission is indicative of bubble collapse, 
which produces a shock wave emitting all frequencies. Harmonic (nf, n e N) 

and a few ultraharmonic ((2n + 1) f/2, n e N) peaks are present as well. A well-
defined subharmonic peak, which is the signature most often associated with 
both stable and inertial cavitation, never appeared at any of the intensities used. 

As was observed at lower frequencies, drug release was correlated with the 
magnitude of the subharmonic signal. However, the absence of subharmonic 
and of drug release was unexpected and prompted the subsequent numerical 
study of bubble behavior at 500 kHz. 

For these experiments at 500 kHz, the highest intensity used (20 W/cm2) 
corresponds to a mechanical index of 1.1, close to the limits of safe use. This 
means that, if higher intensities (than the ones used in this research) are indeed 
needed to release drug, they may not be of practical use in human therapy. 

The high mechanical indices achieved in these experiments imply that 
inertial cavitation occurred, yet no drug was released. Inertial cavitation was 
verified by measuring hydroxyl radical generation which occurred at rates of 
0.078, 0.112, and 0.120 lmol/h for the applied intensities of 374, 666, and 1040 
W/cm2, respectively. Hence, as the applied intensity increased, radical 
generation (i.e., bubble collapse events) also increased. These intensities 

correspond to mechanical indices of 4.74, 6.32, and 7.90, which are above the 
MI values of the release experiments. Radical monitoring and acoustic spectra 

 

Fig. 2. Fluorescence of P105-encapsulated Dox (in arbitrary units) during 476-kHz (top) and 70-
kHz sonication (bottom). Average intensity during the pulse is 20 W/cm2. 

suggest that, for sufficiently high intensities, bubble collapse occurs but the 
absence of an observable subharmonic signal raises doubts about the route 
followed by the bubbles to this eventual collapse. At 70 kHz a subharmonic 
signal and drug release were observed above a MI threshold of 0.37. Yet in the 
500kHz experiments, the clear harmonic oscillations that preceded the sudden 
increase in broadband emissions reflect the stable oscillations of the bubbles in 
the system until the point of immediate inertial cavitation. It appears that the 
ultrasound that produces this type of bubble activity is unable to open Pluronic 
P105 micelles and release their therapeutic load. Therefore we undertook a 
comparison of bubble behavior at 500 kHz to that which occurs at 70 kHz and 
was associated with drug release. 

The bubble dynamics equations generate the radial displacement and the 
bubble wall velocity as a function of time; representative time series are shown 
in Fig. 4 for a driving pressure, A, of 141.4 kPa, corresponding to a MI of 0.20. 
The solutions to the equations are analogous to acoustic emissions collected by 
the hydrophone during experiments and were similarly Fourier transformed to 
obtain the frequency spectra of the bubble oscillations. 

The trajectories of any given initial conditions should trace a three-
dimensional shape. The definition of the variable H leads to a convenient state 
space: the projection of the conic section traced by the smooth oscillations gives 
a torus like state space. Hence, the evolution of the variable H reflects the number 
of revolutions of a particular trajectory around this state space. One can then 
generate a projection of both R (radius) and u (bubble wall velocity), eliminating 
H and investigating the resulting phase portraits in two dimensions. The result is 
a limit cycle (an isolated closed trajectory) that appears (incorrectly) to cross 
itself, which is a consequence of the elimination of the extra dimension of time. 
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Fig. 3. Acoustic spectrum for 476 kHz insonation, I = 1.53 W/cm2 and MI = 0.31 (top) and I = 
195.8 W/cm2 and MI = 3.51 (bottom). Fig. 3 acoustic spectrum for 476 kHz insonation, I = 195.8 
W/cm2. 

 

Fig. 4. Radius-time and velocity–time curves for MI = 0.20. 

Additionally we employ the Poincar´e map from Strogatz [23]. The Poincar´e 
map is a important tool that allows one to move from the realm of continuous 
dynamic systems to the more intuitive world of discrete maps. However, it is 
difficult to find an explicit form of the map. Herein we rely on the numerical 
calculations of the ODE solver. Note that if x is a fixed point (i.e., P(x) = x), then 
a trajectory starting at x returns to x after some time T and is therefore a closed 
orbit for the original system x = f(x). Hence, when plotting the trajectories, any 
attracting limit cycles generated by the bubble equations will result in points on 
the Poincar´e map. If the bubble is oscillating at the driving frequency f, a single 
point should appear. If the bubble, however, has oscillations at twice the period 
of the applied pressure (that is to say, at half the frequency, f/2), then two points 
should appear on the Poincar´e map. In nonlinear dynamic systems (such as the 
one analyzed here), it is common to find another type of attractor, called a strange 
attractor. This is no longer a point, curve, or surface, but a fractal, and will reveal 
itself on the Poincar´e map as a type of ‘‘smearing’’ of points with self-similar 
structure [23–25]. 

The numerical simulation of bubble dynamics at 500 kHz follow a well-
known dynamical pattern as the driving pressure increased. For low values of the 
applied pressure (in the case shown in Fig. 5, A = 106.1 kPa, corresponding to a 
MI of 0.15), the oscillations settle onto a stable limit cycle, a periodic orbit with 
a period equal to that of the driving pressure (Fig. 5a). Accordingly, we see a 
single point in the Poincar´e cross-section (Fig. 5b). This means that the acoustic 
spectrum should have a single peak at the driving frequency f = 500 kHz (Fig. 
5c). 

These oscillations are considered stable since they attract nearby initial 
conditions and because, as can be seen in Fig. 5a, the velocity remains uniform 
enough that the orbit traces a simple ellipse (no significant acceleration is seen 
as the bubble expands or contracts). The thickness of the cycle is due to the 
superposition of the curves traced by the orbit as it returns, in which curves do 
not exactly agree due to the numerical integration algorithm. Nevertheless, the 
cycle is stable, and this dynamic behavior persists until the bubble alters its 
period of oscillation. 

At a pressure of about 195 kPa (MI  0.275), a second loop forms in the state 
space trajectory (Fig. 6a). The solution winds around once more before returning 
to the same point. This is clearly seen in the Poincar´e plot for this case (Fig. 6b), 
where another point appears, signifying the doubling of the period of oscillation 
(it takes the solution two driving periods to come back to the same point in space). 
One then expects the frequency spectrum to develop a subharmonic peak (at f/2 
= 250 kHz), which is seen in Fig. 6c. This is a classic example of a period-
doubling bifurcation of cycles. 

Fig. 6a reveals more than just period doubling. It can be seen that the radial 
velocity begins to govern the dynamics of the bubble. While the maximum radius 
has only increased by about 25%, the maximum velocity (which occurs at low 
radii) has doubled, hence the slightly lopsided appearance of the cycle. While 
this is expected, it reveals the nonlinear nature of the oscillations, which becomes 
more evident as the accelerations, at the moment immediately preceding and 
following bubble collapse, increase dramatically. 

The appearance of the subharmonic peak at this MI value is puzzling as this 
was not seen experimentally [4]. The biggest difference between the experiments 
and this model is, as mentioned above, the fact that only one bubble is modeled 
and the experimental frequency is slightly less than the simulation frequency. 
This could mean that bubble clouds at the parameters above inhibit double-period 
oscillations. This remains to be explored. Another possibility is that the 
experimental setup was not accurate enough to reach this particular parameter 
value. This is unlikely since this double period persists for a range of close to 1 
unit of MI, as explained below. On the other hand, the hydrophone may not have 
been able to clearly register the subharmonic signal. 
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Fig. 5. For a single 10 lm bubble at 500 kHz applied pressure and at a MI = 0.15: (a) trajectory in state space projection, (b) Poincar´e section plot, and (c) frequency spectrum. 

 

(c) Spectrum,500 kHz, MI = 0.275 
Fig. 6. For a single 10 lm bubble at 500 kHz applied pressure and at a MI = 0.275: (a) trajectory in state space projection, (b) Poincar´e section plot, and (c) frequency spectrum
. 

 

 

 

( a)Orbit, 500kHz, MI = 0.275 ( b) Poin c ar´ e ,500kHz, MI =0.275 
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As stated above, the dynamics remain the same (double-period cycles) until 
a pressure of about 233 kPa is reached (MI  0.33), at which point a new period-
doubling bifurcation of cycles is encountered. The orbit diagram in Fig. 7a does 
not explicitly show this new loop since it is so close to the original that it looks 
almost superimposed; but the Poincar´e section plot (Fig. 7b) shows the creation 
of two more points on the plane. Most importantly, the frequency spectrum 
shows peaks at f/4 = 125 kHz and its multiples 
(Fig. 7c). 

The funnel-type shape of the limit cycle shown in Fig. 7a contrasts with the 
one seen in Fig. 6a, which was rounder and smoother. The sharp acceleration at 
low radii reflects the bubble’s increasingly violent behavior and foretells an 
impending collapse. A comparison of the spectrum in Fig. 7c with Fig. 6c 
reveals that, despite having undergone another period-doubling bifurcation, the 
base-line remains at the same level. This becomes important for subsequent MI 
values and in the context of the relationship between the subharmonic signal 
and non-harmonic background shift. 

Having seen two period-doublings, we would like to know if this behavior 
continues on indefinitely. This is precisely the case. The orbit shown in Fig. 8a 
for an applied pressure of approximately 274 kPa (MI  0.875) reveals an 
increasingly complex trajectory which winds and twists ‘‘within’’ the projected 
orbit and stays preferentially at the highest velocities. Little can be gleamed 
from this orbit about the periods present at this pressure value, but the frequency 
spectrum (Fig. 8c) shows the clear emergence of a peak at f/8 = 62.5 kHz (and 
its multiples as ultraharmonics). The baseline has changed shape somewhat, 
becoming noisier and slightly leveling off the downward slope seen previously. 
This is most likely due to other frequencies that may be just outside the 
numerical accuracy in the spectrum but that start to appear as a curve on the 
Poincar´e cross-section (Fig. 8b), where no clear period 8 point can be seen. 

It is important to mention at this point that the MI values reported become 
more and more approximate as numerical resolution decreases and it becomes 
increasingly difficult to find bifurcation thresholds. That said, it is indisputable  
that another period-doubling bifurcation has occurred around the MI value 
reported above. These are the signs of what is known in dynamic systems 
theory as the period-doubling route to chaos [26]. We speak now, in particular, 
of the Poincar´e map, which is a discrete map, since this ‘‘route to chaos’’ is 
defined for iterative maps of the line. We expect infinitely many periodic points 
in a chaotic regime (alternatively, all frequencies in the spectrum). This can 
only come from a strange attractor. Indeed, a small perturbation in MI at the f/ 
8 threshold shown above creates a strange attractor. 

A small step in applied pressure from 274 (MI = 0.3875) to 274.4 kPa (MI 
= 0.388) reveals the strange attractor that provides the infinitely many periodic 
points characteristic of a chaotic map. Fig. 9a shows the projection of this 
attractor, with its characteristic self-similar (fractal) structure, and is 
reminiscent of previous results in the literature that report on the chaotic 
attractors present in bubble dynamics [24,25]. As expected, the Poincar´e cross-
section (Fig. 9b) appears as more of a smear of points that retain, however, some 
sense of structure. Strangely, contrary to what is expected, the whole fractal 
image does not seem to be traced out on the plane; it seems the numerical 
solution is not seeing some frequencies. More revealing, then, is the frequency 
spectrum shown in Fig. 9c. The baseline does not seem altered in any significant 
way (which is expected from the Poincar´e plot which fails to show all periods) 
but the appearance of third harmonics (f/3 and its multiples) stands out. 

The peak at f/3 = 166.6 kHz in Fig. 9c means that we have, in the discrete 
sense of the Poincar´e map, a point of period three. Points of period three are 
important oddities in discrete dynamical systems, as expounded in the famous 
result of Sarkovskii. Consider the following ordering of N (known as 
Sarkovskii’s ordering of the natural numbers): 

  

where all odd numbers (except 1) are listed first, followed by two times the 
odds, 22 times the odds, and so forth, leaving the powers of 2 for last, 
followed by 1. The theorem is: 

Sarkovskii’s Theorem. Let f R      R be continuous. Suppose f has a periodic 
point of prime period k. If k Δ l in the above ordering, then f also has a 
periodic point of period l. 

The theorem above is taken from Devaney [26], who also provides a 
basic proof. This theorem is remarkable for its simple hypothesis and strong 
result. The obvious corollary which concerns us is: 

Corollary. Let f : R!R be continuous. Suppose f has a periodic point of period 
three. Then f has periodic points of all other periods. 

Hence, by the Corollary above, if we restrict our Poincar´e map to the 
real line (by, for example, collapsing it onto the radius or velocity axis) and 
it is continuous, then a periodic point of period three implies the existence 
of points of all other periods. The theorem, however, says nothing about the 
stability of these points, and so while they may exist, they may not be stable 
and therefore invisible to the numerical algorithm, which is most likely the 
case here. The stability of these points can be expected to change upon 
perturbation, however, thereby revealing them in the solution to the 
differential equations. 

For pressures higher than 274.4 kPa (MI > 0.388) the oscillations 
become obviously chaotic and in Fig. 10, we finally see the periods that were 
absent. The representative results for A = 495 kPa (MI = 0.70) are shown in 
Fig. 10. The beautiful self-similarity of the orbit is now clearly seen (Fig. 
10a), while the Poincar´e crosssection (Fig. 10b) shows the fractal that we 
expected all along (notice that it shows a shape similar to the orbit). The 
frequency spectrum (Fig. 10c) now shows a noisy, raised baseline, a sign of 
the presence of all frequencies. 
Thus we see that the dynamics of a 10-lm oscillating bubble with a driving 
frequency of 500 kHz follows the classic period-doubling route to chaos, 
starting at a MI of about 0.275. The oscillations reach chaos around MI = 
0.388 and continue in the chaotic regime until at least a MI = 0.7. There are 
no stable regimes in this chaotic interval, except at MI  0.50 where a period 
three orbit is clearly seen again, implying a brief change in the stability of 
the infinitely many periodic points that masks them from the numerical 
solution. 
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(c) Spectrum,500 kHz, MI =0.33 

Fig. 7. For a single 10 lm bubble at 500 kHz applied pressure and at a MI = 0.33: (a) trajectory in state space projection, (b) Poincar´e section plot, and (c) frequency spectrum. 

 

(c) Spectrum, 500 kHz, MI = 0.3875 
Fig. 8. For a single 10 lm bubble at 500 kHz applied pressure and at a MI = 0.3875: (a) trajectory in state space projection, (b) Poincar´e section plot, and (c) frequency spectrum. 

( a) Orbit, 500kHz, MI =0.3875 ( b) Poin c ar´ e ,500kHz, MI =0.3875 

( a) Orbit,500kHz, MI =0.33 ( b) Poincar´e, 500 kHz,  MI =0.33 
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(c) Spectrum, 500 kHz,MI = 0.388 
Fig. 9. For a single 10 lm bubble at 500 kHz applied pressure and at a MI = 0.388: (a) trajectory in state space projection, (b) Poincar´e section plot, and (c) frequency spectrum. 

 

(c) Spectrum, 500 kHz,MI= 0.70 
Fig. 10. For a single 10 lm bubble at 500 kHz applied pressure and at a MI = 0.70: (a) trajectory in state space projection, (b) Poincar´e section plot, and (c) frequency spectrum. 

  

( a) Orbit, 500kHz, MI = 0.388 ( b) Poin c ar´ e ,500kHz, MI =0.388 

( a) Orbit, 500kHz, MI =0.70 ( b) Poincar´ e ,  500 kHz, MI =0.7 
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4. Discussion 

The dynamics of an oscillating bubble under the action of ultrasound are 
different between 70 and 500 kHz. This was expected since the system of 
equations of motion of bubble dynamics is a well-known chaotic dynamical 
system. But just how different and how does this relate to drug release from 
micelles? We previously published our findings using a bifurcation diagram 
at 70 kHz [15]. Here we discuss the same diagram at 500 kHz. One of our 
main observations at 70 kHz is the existence of discontinuities that may arise 
out of saddle-node bifurcations. 

Having thus established the connection between the information presented 
by the bifurcation diagrams and the physical phenomena they represent, we 
can succinctly state the fundamental difference between bubble oscillations 
at 70 and 500 kHz: the bubble follows different routes to collapse. Interpreting 
the meaning of this statement proves rather difficult, however, but raises a 
number of interesting questions. The first, of course, is: what do we mean 
physically when we speak of a route to collapse? 

The period-doubling route to chaos contrasts with the intermittent one in 
that it appears to be more gradual and deliberate than 

 

(b) Bifurcation Diagram for insonation at f = 70 kHz  
Fig. 11. Bifurcation diagrams as a function of applied pressure for a 10 lm bubble at: (a) f = 500 
kHz and (b) f = 70 kHz. 

the intermittent movement between stable oscillations and sudden and erratic 
collapse. Another difference reported by Lauterborn and Parlitz [25] is the 

existence of hysteresis under the intermittent route to chaos (a testable 
phenomenon for future research). Additionally, the oscillations themselves 
appear to be quite different, with oscillations at 70 kHz more uneven and unstable 
than at 500 kHz (a possible consequence of resonance). It is possible that the 
forces that alter the structure of a micelle are produced only under the type of 
‘‘quasi-stable’’ subharmonic oscillations seen at 70 kHz and that the transient 
and gradual perioddoublings at 500 kHz are insufficient for this effect. 

It was hypothesized that bubble resonance played the defining role in the 
drastically different type of oscillations leading to collapse that were seen at the 
two frequencies. This provides future avenues of research rich in possibilities. 
Looking at the diagrams in Fig. 11 one must remember that they are but slices or 
projections of a highly complex multi-dimensional space. If we let the axis 
perpendicular to the plane shown represent the equilibrium bubble size R0 and 
move along it, the resulting surface will reveal the effect of resonance we have 
discussed. For example, the small period-doubling window in Fig. 11b (0.32 6 
MI < 0.35) could very likely change in radius as R0 changes and affect the 
resulting route to chaos. Comparison of these predictions with experiments in 
which the bubble sizes present are carefully controlled would be the next natural 
step. 

These routes to chaos must also be shown to occur experimentally. Period- 
doubling was not seen in the experiments conducted at 500 kHz, although the 
series of period-doublings could have been so fast as to avoid detection by the 
experimental system. Parlitz [27] recently presented a method to locate period-
doubling and saddle-node bifurcations in experimental systems. Using these 
tools the presence of both routes to chaos could be confirmed for the 
experimental system directly. Conversely, an analytical approach to the problem 
will yield the conditions necessary to create the single (or series of) saddle-node 
bifurcation needed at 500 kHz for an intermittent route to chaos like the one 
witnessed at 70 kHz. In this case the tools of bifurcation theory (in particular, 
catastrophe theory) could be used to discover under which parameter values a 
fold in the geometry of parameter space could be reproduced at 500 kHz. 
Recorded drug release under such conditions would finally confirm that, indeed, 
the route to collapse followed by the bubbles is directly responsible for release. 

Ultimately, drug release correlated with the subharmonic signal and not 
bubble collapse itself. It is easier in this case to speak of collapse since the 
difference in release for each frequency came down to a difference in approaches 
to collapse. It is the subharmonic, however, that still holds the elusive answer. 

5. Conclusions 

This research has produced four primary conclusions: (1) drug release from 
Pluronic micelles occurs at 70 kHz, but not at 500 kHz; (2) drug release correlates 
with the experimental subharmonic signal at 70 kHz; (3) it also correlates with 
the experimental subharmonic when 500 kHz is applied in that neither 
subharmonic nor drug release is observed; and (4) inertial bubble collapse is not 
a sufficient requirement for drug release at either frequency. Such apparent 
paradoxes only serve to add to the confusion already present in the long-ongoing 
stable vs. collapse cavitation debate. Actually, however, what these findings 
reveal is that we have been asking the wrong questions all along. The chaotic 
nature of bubble dynamics shows that our physical interpretation of bubble 
oscillations cannot possibly remain within the oversimplified rubric of ‘‘stable’’ 
or ‘‘inertial.’’ Indeed, our definition and categorization of cavitation must be 
updated to include cases analogous to all the dynamic states present in this 
complex dynamical system, including, but not limited to, the two distinct routes 
to chaos here discussed. The meaning of mechanical index may have to be 
similarly reevaluated as well. Admittedly, in order to fully define all types of 
cavitation, parameter space must be explored fully (a herculean task, to say the 
least). In the present case, it can at least be said that drug release requires and 
correlates with a type of ‘‘intermittent subharmonic’’, but our numerical 
modeling suggests that it does not correlate with the ‘‘cascade subharmonic’’ 
associated with the period-doubling route to chaos. 

( a) Bifurcation Diagram for insonation f =  500kHz 
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