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Abstract

Data embedding in videos and images has various important applications such as dig-

ital rights management (DRM), content authentication, copyright protection, error re-

siliency and concealment as well as law enforcement. With the high possibility of

illegal access and unauthorized content manipulation in shared storage platforms such

as cloud data centers and with the risk of encountering different types of attacks dur-

ing network transmission, videos and other sensitive data are usually transmitted and

stored in an encrypted form. Accordingly, the need for data hiding techniques that op-

erate directly on the encrypted video domain has emerged. This work proposes a novel

data hiding scheme in encrypted video streams where scrambling and data embedding

are performed simultaneously at the encoder side by rotating the motion vectors of the

cover video. Then a machine learning solution is proposed at the decoder side to clas-

sify the motion vectors to rotated/ unrotated, extract the hidden information bits and

reconstruct the original cover video. A sequence-dependent approach is applied where

the first part of the video is used for training and model generation. The proposed sys-

tem is composed of two phases: firstly, the training phase where the model is trained

to distinguish between the correctly reconstructed macroblocks and the macroblocks

reconstructed using rotated motion vectors. Secondly, the testing phase in which the

trained model is applied to identify which of the candidate macroblocks are the ones

associated with the true motion vectors. Once the true motion vectors are identified,

they are compared to the ones received in the bit stream and thus the embedded bits

are extracted, and the video is reconstructed. Experiments are conducted on a number

of well-known video sequences after compressing them once with the Moving Pictures

Expert Group-2 video codec standard and then with the High-Efficiency Video Coding

standard. A detailed analysis is provided based on the macroblock type, the number of

motion vectors and the type of the encoding sequence. Lastly, the proposed solution

is evaluated in terms of classification accuracy, embedding capacity and reconstruction

quality.

Keywords: data embedding, data extraction, scrambled video, machine learning,

sequence-dependent approach.
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Chapter 1. Introduction

1.1 Introduction

Data embedding is the technique by which some external message bits are hid-

den into a host content before being transmitted. Different types of interactive media

have been used as hosts or carriers for hiding messages such as texts, audios, images as

well as videos [1]. However, the size of a video and its large amount of redundant data

make it the most eligible multimedia type for data embedding [1, 2]. Up to date, data

hiding has been employed for various applications such as watermarking, copyright

protection, content authentication, error resiliency and concealment, military services

and law enforcement [2, 3].

As mentioned in [3], data embedding process may lead to visual distortion and

excessive bitrate in the host compressed video. Such distortions and increased bitrate

are required to be minimal while maximizing message payload. Consequently, various

data hiding techniques have emerged and are competing to achieve these requirements.

Regardless of the purpose of data concealment and depending on the phase at

which message bits are embedded, data hiding in digital videos can be classified into

three categories: intra-hiding, pre-hiding and post-hiding [2]. The term intra-hiding

is used when the message bits are embedded in the compressed domain and in turn is

divided into different categories based on the compression stage such as motion vec-

tors, intra-prediction modes, transform coefficients and quantization scales. Pre-hiding

methods are mainly focused on transform and spatial domains of the raw video while in

post-hiding techniques, message bits are embedded into the compressed bit stream [2].

Different data embedding techniques are evaluated according to three essential

factors: hiding capacity, visual quality of the host video and robustness [1, 2]. Higher

hiding capacity means that more message bits can be hided in the digital video, but

this might result in higher distortion in the quality of the carrier video and larger in-

crease in its size. A data embedding technique is considered to be robust if the receiver

can correctly extract the embedded message bits from the received bit stream without

encountering any errors. In general, Higher embedding capacity and robustness may
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lead to lower imperceptibility of the compressed video. Thus, a good trade-off between

these three factors is required to achieve the best performance in data embedding appli-

cations [2].

Recently, due to the rapid evolution in internet technology and mobile applica-

tions, there has been an increasing demand on the high computational power and large-

scale storage provided by cloud data centres. Since cloud resources can be exposed to

various types of attacks and are vulnerable to untrustworthy system administrators, pri-

vacy protection and security related issues have been a major concern for cloud service

providers. In an attempt to address this issue, it is preferable to store videos and other

sensitive data in encrypted form. Sometimes, a data manager may need to embed some

additional data into video such as authentication data and ownership information to be

able to verify its integrity and prevent unauthorized access. However, since the data

hider in most cases may not have the encryption key, embedding has to be performed in

the encrypted domain without knowing the original video content [4, 5]. Consequently,

there has been a growing research recently on data hiding techniques that perform di-

rectly in the encrypted domain.

Likewise, a wide area of the ongoing research has been focusing on developing

machine learning approaches and applying them to different research and industrial ap-

plications. One of the fields where machine learning has gained a considerable interest

is image and video processing. Two types of training and model generation in video

applications have been mentioned in the literature, namely, video-dependent approach

where the first part of the video is used for training and model generation as in [6, 7],

and video-independent approach where training and model generation is performed on

different video sequences than the ones being tested [8].

1.2 Motivation and Problem Statement

Data hiding in videos is of high importance for various applications such as

digital rights management (DRM), copyright protection, content authentication and er-

ror resiliency and concealment. With the high risk of unauthorized access in shared

storage environments such as cloud and possibility of encountering different hacking
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attacks during network transmission, videos are normally stored and transmitted in an

encrypted form. As a result, many techniques have been proposed in the literature for

hiding data in the encrypted video domain. However, most of these techniques perform

video encryption and data hiding separately, i.e. they firstly encrypt the video, then em-

bed the desired information into the encrypted video afterwards. Moreover, to the best

of our knowledge, none of the existing techniques applied machine learning approaches

to data extraction and video recovery.

Therefore, this work aims to contribute to the existing literature by proposing

the following solutions:

• A simultaneous video scrambling and data embedding approach by rotating the

motion vectors of the cover video at the encoder according to the information bits

to be hidden.

• A machine learning approach to distinguish the rotated motion vectors from un-

rotated ones and consequently being able to extract the message bits and recover

the original cover video at the decoder.

1.3 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides an overview

of the existing literature on data embedding and extraction in scrambled videos and

images and a brief background on the basic concepts related to data embedding and

video codec standards as well as machine learning. Chapter 3 describes the proposed

system model. Experiments and results are presented in Chapter 4 before the report is

finally concluded in Chapter 5.
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Chapter 2. Literature Review

In comparison with the traditional data hiding methods in the plain video do-

main, data embedding in encrypted videos has become more desirable as it copes with

real-life applications and scenarios especially with the emergence of cloud computing

technology. Machine learning techniques are also becoming more popular in most sci-

entific researches. In this chapter, we firstly introduce the three major factors that should

be considered by any data embedding scheme whether in encrypted or plain domain.

Then, the basic concepts of the block-based video coding standards such as MPEG2 and

HEVC are explained. After that, some existing methodologies of hiding information in

encrypted videos as well as encrypted images are reviewed. Finally, the theoretical

concepts of the main machine learning approaches used in this work are introduced.

2.1 Performance Assessment

Data embedding process may lead to visual distortion and excessive bitrate in

the host compressed video. Such distortions and increased bitrate are required to be

minimal while maximizing message Payload [3]. Consequently, various data hiding

techniques have emerged and are competing to achieve optimal performance. Three

main factors must be considered in any data hiding scheme: visual quality of the host

video, robustness of the embedded message and hiding capacity [2].

2.1.1 Video quality. The process of concealing data in a video can result in

either slight or severe degradation in the visual quality of the host video. Different

assessment metrics have been utilized to evaluate the effect on visual quality such as the

Peak Signal to Noise Ratio (PSNR), which reflects the difference between the embedded

frames and the original frames and is calculated using the following formula [1, 2]:

PSNR = 10log10

(
MAX2

A
MSE

)
(dB)

where, MSE =
∑

a
i=1 ∑

b
j=1 [A(i, j)−B(i, j)]2

a×b

(2.1)
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where A and B denote the original and embedded frames respectively, a and b denote

the size of each frame in the video and MAX is the largest pixel value in the original

frame.

2.1.2 Embedding capacity. Embedding capacity is defined as the number of

message bits that can be embedded into the host video. Hiding ratio (HR) is the mea-

sure used to evaluate the performance of data hiding methods in terms of embedding

capacity, and is calculated using the following formula [2]:

HR =
Size o f the embedded message

Size o f the video
×100% (2.2)

2.1.3 Robustness or data extraction accuracy. A data hiding scheme is said

to be robust if it can extract the whole message correctly and error-free at the receiver

side. Robustness measures two aspects; the method’s strength against network attacks

and transmission errors and the reversibility of the data hiding scheme itself. The

extracted-bit error rate is one measure used in the literature to evaluate the performance

of the different data concealment methods in terms of data extraction ability, and is

defined by the following equation [2]:

EBER =
∑

a
i=1 ∑

b
j=1 [M(i, j)⊕ M̄(i, j)]

a×b
(2.3)

where M(i, j) and M̄(i, j) denote the original and extracted message respectively, a×b

is the number of the embedded bits.

2.2 Block based Video Coding Schemes

The block-based video coding standards such as MPEG2, H.264/AVC and HEVC

are based on a video compression procedure that exploits the high level of spatial and

temporal redundancy in the original video sequences [9]. At first, the temporal correla-

tion is reduced by computing the similarities between consecutive frames and transmit-

ting the difference between them rather than the actual frame, resulting in fewer trans-

mitted bits due to the small values representing the differences. A process called ‘Mo-
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tion Estimation’ (ME) is performed between each two successive frames on a 16×16-

block basis known as ‘Macroblocks’ (MBs) in MPEG2 standard, to find the best match

location of a MB relative to the reference frame, which results in two values (horizontal

and vertical components) per a macroblock called ‘Motion vector’ (MV) indicating the

best match location. For HEVC, the motion estimation process can take place for even

smaller sub-block dimensions known as ‘Coding Units’ (CUs) [10]. Then, a ‘Motion

Compensation’ (MC) process takes place which copies the best match MB/ CU in the

previous frame to the location of the current MB/ CU, in order to subtract each MB/ CU

from its best match MB/ CU of the reference frame to further compress the video. After

that, each frame is subtracted from its previous motion compensated frame producing

what is known as ‘Prediction Error’ (PE). The spatial redundancy is reduced by further

processing the prediction errors by applying the discrete cosine transformation (DCT),

after which a scalar quantization is performed by dividing the DCT coefficients by spe-

cific ‘Quantization Scales’ (QSs) that fall in the range [1,31] for MPEG2 and [0,51] for

HEVC. Eventually, Variable Length Coding (VLC) is performed and the output video

bit stream is produced [9, 10].

Three types of frames exist in both MPEG2 and HEVC video standards, namely,

I-frames, P-frames and B-frames and two coding schemes are defined, namely, Intra-

frame coding and Inter-frame Coding. I-frames are intra coded, which means no sub-

traction from reference frames is performed, and the DCT, quantization and VLC are

applied to the original frame. Both P-frames and B-frames are inter-coded where the

DCT, quantization and VLC are applied to their prediction errors. However, the for-

mer is forward predicted (subtracted from the previous frame), while the latter can be

forward predicted, backward predicted (subtracted from the future frame) or both (bi-

directional). For I-frames all the MBs/ CUs are intra-coded while in P-frames the cod-

ing decision is performed on MB/ CU-basis according to some criteria, meaning that

a macroblock/ coding unit in a P-frame can be either intra-coded or forward-predicted.

Likewise, a MB/ CU in a B-frame can be intra-coded, forward-predicted, backward-

predicted or bi-directional-predicted [9, 11].
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2.3 Data Embedding in Encrypted Domain

In [4], a novel scheme was proposed to embed secret data in the encrypted

H.264/AVC bit stream. Since encrypting the whole video bit stream is not practical

due to computational cost and real time constraints, only sensitive portions of data were

encrypted. Typically, the codewords of motion vector differences, the codewords of

residual coefficients and the codewords of intra-prediction modes were encrypted us-

ing standard stream ciphers with encryption keys in combination with the Exp-Golomb

entropy coding and Context-adaptive variable-length coding (CAVLC). The proposed

encryption scheme guaranteed both cryptographic security via the used secure cipher

and perceptual security via the chosen codewords to be encrypted. Additional data were

then embedded in the encrypted video without knowing its original content by substi-

tuting the CAVLC codewords of Levels in P-frames only in such a way that the new

codeword has the same length as the original one, thus video size is preserved while

degradation in visual quality is minimal. Data can then be extracted either from the

encrypted or decrypted domain depending on the application [4].

A similar approach was used in [5] to hide data in the encrypted compressed

domain of H.264/AVC as well. However, while only the codewords of Levels with

suffix-length of 2 or 3 were used for data hiding in [4] and the codewords with suffix-

length equal to 1 were not used due to the unavailability of two codewords with the

same size, [5] has shown a greater exploitation of the embedding space by proposing a

paired codeword substitution scheme to include the case of the unity suffix-length. In

addition, a multiple-based notational system was adopted for data hiding when suffix-

length of the codewords is greater than 2 as opposed to the single codeword substitution

used in [4], thus resulting in higher embedding capacity.

In [12], a two-dimensional histogram shifting scheme was used to embed data

in the non-zero quantized AC coefficients of P-frames. Unlike [4] and [5], encryption

and embedding are performed during the encoding process, not in the bit stream. The

motion vector difference (MVD), the intra-prediction modes (IPM) and the sign bits of

the coefficients of residual blocks are first encrypted via secure stream ciphers. Then,

the range of non-zero residuals is divided into coefficient pairs and a specific mapping
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referred to as 2D histogram shifting is applied allowing one or two bits of data to be

embedded per a coefficient pair.

Partial scrambling is done in [13, 14] where only certain portions referred to as

“privacy areas” are scrambled to prevent general users from accessing them, while the

remaining of video is transmitted normally. Examples of privacy regions are people’s

faces, vehicles’ licenses and trademarks. In [13], the motion vector differences, the

quantized coefficients and the intra-coding modes of only 4×4 blocks associated with

the privacy regions are scrambled, then data embedding takes place to hide the original

unscrambled data in the bit stream such that only the authorized users can extract them

and recover the scrambled regions. After that, a second phase of scrambling is applied

by changing the sign bits of coding data to introduce more noise. The main idea behind

modifying only the 4×4 intra-prediction modes is their many details compared to the

smooth regions of the 16× 16 intra-predicted blocks, thus the effect of scrambling on

visual quality is more severe. Besides, avoiding the increase in file size that can be

caused when too many data that show weak response to scrambling are modified is

another motivation. Video confidential data is then embedded into the non-zero AC

quantized coefficients during the encoding process. First, the coordinates of the privacy

areas of each frame are hided in the beginning of the video in order for the authorized

decoder to be able to locate them, followed by the original MVDs, IPMs and quantized

coefficients.

A scheme for data embedding in partially encrypted H.264/AVC videos using

CABAC bin-string substitution was proposed in [15]. Compared to CAVLC-based en-

cryption, binary arithmetic coding (BAC) is extremely sensitive to errors and modifying

even a single bit can influence the compliance of the whole bit stream. Therefore, se-

lective encryption was applied to CABAC bin-strings which are the inputs to the binary

arithmetic coder, rather than applying it to the final bit stream. Typically, the sign bits

of the non-zero quantized coefficients of I and P frames and the sign bits of MVDs were

encrypted by XORing with random binary sequences generated by standard stream ci-

phers. After that, data embedding takes place by substituting bin-strings of absolute

values of motion vector differences (abs-MVD) and bin-strings of absolute values of

non-zero QTC levels (abs-level) which are grouped into two groups C0 and C1 corre-
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sponding to an embedded bit “0” and “1” respectively. Only bin-strings of abs-level in

P-frames were used for hiding data while keeping those of I-frames unchanged to avoid

distortion propagation. Data extraction was then performed in both encrypted and de-

crypted domain considering different application scenarios. Results have shown that

both encryption and data hiding schemes have preserved the bitrate and the degradation

in video quality resulted from data concealment is quite small.

The work in [16] has also used CABAC bin-string substitution to hide informa-

tion in encrypted H.264/AVC videos. However, besides sign bits of MVDs and sign

bits of luma QTCs, the sign bits of chroma QTCs and the sign bits of intra-prediction

modes (IPM) were also encrypted, providing more scrambling and enhancing the se-

curity level of the video. Compared to the single bin-string substitution used in [15]

where only one bit of data can be embedded per bin-string of abs-level, higher hiding

capacity was obtained as a result of embedding two bits per bin-string when abs-level is

greater than 17 since there are more than two bin-string that have the same length [16].

In addition, while only the bin-strings associated with abs-MVD greater than 32 were

utilised to hide information bits in [15], the embedding space was extended by using all

bin-strings of abs-MVD that are greater than 8 [16].

A separable reversible data hiding scheme for encrypted high efficiency video

coding (HEVC) video is proposed in [17]. First, the signs of motion vector differences

and the signs of residual coefficients are encrypted by applying XOR operation with en-

cryption keys generated by standard stream cipher RC4. Also, the amplitudes of motion

vector differences are encrypted by swapping their vertical and horizontal components

when the key bit equals 1 and remain unchanged otherwise. After that, data are embed-

ded into the amplitudes of nonzero AC coefficients. The proposed scheme utilizes TUs

of all sizes supported by HEVC to embed data, thus higher payload can be achieved.

Likewise, data embedding in encrypted images has got a considerable research

interest in the last years, especially in the reversible data hiding (RDH) domain. Since

the traditional RDH methods cannot guarantee reversibility in the encrypted domain

due to the huge change in the entropy of the original image after being encrypted, most

researchers have focused recently on exploring new schemes that emphasise reversibil-

ity in encrypted domain. Both [18] and [19] applied homomorphic encryption on image
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prior to data embedding. Their idea behind using this encryption is that there is no need

to vacate room for the additional data before encryption. A pixel value ordering (PVO)

technique in joint with prediction error histogram shifting was used in [18] to conceal

additional information. The encrypted image is divided into non-overlapping equal-

sized blocks. Then each block is sorted in an ascending order and a prediction error is

obtained by subtracting the two top values, after which the value of the prediction er-

ror is used to modify the top-valued pixel either to embed a bit or otherwise shifted by

one. This work has guaranteed both separability and reversibility meaning that both the

hidden bits and the original image can be recovered losslessly. Also, it does not cause

data expansion which means that the size of image remains the same after encryption.

A Paillier homomorphic encryption was applied to the original image pixels after being

divided into three components each, using energy transfer equation [19]. After that,

each encrypted pixel is used to hide a single bit, resulting in higher embedding capac-

ity than [18] which embeds a maximum of one bit per block of pixels. However, data

expansion exists in [19] due to the Paillier encryption where the size of the encrypted

data is square of the size of the original data.

Qin and Zhang [20] proposed an algorithm for image privacy protection by

encrypting all pixels’ bits except the 4th least significant bit with a stream cipher.

Then data hiding is achieved by first splitting the encrypted image into multiple non-

overlapping blocks of equal size and the pixels of each block are then grouped into

two groups G0 and G1 according to the data-embedding key. Then a single bit can be

embedded per block by modifying only the three LSBs of all pixels in one group while

keeping the other group unchanged based on the value of the bit to be embedded. This

approach proved to have a satisfactory visual quality after decrypting the image since

only a slight modification is done per block of pixels. At the receiver side, knowing that

a high spatial correlation exists between the pixels of an image, an adaptive function is

used to identify which one of the two groups per block is the modified one by assess-

ing the level of smoothness for both groups. The group that shows lower correlation

is judged to be the modified one and thus a bit of 0 or 1 is extracted, resulting in high

accuracy of message extraction.
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Other researchers made use of prediction errors to achieve reversibility of data

hiding [21,22]. In [21], each block of image is divided into two groups of pixels; sample

pixels SP and non-sample pixels NSP where the former is used to predict the latter. The

NSPs are then replaced by their prediction errors and encrypted along with the SPs

via strong encryption keys. Then, according to some predefined threshold range, the

prediction errors that fall within this range are used to embed external bits through a

difference expansion technique, otherwise, histogram shifting takes place. A location

map, which is a binary array indicating the locations of prediction errors used to conceal

the message bits, is transmitted along with the image in order for the receiver to be able

to identify the embedding locations and extract the bits correctly. Whereas in [22],

embedding is achieved by directly replacing some bits of the candidate prediction error

by the external bits and synchronization is done by reserving one more bit to serve as

an embedding flag that holds a value of zero if the Prediction error is used for hiding

data and a value of one otherwise. In addition, A block permutation process was further

applied after encryption by changing the original positions of blocks inside an image

in order to improve the security. This approach results in higher payload capacity and

security than [21], however, data extraction can only take place in the encrypted domain.

Some schemes have proposed an RRBE solution which reserves room in the

original image before encryption for later data embedding. The idea behind this ap-

proach is to fully exploit the strong spatial correlation between neighbouring regions

and heavily compress them to reserve room for data hiding. A sparse coding scheme is

adopted by [23], where the host image is firstly divided into patches with different levels

of smoothness within them. Then the smooth patches that have low residual differences

are chosen and expressed by sparse coefficients, while the corresponding residual dif-

ferences are compressed and hided into the other non-smooth patches, thus vacating

a room for hiding additional information. In [24], binary block embedding (BBE) is

utilized to hide data in binary images, by embedding the information of the LSB planes

of an image into MSB planes, thus vacating the LSBs for subsequent data hiding. First,

the binary image is divided into non-overlapping blocks which are then categorized into

five categories depending on their proportion of 0’s and 1’s, and the first two or three

bits of each block are then replaced by two or three-bit labels indicating their category.
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For homogeneous blocks (all zeros or all ones), only the category label is maintained

and for non-homogeneous blocks, additional structural information namely, the num-

ber of minority bits and their positions are also self-embedded in the MSBs of the block

for image recovery purpose, while the rest LSBs are reserved for later replacement by

message bits.

2.4 Machine Learning

In order to identify whether a received motion vector is the original motion

vector for a macroblock or a rotated version of it and consequently be able to extract

the message bits and reconstruct the video at the decoder. Three supervised machine

learning classification techniques are utilized, namely, Random Forests (RF), Support

Vector Machine (SVM) and polynomial classifier. However, only the two main and

mostly-used approaches; RF and SVM, are explained in details in the following sub-

sections.

2.4.1 Random forests. Random forests is one of the ensemble supervised learn-

ing approaches that employ a group of single trained classifiers and combine their in-

dividual predictions to provide a more accurate trustworthy prediction compared to the

individual ones. As the name ‘Forests’ reveals, it uses decision trees as its base classi-

fier while ‘Random’ refers to the randomization property it has; the random sampling

of the input data into multiple train and test sets while growing the trees and the random

selection of feature variables for each sub-tree as well [25]. The process of growing the

individual trees in a random forest for an N-record dataset with M feature variables can

be summarized by:

• Each tree is trained with a different training set, which is a random subset of the

original dataset sampled randomly with replacement using bootstrap sampling.

• Each tree is trained with a different subset of m predictors, where m << M and

is kept constant for all trees.

• For each tree, the records that are not used in its training set are kept out-of-bag

(OOB) and used for testing to obtain unbiased classification accuracy and prevent

overfitting, thus no need for cross validation.
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• When a new feature vector is applied to the generated RF model, each tree in the

forest votes for the class, then the final decision will be the class with the largest

number of votes.

• RF can evaluate the importance of the feature variables and identify the most

influential on prediction, which can be useful in the case of data with very high

dimensionality [26].

2.4.2 Support vector machine. Support vector machine is another supervised

learning approach used to classify the input vectors into two classes or multiple classes.

The main idea behind SVM is to transform the input feature vectors into higher-dimensional

space where the two classes or multiple classes can be linearly separable by a high-

dimensional surface called a hyper-plane [27]. Different mapping functions are used

for transforming the input features into the high-dimensional space, known as kernel

functions. Some commonly used kernels are linear, RBF, sigmoid and polynomial.

Figure 2.1 illustrates an example of a hyper-plane in 2D and 3D representations,

where the white dots and black dots are the two classes to be separated by the hyper-

plane. The middle line is called the line of margin and the two parallel lines of either

side of it are the hyper-plane edges. The perpendicular distances between the marginal

line and hyper-plane edges are known as the margins. The main goal of SVM is to

maximize these margins to obtain better separation between the two classes and thus

more accurate classification. The equation of such a hyper-plane can be given by [28]:

aX +bY =C (2.4)

where C is known as the cost function or complexity parameter and is defined as the

sum of all distances of the points that are on the wrong side of the hyper-plane [28].

This chapter has reviewed a wide range of existing solutions in the topic of data

hiding in scrambled videos and images. In this work, we extended the work mentioned

in the literature by adopting a novel scheme for simultaneous data embedding and video

scrambling at the encoder by motion vector rotation and proposing a machine learning

approach to recover the original video and extract the embedded message bits at the

26



Figure 2.1: A hyper-plane in (a) 2D and (b) 3D [28].

decoder. The proposed methodology and the conducted experiments are illustrated in

the following chapters.
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Chapter 3. Methodology

In this chapter, the overall data embedding and extraction system is described in

details. We use a video-dependent approach, where the first 10% of the video is used for

training the model which will be used later to classify the motion vectors of the rest 90%

of the video that is used for data embedding to either rotated or unrotated. Since model

generation process needs the actual class of each training sample, no data embedding

is applied to the first 10% of the video. The decoder upon receiving the motion vectors

in the bit stream knows that the MVs of the first 10% of the frames are the true MVs,

therefore it uses them as a ground truth to train the model. After that, the decoder

applies the trained model to the rest of the video which contains the embedded rotated

MVs to classify them. This approach assumes that no major scene change appears in the

test video sequence which can be due to using small-sized videos with limited number

of frames. However, for larger video sizes, i.e. higher number of frames, where scene

changes are expected, the training can be repeated periodically every N frames, e.g. 100

frames, to cater for scene changes. Figure 3.1 illustrates the overall system of training,

classification and data extraction. The detailed model training approach is illustrated in

the following section.

3.1 Training Phase

For a received uni-directional macroblock (i.e. a MB with only one MV; either

forward or backward), its corresponding MV is rotated using 4 angles: 0◦ , 90◦ , 180◦

and 270◦ , then each of the 4 rotated MVs is applied to motion compensation process

with the reference frame providing 4 motion compensated MBs which are then added

to the prediction error to reconstruct 4 different MBs. In the case of a bi-directional

macroblock (i.e. a MB with 2 MVs; forward MV and backward MV), each MV is

rotated using the four angles, resulting in 16 candidate reconstructed MBs due to the 16

possible combinations of the two motion vectors. Features are then extracted from each

reconstructed MB and its associated MV(s), resulting in 4 or 16 feature vectors per a

MB. The feature vector corresponding to rotation angle of 0◦ (or 0◦,0◦ for bi-directional
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MBs) belongs to the unrotated class so is marked as 1, while the rest 3 or 15 feature

vectors belong to the rotated class so are marked as 0. This process is repeated for

all the received macroblocks in the first 10% of the video except the intra MBs since

they have no MVs, and the MBs with (0,0) MVs since they cannot be rotated. The

obtained feature matrix is then used to build the model. The motion vectors’ rotation,

the feature variables used, and the machine learning approaches utilised are described

in the following subsections respectively.

Figure 3.1: Flow chart of the complete training and data extraction system.
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3.1.1 Motion vector rotation. For each eligible MB (i.e. non-intra and has

non-zero MV), its motion vector(s) is/ are rotated using four different angles as shown

in the following equations:

MV 0
x = MVx

MV 0
y = MVy

(3.1)

MV 90
x =−1∗MVy

MV 90
y = MVx

(3.2)

MV 180
x =−1∗MVx

MV 180
y =−1∗MVy

(3.3)

MV 270
x = MVy

MV 270
y =−1∗MVx

(3.4)

where MVx and MVy are the horizontal and vertical components of the original motion

vector respectively, while MV i
x and MV i

y are the horizontal and vertical components of

the motion vector rotated by an angle of i◦ .

3.1.2 Feature variables. The feature set used to represent each candidate re-

constructed MB and its associated MV(s) consists of 11 feature variables, 7 of them are

extracted from the macroblock domain and the other 4 are extracted from the motion

vector domain. Table 3.1 and Table 3.2 describe them respectively.

3.1.3 Model generation. After extracting the features and obtaining the com-

plete training dataset, we applied three machine learning approaches: the support vec-

tor machine (SVM), the random forests (RF) and the polynomial classifier. For SVM

model, a RBF kernel was used which is given by the following equation [29]:
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KRBF(xi,x j) = exp(−γ
∥∥xi− x j

∥∥2
) (3.5)

where xi and x j are the ith and jth feature vectors.

For random forests, we set the number of grown trees to 128. Each tree is

then trained with a subset of the full feature set mentioned in Table 3.1 and Table 3.2.

In polynomial classifier, the feature vectors are expanded into higher dimensionality

using polynomial expansion, and the classification decision is then determined from the

following equation that combines the expanded feature variables with the polynomial

weights [30] :

f (w,x) = αo +
r

∑
k=1

l

∑
j=1

wk jxk
j +

r

∑
j=1

wrl+ j(x1 + x2 + ...+ xl)
j

+
r

∑
j=2

(wT
j x)(x1 + x2 + ...+ xl)

j−1, l,r ≥ 2
(3.6)

where r is the polynomial order, w are the polynomial weights to be estimated and x is

the feature vector with l feature variables. The polynomial weights are estimated using

least-squares error minimization. The order of polynomial expansion used is five.

After extracting the feature vectors associated with each set of 4 or 16 candidate

MBs, we ranked them as follows:

• For all feature variables in Table 3.1, the 4 or 16 candidate MBs are ranked in

an ascending order, where the MB having the lowest value is ranked as 1 and the

MB having the highest value is ranked as 4 or 16. When two or more MBs in

the candidates set have the same value for that feature variable, they are given the

same ranking value.

• For all feature variables in Table 3.2, since they are phase differences; first, the

whole angular range is divided into 8 parts of 45◦-wide each, and each part is

assigned a unique ranking number between 0 and 7, then a direct mapping is per-

formed between the actual phase difference values and the ranking values.
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3.2 Data Embedding and Extraction

As mentioned previously, only the rest 90% of the video is used to embed the

message bits. Data embedding takes place at the encoder by rotating the motion vectors

in the final bit stream, not during the encoding process in order not to affect the motion

compensation process. Again, intra MBs and MBs with (0,0) MVs are not used for data

hiding. A random binary number generator is used to generate the to-be-embedded

sequence, and two bits are embedded per MV by rotating it according to the value of

the two bits as follows:

• To embed ‘00’ the MV is rotated by 0◦ according to Equation 3.1.

• To embed ‘01’ the MV is rotated by 90◦ according to Equation 3.2.

• To embed ‘10’ the MV is rotated by 180◦ according to Equation 3.3.

• To embed ‘11’ the MV is rotated by 270◦ according to Equation 3.4.

By this embedding approach, 2 bits are embedded in a uni-directional MB with a sin-

gle MV and 4 bits are embedded in a bi-directional MB with two motion vectors.

The decoder upon receiving the second part of the video knows that the received

motion vectors could be rotated, however, the original values are unknown. Therefore,

in order to obtain the actual values of the received MVs, the same steps explained in

the training phase in the previous section are applied to the received possibly rotated

MVs. First, the motion vector of a received uni-directional MB is rotated using the

4 rotation angles described in Subsection 3.1.1 producing 4 candidate MVs which are

Table 3.1: List of features extracted from macroblock domain

Feature ID Feature Description
1 The entropy of pixel values in a reconstructed candidate MB.
2 The average of pixel values in a reconstructed candidate MB.
3 The variance of pixel values in a reconstructed candidate MB.
4 The Sum of absolute edge values of a reconstructed candidate MB using

‘Sobel’ edge detection.
5 The pixel violation counts in a reconstructed candidate MB (number of

pixels with values less than 0 or greater than 255).
6 The sum of absolute values of the prediction error obtained by subtract-

ing a candidate reconstructed forward MB (FMB) from the co-located
MB in the reference frame.

7 Same as feature ID 6 above but applied to the backward MB (BMB).
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then applied to motion compensation process with the reference frame resulting in 4

motion compensated MBs which in turn are added to the PE producing 4 candidate re-

constructed MBs. If the received MB is bi-directional, each of its 2 MVs is rotated using

the 4 rotation angles and thus 16 candidate MBs are reconstructed in this case. Then,

feature extraction is performed on the 4 or 16 candidate MBs and their correspond-

ing MVs. However, in this case the decoder does not know the class of each feature

vector. Therefore, the classification models explained in the previous section are used

to decide which of the candidate reconstructed MBs corresponds to the true unrotated

MV(s). After that, the MV classified as the true unrotated MV by the classifier is com-

pared against the received MV and the hidden message bits are then extracted using the

following formulas:

Bitsembedded =



00 if |arctan(MVy/MVx)−arctan(M̄Vy/M̄Vx)|= 0◦

01 if |arctan(MVy/MVx)−arctan(M̄Vy/M̄Vx)|= 90◦

10 if |arctan(MVy/MVx)−arctan(M̄Vy/M̄Vx)|= 180◦

11 if |arctan(MVy/MVx)−arctan(M̄Vy/M̄Vx)|= 270◦

(3.7)

where MVx and MVy indicate the horizontal and vertical components of the received

MV respectively, while M̄Vx and M̄Vy are the horizontal and vertical components of the

classified MV.

Table 3.2: List of features extracted from motion vector domain

Feature ID Feature Description
8 The absolute difference between the phase of the candidate MV and the

phase of the top MB of the same frame.
9 The absolute difference between the phase of the candidate MV and the

phase of the left MB of the same frame.
10 The absolute difference between the phase of the candidate forward MV

(FMV) and the phase of the co-located MV of the reference frame.
11 Same as feature ID 10 above but applied to the backward MV (BMV).
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3.3 Post Classification Processing

In some cases, the classifier may result in different types of errors. Three types

of errors are defined in this work. For a candidate set of 4 reconstructed macroblocks

(or 16 reconstructed MBs for a bi-directional MB), if the classification model classifies

two or more of them as true unrotated, a Type I is encountered. If none of the candi-

date set members is classified as the true unrotated, a Type II error is encountered. For

both Type I and Type II errors, a post classification process is performed on the corre-

sponding candidate set by computing the sum of absolute differences (SAD) between

each candidate MB in the wrongly classified set and the top and left MBs of the same

frame. The MB that produces the minimum SAD value is considered as the true MB

corresponding to the true unrotated MV(s) . For Type III error in which the classifier

identifies only one of the 4 or 16 candidate MBs as the true MB, however, it is not ac-

tually the true MB, no further processing is performed. Figure 3.2 illustrates the three

different types of errors and Equation 3.8 describes the SAD between a candidate MB

and the top and left MBs of the same image.

Figure 3.2: The three different error types.
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SAD =
16

∑
j=1
|pc(1, j)− pt(16, j)|+

16

∑
i=1
|pc(i,1)− pl(i,16)| (3.8)

where pc(i, j), pt(i, j) and pl(i, j) denote the pixel values in the ith row and jth column

of the candidate MB, the top MB and the left MB respectively.

3.4 Combined Encoder-Decoder Solution

In the previous solution where the classification model is built only at the de-

coder, some of the MVs can be wrongly classified which leads to inaccurate message ex-

traction and also affects the quality of the decoded frames due to the incorrect counter-

rotation of the MVs as will be illustrated in the experimental results. Therefore, a

second solution is proposed where the model generation and MVs’ classification take

place also at the encoder side. The algorithm of this solution is illustrated in Figure 3.3.

First, the encoder uses the same frames that will be used by the decoder to build the

classification model, i.e. the first 10 frames in the sequence, which makes the encoder

and the decoder have the same classification model without adding the extra overhead

of transferring the model parameters in the bit stream. Once the model is generated,

for each non-intra MB with a non-zero MV in the rest 90% of the frames sequence, the

following procedure is followed: the encoder rotates its MV(s) according to the bits to

be embedded. Then, the same steps of rotating the MVs, reconstructing the candidate

MBs, and extracting the feature variables that are followed by the decoder are executed

by the encoder. After that, the 4 or 16 computed feature vectors for a MB are applied

to the encoder’s classification model and the result of classification is compared against

the ground truth (the true un-rotated MV(s)). If the MB is classified correctly, data

embedding takes place by rotating its MV(s) according to the message bits. Otherwise,

no bits are embedded and the MB is forced to be either intra-coded or inter-coded with

zero MV in order to enable the decoder to distinguish the MBs with hidden bits from

those with no hidden bits.

Compared to the previous decoder-only solution, this solution results in 100%-

accurate classification at the decoder side, thus error-free message extraction and cor-

rect reconstruction without affecting the quality of the decoded video frames. On the
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other hand, restricting the embedding process at the encoder side only to the correctly-

classified MBs results in reducing the embedding rate. Also, a slight increase can be

witnessed in the video bitrate due to forcing the misclassified MBs at the encoder to

intra-coding or zero-MV-inter-coding.

Figure 3.3: Data embedding in selective MBs at the encoder’s side.
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Chapter 4. Experimental Setup and Results

In this chapter, we present the results obtained by implementing the proposed

system described in Chapter 3. We conducted the experiments using 100 frames of each

of the 9 well-known video sequences shown in Table 4.1. As shown in the table, the

highest spatial resolution we had for a video sequence was 1280×768 which was com-

pletely enough for demonstrating and evaluating our proposed work, as using videos

with greater spatial resolutions will only result in increasing the embedding rate further

due to the higher number of MBs they contain. First, all sequences were compressed

using MPEG2 video coding standard. Each sequence was encoded three times using

a different quantization scale in each. The values of QS used are: 5, 15 and 25. The

solution was evaluated on two types of encoding sequences: IPPP... sequence (with

only P frames) and IBPBP... sequence (with P and B frames). For IBPBP... sequence,

the proposed system was evaluated for the three different MB types separately, namely,

the forward-predicted MBs of P frames, the mono-directional MBs of B frames and

the bi-directional MBs of B frames. A video-dependent training was used where the

first 10 frames were used for training the model. Three classifiers were trained per se-

quence per QS value, namely, Random Forests, SVM with RBF kernel and fifth order

polynomial. The results for MPEG2 are presented in Section 4.1. Then, all the exper-

iments were repeated using HEVC video coding standard. For HEVC, the proposed

solution was tested only for IPPP... encoding sequence and the quantization scale val-

ues used to compress the different test video sequences were 22, 27, 32 and 37. The

results of HEVC are reported in Section 4.2. After that, a comparison between our pro-

posed solution (machine learning followed by SAD as post processing) and only using

SAD for classification is conducted in Section 4.3, along with comparing it with exist-

ing solutions. At last, the sequence-independent training approach was conducted and

examined for completeness, and the classification results are shown in Section 4.4.

4.1 MPEG2 Results

With MPEG2 encoder, we tested our solution on 2 different encoding sequences;

IPPP... sequence (with N=100, GOP=100, M=1, i.e. only one I frame followed by a
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Table 4.1: Video test sequences and their resolutions.

Sequence Name Width × Height frames/sec
1 RaceHorses 416 × 240 30
2 BlowingBubbles 416 × 240 50
3 BasketballPass 416 × 240 50
4 RaceHorses 832 × 480 30
5 BQMall 832 × 480 60
6 BasketballDrill 832 × 480 50
7 ParkScene 1280 × 768 24
8 Kimono1 1280 × 768 24
9 Cactus 1280 × 768 50

sequence of 99 predicted frames, no bi-directional frames) and IBPBP... sequence (with

N=100, GOP=100, M=2, i.e. only one I frame followed by a sequence of bi-directional

and predicted frames, with one B frame between each two P frames). For each encoding

sequence: each sequence was compressed using the three aforementioned quantization

scales; 5, 15 and 25 and for each of them, three classifiers were trained which are: RF,

SVM with RBF kernel and fifth order polynomial classifiers. Each classifier was trained

on the first 10% of each video, i.e. first 10 frames, and then used to classify the MVs

of the rest 90% of the same video, i.e. last 90 frames. In the cases when the classifier

resulted in Type I or Type II error where more than one MB or no MB respectively in

a candidates set were/ was classified as the correct MB, post processing was applied to

the corresponding MBs to identify the correct MB by the one having the lowest SAD

with the top and left MBs of the same frame.

4.1.1 Classification and post processing. Firstly, we present the classification

results obtained using IBPBP... sequence. We tested our solution on the three different

MB types that exist in an IBPBP... sequence: forward-predicted MBs in P frames (P

MBs), mono-directional (forward or backward) predicted MBs in B frames (mono-B

MBs) and bi-directional (both forward and backward) predicted MBs in B frames (bi-

B MBs). Table 4.2 to Table 4.10 illustrate the classification results obtained by RF,

RBF-SVM and 5th order plynomial on a MB-type basis for each quantization scale

separately. The results are all presented as an average over the 9 test sequences in order

to make them readable and easy to comprehend. Then, the results for each classifier
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averaged over the 3 quantization scales are summarized in Tables 4.11, 4.12 and 4.13

for RF, SVM and polynomial classifiers respectively. The term ’Model accuracy’ refers

to the accuracy obtained by the classifier, while the term ’Final accuracy’ refers to the

accuracy obtained after applying the post processing using SAD to the output of the

classifier. Beside Type I and Type II errors explained above, the classification error in

which only one MB in a candidates set is classified as the true MB while it is not is also

presented. From the results we can observe the following:

• Observing the results for the different QS values obtained by the same classifier,

we can conclude that as we increase the quantization scale value, the classifica-

tion accuracy decreases. This can be explained as follows: when using small

quantization scale values for compression, most of the DCT coefficients of the

prediction errors maintain non-zero values after quantization, providing more in-

formation to the classifier to base its decision on. On the other hand, when using

high values of quantization scales, the resulting quantized DCT coefficients are

mostly zeros, thus less information is available for the classifier which affects its

accuracy.

• Observing the average results for the different classifiers, RF outperformed 5th

order polynomial which in turn performed better than RBF-SVM with final accu-

racy of 96.79% , 96.58% and 91.21% respectively, averaged over all QS values

and all MB types.

• In all cases (for all classifiers and all QS values), the classification accuracies for

P MBs are lower than their mono-B MBs counterparts. This can be due to the fact

that mono-B MBs use reference frames that are one frame apart, while P MBs use

reference frames that are 2 frames apart.

• For RF and RBF-SVM classifiers, the percentage of Type II error is greater than

the percentage of Type I error, which means that the classifier tends to classify a

training instance as ’0’ more than as ’1’, which can be due to the imbalance data,

even with applying the down-sampling technique to the majority class (class 0)

which reduces the percentage of Type II error, but cannot eliminate it completely.

For Polynomial classifier, the expansion of feature variables had a positive impact

on Type II error as the percentages of Type II error have decreased.

39



Table 4.2: RF results for QS 5 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 93.85 94.67 95.96 94.83
% of Type I error 1.74 1.01 1.01 1.25
% of Type II error 1.87 2.08 1.01 1.65
% of Classification error 2.54 2.23 2.02 2.26
Fixed % of Type I error 68.06 81.67 95.09 81.61
Fixed % of Type II error 54.35 48.05 93.22 65.21
Final accuracy 96.05 96.53 97.85 96.81

Secondly, we present the classification results obtained using IPPP... sequence.

Table 4.14 and Table 4.15 show the results obtained by RF classifier and SVM classi-

fier with RBF kernel respectively for the different QS values. Then, the results of both

classifiers are averaged over the 3 quantization scales and summarized in Table 4.16.

We can observe that the conclusions that we derived from IBPBP... sequence results

are supported by IPPP... sequence results. That is; increasing the QS value used for

compression results in decreasing the classification accuracy, RF classifier produced

better classification results than SVM classifier, and the percentages of Type II error are

higher than the percentages of Type I error.

At last, when comparing the classification accuracies obtained by the best clas-

sifier (RF) for IBPBP... sequence against IPPP... sequence, we can see that the overall

average classification accuracy using P frames only is 96.34% which is slightly lower

than 96.79% in the case of using both P and B frames. This can be attributed to the fact

that with IBP... sequences, having bi-directional MBs results in improving the classifi-

cation accuracy since the classifier in this case has more information to base its decision

on, as the most influential features such as the MVs’ phase differences and the sum of

absolute values of the prediction errors are now extracted in both directions; referencing

to the previous and future frames.

4.1.2 Features selection. In this subsection, we test the effect of features se-

lection by applying it to Random Forests. The idea is that: While first training the dif-

ferent RF classifiers using all the feature variables of Tables 3.1 and 3.2, the importance

of each feature variable in predicting the correct classification of a test feature vector

was computed and recorded. After that, only the features having an importance greater

40



Table 4.3: RF results for QS 15 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 93.99 95.76 95.87 95.21
% of Type I error 1.63 1.01 1.01 1.22
% of Type II error 1.80 1.08 1.01 1.30
% of Classification error 2.57 2.14 2.10 2.27
Fixed % of Type I error 67.47 90.01 88.67 82.05
Fixed % of Type II error 52.89 35.54 54.86 47.76
Final accuracy 96.05 97.06 97.32 96.81

Table 4.4: RF results for QS 25 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 94.24 95.52 95.83 95.19
% of Type I error 1.36 1.00 1.03 1.13
% of Type II error 1.84 1.38 1.02 1.41
% of Classification error 2.56 2.09 2.12 2.26
Fixed % of Type I error 66.54 73.61 72.69 70.95
Fixed % of Type II error 48.75 44.88 69.31 54.31
Final accuracy 96.08 96.89 97.27 96.75

Table 4.5: SVM results for QS 5 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 89.38 95.04 75.86 86.76
% of Type I error 2.14 1.22 2.26 1.87
% of Type II error 5.87 1.50 19.03 8.80
% of Classification error 2.60 2.23 2.85 2.56
Fixed % of Type I error 65.13 53.76 67.88 62.26
Fixed % of Type II error 60.71 62.47 41.60 54.93
Final accuracy 95.39 96.66 85.77 92.61

Table 4.6: SVM results for QS 15 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 90.70 95.38 73.55 86.54
% of Type I error 2.12 1.10 2.64 1.95
% of Type II error 4.52 1.41 20.52 8.82
% of Classification error 2.66 2.11 3.29 2.69
Fixed % of Type I error 68.14 40.42 60.54 56.37
Fixed % of Type II error 61.82 57.48 36.59 51.96
Final accuracy 95.62 96.65 83.04 91.77
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Table 4.7: SVM results for QS 25 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 88.77 95.47 69.98 84.74
% of Type I error 1.71 1.05 2.71 1.82
% of Type II error 6.88 1.39 23.66 10.64
% of Classification error 2.63 2.08 3.65 2.79
Fixed % of Type I error 62.75 40.73 57.51 53.66
Fixed % of Type II error 55.63 57.53 34.45 49.20
Final accuracy 95.13 96.71 80.06 90.63

Table 4.8: Polynomial results for QS 5 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 93.05 95.66 93.18 93.96
% of Type I error 2.43 1.18 3.72 2.44
% of Type II error 1.00 1.00 1.00 1.00
% of Classification error 3.52 2.17 2.09 2.59
Fixed % of Type I error 62.36 55.35 81.24 66.32
Fixed % of Type II error 100 100 88.89 96.29
Final accuracy 95.63 97.30 96.55 96.49

Table 4.9: Polynomial results for QS 15 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 93.58 95.73 93.21 94.17
% of Type I error 1.85 1.15 3.65 2.22
% of Type II error 1.00 1.00 1.01 1.00
% of Classification error 3.57 2.12 2.13 2.61
Fixed % of Type I error 61.69 46.33 64.81 57.61
Fixed % of Type II error 100 100 81.48 93.83
Final accuracy 95.74 97.27 96.01 96.34

Table 4.10: Polynomial results for QS 25 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 92.83 95.15 92.59 93.52
% of Type I error 2.56 1.50 4.37 2.81
% of Type II error 1.00 1.01 1.00 1.00
% of Classification error 3.60 2.34 2.03 2.66
Fixed % of Type I error 67.32 49.40 88.44 68.39
Fixed % of Type II error 100 93.06 100 97.69
Final accuracy 95.54 96.86 96.56 96.32
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Table 4.11: RF results for MPEG2 IBP...sequence averaged over all QS values.

P mono-B bi-B
Model accuracy 94.03 95.32 95.89

% of Type I error 1.58 1.01 1.02
% of Type II error 1.84 1.51 1.01

% of Classification error 2.56 2.16 2.08
Fixed % of Type I error 67.36 81.76 85.48
Fixed % of Type II error 52.00 42.82 72.46

Final accuracy 96.06 96.83 97.48

Table 4.12: SVM results for MPEG2 IBP...sequence averaged over all QS values.

P mono-B bi-B
Model accuracy 89.62 95.29 73.13

% of Type I error 1.99 1.13 2.54
% of Type II error 5.76 1.43 21.07

% of Classification error 2.63 2.14 3.26
Fixed % of Type I error 65.34 44.97 61.98
Fixed % of Type II error 59.39 59.16 37.55

Final accuracy 94.34 96.67 82.62

Table 4.13: Polynomial results for MPEG2 IBP...sequence averaged over all QS values.

P mono-B bi-B
Model accuracy 93.15 95.51 92.99

% of Type I error 2.28 1.28 3.91
% of Type II error 1.00 1.00 1.01

% of Classification error 3.56 2.21 2.09
Fixed % of Type I error 63.79 50.36 78.16
Fixed % of Type II error 100 97.69 90.12

Final accuracy 95.64 97.15 96.95

Table 4.14: RF results for MPEG2 using an IPP... sequence.

QS 5 QS 15 QS 25
Model accuracy 94.30 92.00 91.40
% of Type I error 1.21 2.34 2.39
% of Type II error 1.82 2.46 2.57
% of Classification error 2.67 3.20 3.64
Fixed % of Type I error 79.21 89.63 88.38
Fixed % of Type II error 81.45 93.14 92.68
Final accuracy 96.74 96.39 95.89
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Table 4.15: SVM results for MPEG2 using an IPP... sequence.

QS 5 QS 15 QS 25
Model accuracy 93.20 90.70 89.40
% of Type I error 1.42 2.71 2.87
% of Type II error 2.03 2.98 3.16
% of Classification error 3.35 3.61 4.57
Fixed % of Type I error 78.96 87.26 88.02
Fixed % of Type II error 84.21 92.53 93.23
Final accuracy 96.03 95.82 94.87

Table 4.16: Comparison of RF and SVM for MPEG2 using an IPP... sequence.

RF SVM
Model accuracy 92.57 91.10
% of Type I error 1.98 2.33
% of Type II error 2.28 2.72
% of Classification error 3.17 3.84
Fixed % of Type I error 85.74 84.75
Fixed % of Type II error 89.09 89.99
Final accuracy 96.34 95.57

than a specific threshold were selected to train the RF classifiers. This was repeated for

each sequence for each QS value and the effect of feature selection was tested for each

MB type separately using IBPBP... sequence. Tables 4.17, 4.18 and 4.19 illustrate the

results of RF with feature selection for QS 5, 15 and 25 respectively, averaged over all

the 9 test sequences. A comparison between RF with feature selection and RF without

feature selection is shown in Table 4.20 with the results being averaged over all QS

values. From the table, we can clearly observe that feature selection did not improve

the classification results of RF, as the average classification accuracies with and without

features selection are almost similar.

Although features selection did not add a value to RF classification results, ex-

ploring the most influential features that contributed the most to the obtained classifi-

cation accuracies is a must. Therefore, we plot the histograms of the selected feature

variables per MB type in Figure 4.1. In general, we can observe that the most frequently

used features for all MB types are the phase differences between a candidate MB and

its top and left MBs of the same frame and the reference MB in the reference frame, and

the sum of absolute values of the prediction errors obtained by subtracting a candidate
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Table 4.17: RF with features selection for QS 5 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 94.04 95.77 95.87 95.23
% of Type I error 1.57 1.01 1.02 1.20
% of Type II error 1.80 1.08 1.02 1.30
% of Classification error 2.59 2.14 2.09 2.27
Fixed % of Type I error 60.21 89.68 76.43 75.44
Fixed % of Type II error 47.51 35.20 78.02 53.58
Final accuracy 95.93 97.05 97.43 96.80

Table 4.18: RF with features selection for QS 15 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 94.28 95.54 95.80 95.21
% of Type I error 1.34 1.01 1.03 1.13
% of Type II error 1.82 1.35 1.02 1.39
% of Classification error 2.56 2.10 2.15 2.27
Fixed % of Type I error 73.33 83.07 75.00 77.13
Fixed % of Type II error 49.51 52.83 58.44 53.59
Final accuracy 96.17 97.08 97.16 96.80

MB from the co-located MB in the reference frame, which correspond to the IDs 1-4,

10 and 11. Except that features with IDs 4 and 11 have a value of zero for P MBs, as

they correspond to backward prediction which is not applicable for P MBs. Addition-

ally, feature with ID 9, which is the pixel variance of the reconstructed candidate MB,

appears to have high importance in the case of bi-directional B MBs.

Table 4.19: RF with features selection for QS 25 for MPEG2 IBP...sequence.

P mono-B bi-B Average
Model accuracy 93.88 94.59 95.96 94.81
% of Type I error 1.70 1.02 1.02 1.25
% of Type II error 1.88 2.12 1.01 1.67
% of Classification error 2.54 2.27 2.02 2.28
Fixed % of Type I error 72.44 59.89 95.12 75.82
Fixed % of Type II error 53.31 52.60 92.52 66.14
Final accuracy 96.09 96.31 97.85 96.75
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Table 4.20: RF with and without features selection averaged over all QS values for
MPEG2 IBP...sequence.

with features selection without features selection
MB Type P mono-

B
bi-B P mono-

B
bi-B

Model accuracy 94.07 95.30 95.88 94.03 95.32 95.89
% of Type I error 1.54 1.01 1.02 1.58 1.01 1.02
% of Type II error 1.83 1.52 1.02 1.84 1.51 1.01

% of Classification error 2.56 2.17 2.09 2.56 2.16 2.08
Fixed % of Type I error 68.66 77.55 82.18 67.36 81.76 85.48
Fixed % of Type II error 50.11 46.88 76.33 52.00 42.82 72.46

Final accuracy 96.06 96.82 97.48 96.06 96.83 97.48

Figure 4.1: Selected features for the three different MB types.

4.1.3 Embedding capacity. The embedding capacity for each sequence mea-

sured in bits/MB was computed by the following formula:

Embedding capacity =
number o f embedded bits

total testing MBs
Bits/MB (4.1)
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The embedding capacities for all test sequences for the different quantization

scales are reported in Tables 4.21 and 4.22 for IBP... sequence and IPP... sequence

respectively. We can observe that as the quantization scale value for IPP... sequence

increases, the embedding capacity decreases. This can be explained as follows: when

motion estimation is performed between a MB and its reference frame, if the reference

frame is quantized using high quantization scale value, the chance to find a best match

location for the MB in its previous frame becomes lower, so the encoder may decide

either to consider the co-located MB as a best match which means the MV becomes

(0,0) or to encode the MB as an intra MB. Another reason could be that when a mac-

roblock is quantized with a high QS value, there is a good chance that all the quantized

DCT coefficients become zeros and thus the encoder decides to skip this macroblock.

However, for IBP... sequence there is no constant behaviour of the embedding rate with

increasing the QS value, this can be due to that the encoder’s decision on the MB type

to be mono-directional or bi-directional is irrelevant to the increase in the quantization

scale value used for compression.

Tables 4.23 and 4.24 provide a comparison between the embedding rates mea-

sured in bits/MB and Kbits/second respectively for each test sequence when encoded

using an IPP... sequence and an IBP... sequence averaged over the 3 QS values. From

the tables, we can clearly observe the advantage of having B frames in the encoding

sequence over only having P frames, as the bi-directional MBs of B frames can embed

4 bits (2 bits per each of their 2 MVs) compared to only 2 bits per the forward-predicted

MBs of P frames, resulting in an overall average of 1.68 bits/MB for IBP... sequence

compared to 1.07 bits/MB for IPP... sequence.

4.1.4 Effect of missclassification on the decoded video quality. As men-

tioned previously in Chapter 2, a good data hiding scheme should maintain an accept-

able level of quality for the host video. In other words, embedding the bits should not

severely affect the visual content of the cover video. In our approach, for the percentage

of macroblocks that are wrongly classified (1 - accuracy), the decoder rotates them back

wrongly which may affect the quality of the reconstructed video at the decoder. To ex-

amine the effect of misclassification on the PSNR of the reconstructed video, we modi-
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Table 4.21: Embedding capacity in bits/MB for MPEG2 IBP... sequence.

Sequence ID QS 5 QS 15 QS 25
1 2.18 2.15 2.06
2 1.36 1.41 1.42
3 1.23 1.43 1.44
4 2.28 2.22 2.15
5 1.22 1.33 1.40
6 1.18 1.36 1.33
7 1.86 1.75 1.68
8 2.36 2.23 2.15
9 1.29 1.39 1.47

Table 4.22: Embedding capacity in bits/MB for MPEG2 IPP... sequence.

Sequence ID QS 5 QS 15 QS 25
1 1.65 1.54 1.40
2 1.03 0.86 0.71
3 0.97 0.85 0.74
4 1.70 1.64 1.56
5 0.86 0.84 0.80
6 1.04 1.00 0.84
7 1.27 1.50 1.42
8 1.55 0.74 0.69
9 0.85 0.48 0.44

fied MPEG2 decoder to simulate the misclassification effect by randomly rotating a per-

centage of motion vectors equals to (1 - accuracy) before motion compensation takes

place. As a result, a similar percentage of macroblocks was wrongly reconstructed.

Then, the PSNRs of the resulting decoded frames were measured and compared to the

PSNRs of the normally decoded frames (without wrong rotation) and hence the PSNR

differences were observed. We tested this for IBPBP... sequence twice; once with no

intermediate I frames (N=100, GOP=100, M=2, i.e. only one I frame, followed by a

sequence of bi-directional and predicted frames, with one B frame between each two P

frames) and then with inserting an intermediate I frame every 12 frames in the sequence

(N=100, GOP=12, M=2, i.e. an I frame every 12 frames, followed by a sequence of bi-

directional and predicted frames, with one B frame between each two P frames). The

results are shown in Table 4.25 for each test sequences averaged over all the 3 quantiza-

tion scales. Referring to the table, the overall PSNR drop averaged over all sequences
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Table 4.23: A comparison between the embedding capacity of IPPP... and IBPBP...
sequences for MPEG2 in bits/MB, averaged over all QS values .

Sequence ID IPP... sequence IBP... sequence
1 1.53 2.13
2 0.87 1.40
3 0.85 1.37
4 1.63 2.22
5 0.83 1.32
6 0.96 1.29
7 1.40 1.76
8 0.99 2.25
9 0.59 1.38
Average 1.07 1.68

Table 4.24: A comparison between the embedding capacity of IPPP... and IBPBP...
sequences for MPEG2 in Kbits/sec, averaged over all QS values .

Sequence ID IPP... sequence IBP... sequence
1 14.32 19.94
2 13.52 21.79
3 13.31 21.32
4 68.60 93.10
5 70.00 110.60
6 67.20 90.30
7 120.27 151.85
8 85.54 193.46
9 105.85 248.17

and QS values is 6.43 dB without intermediate I frames, whereas inserting periodic I

frames mitigated the effect of error propagation on the quality of the decoded video re-

sulting in decreasing the PSNR drop to 4.98 dB. Therefore, we can conclude that having

periodic I frames with our embedding approach ensures better quality of the decoded

video, and if we increase the frequency of the intermediate I frames further, i.e. an

I frame every 8 frames or 4 frames, a better quality will be obtained for the decoded

video. On the other hand, increasing the frequency of the periodic I frames will increase

the number of intra MBs in the sequence at the expense of inter MBs, which will reduce

the embedding capacity.

As a result, to totally eliminate the effect of misclassification on the quality of

the decoded video as well as on the correctness of message bits extraction, a combined
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Table 4.25: PSNR drop [in dB] in MPEG2 IBP... decoded sequence as a result of
misclassification at the decoder, averaged over all QS values.

Sequence ID With I frames Without I frames
1 6.03 8.94
2 1.82 3.12
3 3.59 5.10
4 6.09 7.18
5 6.38 7.99
6 4.25 6.06
7 4.76 5.22
8 6.21 7.35
9 5.71 6.87
Average 4.98 6.43

encoder-decoder solution was proposed as will be illustrated and examined in the fol-

lowing subsection.

4.1.5 Combined encoder-decoder solution. To eliminate the drop in PSNR

of the reconstructed video at the decoder, this combined encoder-decoder solution was

proposed. As mentioned in Chapter 3, this solution implies that the training and classifi-

cation processes are also performed at the encoder, so that the MBs which are wrongly

classified by the encoder’s classifier are not used to hide message bits, instead, their

coding modes are set to intra coding or inter coding with no motion compensation (zero

MV) to make the decoder able to distinguish them from the MBs having hidden bits. In

this way, the classification accuracy at the decoder will be 100%, the message bits will

thus be 100%-error-free extracted and all the MVs will be correctly counter-rotated and

hence eliminating the drop in PSNR of the reconstructed video at the decoder. However,

excluding the misclassified MBs from the embedding process at the encoder reduces the

embedding rate, and manipulating the coding modes of those MBs accordingly leads to

an increase in the video bitrate. We evaluated this solution in terms of bitrate increase

and PSNR drop at the encoder side (referenced to the original video before manipulat-

ing the coding modes of misclassified MBs) as well as the embedding capacity. Table

4.26 depicts the results for each test sequence averaged over all QS values for IBPBP...

sequence. As shown in the table, the average PSNR drop at the encoder compared to

the original video for all video sequences is 0.12 dB which is a slight acceptable drop,
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Table 4.26: PSNR drop, bitrate increase and embedding capacity at MPEG2 encoder
for IBP... sequence as a result of the combined encoder-decoder solution, averaged over
all QS values.

Sequence ID PSNR drop [dB] Bitrate increase [%] Embedding rate [bits/MB]
1 0.09 6.63 2.06
2 0.06 2.72 1.32
3 0.26 8.15 1.28
4 0.14 12.87 2.15
5 0.12 5.93 1.24
6 0.11 5.90 1.23
7 0.05 1.88 1.69
8 0.17 8.38 2.18
9 0.08 2.96 1.31
Average 0.12 6.16 1.61

and the drop in embedding rate from 1.68 to 1.61 bits/MB is also slight, with an ad-

vantage that embedding with this rate of 1.61 bits/MB will result in extracting them all

correctly and error-free at the decoder as opposed to embedding with a higher rate of

1.68 bits/MB at the encoder but having 4% of them on average (1-accuracy) wrongly

extracted at the decoder. The average increase in the bitrate at the encoder compared to

the original video is 6.16%.

4.2 HEVC Results

In this section, we present the results obtained from repeating the experiments

on HEVC-encoded videos. The experiments for HEVC were conducted using only P

frames (IPPP... encoding sequence with N=100, GOP=100, M=1). For simplification,

the size of the coding units (CUs) was fixed to 16×16 in all the experiments. For each

video sequence, four quantization scale values were used for compression: 22, 27, 32

and 37 and for each of them, RF classifier was trained on the first 10% of the video, i.e.

first 10 frames, and then used to classify the motion vectors of the rest 90% of the same

video, i.e. last 90 frames of the video sequence.

4.2.1 Classification and post processing. Classification accuracy and the dif-

ferent types of errors obtained by RF for IPP... sequence are presented in Table 4.27 for

all the 4 QS values as an average over all the 9 test video sequences. As expected, with
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Table 4.27: RF results for HEVC using an IPPP... sequence.

QS 22 QS 27 QS 32 QS 37
Model accuracy 93.83 92.93 93.30 92.92
% of Type I error 1.04 1.04 1.07 1.05
% of Type II error 2.92 3.70 3.19 3.68
% of Classification error 2.21 2.33 2.44 2.35
Fixed % of Type I error 83.72 89.43 89.70 83.28
Fixed % of Type II error 73.12 73.91 68.80 60.00
Final accuracy 96.83 96.59 96.45 96.00

the increase in QS value from 22 to 37, the classification accuracy decreases, with the

smallest QS value having the highest average classification accuracy of 96.83% and the

largest QS value having the lowest average classification accuracy of 96.00%. When

comparing these results of HEVC with their counterparts in MPEG2, we find a com-

patible behaviour; an overall average final accuracy of 96.47% for HEVC compared to

96.34% for MPEG2.

4.2.2 Embedding capacity. Table 4.28 illustrates the embedding capacities for

each test video sequence for every quantization scale value. Again as expected, as the

value of QS used to compress a video sequence increases, the embedding capacity for

that sequence decreases accordingly. The table shows an overall embedding capacity of

0.96 bits/MB (averaged over all test sequences and all QS values) which is found to be

lower than its counterpart in MPEG2 video codec standard; 1.07 bits/MB. This can be

due to the high efficiency of HEVC compression mechanism that may result in higher

percentage of skipped macroblocks, thus lower availability of macroblocks to be used

for data embedding.

4.2.3 Effect of missclassification on the decoded video quality. We tested

the effect of misclassification at the decoder on the PSNR of the reconstructed HEVC

video using the same encoding scheme of IPPP... sequence. The experiments were

conducted twice; once with no intermediate I frames (N=100, GOP=100, M=1, i.e.

only one I frame, followed by a sequence of only P frames) and then with a periodic

I frame every 12 frames (N=100, GOP=12, M=1, i.e. an I frame every 12 frames,

followed by a sequence of P frames). The results are shown in Table 4.29 for each
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Table 4.28: Embedding capacity in bits/MB for HEVC using an IPPP... sequence.

Sequence ID QS 22 QS 27 QS 32 QS 37 Avg per seq.
1 1.53 1.45 1.39 1.35 1.43
2 0.84 0.76 0.69 0.64 0.73
3 0.81 0.75 0.71 0.67 0.74
4 1.63 1.60 1.55 1.49 1.57
5 0.80 0.78 0.76 0.75 0.77
6 0.46 0.44 0.42 0.41 0.43
7 0.99 0.90 0.83 0.78 0.88
8 1.50 1.46 1.44 1.41 1.45
9 0.71 0.69 0.66 0.64 0.68
Average 1.03 0.98 0.94 0.90 0.96

Table 4.29: PSNR drop [in dB] in HEVC IPP... decoded sequence as a result of mis-
classification at the decoder, averaged over the 4 QS values.

Sequence ID With I frames Without I frames
1 6.19 8.82
2 3.22 4.01
3 6.79 7.01
4 6.39 6.91
5 5.73 6.15
6 5.99 6.30
7 7.90 8.37
8 7.07 7.61
9 7.58 8.03
Average 6.32 7.02

test sequence averaged over all the 4 QS values. Referring to the table, the overall

PSNR drop averaged over all sequences and QS values is 7.02 dB without intermediate

I frames, whereas inserting periodic I frames mitigated the effect of error propagation

on the quality of the decoded video resulting in decreasing the PSNR drop to 6.32 dB.

Again, we can conclude that having periodic I frames results in better quality of the

decoded video, however, the embedding capacity will drop below the 0.96 bits/MB in

this case.

4.2.4 Combined encoder-decoder solution. As mentioned in MPEG2 sec-

tion, this solution is evaluated in terms of bitrate increase and PSNR drop at the en-

coder side as well as the embedding capacity. Table 4.30 illustrates the results for each
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Table 4.30: PSNR drop, bitrate increase and embedding capacity at HEVC encoder as
a result of the combined encoder-decoder solution, averaged over all 4 QS values.

Sequence ID PSNR drop [dB] Bitrate increase [%] Embedding rate [bits/MB]
1 0.11 5.99 1.39
2 0.08 2.84 0.68
3 0.24 7.73 0.68
4 0.16 11.60 1.51
5 0.14 5.94 0.72
6 0.11 5.66 0.38
7 0.07 1.80 0.83
8 0.21 8.66 1.41
9 0.13 2.75 0.62
Average 0.14 5.89 0.91

video sequence averaged over all the 4 QS values for HEVC IPPP... encoding sequence.

From the table, the average PSNR drop at the HEVC encoder compared to the original

video for all video sequences is 0.14 dB and the embedding rate has dropped slightly

from 0.96 to 0.91 bits/MB due to excluding the wrongly-classified MBs at the encoder

from the data embedding process. In addition, the average increase in video bitrate

obtained at the encoder was 5.89%. At the decoder side, a classification accuracy of

100% was obtained, accordingly the embedded message bits were 100% accurately

extracted and no drop in the PSNR of the decoded video was encountered. Overall,

the results reported for HEVC coding scheme have shown similar behaviour to their

MPEG2 counterparts.

4.3 Comparison with Post-Processing-Only Classification and with Existing So-
lutions

To the far of our knowledge, none of the previous work in data embedding in

video streams used motion vector rotation to embed the message bits in the host video.

Therefore, to show the superiority of our novel work, we compare it with only using

SAD as a decision criteria, where no feature extraction is performed at the decoder and

hence no model training is conducted. In this case, when the decoder receives the mo-

tion vectors in the bit stream, it only performs the rotation using the aforementioned

four rotation angles, and then motion compensation is performed and 4 or 16 candidate
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macroblocks are reconstructed for each received macroblock. After which, the sum of

absolute difference is calculated between each candidate macroblock and its top and

left macroblocks of the same frame. Then, the macroblock with the lowest SAD value

among the 4 or 16 candidates is classified by the decoder as the true macroblock corre-

sponding to the true unrotated motion vector(s). To show the superiority of our machine

learning approach over only using SAD, we provide a comparison between the two ap-

proaches in Table 4.32 by reporting the average classification accuracies over all test

sequences for the 3 QS values using MPEG2 IPPP... sequence. Overall, our approach

(machine learning followed by SAD as post processing) outperformed the classification

using only SAD by an average of 20.5% for all QS values. For detailed reference, Ta-

ble 4.31 reports the accuracies obtained by using SAD only for classification for each

test sequence for every QS value. Despite having a combined encoder-decoder solution

that provides a 100% classification accuracy, the comparison of using only SAD is per-

formed with our first solution (decoder-only solution) for two reasons:

1- Unify the base of comparison to make it fair; by comparing the classification accu-

racy of the two approaches while having the same exact embedding rates.

2- Demonstrate that our proposed work provides better classification accuracy than only

using SAD, even in its worst case scenario.

However, in terms of the drop in the PSNR of the reconstructed video at the

decoder and the embedding capacity, we compare our best proposed solution (the com-

bined encoder-decoder solution) with some of the previous data embedding solutions

that exist in the related literature as illustrated in Table 4.33. As a summary, Figure

4.2 depicts that our proposed solution is superior to all the other mentioned previous

solutions in terms of both the embedding rate and the PSNR drop at the decoder. That

is; the highest embedding rate and the lowest PSNR drop in the decoded video. The

proposed solution has an average embedding capacity of 1.61 bits/MB which is ap-

proximately three times the average embedding capacity of all the mentioned existing

solutions together. Moreover, the proposed solution has a zero drop in the PSNR of the

reconstructed video at the decoder compared to an average of 0.3 dB for all the existing

solutions combined.
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Table 4.31: Classification accuracy [in %] at the decoder for MPEG2 IPPP.. sequence
when only using SAD for classification.

Sequence ID QS 5 QS 15 QS 25
1 75.95 75.65 77.78
2 56.00 67.14 63.08
3 78.40 75.82 71.33
4 82.47 79.17 78.82
5 83.13 77.21 75.58
6 89.57 84.96 81.25
7 60.84 60.00 60.01
8 93.32 85.75 84.32
9 83.58 76.16 71.02

Table 4.32: Comparison of the proposed solution to only using SAD for classification
using MPEG2 IPPP.. sequence.

QS Machine Learning with SAD [%] Only SAD [%]
5 96.74 78.14
15 96.39 75.76
25 95.89 73.68

4.4 Sequence-Independent Approach

As described and experimented in all the previous sections, the whole proposed

work is designed and evaluated based on the sequence-dependent approach. That is;

training the machine learning models on the first portion of a video, then testing the

generated models on the rest of the same video. The proposed solutions proved to

perform well with video-dependent approach and showed superiority over many other

existing solutions. However, for completeness and full exploration of the available

options, in this section we examine the video-independent approach by training the

Table 4.33: Comparison of the proposed solution with existing solutions in terms of
PSNR drop and embedding capacity at the decoder side.

Solution Embedding rate [bits/MB] PSNR drop [dB]
Proposed 1.61 0
Ref. [13] 0.75 0.51
Ref. [4] 1.06 0.20
Ref. [16] 0.05 0.20
Ref. [15] 0.08 0.17
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Figure 4.2: Comparison of the proposed solution with existing solutions.

classifiers on some video sequences and testing them on a completely different video

sequence that could be with different spatial and temporal activities. The experiments

were conducted in a round-robin fashion by training the classifier each time using a

different combination of 8 video sequences and testing it on the 9th video sequence,

resulting in having each of the 9 video sequences to be tested once. The sequences

used for experiments were compressed with HEVC encoder using an IPPP... encoding

sequence and QS value of 27. The training and testing processes took place using

Random Forests. Table 4.34 illustrates the classification accuracy obtained for each test

video sequence.

From the table, the average classification accuracy for all the 9 test video se-

quences using sequence-independent training is found to be 79.28%, which is much

lower than the classification accuracies obtained by the different types of classifiers

when we used the sequence-dependent training approach. For example, the obtained

overall accuracy when using Random Forests was 92.93% on average. This could be

due to the fact that in sequence-independent approach, the sequences used for train-

ing the Random Forests classifier have different spatial activities and different visual

patterns than the tested video sequences.
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Table 4.34: Classification accuracy using RF for each video sequence using sequence-
independent training.

Sequence ID Classification accuracy [%]
1 82.24
2 78.77
3 80.96
4 81.46
5 82.00
6 78.44
7 78.22
8 74.14
9 77.32

Consequently, we can conclude that the proposed motion vector rotation solu-

tion for data embedding performs well with the video-dependent approach, but not with

the video-independent approach.

58



Chapter 5. Conclusion and Future Work

Data embedding in video plays an important role in different applications in-

cluding digital rights management, content authentication, law enforcement and error

resiliency and concealment. Recently, videos and other sensitive data are preferred to be

transmitted and stored in an encrypted form to avoid unauthorized access and possible

attacks.

In this work, we proposed a novel data embedding scheme that jointly serves

both data hiding and video scrambling at the encoder through motion vector rotation.

A machine learning solution was then proposed to distinguish between the true motion

vectors and the rotated ones, and consequently extract the message bits and reconstruct

the cover video at the decoder.

Experiments were conducted on well-known video sequences compressed us-

ing MPEG2 video standard, while examining different quantization scales and various

machine learning techniques with and without feature selection. A detailed analysis

was provided based on the type of the encoding sequence, the macroblock type and

the number of motion vectors. The experiments were then repeated for HEVC video

codec standard to validate the generality and applicability of our proposed solution

over different video coding standards. Results have shown that much better classifi-

cation accuracy was obtained by the proposed machine learning approach compared

to using SAD only as a decision criteria. Moreover, better classification results were

attained by random forests compared to support vector machine and polynomial clas-

sifiers. Applying feature selection did not improve the classification accuracy obtained

by the models, however, it helped to identify the most influential features which found

to be the phase differences between a candidate MB and its surrounding MBs as well

as the sum of absolute values of prediction errors. Testing our approach for different

quantization scale values showed that as the value of the quantization scale used for

compression increases, the classifier accuracy decreases and also does the embedding

rate. Two different encoding sequences were used; a sequence with only P frames and

a sequence with incorporating both P and B frames. It was clearly shown that including

B frames leads to a considerable increase in embedding rate due to the ability of bi-

59



directional MBs to hide 4 bits instead of only 2 bits as in P MBs. It was also concluded

that the number of candidate MBs is irrelevant to the classification accuracy as all the

three MB types; P MBs, mono-B MBs and bi-B MBs showed very similar classification

accuracies.

The effect of misclassification at the decoder on the quality of the reconstructed

video was investigated and reported. Then, to eliminate this effect, a combined encoder-

decoder solution was proposed and evaluated. This solution proved to guarantee the

following at the decoder: a 100%-classification accuracy, a completely error-free mes-

sage extraction and correct reconstruction of the video without any drop in its quality.

On the other hand, it led to a slight increase in the video bitrate at the encoder.

At last, when comparing with some previous data embedding solutions that ex-

ist in the related literature, our proposed solution outperformed in terms of both data

embedding capacity and reconstruction quality.

As for future work, since the current solution provides the maximum perfor-

mance in terms of classification accuracy (100%) and reconstruction quality (zero drop

in PSNR) but slightly decreases the embedding capacity, more effort can be put in

the future to further increase the embedding rate. This can be achieved in multiple

ways. For example, by applying the motion estimation on smaller blocks, that is; on

a sub-MB-basis instead of a MB-basis, which will result in more MVs and thus more

embedded data. Another idea is to conduct the experiments with increasing the number

of B frames in the video sequence, i.e. an IBBPBBP... sequence with M=3, this may

increase the availability of bi-directional MBs in the video sequence and thus increase

the embedding capacity.
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