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Abstract 
Processing the ground motion signal at an early stage is beneficial for issuing warnings, 

applying corrective measures and deploying firstresponders 

teams, etc. As an earthquake 

starts, our proposed machine learning systems take in the first arriving points 

of a ground acceleration signal and predict the upcoming points in all three axes. The 

training, validation and testing data is acquired from the Pacific Earthquake Engineering 

Research Center (PEER) NGAWest2 

database. It includes shallow crustal earthquakes 

with hypocenters less than 20 km deep. The research methodology applies different 

aspects of supervised and unsupervised learning. We analyze the metadata of previous 

earthquake records such as the magnitude, horizontal distance and peak ground acceleration 

(PGA). Moreover, we train various structures of artificial neural networks (ANNs) 

such as convolutional neural networks (CNN), recurrent neural networks (RNN), long 

shortterm 

memory (LSTM) networks and CNNLSTMs. 

The ANN model serves as a 

baseline for performance evaluation of the other models. We rely on the sliding window 

approach to split the acceleration signal. It was found that the best model for short term 

prediction was the LSTM model for a prediction horizon of ten timesteps. It yielded a 

root mean squared error (RMSE) of 8.43e6 

𝑔𝑔 which is a 95.2% improvement in performance 

compared to the baseline that yielded an RMSE of 1.74e4 

𝑔𝑔. In addition, 

the prediction time for the CNN model is 0.49 𝑚𝑚𝑚𝑚, which makes it the fastest model. 

Moreover, the CNN, ANN and CNNLSTM 

models experimented with in this work, 

yielded realtime 

performance. The other models can also produce faster predictions 



using more GPUs or a supercomputer. 

Keywords: Machine Learning; Ground Motion Prediction; NGAWest2 

Database. 
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Chapter 1. Introduction 
About 20,000 earthquakes that are significant enough to be felt without measurement 

instruments, happen annually around the globe [1]. About 100 of these are 

of enough magnitude to cause major damage, if they occur near residential areas. Very 

great earthquakes happen about once a year on average which can trigger landslides, 

fires and tsunamis [2]. Over the centuries, they caused the loss of millions of lives and 

inestimable destruction to infrastructures. 

At this point in time, it is statistically impossible to predict an earthquake ahead 

of time. However, detecting ground motion as it begins to happen and alert the public 

seconds prior to the major shake is a feasible and propitious alternative. Such systems, 

known as early earthquake warning or EEW, can potentially reduce the casualties caused 

by an earthquake. 

Various EEW systems are currently being tested and deployed around the world. 

For example, the ShakeAlert system that is developed by The U.S. Geological Survey 

(USGS) in the US west coast and the Pacific Northwest [3] [4]. It uses a huge network 

of sensors that sends data to the processing center which sends alert messages to users. 

This is a significant infrastructure to maintain and operate. It takes about $16 million 

per year for the ShakeAlert system [4]. 

Though operational, the system is still under development. For instance, during 

the 7.1 moment magnitude (𝑀𝑀𝑀𝑀) earthquake that struck near Ridgecrest, CA, USA, in 



July 2019, the primary algorithm was able to identify the earthquake and send alerts 

to users. However, it underestimated the earthquake magnitude by 0.8 units [5]. In 

addition, the finitefault 

algorithm failed to correctly characterize the earthquake. 

A fully operational EEW system would always need human action in seconds. 

That is barely enough time to move away from windows or get protected under a table. 

Here comes a pressing question, what if one is asleep or can not move? What about 

structures such as buildings and bridges? 

The motivation for this research is to eliminate human intervention from the 

process. Using machine learning, this work can be applied to forecast a continuously 

updated section of the ground acceleration signal beginning from the first few points. 
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As more points become available, they are continuously fed to the system to make new 

predictions. We refer to the duration of future prediction as the ”forecast horizon”. Our 

algorithms can be integrated into a mechatronics system installed in structures to help 

reduce or even eliminate the structure’s movement. The system can consist of sensors, 

our proposed models and a magnetorheological damper. It contains magnetorheological 

fluid, which is controlled by a magnetic field, usually from an electromagnet [6]. 

Varying the strength of the electromagnet can continuously control the damper’s characteristics. 

1.1. Thesis Objectives 

This study intends to explore the use of several ML techniques for ground motion 

prediction. The system takes in a window of the acceleration signal, measured by 

accelerographs, and it forecasts the future signal as the earthquake emerges. The predictions 

are made in all three axes simultaneously. In addition, the predictions are of a 

sampling interval of 0.0014 seconds. We follow the sliding window approach to process 

the signal. The contributions of this research work can be summarized as follows: 

1. Propose multiple machine learning systems to predict the ground motion acceleration 

signal in realtime 

in three axes. 



2. Compare the performance of various neural network architectures for forecasting. 

3. Achieve a prediction delay of less than 10% of the forecast horizon. 

The algorithms in this thesis are trained and tested on the records from the NGAWest2 

database records. It is worth pointing out that the training and testing subsets do 

not contain samples from the same earthquake. We experiment with multiple machine 

learning algorithms. This study can serve as a baseline for future works in this field. 

1.2. Proposed Solution 

We propose various models that can help support structures as an earthquake unfolds. 

The models predict the ground motion acceleration in three axes. We consider the 
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NGAWest2 

database for the metadata and time series signals. The 𝑘𝑘means 

clustering 

algorithm as well as principal component analysis (PCA) are applied to the metadata 

to investigate various groups of earthquakes in the database. We then set the input to 

357 points, or half a second, and experiment with different prediction/forecast horizons. 

An artificial neural network (ANN) acts as a baseline for all the other proposed models. 

We implement various models for acceleration time series prediction, namely, convolutional 

neural network (CNN), recurrent neural network (RNN), long shortterm 

memory 

(LSTM) network and CNNLSTM 

network. 

1.3. Thesis Organization 

For the remainder of the thesis, the chapters are organized as follows. Chapter 

2 provides a literature review on important topics related to ground motion and the 

applications of machine learning in time series forecasting. It also contains the theory 

of machine learning relevant to this thesis. Chapter 3 discusses the proposed solutions. 

Chapter 4 contains important results from the trained networks and a discussion of their 

implications. Finally, Chapter 5 concludes the research and outlines the future work. 
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Chapter 2. Background and Literature Review 
In this chapter, we discuss the ground motion parameters and the fundamentals 

of ML. Then, we present the prediction techniques for time series and the applications 

of ML in seismology in the related work. In addition, we present the background knowledge 

relevant to this work. 

2.1. Ground Motion Parameters 

When tectonic plates move, they cause pressure to accumulate due to friction and 

the energy stores. When the pressure surpasses the rocks’ strength, they start to move 

with respect to each other, resulting in a fault [7]. Moreover, the energy gets released 

and an earthquake occurs. In the event of tectonic movements, sudden bursts of energy 

are released as waves. The generated seismic waves travel through the crust, and away 

from the focus or the center of the earthquake, as shown in Figure 2.1. An earthquake 

is characterized by its magnitude, frequency components and distance measures. The 

waves result in triaxial ground acceleration which is measured by accelerographs. They 

record acceleration digitally with respect to time resulting in a time series record also 

known as an accelerogram. 

Figure 2.1. Earthquake source and generated waves (image source: [8]). 
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Ground motion is divided into vertical and horizontal components, the latter 

being larger in amplitude. However, this can change, especially near larger earthquakes. 

One of the main parameters to characterize the motion and its resulting damage is the 

peak ground acceleration (PGA) [9]. PGA is defined as the maximum amplitude of 

the ground acceleration in a given location in units of gravity 𝑔𝑔 or 𝑐𝑐𝑐𝑐/𝑠𝑠2. Another 

significant parameter is the duration, which is known as the total time of the strong 

motion. Often, responses are computed to assess structural damage for multiple natural 

frequencies. These observations are vital to evaluate the seismic hazard of an area. 

2.2. Machine Learning 

The crux of machine learning (ML) is to learn from data. For example, to 



learn to predict signal types or values based upon inputs [10]. The ML algorithms are 

trained with specific inputs depending on the problem. They can also be updated as 

new data is available. The learning process can also be modeled probabilistically. ML 

can be divided into two main groups: supervised learning and unsupervised learning, 

as shown in Figure 2.2. The difference between them is the presence of the labels. 

Supervised learning, which includes predictive models for the labeled datasets, can be 

further subcategorized into classification and regression algorithms. In classification 

problems, the algorithm’s goal is to identify the input as part of a group or class and 

predict the class as a discrete value. 

The classification can be divided to binary classification and multiclass 

classification 

based on the number of classes. The performance is then evaluated based on the 

accuracy of the predicted class using binary crossentropy 

for the binary classification or 

the sigmoid loss for the multiclass 

classification. In regression, the algorithm maps the 

input to a continuous output variable. Unsupervised learning is helpful for exploratory 

data analysis because it identifies structures in the data automatically. Examples of 

unsupervised learning include dimensionality reduction and clustering, depending on 

whether the goal is decreasing the inputs’ dimensions or grouping similar data together. 

In our study, both labeled and unlabeled data are available. The labeled data is the 

ground acceleration signals and the unlabeled data is the earthquake metadata. 
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Figure 2.2. Types of machine learning algorithms (image source: [10]). 

2.3. Related Work 

In this section, we present existing literature in time series prediction. In addition, 

the methods of predicting ground motion parameters are shown. Finally, we 

discuss the applications of ML in seismology. 

2.3.1. Time series prediction. A time series is defined as a set of numerical observations 



taken in consecutive order at equally spaced intervals. Mathematically, time 

series 𝑥𝑥 is defined as a set of vectors 𝑥𝑥(𝑡𝑡) = {𝑥𝑥1, 𝑥𝑥2, ..., 𝑥𝑥𝑥𝑥 } [11] [12]. The time variable 

is the independent one and the target variable is the dependent one. If there is one value 

per time step in the series, it is termed as a univariate time series. On the other hand, if 

multiple points occur per time step, it is called a multivariate time series. 

Analysis of time series data is crucial for identifying existing trends and patterns. 

Important decisions can be made from the analysis, for example, like whether one should 

invest in the stock market based on the trend. Also, historic data of a time series are 
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used to make predictions into the future. This is called time series forecasting, and it is 

a thriving research area in many domains such as financial, medical and environmental 

domains. Selecting the suitable model is crucial as it reflects the underlying form of the 

time series. The model used to make a prediction is classified as linear or nonlinear 

based on the manner in which the past data is combined. 

Babušiak and Mohylová proposed ANNbased 

models to predict the next electrocardiogram 

(ECG) sample, given the five previous ones [13]. Two ANN architectures 

were tested, namely, the onelayer 

model and the multilayer 

back propagation model. 

It is noticed that the second network is more accurate. However, it takes more epochs 

to converge. In 2017, a study was conducted to forecast the upcoming time period in 

the electroencephalogram (EEG) signal [14]. The input is selected and altered in the 

training stage using neighborhood structures (NS). The maximum achieved accuracy 

was around 70% when using 30 models per person. When predicting the maximum 

forecasting horizon, the accuracy did not change significantly. 

The uncertainty in highly nonlinear 

data imposes a challenge on the modeling 

process. For example, stock market is a significant area where different prediction 



methods are applied to determine the upcoming trend. In [15], CNN, LSTM network 

and RNN were utilized for stock price predication using a sliding window approach. 

The paper concluded that CNN generated the most accurate results, since it is not history 

dependent and only analyzes the window at hand, unlike RNNs, where previous 

sequences are used to make a prediction. 

Recurrent neural networks are the standard when it comes to time series forecasting. 

In [16], RNN was used to predict temperatures inside building. The input is 

a combination of parameters such as the outside wind and temperature, which makes 

the input a multivariate sequence while the output is univariate. The sequence length, 

which is the number of observations taken into account, was varied to determine the optimal 

one. It was found that the best prediction accuracy was associated with a sequence 

length of 120. However, a window of length 12 produced a similar accuracy. 

long shortterm 

memory network is the more powerful variant of RNN. In [17], 

an LSTM model was used for oneday 

ahead solar irradiance prediction. The input was 

composed of 11 timesteps with nine features which makes it a multivariate 

sequence. 
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The proposed model contained a single LSTM layer followed by a dense layer representing 

the output. It was found that the LSTM network outperformed the ANN by 18% 

for an output to input ratio of 9%. 

Convolution neural networks gained popularity in recent years as the state of 

the art technique in computer vision [18], natural language processing [19], and also 

in time series forecasting. In [20], a 1DCNN 

model was implemented for one step 

ahead river flowerstream 

prediction. Three models were designed with different time 

intervals, daily, weekly and monthly. The best performance was associated with an 



input size of four and an output to input ratio of 25%. The monthly interval had the 

worst performance as the model could not reflect the dynamic variations. Therefore, 

sampling data at a suitable time is crucial for the model to perform well. 

Combining the pattern extraction capability of CNN and the memory of LSTM 

network yields a powerful network that can capture the dynamic nature of a time series. 

In [21], the goal was to predict the daily gold prices with CNNLSTM 

model. Previous 

gold prices with today’s prices are used to predict the following day’s prices. It was 

found that a model with two CNN layers and one LSTM layer followed by fully connected 

(FC) layer gave the best performance. In addition, the optimal forecast horizon 

was six data points. 

A similar network was utilized to predict the concentration of air pollutants [22]. 

The input is a combination of meteorological factors and past pollutant concentration 

as a multivariate sequence. The forecast horizon length is 24 hours where the input is 

72 hours long, so the output to input ratio is 33.3%. The baseline model was a shallow 

ANN to compare results. The proposed CNNLSTM 

model RMSE was 36% less than 

the ANN model and 20.3% less than the conventional LSTM model. 

2.3.2. Ground motion estimation. The classical method to estimate some parameters 

of an earthquake is using ground motion prediction equations (GMPEs). The basic 

elements of ground motion are the earthquake’s source, route and area conditions [23]. 

Therefore, the classical model relies on these factors to define the ground motion in 

the form of a simplified linear regression. Newly introduced GMPEs include more regression 

coefficients to enhance the accuracy, as shown in [24], while increasing the 
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complexity. A complete and accurate model definition requires the fault characteristics 

and the development of the rapture, which are primarily unknown and difficult to 

obtain. In addition, the parameters used in each model should be evaluated and tested 

properly as they are regiondependent. 



Therefore, in regions with a dense network of 

seismographs, the parameters are well defined [25]. However, that is not the case in 

most seismically active regions because of lack of measurements. 

2.3.3. Applications of ML in seismology. Due to the major increase of available 

seismic data, ML was integrated heavily in a variety of applications from forecasting 

to feature extraction. An interesting research was the prediction of a laboratory fault 

failure [26]. The algorithm listens to the acoustic signal generated by the fault and 

extracts a signal that was discarded as noise before. Thus, the time remaining before an 

artificial earthquake was determined. 

A study in 2009 applied ML to predict the seismic response of a twofloor 

building 

based on selected structural parameters [27]; feed forward back propagation (FFBP) 

with one hidden layer was trained using real acceleration signals and the computed responses. 

The results showed good accuracy for both stories. However, the method 

requires complex computations to extract the desired features. Kerh and Ting employed 

multilayer feed forward (MLFF) neural network for PGA estimation [28]. Three ANNs, 

each with one hidden layer were developed, where the input was a combination of epicentral 

distance, focal depth, and magnitude. The output was PGA in one axis from 21 

testing cases. About 85.7% of the testing cases yielded a correlation coefficient 𝑅𝑅2 less 

than 0.5, which is considered as a low level of correlation. 

Another application of MLFF neural network was done by Arjun and Kumar for 

duration estimation [29]. The proposed models were designed to forecast the duration 

of strong ground motion from the magnitude, hypocentral distance, shear wave velocity, 

and the average of the soil characteristics. ANN with six inputs showed 55% accurate 

results. On the other hand, when using the first three inputs, the accuracy increased to 

61%. Another study utilized the same inputs to predict the PGA in three directions based 

on Turkish records [30]. Three ANN architectures were implemented, namely, radial 

basis function (RBF), FFBP and generalized regression neural networks (GRNNs). Af24 

terwards, the direction which contained the maximum PGA was fed to the network to 



determine the maximum PGA value. FFBG with one hidden layer showed better performance 

in all the three axes. On the other hand, the RMSE of RBF reached 58.17 𝑐𝑐𝑐𝑐/𝑠𝑠2, 

which is considerably high. 

In 2013, an ANN model was developed to predict the PGA in one direction from 

the magnitude, hypocentral distance, and focal depth [31]. FFBP algorithm was utilized 

with one and two hidden layers. The optimum results were observed when the number 

of neurons was between 3 and 20 with one hidden layer. For some PGA values, the mean 

square error reached 1.1 𝑐𝑐𝑐𝑐/𝑠𝑠2. In 2017, a similar study predicted the ground motion 

parameters such as PGA and the first 26 points of spectral acceleration from 13552 

shallow earthquakes [32]. The ANN is composed of one hidden layer, five neurons 

and five input nodes, namely, magnitude, focal mechanism, shear velocity, distance to 

rapture and its logarithmic value. The focal mechanism is assigned a value from 1 to 3 

based on the formation of the fault. The results demonstrate high accuracy because it 

was optimized with genetic algorithm. 

EEW plays a major role in saving lives and structures. On the arrival of the P 

waves, an alert is issued before the strong onset occurs. The following studies integrate 

realtime 

ML to the EEW to make it faster and reveal more details about the potential 

earthquake. Leach and Dowla used ANN with FFBP architecture to obtain the shaking 

intensity, duration and time remaining until PGA from Southern California records [33]. 

It was shown that the first few seconds of seismic activity play a vital role in the estimation 

process. Also, the results show a good performance with an 𝑅𝑅2 value of 0.843, 

given that strong motion was not included in the study. In addition, a realtime 

EEW 

was implemented based on the seismic activity from all three directions. The system 

classifies the earthquake as hazardous if the magnitude scale exceeds 0.58. 

Another study conducted in the same region explored the use of probabilistic 

ANN for magnitude prediction based on eight seismicity indicators [34]. The model 

classifies the magnitude into seven ranges from less than 4.5 to 7.5 on the Richter scale. 



The best prediction was for the range 4.5 – 6 with an 𝑅𝑅2 value of 0.78. However, large 

scale earthquakes yielded an 𝑅𝑅2 value less than 0.5. The authors explained this classification 

error with the scarcity of big earthquakes in the dataset. 
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Ramirez and Francois employed feature extraction and supervised ML to classify 

the incoming seismic waves from three directions [35]. The output was either Por 

Lphases 

indicating compressional and surface waves respectively. The maximum correct 

classification accuracy was 67.9% associated with 0.3 acceptance threshold. In 2018, 

various ML techniques were applied to reduce false EEW [36]. The system learns to 

differentiate between Pwaves 

and noise with a high accuracy. Feature extraction was 

performed on the input signal followed by generative adversarial networks (GANs) and 

random forests algorithm. The results were promising; the accuracy reached 98.4% for 

noise signals and 99.2% for P waves. 

In the same year, a similar study was conducted to reduce false warnings using 

classification [24]. The incoming waveforms from multiple channels were classified 

into phases based on the likelihood function. The results show 50% less error compared 

to the classical classification function. In [37], the study is based on feed forward ANNs 

with two hidden layers to estimate the hypocenter and the magnitude. The system relies 

on the emerging seismic signals from multiple sensors in the Marmara region to issue an 

EEW. The best accuracy was obtained using four stations and a window of 3.5 seconds. 

However, enhancing the accuracy here is at the cost of waiting longer which is inefficient 

for EEW. 

A more reliable solution was provided by Kuyuk and Susumu through classifying 

the earthquake into nearsource 

or farsource 

based on the incoming Pwaves 

[35]. 



Long Shortterm 

Memory Networks were used as the classification function. The input 

is one second long which is divided into 13 points and the hidden layer contained 100 

neurons followed by a classification layer. The training accuracy was more than 95% 

for both classes. However, during the testing phase, the accuracy dropped to 65.7%. 

Based on the presented research, all the earthquake predictions are done for some 

parameters relating to the earthquake and not the acceleration time series itself. It is evident 

that this study is exploring a new area that is the realtime 

prediction of ground 

motion resulting from an earthquake. This study begins with using ML models to predict 

a window of the earthquake signal from the initial points. The used ML algorithms 

are ANN, CNN, RNN, LSTM network and CNNLSTM 

network. The predictions are 

updated for future windows of the signal as new points are measured. Moreover, we 
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conduct some analysis on the metadata like the PCA and 𝑘𝑘−Means clustering. We identify 

clusters in the metadata and then apply ML models based upon all the clusters which 

makes the model more robust. 

It is worth noting that it is important to have a sufficiently long input window to 

obtain useful information from it but not overly long as vanishing gradient may occur 

in long sequences. Therefore, an expanding window is not suitable for our research as 

the window can become really long after some time (more than 100,000 points). The 

sliding window approach is utilized with a window size of 357 points or half a second. 

The timelag 

or shift is equivalent to the forecast horizon to obtain nonoverlapping 

outputs. In addition, the design should use less layers initially, and if they do not deliver 

satisfactory performance, we can move to deeper networks as most forecasting problems 

can be addressed with a small number of layers. 

2.4. Theoretical Background 



In this section, we shed light on the theory related to our thesis. Namely, Principal 

component analysis and 𝐾𝐾Means 

clustering. In addition, variants of artificial neural 

networks such as recurrent and convolutional neural networks are discussed. 

2.4.1. Principal component analysis. Principal component analysis (PCA) is a 

technique used to reduce dimensionality in an unsupervised manner. The number of 

variables is reduced to a set that contains fewer ones with most information about the 

original variables. This operation comes at the expense of some accuracy for simplicity. 

PCA is performed on a vector x ∈ R𝑚𝑚 by projecting to a lowerdimensional 

vector 

z = 𝑃𝑃𝑃𝑃x, z ∈ R𝑛𝑛 [38]. The columns of 𝑃𝑃 are the principal components. The principal 

components indicate the direction with maximum variability. The principal components 

are orthogonal and are the eigenvectors of the covariance matrix 𝑆𝑆 of the data, while the 

eigenvalues 𝜆𝜆 of each feature represent the variances in those directions. These are given 

by 

𝑆𝑆 = 

1 

𝑛𝑛 − 1 

Õ𝑛𝑛 

𝑖𝑖=1 

(𝑋𝑋𝑋𝑋 − ¯𝑋𝑋) (𝑌𝑌𝑌𝑌 − ¯ 𝑌𝑌), 

𝑆𝑆v = 𝜆𝜆v, 

(1) 
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where 𝑆𝑆 is the covariance matrix between variable 𝑋𝑋 and 𝑌𝑌. Since 𝑆𝑆 is a square matrix, 𝑣𝑣 

is a vector and 𝜆𝜆 is a scalar that satisfies equation 1, then 𝜆𝜆 is called eigenvalue associated 

with eigenvector 𝑣𝑣 of 𝑆𝑆. Clustering performance generally decreases with higher dimensions. 

Therefore, we chose to implement dimensionality reduction through PCA before 

applying clustering on metadata. PCA also helps us visualize the data in lower dimensions. 



Moreover, it eradicates correlated features as the resulting principal components 

are independent of one another. However, they might be less interpretable compared to 

the original features as they are linear combination of all features. Figure 2.3 shows two 

principal components after applying PCA. 

Figure 2.3. An example of the two principal components with maximum variance after 

dimensionality reduction through PCA (image source: [39]). 

2.4.2. 𝐾𝐾Means 

clustering. Clustering is one of the most popular analytical methods 

to find structure in data. We try to identify homogeneous subgroups such that the 

observations in each subgroup are as related as possible according to a similarity measure, 

such as the Euclidean distance. The clustering used in this work is based on features, 

where the clustering is conducted on observations from each feature. Clustering 

is a type of unsupervised learning because the ground truths are unavailable to compare 

with for performance evaluation. The goal is to investigate the data structure by 

grouping observations into different groups. 

𝐾𝐾means 

clustering is an iterative algorithm that partitions the data into 𝐾𝐾 foreknown 

number of clusters, such that each observation belongs to only one cluster. It 
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tries to keep the clusters as different as possible while keeping the points as similar as 

possible based on the similarity measure. The cluster centroid is defined as the arithmetic 

mean of all the points in that specific cluster. The algorithm will assign points 

to a cluster if the sum of the squared distance between the points and the centroid is 

minimum. 

The clusters’ centroids are initialized randomly and subsequently optimized using 

the mean of the cluster. Firstly, each point is designated to the nearest cluster based 

on the Euclidean distance. Afterwards, the mean of all the points in a cluster is calculated 

and the centroid is moved to the mean. The process continues until the position 

of the centroids stabilizes. The solution approach can be formulated as ExpectationMaximization. 



The expectation is assigning each point to a cluster and maximization is 

the computation of the centroid for each cluster. The objective function can be expressed 

as 

𝐽𝐽 = 

Õ𝑘𝑘 

𝑗𝑗=1 

Õ𝑛𝑛 

𝑖𝑖=1 

𝑤𝑤𝑤𝑤𝑤𝑤 

 
 
  
 

𝑥𝑥 𝑗𝑗 

𝑖𝑖 

− 𝑐𝑐 𝑗𝑗 

 
 
 
 

2 

, (2) 

where 𝑤𝑤𝑤𝑤𝑤𝑤 = 1 if the point 𝑥𝑥𝑥𝑥 belongs to the cluster and 0 if not. Here, 𝑛𝑛, 𝑘𝑘 are the 

number of points and clusters, 𝑐𝑐 𝑗𝑗 is the centroid of cluster 𝑗𝑗 , and 𝑥𝑥𝑥𝑥 

𝑗𝑗 is point 𝑖𝑖 in cluster 

𝑗𝑗 . 𝐾𝐾means 

requires prior knowledge about the number of clusters. 

1. Relatively efficient: Algorithm complexity is of order 𝑂𝑂(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), where 𝑛𝑛, 𝑘𝑘, 𝑑𝑑, 

and 𝑡𝑡 are the number of data points, clusters, dimension and iterations respectively. 

Normally, 𝑘𝑘, 𝑡𝑡, 𝑑𝑑 << 𝑛𝑛. 

2. Optimum results occur when the data points are wellseparated 



from each other. 

2.4.3. Artificial neural networks. Artificial neural networks are inspired by the 

human brain, which is essentially a network of interconnected cells or neurons. ANNs 

can learn from the data without being explicitly programmed to do so, which makes 

them data driven models [40]. The learning model relies on weighting the input to each 

node or neuron. Inputs that contribute more to the output are assigned a higher weight. 

The data is fed to the input layer which passes it to consecutive layers also known 

as the hidden layers. If the network contains more than one hidden layer it is referred 
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to as a deep ANN. Neurons are the base unit that makes up all layers. Each neuron 

receives the inputs and performs some mathematical operations. The connections to 

neurons carry a weight each that are constantly updated during the training process. 

The output of a neuron can be expressed as 

𝑧𝑧𝑧𝑧 

𝑗𝑗 = (𝑊𝑊𝑊𝑊 

𝑗𝑗 

)𝑇𝑇x + 𝑏𝑏𝑏𝑏 

𝑗𝑗 , (3) 

where 𝑊𝑊𝑊𝑊 are matrices of weights that maps the inputs to the next layer. The 𝑏𝑏 𝑗𝑗 terms 

represents the bias which is added to all neurons expect the ones in the input layer. To 

model complex problems and learn more from the data, a nonlinearity is introduced, 

also known as activation function. The final output from a neuron after it goes through 

the activation function can be expressed as the output of neuron 𝑗𝑗 in layer 𝑙𝑙 is expressed 

as, 

𝑎𝑎𝑎𝑎 

𝑗𝑗 = 𝜑𝜑( 

Õ 

𝑘𝑘 

𝑤𝑤𝑤𝑤 



𝑗𝑗 𝑘𝑘𝑘𝑘𝑘𝑘−1 

𝑘𝑘 

+ 𝑏𝑏𝑏𝑏 

𝑗𝑗 

), (4) 

where the sum is over all neurons denoted by 𝑘𝑘 in the previous layer. The set of operations 

performed by a neuron are shown in Figure 2.4. After one pass of all the training 

examples through the network and producing an output, forward propagation is completed. 

The prediction is then compared to the actual output and the error will impact 

the entire network through back propagation (BP). The goal of the back propagation is 

to change the weights and bias to minimize the cost function. The amount of change in 

the weights and bias is determined by the gradient of the cost function with respect to 

the parameters using the chain rule. 

The optimizer is the algorithm responsible for changing the network characteristics 

to minimize the loss. Gradient descent is a type of optimizer that uses the first 

derivative of the loss function which makes it simple to implement. However, it is susceptible 

to be stuck in a local minima [41]. Adding a momentum term can solve this 

issue, as it continuously increases the size of the step taken towards the minimum. The 

amount of change in the parameters at each epoch is determined by the learning rate. If 

the learning rate is small, the convergence process speed will be hindered. On the other 

hand, a large learning rate can cause divergence in the error. The number of parameters 
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that the optimizer has to improve are the sum of all the weights and bias in the network. 

Figure 2.4. The perceptron, showing an example of the operations described in 

equation (4) (image source: [42]). 

Model selection and the resulting parameters are detrimental to the model performance. 

When the model is too simple to describe the problem at hand, underfitting 

occurs. Essentially, the model fails to learn from the training data and will not perform 

well on the test data. Underfitting can be solved by increasing the complexity of the 



model by adding more layers or hidden neurons. When the model is overly complex and 

has a lot of parameters, overfitting can occur if insufficient data is provided. Overfitted 

models don’t generalize well as they strictly memorize the training data only. Hence, 

supplying more training data to the model is an appropriate solution to overfitting. 

Regularization or early stopping can be added to prevent overfitting. Early stopping 

prevents overfitting by monitoring the validation error, as shown in Figure 2.5. If 

the loss keeps increasing for a specific number of epochs, also known as patience, it halts 

the training and restores the weights of the best epoch. Regularization imposes a penalty 

on the model for the weights, the optimization algorithm has to deal with constraints in 

addition to minimizing the loss between the actual and predicted output. Regularization 
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restricts the flexibility of the network, two examples of regularization are 𝐿𝐿1 and 𝐿𝐿2 

regularization. 

Figure 2.5. Early stopping halts the training as the validation begins to increase, as 

indicted by the arrow. 

𝐿𝐿1 regularization also known as Lasso regression, adds the absolute value of the 

weights to the error function as shown in equation 5. If the value of the tunable regularization 

parameter 𝛼𝛼 is zero, the model will become unregularized. 𝐿𝐿1 regularization 

works to reduce the number of parameters in the model by forcing some weight to become 

zero. This is effective in feature selection. 𝐿𝐿1 regularization can be expressed 

as 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (ˆ𝑦𝑦, 𝑦𝑦) + 𝛼𝛼 

Õ𝑁𝑁 

𝑖𝑖=1 

|𝑤𝑤𝑤𝑤 | , (5) 

where 𝑁𝑁 is the total number of training examples, and 𝑦𝑦𝑦𝑦 , ˆ𝑦𝑦𝑦𝑦 are the groundtruth 

and 

predicted points, respectively. 𝐿𝐿2 regularization or ridge regression is the most common 

type of regularization. 𝐿𝐿2 regularization adds a penalty to the square value of the 
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weights. Therefore, if the value 𝛼𝛼 is too large, it imposes a high penalty as shown in 

equation 6. In this technique, no parameters are eliminated but they are all reduced by 

the same factor. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (ˆ𝑦𝑦, 𝑦𝑦) + 𝛼𝛼 

Õ𝑁𝑁 

𝑖𝑖=1 

𝑤𝑤2 

𝑖𝑖 (6) 

2.4.4. Convolutional neural networks. The main issue with utilizing classic artificial 

neural networks for regression, specifically time series problems, is the huge 

number of parameters to be optimized. For example, a sequence of length 𝑙𝑙 would require 

𝑙𝑙 parameters to connect to a single node in the next layer. Convolutions neural 

networks are known to have a manageable number of parameters and that makes the 

training time manageable [43]. The main computation in a CNN is the convolution operation. 

For a 2D input 𝐼𝐼 of size (𝐻𝐻,𝑊𝑊), the convolution operation of 𝐼𝐼 with a filter 𝐾𝐾 

yields the output feature map 𝑂𝑂 

𝑂𝑂𝑂𝑂𝑂𝑂 = 

Õ𝐻𝐻 

𝑖𝑖=−𝐻𝐻 

Õ𝑊𝑊 

𝑗𝑗=−𝑊𝑊 

𝐼𝐼𝐼𝐼, 𝑗𝑗𝑗𝑗𝑗𝑗−𝑖𝑖,𝑙𝑙−𝑗𝑗 . (7) 

This can be thought of as the filter 𝐾𝐾 moving across the height and width of the image 

and taking the sum of the elementwise 

products of overlapping entries. 

Adding a stride of size 𝑠𝑠 to a convolution results in the filter moving 𝑠𝑠 steps for 

every computation in equation (7), instead of column by column. This decreases the 

size of the output, and can be used to control for the size of the output feature map, as 



well as in pooling layers. Padding is another common practice which consists of adding 

rows and columns of zeros to the boundaries of the input image to also allow for control 

of the output dimension. 

Similar to ANNs, deep CNN architectures contain many hidden layers with different 

properties. One of the most common layers are convolutional layers, which convolves 

an input feature map with a filter as described. Analogous to layer weights in 

ANNs, filter parameters determine how the output looks like, and is one of the fundamental 

drivers of CNNbased 

learning. Max pooling layers are also common. Max 
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pooling of size 𝑀𝑀 downsamples 

the input by taking the maximum element from 𝑀𝑀×𝑀𝑀 

windows across the input, and do not contain any learned parameters. Fullyconnected 

layers mimic the hidden layers of ANNs, and are usually placed before the last layer. In 

addition to these three, many other layers can be found in CNN architectures. 

To process 1D signal inputs in CNNs, 1DCNNs 

have been developed. One of 

the differences between 1D and 2D CNNs is that the feature maps and filters are onedimensional. 

The kernel of a filter with size ℎ will cover size 𝑙𝑙 of and slide to the right 

one time step at a time. 

The 1D convolution operation between a 𝑝𝑝dimensional 

input 𝑥𝑥 and a filter 𝑤𝑤 

gives a 1D output 𝑦𝑦, given by [44] 

𝑦𝑦𝑦𝑦 = 

Õ𝑝𝑝 

𝑘𝑘=−𝑝𝑝 

𝑥𝑥𝑥𝑥−𝑘𝑘𝑘𝑘𝑘𝑘 . (8) 

The convolved sequence is then passed through a nonlinear activation function and 

downsampled. 



An example 1DCNN 

architecture illustrating the forward propagation 

is shown in Figure 2.6, where each hidden layer has 24 filters performing the 1D 

convolutions on their respective input feature maps. 

Figure 2.6. Example of a 1DCNN 

architecture for binary classification (image 

source: [44]). 

34 

The filter parameters are governed by an optimization algorithm with respect to 

a loss function that seeks to minimize some error between the network outputs and the 

groundtruth 

labels. Optimizers use the gradients of the loss function with respect to the 

learnable network parameters to find these minima. Some common loss functions are 

MSE, RMSE, and crossentropy 

loss. 

1DCNNs 

are significantly less computationally expensive than 2DCNNs, 

due 

to the number of learnable parameters [44]. They have been used in several applications 

related to fault monitoring in vibrating structures, mechanical parts, and multilevel converters 

[44]. Avci et al. [45] trained 1DCNNs 

using signals obtained from accelerometers 

to monitor the directions most susceptible to damage. Abdeljaber et al. [46] used 

signals obtained from damage scenarios in structures to train a 1DCNN 

for structural 

health monitoring. 

2.4.5. Recurrent neural networks. In recurrent neural networks, the current state 

of the model is affected by the previous states. Unlike feedforward 

networks where the 



information travels exclusively in one direction from the input to the output layer [47]. 

The RNN produces an output and feeds it back to the network to be used in the current 

computation which helps it retain immediate memory from previous computations. The 

principle of operation can be summarized as 

𝑦𝑦𝑦𝑦 = 𝑓𝑓 (ℎ𝑡𝑡 ; 𝜃𝜃) 

ℎ𝑡𝑡 = 𝑔𝑔(ℎ𝑡𝑡−1, 𝑥𝑥𝑥𝑥 ; 𝜃𝜃), 

(9) 

where 𝑦𝑦𝑦𝑦 which is the output at instant 𝑡𝑡, depends on the current state ℎ𝑡𝑡 given 𝜃𝜃 which 

includes all the network parameters. Given the same parameters 𝜃𝜃, the current state 

ℎ𝑡𝑡 depends not only on the current input but on the previous state ℎ𝑡𝑡−1 as well. The 

second equation illustrates how RNNs can remember past computations and carry it 

to future ones. Figure 2.7 demonstrates the three main variables in an RNN and how 

they interact. RNNs has the advantage of smaller number of parameters to optimize 

compared to ANNs because they deploy parameter sharing. It essentially means that 

the same weights (𝜃𝜃𝜃𝜃, 𝜃𝜃𝜃𝜃, 𝜃𝜃ℎ) are reused across all time steps. Parameter sharing gives 

RNNs the ability to handle variable length inputs. 
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Figure 2.7. RNN unfolded, an example of the operations happening inside an RNN 

layer. 

In the case demonstrated in Figure 2.7, both the input and output pairs are univariate 

as the have one value per time step. For multivariate sequences, the dimensionality 

can be controlled by varying the number of units in each layer. In Figure 2.8, the 

number of units in the hidden layer is four which equates to the output dimensionality. 

The output can either be a at every time step or at the end of the sequence. Training RNNs 

includes obtaining an output then propagating backwards in a process called backpropagation 

through time (BBTT) to find the gradients of the loss function and adjusting the 

parameters afterwards. 

Figure 2.8. The number of units inside the RNN layer. 
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RNNs are susceptible to the vanishing/exploding gradient problem that hinders 

the training process [48]. It occurs because the backpropagation algorithm utilizes the 

chain rule (more details can be found in [40]). Since the chain rule involves multiplication 

of partial derivatives, the gradient in the early layers will contain multiplication 

analogous to the sequence length. If one partial derivative is < 1, the product will be 

very small resulting in vanishing gradient. In case of derivatives > 1, the product becomes 

big. Both of these cases are problematic, because vanishing gradient makes the 

training very slow and exploding gradient renders the training unstable. 

2.4.6. Long shortterm 

memory networks. Long shortterm 

memory, or LSTM 

network, is a type of RNN initially created by Hochreiter and Schmidhuber in 1997 [49]. 

It is deemed powerful for a variety of applications such as machine translation [50] and 

speech recognition [51] [52]. LSTMs were created as a solution for the RNN’s short 

term memory, since they have internal mechanisms called gates which regulate the flow 

of information [53]. These gates can learn which data in sequences should be kept and 

which should be discarded. It learns to use relevant information to make predictions. 

The gates are the input, forget and output gates. Starting with the forget gate which is 

expressed as 

𝑓𝑓𝑓𝑓 = 𝜎𝜎(𝑊𝑊𝑊𝑊 [ℎ𝑡𝑡−1, 𝑥𝑥𝑥𝑥 ] + 𝑏𝑏 𝑓𝑓 ]). (10) 

The input 𝑥𝑥𝑥𝑥 at instant t is combined with the previous state ℎ𝑡𝑡−1 into a single vector. 

The vector is multiplied by weight 𝑊𝑊𝑊𝑊 , added to a bias 𝑏𝑏 𝑓𝑓 , and passed to the sigmoid 

function 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) defined by 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = 

1 

1 − 𝑒𝑒−𝑡𝑡 . (11) 

The output of the sigmoid function is between 0 and 1. When it is closer to 1, the 

information will be retained and when it is closer to 0, it will be discarded. To update 

the cell state or memory ˜ 𝑐𝑐𝑐𝑐 , the vector of the input and previous state is passed through 



tanh which gives an output between 1 

and 1. This range will protect from exploding 

gradients. In addition, the vector is passed through the sigmoid function, which will 

decide whether to add the new information to the memory or not. These two operations 
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are expressed as 

𝑖𝑖𝑖𝑖 = 𝜎𝜎(𝑤𝑤𝑤𝑤 [ℎ𝑡𝑡−1, 𝑥𝑥𝑥𝑥 ] + 𝑏𝑏𝑏𝑏]) 

˜ 𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑤𝑤 [ℎ𝑡𝑡 − 1, 𝑥𝑥𝑥𝑥 ] + 𝑏𝑏𝑏𝑏). 

(12) 

Afterwards, the candidate state ˜ 𝑐𝑐𝑐𝑐 and the input gate output are multiplied which further 

regulates the information from the memory. At this point, the cell is ready to calculate 

the current cell state 𝑐𝑐𝑐𝑐 by adding the forget gate output 𝑓𝑓𝑓𝑓 to the candidate state ˜ 𝑐𝑐𝑐𝑐 as 

shown in equation 13. Figure 2.9 illustrates the inner connections of an LSTM cell. 

𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑓𝑓 ∗ 𝑐𝑐𝑐𝑐−1 + 𝑖𝑖𝑖𝑖 ∗ ˜ 𝑐𝑐𝑐𝑐 (13) 

Figure 2.9. Inner connections of an LSTM cell (image source: [54]). 

Finally, the output gate decides which information from the current cell state will 

be passed to the next cell. The vector of the input and previous hidden state is passed 

through a sigmoid function, as shown in equation 14, which as explained previously 

acts a filter. Afterwards, the output is multiplied with the tanh of the current cell state to 

output a value between 1 

and 1 and that is the new output that will be used in the next 

time step. The aforementioned operation can be expressed as 

𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑤𝑤𝑤𝑤 [ℎ𝑡𝑡−1, 𝑥𝑥𝑥𝑥 ] + 𝑏𝑏𝑏𝑏]) 

ℎ𝑡𝑡 = 𝑜𝑜𝑜𝑜 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑐𝑐𝑐𝑐 ). 

(14) 
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2.4.7. CNNLSTM 

networks. The CNNs are capable of extracting information 

from the input as feature maps. LSTM networks can handle sequential dependencies 



in a time series. For this reason, CNN and LSTM are often utilized together in the 

same network to forecast a time series. The convolutional layer extracts feature maps 

representing different channels of the input simultaneously. Each input channel accounts 

for a distinct timedependent 

variable in the multivariate sequence. The feature maps 

are then used as an input to the LSTM layer to make a prediction. 
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Chapter 3. Methodology 
In this chapter, we describe the methodology by which we adapt different machine 

learning algorithms for ground motion acceleration prediction. The database 

NGAWest2 

is introduced as well as the data preprocessing. 

3.1. Database 

This research employed data from the Pacific Earthquake Engineering Research 

Center (PEER), specifically the NGAWest2 

database [55]. It contains ground motion 

data from shallow crustal earthquakes worldwide, and their locations are illustrated in 

Figure 3.1. Events are categorized as shallow crustal if their hypocenter is within the 

continental crust. The database includes triaxial records from 599 earthquakes. In addition, 

21,540 records of metadata that characterize events and recording stations are also 

present, as shown in Figure 3.1. The moment magnitude ranges from 𝑀𝑀𝑀𝑀 3.0 to 𝑀𝑀𝑀𝑀 

7.9, and the closest distance ranges from 0.05 to 1,533 km. Data is significantly less for 

distances that exceed 400 km, as shown in Figure 3.2. The raw ground motion time series 

is processed to minimize lowand 

highfrequency 

noise using acausal Butterworth 

filter. 

Figure 3.1. Map of included events in the NGAWest 

2 database, shown in red (image 



source: [55] ). 
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Figure 3.2. Magnitude versus distance for shallow crust records. (image source: [56]). 

3.2. Data Preprocessing 

The metadata, which contains 276 features, is processed according to the following 

criteria: 

1. Remove unnecessary features such as the station name and date 

2. Remove features which include more than 50% missing data 

3. Create a numeric value to represent some values such as the coseismic surface 

rupture: 1=Yes; 0=No; Replace 999 

with 1 

(absence of measurement) 

4. Feature standardization to obtain zero mean and unity variance 

The final database contains a total of 21540 records and 48 features for the metadata. In 

addition, a total of 17602 triaxial acceleration records are used. That is because not all 
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of the time series records are available on the database. The used measurement unit for 

acceleration through this research is in terms of gravity 𝑔𝑔 which equates to 9.81 𝑚𝑚/𝑠𝑠2. 

Interpolation was done to ensure an equal sampling frequency of 714.3 Hz, where each 

time step is 0.0014 seconds. This small sampling interval results in a high prediction 

precision. Moreover, we obtain more training examples from each signal which in turn 

enhances the prediction performance. 

The time series is split into input/output pairs where the input is called a window 

and the output is the forecast horizon, as shown in Figure 3.3. This is following the 

sliding window approach which will increase the number of training examples available 

to our models. The prediction horizons from different windows are nonoverlapping. 

Therefore, the windows should be shifted to the right by the forecast horizon as time 

progresses. 

Figure 3.3. The sliding window approach. 



3.3. Proposed Models and Training Details 

The ML architectures used are described in this section, followed by the training 

details for the setups implemented to test the networks. These details include the 

different hyperparameters used in the different models such as the choices of the loss 

function and training/test data split. 
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3.3.1. Metadata analysis. The record file for the NGAWest2 

database includes 

48 features as mentioned in the previous section. Due to the highdimensional 

features, 

making sense of this large quantity of information is an issue. To analyze our data 

and potentially deduce patterns within would be extremely difficult due to the curse of 

dimensionality. This means that the data becomes more sparse and moves further away 

from each other as the dimension increases. To sustain the space representation, we 

need more data examples as they grow exponentially with the number of dimensions. 

Another issue is analyzing the data, since in high dimensions, the data might be similar 

yet it appears further. 

To solve this issue, PCA reduces the number of dimensions by linearly combining 

all the original parameters, as explained in the previous chapter, and extracting the 

principal components with the highest variance. In this way, we do not have to manually 

select parameters, as some important ones might get dismissed. We let the data 

explain itself and statistically produce new features that represent all parameters. From 

there, the 𝑘𝑘means 

clustering algorithm is applied to find structure in the data. The selected 

number of clusters is three. These clusters are present in the training, testing and 

validation datasets to sustain a global model applicable for all clusters. 

3.3.2. ANN architecture. The ANN model serves as a baseline to compare the 

other models’ performance. It consists of an input layer, one hidden layer and an output 

layer. The input layer contains windows from different axes where H1 is the first 



horizontal axis, H2 is the second horizontal axis and V is the vertical axis. The number 

of nodes in the input represents the time steps from three axes, the window size is set to 

half a second or 357 points. The number of hidden neurons should be less than the input 

and output sizes. We set the hidden layer size to be the mean of the input and output 

size. Each output neuron corresponds to a predicted time step in the three axes, and we 

experiment with multiple prediction horizons. 

Since ANNs are prone to overfitting due to the huge number of parameters in 

the network, regularization is deployed. The 𝐿𝐿2 regularization with a value of 0.0001 

is used. For longer prediction horizons, the number of parameters might exceed the 

number of training examples so we increase the 𝐿𝐿2 value to 0.1. In addition, early 
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stopping will halt the training if the validation loss does not improve within five epochs. 

The optimizer was selected upon experimentation. The network configuration is shown 

in Figure 3.4. 

Figure 3.4. Proposed ANN model. 

The learning rate is an important parameter in the working of ANNs. It determines 

how the weights are updated at each epoch to reach the minimum. If the learning 

rate is too high, it can cause the error metric to diverge and never reach the minimum. If 

it is too low, the learning process becomes too slow. To avoid excessive tuning, a learning 

rate scheduler has been deployed. It is initialized to be a high value that reduces 

every epoch according to equation 15. Fast learning happens at first and the weights 

optimization occurs as the training progresses. 

𝑙𝑙𝑙𝑙 = 

𝑙𝑙𝑙𝑙0 

1 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ ∗ 𝑅𝑅𝑅𝑅 

, (15) 

where 𝑅𝑅𝑅𝑅 is the decay rate and is set to 0.5, and the 𝑙𝑙𝑙𝑙0 is the initial learning rate that is 

determined by experimentation. Another important parameter is called the batch size. 

The batch size is the number of training examples fed at once during training. We selected 



the batch size to be 128. A batch normalization layer is added after the input and 
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the hidden layer and it standardizes the batch to zero mean and unity variance. This 

ensures training stability and prevents the weights from exploding and helps reduce the 

total number of epochs in training. 

3.3.3. CNN architecture. Since CNNs are excellent for extracting meaningful 

feature maps, they are utilized for time series prediction. The proposed model, as shown 

in Figure 3.5, has an input layer of three channels each from a different axis. After that, 

a 1Dconvolutional 

layer with a filter size of three. To downsample 

the layer’s output, 

a stride of two is utilized. The stride reduces the number of computations needed as the 

convolutions layer produces a smaller output size. A stride of two is the most commonly 

used stride [57]. Since a stride of two is used, the feature map size will be reduced to 

half. A flatten layer is used to turn all the feature maps to a single vector and then feed 

it to an FC layer. This allows us to control the output size by changing the number of 

neurons. 

Figure 3.5. Proposed CNN model. 

Two FC layers are used to reduce the number of parameters, where the FC proceeding 

the output layer has about 100 neurons. Each output neuron produces a single 

time step through the three axes. The number of convolutions layers and their filters are 

selected by experimentation based on the test loss. The batch size is 128 and the ini45 

tial learning rate are determined by experimentation as well. The selected optimization 

algorithm is adaptive moment estimation (ADAM), which is the most popular one for 

CNNs [21]. ADAM eliminates vanishing learning rate and helps speed up the convergence. 

However, it tends to be computationally costly [58]. Early stopping is deployed 

with a patience of five epochs. 

3.3.4. RNN architecture. The RNN network is composed of an input layer, RNN 

layer and an output layer, as shown in Figure 3.6. The input contains the windows from 



each axis as a separate channel. H1 axis is channel one, H2 axis is channel two and V 

axis is channel three. Not only does this reduce the number of computations but also 

separates the axes so the RNN can handle the input as a multivariate sequence rather 

than a univariate one in the ANN. The layer does not return a sequence, rather it returns 

a vector. That vector is the summary of the input and it is fed to the FC layer. 

Figure 3.6. Proposed RNN model. 

The FC layer is the output layer and it is divided into three segments each is the 

forecast horizon in a different axis. The number of RNN layers are determined through 
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experimentation along the number of units in each RNN layer. Early stopping of five 

epochs is used to prevent overfitting. A batch size of 128 is used to divide the dataset 

into multiple segments for training. 

3.3.5. LSTM architecture. The LSTM network is composed of an input layer, 

LSTM layer and an output layer, as shown in Figure 3.7. The input contains the windows 

from each axis as a separate channel. The layer does not return a sequence, rather 

it returns a vector. That vector is the summary of the input and it is fed to the FC layer. 

The FC layer is the output layer and it is divided into three segments each is the forecast 

horizon in a different axis. The number of LSTM layers are determined through experimentation 

along with the number of units in each LSTM layer. Early stopping of five 

epochs is used to prevent overfitting. A batch size of 128 is used to divide the dataset 

into multiple segments for training. 

Figure 3.7. Proposed LSTM model. 

3.3.6. CNNLSTM 

architecture. Combining the CNN ability to extract information 

with the ability of the LSTM network to remember information and deal with time 
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dependency should benefit the network in longterm 

predictions. Not only will the CNN 

produce more meaningful input to the LSTM, but it will also reduce the size of the input. 



The CNNLSTM 

model consists of an input layer, 1Dconvolutional 

layer, LSTM layer 

and an output layer, as shown in Figure 3.8. Maxpooling 

is utilized after the convolutional 

layer to decrease the size of the feature map. The input is windows from the 

three axes ordered as channels. The 1Dconvolutional 

layer has a filter size of three. 

The output layer is an FC layer that predicts future values in each axis. Batch size of 

128 is used along with early stopping with a patience of five epochs. 

Figure 3.8. Proposed CNNLSTM 

model. 

3.3.7. Training details. The implementation code was written in Python 3.4 on 

a computer (Intel(R) Core(TM) i910900X 

CPU 3.70GHz, 62 Gbyte RAM) running 

ubuntu 18.04 operating system. The machine learning models were implemented using 

Keras library, on GeForce GTX 1080 GPU running with CUDA 10.2. The dataset was 

split as 70% training and 30% testing, 10% of the training data is used as a validation 

set to test performance during training. The examples that appear in the training set do 

not appear in the validation set nor the test set of our earthquake data. For the signal 

prediction, a training set of one million examples was used. A smaller subset of 50,000 

examples was used for parameter selection. All models except CNN–LSTM models 
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were trained for 25 epochs with a batch size equal to 128. Table 3.1 summarizes the 

training details for all the proposed models. 

Table 3.1. Summary of the training/validation/testing splits and activations used for 

each of the proposed models. 

ANN CNN RNN LSTM CNNLSTM 

Training Data 1M 1M 1M 1M 1M 



Validation Data 100k 100k 100k 100k 100k 

Testing Data 420k 420k 420k 420k 420k 

Activations Relulinear 

Tanhlinear 

Tanhlinear 

Tanhlinear 

Tanhlinear 

No. of epochs 25 25 25 25 35 

3.4. Performance Evaluation 

To evaluate the performance of our networks in predicting ground motion time 

series, we need to select an appropriate loss function. The first method which is documented 

in [59], is called cosine similarity. This method works by measuring the similarity 

between the actual output y and the predicted output ˆ𝑦𝑦 vectors. The cosine similarity 

is expressed as 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦, ˆ𝑦𝑦) = 

𝑦𝑦.ˆ𝑦𝑦 

∥𝑦𝑦∥ ∥ˆ𝑦𝑦∥ , (16) 

where ∥𝑦𝑦∥ is the Euclidean norm of vector 𝑦𝑦 = (𝑦𝑦1, 𝑦𝑦2, ...𝑦𝑦𝑦𝑦) which is expressed as 

∥𝑦𝑦∥ = 

qÍ𝑛𝑛 

𝑖𝑖=1 𝑦𝑦2 

𝑖𝑖 . The cosine similarity computes the cosine of the angle between the 

two vectors. A cosine value of zero means the two vectors are orthogonal or dissimilar. 

As the value approaches one, the angle decreases and the vectors are more similar until 

they point in the same direction. However, if either vector is zero the dot product is 

zero which makes the cosine similarity zero. That indicates dissimilarity but that can 

be deceiving as the vectors might be matching and therefore similar. This makes cosine 

similarity unsuitable for earthquake time series prediction as a considerable portion of 

the signal is zero. 



Another heavily documented method in literature is called root mean squared 

error (RMSE). This measure was used by Cheng et al. [60] for evaluating the performance 

of a multistep 

prediction model in time series. In addition, Geng et al. [61] 
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utilized RMSE for seismic energy prediction from time series and added parameters. 

RMSE is expressed as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 

vut 

1 

𝑁𝑁 

Õ𝑁𝑁 

𝑖𝑖=1 

(𝑦𝑦𝑦𝑦 − ˆ𝑦𝑦𝑦𝑦)2, (17) 

where 𝑁𝑁 is the total number of training examples, and 𝑦𝑦𝑦𝑦 , ˆ𝑦𝑦𝑦𝑦 are the groundtruth 

and 

predicted points, respectively. This is a commonly used metric that constitutes a measure 

of the overall deviation of the predicted points from the actual points. Another model 

evaluation metric is the execution time since our objective is to have a realtime 

system. 

It is crucial to take a substantially lower time to make a prediction compared to the 

forecast horizon. We aim for a delay of less than 10% of the forecast horizon. 
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Chapter 4. Experimental Results and Discussion 
In this chapter, we present the parameter selection for all the models. In addition, 

different prediction horizons are shown, the best performing model compared to the 

baseline is highlighted. Finally, a summary of the results is discussed along with the 

execution time for each model. 

4.1. Results of Metadata Analysis 



In this section, we present the results for PCA and the 𝑘𝑘Means 

clustering algorithm. 

These unsupervised ML techniques were implemented on the earthquake metadata. 

4.1.1. Results for PCA. The PCA algorithm is used to reduce the dimensional 

space from 48 to three to visualize the data, as illustrated in Figure 4.1. Thus, we show 

here three dimensions with the largest eigenvalues. Loadings squared are the variance 

in each variable per component. Loadings are interpreted as the coefficients of the linear 

combination of the initial variables from which the principal components are constructed. 

The variables that influence the principal components the most or have the 

biggest coefficient in each linear combination are shown in Table 4.1. The strongest 

variable is the magnitude which is the most common parameter to describe an earthquake. 

The first principal component represents the earthquake characteristics like the 

magnitude, magnitude type and the fault rapture width. The magnitude type is either 

moment magnitude, local magnitude, surfacewave 

magnitude or body wave magnitude 

[55]. 

The second principal component relates to the distance and it is a defining factor 

in the strength of an earthquake at a given location. The epicentral distance is defined as 

the distance from the earthquake’s epicenter to the recording station. The hypocentral 

distance refers to the distance from the earthquake’s focus or hypocenter to the recording 

station. In addition, JoynerBoore is defined as the distance from the recording station to 

the surface projection of the rupture surface. The third component describes the ground 
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motion time series which are the lowest usable frequency, peak ground acceleration and 

velocity. 

Table 4.1. Variables with highest coefficients in each principal component. 

PC 1 PC 2 PC 3 

Magnitude Epicentral distance Lowest usable frequency V 

Fault rapture width Hypocentral distance PGA 



Magnitude type JoynerBoore distance PGV 

Figure 4.1. Dimensionality reduction to three dimensions. 

4.1.2. Results for 𝐾𝐾Means 

clustering. Using the Kmeans 

clustering algorithm, 

the data is clustered to three parts as shown in Figure 4.2 and 4.3 respectively. The 

clustering is consistent with the visual one as there are three obvious groups. These 

groups are not specific to certain earthquake parameters, but to all 48 parameters. That is 

because the clustering was performed on the principal components and they are a linear 

combination of all the original parameters. However, the clusters help us structure our 

dataset. All clusters are present in the training, validation and testing to obtain a robust 

and global model. 
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Figure 4.2. Three clusters in three dimensions from the PCA. 

Figure 4.3. Three clusters in three dimensions from the PCA top 

view. 
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4.2. Parameters Selection 

In this section, we present the experiments conducted to obtain the parameters 

for each model. The experimental dataset is composed of 50,000 examples. 

4.2.1. Results for ANN. In order to finalize the ANN architecture, the first thing 

to select was the optimizer. A mini dataset of 50,000 examples was used to experiment 

with the optimizer and it was trained for 25 epochs. Figure 4.4 shows the training loss 

for the following optimizers: Adagarad, Adamax, Nadam, Adam and RMSprop. It is 

clear that the Adagrad started from a smaller RMSE value and converged to the final 

value in less than 10 epochs. As opposed to other optimizers that started from a bigger 

value and suffered from high fluctuations. The validation loss for the same optimizers 

as shown in Figure 4.5 paints a similar story, Adagrad displayed a superior performance. 

The Adagrad validation loss converged in three epochs. Table 4.2 demonstrates the test 



loss on the mini dataset and the Adagrad has the least test loss. Therefore, it is the chosen 

optimization algorithm for the ANN model. 

0 5 10 15 20 25 

Epochs 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

RMSE 

10-3 

Adagrad 

Adamax 

Nadam 

Adam 

RMSprop 

Figure 4.4. The training loss for different optimizers. 
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Figure 4.5. The validation loss for different optimizers. 

Table 4.2. The test loss across different optimizers. 

Optimizer Test Loss 

Adagrad 2.74e6 

Adam 9.30e5 

RMSprop 2.61e4 

Adamax 1.82e5 

Nadam 3.86e5 

A learning rate scheduler was utilized that starts with an initial value and decays 

with a factor of 0.5. Table 4.3 shows the test loss for different learning rates both fixed 

and decaying. We can see that the decaying performed better than the fixed one. This is 

because the scheduled learning rate optimizes the weights at the beginning of training 

and finetunes 

them as the training progresses. Moreover, an initial learning rate of 0.01 

performed better than 0.001 as it was able to change the weights more and then decay 

so it would not cause divergence as sometimes would happen with larger learning rates. 
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Therefore, a learning rate scheduler of an initial value of 0.01 was deployed for the 

training process. 

Table 4.3. The test loss for different learning rates. 

Learning Rate Test Loss 



0.01 6.72e5 

0.001 7.41e5 

0.01 Decay 2.35e5 

0.001 Decay 0.13 

4.2.2. Results for CNN. Our proposed model has a 1Dconvolutional 

layer with 

a filter size of three and a stride of two. The number of convolutional layers was tested 

on the mini dataset from one layer to three. The best test loss was 3.58e5 

𝑔𝑔 for a single 

layer, as shown in Table 4.4 which is less than half the loss associated with three layers. 

So a single layer was utilized and the number of filters is varied from 3 to 32. Table 4.5 

demonstrates that the least number of filters which is three produced the best RMSE, 

again less than half the loss of 32 filters. 

Table 4.4. Investigating the effect of different layers on the test loss. 

Layers Test Loss 

1 3.58e5 

2 5.29e5 

3 6.90e5 

Table 4.5. One layer with different filters and the corresponding test loss. 

Filters Test loss 

3 3.58e5 

8 3.94e5 

16 7.12e5 

32 6.93e5 

The number of units in the FC layer for our model is set to 100. However, for a 

forecast horizon of size one, the result was not satisfactory. Therefore, different units in 

the FC layer proceeding the output layer were tried out. From Table 4.6, we can see that 
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the optimal number is five. For the learning rate, fixed and decaying values are tested. 



From Table 4.7, the best test loss is associated with a value of 0.01 in a learning rate 

scheduler. 

Table 4.6. For a forecast horizon of 1, the effect of the units in the FC layer on the test 

loss. 

FC Units Test loss 

1 1.07e4 

5 5.41e5 

10 1.87e4 

20 3.39e4 

50 2.09e4 

Table 4.7. The test loss for different learning rates. 

Learning Rate Testing Loss 

0.01 3.17e4 

0.005 1.87e4 

0.01 Decay 3.58e5 

0.005 Decay 4.33e5 

The batch normalization layer standardizes each batch to have a zero mean and 

unity variance. We tried inserting this layer in different places in the model before the 

activation function. It turns out the model that does not use batch normalization gave 

the best test loss, as shown in Table 4.8. 

Batch normalization does not work well in the prediction as it does during the 

training. This is due to the fact that when we train we use a batch size of 128 and a 

size of one in the prediction phase as we feed every input to the network as soon as it 

becomes available. In addition, batch normalization increases the training time due to 

the additional computation for each batch. 

Table 4.8. Batch normalization effect on the test loss. 

Batch Norm. Test loss 

None 3.58e5 

Only after input 4.49e5 



All expect output 1.65e3 

57 

4.2.3. Results for RNN and LSTM network. Since the RNN and the LSTM network 

are both recurrent and have a similar architecture, they exhibit similar behavior. 

The RNN model that was presented in Chapter 3 needed some parameter selection, such 

as the number of layers and number of units as well as the learning rate and the batch 

normalization. Table 4.9 shows how changing the number of layers affects the test loss 

in the mini dataset. A single layer yielded the lowest test RMSE and as we described 

in Chapter 2, a small number of layers is sometimes sufficient to model the problem. 

The same result is shown with LSTM network, where a single layer yielded an error of 

2.75e5 

𝑔𝑔. Three units in the RNN layer had the best performance compared to the rest 

as shown in Table 4.10, as it is equal to the number of input channels and the number 

of desired output vectors. The LSTM network shows the same behavior where the least 

loss is associated with three units. Finally, the initial learning rate is set to 0.005 that 

decays exponentially. 

Table 4.9. Investigating the effect of different layers each with three units on the test 

loss. 

Layers RNN Test Loss LSTM Test Loss 

1 3.55e5 

2.76e5 

2 6.41e5 

4.75e5 

3 6.63e5 

7.64e5 

Table 4.10. One layer with different units and the corresponding test loss. 

Units RNN Test Loss LSTM Test Loss 

3 3.55e5 

2.76e5 



8 8.02e5 

5.44e4 

16 8.28e5 

5.44e4 

32 1.40e4 

5.99e4 

4.2.4. Results for CNNLSTM 

network. The CNNLSTM 

architecture needed 

tuning in terms of the number of layers and the filters in the 1Dconvolutional 

layer and 

the number of units in the LSTM layer. Table 4.11 shows the effect of different LSTM 

and 1Dconvolutional 

layers on the test loss. We can see that the minimum loss was 

with a single LSTM layer and a single convolutional layer with an RMSE of 1.17e5 
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𝑔𝑔. The number of units in the LSTM layer and the number of filters in the convolution 

layer were varied together. Table 4.12 shows that the optimal performance was achieved 

with six units in the LSTM layer and three filters on the convolutional layer. The RMSE 

was equal to 2.51e5 

𝑔𝑔. However, for a forecast horizon of size one, the result was not 

satisfactory, the predicted signal was significantly smaller than the actual one in axis 

H2 and V and the test error was 1.1e4 

𝑔𝑔. Therefore, the number of LSTM units was 

increased from six to seven and the issue was rectified. Finally, the initial learning rate 

is set to 0.005 that decays exponentially. 

Table 4.11. Effect of number of LSTM and convolutional layers on the test loss. 

LSTM Layers Test Loss Conv. layers Test Loss 

1 1.17e5 



1 1.17e5 

2 2.35e5 

2 2.36e5 

3 2.87e5 

3 5.07e5 

Table 4.12. Number of convolutional filters and LSTM units vs the test loss. 

CNN Filters LSTM Units Test loss 

3 3 6.66e05 

3 6 2.51e5 

5 3 3.40e5 

5 6 5.61e5 

4.3. Acceleration Signal Prediction 

This section presents the prediction results for different prediction horizons. In 

addition, a visual comparison is conducted based on the plotted predictions. Finally, we 

discuss the overall performance and the execution time for each model. 

4.3.1. Results for forecast horizon of size 1. Starting from this subsection, the 

prediction results are reported based on the test set RMSE which is composed of 450,000 

examples. In addition, we show the ANN performance which is our baseline and the 

best performing model for visualization. The rest of the figures can be found in the 

appendices. Here we have an input of 357 points or half a second and we try to predict 

one point or 0.0014 seconds in each axis. From Table 4.13 it is evident that the LSTM 
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model exhibited the best performance with an RMSE of 1.56e5 

𝑔𝑔. The RMSE dropped 

by 98.8% compared to the baseline that has an error of 1.35e3 

𝑔𝑔. This is expected as the 

LSTM network is superior in short term predictions because it can retain memory that 

represents the temporal nature of our data. The model that yielded the secondhighest 

RMSE was the CNNLSTM 



but it still has 94.7% less error compared to the baseline. 

Figure 4.6 shows the baseline prediction for one point for a signal with a magnitude 

of 𝑀𝑀𝑀𝑀 7.9, which is the maximum magnitude existing in the NGAWest2 

database, 

from cluster 3. We can see that the baseline prediction was very noisy. When we zoom 

into an interval of five seconds, indicated by the black box in Figure 4.6, it is clear that 

the baseline does not keep up with the variations at all. That is because it could not 

handle the dynamic nature or learn it well. The predictions are much bigger in magnitude 

compared to the actual signal. On the other hand, Figure 4.7 shows the LSTM 

network prediction and it is almost identical to the actual acceleration in all three axes. 

The patterns are modeled accurately and smoothly with minimal variations. 

Figure 4.6. ANN prediction vs actual acceleration from cluster 3, window size is 1. 
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Figure 4.7. LSTM network prediction vs actual acceleration from cluster 3, window 

size is 1. 

Table 4.13. The test loss for all models for a forecast horizon of size 1. 

Model Test Loss Improvement % 

ANN 1.35e3 

CNN 

5.41e5 

95.9% 

RNN 1.96e5 



98.5% 

LSTM 1.56e5 

98.8% 

CNNLSTM 

7.21e5 

94.7% 

4.3.2. Results for forecast horizon of size 10. The input window size is 357 points 

or half a second and we try to predict ten points or 0.014 seconds in each axis. From 

Table 4.14, it is evident that the LSTM model exhibited the best performance with an 

RMSE of 8.43e6 

𝑔𝑔. That is a 95.1% improvement in performance compared to the 

baseline that yielded an error of 1.74e4 

𝑔𝑔. This is expected as the LSTM network 

is superior in short term predictions because it can retain memory that represents the 
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temporal nature of our data. The model that yielded the secondhighest 

RMSE was the 

CNNLSTM 

but it still has 71.8% less error compared to the baseline. 

Figure 4.8 shows the baseline prediction for 10 points for a signal with a magnitude 

of 𝑀𝑀𝑀𝑀 7.9 from cluster 3, and we can see that the baseline prediction was very 

noisy. When we zoom into an interval of five seconds, it is clear that the baseline models 

the behavior but it is very noisy. That is due to the fact that it could not handle the 

dynamic nature or learn it well. On the other hand, Figure 4.9 shows the LSTM network 

prediction and it is almost identical to the actual acceleration in all three axes. 

Table 4.14. The test loss for all models for a forecast horizon of size 10. 

Model Test Loss Improvement % 

ANN 1.74e4 

CNN 



3.32e5 

80.9% 

RNN 3.93e5 

77.1% 

LSTM 8.43e6 

95.1% 

CNNLSTM 

4.90e5 

71.8% 
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Figure 4.8. ANN prediction vs actual acceleration from cluster 3, window size is 10. 
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Figure 4.9. LSTM network prediction vs actual acceleration from cluster 3, window 

size is 10. 

4.3.3. Results for forecast horizon of size 50. The input window size is 357 points 

or half a second and we try to predict 50 points or 0.07 seconds in each axis. The output 

represents about 14% of the input. From Table 4.15, it is clear that the LSTM model 

still resulted in the best performance with an RMSE of 3.89e5 



𝑔𝑔. That is a 90.7% 

improvement in performance compared to the baseline that yielded an error of 4.17e4 

𝑔𝑔. 

This is expected as the LSTM network is superior in short term predictions because it can 

retain memory that represents the temporal nature of our data. The model that yielded 

the secondhighest 

RMSE was the CNN but it still has 85.6% less error compared to the 

baseline. We notice that the improvement in performance drops as the forecast horizon 

grows. 

Figure 4.10 shows the baseline prediction for 50 points for a signal with a magnitude 

of 𝑀𝑀𝑀𝑀 7.9, which is the maximum magnitude existing in the NGAWest2 

database, 

from cluster 3. We observed that the baseline prediction was very noisy. When we zoom 

into an interval of five seconds, the predictions do not keep up with the variations and 
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they are much bigger in magnitude than the actual acceleration. That is due to the fact 

that it could not handle the dynamic nature or learn it well. On the other hand, Figure 

4.11 shows the LSTM network prediction and it is almost identical to the actual acceleration 

in all three axes and it models the pattern well for the whole earthquake duration 

of 300 seconds. However, the maximums and minimums of the signal are not predicted 

accurately as the magnitude of the prediction is slightly less than the actual earthquake 

signal. 

Table 4.15. The test loss for all models for a forecast horizon of size 50. 

Model Test Loss Improvement % 

ANN 4.17e4 

CNN 

6.02e5 

85.6% 

RNN 4.52e5 



89.2% 

LSTM 3.895 

90.7% 

CNNLSTM 

4.65e5 

88.8% 
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Figure 4.10. ANN prediction vs actual acceleration from cluster 3, window size is 50. 
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Figure 4.11. LSTM network prediction vs actual acceleration from cluster 3, window 

size is 50. 

4.3.4. Results for forecast horizon of size 100. The input window size is 357 

points or half a second and we try to predict 100 points or 0.14 seconds in each axis. 

The output represents about 28% of the input. From Table 4.16, the CNNLSTM 

model 

yielded the best performance with an RMSE of 2.76e5 



𝑔𝑔. That is a 94.2% improvement 

in performance compared to the baseline that exhibited an error of 4.76e4 

𝑔𝑔. As the 

forecast horizon became longer, the LSTM network accuracy dropped as it is optimal 

for shorter ranges. The model that yielded the secondhighest 

RMSE was the CNN but 

it still has 90% less error compared to the baseline. 

Figure 4.12 shows the baseline prediction for 100 points for a signal with a 

magnitude of 𝑀𝑀𝑀𝑀 7.9, which is the maximum magnitude existing in the NGAWest2 

database, from cluster 3. We can see that the baseline prediction was very noisy. When 

we zoom into an interval of five seconds, we notice that the baseline’s zero regions be65 

came longer and the predictions are bigger in magnitude than the actual acceleration. 

On the other hand, Figure 4.13 shows the CNNLSTM 

network prediction that models 

the acceleration patterns in a somewhat accurate manner. The patterns are modeled with 

minimal variations. However, the maximums and minimums of the signal are not predicted 

accurately. The predictions experience surges to the maximums and minimums 

and decay in an exponential manner. 

Table 4.16. The test loss for all models for a forecast horizon of size 100. 

Model Test Loss Improvement % 

ANN 4.76e4 

CNN 

4.75e5 

90.0% 

RNN 4.24e5 

91.1% 

LSTM 4.75e5 

90.0% 

CNNLSTM 



2.76e5 

94.2% 
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Figure 4.12. ANN prediction vs actual acceleration from cluster 3, window size is 100. 
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Figure 4.13. CNNLSTM 

prediction vs actual acceleration from cluster 3, window size 

is 100. 

4.3.5. Results for forecast horizon of size 200. The input window size is 357 

points or half a second and we try to predict 200 points or 0.28 seconds in each axis. 

The output represents about 56% of the input. From Table 4.17, the CNN model yielded 

the best performance with an RMSE of 1.47e3 

𝑔𝑔. That is an 80.2% improvement in 

performance compared to the baseline that exhibited an error of 7.43e3 

𝑔𝑔. The model 

that yielded the secondhighest 

RMSE was the CNNLSTM 



but it still has 79.4% less 

error compared to the baseline. It is worth noting that all the test errors in the experiments 

are of the same order. 

Figure 4.14 shows the baseline prediction for 200 points for a signal with a 

magnitude of 𝑀𝑀𝑀𝑀 7.9, which is the maximum magnitude existing in the NGAWest2 

database, from cluster 3. We observed that the baseline prediction was very noisy. 

When we zoom into an interval of five seconds, we notice that the baseline’s zero re67 

gions became longer and the predictions are much bigger in magnitude than the actual 

acceleration. That is due to the fact that it could not handle the dynamic nature or learn it 

well as the prediction horizon became longer. On the other hand, Figure 4.15 shows the 

CNN predictions which are very attenuated in magnitude. In addition, the maximums 

and minimums of the signal are not predicted accurately especially in axis V, where the 

predictions fluctuate around zero. 

Table 4.17. The test loss for all models for a forecast horizon of size 200. 

Model Test Loss Improvement % 

ANN 7.43e3 

CNN 

1.47e3 

80.2% 

RNN 1.51e3 

79.7% 

LSTM 1.52e3 

79.5% 

CNNLSTM 

1.53e3 

79.4% 
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Figure 4.14. ANN prediction vs actual acceleration from cluster 3, window size is 200. 
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Figure 4.15. CNN prediction vs actual acceleration from cluster 3, window size is 200. 

4.3.6. Overall performance. As we mentioned in Chapter 3, the proposed solution 

deployed a sliding window algorithm to split the earthquake acceleration into input 

and output pairs. The outputs from different windows are nonoverlapping 

which means 

we need to shift the window by the forecast horizon to make a new prediction. The window 

size is set to 357 points but we tried different predictions from 1200 

points. Table 

4.18 shows the performance for all of the models across different forecast horizons. The 

best RMSE value was achieved with the LSTM model for a prediction horizon of 10. 

For short term prediction, namely, 1 to 50 points, we notice that the LSTM network 

yielded the best performance. This is expected as the LSTM network is indeed 

more suitable for short term prediction. Moving on to an output of 50 where it is 14% 

of the input, the findings in [17] are similar to this work. The study was conducted to 

predict solar irradiance. It was found that the LSTM network outperformed the shallow 

ANN by 18% for an output to input ratio of 9%. Our improvement is 90.7% compared 
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to the baseline. Our architecture was identical to the one in the paper but we used three 

LSTM units while in [17], 30 units were used and the training lasted for 100 epochs. Our 

findings agree that the LSTM network performed best compared to the shallow ANN 

for similar output to input ratios. 

At an output of 100 where it is 28% of the input, we compare our findings to [22]. 

The study was performed to predict air pollutants concentration in the air. The forecast 

horizon length is 24 hours where the input is 72 hours long, so the output to input ratio is 

33.3%. The proposed CNNLSTM 

model RMSE was 36% less than the ANN model and 

20.3% less than a conventional LSTM model. In our results, the CNNLSTM 

network 

is better by 94.2% compared to the ANN model and 41.9% better than the LSTM model. 

In addition, the RMSE is 34.9% less than the RNN model. Therefore, our findings agree 

that the CNNLSTM 

network performed best compared to the ANN model for similar 

output to input ratios. 

As the forecast horizon reached 200 points, all the models generated an RMSE 

of the same order, and all of them are not that accurate. With a forecast horizon of 200, 

the ratio became 56% and a higher error occurred as expected. The best performing 

model was the CNN model. However, all our proposed models performed better than 

the baseline by at least 70%. 

Table 4.18. The testing loss for all the proposed models. 

Forecast Horizon ANN RNN LSTM CNN CNNLSTM 

1 1.35e3 

1.96e5 

1.56e5 

5.41e5 

7.21e5 



10 1.74e4 

3.93e5 

8.43e6 

3.32e5 

4.90e5 

50 4.17e4 

4.52e5 

3.90e5 

6.02e5 

4.65e5 

100 4.76e4 

4.24e5 

4.75e5 

4.75e5 

2.76e5 

200 7.01e3 

1.51e3 

1.52e3 

1.47e3 

1.53e3 

Another important metric for performance evaluation is the realtime 

aspect. 

Figure 4.16, shows the average prediction for each model. The fastest model is the CNN 

as it requires fewer computations and it takes about 0.49 𝑚𝑚𝑚𝑚 to make a prediction. Table 

4.19 shows the delay ratios for all the prediction horizons for all the proposed models. 

The CNN model is considered realtime 

along with ANN and CNNLSTM 

network. 
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The slowest model is the RNN which takes about 41.7 𝑚𝑚𝑚𝑚 to make a prediction. It is not 

realtime 

in prediction horizons of 1 and 10 only. The predictions can be made faster 

using more sophisticated hardware that parallelizes the computations more efficiently. 

CNN ANN CNN-LSTM LSTM RNN 
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20 

25 

30 
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40 

45 

Avg. Prediction Time in ms 

Figure 4.16. Average time to make a prediction for each proposed model. 

Table 4.19. Prediction delay for all the proposed models. 

Prediction Horizon ANN RNN LSTM CNN CNNLSTM 

1 45% 2975.7% 222.9% 35% 46.5% 

10 4.5% 297.5% 22.3% 3.5% 4.65% 

50 0.9% 59.5% 4.46% 0.7% 0.93% 

100 0.45% 29.76% 2.23% 0.35% 0.47% 

200 0.22% 14.9% 1.12% 0.1% 0.23% 
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Chapter 5. Concluding Remarks 
In this thesis, we explored the possibility of ground motion acceleration prediction 

in realtime. 

The prediction was achieved in three axes simultaneously. We utilized 



PCA to reduce the number of parameters in the metadata and then cluster based on the 

new principal components. The signals from the three clusters were present in the training 

and testing datasets. However, the training and testing datasets were disjoint and do 

not contain data from any common earthquake. In addition, various machine learning 

algorithms were used to predict the time series such as the CNN, RNN, LSTM network 

and CNNLSTM 

network. The ANN was considered the baseline in this work to compare 

all prediction performances. To optimize each model’s parameters, a small subset 

of 50,000 examples was used. 

The used dataset is NGAWest2 

from the PEER research center in California. 

It contains earthquake records from around the globe. The earthquakes are shallow 

crustal with a magnitude range between 𝑀𝑀𝑀𝑀 3.0 and 𝑀𝑀𝑀𝑀 7.9. For training, one million 

input/output sequence pairs were used. The input was fixed to half a second and we 

tested the models’ performance for different prediction horizons. More specifically, the 

horizons go from one point long to 200. We utilized the sliding window approach to 

obtain nonoverlapping 

prediction horizons. 

The general performance was compared to similar studies for time series prediction. 

It was found that the models that performed best for the other studies agreed with 

our study but with more improvements compared to the ANN baseline. It was observed 

that the best model for shortrange 

prediction was the LSTM model for a prediction 

horizon of ten points. It gave an error of 8.43e6 

𝑔𝑔 which is a 95.2% improvement in 

performance compared to the baseline that yielded an error of 1.74e4 

𝑔𝑔. This is expected 

as the LSTM network is superior in short term predictions because it can retain 

memory that represents the temporal nature of our data. In addition, the prediction time 



for the CNN model is 0.49 𝑚𝑚𝑚𝑚, which makes it the fastest model. Moreover, the CNN, 

ANN and CNNLSTM 

models experimented with in this work, yielded realtime 

performance. 

The other models can also produce faster predictions using more GPUs or a 

supercomputer. 
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The proposed models can be integrated into a mechatronics system installed in 

structures to dampen the effect of the ground motion caused by an earthquake. The main 

components are an accelerograph, our models and an MR damper. The accelerograph 

records the ground motion acceleration which is used as an input to the models. The 

resulting forecast horizon can change the characteristics of the MR damper for optimum 

performance to support the structure. 

For further investigation and improvement, future work related to this thesis can 

include the following: 

1. Integrate the proposed models into a mechatronics system that supports structures 

during an earthquake. 

2. Explore the implementation of deep neural networks with more sophisticated and 

dedicated hardware such as a supercomputer. Such machines can reduce the prediction 

time significantly. 

3. Extend the training set to include other earthquake databases from around the 

world with different parameters compared to the NGAWest2 

database. This step 

will make the models more robust and produce better predictions. 

4. Extend the preliminary work on clustering the metadata to more sophisticated 

clustering algorithms to identify groups in the dataset. This can then be followed 

by designing a separate model for each cluster, such that each new signal is directed 

to the suitable model based on its features. 
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Appendix A: Time Series Prediction ANN 
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Figure 5.1. ANN prediction vs actual acceleration from cluster 1, window size is 1. 
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Figure 5.2. ANN prediction vs actual acceleration from cluster 2, window size is 1. 
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Figure 5.3. ANN prediction vs actual acceleration from cluster 1, window size is 10. 
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Figure 5.4. ANN prediction vs actual acceleration from cluster 2, window size is 10. 
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Figure 5.5. ANN prediction vs actual acceleration from cluster 1, window size is 50. 
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Figure 5.6. ANN prediction vs actual acceleration from cluster 2, window size is 50. 
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Figure 5.7. ANN prediction vs actual acceleration from cluster 1, window size is 100. 
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Figure 5.8. ANN prediction vs actual acceleration from cluster 2, window size is 100. 
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Figure 5.9. ANN prediction vs actual acceleration from cluster 1, window size is 200. 
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Figure 5.10. ANN prediction vs actual acceleration from cluster 2, window size is 200. 
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Appendix B: Time Series Prediction CNN 
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Figure 5.11. CNN prediction vs actual acceleration from cluster 1, window size is 1. 
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Figure 5.12. CNN prediction vs actual acceleration from cluster 2, window size is 1. 
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Figure 5.13. CNN prediction vs actual acceleration from cluster 1, window size is 10. 
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Figure 5.14. CNN prediction vs actual acceleration from cluster 2, window size is 10. 
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Figure 5.15. CNN prediction vs actual acceleration from cluster 1, window size is 50 
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Figure 5.16. CNN prediction vs actual acceleration from cluster 2, window size is 50. 
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Figure 5.17. CNN prediction vs actual acceleration from cluster 1, window size is 100. 
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Figure 5.18. CNN prediction vs actual acceleration from cluster 2, window size is 100. 
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Figure 5.19. CNN prediction vs actual acceleration from cluster 1, window size is 200. 
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Figure 5.20. CNN prediction vs actual acceleration from cluster 2, window size is 200. 
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Appendix C: Time Series Prediction RNN 
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Figure 5.21. RNN prediction vs actual acceleration from cluster 1, window size is 1. 
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Figure 5.22. RNN prediction vs actual acceleration from cluster 2, window size is 1. 
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Figure 5.23. RNN prediction vs actual acceleration from cluster 1, window size is 10. 
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Figure 5.24. RNN prediction vs actual acceleration from cluster 2, window size is 10. 
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Figure 5.25. RNN prediction vs actual acceleration from cluster 1, window size is 50. 
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Figure 5.26. RNN prediction vs actual acceleration from cluster 2, window size is 50. 
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Figure 5.27. RNN prediction vs actual acceleration from cluster 1, window size is 100. 

0 50 100 150 200 

-0.01 

0 

0.01 

H1 

Predicted 

Actual 

50 51 52 53 54 55 

-2 

0 

2 

10-3 H1 

0 50 100 150 200 

-5 

0 



5 

Acceleration in g 

10-3 H2 

50 51 52 53 54 55 

-2 

0 

2 

10-3 H2 

0 50 100 150 200 

Time in Seconds 

-5 

0 

5 

10-3 V 

50 51 52 53 54 55 

-2 

-1 

0 

1 

10-3 V 

Figure 5.28. RNN prediction vs actual acceleration from cluster 2, window size is 100. 
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Figure 5.29. RNN prediction vs actual acceleration from cluster 1, window size is 200. 
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Figure 5.30. RNN prediction vs actual acceleration from cluster 2, window size is 200. 
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Appendix D: Time Series Prediction LSTM 

Network 
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Figure 5.31. LSTM network prediction vs actual acceleration from cluster 1, window 

size is 1. 
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Figure 5.32. LSTM network prediction vs actual acceleration from cluster 2, window 

size is 1. 
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Figure 5.33. LSTM network prediction vs actual acceleration from cluster 1, window 

size is 10. 
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Figure 5.34. LSTM network prediction vs actual acceleration from cluster 2, window 

size is 10. 
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Figure 5.35. LSTM network prediction vs actual acceleration from cluster 1, window 

size is 50. 

0 50 100 150 200 

-0.01 

0 

0.01 

H1 

Predicted 



Actual 

50 51 52 53 54 55 

-2 

0 

2 

10-3 H1 

0 50 100 150 200 

-5 

0 

5 

Acceleration in g 

10-3 H2 

50 51 52 53 54 55 

-2 

0 

2 

10-3 H2 

0 50 100 150 200 

Time in Seconds 

-5 

0 

5 

10-3 V 

50 51 52 53 54 55 

-2 

-1 

0 

1 

10-3 V 



Figure 5.36. LSTM network prediction vs actual acceleration from cluster 2, window 

size is 50. 
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Figure 5.37. LSTM network prediction vs actual acceleration from cluster 1, window 

size is 100. 
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Figure 5.38. LSTM network prediction vs actual acceleration from cluster 2, window 

size is 100. 
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Figure 5.39. LSTM network prediction vs actual acceleration from cluster 1, window 

size is 200. 
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Figure 5.40. LSTM network prediction vs actual acceleration from cluster 2, window 

size is 200. 
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Appendix E: Time Series Prediction CNNLSTM 

Network 
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Figure 5.41. CNNLSTM 

network prediction vs actual acceleration from cluster 1, 

window size is 1. 
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Figure 5.42. CNNLSTM 

network prediction vs actual acceleration from cluster 2, 

window size is 1. 
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Figure 5.43. CNNLSTM 

network prediction vs actual acceleration from cluster 1, 

window size is 10. 
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Figure 5.44. CNNLSTM 

network prediction vs actual acceleration from cluster 2, 

window size is 10. 
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Figure 5.45. CNNLSTM 

network prediction vs actual acceleration from cluster 1, 

window size is 50. 

0 50 100 150 200 



-0.01 

0 

0.01 

H1 

Predicted 

Actual 

50 51 52 53 54 55 

-2 

0 

2 

10-3 H1 

0 50 100 150 200 

-5 

0 

5 

Acceleration in g 

10-3 H2 

50 51 52 53 54 55 

-2 

0 

2 

10-3 H2 

0 50 100 150 200 

Time in Seconds 

-5 

0 

5 

10-3 V 

50 51 52 53 54 55 



-2 

-1 

0 

1 

10-3 V 

Figure 5.46. CNNLSTM 

network prediction vs actual acceleration from cluster 2, 

window size is 50. 
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Figure 5.47. CNNLSTM 

network prediction vs actual acceleration from cluster 1, 

window size is 100. 
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Figure 5.48. CNNLSTM 

network prediction vs actual acceleration from cluster 2, 

window size is 100. 
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Figure 5.49. CNNLSTM 

network prediction vs actual acceleration from cluster 1, 

window size is 200. 
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Figure 5.50. CNNLSTM 

network prediction vs actual acceleration from cluster 2, 

window size is 200. 
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