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Abstract 

In this paper the pixel domain heterogeneous video transcoder proposed by the 

authors in [1] is implemented in the DCT domain. Consequently, the motion 

compensation and its inverse and the image down-sampling functions of the pixel 

domain transcoder are implemented in the frequency domain whilst eliminating the 

DCT and IDCT pairs. Moreover the paper proposes two transcoding architectures. In 

one, the transcoder is simplified by implementing both its MC-loops in the DCT 

domain. While in the other, image decimation is realised through a modified inverse 

transformation of the top-left 4x4 coefficients. The input and output domains of the 

mentioned decimator render the decoder’s and the encoder’s MC-loops to be in the 

DCT domain and the pixel-domain respectively. This results in a unique hybrid DCT, 

pixel domain transcoding architecture. Various methods for accelerating the process 

of the DCT domain motion compensation are reviewed and classified into lossless and 

lossy methods. It is shown that both picture quality and performance are enhanced by 

utilising shared information with successive motion compensated macroblocks. The 

superiority of the hybrid architecture is then assessed in terms of preserving image 

quality, feasible functionality and tolerance to lossy acceleration of the DCT domain 

MC. 
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1. Introduction 

Heterogeneous video transcoding is defined as the process of manipulating coded 

video streams in order to meet arbitrary network or end-system constraints. The 

network constraints are usually bandwidth-related caused by either streaming video 

over heterogeneous networks or by the absence of Quality of Service (QoS) 

assurances. In contrast, end-system constraints manifest themselves in terms of 

incompatible video decoders, restricted processing power, display size or memory 

capacity. Therefore, heterogeneous video transcoding might include bitrate and 

resolution reductions of coded video whilst converting it into a different format. 

   Previous work on video transcoding for reducing the bitrate of coded video fall into 

two categories; manipulating coded coefficients and/or manipulating the spatio-

temporal resolutions. Bitrate reduction through the former category includes dropping 

coded coefficients [2,3], coarse requantization [4] and most importantly 

requantization with drift correction, which was originally proposed by the co-author 

of this paper [5].  

   Despite the simplicity and the drift-free property of these transcoding techniques 

nevertheless, the bitrate reduction is governed by the spatio-temporal resolution of the 

incoming video. Therefore a more generic transcoding technique is realised through 

the addition of spatio-temporal resolution manipulations [6]. Reported work on this 

transcoding category includes reducing the temporal resolution for meeting network 

constrains [7] or for accommodating the limited processing power of end-users [8]. 

Likewise spatial manipulations include reducing the spatial resolution of coded 

images for smaller displays or mobile end users[1]. 

   Clearly, the flexibility of the spatio-temporal manipulations come at the expense of 

additional complexity. It was shown by Assunco and Ghanbari that if the incoming 

and outgoing video streams differ only in bitrate then the two motion compensation 

(MC) loops of the cascaded decoder-encoder can be subtracted from each other and 

merged into one DCT domain MC-loop [9]. On the other hand, manipulating the 

spatio-temporal resolution of coded video renders the incoming prediction error and 

associated motion vectors absolute. Hence the incoming picture is usually 

reconstructed, manipulated in the pixel-domain and re-encoded after re-sampling the 

incoming motion vectors for reuse in the outgoing video stream.  

   Therefore, the purpose of this paper is to simplify and to enhance the picture quality 

of the latter transcoding architecture by means of implementing it in the DCT domain 



 3 

without resorting to full decoding. The paper investigates the integration of DCT 

domain image decimation and motion compensation into the heterogeneous video 

transcoder of MPEG-1/2 into H.263. It will become evident that implementing the 

mentioned transcoder fully in the DCT domain results in a number of shortcomings 

hence, an intermediate hybrid DCT/pixel domain architecture is derived. The hybrid 

architecture benefits from the acceleration of the inverse MC of the DCT domain 

processing. Likewise the proposed architecture benefits from the flexibility inherent 

to the pixel-domain processing. 

   The remainder of the paper is organised as follows. Section 2 outlines some of the 

applications of the DCT domain processing. Section 3 explains the theory behind 

DCT domain MC (referred to as MC-DCT). In section 4, two DCT domain image 

decimation methods are reviewed. Based on which, two transcoding architectures are 

presented in Section 5. Section 6 categorises the acceleration of MC-DCT into two 

categories of lossless and lossy methods where various enhancements to the existing 

methods are proposed. The half-pixel accurate MC is discussed separately in Section 

7 where special attention is given to DCT domain rounding, process acceleration and 

drift free transcoding. The experimental results and discussions are presented in 

Section 8. Finally, Section 9 concludes the paper. 

2. Applications of DCT motion compensation (MC-DCT) 

The motion compensation in the transform domain dates back to the year 1985 where 

the motion estimation and compensation of video coding were fully implemented in 

the transform domain [10,11]. The objective was to improve the accuracy of 

estimating the displacement of objects and hence generate a better quality over the 

conventional pixel domain motion estimation and compensation. In [12] a similar 

method for the computation of DCT coefficients for a block from two adjacent blocks 

was introduced for the interpolation of speech samples transformed into DCT blocks. 

   MC-DCT was also used for multiplexing several bitstreams into a single one for 

multi-point video conferencing, which might also include transform domain scaling, 

rotating and translation [13]. 

   In [14] the underlying motivation for the utilisation of inverse MC-DCT is to 

accelerate the process of decompression for fast browsing of video databases. The 

acceleration was achieved through the partial decompression of only very few DCT 

coefficients of each block. Although the decompressed images or video is degraded in 

quality, it is quite acceptable for a user who is only interested in rough information 
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about the underlying image or video. The basic principle behind partial MC-DCT was 

originally proposed by Yeo and Liu for extracting a dc sequence from a coded video 

[15].  

   Other applications with trade-off between quality and process acceleration also 

exist. For instance, in homogenous video transcoding of MPEG-2 into lower bitrates 

by requantizing the DCT coefficients, the transcoding error of each transcoded frame 

is motion compensated in the DCT domain  and added to future frames that use the 

current one as a source of prediction , Assuncao and Ghanbari proposed to carry out 

the MC-DCT by using approximate matrices that use only simple arithmetic 

operations like add and shift [9]. Again, the quality degradation resulting from such a 

technique is quite acceptable in the sense that it only affects the MC of the 

transcoding error rather than the image as a whole. The basic principle behind the 

approximation matrices was originally proposed by Natarajan and Bhaskaran for 

scaling down images in the DCT domain [16]. 

   In the context of this paper, DCT domain transcoding is employed with the 

following objectives; first, enhancing the quality of transcoded pictures. As such, it is 

shown that DCT decimation outperforms low-pass filtering in the pixel-domain. 

Second, since DCT domain processing can distinguish the significant signal 

components, the respective transcoder can accelerate the MC-DCT by employing 

partial prioritised processing and lastly, simplifying the transcoding architecture by 

eliminating the DCT/IDCT pairs.  

3  MC-DCT description 

   Figure 1 shows four neighbouring blocks bi, i=1,…,4 in a reference frame. The 

objective is to extract the displaced block pointed at by a motion vector 


v to motion 

compensate a block in the current frame.  

   In the pixel domain, this is achieved by simply shifting the current pixel location by 



v  and copying the resultant pixels to the current frame. Whereas in the DCT domain, 

the smallest data unit is a coefficient, which is meaningless on its own and has to be 

processed in the context of its block. Therefore, to extend the pixel domain MC to the 

DCT domain, the smallest unit of data must be a block of size 8x8. 
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   In Figure 1 it is shown that the MC block 
^

b can be calculated as the sum of four 8x8 

blocks containing a vertical and horizontal shifts of the sub blocks si, i=1…4. This is 

illustrated in Figure 2. 

   The four blocks contributing to 
^

b  can be calculated by multiplying the 

corresponding bi   with displacement matrices dhi , dwi , i=1…4 that perform vertical 

(h) and horizontal (w) shifts respectively, where the height and width of each sub 

block si define the matrices to be used. Therefore the calculation of the MC block 
^

b  is 

formalised as  
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Where Inxn and Imxm are identity matrices of size n and m respectively. The pre-

multiplication by dhi shifts the corresponding bi block vertically whereas, the post-

multiplication by dwi shifts the resultant block horizontally. 

   For calculating the motion compensation block 
^

b  in the DCT domain, the DCT is 

applied to both sides of Equation 1 as follows: 
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By using the distributive property of matrix multiplication with respect to the DCT,  

Equation 4 can be rewritten as;  

)()()()(
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wii
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
4
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^

   8,1  wihi   (5) 

   It should be noted however, that shifting Bi vertically followed by horizontally is 

equivalent to shifting it horizontally first. This is due to the associative property of 

matrix multiplication, namely: 

 (Dhi Bi) Dwi = Dwi (Bi Dhi)     (6) 
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   In later sections, it is shown how this property can contribute to the optimisation of 

the MC-DCT. 

4  DCT domain image decimation 

For integrating the MC-DCT with transcoding into lower spatial resolutions, the 

motion compensated pictures of the incoming bitstream are decimated whilst in the 

DCT domain. In the following sub-sections, two DCT domain image decimation 

methods are reviewed. In the first method, the simple pixel averaging and down 

sampling is extended to the DCT domain. On the other hand, the second method 

benefits from the DCT energy compaction property for modified inverse 

transformation and decimation. 

4.1 Extending pixel averaging and down sampling  

The framework of extending the pixel averaging and down sampling to the DCT 

domain was introduced by [17] and subsequently optimised for fast processing by 

[18] and [19].  

   For extension to the DCT domain, the pixel averaging and down sampling is 

performed on 8x8 block basis rather than individual pixel basis. That is, the smallest 

unit involved in the decimation ought to be an 8x8 block of pixels. Once this is 

performed, the extension to the DCT domain is realised through transforming all the 

involved blocks to the DCT domain. 

   For instance, the down sampling of four adjacent blocks bi, i=1…4 into one block  b 

on 8x8 block basis is illustrated in Figure 3. The down sampling is performed 

according to the following steps. First, each four adjacent pixels in a block bi are 

summed up to create a new pixel. This implies that the input block is replaced by 4x4 

pixels in the top-left corner , the rest of the block is padded with zeros. Second, each 

of the calculated 4x4 pixels are shifted according to the location of the underlying 

block bi. That is, the 4x4 pixels are shifted to the top left corner in b1 and to the top 

right in b2 and so forth. Finally, the four new blocks are added and divided by four to 

generate the down sampled block b. 

   These steps are formalised by the following equation: 

 

)(4/1 242132221111

TTTT qbqqbqqbqqbqb      (7) 

where  



 7 



































00000000

00000000

00000000

00000000

11000000

00110000

00001100

00000011

1q
     (8) and 



































11000000

00110000

00001100

00000011

00000000

00000000

00000000

00000000

2q
     (9) 

   Owing to the unitary property of the DCT, Equation 7 can be performed in the DCT 

domain by simply transforming all the participating 8x8 blocks to the transform 

domain. This method is hereby referred to as Pixel Averaging and Down-sampling or 

PAD for short. 

4.2 Modified inverse transformation and decimation 

While the previous PAD method is derived directly from pixel averaging and down 

sampling, in the following method, the transform coefficients pass through a proper 

low-pass filter prior to the decimation.  

   It was observed in [20] that decimation in the transform DFT domain is realised 

through inverse transforming of the required filtered coefficients determined by the 

decimation ratio. This method was extended to the DCT domain by [21] and more 

recently by [22]. It was shown that decimating an NxN block of coefficients into an 

MxM block is realised through inverse transforming of the top left MxM coefficients 

using the normalisation term of the NxN transform. It was also shown that such a 

method of image decimation combines both the low-pass filtering and the decimation 

into the modified inverse transformation kernel. The steps needed to decimate an 8x8 

DCT block into a 4x4 block of pixels are illustrated in Figure 4. 

   The combination of low-pass filtering and decimation in the DCT domain has a 

number of useful and interesting applications. For instance, converting HDTV into a 

standard NTSC signal as reported in [23]. The decimation method was also used for 
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layered image coding employing a pyramidal structure for effective utilisation of 

network bandwidth or end-system limitations [22].  It was also used for layered video 

coding for service inter-working and error resilience[24]. In this paper, the mentioned 

method of decimation is employed for spatial resolution reduction in heterogeneous 

video transcoding where it manifests itself in a new transcoding architecture as 

explained in the next section.  

5  Transcoding Architectures  

The two methods of image decimation described differ in terms of the output domain. 

While the input and output of the PAD decimator are both in the DCT domain, the 

output of the Modified Inverse Transformation and decimation method (MIT for 

short) is in the pixel domain as illustrated in Figure 5. 

   These two decimation methods impose two different transcoding architectures. In 

PAD, the input to the decimator is a block of DCT coefficients, consequently the MC 

loop of the decoder part of the transcoder can employ MC-DCT. Again, the output of 

the decimator is also in the DCT domain hence the encoder part of the transcoder can 

likewise employ MC-DCT. This transcoding architecture is hereby referred to as 

DCT-to-DCT transcoder. 

   On the other hand, in the second architecture, the input to the decimator is in the 

DCT domain and the output is in the pixel domain. It follows that the decoder part can 

employ MC-DCT whereas the encoder part employs pixel domain MC. This 

transcoding architecture is hereby referred to as the DCT-to-PEL transcoder. 

    

   In this work, the DCT-to-DCT and DCT-to-PEL transcoders are compared against 

the pixel domain transcoder introduced by the authors in [1]. The block diagram of 

the latter PEL-toPEL transcoder is shown Figure 6. Full description of the transcoder 

is provided in the cited reference nevertheless, the following is a brief description of 

its block diagram: 

I. The output of the transcoder is a low resolution H.263 video with a sequence 

structure of IPPPP…. i.e. (N= , M=3). Noting that the input sequence is 

MPEG-1/2 video coded with a GoP structure of (N=12, M=3) it follows that the 

incoming motion vectors are post-processed to suite the nature of the outgoing 

sequence, hence; 
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II. A list of candidate motion vectors is compiled per outgoing macroblock. The 

candidate motion vector that results in a prediction error with the minimum SAD 

is then selected. 

III. Motion estimation refinement is an optional process of refining the coordinates 

of the best candidate motion vector. 

IV. Lastly, note that the temporal resolution reduction process is eliminated in the 

remainder of the discussion for simplicity of presentation and for its indirect 

relevance to the MC-DCT process. 

    In the DCT-to-DCT transcoding architecture, the mentioned motion estimation 

refinement is removed due to its rather complex nature when implemented in the DCT 

domain. For instance, one pixel motion estimation refinement with half pixel accuracy 

might require calculating 8 MC-DCT blocks for the pixel accurate motion vector and 

an additional 8 blocks for the half pixel accuracy resulting in calculating 16 MC-DCT 

blocks. This is equivalent to MC-DCT of four luminance macroblocks. 

   Additionally, since the motion compensation and image decimation are performed 

in the DCT domain it follows that the DCT and IDCT blocks of Figure 6 are no longer 

needed. This results in the simplified block diagram shown in Figure 7. 

   Lastly, the DCT-to-PEL architecture is a mixture of both the transcoders derived 

above. While the DCT and IDCT are removed from the first MC loop, the output of 

the image decimator is in the pixel domain. As such, the processes of selecting the 

best candidate motion vector and motion estimation refinement can be added to the 

DCT-to-PEL architecture to produce the transcoder shown in Figure 8. 

   In the experimental results section, these transcoding architectures are compared 

against each other in terms of quality, performance and functionality. 

6  Methods for accelerating the MC-DCT 

Although the MC-DCT for a block 
^

B using Equation 5 above might seem 

computationally expensive, it should be noted that this is not always the case. For 

instance, in situations where the motion vector 


v is aligned either horizontally (h=8) 

or vertically (w=8), only two sub blocks need to be calculated instead of four hence, 

the right hand side of Equation 5 is reduced to two terms only. Moreover, if 


v  is 

aligned in both directions, w=h=8, then the motion compensation block 
^

B is copied to 

the current frame without involving Equation 5. 



 10 

   Another factor that helps in reducing the computational complexity comes from the 

sparseness of the DCT blocks Bi especially when transcoding to low bit rates. This 

helps in reducing the number of multiplications and additions involved in shifting the 

sub blocks Si, i=1…4. Additionally, since the displacement matrices are fixed it 

follows that they can be pre-computed and stored for later use.  

   Nevertheless MC-DCT is still considered computationally expensive and there are 

some hidden properties that can be exploited to enhance its performance. In this work, 

such methods are divided into two broad categories of lossless and lossy methods. In 

the former, the computational complexity is reduced whilst preserving the image 

quality, whereas in the latter, better performance is achieved at the expense of 

degrading image quality. 

6.1 Lossless Methods 

(a) Utilising shared information in a macroblock. 

In the previous section an 8x8 block was treated as the basic unit of MC-DCT. Taking 

into account that a macroblock in the luminance part contains four 8x8 blocks, 

utilising shared information among them reduces the computational complexity. 

   To illustrate this, Figure 9 shows a MC macroblock containing four MC blocks each 

with four sub blocks Sji , j,i=1…4. Each of the reference frame blocks is subscripted 

according to its relative location within the underlying macroblocks i.e. B11 is the top 

left block in the figure and so forth. The bi-directional arrows show where the shared 

information can be utilised. 

   Consider the computation of S21 and S12, both sub blocks share the same underlying 

block B21 and both have the same height h. The first step in calculating either S21 or 

S12 is to shift B21 vertically by h, hence instead of repeating this step twice, the result 

of multiplying Dhi by B21 can be stored and reused by S12. The same idea is also 

applicable for all the horizontal bi-directional arrows in the figure.  

   For vertical shifting, consider for instance S31 and S13, both share the same 

underlying block B31. Both blocks also  share the same width w but differ in height h. 

In this case if B31 is shifted vertically first for the calculation of S31 then no 

intermediate results or information can be shared with S13. Whereas if B31 is first 

shifted horizontally by w then the matrix multiplication of B31 and Dwi can be stored 

and reused for the calculation of S13. Cleary this follows from the associatively of 

matrix multiplication as shown in Equation 6. This technique shall be referred to as as 

Utilising Intermediate Shared Information or UISI for short.  
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   A similar technique for utilising shared information in a MC macroblock was 

proposed and formalised by [25]. For instance the computation of S11 and S21 is given 

by: 

 S11 + S21 = Dh1 B11 Dw1 + Dh2 B21 Dw2   (10) 

since Dh1 = Dh2 then 

 S11 + S21 = Dh1  ( B11 Dw1 +  B21 Dw2 )   (11) 

by defining P0 = Dw1 +  Dw2 then 

 S11 + S21 = Dh1  ( B11 Dw1 +  B21 (P
0 -  Dw1) )   (12) 

 S11 + S21 = Dh1  ( B11 – B21 ) Dw1 + Dh1 B21 P
0  (13) 

In a similar derivation, S21 and S12 takes the following form 

 S21 + S12 = Dh1  ( B13 – B12 ) Dw1 + Dh1 B21 P
0  (14) 

   Note that the underlined terms in Equations 13 and 14 are identical, hence 

calculated only once. The principle idea is also valid for the vertical bi-directional 

arrows of Figure 9. This technique is referred to as Utilising Shared Information or 

(USI) for short. 

   In contrast to USI, in the former UISI technique, the sub blocks at the corners of the 

MC macroblock i.e. S11,S22,S33 and S44, are not involved in utilising shared 

information. However, one way of utilising them is drawn from the fact that in natural 

images neighbouring horizontal and/or vertical motion vectors can show high 

resemblance. As a result, the motion compensated macroblocks of the reference frame 

are aligned.. Therefore, analogous to treating aligned blocks in a MC macroblock as, 

aligned motion compensated macroblocks can likewise be treated as one unit. Hence 

utilising shared information among them. This is illustrated in Figure 10 where for 

each corner sub block the vertically or horizontally aligned MC macroblocks can be 

used for utilising shared information. 

   This observation is further appreciated when considering the motion compensation 

of the chrominance blocks in the 4:2:0 format where only one block for each colour 

component exists. In such a format there is no shared information unless one 

considers the vertically and/or horizontally aligned motion compensated blocks 

resulting from similar motion vectors. Therefore, as far as this technique is concerned, 

ignoring the resemblance of the successive motion vectors renders the utilisation of 

shared information in the motion compensation of the chrominance blocks absolute. 

 

 



 12 

 (b)  Lossless Partial MC-DCT  

As mentioned in the introduction, the partial MC-DCT was proposed in [14] for 

accelerating the process of decompression for fast browsing of video databases. The 

authors proposed a method in which only the dc and the first six coefficients obtained 

by zigzag scanning are motion compensated for each block, the technique is referred 

to as the 3-2-1 case. In the DCT-to-PEL video transcoder of Figure 8 where image 

decimation is realised by filtering and inverse transforming the top left 4x4 

coefficients whilst discarding the high frequencies, it seems natural not to motion 

compensate the high frequencies in the first place. That is, for each motion 

compensation block, only the top left 4x4 coefficients are calculated whilst ignoring 

the rest. 

   Considering that this section deals with lossless optimisation of the MC-DCT it 

follows that the above statement is partially true. Namely, for B-pictures one can 

motion compensate for the 4x4 coefficients and ignore the rest without affecting the 

quality of other frames. This is because B-pictures are not used as a source of 

prediction. Whereas for P-pictures, although the motion compensation of the 4x4 

coefficients does not affect the image decimation, it will in fact affect the quality of 

future reconstructed pictures that use the current one as a source of prediction. 

Therefore, in this section we only consider the partial MC-DCT for B-pictures where 

Equation 5 can be rewritten as follows: 

 TDBDTB wii

i

hi )(
4

1

^




    8,1  wihi   (15) 

where   









00

044xI
T       (16) 

and I4x4 is an identity matrix. 

   The computational savings in Equation 15 is further appreciated by considering the 

bi-directional prediction of B-pictures where each bidirectionally predicted block is 

reconstructed by motion compensating up to two blocks from a past and a future 

picture. Therefore the computational savings of Equation 15 is doubled. 

   In terms of implementation, the T matrix need not exists where otherwise it will 

contribute to the number of multiplications and additions. A simple implementation of 

Equation 15 is to compute only the first four lines of the term DhiBi followed by the 

first four columns of (DhiBi)Dwi. In this case the result is equivalent to Equation 5 with 

less computational complexity as shown in later sections. 
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6.2 Lossy methods 

The previous section considered two methods of accelerating the computation of MC-

DCT without affecting the image quality. In this section two crude methods that trade 

image quality for higher computational savings are discussed. 

 

(a) Lossy Partial MC-DCT  

As mentioned earlier, motion compensating the top left 4x4 coefficients for the 

reconstruction of B-pictures results in lossless optimisation. However, consider 

substituting T in Equation 15 by: 

    









00

022xI
T     (17) 

This results in motion compensation of the top left 2x2 coefficients, which is more 

efficient in terms of computational complexity, but since the image decimation 

depends on the 4x4 coefficients then the quality of the decimated image will be 

degraded. Moreover, applying Equation 15 to P-pictures will also affect the quality of 

future pictures that uses it as a source of prediction. Nevertheless, the modified T 

matrix will surely accelerate the computation of the MC-DCT. The resultant quality 

degradations are shown in the experimental results section. 

(b) Approximation of displacement matrices 

The basic idea of the approximation as proposed by [9] is to substitute the floating-

point arithmetic multiplication by basic integer operations like shift-right and integer 

additions. This is achieved by approximating each coefficient value in the 

displacement matrices by a sum of powers of twos with a maximum distortion of 

1/32. For example a coefficient value of 0.316942 can be approximated to 1/4 + 1/16 

which is 0.3125.  

   Again, as mentioned in the introduction, this technique was implemented for motion 

compensation of the transcoding error whilst in the DCT domain. In contrast, 

employing matrix approximation to motion compensate a whole image, rather than a 

transcoding error, results in a severe quality degradation as shown in the experimental 

results section. 
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7  MC-DCT for half pixel accuracy 

The previous sections discussed the general case of integer accurate motion vectors. 

In this section various methods of MC-DCT for half pixel accuracy are discussed with 

elaboration upon associated performance and implementation issues. 

    When a motion vector is non-integer then each pixel is predicted from either two or 

four pixels from the reference frame. In terms of blocks, this is equivalent to 

averaging either two or four blocks shifted apart by one pixel either horizontally 

and/or vertically. The locations of the shifted blocks are shown in Figure 11. 

   Therefore, the brute-force method for calculating the MC-DCT for half pixel 

accuracy in both directions is the average of the four motion compensated blocks as 

follows: 

^

B  = ¼  [  DhB1Dw     + DhB2D8-w      + D8-hB3Dw      + D8-hB4D8-w    +    

                DhB1Dw-1   + DhB2D8-w+1   + D8-hB3Dw-1    + D8-hB4D8-w+1 +   

                Dh-1B1Dw   + Dh-1B2D8-w    + D8-h+1B3Dw   + D8-h+1B4D8-w +    

                Dh-1B1Dw-1 + Dh-1B2D8-w+1 + D8-h+1B3Dw-1 + D8-h+1B4D8-w+1]  (18) 

Where wh,1 < 8, and the first row of the equation corresponds to the MC-DCT of 

the basic block, the second line for the horizontally shifted block, the third line for the 

vertically shifted block and finally, the last line for both the horizontally and vertically 

shifted block. This equation implies that the computational complexity of MC-DCT 

for a block with a half pixel motion vector in both directions is about four times as 

complex as for the case of MC-DCT for blocks with integer motion vectors. 

   To reduce the computational complexity, it was proposed in [9] to extract the 

shifted blocks directly from the basic block i.e. the block with the integer valued 

motion vector Depending on the directionality of the half pixel motion vector, this is 

achieved by filtering the basic block either horizontally or vertically. Therefore, 

Equation 5 is executed only once for the integer motion vector rather than up to four 

times as suggested by Equation 18. Obviously, this computational saving comes at the 

expense of introducing some distortions at the right and/or bottom boundaries of the 

filtered blocks. This is because the last row and/or column lie outside the basic block 

and are therefore ignored in the calculations. These distortions are reduced by 

exploring the fact that a macroblock in a luminance has four adjacent blocks and 

hence, when filtering the top left block horizontally, for example, the top right one 

can also be used as an input to the filter such that no distortion is introduced. 
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Nevertheless, when considering four adjacent blocks, the shaded boundaries in Figure 

12 are still distorted as they lie outside the basic macroblock. 

   However, the work reported in [9] did not take into account that motion 

compensated macroblocks can also be adjacent to each other provided that they have 

the motion vector value. Therefore, adjacent blocks of successive macroblocks can 

contribute to the vertical and/or horizontal filtering of the underlying block resulting 

in no distortions at the boundaries. In Figure 13 for instance, the filtering of 2

^

B  of the 

first motion compensated macroblock 1

^

MB  can involve both 1

^

B  and 3

^

B  of 2

^

MB  

provided that the mentioned macroblocks were motion compensated with the same 

motion vector value. 

   Referring to 2

^

B  of 1

^

MB  as 1
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MB . 2

^

B  and assuming that MB1 has a half-pixel 

accurate motion vector in both directions then 1
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MB . 2
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Where the filter matrices vvhh FFFF 2121 ,,,  (defined in [9]) are the DCT of the matrices 

vvhh ffff 2121 ,,, as defined below. 
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   Figure 14 compares the results of the two techniques. The reviewed technique is 

referred to as “MB-filtering”, whereas the proposed one is referred to as “Enhanced 

MB-filtering”. As shown in the figure, making use of the successive motion 

compensated macroblocks helps in reducing the boundaries distortions and hence 

enhancing the overall picture quality. 

   Despite the enhancement achieved, the proposed technique is not guaranteed to 

entirely eliminate the distortions since motion vectors differ on region or even 

macroblock basis and therefore the resultant quality is inferior to that generated by the 

brute-force method of Equation 18. 

   Note that since matrix multiplication is distributive, Equation 18 can be rewritten as: 

^

B  = ¼  [  (Dh + Dh-1 ) B1 (Dw + Dw-1 ) + (Dh +  Dh-1)B2  (D8-w + D8-w-1 )      +  

                (D8-h + D8-h+1 )B3 (Dw  + Dw-1 )+ (D8-h + D8-h+1 )B4 (D8-w + D8-w+1 ) ]      (22)     

   Hence, the number of matrix multiplication involved in MC a DCT block with half-

pixel accurate motion vectors becomes equal to that of motion compensating for a 

pixel-accurate motion vector. Moreover, since Equation 22 is mathematically 

equivalent to the brute-force method of Equation 18 it follows that the resultant 

picture quality is identical to the top curve of Figure 14.  

   However, common to all half pixel MC-DCT methods is that, the DCT coefficients 

participating in the above equations are floating point values and therefore the 

dividing term i.e. multiplying by ¼ for a motion vector with horizontal and vertical 

half pixel accuracy, becomes a potential source of motion compensation loop 

mismatch between the transcoder and the destination decoder. This is because the 

MC-loop at the latter uses integer rather than floating point representations and hence 

different values for the divisions and rounding.  

   In the pixel domain MC, to average and round two pixels, the sum of the pixels is 

added to 1 prior to dividing it by 2. Equivalently, if the averaging is performed on 

block basis, the involved blocks are added to a third block composed entirely of ones.  

In the DCT domain this corresponds to scaling the dc value resulting from the sum of 

the two DCT blocks by adding it to 8. Since the MC-DCT employs floating-point 

arithmetic, the pixel domain rounding is performed by adding 0.5 rather than 1. Hence 

in the DCT domain this corresponds to scaling the dc value of the sum by adding it to 

4.0. Likewise if four DCT blocks are averaged, the dc value of the sum shall be added 
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to 8.0 prior to dividing the resultant block by 4. Therefore, rounding in the DCT 

domain is realised through appropriate scaling of the dc value.  

   To validate this statement, Figure 15 shows that by treating the DCT rounding as if 

it is in the pixel domain i.e. by adding 0.5 to the sum of each two corresponding 

coefficients, a MC-loop mismatch occurs that results in a severe picture-drift. 

Likewise, ignoring the rounding altogether results in a higher picture-drift. On the 

other hand, the figure shows that by employing proper dc scaling, MC-loop mismatch 

is eliminated therefore, no picture drift shall occur. 

8  Experimental Results 

In the previous sections the optimisation of the MC-DCT was categorised into two 

broad categories of lossless and lossy methods. It was pointed out that large 

computational savings are associated with the lossy methods. For instance in [9] it 

was shown that by approximating the displacement matrices to substitute the floating 

point arithmetic by simple integer shifts and adds, 81% of the computational load is 

reduced compared to the pixel domain and associated DCT and IDCT pairs. 

    Likewise partial processing of the DCT coefficients results in 40.4% savings of 

computational load for the case of the motion compensating for the top left 4x4 

coefficients [14]. Lastly, the utilisation of the shared information (USI) is 44% less 

complex than the brute-force method of Equation 5 as shown in [25]. Nevertheless, 

when considering the 4:2:0 format, this saving is only true for the luminance part 

whereas no computational savings are achieved for the chrominance part. On the 

other hand, for the proposed (UISI) technique that makes use of the successive aligned 

MC macroblocks, the number of matrix multiplications for a chrominance MC block 

in Equation 5 is reduced from 8 to 6 as explained in section 6.1-a. This results in up to 

25% computational savings for each colour component. Moreover, combining the USI 

with the matrix approximation technique, further 13.5% computational saving is 

achieved as reported in [25]. 

   This section shows and compares the results of all the discussed MC-DCT methods 

with respect to the application of heterogeneous video transcoding. The aim is to 

reach a fair trade-off between quality and performance for each of the proposed 

transcoding architectures. 

   Common to the following experiments, the SALESMAN sequence is MPEG coded 

at 1.5Mbit/s, with a spatial and a temporal resolution of 352x288 and 25f/s 

respectively. The sequence is transcoded into quarter spatial resolution whilst 
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retaining the temporal resolution. The output sequence is coded without intermediate 

I-frames i.e. (N= , M=1) at a bitrate of 250Kbit/s. 

   For a fair comparison between different transcoding architectures integrating 

different image decimation techniques, transcoded images are interpolated to the 

original size using an inverse technique of that used for the decimation. Thereafter, 

the interpolated images are compared against the original non-compressed ones. In 

contrast, if a result is shown for only one transcoding architecture then the original 

image is decimated using a similar technique to that used in the respective transcoder. 

The transcoded images are then compared against the non-compressed and down-

sampled original input. 

   Since the PAD decimation method is derived directly from pixel averaging and 

down sampling, it follows that its interpolation can be realised through bilinear 

interpolation in the pixel domain. On the other hand, the interpolation of the MIT 

method is realised through padding the coefficients obtained by transforming a NxN 

block by (M2-N2) zeros to get an MxM block of coefficients, where M/N is the 

interpolation factor. The interpolated block is obtained by inverse transforming the 

MxM block after scaling the NxN coefficients by a factor of M/N [26, 27]. The block 

diagram of this method is shown in Figure 17. 

    To illustrate the superiority of the MIT decimation method, Figure 16 compares it 

against down sampling in the pixel domain using both low-pass filtering and pixel 

averaging. As mentioned above, the down sampled images are interpolated and 

compared against the original non-compressed input pictures. In the figure, the first 

picture of seven different video sequences is used; the figure shows that the MIT 

decimation and interpolation outperforms the pixel domain low-pass filtering and the 

pixel domain pixel averaging by up to 1 and 3 dB respectively. 

8.1  DCT-to-DCT transcoding 

As pointed out earlier, the matrix approximation technique has a more severe impact 

when employed for motion compensating a whole picture rather than its transcoding 

error. To illustrate this, Figure 18 plots the results of transcoding the SALESMAN 

sequence with and without employing the approximation matrices. Part-a of the figure 

shows that the approximation causes a MC-loop mismatch between the MC-loop of 

the encoder part of the transcoder and that of the final decoder.  This is because the 

latter decoder does not employ any matrix approximations for its motion 

compensation process. If no periodic I-pictures are present in the incoming video 
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stream then the approximation matrices cause a more severe effect as shown in part-b 

of the figure. In the figure the incoming sequence has a GoP structure of (N= and 

M=1) hence, the error caused by the approximation keeps on accumulating in the 

frame-buffers of the decoder part without being flushed out or replaced by intraframe 

pictures as the case with a GoP structure of (N=12, M=3). 

8.2  DCT-to-PEL transcoding  

In this transcoding architecture, the image decimation is realised through the modified 

inverse transformation of the low frequency coefficients. This makes it feasible for 

the MC-DCT loop at the decoding side of the transcoder to motion compensate for the 

low frequency coefficients whilst ignoring the rest as explained in section 6.1-b and 

6.2-a. For instance when MC-DCT the top-left 4x4 coefficients (or 4x4 coefficients for 

short) for the reconstruction of the B-pictures, the resultant picture quality remains 

unaffected in the sense that B-pictures are not used as a source of prediction. Also 

note that the image decimator will only use the 4x4 coefficients and throw away the 

rest regardless. On the other hand, MC-DCT for the 2x2 coefficients will cause the 

picture to be decimated with less low-frequency components and hence lower quality. 

As for the reference pictures i.e. P-pictures, reconstructing them with only 4x4 

frequency components affects the reconstruction of successive pictures and hence the 

quality will drop.  

   In part-a of Figure 19, the incoming video has a GoP structure of (N=, M=1), the 

sequence is transcoded with partial MC-DCT for the top-left 4x4, 3x3, 2x2 and 1x1 

coefficients. The figure shows that the partial MC-DCT of the top-left 4x4 coefficients 

of P-pictures results in moderate quality degradation, whereas the partial MC-DCT of 

the dc coefficients on their own results in a 5dB drop in quality. The subjective 

degradation is shown in part-b of the figure. While the 4x4 partial MC-DCT of P-

pictures did not result in visual artifacts, the blurring effects of MC-DCT of the dc 

value are evident. Note that the static parts of the picture are coded without MC i.e. 

with a MV value of nil, hence the respective DCT blocks are copied directly from the 

previous reference picture without partial motion compensation processing. 

   Clearly, if the incoming video is coded with periodic B and I pictures i.e. (N=12, 

M=3) then the quality degradation associated with the partial MC-DCT becomes 

acceptable. For a GoP of a given size, the larger the ratio between anchor to non-

anchor pictures the lower is the error propagation. In addition since I-pictures replace 
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the contents of the frame-buffers flushing out any error accumulation, it follows that 

lossless partial MC-DCT with an incoming GoP structure of (N=12, M=3) results in 

an acceptable quality in comparison to the case of (N=, M=1). For instance, Figure 

20 shows that different combinations of partial MC-DCT for B and P pictures result in 

moderate quality degradation when compared to the plots of Figure 19. 

   As for combining the partial MC-DCT with the array approximation technique in 

the DCT-to-PEL transcoder for an incoming GoP structure of (N=12, M=3), the latter 

technique will barely have any effect on the picture quality for two reasons. First, the 

MC-DCT is employed in the decoder part of the transcoder only, hence no 

approximation arrays are used at the encoder part. Second, as only few frequency 

components are motion compensated in the partial MC-DCT then the approximation 

matrices will not have a full effect as in the case of full MC-DCT. In part-a of Figure 

21 the result of the partial MC-DCT is plotted with and without the use of 

approximation matrices, as shown the difference is marginal. 

   Repeating the experiment with an incoming GoP structure of (N=, M=1), part-b of 

the figure shows that combining the lossy partial processing with the matrix 

approximation technique results in unacceptable quality degradation.  

8.3  Comparing against the PEL-to-PEL transcoder.  

It was pointed out earlier that to compare the results of different transcoding 

architectures, the transcoded pictures are interpolated to the original size and 

compared against the original images. PSNR traces for the three transcoding 

architectures are shown in Figure 22. As expected, the results generated by the DCT-

to-PEL architecture are the highest due to the DCT decimation method. On the other 

hand, the lowest quality is achieved by the DCT-to-DCT architecture where the 

decimation technique used is drawn directly from pixel averaging and down sampling 

without proper low-pass filtering. 

   Since the highest result is obtained by the DCT-to-PEL architecture that tolerates 

fast MC-DCT as shown in Figures 20-22, it is desirable to integrate fast MC-DCT in 

the mentioned architecture and compare it against the PEL-to-PEL transcoder. Again, 

this is shown in the same figure under the legend ‘Fast DCT-to-PEL’. In this 

configuration, the transcoder is accelerated by employing the approximation matrices 

and the 4x4 partial MC-DCT for both B and P pictures. From the figure it is shown 
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that the DCT-to-PEL architecture generates the best results even with the fast MC-

DCT. 

   One can conclude that the DCT-to-PEL architecture is more suitable for 

heterogeneous video transcoding for the following reasons: 

1. MC-DCT is only used in the decoder part and hence lossy motion compensation 

accelerations have a less significant effect. 

2.  Inherent to implementing the encoder part in the pixel domain is the flexibility of 

integrating more functionality into the transcoder such as MC for selecting the best 

candidate post-processed motion vector and motion estimation refinement. As 

mentioned earlier, such functionality is less complex in the pixel domain. 

3.  Since the input to the image decimator is in the DCT domain, it is quite feasible to 

retain most of the image energy by employing the modified inverse transformation of 

the low frequencies whilst cutting off the rest. 

9 Conclusions 

In this paper, the pixel domain MPEG into H.263 heterogeneous video transcoder is 

implemented in the DCT domain. The superiority of the DCT decimation utilising the 

modified inverse transformation led to a unique transcoding architecture. The 

decoder’s MC-loop outputs DCT domain images to the decimator, which in turn 

outputs a decimated pixel domain image. The pixel domain image is then motion 

compensated in the pixel domain. It was shown that such a DCT-to-PEL transcoding  

architecture facilitates partial prioritised DCT processing whilst tolerating lossy MC-

DCT. In contrast, the DCT-to-DCT architecture proved to be more sensitive to lossy 

accelerations. Namely, the use of the approximate integer matrices in the encoder’s 

MC-loop caused a MC-loop mismatch and a severe picture drift. Finally, common to 

both transcoding architectures it was shown that for proper MC-DCT with half-pixel 

accurate motion vectors, the dc component of the motion compensated blocks is 

scaled according to the directionality of the underlying motion vector. 
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FIGURE 3. Pixel averaging and down sampling performed on 8x8 block basis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. low-pass filtering and decimation into quarter spatial resolution. 
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FIGURE 5. Input and output domains of two decimation methods. 
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FIGURE 8. DCT-to-PEL transcoding architecture. 
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FIGURE 9. MC of four blocks utilising the shared information in a MC macroblock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10. Utilising shared information among aligned MC-MBs. 
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FIGURE 11. Shifted blocks involved in the basic block prediction. 

 

 

 

 

 

 

 

 

FIGURE 12. Distortion introduced at the right and bottom boundaries due to 

horizontal and vertical filtering on macroblock basis. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13. Involving adjacent motion compensated macroblocks in the filtering of 

the current motion compensated block. 
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FIGURE 14. Enhancing Macroblock filtering for half-pixel MC. SALESMAN 

sequence encoded at 1.5Mbit/s, 25Hz (352x288), (N=12,M=3) transcoded into quarter 

spatial resolution at 250kbit/s, 25Hz (IPPPP…). 
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FIGURE 15. Rounding in the DCT-domain for half-pixel accurate MC. SALESMAN 

sequence, same parameters as Fig 14. 
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FIGURE 16. The superiority of the MIT decimation and associated interpolation. 

 

 

 

 

 

 

 

 

 

 

FIGURE 17. Interpolation of the MIT decimation method. 
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(b) 

FIGURE 18. The effect of the approximating the MC-DCT matrices whilst 

transcoding a GoP structure of (a) N=12, M=3 (b) N= M=1. 
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FIGURE 19. Partial MC-DCT for P-pictures with an incoming GoP structure of 

(N=, M=1) (a)Objective PSNR plots (b) associated visual artifacts for picture 

number 90. 
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FIGURE 20. Partial MC-DCT for B and P pictures with an incoming GoP structure of 

(N=12, M=3) 
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(b) 

FIGURE 21. The effect of matrix approximation combined with partial MC-DCT. 

Incoming GoP structure of  (a) N=12, M=3 (b) N=, M=1 
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FIGURE 22. Comparing the picture-quality of the three transcoding architectures. 

 

 


