
MACHINE LEARNING BASED REAL-TIME
EARTHQUAKE SIGNAL PREDICTION

by

Sara Tellab

A Thesis presented to the Faculty of the

American University of Sharjah

College of Engineering

In Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in

Mechatronics Engineering

Sharjah, United Arab Emirates

November 2020

Declaration of Authorship

I declare that this thesis is my own work and, to the best of my knowledge and belief,

it does not contain material published or written by a third party, except where

permission has been obtained and/or appropriately cited through full and accurate

referencing.

Signature: Sara Tellab

Date: November 29th, 2020

The Author controls copyright for this report.

Material should not be reused without the consent of the author. Due

acknowledgement should be made where appropriate.

© Year 2020

Sara Tellab

ALL RIGHTS RESERVED

Approval Signatures

We, the undersigned, approve the Master’s Thesis of

Thesis Title:

Date of Defense:

Name, Title and Affiliation Signature

Dr. Mohamed El-Tarhuni

Vice Provost for Graduate Studies

Office of Graduate Studies

�����������������

����

����������������������

������������������

����������������������

��

Sara Tellab

Machine Learning Based Real-Time Earthquake Signal Prediction

26-Nov-2020

Dr. Usman Tariq

Assistant Professor, Department of Electrical Engineering

Thesis Advisor

Dr. Mohammad AlHamaydeh

Professor, Department of Civil Engineering

Thesis Co-Advisor

Dr. Lotfi Romdhane

Professor of Mechanical Engineering

Thesis Committee Member

Dr. Zahid Khan

Associate Professor, Department of Civil Engineering

Thesis Committee Member

Dr. Mohammad Jaradat

Program Coordinator

Mechatronics Engineering Graduate Program

Acknowledgements
My deepest appreciation goes to my family for their encouragement and guidance

through it all. They are the main reason for every single milestone in my life. I

would like to thank my advisors, Dr. Usman and Dr. Mohammad, for their guidance

and motivation. I am grateful for the American University of Sharjah for fully sponsoring

my degree. Working as a graduate teaching assistant was a great learning experience

for me. In addition, thanks are due to all the professors in the Mechatronics Engineering

program who taught me graduate courses. Finally, my appreciation extends to all my

friends who inspire me beyond words.

Dedication

To my family and friends …

Abstract
Processing the ground motion signal at an early stage is beneficial for issuing warnings,

applying corrective measures and deploying firstresponders

teams, etc. As an earthquake

starts, our proposed machine learning systems take in the first arriving points

of a ground acceleration signal and predict the upcoming points in all three axes. The

training, validation and testing data is acquired from the Pacific Earthquake Engineering

Research Center (PEER) NGAWest2

database. It includes shallow crustal earthquakes

with hypocenters less than 20 km deep. The research methodology applies different

aspects of supervised and unsupervised learning. We analyze the metadata of previous

earthquake records such as the magnitude, horizontal distance and peak ground acceleration

(PGA). Moreover, we train various structures of artificial neural networks (ANNs)

such as convolutional neural networks (CNN), recurrent neural networks (RNN), long

shortterm

memory (LSTM) networks and CNNLSTMs.

The ANN model serves as a

baseline for performance evaluation of the other models. We rely on the sliding window

approach to split the acceleration signal. It was found that the best model for short term

prediction was the LSTM model for a prediction horizon of ten timesteps. It yielded a

root mean squared error (RMSE) of 8.43e6

𝑔𝑔 which is a 95.2% improvement in performance

compared to the baseline that yielded an RMSE of 1.74e4

𝑔𝑔. In addition,

the prediction time for the CNN model is 0.49 𝑚𝑚𝑚𝑚, which makes it the fastest model.

Moreover, the CNN, ANN and CNNLSTM

models experimented with in this work,

yielded realtime

performance. The other models can also produce faster predictions

using more GPUs or a supercomputer.

Keywords: Machine Learning; Ground Motion Prediction; NGAWest2

Database.

6

Table of Contents
Abstract . 6

List of Figures . 10

List of Tables . 15

Chapter 1. Introduction . 16

1.1 Thesis Objectives . 17

1.2 Proposed Solution . 17

1.3 Thesis Organization . 18

Chapter 2. Background and Literature Review 19

2.1 Ground Motion Parameters . 19

2.2 Machine Learning . 20

2.3 Related Work . 21

2.3.1 Time series prediction . 21

2.3.2 Ground motion estimation . 23

2.3.3 Applications of ML in seismology 24

2.4 Theoretical Background . 27

2.4.1 Principal component analysis 27

2.4.2 𝐾𝐾Means

clustering . 28

2.4.3 Artificial neural networks . 29

2.4.4 Convolutional neural networks 33

2.4.5 Recurrent neural networks . 35

2.4.6 Long shortterm

memory networks 37

2.4.7 CNNLSTM

networks . 39

Chapter 3. Methodology . 40

3.1 Database . 40

3.2 Data Preprocessing . 41

3.3 Proposed Models and Training Details 42

7

3.3.1 Metadata analysis . 43

3.3.2 ANN architecture . 43

3.3.3 CNN architecture . 45

3.3.4 RNN architecture . 46

3.3.5 LSTM architecture . 47

3.3.6 CNNLSTM

architecture . 47

3.3.7 Training details . 48

3.4 Performance Evaluation . 49

Chapter 4. Experimental Results and Discussion 51

4.1 Results of Metadata Analysis . 51

4.1.1 Results for PCA . 51

4.1.2 Results for 𝐾𝐾Means

clustering 52

4.2 Parameters Selection . 54

4.2.1 Results for ANN . 54

4.2.2 Results for CNN . 56

4.2.3 Results for RNN and LSTM network 58

4.2.4 Results for CNNLSTM

network 58

4.3 Acceleration Signal Prediction . 59

4.3.1 Results for forecast horizon of size 1 59

4.3.2 Results for forecast horizon of size 10 61

4.3.3 Results for forecast horizon of size 50 63

4.3.4 Results for forecast horizon of size 100 65

4.3.5 Results for forecast horizon of size 200 67

4.3.6 Overall performance . 69

Chapter 5. Concluding Remarks . 72

References . 74

Appendix A: Time Series Prediction ANN

. 79

8

Appendix B: Time Series Prediction CNN

. 84

Appendix C: Time Series Prediction RNN

. 89

Appendix D: Time Series Prediction LSTM

Network 94

Appendix E: Time Series Prediction CNNLSTM

Network 99

Vita . 104

9

List of Figures

Figure 2.1: Earthquake source and generated waves. 19

Figure 2.2: Types of machine learning algorithms. 21

Figure 2.3: An example of the two principal components with maximum variance

after dimensionality reduction through PCA. 28

Figure 2.4: The perceptron, an example of the operations described in equation

(4). 31

Figure 2.5: Early stopping halts the training as the validation begins to increase,

as indicted by the arrow. 32

Figure 2.6: Example of a 1DCNN

architecture for binary classification. 34

Figure 2.7: RNN unfolded, an example of the operations happening inside an

RNN layer. 36

Figure 2.8: The number of units inside the RNN layer. 36

Figure 2.9: Inner connections of an LSTM cell. 38

Figure 3.1: Map of included events in the NGAWest

2 database, shown in red. . 40

Figure 3.2: Magnitude versus distance for shallow crust records. 41

Figure 3.3: The sliding window approach. 42

Figure 3.4: Proposed ANN model. 44

Figure 3.5: Proposed CNN model. 45

Figure 3.6: Proposed RNN model. 46

Figure 3.7: Proposed LSTM model. 47

Figure 3.8: Proposed CNNLSTM

model. 48

Figure 4.1: Dimensionality reduction to three dimensions. 52

Figure 4.2: Three clusters in three dimensions from the PCA. 53

Figure 4.3: Three clusters in three dimensions from the PCA top

view. 53

Figure 4.4: The training loss for different optimizers. 54

Figure 4.5: The validation loss for different optimizers. 55

Figure 4.6: ANN prediction vs actual acceleration from cluster 3, window size

is 1. 60

10

Figure 4.7: LSTM network prediction vs actual acceleration from cluster 3, window

size is 1. 61

Figure 4.8: ANN prediction vs actual acceleration from cluster 3, window size

is 10. 62

Figure 4.9: LSTM network prediction vs actual acceleration from cluster 3, window

size is 10. 63

Figure 4.10: ANN prediction vs actual acceleration from cluster 3, window size

is 50. 64

Figure 4.11: LSTM network prediction vs actual acceleration from cluster 3, window

size is 50. 65

Figure 4.12: ANN prediction vs actual acceleration from cluster 3, window size

is 100. 66

Figure 4.13: CNNLSTM

prediction vs actual acceleration from cluster 3, window

size is 100. 67

Figure 4.14: ANN prediction vs actual acceleration from cluster 3, window size

is 200. 68

Figure 4.15: CNN prediction vs actual acceleration from cluster 3, window size

is 200. 69

Figure 4.16: Average time to make a prediction for each proposed model. 71

Figure 5.1: ANN prediction vs actual acceleration from cluster 1, window size

is 1. 79

Figure 5.2: ANN prediction vs actual acceleration from cluster 2, window size

is 1. 79

Figure 5.3: ANN prediction vs actual acceleration from cluster 1, window size

is 10. 80

Figure 5.4: ANN prediction vs actual acceleration from cluster 2, window size

is 10. 80

Figure 5.5: ANN prediction vs actual acceleration from cluster 1, window size

is 50. 81

Figure 5.6: ANN prediction vs actual acceleration from cluster 2, window size

is 50. 81

Figure 5.7: ANN prediction vs actual acceleration from cluster 1, window size

is 100. 82

11

Figure 5.8: ANN prediction vs actual acceleration from cluster 2, window size

is 100. 82

Figure 5.9: ANN prediction vs actual acceleration from cluster 1, window size

is 200. 83

Figure 5.10: ANN prediction vs actual acceleration from cluster 2, window size

is 200. 83

Figure 5.11: CNN prediction vs actual acceleration from cluster 1, window size

is 1. 84

Figure 5.12: CNN prediction vs actual acceleration from cluster 2, window size

is 1. 84

Figure 5.13: CNN prediction vs actual acceleration from cluster 1, window size

is 10. 85

Figure 5.14: CNN prediction vs actual acceleration from cluster 2, window size

is 10. 85

Figure 5.15: CNN prediction vs actual acceleration from cluster 1, window size

is 50 . 86

Figure 5.16: CNN prediction vs actual acceleration from cluster 2, window size

is 50. 86

Figure 5.17: CNN prediction vs actual acceleration from cluster 1, window size

is 100. 87

Figure 5.18: CNN prediction vs actual acceleration from cluster 2, window size

is 100. 87

Figure 5.19: CNN prediction vs actual acceleration from cluster 1, window size

is 200. 88

Figure 5.20: CNN prediction vs actual acceleration from cluster 2, window size

is 200. 88

Figure 5.21: RNN prediction vs actual acceleration from cluster 1, window size

is 1. 89

Figure 5.22: RNN prediction vs actual acceleration from cluster 2, window size

is 1. 89

Figure 5.23: RNN prediction vs actual acceleration from cluster 1, window size

is 10. 90

Figure 5.24: RNN prediction vs actual acceleration from cluster 2, window size

is 10. 90

12

Figure 5.25: RNN prediction vs actual acceleration from cluster 1, window size

is 50. 91

Figure 5.26: RNN prediction vs actual acceleration from cluster 2, window size

is 50. 91

Figure 5.27: RNN prediction vs actual acceleration from cluster 1, window size

is 100. 92

Figure 5.28: RNN prediction vs actual acceleration from cluster 2, window size

is 100. 92

Figure 5.29: RNN prediction vs actual acceleration from cluster 1, window size

is 200. 93

Figure 5.30: RNN prediction vs actual acceleration from cluster 2, window size

is 200. 93

Figure 5.31: LSTM network prediction vs actual acceleration from cluster 1, window

size is 1. 94

Figure 5.32: LSTM network prediction vs actual acceleration from cluster 2, window

size is 1. 94

Figure 5.33: LSTM network prediction vs actual acceleration from cluster 1, window

size is 10. 95

Figure 5.34: LSTM network prediction vs actual acceleration from cluster 2, window

size is 10. 95

Figure 5.35: LSTM network prediction vs actual acceleration from cluster 1, window

size is 50. 96

Figure 5.36: LSTM network prediction vs actual acceleration from cluster 2, window

size is 50. 96

Figure 5.37: LSTM network prediction vs actual acceleration from cluster 1, window

size is 100. 97

Figure 5.38: LSTM network prediction vs actual acceleration from cluster 2, window

size is 100. 97

Figure 5.39: LSTM network prediction vs actual acceleration from cluster 1, window

size is 200. 98

Figure 5.40: LSTM network prediction vs actual acceleration from cluster 2, window

size is 200. 98

Figure 5.41: CNNLSTM

network prediction vs actual acceleration from cluster

1, window size is 1. 99

13

Figure 5.42: CNNLSTM

network prediction vs actual acceleration from cluster

2, window size is 1. 99

Figure 5.43: CNNLSTM

network prediction vs actual acceleration from cluster

1, window size is 10. 100

Figure 5.44: CNNLSTM

network prediction vs actual acceleration from cluster

2, window size is 10. 100

Figure 5.45: CNNLSTM

network prediction vs actual acceleration from cluster

1, window size is 50. 101

Figure 5.46: CNNLSTM

network prediction vs actual acceleration from cluster

2, window size is 50. 101

Figure 5.47: CNNLSTM

network prediction vs actual acceleration from cluster

1, window size is 100. 102

Figure 5.48: CNNLSTM

network prediction vs actual acceleration from cluster

2, window size is 100. 102

Figure 5.49: CNNLSTM

network prediction vs actual acceleration from cluster

1, window size is 200. 103

Figure 5.50: CNNLSTM

network prediction vs actual acceleration from cluster

2, window size is 200. 103

14

List of Tables

Table 3.1: Summary of the training/validation/testing splits and activations used

for each of the proposed models. 49

Table 4.1: Variables with highest coefficients in each principal component. . . . 52

Table 4.2: The test loss across different optimizers. 55

Table 4.3: The test loss for different learning rates. 56

Table 4.4: Investigating the effect of different layers on the test loss. 56

Table 4.5: One layer with different filters and the corresponding test loss. 56

Table 4.6: For a forecast horizon of 1, the effect of the units in the FC layer on

the test loss. 57

Table 4.7: The test loss for different learning rates. 57

Table 4.8: Batch normalization effect on the test loss. 57

Table 4.9: Investigating the effect of different layers each with three units on the

test loss. 58

Table 4.10: One layer with different units and the corresponding test loss. 58

Table 4.11: Effect of number of LSTM and convolutional layers on the test loss. . 59

Table 4.12: Number of convolutional filters and LSTM units vs the test loss. . . . 59

Table 4.13: The test loss for all models for a forecast horizon of size 1. 61

Table 4.14: The test loss for all models for a forecast horizon of size 10. 62

Table 4.15: The test loss for all models for a forecast horizon of size 50. 64

Table 4.16: The test loss for all models for a forecast horizon of size 100. 66

Table 4.17: The test loss for all models for a forecast horizon of size 200. 68

Table 4.18: The testing loss for all the proposed models. 70

Table 4.19: Prediction delay for all the proposed models. 71

15

Chapter 1. Introduction
About 20,000 earthquakes that are significant enough to be felt without measurement

instruments, happen annually around the globe [1]. About 100 of these are

of enough magnitude to cause major damage, if they occur near residential areas. Very

great earthquakes happen about once a year on average which can trigger landslides,

fires and tsunamis [2]. Over the centuries, they caused the loss of millions of lives and

inestimable destruction to infrastructures.

At this point in time, it is statistically impossible to predict an earthquake ahead

of time. However, detecting ground motion as it begins to happen and alert the public

seconds prior to the major shake is a feasible and propitious alternative. Such systems,

known as early earthquake warning or EEW, can potentially reduce the casualties caused

by an earthquake.

Various EEW systems are currently being tested and deployed around the world.

For example, the ShakeAlert system that is developed by The U.S. Geological Survey

(USGS) in the US west coast and the Pacific Northwest [3] [4]. It uses a huge network

of sensors that sends data to the processing center which sends alert messages to users.

This is a significant infrastructure to maintain and operate. It takes about $16 million

per year for the ShakeAlert system [4].

Though operational, the system is still under development. For instance, during

the 7.1 moment magnitude (𝑀𝑀𝑀𝑀) earthquake that struck near Ridgecrest, CA, USA, in

July 2019, the primary algorithm was able to identify the earthquake and send alerts

to users. However, it underestimated the earthquake magnitude by 0.8 units [5]. In

addition, the finitefault

algorithm failed to correctly characterize the earthquake.

A fully operational EEW system would always need human action in seconds.

That is barely enough time to move away from windows or get protected under a table.

Here comes a pressing question, what if one is asleep or can not move? What about

structures such as buildings and bridges?

The motivation for this research is to eliminate human intervention from the

process. Using machine learning, this work can be applied to forecast a continuously

updated section of the ground acceleration signal beginning from the first few points.

16

As more points become available, they are continuously fed to the system to make new

predictions. We refer to the duration of future prediction as the ”forecast horizon”. Our

algorithms can be integrated into a mechatronics system installed in structures to help

reduce or even eliminate the structure’s movement. The system can consist of sensors,

our proposed models and a magnetorheological damper. It contains magnetorheological

fluid, which is controlled by a magnetic field, usually from an electromagnet [6].

Varying the strength of the electromagnet can continuously control the damper’s characteristics.

1.1. Thesis Objectives

This study intends to explore the use of several ML techniques for ground motion

prediction. The system takes in a window of the acceleration signal, measured by

accelerographs, and it forecasts the future signal as the earthquake emerges. The predictions

are made in all three axes simultaneously. In addition, the predictions are of a

sampling interval of 0.0014 seconds. We follow the sliding window approach to process

the signal. The contributions of this research work can be summarized as follows:

1. Propose multiple machine learning systems to predict the ground motion acceleration

signal in realtime

in three axes.

2. Compare the performance of various neural network architectures for forecasting.

3. Achieve a prediction delay of less than 10% of the forecast horizon.

The algorithms in this thesis are trained and tested on the records from the NGAWest2

database records. It is worth pointing out that the training and testing subsets do

not contain samples from the same earthquake. We experiment with multiple machine

learning algorithms. This study can serve as a baseline for future works in this field.

1.2. Proposed Solution

We propose various models that can help support structures as an earthquake unfolds.

The models predict the ground motion acceleration in three axes. We consider the

17

NGAWest2

database for the metadata and time series signals. The 𝑘𝑘means

clustering

algorithm as well as principal component analysis (PCA) are applied to the metadata

to investigate various groups of earthquakes in the database. We then set the input to

357 points, or half a second, and experiment with different prediction/forecast horizons.

An artificial neural network (ANN) acts as a baseline for all the other proposed models.

We implement various models for acceleration time series prediction, namely, convolutional

neural network (CNN), recurrent neural network (RNN), long shortterm

memory

(LSTM) network and CNNLSTM

network.

1.3. Thesis Organization

For the remainder of the thesis, the chapters are organized as follows. Chapter

2 provides a literature review on important topics related to ground motion and the

applications of machine learning in time series forecasting. It also contains the theory

of machine learning relevant to this thesis. Chapter 3 discusses the proposed solutions.

Chapter 4 contains important results from the trained networks and a discussion of their

implications. Finally, Chapter 5 concludes the research and outlines the future work.

18

Chapter 2. Background and Literature Review
In this chapter, we discuss the ground motion parameters and the fundamentals

of ML. Then, we present the prediction techniques for time series and the applications

of ML in seismology in the related work. In addition, we present the background knowledge

relevant to this work.

2.1. Ground Motion Parameters

When tectonic plates move, they cause pressure to accumulate due to friction and

the energy stores. When the pressure surpasses the rocks’ strength, they start to move

with respect to each other, resulting in a fault [7]. Moreover, the energy gets released

and an earthquake occurs. In the event of tectonic movements, sudden bursts of energy

are released as waves. The generated seismic waves travel through the crust, and away

from the focus or the center of the earthquake, as shown in Figure 2.1. An earthquake

is characterized by its magnitude, frequency components and distance measures. The

waves result in triaxial ground acceleration which is measured by accelerographs. They

record acceleration digitally with respect to time resulting in a time series record also

known as an accelerogram.

Figure 2.1. Earthquake source and generated waves (image source: [8]).

19

Ground motion is divided into vertical and horizontal components, the latter

being larger in amplitude. However, this can change, especially near larger earthquakes.

One of the main parameters to characterize the motion and its resulting damage is the

peak ground acceleration (PGA) [9]. PGA is defined as the maximum amplitude of

the ground acceleration in a given location in units of gravity 𝑔𝑔 or 𝑐𝑐𝑐𝑐/𝑠𝑠2. Another

significant parameter is the duration, which is known as the total time of the strong

motion. Often, responses are computed to assess structural damage for multiple natural

frequencies. These observations are vital to evaluate the seismic hazard of an area.

2.2. Machine Learning

The crux of machine learning (ML) is to learn from data. For example, to

learn to predict signal types or values based upon inputs [10]. The ML algorithms are

trained with specific inputs depending on the problem. They can also be updated as

new data is available. The learning process can also be modeled probabilistically. ML

can be divided into two main groups: supervised learning and unsupervised learning,

as shown in Figure 2.2. The difference between them is the presence of the labels.

Supervised learning, which includes predictive models for the labeled datasets, can be

further subcategorized into classification and regression algorithms. In classification

problems, the algorithm’s goal is to identify the input as part of a group or class and

predict the class as a discrete value.

The classification can be divided to binary classification and multiclass

classification

based on the number of classes. The performance is then evaluated based on the

accuracy of the predicted class using binary crossentropy

for the binary classification or

the sigmoid loss for the multiclass

classification. In regression, the algorithm maps the

input to a continuous output variable. Unsupervised learning is helpful for exploratory

data analysis because it identifies structures in the data automatically. Examples of

unsupervised learning include dimensionality reduction and clustering, depending on

whether the goal is decreasing the inputs’ dimensions or grouping similar data together.

In our study, both labeled and unlabeled data are available. The labeled data is the

ground acceleration signals and the unlabeled data is the earthquake metadata.

20

Figure 2.2. Types of machine learning algorithms (image source: [10]).

2.3. Related Work

In this section, we present existing literature in time series prediction. In addition,

the methods of predicting ground motion parameters are shown. Finally, we

discuss the applications of ML in seismology.

2.3.1. Time series prediction. A time series is defined as a set of numerical observations

taken in consecutive order at equally spaced intervals. Mathematically, time

series 𝑥𝑥 is defined as a set of vectors 𝑥𝑥(𝑡𝑡) = {𝑥𝑥1, 𝑥𝑥2, ..., 𝑥𝑥𝑥𝑥 } [11] [12]. The time variable

is the independent one and the target variable is the dependent one. If there is one value

per time step in the series, it is termed as a univariate time series. On the other hand, if

multiple points occur per time step, it is called a multivariate time series.

Analysis of time series data is crucial for identifying existing trends and patterns.

Important decisions can be made from the analysis, for example, like whether one should

invest in the stock market based on the trend. Also, historic data of a time series are

21

used to make predictions into the future. This is called time series forecasting, and it is

a thriving research area in many domains such as financial, medical and environmental

domains. Selecting the suitable model is crucial as it reflects the underlying form of the

time series. The model used to make a prediction is classified as linear or nonlinear

based on the manner in which the past data is combined.

Babušiak and Mohylová proposed ANNbased

models to predict the next electrocardiogram

(ECG) sample, given the five previous ones [13]. Two ANN architectures

were tested, namely, the onelayer

model and the multilayer

back propagation model.

It is noticed that the second network is more accurate. However, it takes more epochs

to converge. In 2017, a study was conducted to forecast the upcoming time period in

the electroencephalogram (EEG) signal [14]. The input is selected and altered in the

training stage using neighborhood structures (NS). The maximum achieved accuracy

was around 70% when using 30 models per person. When predicting the maximum

forecasting horizon, the accuracy did not change significantly.

The uncertainty in highly nonlinear

data imposes a challenge on the modeling

process. For example, stock market is a significant area where different prediction

methods are applied to determine the upcoming trend. In [15], CNN, LSTM network

and RNN were utilized for stock price predication using a sliding window approach.

The paper concluded that CNN generated the most accurate results, since it is not history

dependent and only analyzes the window at hand, unlike RNNs, where previous

sequences are used to make a prediction.

Recurrent neural networks are the standard when it comes to time series forecasting.

In [16], RNN was used to predict temperatures inside building. The input is

a combination of parameters such as the outside wind and temperature, which makes

the input a multivariate sequence while the output is univariate. The sequence length,

which is the number of observations taken into account, was varied to determine the optimal

one. It was found that the best prediction accuracy was associated with a sequence

length of 120. However, a window of length 12 produced a similar accuracy.

long shortterm

memory network is the more powerful variant of RNN. In [17],

an LSTM model was used for oneday

ahead solar irradiance prediction. The input was

composed of 11 timesteps with nine features which makes it a multivariate

sequence.

22

The proposed model contained a single LSTM layer followed by a dense layer representing

the output. It was found that the LSTM network outperformed the ANN by 18%

for an output to input ratio of 9%.

Convolution neural networks gained popularity in recent years as the state of

the art technique in computer vision [18], natural language processing [19], and also

in time series forecasting. In [20], a 1DCNN

model was implemented for one step

ahead river flowerstream

prediction. Three models were designed with different time

intervals, daily, weekly and monthly. The best performance was associated with an

input size of four and an output to input ratio of 25%. The monthly interval had the

worst performance as the model could not reflect the dynamic variations. Therefore,

sampling data at a suitable time is crucial for the model to perform well.

Combining the pattern extraction capability of CNN and the memory of LSTM

network yields a powerful network that can capture the dynamic nature of a time series.

In [21], the goal was to predict the daily gold prices with CNNLSTM

model. Previous

gold prices with today’s prices are used to predict the following day’s prices. It was

found that a model with two CNN layers and one LSTM layer followed by fully connected

(FC) layer gave the best performance. In addition, the optimal forecast horizon

was six data points.

A similar network was utilized to predict the concentration of air pollutants [22].

The input is a combination of meteorological factors and past pollutant concentration

as a multivariate sequence. The forecast horizon length is 24 hours where the input is

72 hours long, so the output to input ratio is 33.3%. The baseline model was a shallow

ANN to compare results. The proposed CNNLSTM

model RMSE was 36% less than

the ANN model and 20.3% less than the conventional LSTM model.

2.3.2. Ground motion estimation. The classical method to estimate some parameters

of an earthquake is using ground motion prediction equations (GMPEs). The basic

elements of ground motion are the earthquake’s source, route and area conditions [23].

Therefore, the classical model relies on these factors to define the ground motion in

the form of a simplified linear regression. Newly introduced GMPEs include more regression

coefficients to enhance the accuracy, as shown in [24], while increasing the

23

complexity. A complete and accurate model definition requires the fault characteristics

and the development of the rapture, which are primarily unknown and difficult to

obtain. In addition, the parameters used in each model should be evaluated and tested

properly as they are regiondependent.

Therefore, in regions with a dense network of

seismographs, the parameters are well defined [25]. However, that is not the case in

most seismically active regions because of lack of measurements.

2.3.3. Applications of ML in seismology. Due to the major increase of available

seismic data, ML was integrated heavily in a variety of applications from forecasting

to feature extraction. An interesting research was the prediction of a laboratory fault

failure [26]. The algorithm listens to the acoustic signal generated by the fault and

extracts a signal that was discarded as noise before. Thus, the time remaining before an

artificial earthquake was determined.

A study in 2009 applied ML to predict the seismic response of a twofloor

building

based on selected structural parameters [27]; feed forward back propagation (FFBP)

with one hidden layer was trained using real acceleration signals and the computed responses.

The results showed good accuracy for both stories. However, the method

requires complex computations to extract the desired features. Kerh and Ting employed

multilayer feed forward (MLFF) neural network for PGA estimation [28]. Three ANNs,

each with one hidden layer were developed, where the input was a combination of epicentral

distance, focal depth, and magnitude. The output was PGA in one axis from 21

testing cases. About 85.7% of the testing cases yielded a correlation coefficient 𝑅𝑅2 less

than 0.5, which is considered as a low level of correlation.

Another application of MLFF neural network was done by Arjun and Kumar for

duration estimation [29]. The proposed models were designed to forecast the duration

of strong ground motion from the magnitude, hypocentral distance, shear wave velocity,

and the average of the soil characteristics. ANN with six inputs showed 55% accurate

results. On the other hand, when using the first three inputs, the accuracy increased to

61%. Another study utilized the same inputs to predict the PGA in three directions based

on Turkish records [30]. Three ANN architectures were implemented, namely, radial

basis function (RBF), FFBP and generalized regression neural networks (GRNNs). Af24

terwards, the direction which contained the maximum PGA was fed to the network to

determine the maximum PGA value. FFBG with one hidden layer showed better performance

in all the three axes. On the other hand, the RMSE of RBF reached 58.17 𝑐𝑐𝑐𝑐/𝑠𝑠2,

which is considerably high.

In 2013, an ANN model was developed to predict the PGA in one direction from

the magnitude, hypocentral distance, and focal depth [31]. FFBP algorithm was utilized

with one and two hidden layers. The optimum results were observed when the number

of neurons was between 3 and 20 with one hidden layer. For some PGA values, the mean

square error reached 1.1 𝑐𝑐𝑐𝑐/𝑠𝑠2. In 2017, a similar study predicted the ground motion

parameters such as PGA and the first 26 points of spectral acceleration from 13552

shallow earthquakes [32]. The ANN is composed of one hidden layer, five neurons

and five input nodes, namely, magnitude, focal mechanism, shear velocity, distance to

rapture and its logarithmic value. The focal mechanism is assigned a value from 1 to 3

based on the formation of the fault. The results demonstrate high accuracy because it

was optimized with genetic algorithm.

EEW plays a major role in saving lives and structures. On the arrival of the P

waves, an alert is issued before the strong onset occurs. The following studies integrate

realtime

ML to the EEW to make it faster and reveal more details about the potential

earthquake. Leach and Dowla used ANN with FFBP architecture to obtain the shaking

intensity, duration and time remaining until PGA from Southern California records [33].

It was shown that the first few seconds of seismic activity play a vital role in the estimation

process. Also, the results show a good performance with an 𝑅𝑅2 value of 0.843,

given that strong motion was not included in the study. In addition, a realtime

EEW

was implemented based on the seismic activity from all three directions. The system

classifies the earthquake as hazardous if the magnitude scale exceeds 0.58.

Another study conducted in the same region explored the use of probabilistic

ANN for magnitude prediction based on eight seismicity indicators [34]. The model

classifies the magnitude into seven ranges from less than 4.5 to 7.5 on the Richter scale.

The best prediction was for the range 4.5 – 6 with an 𝑅𝑅2 value of 0.78. However, large

scale earthquakes yielded an 𝑅𝑅2 value less than 0.5. The authors explained this classification

error with the scarcity of big earthquakes in the dataset.

25

Ramirez and Francois employed feature extraction and supervised ML to classify

the incoming seismic waves from three directions [35]. The output was either Por

Lphases

indicating compressional and surface waves respectively. The maximum correct

classification accuracy was 67.9% associated with 0.3 acceptance threshold. In 2018,

various ML techniques were applied to reduce false EEW [36]. The system learns to

differentiate between Pwaves

and noise with a high accuracy. Feature extraction was

performed on the input signal followed by generative adversarial networks (GANs) and

random forests algorithm. The results were promising; the accuracy reached 98.4% for

noise signals and 99.2% for P waves.

In the same year, a similar study was conducted to reduce false warnings using

classification [24]. The incoming waveforms from multiple channels were classified

into phases based on the likelihood function. The results show 50% less error compared

to the classical classification function. In [37], the study is based on feed forward ANNs

with two hidden layers to estimate the hypocenter and the magnitude. The system relies

on the emerging seismic signals from multiple sensors in the Marmara region to issue an

EEW. The best accuracy was obtained using four stations and a window of 3.5 seconds.

However, enhancing the accuracy here is at the cost of waiting longer which is inefficient

for EEW.

A more reliable solution was provided by Kuyuk and Susumu through classifying

the earthquake into nearsource

or farsource

based on the incoming Pwaves

[35].

Long Shortterm

Memory Networks were used as the classification function. The input

is one second long which is divided into 13 points and the hidden layer contained 100

neurons followed by a classification layer. The training accuracy was more than 95%

for both classes. However, during the testing phase, the accuracy dropped to 65.7%.

Based on the presented research, all the earthquake predictions are done for some

parameters relating to the earthquake and not the acceleration time series itself. It is evident

that this study is exploring a new area that is the realtime

prediction of ground

motion resulting from an earthquake. This study begins with using ML models to predict

a window of the earthquake signal from the initial points. The used ML algorithms

are ANN, CNN, RNN, LSTM network and CNNLSTM

network. The predictions are

updated for future windows of the signal as new points are measured. Moreover, we

26

conduct some analysis on the metadata like the PCA and 𝑘𝑘−Means clustering. We identify

clusters in the metadata and then apply ML models based upon all the clusters which

makes the model more robust.

It is worth noting that it is important to have a sufficiently long input window to

obtain useful information from it but not overly long as vanishing gradient may occur

in long sequences. Therefore, an expanding window is not suitable for our research as

the window can become really long after some time (more than 100,000 points). The

sliding window approach is utilized with a window size of 357 points or half a second.

The timelag

or shift is equivalent to the forecast horizon to obtain nonoverlapping

outputs. In addition, the design should use less layers initially, and if they do not deliver

satisfactory performance, we can move to deeper networks as most forecasting problems

can be addressed with a small number of layers.

2.4. Theoretical Background

In this section, we shed light on the theory related to our thesis. Namely, Principal

component analysis and 𝐾𝐾Means

clustering. In addition, variants of artificial neural

networks such as recurrent and convolutional neural networks are discussed.

2.4.1. Principal component analysis. Principal component analysis (PCA) is a

technique used to reduce dimensionality in an unsupervised manner. The number of

variables is reduced to a set that contains fewer ones with most information about the

original variables. This operation comes at the expense of some accuracy for simplicity.

PCA is performed on a vector x ∈ R𝑚𝑚 by projecting to a lowerdimensional

vector

z = 𝑃𝑃𝑃𝑃x, z ∈ R𝑛𝑛 [38]. The columns of 𝑃𝑃 are the principal components. The principal

components indicate the direction with maximum variability. The principal components

are orthogonal and are the eigenvectors of the covariance matrix 𝑆𝑆 of the data, while the

eigenvalues 𝜆𝜆 of each feature represent the variances in those directions. These are given

by

𝑆𝑆 =

1

𝑛𝑛 − 1

Õ𝑛𝑛

𝑖𝑖=1

(𝑋𝑋𝑋𝑋 − ¯𝑋𝑋) (𝑌𝑌𝑌𝑌 − ¯ 𝑌𝑌),

𝑆𝑆v = 𝜆𝜆v,

(1)

27

where 𝑆𝑆 is the covariance matrix between variable 𝑋𝑋 and 𝑌𝑌. Since 𝑆𝑆 is a square matrix, 𝑣𝑣

is a vector and 𝜆𝜆 is a scalar that satisfies equation 1, then 𝜆𝜆 is called eigenvalue associated

with eigenvector 𝑣𝑣 of 𝑆𝑆. Clustering performance generally decreases with higher dimensions.

Therefore, we chose to implement dimensionality reduction through PCA before

applying clustering on metadata. PCA also helps us visualize the data in lower dimensions.

Moreover, it eradicates correlated features as the resulting principal components

are independent of one another. However, they might be less interpretable compared to

the original features as they are linear combination of all features. Figure 2.3 shows two

principal components after applying PCA.

Figure 2.3. An example of the two principal components with maximum variance after

dimensionality reduction through PCA (image source: [39]).

2.4.2. 𝐾𝐾Means

clustering. Clustering is one of the most popular analytical methods

to find structure in data. We try to identify homogeneous subgroups such that the

observations in each subgroup are as related as possible according to a similarity measure,

such as the Euclidean distance. The clustering used in this work is based on features,

where the clustering is conducted on observations from each feature. Clustering

is a type of unsupervised learning because the ground truths are unavailable to compare

with for performance evaluation. The goal is to investigate the data structure by

grouping observations into different groups.

𝐾𝐾means

clustering is an iterative algorithm that partitions the data into 𝐾𝐾 foreknown

number of clusters, such that each observation belongs to only one cluster. It

28

tries to keep the clusters as different as possible while keeping the points as similar as

possible based on the similarity measure. The cluster centroid is defined as the arithmetic

mean of all the points in that specific cluster. The algorithm will assign points

to a cluster if the sum of the squared distance between the points and the centroid is

minimum.

The clusters’ centroids are initialized randomly and subsequently optimized using

the mean of the cluster. Firstly, each point is designated to the nearest cluster based

on the Euclidean distance. Afterwards, the mean of all the points in a cluster is calculated

and the centroid is moved to the mean. The process continues until the position

of the centroids stabilizes. The solution approach can be formulated as ExpectationMaximization.

The expectation is assigning each point to a cluster and maximization is

the computation of the centroid for each cluster. The objective function can be expressed

as

𝐽𝐽 =

Õ𝑘𝑘

𝑗𝑗=1

Õ𝑛𝑛

𝑖𝑖=1

𝑤𝑤𝑤𝑤𝑤𝑤

𝑥𝑥 𝑗𝑗

𝑖𝑖

− 𝑐𝑐 𝑗𝑗

2

, (2)

where 𝑤𝑤𝑤𝑤𝑤𝑤 = 1 if the point 𝑥𝑥𝑥𝑥 belongs to the cluster and 0 if not. Here, 𝑛𝑛, 𝑘𝑘 are the

number of points and clusters, 𝑐𝑐 𝑗𝑗 is the centroid of cluster 𝑗𝑗 , and 𝑥𝑥𝑥𝑥

𝑗𝑗 is point 𝑖𝑖 in cluster

𝑗𝑗 . 𝐾𝐾means

requires prior knowledge about the number of clusters.

1. Relatively efficient: Algorithm complexity is of order 𝑂𝑂(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), where 𝑛𝑛, 𝑘𝑘, 𝑑𝑑,

and 𝑡𝑡 are the number of data points, clusters, dimension and iterations respectively.

Normally, 𝑘𝑘, 𝑡𝑡, 𝑑𝑑 << 𝑛𝑛.

2. Optimum results occur when the data points are wellseparated

from each other.

2.4.3. Artificial neural networks. Artificial neural networks are inspired by the

human brain, which is essentially a network of interconnected cells or neurons. ANNs

can learn from the data without being explicitly programmed to do so, which makes

them data driven models [40]. The learning model relies on weighting the input to each

node or neuron. Inputs that contribute more to the output are assigned a higher weight.

The data is fed to the input layer which passes it to consecutive layers also known

as the hidden layers. If the network contains more than one hidden layer it is referred

29

to as a deep ANN. Neurons are the base unit that makes up all layers. Each neuron

receives the inputs and performs some mathematical operations. The connections to

neurons carry a weight each that are constantly updated during the training process.

The output of a neuron can be expressed as

𝑧𝑧𝑧𝑧

𝑗𝑗 = (𝑊𝑊𝑊𝑊

𝑗𝑗

)𝑇𝑇x + 𝑏𝑏𝑏𝑏

𝑗𝑗 , (3)

where 𝑊𝑊𝑊𝑊 are matrices of weights that maps the inputs to the next layer. The 𝑏𝑏 𝑗𝑗 terms

represents the bias which is added to all neurons expect the ones in the input layer. To

model complex problems and learn more from the data, a nonlinearity is introduced,

also known as activation function. The final output from a neuron after it goes through

the activation function can be expressed as the output of neuron 𝑗𝑗 in layer 𝑙𝑙 is expressed

as,

𝑎𝑎𝑎𝑎

𝑗𝑗 = 𝜑𝜑(

Õ

𝑘𝑘

𝑤𝑤𝑤𝑤

𝑗𝑗 𝑘𝑘𝑘𝑘𝑘𝑘−1

𝑘𝑘

+ 𝑏𝑏𝑏𝑏

𝑗𝑗

), (4)

where the sum is over all neurons denoted by 𝑘𝑘 in the previous layer. The set of operations

performed by a neuron are shown in Figure 2.4. After one pass of all the training

examples through the network and producing an output, forward propagation is completed.

The prediction is then compared to the actual output and the error will impact

the entire network through back propagation (BP). The goal of the back propagation is

to change the weights and bias to minimize the cost function. The amount of change in

the weights and bias is determined by the gradient of the cost function with respect to

the parameters using the chain rule.

The optimizer is the algorithm responsible for changing the network characteristics

to minimize the loss. Gradient descent is a type of optimizer that uses the first

derivative of the loss function which makes it simple to implement. However, it is susceptible

to be stuck in a local minima [41]. Adding a momentum term can solve this

issue, as it continuously increases the size of the step taken towards the minimum. The

amount of change in the parameters at each epoch is determined by the learning rate. If

the learning rate is small, the convergence process speed will be hindered. On the other

hand, a large learning rate can cause divergence in the error. The number of parameters

30

that the optimizer has to improve are the sum of all the weights and bias in the network.

Figure 2.4. The perceptron, showing an example of the operations described in

equation (4) (image source: [42]).

Model selection and the resulting parameters are detrimental to the model performance.

When the model is too simple to describe the problem at hand, underfitting

occurs. Essentially, the model fails to learn from the training data and will not perform

well on the test data. Underfitting can be solved by increasing the complexity of the

model by adding more layers or hidden neurons. When the model is overly complex and

has a lot of parameters, overfitting can occur if insufficient data is provided. Overfitted

models don’t generalize well as they strictly memorize the training data only. Hence,

supplying more training data to the model is an appropriate solution to overfitting.

Regularization or early stopping can be added to prevent overfitting. Early stopping

prevents overfitting by monitoring the validation error, as shown in Figure 2.5. If

the loss keeps increasing for a specific number of epochs, also known as patience, it halts

the training and restores the weights of the best epoch. Regularization imposes a penalty

on the model for the weights, the optimization algorithm has to deal with constraints in

addition to minimizing the loss between the actual and predicted output. Regularization

31

restricts the flexibility of the network, two examples of regularization are 𝐿𝐿1 and 𝐿𝐿2

regularization.

Figure 2.5. Early stopping halts the training as the validation begins to increase, as

indicted by the arrow.

𝐿𝐿1 regularization also known as Lasso regression, adds the absolute value of the

weights to the error function as shown in equation 5. If the value of the tunable regularization

parameter 𝛼𝛼 is zero, the model will become unregularized. 𝐿𝐿1 regularization

works to reduce the number of parameters in the model by forcing some weight to become

zero. This is effective in feature selection. 𝐿𝐿1 regularization can be expressed

as

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (ˆ𝑦𝑦, 𝑦𝑦) + 𝛼𝛼

Õ𝑁𝑁

𝑖𝑖=1

|𝑤𝑤𝑤𝑤 | , (5)

where 𝑁𝑁 is the total number of training examples, and 𝑦𝑦𝑦𝑦 , ˆ𝑦𝑦𝑦𝑦 are the groundtruth

and

predicted points, respectively. 𝐿𝐿2 regularization or ridge regression is the most common

type of regularization. 𝐿𝐿2 regularization adds a penalty to the square value of the

32

weights. Therefore, if the value 𝛼𝛼 is too large, it imposes a high penalty as shown in

equation 6. In this technique, no parameters are eliminated but they are all reduced by

the same factor.

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (ˆ𝑦𝑦, 𝑦𝑦) + 𝛼𝛼

Õ𝑁𝑁

𝑖𝑖=1

𝑤𝑤2

𝑖𝑖 (6)

2.4.4. Convolutional neural networks. The main issue with utilizing classic artificial

neural networks for regression, specifically time series problems, is the huge

number of parameters to be optimized. For example, a sequence of length 𝑙𝑙 would require

𝑙𝑙 parameters to connect to a single node in the next layer. Convolutions neural

networks are known to have a manageable number of parameters and that makes the

training time manageable [43]. The main computation in a CNN is the convolution operation.

For a 2D input 𝐼𝐼 of size (𝐻𝐻,𝑊𝑊), the convolution operation of 𝐼𝐼 with a filter 𝐾𝐾

yields the output feature map 𝑂𝑂

𝑂𝑂𝑂𝑂𝑂𝑂 =

Õ𝐻𝐻

𝑖𝑖=−𝐻𝐻

Õ𝑊𝑊

𝑗𝑗=−𝑊𝑊

𝐼𝐼𝐼𝐼, 𝑗𝑗𝑗𝑗𝑗𝑗−𝑖𝑖,𝑙𝑙−𝑗𝑗 . (7)

This can be thought of as the filter 𝐾𝐾 moving across the height and width of the image

and taking the sum of the elementwise

products of overlapping entries.

Adding a stride of size 𝑠𝑠 to a convolution results in the filter moving 𝑠𝑠 steps for

every computation in equation (7), instead of column by column. This decreases the

size of the output, and can be used to control for the size of the output feature map, as

well as in pooling layers. Padding is another common practice which consists of adding

rows and columns of zeros to the boundaries of the input image to also allow for control

of the output dimension.

Similar to ANNs, deep CNN architectures contain many hidden layers with different

properties. One of the most common layers are convolutional layers, which convolves

an input feature map with a filter as described. Analogous to layer weights in

ANNs, filter parameters determine how the output looks like, and is one of the fundamental

drivers of CNNbased

learning. Max pooling layers are also common. Max

33

pooling of size 𝑀𝑀 downsamples

the input by taking the maximum element from 𝑀𝑀×𝑀𝑀

windows across the input, and do not contain any learned parameters. Fullyconnected

layers mimic the hidden layers of ANNs, and are usually placed before the last layer. In

addition to these three, many other layers can be found in CNN architectures.

To process 1D signal inputs in CNNs, 1DCNNs

have been developed. One of

the differences between 1D and 2D CNNs is that the feature maps and filters are onedimensional.

The kernel of a filter with size ℎ will cover size 𝑙𝑙 of and slide to the right

one time step at a time.

The 1D convolution operation between a 𝑝𝑝dimensional

input 𝑥𝑥 and a filter 𝑤𝑤

gives a 1D output 𝑦𝑦, given by [44]

𝑦𝑦𝑦𝑦 =

Õ𝑝𝑝

𝑘𝑘=−𝑝𝑝

𝑥𝑥𝑥𝑥−𝑘𝑘𝑘𝑘𝑘𝑘 . (8)

The convolved sequence is then passed through a nonlinear activation function and

downsampled.

An example 1DCNN

architecture illustrating the forward propagation

is shown in Figure 2.6, where each hidden layer has 24 filters performing the 1D

convolutions on their respective input feature maps.

Figure 2.6. Example of a 1DCNN

architecture for binary classification (image

source: [44]).

34

The filter parameters are governed by an optimization algorithm with respect to

a loss function that seeks to minimize some error between the network outputs and the

groundtruth

labels. Optimizers use the gradients of the loss function with respect to the

learnable network parameters to find these minima. Some common loss functions are

MSE, RMSE, and crossentropy

loss.

1DCNNs

are significantly less computationally expensive than 2DCNNs,

due

to the number of learnable parameters [44]. They have been used in several applications

related to fault monitoring in vibrating structures, mechanical parts, and multilevel converters

[44]. Avci et al. [45] trained 1DCNNs

using signals obtained from accelerometers

to monitor the directions most susceptible to damage. Abdeljaber et al. [46] used

signals obtained from damage scenarios in structures to train a 1DCNN

for structural

health monitoring.

2.4.5. Recurrent neural networks. In recurrent neural networks, the current state

of the model is affected by the previous states. Unlike feedforward

networks where the

information travels exclusively in one direction from the input to the output layer [47].

The RNN produces an output and feeds it back to the network to be used in the current

computation which helps it retain immediate memory from previous computations. The

principle of operation can be summarized as

𝑦𝑦𝑦𝑦 = 𝑓𝑓 (ℎ𝑡𝑡 ; 𝜃𝜃)

ℎ𝑡𝑡 = 𝑔𝑔(ℎ𝑡𝑡−1, 𝑥𝑥𝑥𝑥 ; 𝜃𝜃),

(9)

where 𝑦𝑦𝑦𝑦 which is the output at instant 𝑡𝑡, depends on the current state ℎ𝑡𝑡 given 𝜃𝜃 which

includes all the network parameters. Given the same parameters 𝜃𝜃, the current state

ℎ𝑡𝑡 depends not only on the current input but on the previous state ℎ𝑡𝑡−1 as well. The

second equation illustrates how RNNs can remember past computations and carry it

to future ones. Figure 2.7 demonstrates the three main variables in an RNN and how

they interact. RNNs has the advantage of smaller number of parameters to optimize

compared to ANNs because they deploy parameter sharing. It essentially means that

the same weights (𝜃𝜃𝜃𝜃, 𝜃𝜃𝜃𝜃, 𝜃𝜃ℎ) are reused across all time steps. Parameter sharing gives

RNNs the ability to handle variable length inputs.

35

Figure 2.7. RNN unfolded, an example of the operations happening inside an RNN

layer.

In the case demonstrated in Figure 2.7, both the input and output pairs are univariate

as the have one value per time step. For multivariate sequences, the dimensionality

can be controlled by varying the number of units in each layer. In Figure 2.8, the

number of units in the hidden layer is four which equates to the output dimensionality.

The output can either be a at every time step or at the end of the sequence. Training RNNs

includes obtaining an output then propagating backwards in a process called backpropagation

through time (BBTT) to find the gradients of the loss function and adjusting the

parameters afterwards.

Figure 2.8. The number of units inside the RNN layer.

36

RNNs are susceptible to the vanishing/exploding gradient problem that hinders

the training process [48]. It occurs because the backpropagation algorithm utilizes the

chain rule (more details can be found in [40]). Since the chain rule involves multiplication

of partial derivatives, the gradient in the early layers will contain multiplication

analogous to the sequence length. If one partial derivative is < 1, the product will be

very small resulting in vanishing gradient. In case of derivatives > 1, the product becomes

big. Both of these cases are problematic, because vanishing gradient makes the

training very slow and exploding gradient renders the training unstable.

2.4.6. Long shortterm

memory networks. Long shortterm

memory, or LSTM

network, is a type of RNN initially created by Hochreiter and Schmidhuber in 1997 [49].

It is deemed powerful for a variety of applications such as machine translation [50] and

speech recognition [51] [52]. LSTMs were created as a solution for the RNN’s short

term memory, since they have internal mechanisms called gates which regulate the flow

of information [53]. These gates can learn which data in sequences should be kept and

which should be discarded. It learns to use relevant information to make predictions.

The gates are the input, forget and output gates. Starting with the forget gate which is

expressed as

𝑓𝑓𝑓𝑓 = 𝜎𝜎(𝑊𝑊𝑊𝑊 [ℎ𝑡𝑡−1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏 𝑓𝑓]). (10)

The input 𝑥𝑥𝑥𝑥 at instant t is combined with the previous state ℎ𝑡𝑡−1 into a single vector.

The vector is multiplied by weight 𝑊𝑊𝑊𝑊 , added to a bias 𝑏𝑏 𝑓𝑓 , and passed to the sigmoid

function 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) defined by

𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) =

1

1 − 𝑒𝑒−𝑡𝑡 . (11)

The output of the sigmoid function is between 0 and 1. When it is closer to 1, the

information will be retained and when it is closer to 0, it will be discarded. To update

the cell state or memory ˜ 𝑐𝑐𝑐𝑐 , the vector of the input and previous state is passed through

tanh which gives an output between 1

and 1. This range will protect from exploding

gradients. In addition, the vector is passed through the sigmoid function, which will

decide whether to add the new information to the memory or not. These two operations

37

are expressed as

𝑖𝑖𝑖𝑖 = 𝜎𝜎(𝑤𝑤𝑤𝑤 [ℎ𝑡𝑡−1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏𝑏𝑏])

˜ 𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑤𝑤 [ℎ𝑡𝑡 − 1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏𝑏𝑏).

(12)

Afterwards, the candidate state ˜ 𝑐𝑐𝑐𝑐 and the input gate output are multiplied which further

regulates the information from the memory. At this point, the cell is ready to calculate

the current cell state 𝑐𝑐𝑐𝑐 by adding the forget gate output 𝑓𝑓𝑓𝑓 to the candidate state ˜ 𝑐𝑐𝑐𝑐 as

shown in equation 13. Figure 2.9 illustrates the inner connections of an LSTM cell.

𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑓𝑓 ∗ 𝑐𝑐𝑐𝑐−1 + 𝑖𝑖𝑖𝑖 ∗ ˜ 𝑐𝑐𝑐𝑐 (13)

Figure 2.9. Inner connections of an LSTM cell (image source: [54]).

Finally, the output gate decides which information from the current cell state will

be passed to the next cell. The vector of the input and previous hidden state is passed

through a sigmoid function, as shown in equation 14, which as explained previously

acts a filter. Afterwards, the output is multiplied with the tanh of the current cell state to

output a value between 1

and 1 and that is the new output that will be used in the next

time step. The aforementioned operation can be expressed as

𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑤𝑤𝑤𝑤 [ℎ𝑡𝑡−1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏𝑏𝑏])

ℎ𝑡𝑡 = 𝑜𝑜𝑜𝑜 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑐𝑐𝑐𝑐).

(14)

38

2.4.7. CNNLSTM

networks. The CNNs are capable of extracting information

from the input as feature maps. LSTM networks can handle sequential dependencies

in a time series. For this reason, CNN and LSTM are often utilized together in the

same network to forecast a time series. The convolutional layer extracts feature maps

representing different channels of the input simultaneously. Each input channel accounts

for a distinct timedependent

variable in the multivariate sequence. The feature maps

are then used as an input to the LSTM layer to make a prediction.

39

Chapter 3. Methodology
In this chapter, we describe the methodology by which we adapt different machine

learning algorithms for ground motion acceleration prediction. The database

NGAWest2

is introduced as well as the data preprocessing.

3.1. Database

This research employed data from the Pacific Earthquake Engineering Research

Center (PEER), specifically the NGAWest2

database [55]. It contains ground motion

data from shallow crustal earthquakes worldwide, and their locations are illustrated in

Figure 3.1. Events are categorized as shallow crustal if their hypocenter is within the

continental crust. The database includes triaxial records from 599 earthquakes. In addition,

21,540 records of metadata that characterize events and recording stations are also

present, as shown in Figure 3.1. The moment magnitude ranges from 𝑀𝑀𝑀𝑀 3.0 to 𝑀𝑀𝑀𝑀

7.9, and the closest distance ranges from 0.05 to 1,533 km. Data is significantly less for

distances that exceed 400 km, as shown in Figure 3.2. The raw ground motion time series

is processed to minimize lowand

highfrequency

noise using acausal Butterworth

filter.

Figure 3.1. Map of included events in the NGAWest

2 database, shown in red (image

source: [55]).

40

Figure 3.2. Magnitude versus distance for shallow crust records. (image source: [56]).

3.2. Data Preprocessing

The metadata, which contains 276 features, is processed according to the following

criteria:

1. Remove unnecessary features such as the station name and date

2. Remove features which include more than 50% missing data

3. Create a numeric value to represent some values such as the coseismic surface

rupture: 1=Yes; 0=No; Replace 999

with 1

(absence of measurement)

4. Feature standardization to obtain zero mean and unity variance

The final database contains a total of 21540 records and 48 features for the metadata. In

addition, a total of 17602 triaxial acceleration records are used. That is because not all

41

of the time series records are available on the database. The used measurement unit for

acceleration through this research is in terms of gravity 𝑔𝑔 which equates to 9.81 𝑚𝑚/𝑠𝑠2.

Interpolation was done to ensure an equal sampling frequency of 714.3 Hz, where each

time step is 0.0014 seconds. This small sampling interval results in a high prediction

precision. Moreover, we obtain more training examples from each signal which in turn

enhances the prediction performance.

The time series is split into input/output pairs where the input is called a window

and the output is the forecast horizon, as shown in Figure 3.3. This is following the

sliding window approach which will increase the number of training examples available

to our models. The prediction horizons from different windows are nonoverlapping.

Therefore, the windows should be shifted to the right by the forecast horizon as time

progresses.

Figure 3.3. The sliding window approach.

3.3. Proposed Models and Training Details

The ML architectures used are described in this section, followed by the training

details for the setups implemented to test the networks. These details include the

different hyperparameters used in the different models such as the choices of the loss

function and training/test data split.

42

3.3.1. Metadata analysis. The record file for the NGAWest2

database includes

48 features as mentioned in the previous section. Due to the highdimensional

features,

making sense of this large quantity of information is an issue. To analyze our data

and potentially deduce patterns within would be extremely difficult due to the curse of

dimensionality. This means that the data becomes more sparse and moves further away

from each other as the dimension increases. To sustain the space representation, we

need more data examples as they grow exponentially with the number of dimensions.

Another issue is analyzing the data, since in high dimensions, the data might be similar

yet it appears further.

To solve this issue, PCA reduces the number of dimensions by linearly combining

all the original parameters, as explained in the previous chapter, and extracting the

principal components with the highest variance. In this way, we do not have to manually

select parameters, as some important ones might get dismissed. We let the data

explain itself and statistically produce new features that represent all parameters. From

there, the 𝑘𝑘means

clustering algorithm is applied to find structure in the data. The selected

number of clusters is three. These clusters are present in the training, testing and

validation datasets to sustain a global model applicable for all clusters.

3.3.2. ANN architecture. The ANN model serves as a baseline to compare the

other models’ performance. It consists of an input layer, one hidden layer and an output

layer. The input layer contains windows from different axes where H1 is the first

horizontal axis, H2 is the second horizontal axis and V is the vertical axis. The number

of nodes in the input represents the time steps from three axes, the window size is set to

half a second or 357 points. The number of hidden neurons should be less than the input

and output sizes. We set the hidden layer size to be the mean of the input and output

size. Each output neuron corresponds to a predicted time step in the three axes, and we

experiment with multiple prediction horizons.

Since ANNs are prone to overfitting due to the huge number of parameters in

the network, regularization is deployed. The 𝐿𝐿2 regularization with a value of 0.0001

is used. For longer prediction horizons, the number of parameters might exceed the

number of training examples so we increase the 𝐿𝐿2 value to 0.1. In addition, early

43

stopping will halt the training if the validation loss does not improve within five epochs.

The optimizer was selected upon experimentation. The network configuration is shown

in Figure 3.4.

Figure 3.4. Proposed ANN model.

The learning rate is an important parameter in the working of ANNs. It determines

how the weights are updated at each epoch to reach the minimum. If the learning

rate is too high, it can cause the error metric to diverge and never reach the minimum. If

it is too low, the learning process becomes too slow. To avoid excessive tuning, a learning

rate scheduler has been deployed. It is initialized to be a high value that reduces

every epoch according to equation 15. Fast learning happens at first and the weights

optimization occurs as the training progresses.

𝑙𝑙𝑙𝑙 =

𝑙𝑙𝑙𝑙0

1 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ ∗ 𝑅𝑅𝑅𝑅

, (15)

where 𝑅𝑅𝑅𝑅 is the decay rate and is set to 0.5, and the 𝑙𝑙𝑙𝑙0 is the initial learning rate that is

determined by experimentation. Another important parameter is called the batch size.

The batch size is the number of training examples fed at once during training. We selected

the batch size to be 128. A batch normalization layer is added after the input and

44

the hidden layer and it standardizes the batch to zero mean and unity variance. This

ensures training stability and prevents the weights from exploding and helps reduce the

total number of epochs in training.

3.3.3. CNN architecture. Since CNNs are excellent for extracting meaningful

feature maps, they are utilized for time series prediction. The proposed model, as shown

in Figure 3.5, has an input layer of three channels each from a different axis. After that,

a 1Dconvolutional

layer with a filter size of three. To downsample

the layer’s output,

a stride of two is utilized. The stride reduces the number of computations needed as the

convolutions layer produces a smaller output size. A stride of two is the most commonly

used stride [57]. Since a stride of two is used, the feature map size will be reduced to

half. A flatten layer is used to turn all the feature maps to a single vector and then feed

it to an FC layer. This allows us to control the output size by changing the number of

neurons.

Figure 3.5. Proposed CNN model.

Two FC layers are used to reduce the number of parameters, where the FC proceeding

the output layer has about 100 neurons. Each output neuron produces a single

time step through the three axes. The number of convolutions layers and their filters are

selected by experimentation based on the test loss. The batch size is 128 and the ini45

tial learning rate are determined by experimentation as well. The selected optimization

algorithm is adaptive moment estimation (ADAM), which is the most popular one for

CNNs [21]. ADAM eliminates vanishing learning rate and helps speed up the convergence.

However, it tends to be computationally costly [58]. Early stopping is deployed

with a patience of five epochs.

3.3.4. RNN architecture. The RNN network is composed of an input layer, RNN

layer and an output layer, as shown in Figure 3.6. The input contains the windows from

each axis as a separate channel. H1 axis is channel one, H2 axis is channel two and V

axis is channel three. Not only does this reduce the number of computations but also

separates the axes so the RNN can handle the input as a multivariate sequence rather

than a univariate one in the ANN. The layer does not return a sequence, rather it returns

a vector. That vector is the summary of the input and it is fed to the FC layer.

Figure 3.6. Proposed RNN model.

The FC layer is the output layer and it is divided into three segments each is the

forecast horizon in a different axis. The number of RNN layers are determined through

46

experimentation along the number of units in each RNN layer. Early stopping of five

epochs is used to prevent overfitting. A batch size of 128 is used to divide the dataset

into multiple segments for training.

3.3.5. LSTM architecture. The LSTM network is composed of an input layer,

LSTM layer and an output layer, as shown in Figure 3.7. The input contains the windows

from each axis as a separate channel. The layer does not return a sequence, rather

it returns a vector. That vector is the summary of the input and it is fed to the FC layer.

The FC layer is the output layer and it is divided into three segments each is the forecast

horizon in a different axis. The number of LSTM layers are determined through experimentation

along with the number of units in each LSTM layer. Early stopping of five

epochs is used to prevent overfitting. A batch size of 128 is used to divide the dataset

into multiple segments for training.

Figure 3.7. Proposed LSTM model.

3.3.6. CNNLSTM

architecture. Combining the CNN ability to extract information

with the ability of the LSTM network to remember information and deal with time

47

dependency should benefit the network in longterm

predictions. Not only will the CNN

produce more meaningful input to the LSTM, but it will also reduce the size of the input.

The CNNLSTM

model consists of an input layer, 1Dconvolutional

layer, LSTM layer

and an output layer, as shown in Figure 3.8. Maxpooling

is utilized after the convolutional

layer to decrease the size of the feature map. The input is windows from the

three axes ordered as channels. The 1Dconvolutional

layer has a filter size of three.

The output layer is an FC layer that predicts future values in each axis. Batch size of

128 is used along with early stopping with a patience of five epochs.

Figure 3.8. Proposed CNNLSTM

model.

3.3.7. Training details. The implementation code was written in Python 3.4 on

a computer (Intel(R) Core(TM) i910900X

CPU 3.70GHz, 62 Gbyte RAM) running

ubuntu 18.04 operating system. The machine learning models were implemented using

Keras library, on GeForce GTX 1080 GPU running with CUDA 10.2. The dataset was

split as 70% training and 30% testing, 10% of the training data is used as a validation

set to test performance during training. The examples that appear in the training set do

not appear in the validation set nor the test set of our earthquake data. For the signal

prediction, a training set of one million examples was used. A smaller subset of 50,000

examples was used for parameter selection. All models except CNN–LSTM models

48

were trained for 25 epochs with a batch size equal to 128. Table 3.1 summarizes the

training details for all the proposed models.

Table 3.1. Summary of the training/validation/testing splits and activations used for

each of the proposed models.

ANN CNN RNN LSTM CNNLSTM

Training Data 1M 1M 1M 1M 1M

Validation Data 100k 100k 100k 100k 100k

Testing Data 420k 420k 420k 420k 420k

Activations Relulinear

Tanhlinear

Tanhlinear

Tanhlinear

Tanhlinear

No. of epochs 25 25 25 25 35

3.4. Performance Evaluation

To evaluate the performance of our networks in predicting ground motion time

series, we need to select an appropriate loss function. The first method which is documented

in [59], is called cosine similarity. This method works by measuring the similarity

between the actual output y and the predicted output ˆ𝑦𝑦 vectors. The cosine similarity

is expressed as

𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦, ˆ𝑦𝑦) =

𝑦𝑦.ˆ𝑦𝑦

∥𝑦𝑦∥ ∥ˆ𝑦𝑦∥ , (16)

where ∥𝑦𝑦∥ is the Euclidean norm of vector 𝑦𝑦 = (𝑦𝑦1, 𝑦𝑦2, ...𝑦𝑦𝑦𝑦) which is expressed as

∥𝑦𝑦∥ =

qÍ𝑛𝑛

𝑖𝑖=1 𝑦𝑦2

𝑖𝑖 . The cosine similarity computes the cosine of the angle between the

two vectors. A cosine value of zero means the two vectors are orthogonal or dissimilar.

As the value approaches one, the angle decreases and the vectors are more similar until

they point in the same direction. However, if either vector is zero the dot product is

zero which makes the cosine similarity zero. That indicates dissimilarity but that can

be deceiving as the vectors might be matching and therefore similar. This makes cosine

similarity unsuitable for earthquake time series prediction as a considerable portion of

the signal is zero.

Another heavily documented method in literature is called root mean squared

error (RMSE). This measure was used by Cheng et al. [60] for evaluating the performance

of a multistep

prediction model in time series. In addition, Geng et al. [61]

49

utilized RMSE for seismic energy prediction from time series and added parameters.

RMSE is expressed as

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

vut

1

𝑁𝑁

Õ𝑁𝑁

𝑖𝑖=1

(𝑦𝑦𝑦𝑦 − ˆ𝑦𝑦𝑦𝑦)2, (17)

where 𝑁𝑁 is the total number of training examples, and 𝑦𝑦𝑦𝑦 , ˆ𝑦𝑦𝑦𝑦 are the groundtruth

and

predicted points, respectively. This is a commonly used metric that constitutes a measure

of the overall deviation of the predicted points from the actual points. Another model

evaluation metric is the execution time since our objective is to have a realtime

system.

It is crucial to take a substantially lower time to make a prediction compared to the

forecast horizon. We aim for a delay of less than 10% of the forecast horizon.

50

Chapter 4. Experimental Results and Discussion
In this chapter, we present the parameter selection for all the models. In addition,

different prediction horizons are shown, the best performing model compared to the

baseline is highlighted. Finally, a summary of the results is discussed along with the

execution time for each model.

4.1. Results of Metadata Analysis

In this section, we present the results for PCA and the 𝑘𝑘Means

clustering algorithm.

These unsupervised ML techniques were implemented on the earthquake metadata.

4.1.1. Results for PCA. The PCA algorithm is used to reduce the dimensional

space from 48 to three to visualize the data, as illustrated in Figure 4.1. Thus, we show

here three dimensions with the largest eigenvalues. Loadings squared are the variance

in each variable per component. Loadings are interpreted as the coefficients of the linear

combination of the initial variables from which the principal components are constructed.

The variables that influence the principal components the most or have the

biggest coefficient in each linear combination are shown in Table 4.1. The strongest

variable is the magnitude which is the most common parameter to describe an earthquake.

The first principal component represents the earthquake characteristics like the

magnitude, magnitude type and the fault rapture width. The magnitude type is either

moment magnitude, local magnitude, surfacewave

magnitude or body wave magnitude

[55].

The second principal component relates to the distance and it is a defining factor

in the strength of an earthquake at a given location. The epicentral distance is defined as

the distance from the earthquake’s epicenter to the recording station. The hypocentral

distance refers to the distance from the earthquake’s focus or hypocenter to the recording

station. In addition, JoynerBoore is defined as the distance from the recording station to

the surface projection of the rupture surface. The third component describes the ground

51

motion time series which are the lowest usable frequency, peak ground acceleration and

velocity.

Table 4.1. Variables with highest coefficients in each principal component.

PC 1 PC 2 PC 3

Magnitude Epicentral distance Lowest usable frequency V

Fault rapture width Hypocentral distance PGA

Magnitude type JoynerBoore distance PGV

Figure 4.1. Dimensionality reduction to three dimensions.

4.1.2. Results for 𝐾𝐾Means

clustering. Using the Kmeans

clustering algorithm,

the data is clustered to three parts as shown in Figure 4.2 and 4.3 respectively. The

clustering is consistent with the visual one as there are three obvious groups. These

groups are not specific to certain earthquake parameters, but to all 48 parameters. That is

because the clustering was performed on the principal components and they are a linear

combination of all the original parameters. However, the clusters help us structure our

dataset. All clusters are present in the training, validation and testing to obtain a robust

and global model.

52

Figure 4.2. Three clusters in three dimensions from the PCA.

Figure 4.3. Three clusters in three dimensions from the PCA top

view.

53

4.2. Parameters Selection

In this section, we present the experiments conducted to obtain the parameters

for each model. The experimental dataset is composed of 50,000 examples.

4.2.1. Results for ANN. In order to finalize the ANN architecture, the first thing

to select was the optimizer. A mini dataset of 50,000 examples was used to experiment

with the optimizer and it was trained for 25 epochs. Figure 4.4 shows the training loss

for the following optimizers: Adagarad, Adamax, Nadam, Adam and RMSprop. It is

clear that the Adagrad started from a smaller RMSE value and converged to the final

value in less than 10 epochs. As opposed to other optimizers that started from a bigger

value and suffered from high fluctuations. The validation loss for the same optimizers

as shown in Figure 4.5 paints a similar story, Adagrad displayed a superior performance.

The Adagrad validation loss converged in three epochs. Table 4.2 demonstrates the test

loss on the mini dataset and the Adagrad has the least test loss. Therefore, it is the chosen

optimization algorithm for the ANN model.

0 5 10 15 20 25

Epochs

0

0.5

1

1.5

2

2.5

3

3.5

RMSE

10-3

Adagrad

Adamax

Nadam

Adam

RMSprop

Figure 4.4. The training loss for different optimizers.

54

0 5 10 15 20 25

Epochs

0

1

2

3

4

5

6

RMSE

10-3

Adagrad

Adamax

Nadam

Adam

RMSprop

Figure 4.5. The validation loss for different optimizers.

Table 4.2. The test loss across different optimizers.

Optimizer Test Loss

Adagrad 2.74e6

Adam 9.30e5

RMSprop 2.61e4

Adamax 1.82e5

Nadam 3.86e5

A learning rate scheduler was utilized that starts with an initial value and decays

with a factor of 0.5. Table 4.3 shows the test loss for different learning rates both fixed

and decaying. We can see that the decaying performed better than the fixed one. This is

because the scheduled learning rate optimizes the weights at the beginning of training

and finetunes

them as the training progresses. Moreover, an initial learning rate of 0.01

performed better than 0.001 as it was able to change the weights more and then decay

so it would not cause divergence as sometimes would happen with larger learning rates.

55

Therefore, a learning rate scheduler of an initial value of 0.01 was deployed for the

training process.

Table 4.3. The test loss for different learning rates.

Learning Rate Test Loss

0.01 6.72e5

0.001 7.41e5

0.01 Decay 2.35e5

0.001 Decay 0.13

4.2.2. Results for CNN. Our proposed model has a 1Dconvolutional

layer with

a filter size of three and a stride of two. The number of convolutional layers was tested

on the mini dataset from one layer to three. The best test loss was 3.58e5

𝑔𝑔 for a single

layer, as shown in Table 4.4 which is less than half the loss associated with three layers.

So a single layer was utilized and the number of filters is varied from 3 to 32. Table 4.5

demonstrates that the least number of filters which is three produced the best RMSE,

again less than half the loss of 32 filters.

Table 4.4. Investigating the effect of different layers on the test loss.

Layers Test Loss

1 3.58e5

2 5.29e5

3 6.90e5

Table 4.5. One layer with different filters and the corresponding test loss.

Filters Test loss

3 3.58e5

8 3.94e5

16 7.12e5

32 6.93e5

The number of units in the FC layer for our model is set to 100. However, for a

forecast horizon of size one, the result was not satisfactory. Therefore, different units in

the FC layer proceeding the output layer were tried out. From Table 4.6, we can see that

56

the optimal number is five. For the learning rate, fixed and decaying values are tested.

From Table 4.7, the best test loss is associated with a value of 0.01 in a learning rate

scheduler.

Table 4.6. For a forecast horizon of 1, the effect of the units in the FC layer on the test

loss.

FC Units Test loss

1 1.07e4

5 5.41e5

10 1.87e4

20 3.39e4

50 2.09e4

Table 4.7. The test loss for different learning rates.

Learning Rate Testing Loss

0.01 3.17e4

0.005 1.87e4

0.01 Decay 3.58e5

0.005 Decay 4.33e5

The batch normalization layer standardizes each batch to have a zero mean and

unity variance. We tried inserting this layer in different places in the model before the

activation function. It turns out the model that does not use batch normalization gave

the best test loss, as shown in Table 4.8.

Batch normalization does not work well in the prediction as it does during the

training. This is due to the fact that when we train we use a batch size of 128 and a

size of one in the prediction phase as we feed every input to the network as soon as it

becomes available. In addition, batch normalization increases the training time due to

the additional computation for each batch.

Table 4.8. Batch normalization effect on the test loss.

Batch Norm. Test loss

None 3.58e5

Only after input 4.49e5

All expect output 1.65e3

57

4.2.3. Results for RNN and LSTM network. Since the RNN and the LSTM network

are both recurrent and have a similar architecture, they exhibit similar behavior.

The RNN model that was presented in Chapter 3 needed some parameter selection, such

as the number of layers and number of units as well as the learning rate and the batch

normalization. Table 4.9 shows how changing the number of layers affects the test loss

in the mini dataset. A single layer yielded the lowest test RMSE and as we described

in Chapter 2, a small number of layers is sometimes sufficient to model the problem.

The same result is shown with LSTM network, where a single layer yielded an error of

2.75e5

𝑔𝑔. Three units in the RNN layer had the best performance compared to the rest

as shown in Table 4.10, as it is equal to the number of input channels and the number

of desired output vectors. The LSTM network shows the same behavior where the least

loss is associated with three units. Finally, the initial learning rate is set to 0.005 that

decays exponentially.

Table 4.9. Investigating the effect of different layers each with three units on the test

loss.

Layers RNN Test Loss LSTM Test Loss

1 3.55e5

2.76e5

2 6.41e5

4.75e5

3 6.63e5

7.64e5

Table 4.10. One layer with different units and the corresponding test loss.

Units RNN Test Loss LSTM Test Loss

3 3.55e5

2.76e5

8 8.02e5

5.44e4

16 8.28e5

5.44e4

32 1.40e4

5.99e4

4.2.4. Results for CNNLSTM

network. The CNNLSTM

architecture needed

tuning in terms of the number of layers and the filters in the 1Dconvolutional

layer and

the number of units in the LSTM layer. Table 4.11 shows the effect of different LSTM

and 1Dconvolutional

layers on the test loss. We can see that the minimum loss was

with a single LSTM layer and a single convolutional layer with an RMSE of 1.17e5

58

𝑔𝑔. The number of units in the LSTM layer and the number of filters in the convolution

layer were varied together. Table 4.12 shows that the optimal performance was achieved

with six units in the LSTM layer and three filters on the convolutional layer. The RMSE

was equal to 2.51e5

𝑔𝑔. However, for a forecast horizon of size one, the result was not

satisfactory, the predicted signal was significantly smaller than the actual one in axis

H2 and V and the test error was 1.1e4

𝑔𝑔. Therefore, the number of LSTM units was

increased from six to seven and the issue was rectified. Finally, the initial learning rate

is set to 0.005 that decays exponentially.

Table 4.11. Effect of number of LSTM and convolutional layers on the test loss.

LSTM Layers Test Loss Conv. layers Test Loss

1 1.17e5

1 1.17e5

2 2.35e5

2 2.36e5

3 2.87e5

3 5.07e5

Table 4.12. Number of convolutional filters and LSTM units vs the test loss.

CNN Filters LSTM Units Test loss

3 3 6.66e05

3 6 2.51e5

5 3 3.40e5

5 6 5.61e5

4.3. Acceleration Signal Prediction

This section presents the prediction results for different prediction horizons. In

addition, a visual comparison is conducted based on the plotted predictions. Finally, we

discuss the overall performance and the execution time for each model.

4.3.1. Results for forecast horizon of size 1. Starting from this subsection, the

prediction results are reported based on the test set RMSE which is composed of 450,000

examples. In addition, we show the ANN performance which is our baseline and the

best performing model for visualization. The rest of the figures can be found in the

appendices. Here we have an input of 357 points or half a second and we try to predict

one point or 0.0014 seconds in each axis. From Table 4.13 it is evident that the LSTM

59

model exhibited the best performance with an RMSE of 1.56e5

𝑔𝑔. The RMSE dropped

by 98.8% compared to the baseline that has an error of 1.35e3

𝑔𝑔. This is expected as the

LSTM network is superior in short term predictions because it can retain memory that

represents the temporal nature of our data. The model that yielded the secondhighest

RMSE was the CNNLSTM

but it still has 94.7% less error compared to the baseline.

Figure 4.6 shows the baseline prediction for one point for a signal with a magnitude

of 𝑀𝑀𝑀𝑀 7.9, which is the maximum magnitude existing in the NGAWest2

database,

from cluster 3. We can see that the baseline prediction was very noisy. When we zoom

into an interval of five seconds, indicated by the black box in Figure 4.6, it is clear that

the baseline does not keep up with the variations at all. That is because it could not

handle the dynamic nature or learn it well. The predictions are much bigger in magnitude

compared to the actual signal. On the other hand, Figure 4.7 shows the LSTM

network prediction and it is almost identical to the actual acceleration in all three axes.

The patterns are modeled accurately and smoothly with minimal variations.

Figure 4.6. ANN prediction vs actual acceleration from cluster 3, window size is 1.

60

0 100 200 300

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 100 200 300

-0.02

-0.01

0

0.01

Acceleration in g

H2

50 51 52 53 54 55

-4

-2

0

2

10-3 H2

0 100 200 300

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 4.7. LSTM network prediction vs actual acceleration from cluster 3, window

size is 1.

Table 4.13. The test loss for all models for a forecast horizon of size 1.

Model Test Loss Improvement %

ANN 1.35e3

CNN

5.41e5

95.9%

RNN 1.96e5

98.5%

LSTM 1.56e5

98.8%

CNNLSTM

7.21e5

94.7%

4.3.2. Results for forecast horizon of size 10. The input window size is 357 points

or half a second and we try to predict ten points or 0.014 seconds in each axis. From

Table 4.14, it is evident that the LSTM model exhibited the best performance with an

RMSE of 8.43e6

𝑔𝑔. That is a 95.1% improvement in performance compared to the

baseline that yielded an error of 1.74e4

𝑔𝑔. This is expected as the LSTM network

is superior in short term predictions because it can retain memory that represents the

61

temporal nature of our data. The model that yielded the secondhighest

RMSE was the

CNNLSTM

but it still has 71.8% less error compared to the baseline.

Figure 4.8 shows the baseline prediction for 10 points for a signal with a magnitude

of 𝑀𝑀𝑀𝑀 7.9 from cluster 3, and we can see that the baseline prediction was very

noisy. When we zoom into an interval of five seconds, it is clear that the baseline models

the behavior but it is very noisy. That is due to the fact that it could not handle the

dynamic nature or learn it well. On the other hand, Figure 4.9 shows the LSTM network

prediction and it is almost identical to the actual acceleration in all three axes.

Table 4.14. The test loss for all models for a forecast horizon of size 10.

Model Test Loss Improvement %

ANN 1.74e4

CNN

3.32e5

80.9%

RNN 3.93e5

77.1%

LSTM 8.43e6

95.1%

CNNLSTM

4.90e5

71.8%

0 100 200 300

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-5

0

5

10-3 H1

0 100 200 300

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-5

0

5

10-3 H2

0 100 200 300

Time in Seconds

-0.02

0

0.02

V

50 51 52 53 54 55

-5

0

5

10-3 V

Figure 4.8. ANN prediction vs actual acceleration from cluster 3, window size is 10.

62

0 100 200 300

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 100 200 300

-0.02

-0.01

0

0.01

Acceleration in g

H2

50 51 52 53 54 55

-4

-2

0

2

10-3 H2

0 100 200 300

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 4.9. LSTM network prediction vs actual acceleration from cluster 3, window

size is 10.

4.3.3. Results for forecast horizon of size 50. The input window size is 357 points

or half a second and we try to predict 50 points or 0.07 seconds in each axis. The output

represents about 14% of the input. From Table 4.15, it is clear that the LSTM model

still resulted in the best performance with an RMSE of 3.89e5

𝑔𝑔. That is a 90.7%

improvement in performance compared to the baseline that yielded an error of 4.17e4

𝑔𝑔.

This is expected as the LSTM network is superior in short term predictions because it can

retain memory that represents the temporal nature of our data. The model that yielded

the secondhighest

RMSE was the CNN but it still has 85.6% less error compared to the

baseline. We notice that the improvement in performance drops as the forecast horizon

grows.

Figure 4.10 shows the baseline prediction for 50 points for a signal with a magnitude

of 𝑀𝑀𝑀𝑀 7.9, which is the maximum magnitude existing in the NGAWest2

database,

from cluster 3. We observed that the baseline prediction was very noisy. When we zoom

into an interval of five seconds, the predictions do not keep up with the variations and

63

they are much bigger in magnitude than the actual acceleration. That is due to the fact

that it could not handle the dynamic nature or learn it well. On the other hand, Figure

4.11 shows the LSTM network prediction and it is almost identical to the actual acceleration

in all three axes and it models the pattern well for the whole earthquake duration

of 300 seconds. However, the maximums and minimums of the signal are not predicted

accurately as the magnitude of the prediction is slightly less than the actual earthquake

signal.

Table 4.15. The test loss for all models for a forecast horizon of size 50.

Model Test Loss Improvement %

ANN 4.17e4

CNN

6.02e5

85.6%

RNN 4.52e5

89.2%

LSTM 3.895

90.7%

CNNLSTM

4.65e5

88.8%

0 100 200 300

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-5

0

5

10-3 H1

0 100 200 300

-0.02

0

0.02

0.04

Acceleration in g

H2

50 51 52 53 54 55

-4

-2

0

2

10-3 H2

0 100 200 300

Time in Seconds

-0.02

0

0.02

V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 4.10. ANN prediction vs actual acceleration from cluster 3, window size is 50.

64

0 100 200 300

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 100 200 300

-0.02

-0.01

0

0.01

Acceleration in g

H2

50 51 52 53 54 55

-4

-2

0

2

10-3 H2

0 100 200 300

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 4.11. LSTM network prediction vs actual acceleration from cluster 3, window

size is 50.

4.3.4. Results for forecast horizon of size 100. The input window size is 357

points or half a second and we try to predict 100 points or 0.14 seconds in each axis.

The output represents about 28% of the input. From Table 4.16, the CNNLSTM

model

yielded the best performance with an RMSE of 2.76e5

𝑔𝑔. That is a 94.2% improvement

in performance compared to the baseline that exhibited an error of 4.76e4

𝑔𝑔. As the

forecast horizon became longer, the LSTM network accuracy dropped as it is optimal

for shorter ranges. The model that yielded the secondhighest

RMSE was the CNN but

it still has 90% less error compared to the baseline.

Figure 4.12 shows the baseline prediction for 100 points for a signal with a

magnitude of 𝑀𝑀𝑀𝑀 7.9, which is the maximum magnitude existing in the NGAWest2

database, from cluster 3. We can see that the baseline prediction was very noisy. When

we zoom into an interval of five seconds, we notice that the baseline’s zero regions be65

came longer and the predictions are bigger in magnitude than the actual acceleration.

On the other hand, Figure 4.13 shows the CNNLSTM

network prediction that models

the acceleration patterns in a somewhat accurate manner. The patterns are modeled with

minimal variations. However, the maximums and minimums of the signal are not predicted

accurately. The predictions experience surges to the maximums and minimums

and decay in an exponential manner.

Table 4.16. The test loss for all models for a forecast horizon of size 100.

Model Test Loss Improvement %

ANN 4.76e4

CNN

4.75e5

90.0%

RNN 4.24e5

91.1%

LSTM 4.75e5

90.0%

CNNLSTM

2.76e5

94.2%

0 100 200 300

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 100 200 300

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-4

-2

0

2

10-3 H2

0 100 200 300

Time in Seconds

-0.02

0

0.02

V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 4.12. ANN prediction vs actual acceleration from cluster 3, window size is 100.

66

0 100 200 300

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 100 200 300

-0.02

-0.01

0

0.01

Acceleration in g

H2

50 51 52 53 54 55

-4

-2

0

2

10-3 H2

0 100 200 300

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 4.13. CNNLSTM

prediction vs actual acceleration from cluster 3, window size

is 100.

4.3.5. Results for forecast horizon of size 200. The input window size is 357

points or half a second and we try to predict 200 points or 0.28 seconds in each axis.

The output represents about 56% of the input. From Table 4.17, the CNN model yielded

the best performance with an RMSE of 1.47e3

𝑔𝑔. That is an 80.2% improvement in

performance compared to the baseline that exhibited an error of 7.43e3

𝑔𝑔. The model

that yielded the secondhighest

RMSE was the CNNLSTM

but it still has 79.4% less

error compared to the baseline. It is worth noting that all the test errors in the experiments

are of the same order.

Figure 4.14 shows the baseline prediction for 200 points for a signal with a

magnitude of 𝑀𝑀𝑀𝑀 7.9, which is the maximum magnitude existing in the NGAWest2

database, from cluster 3. We observed that the baseline prediction was very noisy.

When we zoom into an interval of five seconds, we notice that the baseline’s zero re67

gions became longer and the predictions are much bigger in magnitude than the actual

acceleration. That is due to the fact that it could not handle the dynamic nature or learn it

well as the prediction horizon became longer. On the other hand, Figure 4.15 shows the

CNN predictions which are very attenuated in magnitude. In addition, the maximums

and minimums of the signal are not predicted accurately especially in axis V, where the

predictions fluctuate around zero.

Table 4.17. The test loss for all models for a forecast horizon of size 200.

Model Test Loss Improvement %

ANN 7.43e3

CNN

1.47e3

80.2%

RNN 1.51e3

79.7%

LSTM 1.52e3

79.5%

CNNLSTM

1.53e3

79.4%

0 100 200 300

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 100 200 300

-0.02

-0.01

0

0.01

Acceleration in g

H2

50 51 52 53 54 55

-4

-2

0

2

10-3 H2

0 100 200 300

Time in Seconds

-0.01

0

0.01

V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 4.14. ANN prediction vs actual acceleration from cluster 3, window size is 200.

68

0 100 200 300

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 100 200 300

-0.02

-0.01

0

0.01

Acceleration in g

H2

50 51 52 53 54 55

-4

-2

0

2

10-3 H2

0 100 200 300

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 4.15. CNN prediction vs actual acceleration from cluster 3, window size is 200.

4.3.6. Overall performance. As we mentioned in Chapter 3, the proposed solution

deployed a sliding window algorithm to split the earthquake acceleration into input

and output pairs. The outputs from different windows are nonoverlapping

which means

we need to shift the window by the forecast horizon to make a new prediction. The window

size is set to 357 points but we tried different predictions from 1200

points. Table

4.18 shows the performance for all of the models across different forecast horizons. The

best RMSE value was achieved with the LSTM model for a prediction horizon of 10.

For short term prediction, namely, 1 to 50 points, we notice that the LSTM network

yielded the best performance. This is expected as the LSTM network is indeed

more suitable for short term prediction. Moving on to an output of 50 where it is 14%

of the input, the findings in [17] are similar to this work. The study was conducted to

predict solar irradiance. It was found that the LSTM network outperformed the shallow

ANN by 18% for an output to input ratio of 9%. Our improvement is 90.7% compared

69

to the baseline. Our architecture was identical to the one in the paper but we used three

LSTM units while in [17], 30 units were used and the training lasted for 100 epochs. Our

findings agree that the LSTM network performed best compared to the shallow ANN

for similar output to input ratios.

At an output of 100 where it is 28% of the input, we compare our findings to [22].

The study was performed to predict air pollutants concentration in the air. The forecast

horizon length is 24 hours where the input is 72 hours long, so the output to input ratio is

33.3%. The proposed CNNLSTM

model RMSE was 36% less than the ANN model and

20.3% less than a conventional LSTM model. In our results, the CNNLSTM

network

is better by 94.2% compared to the ANN model and 41.9% better than the LSTM model.

In addition, the RMSE is 34.9% less than the RNN model. Therefore, our findings agree

that the CNNLSTM

network performed best compared to the ANN model for similar

output to input ratios.

As the forecast horizon reached 200 points, all the models generated an RMSE

of the same order, and all of them are not that accurate. With a forecast horizon of 200,

the ratio became 56% and a higher error occurred as expected. The best performing

model was the CNN model. However, all our proposed models performed better than

the baseline by at least 70%.

Table 4.18. The testing loss for all the proposed models.

Forecast Horizon ANN RNN LSTM CNN CNNLSTM

1 1.35e3

1.96e5

1.56e5

5.41e5

7.21e5

10 1.74e4

3.93e5

8.43e6

3.32e5

4.90e5

50 4.17e4

4.52e5

3.90e5

6.02e5

4.65e5

100 4.76e4

4.24e5

4.75e5

4.75e5

2.76e5

200 7.01e3

1.51e3

1.52e3

1.47e3

1.53e3

Another important metric for performance evaluation is the realtime

aspect.

Figure 4.16, shows the average prediction for each model. The fastest model is the CNN

as it requires fewer computations and it takes about 0.49 𝑚𝑚𝑚𝑚 to make a prediction. Table

4.19 shows the delay ratios for all the prediction horizons for all the proposed models.

The CNN model is considered realtime

along with ANN and CNNLSTM

network.

70

The slowest model is the RNN which takes about 41.7 𝑚𝑚𝑚𝑚 to make a prediction. It is not

realtime

in prediction horizons of 1 and 10 only. The predictions can be made faster

using more sophisticated hardware that parallelizes the computations more efficiently.

CNN ANN CNN-LSTM LSTM RNN

0

5

10

15

20

25

30

35

40

45

Avg. Prediction Time in ms

Figure 4.16. Average time to make a prediction for each proposed model.

Table 4.19. Prediction delay for all the proposed models.

Prediction Horizon ANN RNN LSTM CNN CNNLSTM

1 45% 2975.7% 222.9% 35% 46.5%

10 4.5% 297.5% 22.3% 3.5% 4.65%

50 0.9% 59.5% 4.46% 0.7% 0.93%

100 0.45% 29.76% 2.23% 0.35% 0.47%

200 0.22% 14.9% 1.12% 0.1% 0.23%

71

Chapter 5. Concluding Remarks
In this thesis, we explored the possibility of ground motion acceleration prediction

in realtime.

The prediction was achieved in three axes simultaneously. We utilized

PCA to reduce the number of parameters in the metadata and then cluster based on the

new principal components. The signals from the three clusters were present in the training

and testing datasets. However, the training and testing datasets were disjoint and do

not contain data from any common earthquake. In addition, various machine learning

algorithms were used to predict the time series such as the CNN, RNN, LSTM network

and CNNLSTM

network. The ANN was considered the baseline in this work to compare

all prediction performances. To optimize each model’s parameters, a small subset

of 50,000 examples was used.

The used dataset is NGAWest2

from the PEER research center in California.

It contains earthquake records from around the globe. The earthquakes are shallow

crustal with a magnitude range between 𝑀𝑀𝑀𝑀 3.0 and 𝑀𝑀𝑀𝑀 7.9. For training, one million

input/output sequence pairs were used. The input was fixed to half a second and we

tested the models’ performance for different prediction horizons. More specifically, the

horizons go from one point long to 200. We utilized the sliding window approach to

obtain nonoverlapping

prediction horizons.

The general performance was compared to similar studies for time series prediction.

It was found that the models that performed best for the other studies agreed with

our study but with more improvements compared to the ANN baseline. It was observed

that the best model for shortrange

prediction was the LSTM model for a prediction

horizon of ten points. It gave an error of 8.43e6

𝑔𝑔 which is a 95.2% improvement in

performance compared to the baseline that yielded an error of 1.74e4

𝑔𝑔. This is expected

as the LSTM network is superior in short term predictions because it can retain

memory that represents the temporal nature of our data. In addition, the prediction time

for the CNN model is 0.49 𝑚𝑚𝑚𝑚, which makes it the fastest model. Moreover, the CNN,

ANN and CNNLSTM

models experimented with in this work, yielded realtime

performance.

The other models can also produce faster predictions using more GPUs or a

supercomputer.

72

The proposed models can be integrated into a mechatronics system installed in

structures to dampen the effect of the ground motion caused by an earthquake. The main

components are an accelerograph, our models and an MR damper. The accelerograph

records the ground motion acceleration which is used as an input to the models. The

resulting forecast horizon can change the characteristics of the MR damper for optimum

performance to support the structure.

For further investigation and improvement, future work related to this thesis can

include the following:

1. Integrate the proposed models into a mechatronics system that supports structures

during an earthquake.

2. Explore the implementation of deep neural networks with more sophisticated and

dedicated hardware such as a supercomputer. Such machines can reduce the prediction

time significantly.

3. Extend the training set to include other earthquake databases from around the

world with different parameters compared to the NGAWest2

database. This step

will make the models more robust and produce better predictions.

4. Extend the preliminary work on clustering the metadata to more sophisticated

clustering algorithms to identify groups in the dataset. This can then be followed

by designing a separate model for each cluster, such that each new signal is directed

to the suitable model based on its features.

73

References
[1] J. F. Cassidy, “Earthquake,” in Encyclopedia of Natural Hazards, P. T. Bobrowsky, Ed. Netherlands:
Springer, Jan. 2013, p. 208.

[2] A. J. Crone, “The geology of earthquakes,” Seismological Research Letters, vol. 68, no. 5, pp. 778–
779, Sep. 1997.

[3] E. R. Burkett, D. D. Given, and L. M. Jones, ShakeAlert—An earthquake early warning system for the
United States west coast, US Geological Survey, 20143083, Jan 2014.

[4] D. D. Given, E. S. Cochran, T. Heaton, E. Hauksson, R. Allen, P. Hellweg, J. Vidale, and P. Bodin,
“Technical implementation plan for the ShakeAlert production system: an earthquake early warning
system for the west coast of the united states,” US Geological Survey, Rep. no. 2014–1097, May 2014.

[5] A. I. Chung, “The development of earthquake early warning methods,” Nature Reviews Earth &
Environment, vol. 1, no. 7, p. 331, Jun. 2020.

[6] D. Truong and K. Ahn, “MR fluid damper and its application to force sensorless damping control
system,” in Smart Actuation and Sensing Systems Recent Advances and Future Challenges. InTech, Oct.
2012, ch. 15, pp. 383–424.

[7] M. Ohnaka, The Physics of Rock Failure and Earthquakes. New York: Cambridge University Press, Apr.
2013, ch. 5, pp. 148–150.

[8] E. J. Tarbuck, F. K. Lutgens, and D. Tasa, Earth Science, 10th ed. New Jersey: Prentice Hall, Jan. 2002.

[9] J. Bommer and A. MartínezPereira, “Strong motion parameters: definition, usefulness

and predictability,” in 12th World Conference on Earthquake Engineering, vol. 13, Jan. 2000, pp. 127–
172.

[10] Q. Kong, D. Trugman, R. Zachary, M. Bianco, B. Meade, and P. Gerstoft, “Machine learning in
seismology: Turning data into insights,” Seismological Research Letters, vol. 90, no. 1, pp. 3–14, Nov.
2018.

[11] K. Hipel, Time series modelling of water resources and environmental systems. New York: Elsevier,
1994, ch. 2, pp. 63–64.

[12] T. Raicharoen, C. Lursinsap, and P. Sanguanbhokai, “Application of critical support vector machine
to time series prediction,” in Proceedings of the 2003 International Symposium on Circuits and Systems,
vol. 5, May 2003, pp. 741–744.

[13] B. Babusiak and J. Mohylová, “The EEG signal prediction by using neural network,” Advances in
Electrical and Electronic Engineering, vol. 7, pp. 342–345, Jan. 2008.

[14] V. N. Coelho, I. M. Coelho, B. N. Coelho, M. J. F. Souza, F. G. Guimaraes, E. J. da S. Luz, A. C. Barbosa,
M. N. Coelho, G. G. Netto, R. C. Costa, A. A. Pinto, A. de P. Figueiredo, M. E. V. Elias, D. C. O. G. Filho, and
T. A. Oliveira, “EEG time series learning and classification using a hybrid forecasting model calibrated
with GVNS,” Electronic Notes in Discrete Mathematics, vol. 58, pp. 79–86, Apr. 2017.

[15] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman, “Stock price
prediction using LSTM, RNN and CNNsliding window model,” in 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), Sep. 2017, pp. 1643–1647.

[16] A. Romazanov, A. Zakharov, and I. Zakharova, “Temperature prediction in a public building using
artificial neural network,” in Proceedings of the 8th Scientific Conference on Information Technologies
for Intelligent Decision Making Support (ITIDS). Atlantis Press, Nov. 2020, pp. 30–34.

[17] X. Qing and Y. Niu, “Hourly dayahead solar irradiance prediction using weather forecasts by LSTM,”
Energy, vol. 148, pp. 461–468, Apr. 2018.

[18] S. Khan, H. Rahmani, S. Shah, and M. Bennamoun, “A guide to convolutional neural networks for
computer vision,” Synthesis Lectures on Computer Vision, vol. 8, no. 1, pp. 1–207, Feb. 2018.

[19] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural
language processing,” IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 55–75, Aug. 2018.

[20] D. Hussain, T. Hussain, A. Khan, S. Naqvi, and A. Jamil, “A deep learning approach for hydrological
timeseries prediction: A case study of Gilgit river basin,” Earth Science Informatics, vol. 13, no. 3, pp.
915–927, Jun. 2020.

[21] I. E. Livieris, E. Pintelas, and P. Pintelas, “A CNN–LSTM model for gold price timeseries

forecasting,” Neural Computing and Applications, vol. 32, no. 23, pp. 17 351–17 360, Apr. 2020.

[22] D. Qin, J. Yu, G. Zou, R. Yong, Q. Zhao, and B. Zhang, “A novel combined prediction scheme based on
CNN and LSTM for urban PM2.5 concentration,” IEEE Access, vol. 7, pp. 20 050–20 059, Feb. 2019.

[23] D. Boore, “Stochastic simulation of highfrequency ground motions based on seismological

models of the radiated spectra,” Bulletin of the Seismological Society of America, vol. 73, no. 6A, pp.
1865–1894, Dec. 1983.

[24] Z. Gülerce, R. Kamai, N. A. Abrahamson, and W. J. Silva, “Ground motion prediction equations for
the vertical ground motion component based on the NGAW2 database,” Earthquake Spectra, vol. 33, no.
2, pp. 499–528, May 2017.

[25] M. Wyss, “Ten years of realtime earthquake loss alerts,” in Earthquake Hazard, Risk and Disasters.
Boston: Academic Press, Dec. 2014, ch. 9, pp. 143–165.

[26] B. RouetLeduc, C. L. Hulbert, N. Lubbers, K. M. Barros, C. Humphreys, and P. A. Johnson, “Machine
learning predicts laboratory earthquakes,” Geophysical Research Letters, vol. 44, no. 18, pp. 9276–9282,
Sep. 2017.

[27] S. Chakraverty, P. Gupta, and S. Sharma, “Neural networkbased simulation for response
identification of twostorey shear building subject to earthquake motion,” Neural Computing and
Applications, vol. 19, pp. 367–375, Apr. 2010.

[28] T. Kerh and S. Ting, “Neural network estimation of ground peak acceleration at stations along
Taiwan highspeed rail system,” Engineering Applications of Artificial Intelligence, vol. 18, no. 7, pp. 857–
866, Oct. 2005.

[29] C. Arjun and A. Kumar, “Neural network estimation of duration of strong ground motion using
Japanese earthquake records,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 7, pp. 866–872,
Jul. 2011.

[30] G. Kemal and G. Ayten, “Peak ground acceleration prediction by artificial neural networks for
northwestern Turkey,” Mathematical Problems in Engineering, vol. 2008, Article ID: 919420, Nov 2008.

[31] A. PozosEstrada, R. Gomez, and H. Hong, “Use of neural network to predict the peak ground
accelerations and pseudo spectral accelerations for Mexican inslab and interplate earthquakes,”
Geofísica internacional, vol. 53, pp. 39–57, Mar. 2014.

[32] J. Dhanya and S. Raghukanth, “Ground motion prediction model using artificial neural network,”
Pure and Applied Geophysics, vol. 175, no. 3, pp. 1035–1064, Dec. 2017.

[33] R. R. Leach and F. U. Dowla, “Earthquake early warning system using realtime signal processing,” in
Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society
Workshop, Sep. 1996, pp. 463–472.

[34] H. Adeli and A. Panakkat, “A probabilistic neural network for earthquake magnitude prediction,”
Neural networks: the official journal of the International Neural Network Society, vol. 22, pp. 1018–
1024, Jun. 2009.

[35] H. Kuyuk and O. Susumu, “Realtime classification of earthquake using deep learning,” Procedia
Computer Science, vol. 140, pp. 298–305, Jan. 2018.

[36] J. Ramirez and F. Meyer, “Machine learning for seismic signal processing: Phase classification on a
manifold,” in 2011 10th International Conference on Machine Learning and Applications and
Workshops, vol. 1, Dec. 2011, pp. 382–388.

[37] M. Böse, F. Wenzel, and M. Erdik, “Preseis: A neural networkbased approach to earthquake early
warning for finite faults,” Bulletin of the Seismological Society of America, vol. 98, no. 1, pp. 366–382,
Feb. 2008.

[38] E. Alpaydin, Introduction to Machine Learning, 2nd ed. Massachusetts: MIT Press, Dec. 2009, ch. 11,
pp. 237–243.

[39] F. Li, L. Tran, K. Thung, S. Ji, D. Shen, and J. Li, “A robust deep model for improved classification of
AD/MCI patients,” IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 5, pp. 1610–1616, Oct.
2015.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Massachusetts: MIT Press, 2016, ch. 1, pp.
2–3.

[41] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR, vol. abs/1609.04747,
Jun 2017.

[42] I. Nunes Silva, D. Hernane Spatti, R. Andrade Flauzino, L.H.B. Liboni, and S. F. dos Reis Alves,
Artificial Neural Networks: A Practical Course, 1st ed. Springer Publishing Company, Incorporated, Aug.
2016.

[43] L. Marchi, Handson neural networks: learn how to build and train your first neural network model
using Python. Birmingham: Packt Publishing, May 2019, ch. 3, pp. 65–67.

[44] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. Inman, “1D convolutional neural
networks and applications: A survey,” CoRR, vol. abs/1905.03554, May 2019.

[45] O. Avci, O. Abdeljaber, S. Kiranyaz, and D. J. Inman, “Structural damage detection in real time:
Implementation of 1D convolutional neural networks for SHM applications,” in Structural Health
Monitoring & Damage Detection, Volume 7, C. Niezrecki, Ed. Springer International Publishing, Mar.
2017, pp. 49–54.

[46] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman, “Realtime vibrationbased structural
damage detection using onedimensional convolutional neural networks,” Journal of Sound and
Vibration, vol. 388, pp. 154–170, Feb. 2017.

[47] C. C. Aggarwal, “Training deep neural networks,” in Neural Networks and Deep Learning. Springer
International Publishing, Aug. 2018, ch. 3, pp. 105–167.

[48] Y. Bengio, P. Simard, and P. Frasconi, “Learning longterm dependencies with gradient descent is
difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166, Mar. 1994.

[49] S. Hochreiter and J. Schmidhuber, “Long shortterm memory,” Neural Computation, vol. 9, no. 8, pp.
1735–1780, Nov. 1997.

[50] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using RNN encoder–decoder for statistical machine translation,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, Oct. 2014, pp. 1724–1734.

[51] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,”
in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013, pp. 6645–
6649.

[52] H. Sak, A. Senior, and F. Beaufays, “Long shortterm memory based recurrent neural network
architectures for large vocabulary speech recognition,” CoRR, vol. abs/1402.1128, Feb 2014.

[53] Z. Voulgaris and Y. Bulut, AI for Data Science: Artificial Intelligence Frameworks and Functionality for
Deep Learning, Optimization, and Beyond. New Jersey: Technics Publications, 2018, ch. 9, pp. 173–179.

[54] L. Jiang and G. Hu, “Dayahead price forecasting for electricity market using longshort term memory
recurrent neural network,” in 2018 15th International Conference on Control, Automation, Robotics and
Vision (ICARCV), Nov. 2018, pp. 949–954.

[55] T. D. Ancheta, R. B. Darragh, J. P. Stewart, E. Seyhan, W. J. Silva, B. S.J. Chiou, K. E. Wooddell, R. W.
Graves, A. R. Kottke, D. M. Boore, T. Kishida, and J. L. Donahue, “PEER NGAWest2 database,” Pacific
Earthquake Engineering Research Center, California, Rep. no. 2013/03, May 2013.

[56] T. D. Ancheta, R. B. Darragh, J. P. Stewart, E. Seyhan, W. J. Silva, B. S.J. Chiou, K. E. Wooddell, R. W.
Graves, A. R. Kottke, D. M. Boore, T. Kishida, and J. L. Donahue, “NGAWest2 database,” Earthquake
Spectra, vol. 30, no. 3, p. 4, Aug. 2014.

[57] C. C. Aggarwal, “Convolutional neural networks,” in Neural Networks and Deep Learning. Springer
International Publishing, Aug. 2018, ch. 8, pp. 315–371.

[58] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Conference on
Learning Representations, vol. abs/1412.6980, Feb 2017.

[59] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. California: Morgan
Kaufmann Publishers Inc., Jun. 2011, pp. 77–78.

[60] H. Cheng, P. Tan, J. Gao, and J. Scripps, “Multistepahead time series prediction,” in Advances in
Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, Apr. 2006, pp. 765–774.

[61] Y. Geng, L. Su, Y. Jia, and C. Han, “Seismic events prediction using deep temporal convolution
networks,” Journal of Electrical and Computer Engineering, vol. 2019, pp. 1–14, Apr. 2019.

Appendix A: Time Series Prediction ANN

0 20 40 60

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-5

0

5

10-3 H1

0 20 40 60

-0.02

0

0.02

0.04

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

4

10-3 H2

0 20 40 60

Time in Seconds

-0.02

0

0.02

V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 5.1. ANN prediction vs actual acceleration from cluster 1, window size is 1.

0 50 100 150 200

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-0.01

0

0.01

Acceleration in g

H2

50 51 52 53 54 55

-5

0

5

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 5.2. ANN prediction vs actual acceleration from cluster 2, window size is 1.

79

0 20 40 60

-0.04

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-5

0

5

10

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-4

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-0.02

0

0.02

V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 5.3. ANN prediction vs actual acceleration from cluster 1, window size is 10.

0 50 100 150 200

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-5

0

5

10-3 H1

0 50 100 150 200

-0.01

0

0.01

Acceleration in g

H2

50 51 52 53 54 55

-5

0

5

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10

10-3 V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 5.4. ANN prediction vs actual acceleration from cluster 2, window size is 10.

80

0 20 40 60

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-5

0

5

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

0

2

4

10-3 H2

0 20 40 60

Time in Seconds

-0.02

0

0.02

V

50 51 52 53 54 55

-2

0

2

10-3 V

Figure 5.5. ANN prediction vs actual acceleration from cluster 1, window size is 50.

0 50 100 150 200

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-0.01

0

0.01

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-10

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.6. ANN prediction vs actual acceleration from cluster 2, window size is 50.

81

0 20 40 60

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-0.02

0

0.02

V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.7. ANN prediction vs actual acceleration from cluster 1, window size is 100.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.8. ANN prediction vs actual acceleration from cluster 2, window size is 100.

82

0 20 40 60

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-0.01

0

0.01

V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.9. ANN prediction vs actual acceleration from cluster 1, window size is 200.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.10. ANN prediction vs actual acceleration from cluster 2, window size is 200.

83

Appendix B: Time Series Prediction CNN

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.11. CNN prediction vs actual acceleration from cluster 1, window size is 1.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.12. CNN prediction vs actual acceleration from cluster 2, window size is 1.

84

0 20 40 60

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-0.01

0

0.01

V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.13. CNN prediction vs actual acceleration from cluster 1, window size is 10.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.14. CNN prediction vs actual acceleration from cluster 2, window size is 10.

85

0 20 40 60

-0.02

0

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-5

0

5

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.15. CNN prediction vs actual acceleration from cluster 1, window size is 50

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.16. CNN prediction vs actual acceleration from cluster 2, window size is 50.

86

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.17. CNN prediction vs actual acceleration from cluster 1, window size is 100.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.18. CNN prediction vs actual acceleration from cluster 2, window size is 100.

87

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.19. CNN prediction vs actual acceleration from cluster 1, window size is 200.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.20. CNN prediction vs actual acceleration from cluster 2, window size is 200.

88

Appendix C: Time Series Prediction RNN

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.21. RNN prediction vs actual acceleration from cluster 1, window size is 1.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.22. RNN prediction vs actual acceleration from cluster 2, window size is 1.

89

0 20 40 60

-0.01

0

0.01

0.02

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-0.01

0

0.01

V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.23. RNN prediction vs actual acceleration from cluster 1, window size is 10.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.24. RNN prediction vs actual acceleration from cluster 2, window size is 10.

90

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.25. RNN prediction vs actual acceleration from cluster 1, window size is 50.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.26. RNN prediction vs actual acceleration from cluster 2, window size is 50.

91

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.27. RNN prediction vs actual acceleration from cluster 1, window size is 100.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.28. RNN prediction vs actual acceleration from cluster 2, window size is 100.

92

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.29. RNN prediction vs actual acceleration from cluster 1, window size is 200.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.30. RNN prediction vs actual acceleration from cluster 2, window size is 200.

93

Appendix D: Time Series Prediction LSTM

Network

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.31. LSTM network prediction vs actual acceleration from cluster 1, window

size is 1.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.32. LSTM network prediction vs actual acceleration from cluster 2, window

size is 1.

94

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.33. LSTM network prediction vs actual acceleration from cluster 1, window

size is 10.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.34. LSTM network prediction vs actual acceleration from cluster 2, window

size is 10.

95

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.35. LSTM network prediction vs actual acceleration from cluster 1, window

size is 50.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.36. LSTM network prediction vs actual acceleration from cluster 2, window

size is 50.

96

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.37. LSTM network prediction vs actual acceleration from cluster 1, window

size is 100.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.38. LSTM network prediction vs actual acceleration from cluster 2, window

size is 100.

97

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.39. LSTM network prediction vs actual acceleration from cluster 1, window

size is 200.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.40. LSTM network prediction vs actual acceleration from cluster 2, window

size is 200.

98

Appendix E: Time Series Prediction CNNLSTM

Network

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.41. CNNLSTM

network prediction vs actual acceleration from cluster 1,

window size is 1.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.42. CNNLSTM

network prediction vs actual acceleration from cluster 2,

window size is 1.

99

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.43. CNNLSTM

network prediction vs actual acceleration from cluster 1,

window size is 10.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.44. CNNLSTM

network prediction vs actual acceleration from cluster 2,

window size is 10.

100

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.45. CNNLSTM

network prediction vs actual acceleration from cluster 1,

window size is 50.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.46. CNNLSTM

network prediction vs actual acceleration from cluster 2,

window size is 50.

101

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.47. CNNLSTM

network prediction vs actual acceleration from cluster 1,

window size is 100.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.48. CNNLSTM

network prediction vs actual acceleration from cluster 2,

window size is 100.

102

0 20 40 60

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

4

10-3 H1

0 20 40 60

-0.02

0

0.02

Acceleration in g

H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 20 40 60

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-1

0

1

10-3 V

Figure 5.49. CNNLSTM

network prediction vs actual acceleration from cluster 1,

window size is 200.

0 50 100 150 200

-0.01

0

0.01

H1

Predicted

Actual

50 51 52 53 54 55

-2

0

2

10-3 H1

0 50 100 150 200

-5

0

5

Acceleration in g

10-3 H2

50 51 52 53 54 55

-2

0

2

10-3 H2

0 50 100 150 200

Time in Seconds

-5

0

5

10-3 V

50 51 52 53 54 55

-2

-1

0

1

10-3 V

Figure 5.50. CNNLSTM

network prediction vs actual acceleration from cluster 2,

window size is 200.

103

Vita
Sara Tellab was born in Algeria and received her bachelor of science degree in

Electrical Engineering / Communication from Ajman University, UAE. Sara graduated

top of her class in 2017. She joined the Mechatronics Graduate Program at AUS in

2018, where she both studied and worked as a graduate teaching assistant. Her current

research interests include deep learning, image processing, computer vision and mobile

robots.

104

	Acknowledgements
	Abstract
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Background and Literature Review
	Chapter 3. Methodology
	Chapter 4. Experimental Results and Discussion
	Chapter 5. Concluding Remarks
	References
	Vita

