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Abstract 

 

Digital video forensics is the process of analysing, examining and comparing a video 

for use in legal matters and court cases. In digital video forensics, the main aim is to 

detect and identify video forgery and manipulation to ensure a video’s authenticity and 

reliability for use in court. This work focuses on passive forensics techniques, namely 

compression-based digital video forensics. When a video is edited by methods such as 

frame deletion, cropping, or duplication, the original encoded bitstream is first decoded, 

editing is applied and then the video is re-compressed before saving it. This means that 

by detecting re-compression in videos, we can interpret that the video has undergone 

some form of manipulation. The least number of recompressions a video can have is 

double compression, the first results from the device initially capturing the video which 

compresses it to store it in a suitable format and the second comes from the editing 

software or tool that re-compresses the video after it has been edited. Such editing can 

also be done multiple times leading to multiple compressions. Thus, finding out the 

compression history of a video becomes a very important mean for detecting any 

manipulation. Several techniques have been studied and investigated for the accurate 

classification of double and triple compression in videos based on machine learning 

and deep learning models with promising results being obtained. In this work, a number 

of experiments are conducted by using K-Nearest Neighbours (KNN),  Random Forest 

(RF) or bi-directional Long Short-Term Memory (bi-LSTM)  classifiers on a dataset of 

forged and unforged video sequences. In each of the experiments, performance is 

evaluated based on the classification accuracy and confusion matrix. Experiments are 

conducted on MPEG2 and HEVC coded videos using the same re-compression 

quantization parameter and the results of recompression detection are compared. 

Experiments are also conducted on HEVC coded videos with the same recompression 

bitrate and the results obtained are compared to existing solutions in literature. The 

experimental results revealed that both double compression and triple compression can 

be accurately detected using the proposed machine learning and deep learning 

solutions.  

 

Keywords: MPEG-2; HEVC; Recompression detection; Quantization parameter; 

Bitrate; Machine learning. 
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Chapter 1. Introduction 

 

   The field of digital video forensics refers to the scientific analysis, examination, 

evaluation and comparison of video to be used in legal matters. A video needs to be 

first validated before being used in legal cases to ensure its authenticity and suitability 

to court. Nowadays, there is a wide range of camera models available in the market 

such as smartphones, action camera, professional digital cameras and security system 

cameras. Each of them can use its own file format and video recording settings such as 

the resolution or number of frames per second. Such factors greatly impact how and 

what content is stored in the video. Because of the existence of digital forensics, such 

differences can be identified to avoid possible misinterpretation of what a video may 

appear to show to the public. These factors become very important in a court case as 

they can be the main evidence for proving someone’s guilt or innocence. It is also very 

evident that images and videos have become very significant tools in communication 

media. Due to the fact that professional knowledge is no longer required to edit or 

manipulate such data, a lot of research and interest has been put on digital forensics 

with the main focus on detecting image manipulation because of its widespread and 

relatively easier detection compared to videos.  

However, in the past years, videos have been more widely used than ever in multiple 

domains such as security cameras in streets, trains, subways, malls, schools, companies 

and the like. Digital videos are also tremendously captured by cell phones which are 

then stored in compressed lossy formats with digital artifacts such as sampling and 

quantization. This means that fraud and manipulation of the compressed video through 

video editing, translation and transcoding can be easily applied without possible 

detection by the human eye. The same applies to the manipulation of digital video 

content present on social networking sites such as Facebook, Instagram, Twitter, 

LinkedIn and YouTube, making it very difficult to guarantee the trustworthiness and 

validness of such data without further examination. As a result, it becomes very 

important in court cases to assess the authenticity and quality of the video evidence 

being presented. From this, we can define video forensics as the logical examination 

and correlation of a video. Video forensics extracts the main features that distinguish 

between forged and original videos based on the type of forgery under examination.  
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Video forgery detection can be divided into two main classes, active forensics 

techniques and passive forensic techniques. In active forensics, approving data is used 

for the verification of the video, such as watermarks, fingerprinting and computerized 

watermarks. Passive forensics (aka blind forensics) does not rely on any validation 

information. It tries instead to extract features that differentiate between forged and 

unforced videos and possibly identify the location of forgery. Passive forgery detection 

techniques are further divided into two main categories; inter-frame forgery detection 

and intra-frame forgery detection. Inter-frame forgery detection involves the detection 

of forgery that occurs on an inter-frame level or in the temporal domain. Such forgeries 

can include frame insertion, frame deletion, frame duplication and double or multiple 

compressions. The detection techniques used for such types of forgeries are known as 

inter-frame forgery detection techniques. On the other hand, Intra-frame forgery 

detection involves the detection of forgery that occurs on each frame individually in the 

spatial domain. This includes copy-move of frames, splicing of frames, frame re-

sampling or cropping and object-level manipulation. An input or unforged frame is first 

decoded, edited by either inter-frame or intra-frame forgery techniques and then re-

encoded to be stored in its final compressed form. To identify such manipulation, the 

suitable forgery detection technique is used to extract the needed frames and features, 

which then uses a classification algorithm to distinguish between forged and original 

videos and possibly identify the exact type or location of forgery. This research focuses 

on passive forensic techniques due to the widespread of editing and manipulation of 

video content and thus there is much higher significance and need for such type of 

detection. 

1.1. Motivation 

Finding out the compression history of videos is one important way for 

identifying the authenticity and trustworthiness of a video. Over the past decade, several 

methods have been proposed by researchers in the forensics community for the 

detection of double compression in coded video sequences[1]. Multiple compressions 

occur when a video has undergone a series of compressions and decompressions. For 

instance, videos recorded on digital cameras are initially encoded by the camera itself 

and stored due to storage limitations, leading to the first compression in the series. The 

same video can then be decompressed, edited or manipulated and re-saved in the same 

format resulting in double compression. The number of compressions of a video 
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sequence keeps on increasing every time the video undergoes any manipulation. This 

makes the efficient detection of double compression in videos extremely significant in 

the field of digital forensics due to the underlying manipulation they may have. In 

addition, due to the existence of social media platforms, even the authentic videos can 

have traces of double compression despite having no manipulation undergone. This is 

because a second compression is automatically applied whenever a video is uploaded 

on a social media platform such as Facebook, Messenger, Twitter, Instagram or 

WhatsApp. As a result, this makes focusing solely on double compression detection not 

enough and thus there is a need for building reliable triple or even multiple compression 

detection techniques. Multiple studies have focused on double compression detection 

in videos while, to our knowledge, none of them addressed the issue of triple 

compression detection. Therefore, the aim of this proposal is to address the issue of 

triple compression detection in MPEG and HEVC videos as well as to propose a new 

set of features that can be used to improve the existing accuracies for double 

compression detection in both coding techniques. 

1.2.  Problem Statement  

The proposed solution aims to address the problem of forgery detection in 

MPEG2 and HEVC videos, based on the number of compressions they have undergone. 

This is done through the classification of double and triple compressions using machine 

learning and deep learning models. The detection of double and triple compression in 

coded videos can be viewed as a pre-step for forgery detection after which the existence 

and type of forgery can be identified. The solution aims to identify the effect of the 

more challenging case of having the same recompression quantization parameter on the 

detection of recompression in MPEG2 and HEVC coded videos. It also aims to identify 

the effect of having the same recompression bitrate on the detection of recompression 

in HEVC videos. A number of distinctive features are extracted from the original video 

bit stream, with single compression, and the re-compressed frames. In double 

compression detection, we classify the sequences as unforged which are the original 

sequences that have undergone single compression (class 1) and forged which are the 

sequences that have undergone two compressions (class 2). Whereas in triple 

compression detection, three classes are used for classification with class 1 representing 

the unforged samples, class 2 representing the forged samples with two compressions 

and class 3 representing the forged samples with 3 compressions. The features used for 
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classification of MPEG2 coded videos are based on the prediction residuals of inter-

coded macroblocks, the percentage of intra-coded macroblocks, and the estimated 

reconstruction quality or PSNR. The same features are extracted in HEVC videos but 

on a coding unit or CU level from which further statistics are obtained and used for 

classification. Machine and deep learning techniques are then used to report the 

classification accuracy, true positive and false negative rates of each of the conducted 

experiments. 
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Chapter 2. Background and Literature Review 

 

This section discusses the systems presented in literature in the field of video 

compression based forensics as well as some background knowledge of the coding 

schemes, machine learning algorithms and the statistical approaches used throughout 

the experiments. Sections 4.1 and 4.2 present the systems proposed in literature related 

to compression detection in MPEG and HEVC videos. Sections 4.3 and 4.4 then briefly 

explain the two coding schemes used in the conducted experiments. Finally, in section 

4.5, the three classifiers used,  Random Forest (RF), K-Nearest Neighbors (KNN) and 

bi-directional Long Short-Term Memory (bi-LSTM) network are being discussed.  

2.1.  Existing Solutions for MPEG2 

 This section summarizes the systems presented in literature in the field of 

compression-based video forensics along with the feature sets used in each. Triple 

compression detection in videos is considered a relatively new area of research, but the 

problem of the detection of double MPEG-X (where X is 1,2 or 4) compression has 

been previously discussed in [2-10]  and double HEVC compression detection has been 

discussed in [11-14]. With the focus on compression detection in MPEG-1 and MPEG-

2 videos, multiple systems have been proposed to solve such issue. One of the most 

significant systems tackling double compression detection in MPEG videos was 

initially proposed in [8]. In their work, two techniques were used to identify the static 

and temporal artifacts that result from double MPEG compression after video tampering 

has occurred. Two main features were used, the histograms of quantized I-frames and 

the motion estimation errors of  the predicted (P) and  bidirectional (B) frames. In [7], 

Sun et al. detected double compression in MPEG videos by relying on the fact that 

compression will introduce disturbance in the DCT coefficients, where the first digit 

distribution of quantized AC coefficients must have the same characteristics if no 

double compression is introduced and different characteristics with double 

compression. Features based on the first digit AC coefficient of I-frames with varying 

bitrates are being considered. In [12] , the authors focused on the detection of double 

compression in MPEG2 videos but with the same bit rate. In their system, they relied 

on the statistical difference between single MPEG-2 compressed videos and double 

MPEG-2 compressed videos due to the fact that the number of different DCT 

coefficients between I-frames of single compression and double compression is larger 
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than the number of different coefficients between the corresponding I-frames of the 

MPEG double compression and triple compression. This is because when an I-frame is 

recompressed multiple times using the same quantization matrix, the number of 

different coefficients between the frames will decrease with each compression. As 

explained in their work, if D’ represents the number of different DCT coefficients 

between the I-frames of single and double compressions, and D’’ represents the number 

of different DCT coefficients between I-frames of double and triple compression, the 

decision can be made as follows:  

D’ = no. of different coefficients between single and double 

D’’ = no. of different coefficients between double and triple 

{ 

 if D’’ > D’, double compression 

 if D’’ <= D’, single compression  

} 

In [3], Aghamaleki and Behrad proposed a system for the detection of double 

compression and localization of tampering in MPEG-X videos based on the traces of 

quantization error in residual errors of P-frames. Residual errors of P-frames contain 

peak values during compression history. Therefore, when multiple compressions or 

frame insertion or deletion occur, multiple P-frames in a group of pictures (GoP) will 

contain peak residual error values, which is used as an indication of forgery or double 

compression. The proposed system detects double compression with different GoP 

lengths and structures with an average detection rate of 92.73% for videos with high 

compression rates.  

The systems proposed in literature focused mainly on solving the problem of 

double compression detection with much room for improvement still available in terms 

of the feature sets and classifiers used as well as the accuracies obtained. In addition, to 

the best of our knowledge, no existing work addresses the problem of triple 

compression detection in MPEG videos. Thus, the proposed solution aims to use 

machine learning models to tackle the problem of forgery detection in MPEG videos 

based on the number of compressions they have undergone, whether double or triple. 

Features are to be extracted from P frames and the impact of fixing the quantization 

parameter on the detection accuracy is to be examined. The same experiments are 
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conducted in HEVC coded videos with the same features being extracted and the results 

of both coding schemes have been compared. 

2.2. Existing Solutions for HEVC 

In this thesis, we also focus on the detection of recompression in HEVC coded 

videos with the same re-compression bitrate. This section summarizes some of the most 

recent and best performing systems presented in literature for double compression 

detection in HEVC coded videos. To the extent of our knowledge, only systems related 

to double compression detection of HEVC videos were found. The issue of triple 

compression detection in the field of video forgery is yet considered new and no 

relevant experiments could be found. A number of parameters have been commonly 

used for double compression detection in HEVC videos such as the PU (Prediction 

Unit) type, the DCT coefficient and the TU (Transform Unit) type [12, 14-16]. 

Statistical data is obtained from these parameters and used to construct the feature sets 

which are then combined with machine learning classifiers for recompression detection. 

Multiple experiments were also conducted for double compression detection in shifted 

GoP structures where I-frames have been relocated after recompression. For such 

problem, the average prediction residual sequence was commonly used as the main 

feature for detection [2, 17, 18].  

To tackle the problem of double compression detection with the same 

recompression bitrate, Jiang et al. [19] proposed a very efficient solution that uses the 

same re-compression bitrate and makes use of the GOP-based PU type statistics 

extracted from each frame. In the proposed solution, the authors rely on the temporal 

variation patterns of the PU type across GOPs in single and double compression instead 

of using separate frames or the full video sequence as common with most other 

experiments in previous works. Three types of PUs are first extracted from the video 

sequences (Intra, Skipped, Predicted) and then the ratio of the Intra and Skipped PU 

types is calculated so that for each GOP unit, a PU sequence is generated. Then, for 

each GOP or PU sequence, the mean and standard deviation of these ratios are 

calculated to obtain the final PU-type statistic used for the re-compression detection. 

Four different bitrates have been used for the double re-compression detection using 

the GOP-based PU type statistics. When the same re-compression bitrate is used, the 

proposed method achieves accuracies ranging from 93% to 96% with 93% for the 

lowest bitrate of 800kbps and 96% for the highest tested bitrate of 1400kbps. As another 
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solution, the authors [11] managed to achieve accuracies ranging from 92% to 93% 

when using the same re-compression bitrates. In this method, the authors proposed a 

solution that detects double compression in HEVC videos using the Sequence of 

Number of Prediction Units of its Prediction Mode (SN-PUPM). In this method, the 

authors first extracted the number of PUs having different prediction modes from each 

frame of the video sequences. Then from each adjacent three frames, the SN-PUPM 

feature is calculated after which it is smoothed using an averaging filter. An SVM 

classifier is used and the period analysis method is implemented on each video sequence 

for the detection of double compression. In this method, the same GOP size has been 

used for single and double compression. In an experiment that uses the same re-

compression bitrate for the detection of double compression, Liang et al [13] achieved 

accuracies ranging from  85% to 87% for the same re-compression bitrates where they 

extracted a 25-D feature using the histogram of the partition modes of PUs named as 

HPP features. In this method, the aim was to implement a fake bitrate HEVC video 

detection system. The first PU in each GOP was used to extract PU information from 

which the 25-D HPP features are extracted. The HPP features of all GOPs of a video 

sequence are then averaged to obtain the final detection feature. Finally, an SVM 

classifier with a polynomial kernel was used with the 25-D HPP features used as an 

input to obtain the final detection accuracy.  

 In our proposed solution, the same experimental setup has been done to mimic 

the experiments conducted by [11, 13, 19] for the recompression detection of HEVC 

coded videos when using the same re-compression bitrate. The same video sequences 

used in [19] and the same preprocessing steps have been applied.  In our solution, a 

newly proposed feature set along with a Random Forest classifier and a bi-LSTM deep 

learning network have been used with results that significantly outperform the existing 

methods. 

2.3. The MPEG2 Compression Standard 

      The MPEG video standard is one of the most commonly used schemes for video 

compression with the aim of reducing the spatial and temporal redundancy within and 

between frames. This proposal focuses on the detection of double and multiple 

compressions in MPEG-2 Variable Bit Rate videos, which are also MPEG-1 backward 

compatible. A brief overview of the MPEG-2 video coding scheme is first given as 

explained in [20]. The statistical differences that recompression can cause in forged and 
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unforged MPEG2 coded videos are then described in the next sections.  MPEG-2 

contains 3 different types of frames known as I, P and B frames or intra, predicted and 

bidirectional frames. Each of the three types leads to a different amount of compression.  

These frames are organized in sequences, with each sequence containing N frames 

known as a group of pictures (GoP). The I-frames in MPEG-2 are encoded using intra-

coding, without reference to the other frames in the sequence. P-frames and B-frames 

are encoded using inter-coding with reference to other frames. P-frames use the 

previous I-frame or P-frame as a reference and B-frames use the previous and the next 

I-frame of P-frame as a reference for encoding. B-frames allow for the highest level of 

compression, with P-frames a bit lower and I-frames the lowest of all. Next is a brief 

explanation of the intra-frame and inter-frame coding schemes used in MPEG-2. The 

full MPEG-2 coding process is represented below in figure 1. 

   2.3.1.  Intra-frame coding. The intra coding process in MPEG-2 is very similar 

to that of individual JPEG images with the three main steps of DCT, quantization and 

variable length coding. DCT is first applied to each 8x8 block of the image to remove 

spatial redundancy between pixels. This produces 8x8 DCT coefficients with the DC-

coefficient being the most significant along with the low frequency DCT values which 

are finely quantized. The remaining values are the AC-coefficients, representing high 

frequency components, which undergo more coarse quantization. The quantization is 

done by dividing the coefficients by one of the standard JPEG quantization matrices. 

The compression rate can also be altered by defining a quantization parameter as a user 

input to the encoder when Variable Bit Rate (VBR) is used. Finally, variable length 

coding such as Huffman coding it applied to the resulting quantized DCT coefficients. 

To decode a frame, the inverse process is applied. 

2.3.2. Inter-frame coding. In MPEG-2, inter-frame coding is applied to P and 

B frames where motion estimation and motion compensation is applied, making use of 

the temporal redundancy between frames. For each macroblock in the current image, a 

spatial search algorithm tries to find a corresponding matching macroblock in a 

reference frame(s), the previous frame in P-frames or previous and next frames in B-

frames. If a good match is found, the macroblock then goes through inter-coding, 

otherwise intra-coding is performed. In the case of inter-coding when a best match 

macroblock is found, motion estimation is applied where a motion vector is calculated, 

pointing to the position of the matching block in the reference frame. Since the 
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matching block is most likely not an exact match of the current block, motion 

compensation is applied to compute the differences between the two, producing a 

prediction error frame. The prediction error frame then undergoes intra-coding with the 

exception of having the quantization matrix as a flat matrix with only one constant 

value. The DCT coefficients will now be mostly zeros due to the prediction error having 

much less information. To decode an inter-coded frame, the encoded motion vectors, 

representing the spatial difference between two frames and the encoded prediction error 

frames, representing the content difference between the frames, are sent to the decoder 

where the inverse process happens to re-construct the frame. 

 

 

2.4.  The HEVC Compression Standard 

HEVC was developed with the main aim of addressing the current need for high 

resolution videos with an improved coding efficiency [21]. In HEVC, inter and intra 

frame prediction are implemented along with transform coding, motion estimation and 

motion compensation. In this work, we rely on the fact that HEVC is a lossy coding 

technique so we attempt to examine the effect of HEVC re-compression on the coding 

parameter information from which we can differentiate between single, double and 

triple compression [15]. The HEVC coding standard replaces the known macroblock 

structure in H.264 with a coding tree unit (CTU) consisting of LCUs (Largest Coding 

Figure 1: Overview of the MPEG-2 coding scheme. 
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Units) as shown in Figure 2. These LCUs are divided into smaller sub-CUs in a 

recursive manner as shown in figure 3. The size L x L of a CTU can be chosen such 

that L=16, 32, or 64. These sub-CUs can be further divided into Prediction Units or 

PUs with sizes ranging from 4X4 to 32X32. The PUs represent the main block 

containing the prediction information which is also sent to the decoder. PUs are divided 

into three main types, skipped PUs (S-PU), inter-predicted PUs (P-PUs) and intra-

predicted PUs (I-PUs) [22]. In this work, statistics related to PUs and CUs are being 

used.  PUs are then divided into Transform Units or TUs which are used as an input to 

the Discrete Cosine Transform. HEVC supports four transform sizes for each N x N 

TU where N = 4,8,16 or 32. In intra prediction mode, HEVC defines 35 different intra 

prediction modes in which the mode with the lowest cost (Rate Distortion cost) is 

chosen. The intra-prediction modes are categorized into three types, DC Prediction 

Mode, Planar Prediction Mode and Angular Prediction Mode. DC prediction mode is 

used when predicting homogenous areas within a frame as it uses the average of the 

reference samples to predict a given sample. Planar prediction mode is used when 

needing to create smooth surfaces within an image. This method specifies an average 

value of two linear approximations using the four reference samples at all the corners 

of a given block. In the angular prediction mode, directional blocks of objects within 

an image are predicted by using the reference samples in a given direction and 

extrapolating them. In inter-prediction, either Discrete Cosine Transform (DCT) or 

Discrete Sine Transform (DST) is applied on TUs. The transform is applied on the 

residual coefficients which are calculated by finding the difference between the 

predicted block and the current block in the spatial domain after which quantization and 

entropy coding are applied. The full HEVC encoder process is shown below in Figure 

4. 

 

 

 

 

 

 

 

Figure 2: CU partitions [12]. 
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Figure 3: Example of CTU [21]. 

 

Figure 4: Typical HEVC video encoder [21]. 
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2.5.  Classifiers used in the proposed solution 

To detect double and triple compressions, three machine learning techniques are 

used and compared in terms of the detection accuracy and true positive and false 

positive rates. The algorithms used are K-Nearest Neighbors (KNN), Random Forests 

(RFs) and bi-directional Long Short-Term Memory (bi-LSTM) networks. This section 

provides a brief explanation of the main functionalities of each of the three algorithms.  

2.5.1.  K-Nearest neighbors (KNN). As for KNN, the algorithm is used for 

classification based on feature similarity without any underlying knowledge or 

assumptions about the data distribution. The KNN algorithm is a very simple yet 

effective algorithm commonly used for classification [23]. An instance is classified 

based on the majority votes of its K nearest neighboring instances. The steps below 

show how the KNN works: If m is the number of samples in the training set and p is an 

unknown instance in the testing set, 

1. The training samples are stored in an array arr of data points where each 

element in an array represents one of the instances.  

2. For each of the training samples (i=0 to m), calculate the distance between 

arr[i] and that of p d(arr[i],p). 

3. Store the classes of the instances with K smallest distances obtained from the 

previous step in a set S. 

4. The majority label in S becomes the label of the test case p.  

5. The type of distance used to find the k-nearest neighbors can be one of 

Euclidean, Manhattan or Minkowski. In the following experiments, Euclidian 

distance is being used as it is found to provide the highest results. Each of these 

distances is calculated as shown in Equations 1-3:  

 

𝑑 = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑘

𝑖=1

 

 

(1) 

 

𝑑 = ∑|(𝑥𝑖 − 𝑦𝑖)|

𝑘

𝑖=1

 

 

(2) 

 

𝑑 = (∑(|𝑥𝑖 − 𝑦𝑖|)𝑞

𝑘

𝑖=1

)

1
𝑞⁄

 

(3) 
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2.5.2.  Random forest (RF). As for Random Forests (RFs), they are part of 

ensemble machine learning algorithms where a group of weak classifiers combine to 

form a strong classifier. The algorithm is based on the bagging approach where multiple 

decision trees are combined to create a new model with low variance in terms of 

classification and thus increase classification accuracy. The random forest approach is 

a combination consisting of a set of decision trees [24-27] used for classification. There 

are three types of nodes for each tree within the RF; root node, internal nodes and leaf 

or terminal nodes. The classification results of each separate tree are combined using 

the voting technique. One of the main advantages of RFs over decision trees is that 

individual decision trees tend to overfit. Thus, bagged decision trees or Random Forests 

combine the results of many decision trees to reduce overfitting and improve 

generalization. Each tree in the Random Forest is planted and grown as follows:  

1. With N training samples, a sample of these N cases is selected at random with 

replacement and used as the training set for building 1 decision tree.  

2. With M features, a number m<M is selected at random out of the M features 

and used for each tree being built. The value m is kept constant while growing 

the forest. The instances that were left out during the training phase of a certain 

tree is known as the out-of-bag data [28]. 

3. The above steps are repeated for building n trees (n is a user-defined value), 

each with a different subset of the training set N and a different subset of the M 

features. Each tree is then grown to the largest extent possible with no pruning.  

4. New instances are predicted by combining the predictions of the n trees and 

classified using majority voting. In case of regression, the average predictions 

of trees is taken and used as the final output prediction.  

 

2.5.3.  Bi-directional long short-term memory (bi-LSTM). Long Short-Term 

Memory networks, also known as LSTMs, are a special version of the Recurrent Neural 

Network or RNN used for the prediction of sequential data and bi-LSTM is another 

version of the LSTM network. Recurrent neural networks differ from traditional feed-

forward neural networks in the sense that they make use of past events to predict future 

ones. RNNs include additional complexity as they include loops that allow information 

to persist. An RNN can be viewed as one network having multiple copies with each 

copy passing a message to the following copy as shown in Figure 5 below. Thus, such 
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networks can be very effective when used with sequential data where the output of one 

sample depends on that of previous samples. RNNs are very useful when it comes to 

language modeling, image captioning, translation, speech recognition, etc. The specific 

version known as LSTM network includes one input hidden and output layer with the 

hidden layer consisting of memory cells to retain previous data. The bi-LSTM is an 

improvement to the LSTM network where both previous and following data samples 

are used in the prediction of a current input. In other words, the bi-LSTM relies on past 

and future data to predict current data. Figure 6 shows a simple demonstration of the 

difference between an LSTM and a bi-LSTM network. This means that for every point 

in the input sequence, the network has full information about all the points preceding 

and following it. In our solution, we propose the use of the bi-LSTM network for 

recompression detection in HEVC coded videos using the fact that the features used to 

classify one frame will depend on that of the previous frames. This is because the use 

of features in previous frames will give a more clear understanding of the type of 

recompression in the present frame. To the extent of our knowledge, no existing 

solutions have used the bi-LSTM network for recompression detection in coded videos.  

 

Figure 5: An unrolled recurrent neural network (RNN). 
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Figure 6: Difference between LSTM and bi-LSTM network [29]. 
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Chapter 3. Proposed Solution 

 

3.1.   System Overview 

 

3.1.1.   MPEG2 & HEVC Recompression detection using same quantization 

          parameter. The existing video forgery detection solutions discussed earlier 

have a number of limitations. This is because most of the proposed solutions focused 

solely on the detection of double compression with the high majority relying on features 

extracted only from one frame type, disregarding the impact the forgery can have on 

multiple frame types. In addition, a focus was put on varying the bit rate of the re-

compression, but none of the solutions have experimented the impact of varying the 

quantization parameter (QP), which is very common when any manipulation is done. 

Also, no existing work clearly addresses the issue of multiple compression detection in 

videos which is again very common especially with the spread of various social media 

platforms and automatic re-compression whenever any video is upload, making the 

detection of double compression not necessarily an indication of the existence of 

forgery.  

Hence, in this work, the existing solutions reviewed are expanded in terms of 

the feature set used from different frame types, the quantization parameters and the 

number of compressions to be detected. A machine learning approach is used for the 

detection of double and triple compressions in MPEG-2 videos. The detection system 

is trained with a number of video sequences, consisting of both unaltered (i.e. singly 

compressed videos) and forged videos that have undergone double or multiple 

compressions. A number of features are extracted from the bitstreams of P-frames 

which are then used to train the model. The complete process of feature selection is 

further elaborated in the next section. The feature vectors are then normalized using z-

scores due to the varying ranges they might have. A detection model is then generated 

which is capable of classifying a new unseen video sequence as forged or unforged as 

well as the number of compressions it has undergone. In this work, two machine 

learning techniques are used, K-Nearest Neighbours (KNN) and Random Forests (RF), 

from which we report the classification rate, true positive rate and false negative rate of 

each of the conducted experiments. Detection accuracy of the proposed model is then 

compared against the existing work.  Experiments are conducted for MPEG2 coded 

videos that are re-compressed using the same quantization parameter since it is the most 
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challenging case. The same exact experiments are then conducted using HEVC for the 

same dataset and same feature set and the results are compared. The proposed video 

forgery detection model system based on double and triple compression detection with 

same QP for both MPEG2 and HEVC is further illustrated in Figure 7.  

 

 

Figure 7: Block diagram of MPEG2 and HEVC re-compression detection with same 

QP. 

 

3.1.2. HEVC Recompression detection using same bitrate. Multiple 

experiments are conducted to identify the re-compression detection accuracy for HEVC 

coded videos using the same re-compression bitrate. When using the same re-

compression bitrate, it becomes more difficult to identify the traces of re-compression, 

making it more of a challenging task compared to when different bitrates are used and 

thus, more focus is put on such experiments. During the classification process, two 

different detection accuracies are obtained, one based on the extraction of frame-level 

features from the coded video sequences and the other based on the extraction of the 

Group of Pictures or GoP-level features. The results of both structures are obtained and 

compared with each other. Also, for each of the structures, classification is done using 

a Random Forest classifier as well as a deep learning bi-LSTM network. Figure 8 shows 

the experimental setup when using a RF classifier. Feature vectors of all the coded 

sequences are read on a frame-level or GoP-level, z-score normalization is applied and 

the feature vectors are split into training and testing data as discussed in the next section. 

Training feature vectors are downsampled and used as an input to the RF classifier. 
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After the training phase is complete, the testing dataset is used as an input to the model 

followed by sequence-level majority voting after which the sequence-level re-

compression detection accuracies are obtained. As for the LSTM network, as shown in 

Figure 9, the same frame-level or GoP-level features are first read along with their class 

labels, which are then split into training and validation data. The bi-LSTM network is 

created, the training options are specified and the training dataset is used to train the 

network. The validation data is then used for testing and the final sequence-level 

accuracies are then obtained. Results from both classifiers, RF and bi-LSTM, and both 

feature sets, frame-level features and GoP-level features, for double compression 

detection with the same bitrate are reported in the Results section. The results have also 

been compared to existing work, demonstrating effectiveness of the proposed solution. 

Experiments are also conducted for triple compression detection with the same bitrate 

with promising results being obtained.  

Figure 8: HEVC re-compression detection using RF classifier. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: HEVC re-compression detection using bi-LSTM network. 
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3.2. Dataset  

 

3.2.1.  MPEG2 and HEVC Recompression detection using same quantization 

          parameter. The MPEG2 codec is used to compress 36 YUV420 video 

sequences with QCIF or Quarter Common Intermediate Format resolution that are 

publicly available using Variable Bit Rate (VBR) coding. The group of picture (GoP) 

structure of all the MPEG2 coded sequences under examination has a value of N=12 

(an I-frame every 12 frames) and M=3 (two B-frames between each pair of P-frames) 

represented by the structure IBBPBBPBBPBB….The video sequences used are Akiyo, 

Bowing, Bridge-Close, Bridge-Far, Carphone, City, Claire, Coastguard, Container, 

Crew, Deadline, Flower Gar- den, Football, Foreman, Galleon, Grandma, Hall, 

Harbour, Highway, Husky, Intros, Pamphlet, Mobile, Mother and Daughter, News, 

Paris, Salesman, Sign-Irene, Silent, Soccer, stefan, Students, Table, Tempete, Vtc1nw 

and WashDC. The same video sequences are also used for re-compression detection in 

HEVC coded videos. These video sequences have been chosen due to the different 

temporal activities they contain. Some of them contain very low activities while others 

contain medium to high levels of motion, providing a good representation of real-life 

video sequences. From these 36 videos, two sets of sequences are created, one 

representing the unaltered videos and the other representing the re-compressed or 

forged videos. Such sequences are available as raw YUV images and since original 

frames are not usually available in real life but are rather singly compressed and stored, 

we create the unforged dataset by first compressing the sequences using the MPEG-2 

or HEVC coding scheme and storing their encoded bitstream. To create the forged 

dataset, we first decode the original encoded bitstreams, set the re-compression 

parameters and re-encode them using these new parameters, storing the re-encoded 

video bitstreams. For double compression detection, we re-compress the sequences 

only once while for triple compression detection, we recompress them three times, each 

compression depending on the previous one, before storing the final re-encoded 

bitstreams. The dataset consisting of forged and unforged video sequences is then used 

to train the classifiers and the detection rates are reported.   

3.2.2.  HEVC Recompression detection using same bitrate. In the experiments 

conducted for HEVC double and triple compression detection, 26 YUV420 sequences 

are used, thirteen of which are 1080p and thirteen are 720p.   
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Table 1 shows a detailed list of the YUV sequences used to generate the dataset, 

which is the same set of sequences used in [19]. All the sequences used are collected 

from the online video test media database1. To keep the spatial resolution the same for 

all the YUV sequences, the 1080p sequences are resized to 720p (1280x720) in the 

spatial domain in a lossless manner so that there are no traces of lossy compression. 

Also, to increase the sample size, each YUV sequence is divided into multiple non-

overlapping sequences consisting of 100 frames each. As a result, a total of 127 shorter 

YUV sequences are obtained which are then used throughout the experiments. Four 

different bitrates are being used, selected from (800,1000,1200,1400) kbps. To obtain 

single compressed videos, the raw YUV sequences are compressed using one of the 

four bitrates. To obtain double compressed videos, the raw YUV sequences are first 

compressed using one of the bitrates then decompressed and re-encoded using the same 

bitrate. For triple compression, the same recompressions of double compression are 

conducted following by a third compression of the same bitrate. For a fair comparison, 

the x265 is selected as the HEVC codec, the Main Profile is applied in the coding 

process and B-frames are not considered to mimic the experiments setup used in [19]. 

All the obtained video sequences from the re-compressions are also divided into two 

groups for training and testing according to the splitting used in the previous work as 

shown in Table 2. This splitting structure ensures that no two YUV sequences originally 

belonging to the same sequence are included in both the training and testing datasets. 

As a result of the split, out of the 127 sequences, the training set will consist of 77 

sequences and the testing set will consist of the remaining 50 sequences.  

 

Table 1:  YUV sequences used to generate dataset. 

 

 

 
1 1 YUV sequences available at the online database: http://media.xiph.org/video/derf/. 
 

1080p YUV Sequences 720p YUV Sequences 

blue_sky,crowd_run,pedestrian_area, 

riverbed,rush_field_cuts,rush_hour, 

snow_mnt,speed_bag,station2, 

sunflower,touchdown_pass,tractor, 

west_wind_easy 

ducks_take_off,FourPeople,in_to_tree, 

Johnny,KristenAndSara,mobcal, 

old_town_cross,park_joy,parkrun, 

shields,stockholm,vidyo1,vidyo3 

http://media.xiph.org/video/derf/
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Table 2: YUV sequences used in training and testing datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training Samples Testing Samples 

stockholm,KristenAndSara,Johnny, 

shields,vidyo3,ducks_take_off, 

sunflower,rush_hour,crowd_run, 

rush_field_cuts,blue_sky,speed_ba

g, 

touchdown_pass,west_wind_easy, 

pedestrian_area station2 

in_to_tree,park_joy,old_town_cross,vidyo1, 

parkrun,mobcal,FourPeople,snow_mnt,tracto

r, riverbed.  
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Chapter 4. Proposed Feature Extraction and Classification 

 

4.1. MPEG2 and HEVC Recompression Detection Using Same Quantization 

            Parameter 

This section discusses a new set of features to be used for the detection of double 

and triple compressions in MPEG2 and HEVC videos using the same re-compression 

quantization parameters. The features are extracted from the singly compressed 

decoded videos, representing the unaltered videos as well as the decoded videos after 

re-compression is applied, representing the forged videos. The MPEG2 feature set 

consists of 4 sequence-level features extracted from P-frames.  A similar set of features 

were successfully used in detecting frame deletion in MPEG video [30]. In this work, 

we use this feature set for the detection of double compression and for the classification 

of triple compression. The same features used in MPEG2 were extracted in HEVC 

along with other HEVC-specific features. Table 3 shows the features extracted from 

MPEG2 coded videos and Table 4 shows the features extracted from HEVC videos. 

The proposed feature set consists of the mean and standard deviation of each of the 

extracted features. The equations in Table 5 and Table 6 have been used to compute the 

features extracted from MPEG2 and HEVC respectively.  

Before conducting the experiments, it was observed that re-compression 

significantly affects the characteristics of P frames. It was also noticed that with each 

compression, the energy of prediction residuals, the percentage of intra MBs across 

frames and the quality of decoded frames noticeably change when re-compression is 

applied. Thus, such features play an important role in differentiating between forged 

and unaltered videos. It is also important to mention that in real-life, there is usually no 

access to the original raw video sequences, only the bitstreams after the first 

compression are available. Thus, to calculate the peak signal-to-noise ratio (PSNR) of 

the decoded videos, no reference quality assessment is to be used to estimate its value 

using the work reported in [31]. 

The results for HEVC have been obtained for three different feature sets; 

MPEG2-specific features, HEVC-specific features, and a full feature set in order to find 

the contribution of each of the feature sets on the results after which a comparison is 

done with MPEG2. The features used in each of the feature sets are subsets of the 

features shown in Table 3 and Table 4 such that the MPEG2-specific features are those 

presented in Table 3, the full feature-set are those presented in Table 4 and the HEVC-
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specific features are the difference between both. The results obtained for each of the 

feature sets have been reported and compared against those of MPEG2 in the 

Experimental Results section. 

 

Table 3: An overview of the features computed in MPEG2 frames for same 

recompression QP. 

 

 

Table 4: An overview of the features used in HEVC with same recompression QP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature ID Feature Description 

1 Prediction residual energy of 

non-Intra coded MBs. 

2 Percentage of intra-coded MBs. 

3 Estimated PSNR value. 

4 Quantization parameter. 

Feature ID Feature Description 

1 Number of sub-CU partitions  

2 Ratio of MVD bits with reference to the total number of bits 

3 Number of CU bits  

4 Percentage of intra partitions in a CU 

5 Percentage of skipped partitions in a CU 

6 Percentage of inter (forward) partitions in a CU 

7 Energy of prediction residual of CU 

8 Estimated PSNR 



35 
 

Table 5: Equations used in the computation of MPEG2 features with same QP. 

 

 

 

 

Feature Name Equation 

Mean of prediction residual energy 

of non-intra coded MBs 

 µ𝜖=1
𝑁⁄ ∑ ∑ 𝑅𝑖(𝑗)𝑖𝑗

 

 

(4) 

where i is the index of MB at the jth frame.  

N is the total number of predicted MBs in the 

video sequence  for a P  frame and Ri(j) is the 

sum of absolute residual values for the ith MB 

at the jth frame.  

Standard deviation of prediction 

residual energy of non-intra coded 

MBs 

 𝜎𝜖 = √𝐸[(𝑅𝑖(𝑗) − 𝜇𝜖)2] 
 

(5) 

where E denotes the expected value. 

Mean percentage of intra-coded 

MBs  

 µ𝑖𝑛𝑡𝑟𝑎=1
𝑁⁄ ∑ 𝐼(𝑗)𝑗

 (6) 

where N is the total number of predicted P 

frames in the video sequence and I(j) is the 

percentage of intra coded MBs in the jth frame 

Standard deviation of percentage 

of intra-coded MBs 

 

 

 𝜎𝑖𝑛𝑡𝑟𝑎 = √𝐸[(𝐼(𝑗) − 𝜇𝑖𝑛𝑡𝑟𝑎)2] 
 

(7) 

where E denotes the expected value.  

Mean of estimated PSNR values  µ𝑃𝑆𝑁𝑅=1
𝑁⁄ ∑ 𝑃(𝑗)𝑗

 (8) 

 

where N is the total number of predicted P 

frames in the video sequence and P(j) is the 

estimated PSNR of the jth frame 

Standard deviation of estimated 

PSNR values 

 
𝜎𝑝𝑠𝑛𝑟 = √𝐸 [(𝑃(𝑗) − 𝜇𝑝𝑠𝑛𝑟)

2
] 

(9) 

 

where E denotes the expected value.  

Mean of quantization parameter 

values 

 µ𝑞=1
𝑁⁄ ∑ ∑ 𝑄𝑖(𝑗)𝑖𝑗

 (10) 

 

where N is the total number of MBs in the 

video sequence for a P frame and Qi(j) is the 

quantization parameter of the ith MB at  the jth 

frame 

Standard deviation of quantization 

parameter values 

 
𝜎𝑞 = √𝐸 [(𝑄𝑖(𝑗) − 𝜇𝑞)

2
] 

(11) 

 

where E denotes the expected value.  
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Table 6: Equations used in the computation of HEVC features with same QP. 

Feature Name Equation 

Mean of  number of sub-

CU partitions 

 µ𝑐𝑢𝑝𝑎𝑟𝑡𝑠=1
𝑁⁄ ∑ ∑ 𝐴𝑖(𝑗)𝑖𝑗

 (12) 

where N is the total number of CUs per frame in the 

video sequence and Ai(j) is the number of sub-CUs of 

the ith CU at the jth frame 

Standard deviation of 

number of sub-CU 

partitions 

 
𝜎𝑐𝑢𝑝𝑎𝑟𝑡𝑠 = √𝐸 [(𝐴𝑖(𝑗) − 𝜇𝑐𝑢𝑝𝑎𝑟𝑡𝑠)

2
] 

    (13) 

where E denotes the expected value. 

Mean of ratio of MVD 

bits 

 µ𝑚𝑣𝑑=1
𝑁⁄ ∑ ∑ 𝑀𝑖(𝑗)𝑖𝑗

 (14) 

 

where N is the total number of CUs per frame in the 

video sequence and Mi(j) is the ratio of MVD bits of the 

ith CU at the jth frame 

Standard deviation of 

ratio of MVD bits 

 𝜎𝑚𝑣𝑑 = √𝐸[(𝑀𝑖(𝑗) − 𝜇𝑚𝑣𝑑)2] (15) 

 

where E denotes the expected value. 

Mean of number of CU 

bits 

 µ𝑐𝑢𝑏𝑖𝑡𝑠=1
𝑁⁄ ∑ ∑ 𝐵𝑖(𝑗)𝑖𝑗

 (16) 

 

where N is the total number of CUs per frame in the 

video sequence and Bi(j) is the number of CU bits of 

the ith CU at the jth frame 

Standard deviation 

number of CU bits 

 𝜎𝑐𝑢𝑏𝑖𝑡𝑠 = √𝐸[(𝐵𝑖(𝑗) − 𝜇𝑐𝑢𝑏𝑖𝑡𝑠)2] (17) 

   

 

where E denotes the expected value. 

Mean of percentage of 

intra partitions in a CU 

 µ𝑐𝑢𝑖𝑛𝑡𝑟𝑎=1
𝑁⁄ ∑ 𝐼(𝑗)𝑗

 

 

(18) 

where N is the total number frames in the video 

sequence  

I(j) is the percentage of intra CUs in the jth frame 

Standard deviation of 

percentage of intra 

partitions in a CU 

 

 𝜎𝑐𝑢𝑖𝑛𝑡𝑟𝑎 = √𝐸[(𝐼(𝑗) − 𝜇𝑐𝑢𝑖𝑛𝑡𝑟𝑎)2] 
 

(19) 

where E denotes the expected value.  

Mean of percentage of 

skipped partitions in a CU 

 µ𝑐𝑢𝑠𝑘𝑖𝑝𝑝𝑒𝑑=1
𝑁⁄ ∑ 𝑆(𝑗)𝑗

 

 

(20) 

where N is the total number of frames in the video 

sequence  

S(j) is the percentage of skipped CUs in the jth frame 
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4.2. HEVC Recompression Detection Using Same Bitrate  

Experiments are conducted for HEVC coded videos having the same re-

compression bitrate using two different feature sets and two types of classifiers. The 

same experiments are conducted for double and triple compression detection. The first 

feature set includes features extracted from the video sequences on a frame-level. The 

second feature set includes features extracted on a group of picture or GoP-level. For 

both feature sets, the features extracted are based on the 8 coding unit or CU-level 

features shown in Table 4 in the previous section which are extracted for each 64X64 

CU for each frame. The quantization parameter is also added to the feature set since 

Standard deviation of 

percentage of skipped 

partitions in a CU 

 
𝜎𝑐𝑢𝑠𝑘𝑖𝑝𝑝𝑒𝑑 = √𝐸 [(𝑆(𝑗) − 𝜇𝑐𝑢𝑠𝑘𝑖𝑝𝑝𝑒𝑑 )

2
] 

(21) 

 

 

where E denotes the expected value.  

Mean of percentage of 

inter partitions in a CU 

 µ𝑐𝑢𝑖𝑛𝑡𝑒𝑟=1
𝑁⁄ ∑ 𝑃(𝑗)𝑗

 (22) 

 

where N is the total number of  frames in the video 

sequence  

I(j) is the percentage of inter CUs in the jth frame 

Standard deviation of 

percentage of inter 

partitions in a CU 

 𝜎𝑐𝑢𝑖𝑛𝑡𝑒𝑟 = √𝐸[(𝑃(𝑗) − 𝜇𝑐𝑢𝑖𝑛𝑡𝑒𝑟 )2] 
 

(23) 

where E denotes the expected value.  

Mean of prediction 

residual energy of CU  

 µ𝜖=1
𝑁⁄ ∑ ∑ 𝑅𝑖(𝑗)𝑖𝑗

 

 

(24) 

where i is the index of CU at the jth frame.  

N is the total number of inter CUs in the video sequence  

Ri(j) is the sum of absolute residual values for the ith 

CU at the jth frame.  

Standard deviation of 

prediction residual 

energy of CU 

 𝜎𝜖 = √𝐸[(𝑅𝑖(𝑗) − 𝜇𝜖)2] 
 

(25) 

where E denotes the expected value. 

Mean of estimated PSNR  µ𝑃𝑆𝑁𝑅=1
𝑁⁄ ∑ 𝑃(𝑗)𝑗

 (26) 

 

where N is the total number of frames in the video 

sequence  

P(j) is the estimated PSNR of the  jth  frame 

Standard deviation of 

estimated PSNR 

 
𝜎𝑝𝑠𝑛𝑟 = √𝐸 [(𝑃(𝑗) − 𝜇𝑝𝑠𝑛𝑟)

2
] 

(27) 

 

where E denotes the expected value.  
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using the same re-compression bitrate will result in a different quantization parameter 

(QP) value for each CU, making it of much use in re-compression classification.  The 

CU-level features initially extracted are QP of each CU, the number of sub-CUs in each 

64X64 CU, the ratio of motion vector difference bits, the number of CU bits, the 

percentage of intra, skipped and inter sub-CUs and the energy of the prediction residual 

for the CU.  Table 6 shows the equations used to calculate the CU-level features. These 

features are first extracted from the encoder for single, double and triple compression 

and are then summarized to obtain features on a frame level. The features obtained on 

a frame level are further summarized to obtain features for each GoP. Figure 4 presents 

an overview of the feature extraction phase where YUV images are first input to the 

encoder, CU-level features are extracted and summarized into frame-level features 

which are used once for training and testing and then further split into Gop-level 

features for classification using the GoP-level feature set.   

 

 

Figure 10: An overview of the feature extraction phase 

 

4.2.1. Frame-level feature set. As for the frame-level feature set, the CU 

features corresponding to each frame are combined together and used to calculate the 

final set of frame-level features using the equations in Table 9. For each frame, there 

are 240 64X64 CUs for which features are extracted which means that each sequence 

will produce 2400 CU-level feature vectors. Since there are 127 sequences in the 

dataset, each re-compression will produce 304,800 feature vectors. The feature vectors 

are then summarized on a frame-level, meaning that for each 240 CUs of each frame in 

each sequence, the mean and standard deviation are calculated to obtain the value of 

the feature on a frame-level. The estimated PSNR for each frame is also calculated and 

added to the feature set. 100 feature vectors will be obtained for each frame and thus a 

total of 12700 (127 X 100) feature vectors will be obtained for each recompression. 
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Therefore, for double compression detection, a total of 25400 frame-level feature 

vectors are obtained and a total of 38100 feature vectors are obtained for triple 

compression detection.  

 

Feature Name Equation 

Mean of CU quantization 

parameter  

 µ𝑞=1
𝑁⁄ ∑ 𝑄𝑖(𝑗)𝑖

 

 

(28) 

where N is the total number of CUs per frame in the 

video sequence and Qi(j) is the quantization parameter 

of the ith CU in the current frame j 

Standard deviation of CU 

quantization parameter 

 
𝜎𝑞 = √𝐸 [(𝑄𝑖(𝑗) − 𝜇𝑞)

2
] 

 

(29) 

where E denotes the expected value. 

Mean of  number of sub-

CU partitions 

 µ𝑐𝑢𝑝𝑎𝑟𝑡𝑠=1
𝑁⁄ ∑ 𝐴𝑖(𝑗)𝑖

 

 

(30) 

where N is the total number of CUs per frame in the 

video sequence and Ai(j) is the number of sub-CUs of 

the ith CU in the current frame j 

Standard deviation of 

number of sub-CU 

partitions 

 
𝜎𝑐𝑢𝑝𝑎𝑟𝑡𝑠 = √𝐸 [(𝐴𝑖(𝑗) − 𝜇𝑐𝑢𝑝𝑎𝑟𝑡𝑠)

2
] 

(31) 

where E denotes the expected value. 

 

Mean of ratio of MVD 

bits 

 µ𝑚𝑣𝑑=1
𝑁⁄ ∑ 𝑀𝑖(𝑗)𝑖

 (32)  

 

where N is the total number of CUs per frame in the 

video sequence and Mi(j) is the ratio of MVD bits of the 

ith CU in the current frame j 

 

Standard deviation of 

ratio of MVD bits 

 𝜎𝑚𝑣𝑑 = √𝐸[(𝑀𝑖(𝑗) − 𝜇𝑚𝑑𝑣)2] (33) 

   

 

 

 

where E denotes the expected value. 

Mean of number of CU 

bits 

 µ𝑐𝑢𝑏𝑖𝑡𝑠=1
𝑁⁄ ∑ 𝐵𝑖(𝑗)𝑖

 (34)  

 

where N is the total number of CUs per frame in the 

video sequence and Bi(j) is the number of CU bits of the 

ith CU in the current frame j 

 

Standard deviation 

number of CU bits 

 𝜎𝑐𝑢𝑏𝑖𝑡𝑠 = √𝐸[(𝐵𝑖(𝑗) − 𝜇𝑐𝑢𝑏𝑖𝑡𝑠)2] (35) 

 

 

 

where E denotes the expected value.  

 

Table 7: Equations used to calculate the frame-level features. 
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Mean of percentage of 

intra partitions in a CU 

 µ𝑐𝑢𝑖𝑛𝑡𝑟𝑎=1
𝑁⁄ ∑ 𝐼𝑖(𝑗)𝑖

 

 

(36) 

where N is the total number of CUs per frame in the 

video sequence and Ii(j) is the percentage of intra 

partitions of the ith CU in the current frame j 

 

Standard deviation of 

percentage of intra 

partitions in a CU 

 𝜎𝑐𝑢𝑖𝑛𝑡𝑟𝑎 = √𝐸[(𝐼𝑖(𝑗) − 𝜇𝑐𝑢𝑖𝑛𝑡𝑟𝑎)2] 
 

(37) 

where E denotes the expected value.  

 

Mean of percentage of 

skipped partitions in a 

CU 

 µ𝑐𝑢𝑠𝑘𝑖𝑝𝑝𝑒𝑑=1
𝑁⁄ ∑ 𝑆𝑖(𝑗)𝑖

 (38) 

where N is the total number of CUs per frame in the 

video sequence and Si(j) is the percentage of skipped 

partitions of the ith CU in the current frame j 

 

Standard deviation of 

percentage of skipped 

partitions in a CU 

 
𝜎𝑐𝑢𝑠𝑘𝑖𝑝𝑝𝑒𝑑 = √𝐸 [(𝑆𝑖(𝑗) − 𝜇𝑐𝑢𝑠𝑘𝑖𝑝𝑝𝑒𝑑 )

2
] 

 

(39) 

where E denotes the expected value.  

 

Mean of percentage of 

inter partitions in a CU 

 µ𝑐𝑢𝑖𝑛𝑡𝑒𝑟=1
𝑁⁄ ∑ 𝑃𝑖(𝑗)𝑖

 

 

(40) 

where N is the total number of CUs per frame in the 

video sequence  and Pi(j) is the percentage of inter 

partitions of the ith CU in the current frame j 

 

Standard deviation of 

percentage of inter 

partitions in a CU 

 𝜎𝑐𝑢𝑖𝑛𝑡𝑒𝑟 = √𝐸[(𝑃𝑖(𝑗) − 𝜇𝑐𝑢𝑖𝑛𝑡𝑒𝑟 )2] 
 

(41) 

where E denotes the expected value.  

 

Mean of prediction 

residual energy of CU  

 µ𝜖=1
𝑁⁄ ∑ 𝑅𝑖(𝑗)𝑖

 

 

(42) 

where N is the total number of CUs per frame in the 

video sequence and Ri(j) is the sum of absolute residual 

values of the ith CU in the current frame j 

 

Standard deviation of 

prediction residual 

energy of CU 

 𝜎𝜖 = √𝐸[(𝑅𝑖(𝑗) − 𝜇𝜖)2] 
 

(43) 

where E denotes the expected value. 

 

Estimated PSNR  µ𝑃𝑆𝑁𝑅=𝑃(𝑗) (44)  

 

where P(j) is the estimated PSNR of the current frame j 
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4.2.2. Down sampling of frame-level feature vectors. The feature vectors 

obtained are divided into training and testing datasets according to the setup explained 

in the previous section. Since 77 of the sequences are allocated to training and 50 for 

testing, the training set shall contain 7700 feature vectors for each class and the testing 

set shall contain 5000 feature vectors for each class. The training dataset is down 

sampled to 5852 vectors to mimic the experimental setup used in [19] To ensure that 

none of the sequences are excluded all together from the training set while down 

sampling, for each sequence, 24 feature vectors are randomly deleted out of the 100 

frames so 1848 feature vectors will be deleted resulting in the required 5852 training 

samples per class. Finally, when using the frame-level feature set for double 

compression detection, a total of 11704 (5852x2) training samples and 10000 

(50x100x2) testing samples from both classes are used for the re-compression 

detection. For triple compression detection, a total of 17556 (5852x3) training samples 

and 15000 (50x100x3) testing samples from the three classes are used for the re-

compression detection. The extracted frame-level features are then used to train and test 

a Random Forest and a bi-LSTM network and the results of each are reported and 

compared to existing work 

 4.2.3 GoP-level feature set. The Group of Pictures or GoP-level feature set is 

calculated from the frame-level feature set previously discussed, such that the features 

of frames belonging to each GoP are combined and used to calculate the final GoP-

level features. It is important to mention that throughout the experiments, the GoP size 

was set to 15 (each GoP contains 15 frames) and thus each sequence of 100 frames shall 

contain 7 GoPs or 7 feature vectors. Table 10 shows the equations used to calculate 

them. For each class, a total of 889 (127x7) feature vectors are obtained which are 

divided to training and testing such that the training set consists of 539 (77x7) samples 

and the testing set consists of 350 (50x7) samples per class. No down sampling is 

applied on the training set when using GoP-level features since much fewer samples 

are used in which is already a more challenging case. Finally, when using the GoP-level 

feature set for double compression detection, a total of 1078 (539x2) training samples 

and 700 (350x2) testing samples from both classes are used for the re-compression 

detection. For triple compression detection, a total of 1617 (539x3) training samples 

and 1050 (350x3) testing samples from the three classes are used for the re-compression 
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detection. The extracted GoP-level features are then used to train and test a Random 

Forest and a bi-LSTM network and the results of each are reported and compared to 

existing work.  

 

Feature Name Equation 

Mean of CU quantization 

parameter  

 µ𝑞=1
𝐺⁄ ∑ (1

𝑁⁄ ∑ 𝑄𝑖(𝑗))𝑖𝑗
 

 

(45) 

where N is the total number of CUs per frame in the 

video sequence and j is the index of frame in the current 

GoP (each GoP contains 15 frames)  

Qi(j) is the quantization parameter of the ith CU in the 

current frame j and G is the number of frames per GoP 

 

Standard deviation of CU 

quantization parameter 

 
𝜎𝑞 = √𝐸 [(𝑄𝑖(𝑗) − 𝜇𝑞)

2
] 

 

(46) 

where E denotes the expected value. 

 

Mean of  number of sub-CU 

partitions 

 µ𝑐𝑢𝑝𝑎𝑟𝑡𝑠=1
𝐺⁄ ∑ (1

𝑁⁄ ∑ 𝐴𝑖(𝑗))𝑖𝑗
 

 

(47) 

where N is the total number of CUs per frame in the 

video sequence and j is the index of frame in the current 

GoP (each GoP contains 15 frames)  

Ai(j) is the number of sub-CUs of the ith CU in the 

current frame j and G is the number of frames per GoP 

 

Standard deviation of 

number of sub-CU partitions 

 
𝜎𝑐𝑢𝑝𝑎𝑟𝑡𝑠 = √𝐸 [(𝐴𝑖(𝑗) − 𝜇𝑐𝑢𝑝𝑎𝑟𝑡𝑠)

2
] 

 

(48) 

where E denotes the expected value. 

 

Mean of ratio of MVD bits  µ𝑚𝑣𝑑=1
𝐺⁄ ∑ (1

𝑁⁄ ∑ 𝑀𝑖(𝑗))𝑖𝑗
 

 

(49) 

where N is the total number of CUs per frame in the 

video sequence and j is the index of frame in the current 

GoP (each GoP contains 15 frames)  

Mi(j) is the ratio of MVD bits of the ith CU in the current 

frame j and G is the number of frames per GoP 

 

Table 8: Equations used to calculate the GoP-level features. 
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Standard deviation of ratio of 

MVD bits 

 𝜎𝑚𝑣𝑑 = √𝐸[(𝑀𝑖(𝑗) − 𝜇𝑚𝑣𝑑)2] 
 

(50) 

where E denotes the expected value. 

 

Mean of number of CU bits  µ𝑐𝑢𝑏𝑖𝑡𝑠=1
𝐺⁄ ∑ (1

𝑁⁄ ∑ 𝐵𝑖(𝑗))𝑖𝑗
 

 

(51) 

where N is the total number of CUs per frame in the 

video sequence and j is the index of frame in the current 

GoP (each GoP contains 15 frames)  

Bi(j) is the number of CU bits of the ith CU in the current 

frame j and G is the number of frames per GoP 

 

Standard deviation number 

of CU bits 

 𝜎𝑐𝑢𝑏𝑖𝑡𝑠 = √𝐸[(𝐵𝑖(𝑗) − 𝜇𝑐𝑢𝑏𝑖𝑡𝑠)2] 
 

(52) 

where E denotes the expected value. 

 

Mean of percentage of intra 

partitions in a CU 

 µ𝑐𝑢𝑖𝑛𝑡𝑟𝑎=1
𝐺⁄ ∑ (1

𝑁⁄ ∑ 𝐼𝑖(𝑗))𝑖𝑗
 

 

(53) 

where N is the total number of CUs per frame in the 

video sequence and j is the index of frame in the current 

GoP (each GoP contains 15 frames)  

Ii(j) is the percentage of intra partitions of the ith CU in 

frame j and G is the number of frames per GoP 

Standard deviation of 

percentage of intra partitions 

in a CU 

 𝜎𝑐𝑢𝑖𝑛𝑡𝑟𝑎 = √𝐸[(𝐼𝑖(𝑗) − 𝜇𝑐𝑢𝑖𝑛𝑡𝑟𝑎)2] 
 

(54) 

where E denotes the expected value. 

Mean of percentage of 

skipped partitions in a CU 

 µ𝑐𝑢𝑠𝑘𝑖𝑝𝑝𝑒𝑑=1
𝐺⁄ ∑ (1

𝑁⁄ ∑ 𝑆𝑖(𝑗))𝑖𝑗
 

 

(55) 

where N is the total number of CUs per frame in the 

video sequence and j is the index of frame in the current 

GoP (each GoP contains 15 frames)  

Si(j) is the percentage of skipped partitions of the ith CU 

in frame j and G is the number of frames per GoP 

 

Standard deviation of 

percentage of skipped 

partitions in a CU 

 
𝜎𝑐𝑢𝑠𝑘𝑖𝑝𝑝𝑒𝑑 = √𝐸 [(𝑆𝑖(𝑗) − 𝜇𝑐𝑢𝑠𝑘𝑖𝑝𝑝𝑒𝑑 )

2
] 

 

(56) 

where E denotes the expected value. 

 

Mean of percentage of inter 

partitions in a CU 

 µ𝑐𝑢𝑖𝑛𝑡𝑒𝑟=1
𝐺⁄ ∑ (1

𝑁⁄ ∑ 𝑃𝑖(𝑗))𝑖𝑗
 

 

(57) 

where N is the total number of CUs per frame in the 

video sequence and j is the index of frame in the current 

GoP (each GoP contains 15 frames)  
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          4.2.4. Sequence-level classification using random forest (RF). The RF 

classifier is trained and tested twice, once using the frame-level features and once 

using the GoP-level features. The obtained classification accuracies are on a frame-

level and GoP-level but since we are interested in sequence-level accuracies, majority 

voting is then used. In sequence-level majority voting, each sequence is classified as 

single, double or triple compression based on the majority predicted label of its 

frames in case of frame-level features and the majority predicted label of its GoPs in 

case of GoP-level features. Finally, sequence-level accuracies are obtained using the two 

feature sets for double and triple compression for each of the 4 bitrates and these are the 

accuracies being reported throughout the experiments when using the Random Forest 

classifier.  

Pi(j) is the percentage of inter partitions of the ith CU in 

frame j and G is the number of frames per GoP 

 

Standard deviation of 

percentage of inter partitions 

in a CU 

 𝜎𝑐𝑢𝑖𝑛𝑡𝑒𝑟 = √𝐸[(𝑃𝑖(𝑗) − 𝜇𝑐𝑢𝑖𝑛𝑡𝑒𝑟 )2] 
 

(58) 

where E denotes the expected value. 

 

Mean of prediction residual 

energy of CU  

 µ𝜖=1
𝐺⁄ ∑ (1

𝑁⁄ ∑ 𝑅𝑖(𝑗))𝑖𝑗
 

 

(59) 

where N is the total number of CUs per frame in the 

video sequence and j is the index of frame in the current 

GoP (each GoP contains 15 frames)  

Ri(j) is the sum of absolute residual values of the ith CU 

in frame j and G is the number of frames per GoP 

 

Standard deviation of 

prediction residual energy of 

CU 

 𝜎𝜖 = √𝐸[(𝑅𝑖(𝑗) − 𝜇𝜖)2] 
 

(60) 

where E denotes the expected value. 

 

Mean of estimated PSNR  µ𝑃𝑆𝑁𝑅=1
𝐺⁄ ∑ 𝑃(𝑗))𝑗

 (61)  

where j is the index of frame j in the current GoP 

(each GoP contains 15 frames)  

P(j) is the estimated PSNR of frame j 

G is the number of frames per GoP 

Standard deviation of 

estimated PSNR 

 𝜎𝑃𝑆𝑁𝑅 = √𝐸[(𝑃(𝑗) − 𝜇𝑃𝑆𝑁𝑅)2] 
 

(62) 

where E denotes the expected value. 
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4.2.5.  Sequence-level classification using bi-direction short-term memory 

          (bi-LSTM) network. The bidirectional Longest Short-Term Memory 

(bi-LSTM) deep learning network is used for the classification of re-compression in 

HEVC coded videos. Frame-level and GoP-level features are extracted from the video 

sequences and used as input to the bi-LSTM network, directly producing the sequence 

level accuracies for re-compression detection. The diagram in Figure 4 illustrates the 

network architecture. The Sequence Input layer involves inputting the video sequences 

to the network. A sequence folding layer is applied for the splitting of the video 

sequences into independent frames. Features are then extracted on a frame-level and 

GoP-level after which sequence unfolding is implemented to restore the sequence 

structure (feature vectors corresponding to a single sequence are combined together to 

represent one train/test sample). The bi-LSTM layers are then used to classify the 

resulting sequences producing sequence-level accuracies.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: bi-LSTM Network Architecture. 
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Chapter 5. Experimental Results 

 

This section discusses the results obtained from the proposed compression detection 

techniques. The experimental results of double and triple compression detection for 

MPEG2 and HEVC using a fixed quantization parameter value are discussed in Section 

5.1. Results for double and triple compression detection in HEVC using the same re-

compression bitrate are discussed in Sections 5.2 and 5.3 respectively. The double 

compression detection results have been compared to three of the existing solutions in 

literature. The performance measures used in all experiments are accuracy, precision 

and recall. These measures are based on the confusion matrix generated from each 

experiment, which has the format shown in Table 9 and Table 10 below.  

 

Table 9:  Confusion Matrix Template for Two-Class Prediction. 

 

 

 

 

 

 

 

Table 10: Confusion Matrix Template for Three-Class Prediction. 

 

 

 

 

 

 

 

 

 

 

 

From the confusion matrix, we can say that accuracy or classification rate refers to the 

percentage of correctly classified instances and is calculated using Equation 63.  

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100% 

 

(63) 

 Predicted 

Actual Yes No 

Yes True Positive 

(TP) 

False Negative 

(FN) 

No False Positive 

(FP) 

True Negative 

(TN) 

 Predicted Class 

Actual Class 1 Class 2 Class 3 

Class 1 True Negative 

(TN) 

True Negative 

(TN) 

False Positive 

(FP) 

Class 2 True Negative 

(TN) 

True Negative 

(TN) 

False Positive 

(FP) 

Class 3 False Negative 

(FN) 

False Negative 

(FN) 

True Positive 

(TP) 
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Precision is a measure of exactness or quality. It is the percentage of test cases that are 

classified as X  and have a true label of X. It is also referred to as the exactness of a 

classifier and is calculated using the below equation.   

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(64) 

Finally, recall is a measure of completeness or quantity. It is defined as the percentage 

of test cases that have a true label of X and are actually labelled as X and is calculated 

using the equation below.   

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(65) 

 

5.1.   MPEG2 and HEVC Double and Triple Compression Detection Using Same 

         Quantization Parameter 

 

        

In this set of experiments, the results obtained for MPEG2 re-compression 

detection using the same re-compression QP are compared against those obtained for 

HEVC. The same quantization parameters, data set and experimental setup used in 

MPEG2 are replicated and used in HEVC to be able to achieve a fair comparison for 

the two coding schemes. HEVC re-compression detection is tested three times, once 

using the same features used in MPEG2 (MPEG2-specific features) and once using 

HEVC-specific features such as those related to HEVC CUs and finally once using both 

creating a full expanded feature set. The aim behind testing using MPEG2-specific 

features, HEVC-specific features and the full feature set is to identify the contribution 

of each of the feature sets on the classification results. The double compression 

detection results of the MPEG2 experiments and the HEVC experiments using the three 

feature sets are reported and compared with each other. The same experiments 

previously conducted for MPEG2 and HEVC are tested again but for triple compression 

detection and the results are reported. HEVC is found to have equal performance as 

MPEG2 for double compression detection. However, for triple compression detection, 

it is found to perform significantly better than MPEG2.   

          To summarize the results, HEVC and MPEG2 comparison shows that higher 

results are achieved for re-compression detection in HEVC for all experiments. HEVC 

produced higher results with a 100% classification rate being obtained for all double 

compression detection experiments when using the MPEG2-specific features as 
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compared to MPEG2. When testing HEVC videos with the expanded feature set, same 

results are obtained as above as shown in Table 13. However, experimenting with only 

HEVC-specific features resulted into very low accuracies with a classification rate of 

57% for double compression and 39% for triple compression as shown in Table 12. 

This shows that the features used in MPEG2 are sufficient to successfully classify re-

compression and that the HEVC-specific features have no contribution to the 

classification rate. In triple compression detection, significantly higher results are 

achieved in HEVC where MPEG2 produced 64% accuracy while HEVC produced 99% 

accuracy. Table 9 presents a detailed comparison between the best performing 

experiments conducted and the results obtained for each. The corresponding confusion 

matrices, precision and recall obtained from the comparison of Table 11 have been 

reported in Table 14.  

 

Table 11: A comparison between MPEG2 and HEVC double and triple compression 

detection. 

 

 

 

 

 

 

 

 

 

 

 

 MPEG2 HEVC(MPEG2-specific 

features) 

 QP Classifi

er 

Classification  

Rate (%) 

QP Classifier Classificati

on Rate (%) 

Double 

Compression 

Detection 

22 KNN 99 36 

 

KNN 

RF 

100 

Triple 

Compression 

Detection 

7 

 

KNN 64 12 

 

RF 99 

 HEVC  (HEVC-specific features) 

 QP Classifier Classification 

Rate (%) 

Double 

Compression 

Detection 

QP=36 RF 57 

Triple 

Compression 

Detection 

QP=12 

 

RF 39 

Table 12: HEVC re-compression detection using HEVC-specific features. 
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Table 14: Confusion matrices, precision and recall for MPEG2 and HEVC re-

compression detection. 

 

 

5.2.  HEVC Double Compression Detection using Same Bitrate with    

Comparison to Existing Work  

 

In this set of experiments, the results obtained for HEVC double compression 

detection using the same recompression bitrate are reported and compared against the 

results obtained in existing literature. The results are reported for four different bitrates 

(800,1000,1200,1400) kbps. For each of the four bitrates, experiments are conducted 

for features extracted on a GoP-level and frame-level and for each of the feature sets, 

results are obtained when using a Random Forest classifier and a bi-LSTM deep 

learning network. The proposed solution is found to perform significantly better as 

 HEVC  (Full feature set) 

 QP Classifier Classification 

Rate (%) 

Double 

Compression 

Detection 

QP=36 

 

RF 100 

Triple 

Compression 

Detection 

QP=12 

 

RF 99 

 MPEG2 HEVC (MPEG2-specific features) 

 Confusion Matrix Prec

ision 

Rec

all 

Confusion Matrix Prec

ision 

Rec

all 

Double 

Compre

ssion 

Detectio

n 

 C1 C2 

C1 94.12 5.88 

 

C2 11.76 

 

88.24 

 
 

0.97 1  C1 C2 

C1 100 

 

100 

 

C2 100 

 

100 

 
 

1 1 

Triple 

Compre

ssion 

Detectio

n 

 C1 C2 C3 

C

1 

47.

1 

41.

2 

11.

8 

C

2 

35.

3 

52.

94 

11.

76 

C

3 

2.9

4 

5.8

8 

91.

8 
 

0.89 0.94  C1 C2 C3 

C

1 

33.

3 

1.3 0 

C

2 

0 30.3

2 

0.7 

C

3 

0 0 34.

2 
 

0.97 1 

Table 13: HEVC re-compression detection using full feature 

set. 
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compared to the existing methods found in literature. Frame-level features using 

Random Forest classifier and bi-LSTM network produced good but lower results 

compared to GoP-level features. The highest results are obtained when using GoP-level 

features and bi-LSTM network where a 100% classification rate is obtained for all the 

different bitrates. These results are significantly higher than those reported in Jiang’s, 

Xu’s and Liang’s methods in [11, 13, 19]. Table 15 provides a detailed comparison 

between the results obtained by our proposed solution and the results found in existing 

literature. In Figure 12, a comparison  is done for the average accuracies obtained across  

each of the proposed and existing methods for the conducted experiments, showing that 

the highest average accuracy is obtained using the proposed GoP-level feature set and 

bi-LSTM network. In Table 16, the confusion matrices for the lowest bitrate (800 kbps) 

have been reported for each of the four proposed methods as this bitrate is the most 

challenging amongst all. This is because the higher the compression, the higher the 

information loss, making recompression detection much more challenging. The 

corresponding precision and recall have also been reported. 

 

 Table 15: HEVC double compression detection using same bitrate with comparison 

to existing work. 

 
 
 
 

 

 FRAME-LEVEL 

FEATURES 

GOP-LEVEL 

FEATURES 

EXISTING WORK 

B1,B2 Propose

d 

Solution 

(RF) 

Propose

d 

Solution 

(bi-

LSTM) 

Propose

d 

Solution 

(RF) 

Propose

d 

Solution 

(LSTM) 

Jiang 

Metho

d 

[19] 

Xu 

Metho

d 

[11] 

Liang 

Metho

d 

[13] 

800,800 94% 98% 98% 100% 93% 92.5% 85% 

1000,100

0 

96% 96% 97% 100% 95% 93% 87% 

1200,120

0 

96% 96% 97% 100% 95.5% 92.5% 86.25% 

1400,140

0 

96% 96% 98% 100% 96% 92% 86.25% 

Average 

Accurac

y 

95.5% 96.5% 97.5% 100% 94.88

% 

92.5% 86.13

% 
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Table 16: Confusion matrices, precision and recall for HEVC double compression 

detection. 

 

  Confusion Matrix Precision Recall 

Frame-level 

Features 

Proposed 

Solution (RF) 
 C1 C2 

C1 95.32 4.68 

C2 22.38 

 

77.62 

 
 

0.81 0.95 

Proposed 

Solution (bi-

LSTM) 

 C1 C2 

C1 48.00 

 

0.00 

C2 2.00 

 

50.00 

 

0.96 1 

GoP-level 

Features 

Proposed 

Solution (RF) 
 C1 C2 

C1 98.29 1.71 

C2 17.14 

 

82.86 

 
 

0.85 0.98 

Proposed 

Solution (bi-

LSTM) 

 C1 C2 

C1 100.00 0.00 

C2 0.00 

 

100 

 
 

1 1 

 

Figure 12: Average accuracies obtained for HEVC double compression detection. 
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5.3.   HEVC Triple Compression Detection using Same Bitrate  

The same experiments conducted for double compression detection are 

implemented again but for triple compression detection with promising results being 

obtained for each of the four bitrates. To the best of our knowledge, no existing 

literature was found for such application and thus the proposed solution for HEVC triple 

compression detection is considered novel in the field of video forgery detection. For 

triple compression detection, experiments are again conducted for frame-level and 

GoP-level features using the Random Forest classifier and bi-LSTM network for each 

of the four bitrates. Highest results were achieved when using GoP-level features and 

bi-LSTM network for classification with results ranging from 98% to 98.7% for the 

different bitrates under experiment. Table 17 presents a detailed comparison of the 

results obtained for each of the four bitrates using the different feature sets and 

classifiers. Table 18 shows the confusion matrices, precision and recall obtained for the 

most challenging case with the lowest bitrate of 800 kbps. Figure 13 then shows a 

comparison for the average accuracies obtained for each method across the four 

different bitrates, indicating that the highest average accuracy for triple compression 

detection is also obtained when using GoP-level features and bi-LSTM deep learning 

network. 

 

Table 17: HEVC triple compression detection using same bitrate. 

 
 

 FRAME-LEVEL 

FEATURES 

GOP-LEVEL FEATURES 

B1,B2,B3 Proposed 

Solution 

(RF) 

Proposed 

Solution 

(LSTM) 

Proposed 

Solution 

(RF)  

Proposed 

Solution 

 (bi-LSTM) 

800,800,800 82.67% 94% 76.67% 98% 

1000,1000,1000 79.33% 92% 84.00% 98.7% 

1200,1200,1200 75.33% 92.67% 86.67% 98.7% 

1400,1400,1400 80% 94% 82.67% 98.7% 

Average 

Accuracy 

79.33% 93.17% 82.5% 98.55% 
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Table 18: Confusion matrices, precision and recall for HEVC triple compression 

detection. 

 

 

 

 

  Confusion Matrix Precision Recall 

Frame-

level 

Features 

Proposed 

Solution 

(RF) 

 C1 C2 C2 

C1 95.84 3.50 0.66 

C2 21.68 53.46 24.86 

C3 8.18 40.36 51.46 

 

0.67 0.51 

Proposed 

Solution  

(bi-

LSTM) 

 C1 C2 C2 

C1 33.30 0.00 0.00 

C2 0.00 27.30 0.00 

C3 0.00 6.00 33.30 

 

1 0.85 

GoP-

level 

Features 

Proposed 

Solution 

(RF) 

 C1 C2 C2 

C1 98.29 1.43 0.29 

C2 19.43 61.43 19.14 

C3 6.29 37.43 56.29 

 
 

0.74 0.56 

Proposed 

Solution  

(bi-

LSTM) 

 C1 C2 C2 

C1 33.30 1.30 0.00 

C2 0.00 31.30 0.00 

C3 0.00 0.70 33.3 

 

1 0.98 
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5.4.  Summary of Results 

 

This section briefly summarizes the best results obtained for each of the three 

sets of experiments conducted.  

1. MPEG2 and HEVC Double and Triple Compression Detection using Same 

Quantization Parameter:  

In this set of experiments, highest results for re-compression detection were 

obtained in HEVC coded videos when using the MPEG2-specific features discussed 

in the Feature Extraction and Classification section. HEVC achieved slightly higher 

results in double compression detection and significantly higher results in triple 

compression detection.  In double compression detection, a 100% classification rate 

was obtained using both KNN and RF classifiers and a 99% classification rate was 

obtained using RF classifier for triple compression detection.  

2. HEVC Double Compression Detection using Same Bitrate with Comparison to 

Existing Work: 

In this set of experiments, results have been obtained for double compression 

detection in HEVC coded videos using the same re-compression bitrate for four 

different bitrates, two different feature sets and two different classifiers. Highest 

results are obtained when using GoP-level features and the bi-LSTM deep learning 

network with a classification rate of 100% being achieved for the four different 

Figure 13: The average accuracies obtained in HEVC triple compression detection. 

 
 

Figure 14 A comparison for the average accuracies obtained in HEVC triple compression detection. 
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bitrates. The results obtained are proven to be significantly higher than the three 

existing solution being compared against.  

3. HEVC Triple Compression Detection using Same Bitrate 

In this set of experiments, results have been obtained for triple compression 

detection in HEVC coded videos using the same re-compression bitrate. 

Experiments were conducted using frame-level and GoP-level features using both 

RF and bi-LSTM network with the highest results being obtained using the bi-

LSTM network and GoP-level features as was the case for double compression 

detection. A 98% classification accuracy is achieved for the lowest and most 

challenging bitrate of 800 kbps and a 98.7% accuracy is achieved for the remaining 

three bitrates. Despite the promising results obtained, the classification rate of triple 

compression detection is still lower than that of double compression detection in all 

the experiments conducted due to having three classes, making the classification 

more challenging. Using three classes for triple compression detection instead of 

two will result in lower classification rates as distinguishing between the second 

and third compression becomes much more difficult compared to distinguishing 

between single (original) and triple compression. The results obtained have not been 

compared to existing solutions as to the extent of our knowledge, no existing 

literature was found to tackle the problem of triple compression detection in HEVC 

coded videos.  
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Chapter 6. Conclusion and Future Work 

 

Digital video forensics is the process of identifying manipulation and forgery in 

videos to evaluate their trustworthiness and authenticity for use in court cases or similar 

investigations. Such field has gained much popularity in the past years due to the 

widespread of video capturing devices and mobile phones as well as the ease of use of 

video editing software such as Adobe, CyberLink, Wondershare, Apple Final Cut and 

many others. This gives the normal user very strong capability of editing and 

manipulating a video to hide information or alter its content without the need for any 

professional knowledge. The existence of several social media platforms also makes 

the development of more efficient video forensic techniques extremely crucial due to 

the widespread of videos on such platforms and thus, the significant need for identifying 

their authenticity before presenting them to the public. For such reasons, we propose a 

system towards the problem of digital forgery detection by focusing on compression-

based video forensics. Compression-based forensics is one of the very important 

forensic techniques as the detection of video re-compression will indicate the existence 

of manipulation or forgery in the video.  

In this work, we developed a system that improves on the existing solutions of 

double compression detection in MPEG2 videos that have the same recompression 

quantization parameter. We also proposed a new system for the detection of multiple 

compressions with a main focus on a maximum of three compressions. The same 

experiments for double and triple compression were also conducted for HEVC coded 

videos and a comparison is provided for the two coding schemes when the 

recompression QP is kept the same. In both codecs, two machine learning algorithms 

were used, KNN and RF, to evaluate and assess the performance. The highest results 

have been obtained for HEVC coded videos with a 100% classification rate for double 

compression and a 99% accuracy for triple compression detection.   

In the proposed solution, we also developed a system that detects double and triple 

compression in HEVC coded videos that have the same recompression bitrate with 

comparison to some of the existing solutions. Two feature sets have been used, GoP-

level and frame-level features, and four different bitrates have been tested. Along with 

the random forest classifier, we also introduced the use of the bi-LSTM deep learning 

network for the classification of recompression. The results obtained for double 

compression detection have been compared to three of the existing solutions in 
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literature. Highest results were achieved when using the GoP-level features where a 

97.5% average accuracy is achieved using the RF classifier and a 100% average 

accuracy is achieved using the bi-LSTM network for double compression detection, 

clearly outperforming the existing solutions. The same experiments were conducted for 

triple compression detection where to the best of our knowledge, no existing solutions 

have been implemented to tackle this problem. The highest average accuracy of 98.55% 

was achieved for triple compression detection when also using the GoP-level features 

with the bi-LSTM network. From the results obtained, we can clearly state the 

effectiveness of the proposed solution for both double and triple compression detection 

in HEVC coded videos when having the same recompression bitrate.  

As for future work, more focus is to be put on the detection of double and triple 

compression with different coding parameters as well as the detection of a higher 

number of compressions.  In addition, we would like to further investigate the problem 

of double and multiple compression with some underlying forgery, such as frame 

duplication, insertion or cropping, from which we shall identify the exact type of 

forgery being hidden within the re-compressions. 
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