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Abstract 

Cellular solid cores are used in composite sandwich structures due to their high stiffness 

to weight ratio. However, owing to their porosity, they are inherently weak and are 

susceptible to damage due to improper loadings. As damaged cores can potentially lead 

to the failure of sandwich structures, core damage should be detected, preferably using 

nondestructive evaluation techniques. However, common nondestructive techniques, 

such as ultrasound, have limited effectiveness in inspecting cellular cores due to their 

dispersive properties. Since cellular cores are less dispersive at sub-ultrasound 

frequencies, inspecting them using sub-ultrasound frequencies has been introduced as 

a promising alternative to ultrasound inspection. However, this approach requires a 

priori knowledge of the acoustic characteristics in the inspected material, which is not 

available for most available cores. This work utilizes finite element computations to 

characterize the low frequency acoustic characteristics, namely phase velocity and 

dispersive properties, in commercial aluminum honeycombs made by bonding thin 

corrugated sheets. Results illustrate that the dispersive behavior and acoustic anisotropy 

of the studied honeycombs are more significant at higher porosities and higher 

frequencies. Moreover, results identify the frequencies below which honeycombs are 

least dispersive. To allow for realizing cores with tunable acoustic properties, the effect 

of admissible deformation modes, density, and geometric features on the phase 

velocities and dispersive properties is investigated. Accordingly, the acoustic behavior 

of honeycomb-based lattices that promote the two main admissible deformation modes 

in cellular solids, namely bending and stretching modes, is investigated. Results show 

that asymmetric waves in the bending dominated lattice are more direction dependent 

and less dispersive than in the stretching dominated lattice, whereas symmetric waves 

are generally independent of direction and dispersive in bending and stretching lattices. 

Results show that phase velocities of symmetric and asymmetric waves scale linearly 

with relative density in the bending dominated lattice and nonlinearly with relative 

density in the stretching dominated lattice; however, maximum phase velocities are 

higher in the stretching dominated lattice.  

 

Keywords: Aluminum honeycombs; wave propagation; dispersion; non-destructive 

testing 
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Chapter 1. Introduction 

In this chapter an introduction about the importance of sandwich structures and 

cellular cores to industries prioritizing weight minimization is presented. Then, the 

importance of understanding and characterizing the acoustic properties of cellular cores 

is highlighted. Subsequently, the addressed problem and the research contributions of 

this work are presented. Finally, the organization of this thesis is presented. 

1.1.      Overview 

Due to their ability to provide excellent stiffness and strength to weight ratios, 

fiber composite materials are increasingly being used to replace steel and metallic 

alloys in aerospace, automotive and marine applications [1, 2]. In these applications, 

fiber composites are often used in a sandwich structure configuration. This particular 

configuration allows for capitalizing on fiber composites’ excellent structural 

properties. In a sandwich structure, a light weight core is sandwiched between two thin 

composite sheets. The sheets would provide the structural stiffness of the structure, 

while the core is used mainly to increase the composite sheets second moment of inertia 

and hold the sheets in their proper position. To minimize the weight of the composite 

sandwich structure, the core is required to have minimal weight. Accordingly, foams, 

cellular solids and honeycombs have been the most widely used materials in the role of 

cores of sandwich structures [3].   

Although cores are not meant to carry significant forces in properly designed 

sandwich structures, due to inadvertent loadings or impacts they might be subjected to 

unintended loadings. These loads, even when small, might damage composite cores as 

they are inherently weak due to their porous nature. Detecting damage in cores is 

usually difficult as they are not readily observable to the naked eye, due to being tightly 

sandwiched between composite sheets. One promising method to detect damage in 

cores is through the use of elastic waves based non-destructive evaluation techniques 

[4]. These are similar to ultrasound techniques but operate at lower frequencies. Using 

these techniques is instrumentally dependent on knowing the acoustic properties of the 

medium being investigated for damage.  However, the acoustic properties of most cores 

used in sandwich structures are not well-characterized, and their porous structures 

renders the behaviour of their acoustic properties complex and non-intuitive. This 

constitutes a major hurdle in utilizing elastic-based non-destructive evaluation methods 
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in characterizing damage sustained by cores of sandwich structures. This work aims to 

ameliorate this issue by providing a better understanding of the acoustic behaviour of 

porous cores; particularly, honeycomb-like materials. 

1.2.  Thesis Objectives 

The motivation behind this research is that the acoustic properties of cores used 

in sandwich structures are not well understood or characterized. Moreover, models 

capable of predicting the dispersive and anisotropic behaviour of cores’ phase velocities 

in terms of their densities and geometric properties are currently lacking. The main 

objective of this thesis is to characterize the dispersive and anisotropic behaviour of 

phase velocities in the most commonly used cores in sandwich structures in terms of 

their density and geometric features. A second objective of this work is to shed light on 

the effect of admissible deformation modes in cellular solids, namely stretching and 

bending, on their acoustic properties. Objectives of this work are accomplished using 

numerical computations that integrate Bloch wave theory [5, 6] with finite element 

simulations.  

 1.3. Research Contribution 

The contributions of this research work are:   

 Characterize the dispersive and anisotropic behaviour of low frequency elastic 

waves propagating in honeycomb-like materials, which are the most commonly 

used cores in sandwich structures. 

 Quantify the effect of density and geometric features on the phase velocities of low 

frequency waves propagating in honeycomb-like materials.  

 Characterize the behaviour of both longitudinal and shear waves in honeycomb-like 

cores at low frequencies.  

 Shed light on the effect of admissible and dominant deformation modes in cellular 

solids on their acoustic properties.  

 Create an enabling platform for realizing cellular cores with tunable acoustic 

properties. This is achieved by highlighting the effect of admissible defamation 

mechanisms, density, and geometric features on cellular solids acoustic properties.   
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1.4.  Thesis Organization 

This thesis is organized as: Chapter 2 provides detailed background and literature 

review about wave propagation in cellular cores. Chapter 3 describes the numerical 

methodology used in this work.  Chapter 4 presents the results. Finally, Chapters 5 and 

6 present the discussion and conclusions, respectively.  
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Chapter 2. Background and Literature Review 

Composite sandwich structures are widely used as load bearing members in 

applications where flexural loading modes are dominant and weight reduction is 

required, such as in aerospace and wind energy applications [1, 2]. Sandwich structures 

are typically constructed by adhering two thin composite sheets to a thick, porous, light 

weight, and low strength core material that fill the space between the two composite 

sheets [2]. One of the most widely used core materials in sandwich structures is the 

class of materials referred to as aluminum honeycombs, which are very effective as 

cores due to their porous structure, very low density and better capacity to carry 

compressive and transverse loads than most polymeric core materials (e.g., rigid 

polymeric foams) [3, 7].  

In a properly designed aluminum honeycomb based sandwich structure, the 

composite sheets provide the main load bearing capacity of the structure [1, 2], while 

the low weight honeycomb core is mainly responsible for increasing the sandwich 

structure’s flexural rigidity (i.e., by increasing the second moment of inertia) and 

providing secondary supportive roles that do not require significant load carrying 

capacity. These supportive roles are critical to the functionality and integrity of 

composite sandwich structures, and they include: backing the composite sheets and 

preventing them from wrinkling, buckling, or bulging; supporting the composite sheets 

against non-flexural loads (e.g., compressive loads due to impact or concentrated 

forces); and ensuring that the two composite sheets deform simultaneously in a 

compatible manner. The aforementioned roles, though supportive, are critical. 

Unsatisfying them (e.g., due to a damaged core) will compromise the functionality and 

structural integrity of sandwich structures. 

Owing to their porous structure, aluminum honeycombs, as all core materials, 

are inherently week and have high propensity to sustain damage or permanently deform 

under relatively small loads [8-13]. Thus, inadvertent and improper loadings (e.g., 

subjecting sandwich structures to minor impact) can potentially damage aluminum 

honeycomb cores in sandwich structures without damaging the composite sheets. 

However, loading a composite sandwich structure with a damaged core can lead to the 

failure of the composite sheets, and subsequently the failure of the whole sandwich 

structure. Thus, detecting, assessing, and if possible repairing any damage sustained by 
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cores in sandwich structures is critical to the integrity and durability of composite 

sandwich structures and applications utilizing them as load carrying members.    

Cores in sandwich structures are inaccessible to the naked eye and inspecting 

them for damage requires nondestructive inspection and evaluation. However, most 

existing nondestructive evaluation (NDE) techniques have limited effectiveness in 

directly inspecting aluminum honeycombs, since their porous structure renders them 

very dispersive to ultrasound waves and distortive to electromagnetic fields [4]. 

Currently, damage in honeycomb cores is often indirectly inferred from changes in the 

mechanical or thermal behaviors of sandwich structures (e.g., through Shearography or 

Thermography). Nevertheless, the aforementioned indirect methods for damage 

detection mainly measure delamination at the core-composite sheet interfaces and are 

not compatible with continuous structural health monitoring. However, as aluminum 

honeycombs exhibit much less dispersive behavior at low and sub-ultrasound 

frequencies (5~50KHz) [4, 14], low frequency based inspection approach delivers a 

promising solution for direct inspection and continuous health monitoring applications 

[4]. This approach draws on the principles of Ultrasonic NDE methods but utilizes low 

sub-ultrasound frequencies, at which aluminum honeycombs exhibit relatively 

isotropic acoustic behavior and minimal transmission losses [4, 14].  

Low sub-ultrasound frequency inspection approach, just like ultrasound 

techniques, requires having a priori knowledge of the wave propagation characteristics 

in the inspected media. This knowledge is partially available for few honeycombs and 

honeycomb-like materials. Wave propagation characteristics in cellular solids and 

honeycomb-like materials were investigated for auxetic [15], Chiral [16], Zig-Zag [17], 

tetragonal and triangular [18] structures. These studies highlighted the sensitivity of 

natural modes, phase velocities, and dispersion properties to the periodic topology of 

cellular structures and their length scales. Similarly, for honeycombs, their band gaps, 

phase velocities, and dispersion characteristics were found to be very sensitive to their 

constituent material, length scale and minor changes in their topology [15, 19] as well 

as to macroscopic strain (>1%) and porosity level [14, 20]. Most importantly, 

honeycombs were observed to exhibit a very dispersive behavior at high frequencies 

and almost non-dispersive behavior at very low frequencies [14, 19]. This transition 

from dispersive to non-dispersive behavior is very dependent on the relative density or 
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porosity [14, 19]. For instance, the frequency level at which the dispersive behavior 

commences increases with decreased porosity (i.e., increased relative density) [14, 19]. 

The aforementioned efforts were very effective in highlighting the dispersive 

and acoustic properties of honeycombs and cellular materials in general. However, they 

used idealized geometries that do not mirror the topological details (i.e., cell size, cell 

wall thickness) and porosity levels of commercially available aluminum honeycombs, 

which are mostly made by bonding corrugated thin sheets [3]. Most studies assumed 

cell walls to have uniform thickness (i.e., did not account for the doubled thickness at 

the cell walls resulting from the welding of the corrugated sheets), and they emphasized 

on high porosity levels, which are not representative of commercially available 

aluminum honeycombs. Thus, it can be concluded that the low frequency wave 

propagation characteristics in commercially available aluminum honeycombs remain 

not fully characterized, particularly for the ones widely used in sandwich structures and 

made by bonding thin corrugated sheets. The lack of this knowledge hinders the use of 

low frequency (i.e., <1 MHz) elastic waves based nondestructive methods in inspecting 

aluminum honeycomb cores for defects. 

Accordingly, this work aims to provide detailed characterization of the low 

frequency wave propagation characteristics (i.e., frequency-dependent wave dispersion 

and phase velocities) in commercially available aluminum honeycombs, particularly 

the ones made by Hexel Corporation as they constitute the standard aluminum 

honeycomb cores used in the aerospace industries worldwide. For this end, this work 

systematically analyzes, using finite element computations and Bloch wave theory [5, 

6], the in-plane wave propagation in realistic aluminum honeycomb models that mirror 

the features of honeycombs made by bonding corrugated aluminum sheets. Resulting 

data should assist in the advancement of nondestructive inspection techniques tailored 

for aluminum honeycombs and porous media. For instance, results would assist in 

selecting the test frequencies, positioning sensors and wave sources as well as in data 

interpretation. Finally, advancing the field of nondestructive evaluation of honeycomb 

cores will assist in characterizing damage in cellular solids used in other applications, 

such as in active brittle piezoelectric ceramic cellular solids, which are increasingly 

being considered as emerging metamaterials for sensors [21-25]. 
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The significant dependence of periodic cellular solids’ acoustic properties on 

their lattice architecture and topology motivated exploring the sensitivity of their 

acoustic properties to small and large deformation-induced changes in their topology. 

Accordingly, the sensitivity of periodic cellular solids’ acoustic properties to both 

damage induced [14] and buckling triggered [26] changes in their topology were 

investigated. Results revealed that small variation in periodic lattices’ topology (in the 

order of about 2% macroscopic permanent strain) is associated with small but 

measurable changes in their phase velocities and frequency band gaps, while large 

variation in their topology (>30% macroscopic permanent strain) is associated with 

significant (order of magnitude) changes in their phase velocities and frequency band 

gaps [14, 26]. More importantly, the aforementioned results established that the 

acoustic properties of periodic cellular solids can be tuned through inducing 

deformations in their ligaments. This, in part, helped in motivating a thrust of efforts 

that aimed to develop piezoelectric based [27, 28] and shape memory based [24, 29, 

30] cellular structures with tunable properties whose topology can transform through 

actively controlled deformations at their ligament level.   

As acoustic properties of materials are inherently dependent on their stiffness, 

they are sensitive to parameters affecting it. For cellular solids, porosity is one of the 

most stiffness affecting parameters [3, 31, 32]; therefore, it could significantly affect 

cellular solids acoustic properties. Consequently, some efforts have been applied to 

characterize the effect of porosity on the acoustic properties of periodic cellular solids. 

These efforts utilized hexagonal topologies [14, 33] and demonstrated an increase in 

the dispersive behavior of cellular solids at higher porosities. Moreover, they showed 

that phase velocities of shear waves (asymmetric waves) scale inversely with porosity, 

while phase velocities of longitudinal waves (symmetric waves) are insensitive to 

porosity at small frequencies and inversely proportional to porosity at larger 

frequencies.  

Similar to porosity, the underlying or admissible deformation modes in 

ligaments of periodic lattice architectures have a significant effect on lattices’ stiffness 

[8, 9, 28, 34-36] and potentially on their acoustic behavior. Cellular solids, periodic and 

random, deform generally through the bending and stretching of their ligaments. 

However, only one of these modes dominates depending on cellular solids’ topology 
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(i.e., nodal connectivity at vertices) and macroscopic deformation mode (e.g., shear or 

hydrostatic compression) [8, 9, 34]. Generally, lattices with high nodal connectivity 

(i.e. ൒ 6 lines per vertex in 2D) are always associated with a stretching dominated 

behavior, while lattices with low nodal connectivity (i.e.,  ൏ 6 lines per vertex in 2D) 

are mostly associated with a bending dominated behavior [8]. The latter can still exhibit 

a stretching dominated behavior but only under certain macroscopic loading conditions 

(e.g., under hydrostatic loading [3]). The dominant deformation mode influences the 

behavior of cellular solids significantly [3]. For instance, stretching dominated cellular 

solids exhibit significantly higher specific stiffness and strength as compared to their 

bending dominated counterparts [8]. Moreover, stiffness of stretching dominated 

cellular solids scales linearly with porosity while it scales nonlinearly with porosity for 

their bending dominated counterparts [3, 8].  As acoustic properties of materials are 

dependent on parameters affecting their stiffness, the acoustic properties of periodic 

cellular solids such as dispersion, direction dependence, phase velocity, and band gaps 

are expected to be inherently dependent on the dominant deformation modes in their 

ligaments. This dependence was implicitly hinted to by Phani et al. (2006) [37] who 

investigated the behavior of band gabs in lattices with different nodal connectives. Their 

results showed that band gap characteristics are strongly sensitive to nodal connectivity 

(i.e., dominant mechanism), and they supported the hypothesis that one can, through 

tailor the periodic structure of cellular solids, design cellular solids with unique and 

application tailored acoustic properties. However, the relationship between periodic 

cellular solids’ acoustic properties and their dominant deformation modes has not been 

fully investigated or characterized, particularly in terms of phase velocities and their 

behavior. Therefore, this work aims to provide insights into this relationship and to 

quantitatively measure the tunable range of honeycombs’ acoustic behavior that can be 

realized through modifying their ligament structure and deformation mechanisms. 

Towards this end, this work computationally explores the effects of the dominant 

deformation modes (i.e., bending and stretching) in periodic honeycomb-like materials 

on the frequency and direction dependent behavior, particularly phase velocity, of in-

plane waves traversing them. The approach used in this work is detailed next. 
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Chapter 3. Methodology 

This work utilizes finite element computational models and Bloch wave theory 

to investigate the characteristics of low frequency elastic waves propagating in models 

mimicking aluminum honeycombs commonly used in composite sandwich structures. 

The computational approach is used, in particular, to simulate and characterize the wave 

propagation properties relevant to nondestructive testing applications, namely the phase 

velocities and dispersive characteristics of low frequency elastic waves as well as their 

dependence on propagation direction, topology, cell-size, and cell-wall thickness. 

Finite element computations and Bloch wave theory are used in this work as they have 

been proven effective in characterizing the elastic wave propagation characteristics in 

periodic cellular solids and architectures [15, 16, 18, 19]. In addition, they allow for 

accurately representing the geometric and topological features of commercially 

available honeycomb. 

The finite element-Bloch wave theory based methodology, which is explained 

next, is used to conduct two parallel investigations. The first aims to determine the 

acoustic characteristics of the double-sided hexagonal honeycombs that are commonly 

used in composite sandwich structures designed for aerospace and marine applications. 

For this end, multiple realistic, double-sided, and industry relevant honeycomb 

geometries are analyzed. These geometries are discussed in details in this chapter. The 

second investigation aims to shed light on the effect of the dominant deformation 

mechanisms in cellular solids on their acoustic properties. For this end, single sided 

hexagonal and triangular cells, representing the two main deformation mechanisms 

(i.e., bending-dominated and stretching-dominated deformation modes), are analyzed.  

In the following, the models used in investigating the acoustic properties in 

commercially available double sided honeycombs is discussed first. Subsequently, the 

models used to investigate the effect of deformation modes is described. Finally, the 

computational implementation of Bloch wave theory in finite element models is 

discussed.     

3.1. Models of Double-sided Honeycombs 

Aluminum honeycomb cores used in sandwich structures are mostly made by 

bonding thin corrugated aluminum sheets as illustrated in Figure 3.1. For such 

honeycombs, two thirds of their cell walls have the same thickness as that of the 
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corrugated aluminum sheets, while the remaining one third have double the corrugated 

sheets’ thickness. Honeycombs with such configuration are often called double walled 

honeycombs. The non-uniformity in cell wall thickness for double walled honeycombs 

affects their deformation mechanisms and increases their elastic anisotropy [3]. The 

latter, and since elastic wave propagation in a medium depends on its elastic behavior, 

renders wave propagation in double sided honeycombs more anisotropic than in their 

single sided counterpart. 

One of the most commonly used double sided aluminum honeycombs in 

sandwich structures tailored for aerospace and marine applications is the honeycombs 

family made by Hexcel Corporation. Owing to its wide use in the sandwich structure 

industry, this family of double sided honeycombs is selected for this study and is used 

as a representative of the commercially available aluminum honeycomb cores. Double 

sided honeycombs offered by Hexcel vary in their cell size, cell wall thickness, and 

relative density to satisfy the needs of the sandwich structures industry. 18 different 

honeycombs that cover the wide range of honeycombs offered by Hexcel are used in 

this work. The wave propagation characteristics in each of the 18 honeycombs are 

computationally investigated. The geometric properties and relative density (i.e., two 

dimensional areal density) of the 18 investigated honeycombs are listed in Table 1. 

Aluminum sheets used to make the 18 selected honeycombs are assumed to 

have isotropic elastic properties, a young’s modulus (E) of 70 GPa, a Poisson’s ratio 

() of 0.33, and a density () of 2700 Kg/m3. These properties are representative of 

most aluminum alloys and follow the specifications included in the honeycombs’ 

product data sheets, which are available on the website of the manufacturer. The out-

of-plane thickness of the honeycombs can vary. However, as this work is focused on 

the in-plane wave propagation in the double sided honeycombs, the 18 analyzed 

honeycombs are assumed to have an out-of-plane height of unit length.   

3.2. Models of Stretching and Bending Dominated Honeycombs 

The two lattices analyzed in this study are shown in Figures 3.2 and 3.3. A 

hexagonal honeycomb, which is bending dominated, is shown in Figure 3.2. Hexagonal 

honeycomb is proven to deform mostly by the bending of its ligaments [3]. 
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Figure 3.1: Fabrication of honeycombs by bonding of corrugated aluminum 
sheets, showing: the corrugated sheets (top left), 3D view of the resulting 

honeycomb (bottom left), and a two dimensional view of the resulting 
honeycomb (right). The latter shows that each cell has cell walls with twice the 

thickness of the sheet. Dashed lines in the right figure are the borders of the 
representative unit cell for this honeycomb. 

 

Table 1. Geometric properties of the investigated double sided aluminum honeycombs 

Case 
Cell size 

(L) 
(inch) 

Cell 
thickness 

(inch) 

% 
Relative 
density 

Case 
Cell 
size 

(inch) 

Cell 
thickness 

(inch) 

% 
Relative 
density  

1 0.0625 0.0007 3.0 10 0.1875 0.0015 2.1 
2 0.0625 0.0015 6.4 11 0.1875 0.0025 3.6 
3 0.125 0.0007 1.5 12 0.25 0.0007 0.7 
4 0.125 0.0015 3.2 13 0.25 0.0015 1.6 
5 0.125 0.003 6.4 14 0.25 0.0025 2.7 
6 0.15625 0.0007 1.2 15 0.375 0.0007 0.5 
7 0.15625 0.0015 2.6 16 0.375 0.0015 1.1 
8 0.15625 0.0025 4.3 17 0.375 0.0025 1.8 
9 0.1875 0.0007 1.0 18 0.375 0.005 3.6 

 

For instance, under uniaxial loading, the elastic strain energy stored in the 

ligaments of a hexagonal honeycomb is comprised of mainly bending strain energy 

(more than 95%) and an insignificant amount (5%) of axial strain energy [8, 9]. Figure 

3.3 shows the stretching dominated lattice analyzed in this work. It is derived from the 

regular honeycomb shown in Figure 3.2 and it has most of the attributes of a periodic 

honeycomb, but it also includes internal reinforcing ligaments. The extra ligaments 

bring its nodal connectivity (i.e., number of ligaments intersecting a node) to 6. This is 

the threshold after which 2D periodic lattices with uniform nodal connectivity act in a 
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stretching dominated manner regardless of their loading conditions [8, 9, 34]. So under 

any arbitrary load, the ligaments of the lattice in Figure 3.3 will develop negligible 

internal bending moments. Both used honeycomb-based lattices (regular and 

reinforced) are assumed to have high porosity (>95%) as well as slender and prismatic 

ligaments; therefore, shear stress in their ligaments can be ignored [3]. High porosity 

level is considered in this work as most honeycomb-like materials used in engineering 

applications have very high porosity [33].     

Throughout this work, and similar to the former section, lattices’ ligaments are 

assumed to have a length of 2.5 mm and to be made of isotropic aluminum with a 

density of 2700 ݇݃/݉ଷ, a Poison’s ratio of 0.33, and a Young’s modulus of 70 GPa. 

As in-plane wave propagation is considered in this work, the out-of-plane dimension of 

the lattices’ ligaments is set to the practical value of unit length. Moreover, lattices of 

Figures. 3.2 and 3.3 are analyzed using three porosity levels. The latter aims to 

determine the effect of porosity on the dispersive and direction dependent phase 

velocities in bending and stretching dominated lattices. However, porosity is 

represented in this work as relative density, ߩ∗, which is defined as the ratio of the unit 

cell’s density to the constituent material density. Accordingly, the relative density of 

the honeycomb (Figure 3.2) and the reinforced honeycomb (Figure 3.3) are ߩ∗ ൌ ଶ௧

√ଷ௅
 

and ߩ∗ ൌ
଼௧

√ଷ௅
, respectively. Here t and L represent the thickness and length of the 

lattices’ ligaments, respectively. The three relative densities,	ߩ∗, used in this work are 

0.5%, 1.0%, and 1.5%, and for each relative density, three different cell sizes were 

considered, resulting in 18 different case for both lattices. The geometric properties and 

relative density (i.e., two dimensional areal density) of the investigated lattices are listed 

in Table 2.  

3.3. Finite Element Model and Bloch Theory Implementation 

Bloch wave theory was originally used in the fields of solid state physics to 

describe the wave propagation of electrons and phonons in solid materials with 

crystalline and periodic atomic structures. A detailed description of the theory is 

included in Brillouin [6]. In general, Bloch wave theory allows for expressing the 

periodic behavior of a wave, including its dispersive and attenuative behaviors, across 

solid materials with spatially periodic heterogeneities. Thus, it is often used as a 

homogenization tool to describe the wave propagation characteristics in periodic and  
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Table 2. Geometric properties of both single-sided hexagonal and triangular lattices 

Case Cell size (L) 
(mm)

% Relative 
density 

1 2.5 0.5 
2 2.5 1.0 
3 2.5 1.5 
4 5.0 0.5 
5 5.0 1.0 
6 5.0 1.5 
7 10 0.5 
8 10 1.0
9 10 1.5 

  

heterogeneous mediums [15, 16, 18, 19], such as the periodic double-walled and 

triangular honeycombs considered in this study.   

In this work, Bloch wave theory is used in conjunction with finite element 

analysis following multiple efforts that used similar approach to characterize wave 

propagation in various cellular architectures [14, 15, 38]. Bloch wave theory is used, in 

particular, to define the periodic boundary conditions that should be applied on 

representative volume elements (i.e., unit cells) that effectively represent the 

investigated cellular architectures. The representative unit cells represent all the 

important features of their parent honeycomb, and repeating them periodically 

reproduces their parent architecture. The periodic boundary conditions defined using 

Bloch wave theory implicitly represent the effective (i.e., homogenized) dispersive and 

attenuative behavior of the honeycomb. The unit cell along with the periodic boundary 

  

Figure 3.2: Hexagonal honeycomb 
lattice. Showing the periodic structure 
(left) and the corresponding unit cell 
(right) with its basis vectors (dashed 

lines) 

Figure 3.3: Reinforced honeycomb 
lattice. Showing the full structure (left) 
and the corresponding unit cell (right) 
with its basis vectors (dashed lines) 
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conditions are analyzed using finite element method and results are used to describe the 

wave propagation in the investigated honeycomb architectures. The aforementioned 

overview is explained in details next.  

The implementation of Bloch theory in finite element analysis starts with 

selecting representative unit cells of the structures analyzed. Three main cellular 

structures are considered in this work: double sided honeycomb, single sided 

honeycomb, and triangular honeycomb. The representative unit cell selected to model 

the double sided honeycombs is shown in Figure 3.1. Evidently, periodically repeating 

the selected unit cell reproduces the overall periodic double-sided honeycomb structure. 

The unit cell is also shown in Figure 3.4 along with its lattice basis vectors (ࢋଵ,  ,(ଶࢋ

which are used to represent any point inside the unit cell. The lattice vectors are the 

directions along which the unit cell should be periodically replicated to reproduce the 

original parent structure. To derive the periodic boundary conditions, arbitrary point ܲ′ 

and its periodic image P are introduced in Figure 3.1. The spatial location of point P in 

the honeycomb can be described using  

,௣ሺ݊ଵߩ	                            ݊ଶሻ ൌ ࢘௣ ൅ ݊ଵࢋଵ ൅ ݊ଶࢋଶ (1)

such that ࢘௣ is the position of the point P in the reference unit cell (i.e., ܲ’ in Figure 

3.1) and ߩ௣ is the position of point P in a cell located at ݊ଵ and ݊ଶ cells away from the 

reference unit cell. ݊ଵ and ݊ଶ can only take integer values.  When a sinusoidal in-plane 

displacement wave propagates in the periodic structure of Figure 3.1 from point O to 

point ܲ′, it can be described at ܲ′ as  

                                     ࢛ሺ࢘࢖ሻ ൌ ࢛௢݁௜ఠ௧ା࢑.࢘೛ (2)

such that ࢛௢ and ߱ are the wave amplitude and angular frequency observed at the 

reference point O in Figure 3.1. ࢑ is the two dimensional wave vector representing the 

dispersion and attenuation in the material and ࢘௣ is the position vector locating point 

ܲ′ in the reference cell. Assuming ࢑ is constant across the honeycomb, then the wave 

arriving at point P in cell (n1, n2) can be described as  

                   ࢛൫࣋࢖൯ ൌ ࢛ሺ࢘࢖ሻ݁࢑.
൫࣋࢘ି࢖೛൯ ൌ ࢛ሺ࢘࢖ሻ݁࢑.

ሺ࢔૚ࢋ૚ା࢔૛ࢋ૛ሻ (3)

To simplify the aforementioned equations, the wave vector, ࢑, is represented in the 

reciprocal space defined using the vectors ࢈ଵand ࢈ଶ  as follows 
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Figure 3.4:. Representative unit cell used to model the double walled honeycomb. 
 .૛ are the lattice basis vectorsࢋ  ૚ andࢋ

 

                            ࢑ ൌ ૛࣊/ࣅ ൌ ݇ଵ࢈ଵ ൅ ݇ଶ࢈ଶ ൌ ଵଙ̂ߦ ൅ ଶଚ̂ (4)ߦ

such that the reciprocal vectors are defined using the condition ࢏࢈. ௝ࢋ ൌ  is the ࣅ ;௜௝ߜ

wave length vector; ݇ଵ and ݇ଶ are the components of the wave vector in the reciprocal 

space; ߦଵ	and ߦଶ are the components of the wave vectors in the Cartesian coordinate 

system; ଙ̂	and	ଚ ̂are the orthonormal unit vectors representing the Cartesian coordinate 

system. From Eqns. (3) and (4), the displacement at point P in cell (n1, n2) can be 

described as  

                   ࢛൫࣋࢖൯ ൌ ࢛ሺ࢘࢖ሻ݁࢑.
ሺ࢔૚ࢋ૚ା࢔૛ࢋ૛ሻ ൌ ࢛ሺ࢘࢖ሻ݁௞భ࢔૚ା௞మ࢔૛ (5)

applying this equation to the representative unit cell leads to the following periodic 

boundary conditions 

							 																								 ࢛ଵ ൌ ࢛଴݁௞భ,  ࢛ଶ ൌ ࢛଴݁௞మ   (6)

such that the displacements ࢛૙, ࢛૚, and ࢛૛ are the displacements at points 0, 1, and 2 

shown in Figure 3.4, which are the boundary points of the representative unit cell. 

Equation (6), through the complex wave vector components ݇ ଵ and ݇ଶ, accounts for the 

dispersion and attenuation affecting the wave as it propagates across the unit cell. In 

this work, the focus is on the dispersive properties of the double walled honeycomb, 

which are caused by the topological features of the honeycomb. Aluminum used in 

honeycombs is linear elastic and exhibits negligible material damping at room 

temperature. Thus, attenuation in aluminum honeycombs due to viscous effects (i.e., 
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friction and thermal loss) is negligible. To account only for the dispersive behavior, the 

complex wave vector components  ݇ଵ and ݇ଶ are assumed to have imaginary 

components only [14].  

               Before applying the periodic boundary conditions to the unit cell, the cell 

walls of the unit cell are discretized into nodes and beam elements using the finite 

element method. For the discretized unit cell, the dynamic equilibrium equation under 

force-free vibrations is 

                 ሺሾࡷሿ െ ࣓૛ሾࡹሿሻሾ࢛ሿ ൌ ૙,  ሾ࢛ሿ ൌ ሾ࢛࢕ , ࢛૚, ࢛૛, (7)  ࢀሿ࢏࢛

where [K]is the stiffness matrix, [M] is the mass matrix, [u] is the displacement at the 

nodes, and ࢛࢏ refers to the displacements of the internal nodes of the unit cell (i.e., the 

ones not exposed to the boundary conditions). To account for dispersion in Eqn. (7), 

the periodic boundary conditions represented by Eqn. (6) are incorporated. Using Eqn. 

(6) in Eqn. (7) and applying static condensation to reduce the size of the system result 

in   

                                   ሾࡷഥ െ ߱ଶࡹഥ ሿ ቂ
࢕࢛
࢏࢛
ቃ ൌ ሾ૙ሿ (8)

such that ሾࡷഥሿ and ሾࡹഥ ሿare the reduced stiffness and mass matrices, respectively. They 

are functions of the original stiffness and mass matrices as well as the wave numbers 

݇ଵ and ݇ଶ. Equation (8) is an Eigenvalue problem that can be solved to find the 

Eigenfrequencies and Eigenvectors. The unknowns in Eqn. (8) are the wave vectors, ݇ଵ 

and ݇ଶ, and the frequency ߱. Accordingly, to solve Eqn. (8), the wave vectors	݇ଵ and 

݇ଶ are prescribed first, and then the Eigenfrequencies ࣓	ሺ݇ଵ, ݇ଶሻ corresponding to them 

are determined.  

In this work, Eqn. (8) is solved using the finite element software ABAQUS. 

Each of the cell walls of the unit cell is discretized using 50 two-node Euler beam 

elements (B21 elements per ABAQUS terminology). Euler beam is chosen as 

honeycomb’s cell walls are too thin and transverse shear stress in them is ignorable [3, 

14]. The selected number of elements per cell wall are chosen as earlier studies 

regarding mesh sensitivity and mesh effect on the wave propagation in regular 

honeycombs and triangular structures showed that 50 elements per cell ensure mesh 

independence[14]. The periodic boundary conditions, Eqn. (6), are incorporated in 
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ABAQUS as equations using the ABAQUS equation command. These equations 

include the prescribed values of ݇ଵ and ݇ଶ. Both the stiffness and mass matrices are 

internally assembled by the software, following standard finite element and Euler beam 

theories. Finally, the eigenvalue problem represented by Eqn. (8) is solved for the 

Eignvalues ࣓ using the Lanczos Eigensolver in ABAQUS. This process is repeated for 

multiple values of (݇ଵ, ݇ଶ) which results in the dispersion surfaces ࣓ ൌ ࣓ሺ݇ଵ, ݇ଶሻ. 

Dispersion surfaces are then used to compute the phase velocities. To determine the full 

dispersion surfaces, ݇ଵ and ݇ଶ are varied according to Bloch’s theorem in the first 

Brillouin zone [6, 14, 15]. This zone is presented in Figure 3.5 and represents the 

periodicity of the structure in the reciprocal space.  The phase velocities are then 

obtained from the dispersion surfaces using ࢜ ൌ ߱/࢑. Results obtained from this 

approach are presented next. 

The outlined approach in itself is straightforward and well-established [14-16, 

38]. However, the implementation of the approach should be verified. For this end, the 

current implementation of the outlined approach was tested first on two honeycomb 

structures with uniform cell wall thickness (i.e., not double sided) and dimensions 

identical to honeycombs analyzed in two different studies [14, 38]. Results from the 

verification tests were compared to the published ones in terms of Brillouin zone 

dimensions, dispersion surfaces, and phase velocities. Comparisons underscored a total 

agreement between the verification tests and the published data.  

The methodology so far emphasized on the approach used to investigate the 

acoustic behavior of double-honeycombs. The same approach was used to investigate 

the effect of deformation mechanisms in hexagonal and triangular based honeycombs. 

So, two unit cells were created. The first represented a single-sided hexagonal 

honeycomb and is shown in Figure 3.2, while the second represented a single-sided 

triangular honeycomb and is shown in Figure 3.3. The lattice vectors for each of the 

unite cells are also shown in Figures. 3.2 and 3.3. The unit cell and analysis procedure 

associated with the single-walled unit cell are identical to the ones developed for the 

double-sided honeycombs. The only difference is that the thickness of the vertical cell 

wall in the double-sided honeycomb would be double of the thickness of the vertical 

wall in its single-sided counterpart. However, for the triangular honeycomb, the  
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application of Bloch wave theory would result in different boundary conditions than 

those represented by Eqn. (6) 

The lattice vectors of the triangular unit cell, which are shown in Figure 3.3 as 

dashed arrows, are defined in terms of the ligament length, L, as ࢋଵ ൌ ሺ30ሻଙ̂ݏ݋ܿ	ܮ ൅

ଶࢋ ሺ30ሻଚ̂ and݊݅ݏ	ܮ ൌ െܮ	ݏ݋ܿሺ30ሻଙ̂ ൅  .ሺ30ሻଚ̂ for the reinforced honeycomb݊݅ݏ	ܮ

Applying Bloch theorem, following the same procedure outlined above, to the unit cell 

of Figure 3.3 results in the periodic boundary conditions 

                         ࢛ଵ ൌ ࢛ସ݁௞భ,࢛ଷ ൌ ࢛଺݁௞మ, ࢛ଶ ൌ ࢛ହ݁
ሺ௞భା௞మሻ 

ଵࢌ                         (9) ൌ െࢌସ݁௞భ,  ࢌଷ ൌ െࢌ଺݁௞మ, ଶࢌ ൌ െࢌହ݁
ሺ௞భା௞మሻ 

where ࢛଴ to	࢛଺ and 	ࢌ଴		to 	ࢌ଺ are the degrees of freedom and the external forces 

corresponding to  the ligaments’ boundaries which are named points 0,1, 2, 3, 4, 5, and 

6 in Figure 3.3. Once more, ݇ଵ and ݇ଶ are the complex wave numbers along the 

reciprocal lattice directions࢈  ଵ and࢈  ଶ, respectively. Following the same reasons outline 

above for the case of the double-sided honeycomb, the real components of  ݇ଵ and ݇ଶ 

are ignored. Applying the periodic boundary conditions corresponding to Figure 3.3 

(i.e., Eqn. (9)) in Eqn. (3) results in the following 

 ሾࡷഥ െ ߱૛ࡹഥ ሿ ቎

࢛૝
࢛૞
࢛૟
࢏࢛

቏ ൌ ሾ૙ሿ  (10) 

where ࢛૝ , ࢛૞	, and ࢛૟ are the degrees of freedom of the independent boundary nodes 

shown in Figure 3.3. Again  ࢛࢏  represents the internal degrees of freedom. Equation 

 

Figure 3.5: First Brillouin zone for the double sided honeycomb. With the 
symmetry of the 1st Brillouin zone, only the representative shaded region is 

considered in the analysis. 
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(10) is an Eigenvalue problems that govern the free vibration behavior of the unit cell, 

and it implicitly account for the dispersive and direction dependent properties of the 

lattices. Dispersion and direction dependence are represented through the dependence 

of ߱ on the wave numbers ݇ଵ and ݇ଶ. To solve Eqns. 10, the wave numbers ݇ଵ and ݇ଶ 

are prescribed values, and subsequently the equations are solved for the Eigenfrequency 

߱(݇ଵ,݇ଶ). The range of ݇ଵ and ݇ଶ covered is bounded by the lattices’ 1st Brillouin zone 

[6]. This zone represents the periodicity of a lattice in its reciprocal space and comprises 

the wave vector range needed to fully characterize its dispersion properties [14, 16, 33, 

39, 40]. The 1st Brillouin zone of the triangular honeycomb lattice is shown in Figure 

3.6. Due to the symmetry of the 1st Brillouin zone, only the first quadrant, which is 

highlighted in Figure 3.6, is used. Utilizing symmetry allows for predicting the results 

corresponding to the other three quadrants. Each point in the 1st Brillouin zone 

represents a wave vector, ࢑, that can be expressed using the reciprocal lattice directions, 

-back-and  ࢑ and ଚ̂. To transform	ଶ, or using the Cartesian coordinate system, ଙ̂࢈ ଵ and࢈

forth between the two coordinate systems, the relation ࢑ ൌ ݇ଵ࢈ଵ ൅ ݇ଶ࢈ଶ ൌ ଵଙ̂ߦ ൅  ̂ ଶଚߦ

is used. Here ߦଵ	and ߦଶ are the components of ࢑ in the Cartesian coordinate system. 

Results of the finite element based approach describe the variation of the first two 

Eigenfrequencies (߱ଵ,߱ଶ) with the wave vector, ࢑, over the wave vector range defined 

by the lattices’ 1st Brillouin zone. The Eigenfrequencies obtained from this analysis are 

then processed to compute the phase velocities using the relation ࢜ ൌ 	߱ ࢑⁄ 	[16, 39]. 

Thus, in summary, this approach determines the Eigenfrequencies, ࣓, and phase 

velocity, ࢜, corresponding to a range of wave vectors. 

The aforementioned derivation of Eqns. (8) and (10) serves as a theoretical 

background to help understand the approach and results. However, in this work these 

equations are generated and solved automatically in ABAQUS using its 

Eigenfrequency solver. The implementation in ABAQUS involves four steps: 

discretizing the ligaments of the unit cells using 50 beam elements, assigning values to 

the components of the wave vector ݇ଵ and ݇ଶ, applying the periodic boundary 

conditions (Eqns. 6 and 9) using the EQUATION command, and finally solving for the 

first two Eigenfrequencies using ABAQUS’s Lancosz Eigenfrequency solver. The 

process is repeated for the range of  ݇ଵ and ݇ଶ values bound by the lattices’ 1st Brillouin 

zone. Only the first two Eigenfrequencies are obtained as they are the most  
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fundamental. The first Eigenfrequency corresponds to an asymmetric (i.e., shear) 

propagating wave and the second Eigenfrequency corresponds to a symmetric (i.e., 

longitudinal) propagating wave [38].  

 

 

 

Figure 3.6: 1st Brillouin zone associated with the unit cell of the honeycomb-like 
structure. ଓ̂ and ଔ̂ are the unit vectors aligned with the x and y-axes, respectively 
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Chapter 4. Results 

This chapter is divided into two sections. The first section reports on the 

acoustic characteristics, in terms of dispersion surfaces and velocity profiles, of 

commercially available double-sided aluminum hexagonal honeycombs. On the other 

hand, the second section presents the results of the finite element computations 

investigating the effect of the dominant deformation mechanism (i.e. stretching or 

bending) in cellular architectures on their acoustic characteristics. 

4.1 Acoustic Characteristics of Double-sided Hexagonal Honeycomb 

The number of eigenvalues corresponding to Eqn. (8) is equal to the rank of the 

reduced stiffness ሾࡷഥሿ and mass ሾࡹഥ ሿ matrices as well as the number of independent 

degrees of freedom comprising ࢛࢕ and ࢛࢏. Thus, for the unit cell analyzed in this work, 

which is modeled using 50 two dimensional beam elements per cell wall and has 447 

degrees of freedom upon the application of the periodic boundary conditions, i.e., a 

total of 447 Eigen frequencies can be obtained. However, only the first and second 

Eigenfrequencies are computed here as they are associated with the two fundamental 

in-plane wave propagation modes, namely the antisymmetric and symmetric modes. In 

particular, the first Eigenmode is the antisymmetric mode and is associated with shear 

elastic waves, while the second Eigenmode is the symmetric mode and is associated 

with longitudinal elastic waves [38].  

To ensure that the first two modes obtained are the antisymmetric and 

symmetric ones, the deformed configurations corresponding to the first two modes were 

determined and checked for every analyzed case as well as for different ݇ଵ, ݇ଶ values. 

For illustration purposes, the deformed configurations corresponding to the first two 

modes for case 1 and for the  ݇ଵ, ݇ଶ values marked by points A, B, and D in Figure 3.5 

are presented in Figure 4.1. In this figure, only four complete hexagonal cells are plotted 

and their deformations are scaled up using the factors included in the figure to improve 

visibility. Figure 4.1 shows that the deformed configurations corresponding to the first 

modes for the three wave vector values (A, B, and D) are asymmetric and exhibit 

common features. Asymmetrical deformation causes every two cell walls facing each 

other to deform in an identical manner as can be observed in Figure 4.1.  
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Figure 4.1: First and second Eigenmodes. Showing the deformation according to 
the modes corresponding to points A, B and D in Figure 3.15. The Figure shows 

four complete hexagonal cells (deformed and undeformed). Deformations are 
scaled by the shown factors to enhance visibility 

 

On the other hand, Figure 4.1 shows that the deformation patterns corresponding 

to the second modes are symmetric. The plane of symmetry for each of the shown 2nd 

mode deformation patterns is aligned with the direction of the wave vector (i.e., points 

A, B, and D in Figure 3.5).   

For each of the 18 cases listed in Table 1, the first two Eigenfrequencies are 

obtained for the range of ݇ଵ, ݇ଶ values defined by the 1st Brillouin zone. Resulting 

frequencies are used to construct the first and second modes dispersion surfaces (i.e., 

߱ଵ ൌ ߱ଵሺ݇ଵ, ݇ଶሻ and ߱ଶ ൌ ߱ଶሺ݇ଵ, ݇ଶሻ) shown in Figures 4.2 and 4.3, respectively. 

Due to the symmetry of both of the Brillouin zone and the unit cell, only the first 

quadrant of the Brillouin zone is considered[14]. Simulations included few ݇ଵ, ݇ଶ 

values that lie outside the Brillouin zone. These points are used to check for the 

symmetry of the dispersion surfaces; an additional check to ensure the correctness of 

the analysis. Accordingly, the  ݇ଵ, ݇ଶ  values analyzed are the ones confined by the 

shaded zone in Figure 3.5. 

Dispersion surfaces in Figures. 4.2 and 4.3 are plotted using contour lines. Each 

line represents the values of ݇ଵand	݇ଶ corresponding to a single frequency. These two 

figures highlight the dispersive nature of double sided honeycombs as well as the 

frequency range at which double sided honeycombs exhibit direction independent wave 

propagation characteristics. Non dispersive and acoustically isotropic materials exhibit 
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dispersion surfaces with circular contours that expand such that the ratio between 

frequency and contour’s radius remains constant. On the contrary, contours in Figure 

4.2 are noncircular, even at the smallest computed frequencies (sub kHz). Thus, 

asymmetric wave propagation in double sided honeycombs always exhibits direction 

dependent propagation properties that depend on the periodic cellular structure of the 

honeycomb. On the other hand, Figure 4.3 shows perfect circular contours at lower 

frequencies. Thus, below a certain frequency, a propagating wave with symmetrical 

deformation mode can exhibit direction independent behavior. The frequency at which 

this direction independent behavior commences depends on the relative density, cell 

size and dimensions of the honeycomb. The range of frequencies with direction 

independent propagation characteristics, is the one most suited to be used in elastic 

waves based nondestructive techniques. At higher frequencies, both modes exhibit 

increased direction dependent characteristics. 

Although, Figures 4.2 and 4.3 can be used to describe the dispersive properties 

of double sided honeycombs, it is more practical to analyze their dispersive behavior 

using phase velocity plots. Phase velocities are computed for each of the analyzed 18 

cases using 

࢜ ൌ ߱/࢑ (11)

where phase velocity is defined as the angular frequency to wave vector ratio[38]. Phase 

velocities for the asymmetrical and symmetrical deformation modes are presented in 

Figures 4.4 and 4.5, respectively, but only for the range of frequencies associated with 

nondispersive to marginally dispersive behavior (i.e., small frequencies associated with 

circular and semi-circular contours in Figures 4.2 and 4.3). These frequencies 

correspond to phase velocity contours that negligibly change or contract with increase 

in wave frequency. The emphasis on these frequencies stems from their potential to be 

used in the nondestructive inspection of honeycombs. It is important to note that the 

lowest frequency considered for each case in Figures 4.4 and 4.5 represents the limit 

below which the response is non-dispersive and frequency independent. To facilitate 

conducting comparisons, cases in Figures 4.4 and 4.5 are ordered based on their relative 

density in an ascending manner..  

Phase velocities for the first mode (Figure 4.4) shows significant direction 

dependent behavior, at all frequencies (i.e., acoustically anisotropic). 
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Figure 4.2: Dispersion maps corresponding to the 1st Eigenmode for the 18 cases. 
Isolines represent the dispersion vectors (࢑ ൌ ଵଓ̂ߦ ൅  ଶଔ̂ሻ corresponding to the sameߦ

Eigenfrequency, which is shown on the isolines in kHz. 
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Figure 4.3: Dispersion maps corresponding to the 2nd Eigenmode for the 18 cases. 
Isolines represent the dispersion vectors ሺ࢑ ൌ ଵଓ̂ߦ ൅  ଶଔ̂ሻ corresponding to the sameߦ

Eigenfrequency, which is shown on the isolines in kHz. 
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Figure 4.4: First mode phase velocities for the 18 cases. Inserts in the plots 
represent the frequencies (in kHz) corresponding to the plotted contours; such that 

the outermost to the innermost contours correspond to the lowest to highest 
frequencies. Horizontal and vertical axes for all plots represent the phase velocity 
components (m/s) in the x and y- directions defined in Figure 3.1, respectively. 
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Figure 4.5: Second mode phase velocities for the 18 cases. Inserts in the plots 
represent the frequencies (in kHz) corresponding to the plotted contours; such that 

the outermost to the innermost contours correspond to the lowest to highest 
frequencies. Horizontal and vertical axes for all plots represent the phase velocity 

components (km/s) along the x and y- directions defined in Figure 3.1, respectively. 
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As frequency increases, the phase velocity along the y-direction exhibits significant 

dispersive behavior as well as a decrease in magnitude, while along the x-direction it 

remains nondispersive. Phase velocities for asymmetrical deformation modes ranged 

between ~15m/s to ~200m/s which is within the range reported for single wall 

aluminum honeycombs [14]. 

Phase velocities for the second mode Figure 4.5 are direction independent and 

nondispersive at lower frequencies; lower than a cutoff frequency that depends on the 

periodic structure’s parameter (e.g., relative density, cell size and thickness). This is 

illustrated by the circular velocity contours that preserve their circular shape and size 

even as the frequency vary by few kHz. However, at higher frequencies the velocity 

contours distort and change their size indicating directional dependent and dispersive 

behavior. Nonetheless, for frequencies in the range of 1~100 KHz, there exist, for each 

case, a range of frequencies at which the symmetrical waves have directional 

independent and nondispersive behavior. Elastic waves with frequencies from this 

range can potentially be used in the nondestructive evaluation of honeycomb cores. 

Also, Figure 4.5 shows that symmetric waves are much faster than their asymmetric 

counterpart. While asymmetric elastic waves have phase velocities in the range from 

15 to 200 m/s depending on the honeycomb case analyzed, symmetric waves have 

phase velocities that reach ~2400 m/s.  

4.2 Effect of Deformation Mechanisms on the Acoustic Properties of Honeycombs  

The effect of deformation mechanisms is highlighted through analyzing a 

bending dominated regular honeycomb lattice and stretching dominated reinforced 

honeycomb lattice and subsequently comparing their behaviors and properties.  

4.2.1 Dispersion surfaces and phase velocities of the regular honeycomb 

lattice. For the bending dominated honeycomb lattice, the dispersion surfaces 

corresponding to the eigenfrequencies of its first and second modes are shown in 

Figures 4.6 and 4.7, respectively. Dispersion surfaces can readily demonstrate the 

acoustic anisotropy and dispersion properties of periodic lattices. In general, dispersion 

surfaces with non-circular contours represent direction dependent phase velocities, 

while circular contours represent direction independent phase velocities. Moreover, 

non-proportional gradients in the frequency contours with increased wave vector, k, 

magnitude (norm) indicate dispersive behavior. The aforementioned trends are very 
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clear in the 1st mode dispersion surfaces of the regular honeycomb presented in Figure 

4.7. This figure shows circular contours near the origin that transition to noncircular 

contours at higher wave vector, k, magnitudes. This transition occurs, for instance, 

around 0.75 kHz, 1.5 kHz, and 2.25 kHz for the relative densities 0.5%, 1.0%, and 

1.5%, respectively. The latter frequencies represent the limit after which asymmetric 

waves traversing the honeycomb lattice exhibits direction dependent behavior. Before 

the direction dependent behavior commences, the contours in Figure 4.7 are 

proportional to the wave vector, demonstrating non-dispersive behavior. However, 

upon the onset of the direction dependent behavior, the contours in Figure 4.7 start to 

non-uniformly space out demonstrating dispersive behavior. Accordingly, for the 

regular honeycomb, asymmetric propagating waves start to exhibit direction dependent 

and dispersive behavior at relatively the same transition frequencies. The frequencies 

at which the transition from non-dispersive and isotropic to dispersive and anisotropic 

behavior occurs vary proportionally with relative density as seen in Figure 4.7.  For 

instance, increasing the relative density by 2 folds (from 0.5% to 1.0%) and 3 folds 

(from 0.5% to 1.5%) increase the transition frequency by a factor of 2 (from 0.75 to 1.5 

kHz) and 3 (from 0.75 kHz to 2.25kHz), respectively. The effect of relative density on 

the transition frequencies is part of a larger trend that applies to all frequency contours 

shown in Figure 4.7. This figure shows that scaling the relative density by a factor of x 

results in scaling all frequency contours by a factor of x.  

Similar to the honeycomb’s 1st mode dispersion surfaces, its second mode 

dispersion surfaces, see Figure 4.7, demonstrate direction independent behavior that 

transitions to become direction dependent at higher frequencies and large wave vector, 

k, magnitudes. Moreover, contours in Figure 4.7 slowly but not proportionally vary 

with wave vector, highlighting a significant dispersive behavior. Based on Figure 4.7, 

the frequencies at which the transition between non-dispersive and isotropic to 

dispersive and anisotropic behavior occurs around 7 kHz, 14 kHz, and 21 kHz, for the 

relative densities 0.5%, 1%, and 1.5%, respectively. The contours representing the 

nondispersive behavior are not easily visible in Figure 4.7 as they have very small radii; 

however, the range of frequencies associated with the non-dispersive behavior will be 

highlighted in the subsequent paragraph. Second mode frequency contours in Figure 

4.7 mirror the trends observed in Figure 4.6 with respect to dependence on relative 

density; second mode frequency contours are proportional to relative density. 
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Figure 4.6:  Dispersion surfaces corresponding to the 1st Eigenmode of the 
honeycomb structure. Isolines are in kHz and represent the wave vectors, k, 

corresponding to the same frequency. 

 

However, according to Figure 4.7, second mode dispersion surfaces differ from 1st 

mode dispersion surfaces of Figure 4.6 in that they are less direction dependent; their 

non-circular contours do not deviate significantly from the circular shape. Thus, 

longitudinal (symmetric) waves propagating in a regular honeycomb would show less 

direction dependent behavior as compared to shear (asymmetric) waves.    

Another perspective regarding the anisotropic and dispersive behavior of the 

regular honeycomb is provided through Figure 4.8. This figure is constructed using the 

data used to plot Figures 4.6 and 4.7, but it shows the variation of the eigenfrequencies 

(1st mode in Figure 4.8-a and 2nd mode in Figure 4.8-b) with wave vectors aligned with 

the lattice’s material principal directions (i.e., x and y directions). Accordingly, this 

figure demonstrates the behavior of asymmetric and symmetric waves propagating 

 

Figure 4.7: Dispersion surfaces corresponding to the 2nd Eigenmode of the 
honeycomb structure. Isolines are in kHz and represent the wave vectors, k, 

corresponding to the same frequency. 
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along the material principal directions of the regular honeycomb shown Figure 3.2. 

Figure 4.8 effectively shows the range of frequencies at which the acoustic response of 

the honeycomb is non-dispersive and isotropic as well as the transition behavior from 

the non-dispersive and isotropic phase to the dispersive and anisotropic phase. 

According to Figure 4.8-a, at each relative density, the relation between the 1st mode 

eigenfrequency and wave vector magnitude exhibits a linear and direction independent 

(i.e., isotropic) initial phase. This phase ends at the transition frequencies, which were 

determined using Figure 4.6, of 0.75 KHz, 1.5 kHz, and 2.25 kHz for the relative 

densities of 0.5%, 1%, and 1.5%, respectively. Beyond these frequencies, two 

observations can be seen. First, the relation between 1st mode eigenfrequency and wave 

vector magnitude becomes nonlinear (i.e., dispersive behavior is present), particularly 

for waves propagating along the y-direction. Second, the behavior of the relation 

between 1st mode eigenfrequency and wave vector magnitude along the x and y 

directions start to progressively deviate, indicating a growing anisotropic behavior at 

higher frequencies. Figure 4.8-a also shows that the transition process from the non-

dispersive and isotropic phase to the dispersive and anisotropic phase is smooth and 

gradual. With the respect to the 2nd mode eignfrequencies, Figure 4.8-b also 

demonstrates a transition between a non-dispersive and isotropic behavior to a 

dispersive and anisotropic behavior. However, the transition is not as smooth as in 1st 

mode case. The eigenrequency-wave vector plots in Figure 4.8-b exhibit distinct three 

phases: a non-dispersive, isotropic, and relative density independent initial phase that 

abruptly ends at the frequencies of 7kHz, 14kHz and 15 kHz for the relative densities 

of 0.5%, 1%, 1.5%, respectively; a dispersive, isotropic, and relative density dependent 

second phase that transitions smoothly to the subsequent phase; and a final dispersive, 

anisotropic, and relative density dependent phase. The second and third phases are 

apparent in Figure 4.7, but the initial phase is not as it is associated with very small 

wave vector magnitudes and is practically difficult to show in Figure 4.7.  Moreover, 

in the second and third phases, the 2nd mode eigenfrequency is proportionally dependent 

on relative density.  

The phase velocities corresponding to the honeycomb’s 1st and 2nd eigenmodes 

are computed by applying the relation ࢜ ൌ 	߱ ࢑⁄  to the dispersion surfaces shown in 

Figures 4.6 and 4.7. To avoid overcrowding the figures, the phase velocities are 

computed only for few frequencies (i.e., dispersion surfaces’ isocontours). These are 
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selected to allow for illustrating the observed trends per analyzed scenario (i.e., 

combination of mode, lattice, and relative density). Moreover, efforts were taken to 

select few overlapping frequencies among the different scenarios, when possible, to 

highlight the effect of relative density. It is worth mentioning that perfect frequency 

overlap among the different scenarios is not practically possible due to the limited 

overlap among the frequency ranges exhibited by the different scenarios. For the regular 

honeycomb, the phase velocities corresponding to its first and second eigenmodes are 

shown in Figures 4.9 and 4.10, respectively.  

The 1st mode velocity contours, see Figure 4.9, show nondispersive and 

direction dependent behavior that transitions to become dispersive and direction 

dependent as already illustrated by the dispersion surfaces. Here, nondispersive 

behavior manifests as frequency independent velocity contours. For instance, the case 

with 0.5% relative density shows frequency independent velocity contours at 0.25, 0.5, 

and 0.75 kHz. At frequencies higher than 0.75 kHz, the contours gradually change 

shape and size. The change in size underscores frequency dependent behavior, while 

the deviation from the circular shape represents direction dependent phase velocities. 

Similar behavior is seen at 1% and 1.5% relative density, but the transition occurs at 

higher frequencies (1.5 kHz and 2.25 kHz). Phase velocity, based on Figure 4.9, is 

proportional to relative density. For instance, in the non-dispersive range, a three-fold 

increase in phase velocity, from 15.77 m/s to 47.31 m/s, is associated with a 3-fold 

increase in relative density, from 0.5% to 1.5%. The proportional relation between 

phase velocity and relative density is a result of the proportional dependence of 

eigenfrequency on relative density, which is illustrated by the dispersion surfaces in 

Figure 4.9.  

Phase velocities corresponding to the 2nd mode of the honeycomb lattice, Figure 

4.10, exhibit frequency independent velocity contours with a magnitude of 2550 m/s 

that sharply transition to become frequency dependent (dispersive). This is consistent 

with the behavior observed in Figure 4.8-b. For the range of frequencies plotted, phase 

velocity contours are direction independent. At higher frequencies, based on the 

dispersion surfaces presented in Figure 4.7, direction dependent velocity contours 

would be observed. However, including them in Figure 4.10 would be impractical as 

they would be considerably smaller (not discernable) than the rest of the contours in  
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this figure. Phase velocities along the honeycomb’s material principal directions (x and 

y) are computed from Figures 4.6 and 4.7 and are plotted against wave vector magnitude 

in Figure 4.11.  

For the first mode, Figure 4.11-a demonstrates a proportional dependence of 

phase velocity on relative density. It also shows that at larger wave vectors, which  

Figure 4.8: Eigenfrequency variation with wave vectors aligned with the material 
principal directions (i.e., x and y directions) of the regular honeycomb lattice, 
showing: a) first mode frequencies and b) second mode frequencies. Results 

obtained at three relative densities: 0.5%, 1%, and 1.5%. 

 

Figure 4.9: Phase velocities corresponding to the 1st Eigenmode of the 
honeycomb structure. Contour lines in each subplot correspond to the phase 
velocity vector at the frequencies (kHz) inserted on the top of each subplot. 

Frequencies from low to high are associated with the contours from the outermost 
to the innermost. 
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translates to larger frequencies, the phase velocity along the y-axis drops substantially, 

while the phase velocity along the x-axis exhibits at minor increase.  For the second 

mode, the variation of phase velocity with wave vector along the x-direction is 

practically similar in trends and value to that along the y-direction, which is anticipated 

from Figure 4.8-b. Accordingly, Figure 4.11-b presents the variation along the x-

direction only. This figure demonstrates an exponentially decaying phase velocity for 

most of the wave vector range plotted. The observed trend corresponds to the second 

Figure 4.10: Phase velocities corresponding to the 2nd Eigenmode of the 
honeycomb structure. Contour lines in each subplot correspond to the frequencies 

(kHz) inserted on the top of each subplot. Frequencies from low to high are 
associated with the contours from the outermost to the innermost. 

 
Figure 4.11: Phase velocities along the material principal directions (x, y) of the 

honeycomb structure, showing phase velocities corresponding to the 1st mode in (a) 
and the 2nd mode in (b). 

(a) (b) 
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and third phases observed phases in Figure 4.8-b. The observed decrease is also linearly 

dependent on porosity; it scales linearly with relative density. The first phase in Figure 

4.8-b, which corresponds to a constant and porosity independent phase velocity, can 

only be observed when one zooms into the first 100 kHz range of Figure 4.11-b. The 

insert in Figure 4.11-b presents the zoomed in perspective, and it shows the relatively 

constant phase velocities (i.e., non-dispersive range) corresponding to the frequency 

independent initial phase in Figure 4.8-b  

4.2.2 Dispersion surfaces and phase velocities of the reinforced honeycomb 

lattice.  For the reinforced honeycomb, constructing the dispersion surfaces requires a 

slightly modified plotting procedure than for the regular honeycomb case. 1st mode 

dispersion surfaces of the reinforced honeycomb exhibit steeply increasing frequency 

contours near the origin of the 1st Brillouin zone (i.e., at very small wave vectors) and 

slowly decreasing frequency contours at large wave vectors. The latter is indicative of 

negative group velocities. Creating one plot that clearly and simultaneously 

demonstrates the different behaviors of the dispersion surfaces is found unfeasible. 

Multiple figures are needed to demonstrate the different behaviors. For instance, the 1st 

mode dispersion surfaces of the reinforced honeycomb with 0.5% relative density are 

shown in Figure 4.12. This figures progressively zooms in the small wave vector region 

where the contours are clustered.  Figure 4.12 demonstrates the existence of two 

domains: an increasing frequency domain that ends at a frequency of 5 kHz (right plot 

in Figure 4.12), and a decreasing frequency domain that start at 5 kHz and ends around 

3kHz (left plot in Figure 4.12). In this figure, the contours are circular for most of the 

1st Brillouin zone, indicating an almost direction independent behavior. This can be 

attributed to the quasi-isotropic stiffness of the reinforced honeycomb. Unlike the 

regular honeycomb, which exhibits a load type dependent stiffness (i.e., higher under 

multiaxial loading than under uniaxial loading) [3], the reinforced honeycomb has to a 

great extent load and direction independent stiffness [8]. Figure 4.12 also shows 

contours of decreasing frequency as one moves away from the origin which is indicative 

of dispersive behavior. Thus, asymmetric waves propagating in the reinforced 

honeycomb would exhibit in general dispersive but direction independent properties for 

most of the wave vectors bounded by the 1st Brillouin zone.  For the two other relative 

densities (1% and 1.5%), the 1st mode dispersion surfaces exhibited similar two phase 

behavior to the one observed in Figure 4.12 for ߩ∗ ൌ 0.5%. The two other relative 
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densities just have different transition frequencies between the increasing and 

decreasing frequency contours. In the following discussion, emphasis is given to the 

dispersion surfaces with increasing frequencies, which are bounded by the transition 

frequency. The increasing frequency domain is considered here as it overlaps with the 

frequencies exhibited by the regular honeycomb, which is used as a benchmark. This 

facilitates conducting comparison between the responses of the two lattices to satisfy 

the objective of this work, which emphasizes on demonstrating the effect of the 

underlying deformation mechanism in lattices (stretching or bending) on their 

frequency and direction dependent acoustic properties.    

For the reinforced honeycomb, 1st mode dispersion surfaces corresponding to 

the region of the 1st Brillouin zone with increasing frequency contours are shown in 

Figure 4.13 for the three investigated relative densities. For all cases, Figure 4.13 shows 

circular contours that expand proportionally. This demonstrates a direction and 

frequency independent behavior. However, Figure 4.13 shows that the transition 

frequency, after which the dispersive behavior and the negative nonlinear correlation 

between frequency and wave vector starts, scales linearly with relative density. The 

transition frequencies corresponding to the relative densities of 0.5%, 1%, and 1.5% 

based on Figure 4.6 are 5, 10,15 kHz, respectively. Accordingly, an asymmetric wave 

propagating in the reinforced honeycomb at a frequency below the transition frequency 

would exhibit isotropic and non-dispersive behavior. 

For the reinforced honeycomb, two phase behavior is also exhibited by its 2nd 

mode dispersion surfaces. However, 2nd mode frequency contours exhibit an increasing 

and constant frequency regions separated by a transition frequency. Second mode 

dispersion surfaces of the reinforced honeycomb, up to the contours corresponding to 

the transition frequencies, are shown in Figure 4.14. This figure is qualitatively similar 

to Figure 4.13. Accordingly, symmetric wave propagating in the reinforced honeycomb 

at a frequency below the transition frequency would exhibit isotropic and non-

dispersive behavior. With respect to the effect of relative density, similar to the 1st mode 

dispersion surfaces, 2nd mode frequency contours and the transition frequencies scale 

linearly with relative density.   
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Figure 4.12: Dispersion surfaces corresponding to the 1st Eigenmode of the 
reinforced honeycomb structure (case 1). Figure progressively show the dispersion 
surfaces at smaller wave vector values. The middle and right figures are exploded 

views of the small regions defined by the square inserts in the left and middle 
figures, respectively. 

 
The aforementioned discussion of the direction and frequency dependent 

behavior of the first two eigenmodes was limited mostly to the region of the 1st Brillouin 

zone with positive correlation between frequency and wave vector. To extend this 

discussion to cover the whole 1st Brillouin zone, the frequency variation with wave 

vector is reported along the reinforced honeycomb’s material principal directions in 

Figure 4.15. Subplots a and b in this figure correspond to the 1st mode and 2nd mode, 

respectively. The behavior along the material principal directions for the reinforced 

honeycomb suffices to represent the directional and frequency dependent behavior as 

this lattice is direction independent for most of its 1st Brillouin zone. This is concluded 

Figure 4.13: Dispersion surfaces corresponding to the 1st Eigenmode of the 
reinforced honeycomb structure in the range of cell’s 1st Brillouin zone exhibiting 

positive group velocities. Isolines are in kHz and represent the wave vectors, k, 
corresponding to the same frequency. 
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from the overall behavior shown in Figure 4.12 and since the 2nd mode is less direction 

dependent than the 1st mode. Figure 4.15 shows the two phase behavior discussed above 

for the two modes. It demonstrates, for the two modes, similar response along the two 

material principal directions. It also shows that the frequencies beyond the transition 

frequency (i.e., in the dispersive region) scale approximately linearly with relative 

density. For instance, scaling the relative density by 1.5, resulted in scaling the 

frequencies in the dispersive range by a factor of 1.35~1.5. Here, the 1.35 and 1.5 ratios 

are observed at the small wave vector range and large wave vector range, respectively.  

Using the data of Figure 4.15, the phase velocities, for the first two modes, along 

the material principal directions of the reinforced honeycomb are computed using ݒ ൌ

߱/࢑. As the dispersion surfaces corresponding to the first two modes of the reinforced 

honeycomb are direction independent for most of the 1st Brillouin range (see the last 

two paragraphs), it suffices to consider only one direction to characterize the 

dependence of the reinforced honeycomb’s phase velocity on wave vector. 

Accordingly, the phase velocity of the reinforced honeycomb is represented in Figure 

4.16 through its behavior along the x-direction. According to Figure 4.16-a, 1st mode 

phase velocity for all relative densities  starts at 1800 m/s and decreases exponentially 

with increased wave vector magnitude. However, the rate of decrease is higher at lower 

relative densities and is dependent on the wave vector magnitude. The aforementioned 

trends apply to the second mode phase velocities shown in Figure 4.16-b. This figure 

shows that 2nd mode phase velocity, for all relative densities, starts at 3100 m/s and 

decreases exponentially at larger wave vectors. In addition, the rate of decrease in 2nd 

mode phase velocity is higher at lower relative densities. It should be noted that Figure 

4.16 represents the behavior of the reinforced honeycomb in both non-dispersive and 

dispersive phases. In the non-dispersive phase, the one demonstrated in Figures 4.13 & 

4.14 and is bounded by the transition frequency, phase velocity is independent of 

frequency, direction, and relative density. This phase corresponds to the linear slope in 

Figure 4.15 and the start point of Figure 4.16. In this non-dispersive phase, the 1st mode 

and 2nd mode phase velocities are 1800m/s and 3100m/s, respectively. Since the range 

of the non-dispersive phase relates to a small region of the 1st Brillouin zone, 

asymmetric (shear) waves or symmetric (longitudinal) waves propagating in the 

reinforced honeycomb would exhibit direction independent properties and dispersive 

properties for most wave vector values. 
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Figure 4.14: Dispersion surfaces corresponding to the 2st Eigenmode of the 
reinforced honeycomb structure. Isolines are in kHz and represent the wave vectors, 

v, with the same frequency. 

 

 

Figure 4.15: Eigenfrequency variation with wave vectors aligned with the material 
principal directions (i.e., x and y directions) for the reinforced honeycomb lattice, 

showing: a) first mode frequencies and b) second mode frequencies. Results 
obtained at three relative densities: 0.5%, 1%, and 1.5%. 

 

 

Figure 4.16:  Phase velocities along the material principal directions (x, y) of the 
reinforced honeycomb, showing phase velocities corresponding to the 1st mode in 

(a) and the 2nd mode in (b). 
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Chapter 5. Discussion 

First part of this chapter discusses the results describing the acoustic properties 

of double sided honeycombs included in the preceding chapter. Subsequently, a 

comparison is conducted between the results obtained from the bending dominated and 

stretching dominated lattices analyzed in the results chapter.   

5.1 Effect of Double-sided Walls in Hexagonal Honeycomb 

Low sub-ultrasound frequencies have been proven useful in the nondestructive 

evaluation of periodic honeycomb aluminum structures [4]. However, to use them in 

the inspection of double-sided honeycombs, it is instrumental to have a detailed priori 

knowledge of the low frequency wave propagation characteristics in the inspected 

honeycomb. This knowledge is essential for properly selecting the frequency that 

matches the inspected medium; positioning the sensors, wave sources and receivers; 

and for interpreting the collected data. Figures 4.4 and 4.5 readily provide in a graphical 

manner the most relevant characteristics pertaining to the low wave propagation 

characteristics in the double-sided honeycombs analyzed in this work, which are widely 

used in composite sandwiched structures. Not only they show the wave phase velocity 

in terms of propagation direction, frequency and deformation mode, but they also show 

the frequencies at which the honeycombs are isotropic and nondispersive. These 

frequencies would be most suited to be employed in the nondestructive testing of 

aluminum honeycombs. Inasmuch, these results have some important features that are 

discussed in this section, mainly to better understand the behavior seen in Figures 4.4 

and 4.5. 

In general, asymmetric (Figure 4.4) and symmetric (Figure 4.5) waves exhibit 

different characteristics as the underlying deformation mechanisms associated with 

each of them are different. Figure 4.1 presents clear differences between the 

deformation patterns corresponding to the asymmetric and symmetric deformation 

modes. Deformations corresponding to the asymmetric mode are localized in few cell 

walls and most of the deformation is achieved by twisting (rotation) of vertices (i.e., 

the intersections between three cell walls). On the contrary, most cell walls undergo 

significant deformations in the symmetric deformation mode.  
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In the nondispersive frequencies range, asymmetric waves exhibit equal phase 

velocities along the material principal directions. This behavior mirrors the expected 

elastic response of the double-sided honeycombs under static loads, which are proven 

to have equal elastic moduli along their two material principal directions [3]. This 

behavior is attributed to the fact that the nondispersive frequencies are small and have 

wave lengths that significantly exceed the cell size of the honeycombs. For example, 

case 1 exhibited equal phase velocities along the x- and y- directions at 3 kHz. The 

wave vector corresponding to the 3 kHz contour line (inner most contour line for case 

1 in Figure 4.2) is ~250 rad/m. This results in a wave length of ~25 mm, which is 

roughly 15 times larger than the cell size of case 1. Accordingly, at the 3 kHz frequency, 

case 1 is anticipated to exhibit a response reminiscent of its properties under static 

loading, which is quasi-isotropic with equal elastic moduli along the material principal 

direction [3]. The aforementioned analysis, which used case 1 as an example, applies 

to all case, though the frequency level at which it applies can be different and depends 

on the cell size.  

The observed equality in phase velocities along the two material principal 

directions in its nondispersive frequency range was also verified using direct explicit 

simulations. These simulations were performed on full models made by reproducing 

the unit cell of Figure 3.3 to create a multi-cell structure. Full-scale models were 

subjected to asymmetric wave generating boundary conditions. For illustration, the 

finite element models for case 1 along with the resulting deformations due to 

asymmetric waves are shown in Figure 5.1. To measure the phase velocity along the x-

axis, a sinusoidal displacement boundary condition, ൌ 1 ൈ 10ିଷ sinሺ2ݐ݂ߨሻmm , with 

a frequency of 3 kHz was applied on the left side of the structure to generate a 

horizontally propagating (left to right) asymmetric wave.  Phase velocity was then 

computed as the ratio of the cell size to the time required for the wave to pass through 

a full cell near the middle of the specimen. A cell in the middle was chosen to be far 

away from the boundary where load was applied and far away from the perimeter to 

avoid the interference caused by reflected waves.  Computed phase velocity was 93.3 

m/s which agrees with the one reported in Figure 4.4. Similarly, to determine the phase 

velocity along the y-direction, the aforementioned process was repeated, but a 

sinusoidal displacement boundary condition,	ݑ ൌ 1 ൈ 10ିଷ sinሺ2ݐ݂ߨሻmm, with a 

frequency of 3 kHz was imposed on the top side of the structure to generate a downward 
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moving asymmetric wave. Phase velocity in the y-direction was computed as 92.8 m/s 

which is relatively equal to the horizontal phase velocity, confirming the equivalence 

in phase velocities along the honeycomb material principal directions.  

Phase velocities in the nondispersive frequency range are dependent on relative 

density; a clear positive correlation can be seen in Figure 4.4. The correlation is found 

by plotting the velocities along the material principal directions against relative density 

to be linear. The linear dependence can be explained analytically using Eqn. (8) in 

conjunction with the following classical scaling laws developed for predicting the 

relative density and elastic moduli of double sided honeycombs [3]  
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based on this equation, the longitudinal and shear moduli of double sided honeycombs 

have a third order dependence on relative density (i.e., ~ሾߩ ⁄௦௢௟௜ௗߩ ሿଷ). Thus, the stiffness 

matrix, ሾࡷഥሿ, which is linearly dependent on honeycombs’ moduli, has a third order 

dependence on relative density. On the other hand, the mass matrix,	ሾࡹഥ ሿ, in Eqn. (8) is 

linearly dependent on relative density. Accordingly, and based on Eqn. (8), the angular 

frequency (߱) is predicted to have a linear dependence on relative density.  

 Symmetric waves in the nondispersive frequency range are independent of 

relative density. This is highlighted by the similarity of the outermost contours for all 

the cases in Figure 4.4. Such behavior is convenient for nondestructive inspection as 

 

Figure 5.1: Asymmetric wave propagation in a multi-cell honeycomb made by 
periodically repeating the unit cell from case 1. Showing a vertically propagating 

wave (left) and a horizontally propagating wave (right). Frequency ሺ݂ሻ is 3 kHz and 
deformation is scaled by 105 to enhance visibility. 
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one would expect the same phase velocity regardless of the honeycomb relative density. 

This behavior, though unintuitive, can be explained using micromechanical models 

used to predict the moduli of double-sided honeycombs under multiaxial loading [3] in 

conjunction with the deformation patterns illustrated in Figure 4.1. Micromechanical 

models illustrate that the moduli of double-sided honeycombs under multiaxial 

compressive loads depend linearly on relative density. On the other hand, symmetric 

deformation patterns shown in Figure 4.1 are very different from their asymmetric 

counterparts and demonstrate multiaxial deformation patterns, compatible with 

deformations due to multiaxial compressive loading [3]. Thus, moduli for 

symmetrically deforming honeycombs depend linearly on relative density. 

Accordingly, both stiffness ሾࡷഥሿ and mass matrices 	ሾࡹഥ ሿ for the cases with symmetric 

deformations are linearly dependent on relative density. As both ሾࡷഥሿ  and ሾࡹഥ ሿ  scale 

linearly with relative density, the angular frequency, which is a function of their ratio, 

is independent of relative density.  

5.2 Comparison Between Bending-dominated and Stretching-dominated Lattices 

The two lattices analyzed are geometrically related and belong to the family of 

lattices whose building block utilizes hexagonal topology. The reinforced honeycomb 

lattice is derived from the regular honeycomb lattice and shares with it many 

topological features. The two lattices have identical relative densities and planes of 

symmetry. The main difference between the two lattices is their main admissible 

deformation mode. Whereas the hexagonal lattice deforms mostly through the bending 

of its ligaments, the reinforced lattice deforms mainly through the stretching of its 

ligaments. Bending deformation in the reinforced lattice is negligible. The difference 

in the dominant deformation mode between the two lattices result in significant 

differences in their acoustic properties. The full analysis of the behavior of the two 

lattices due to asymmetric and symmetric propagating waves is detailed in the previous 

two section. However, based on it, major differences can be highlighted.  

Asymmetric propagating waves are more direction dependent in the regular 

honeycomb than in the reinforced honeycomb. The regular honeycomb is direction 

independent at low frequencies and dependent at high frequencies. However, the 

reinforced honeycomb is direction independent for most frequencies. On the other hand, 

asymmetric propagating waves are more dispersive in the reinforced honeycomb than 
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in the regular honeycomb. The regular honeycomb can be non-dispersive at a wide 

range of wave vectors; however, the reinforced honeycomb is non-dispersive in a very 

small range of wave vectors. In addition, asymmetric waves have lower phase velocities 

in the regular honeycomb than in the reinforced honeycomb, lower by two orders of 

magnitude at small wave vector magnitudes. Finally, phase velocity of asymmetric 

waves scale linearly with relative density in the regular honeycomb, but it scales 

nonlinearly with relative density in the reinforced honeycomb. 

Symmetric waves are relatively direction independent and mostly dispersive for 

both regular and reinforced honeycombs. For both lattices, the non-dispersive behavior 

is associated with a very small wave vector range. Phase velocity of symmetric waves 

is higher in the reinforced honeycomb by ~24%. For both lattices, phase velocity 

decrease significantly with increased wave vector magnitude. The rate of decrease 

increases with decreasing relative density. Finally, phase velocity of symmetric wave 

scales approximately linearly with relative density in regular honeycombs (in the 

dispersive phase), but nonlinearly with relative density in the reinforced honeycomb 

(also in the dispersive phase). Phase velocity of symmetric waves is direction, 

frequency, and relative density independent in the non-dispersive phase.  
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Chapter 6. Conclusions 

This work uses finite element analysis as a criterion for understanding the 

underlying physics of elastic wave propagation at low to sub-ultrasound frequencies in 

aluminum honeycombs made by bonding thin corrugates sheets. Selected honeycomb 

structures for this study are representative of commercial aluminum honeycombs used 

as cores in composite sandwiched structures. A wide range of relative densities, sheet 

thicknesses, and cell sizes are considered to represent the various commercially 

available hexagonal aluminum honeycombs.   

Properties of shear and longitudinal elastic waves in terms of phase velocity, 

dispersion, and dependence on propagation direction are determined for a wide range 

of frequencies, ranging from infrasound to ~102 kHz. Obtained results provide the phase 

velocity and dispersion properties of shear and longitudinal waves for every in-plane 

propagation direction and for a wide range of relative densities and cell sizes. These 

results are instrumental for nondestructive inspection methodologies tailored for using 

low and sub-ultrasound frequencies to inspect honeycombs made from corrugated 

sheets.  

Moreover, results show that shear and longitudinal waves exhibit nondispersive 

behavior at low frequencies, lower than a frequency limit. This limit increases with the 

increase in relative density or sheet thickness as well as with the decrease in cell size. 

In the nondispersive frequency range, phase velocity for shear waves are direction 

dependent and linearly dependent on relative density. However, shear phase velocities 

along the material principal directions are identical. On the other hand, in the 

nondispersive frequencies range, phase velocity for longitudinal waves are independent 

of direction and relative density. In general, results illustrate that the dispersive and 

direction dependent behavior is more significant at higher frequencies and higher 

porosities. In addition, the frequencies at which nondispersive behavior commences are 

higher for honeycombs with higher densities.  

Results represent a map that can be used to determine the speed of sound for in-

plane waves in honeycombs made from corrugated sheets. Moreover, trends 

highlighted and discussed, which relate phase velocity to relative density, allow for 

generalizing the results obtained in this work through simple scaling to honeycombs 

made from corrugated sheets of any metal.  
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The direction and frequency dependent acoustic behavior of a topologically 

related bending dominated (i.e., regular honeycomb) and stretching dominated (i.e., 

reinforced honeycomb) lattices was analyzed using computational methods in this 

work. The objective was to highlight the differences in the acoustic response of the two 

lattice architectures due to the difference in their deformation mechanisms. Results and 

discussion support the following conclusions. 

 Although the two considered lattices have identical relative densities, cell sizes, 

and planes of symmetry, elastic waves propagating through them exhibited 

different behaviors, in terms of waves’ direction dependence and phase 

velocities. These differences are attributed to the lattices’ dissimilar 

deformation modes at their ligaments level. 

 Symmetric waves exhibited mostly direction independent behavior in the 

stretching dominated lattice. On the other hand, in the bending dominated 

lattice, they exhibited mild direction dependence at wave lengths smaller than 

4.5 times the lattice’s cell size and direction independent behavior at larger wave 

lengths.   

 Asymmetric waves exhibited mostly direction independent behavior in the 

stretching dominated lattice. However, in the bending dominated lattice, they 

exhibited significant direction dependent behavior at wave lengths smaller than 

8.4 times the lattice’s cell size and direction independent behavior at larger wave 

lengths.  

 The relation between phase velocity of asymmetric waves and relative density 

is linear in the bending the dominated lattice and nonlinear in the stretching 

dominated lattice.  

 The relation between phase velocity of symmetric waves and relative density, 

in the dispersive range, is approximately linear for the bending dominated lattice 

and nonlinear for the stretching dominated lattice.  

 Phase velocities are higher in the stretching dominated lattice than in the 

bending dominated lattice. Higher by up to two orders of magnitude in the 

asymmetric waves case, and up to ~25% in the symmetric waves case. 

 Both lattices exhibited dispersive behavior that increased with decreasing their 

relative density, for both asymmetric and symmetric waves. 
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Results of the present work demonstrate the potential for realizing lattice architectures 

with tailored acoustic behavior. For instance, by transforming a lattice between the two 

states of being bending dominated or stretching dominated, one can increase or decrease 

its phase velocities and stiffness without affecting its weight or size.  
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