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In this paper, the moment of various types of sine and cosine functions are derived for any random variable. For 
an arbitrary even probability density function, the sine and cosine moments are used to define new families of 
univariate multimodal probability density and their corresponding characteristic functions. For illustration, two 
weighted multimodal generalizations of the 𝑡 distribution are investigated. Furthermore, a method of calculating 
some interesting improper integrals is also presented. Finally, an explicit expression of the probability density 
function of the sum of independent 𝑡-distributed random variables with odd degrees of freedom is derived.
1. Introduction

A multimodal distribution is a probability distribution with at least 
two modes (local maxima). Multimodal distributions are popular in 
modelling various types of data. There exist many empirical distribu-

tions in practice with multimodal form. For this reason, researchers 
proposed several methods for constructing multimodal family of dis-

tributions. A common way of constructing a proper multimodal distri-

bution is by utilizing mixtures of some known distributions. In this case, 
the new mixture probability density function (pdf) is a weighted sum of 
known pdfs as follows; 𝑔(𝑡) =∑𝑛

𝑖=1 𝛼𝑖𝑔𝑖(𝑡), 0 ≤ 𝛼𝑖 ≤ 1, 𝑖 = 1, 2, … , 𝑛, with ∑𝑛

𝑖=1 𝛼𝑖 = 1. The choice of the weights, 𝛼𝑖, plays a main role in mod-

elling data using the mixture pdf 𝑔(𝑡). For more information, the reader 
is referred to [1, 2] and the references cited therein.

Another way of modelling univariate multimodal data is by us-

ing weighted distributions. Fisher [3], brought the notion of weighted 
distributions in order to model ascertainment biases. Later, Rao [4], 
used weighted distributions in an exceedingly unifying theory for issues 
related when observations fall into non-experimental, non-replicated 
and non-random way. The weighted distribution, 𝑔(𝑥), is defined as 
𝑔(𝑥) = 𝑤(𝑥)𝑓 (𝑥)

𝐸[𝑤(𝑋)]
, where 𝑓 (.) is a pdf of the random variable 𝑋 and 

𝑤(.) is a positive function. Here, 𝐸 stands for the mathematical ex-

pectation where 𝐸(𝑤(𝑋)) = ∫ℝ𝑤(𝑥)𝑓 (𝑥)𝑑𝑥. Some common weighted 
functions, for example, are 𝑤(𝑥) = 𝐹 𝑖−1(𝑥)𝐹𝑛−𝑖(𝑥) and 𝑤(𝑥) = 𝑥 which 
respectively correspond to the 𝑖-th order statistics arising from 𝑛 inde-

pendent and identically random variables with absolutely continuous 
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cumulative density function (cdf) 𝐹 (.) ([5, Page 10]), and length biased 
pdfs [6]. For comprehensive discussions about weighted distributions, 
readers are referred to [7] and [8].

In this paper, some new family of multimodal distributions are pro-

posed and discussed. These families are constructed in two ways. The 
first method is by applying weighted distribution technique with weight 
functions involving cosine and sine. This technique requires calculating 
the moments of sine and cosine functions which is also discussed in this 
paper. The second method is defining new family of distributions based 
on sine and cosine functions. In this method, the constructed family 
of distributions is multimodal because of the fact that sine and cosine 
functions have the multimodality property.

The rest of the paper is organized as follows. In section 2, moment 
of sine and cosine functions of any order is derived. Also new family 
of weighted multimodal distributions are proposed. Some applications 
of the main results are discussed in Section 3. In particular, we present 
some examples of new weighted distributions. Also, we derive explicit 
forms of some complex improper integrals. Furthermore, we derive an 
explicit expression of the probability density function of sum of inde-

pendent 𝑡-distributed random variables with odd degrees of freedom in 
Section 3.

2. Main results

In this section, the expectation of 𝑒−𝑖𝑢𝑋𝑐𝑜𝑠𝑛(𝑟𝑋), 𝑢 ∈ ℝ is discussed 
for any arbitrary continuous random variable 𝑋. Note that
https://doi.org/10.1016/j.heliyon.2020.e04757
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|||||||
∞

∫
−∞

𝑒−𝑖𝑢𝑥 cos𝑛(𝑟𝑥)𝑓𝑋 (𝑥)𝑑𝑥
||||||| ≤

∞

∫
−∞

||𝑒−𝑖𝑢𝑥 cos𝑛(𝑟𝑥)||𝑓𝑋 (𝑥)𝑑𝑥

≤
∞

∫
−∞

𝑓𝑋 (𝑥)𝑑𝑥 = 1, 𝑖2 = −1,

is valid for any continuous random variable 𝑋 with pdf 𝑓𝑋 (.). Therefore, 
if 𝑢 = 0, the expectation of cos𝑛(𝑟𝑋) exists for any values of 𝑛 and 𝑟. The 
same result can be obtained for the moment of sine functions.

Let 𝜓𝑋 ∶ ℝ ⟶ ℂ be the characteristic function of 𝑋 defined by 
𝜓𝑋 (𝑡) = 𝐸[𝑒𝑖𝑡𝑋 ] = ∫ ∞

−∞ 𝑒
𝑖𝑡𝑥𝑑𝐹𝑋 (𝑥), where 𝐹𝑋 (.) is the cumulative distri-

bution function of 𝑋. 𝜓𝑋 enjoys several important properties such as 
its existence. For other properties, the reader is referred to [9] and 
[7]. Now, for a random variable 𝑋 whose pdf is symmetric about 0, 
it is easy to see that 𝜓𝑋 (𝑡) =𝐸(cos(𝑡𝑋)). Consequently, 𝐸(cos(𝑚𝑋))𝑛 and 
𝐸(sin(𝑚𝑋))𝑛 can be derived using some trigonometric identities ([7]). 
However, it is clear that the indirect computations of high order mo-

ments of sine and cosine functions using trigonometric identities are 
time-consuming and not attractive. Also, it requires the symmetry con-

dition. For these reasons, the following result presents direct formulas 
for computing the moment of sine and cosine functions for any contin-

uous random variable.

Lemma 1. Let 𝑋 be a continuous random variable with cumulative density 
and characteristic functions 𝐹𝑋 (.) and 𝜓𝑋 (.) respectively, then for 𝑟, 𝑢 ∈
ℝ, 𝑛 ∈ℕ we have

∞

∫
−∞

𝑒−𝑖𝑢𝑡[cos(𝑡𝑟)]2𝑛𝑑𝐹𝑋 (𝑡) =
∑2𝑛
𝑤=0

(2𝑛
𝑤

)
𝜓(2𝑟(𝑤− 𝑛) − 𝑢)
4𝑛

,

∞

∫
−∞

𝑒−𝑖𝑢𝑡[cos(𝑡𝑟)]2𝑛−1𝑑𝐹𝑋 (𝑡) =
2
∑2𝑛−1
𝑤=0

(2𝑛−1
𝑤

)
𝜓(2𝑟(𝑤− 𝑛) + 𝑟− 𝑢)
4𝑛

and

∞

∫
−∞

𝑒−𝑖𝑢𝑡[sin(𝑡𝑟)]2𝑛𝑑𝐹𝑋 (𝑡) = 𝜓(−𝑢)+
𝑛∑
𝑘=1

(
𝑛

𝑘

)
(−1

4
)𝑘

2𝑘∑
𝑤=0

(
2𝑘
𝑤

)
𝜓(2𝑟(𝑤−𝑘)−𝑢),

Proof. Let 𝑌1, 𝑌2, … , 𝑌𝑚 be independent and identically distributed ran-

dom variables such that

𝑃 (𝑌𝑗 = 𝑟) = 𝑃 (𝑌𝑗 = −𝑟) = 1
2
, 𝑟 ≠ 0.

By using the Parseval’s identity ([9, Page 172]) we get

∞

∫
−∞

𝑒−𝑖𝑢𝑡𝜓∑𝑚
𝑗=1 𝑌𝑗

(𝑡)𝑑𝐹𝑋 (𝑡) =

∞

∫
−∞

𝜓𝑋 (𝑡− 𝑢)𝑑𝐹∑𝑚
𝑗=1 𝑌𝑗

(𝑡).

It is easy to see that

𝜓∑𝑚
𝑗=1 𝑌𝑗

(𝑡) = [cos(𝑡𝑟)]𝑚,

and using the fact that 
∑𝑚

𝑗=1 𝑌𝑗 +𝑚𝑟
2𝑟

∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚, 1∕2), we have

𝐹∑𝑚
𝑗=1 𝑌𝑗

(𝑡) = 2−𝑚
𝑚𝑟∑

𝑗=−𝑚𝑟,−𝑚𝑟+2𝑟,−𝑚𝑟+4𝑟,…

(
𝑚

1
2
(𝑚+ 𝑗

𝑟
)

)
𝐼(𝑗 ≤ 𝑡),

or

𝐹∑𝑚
𝑗=1 𝑌𝑗

(𝑡) = 2−𝑚
𝑚∑
𝑗=0

(
𝑚

𝑗

)
𝐼(𝑗 ≤ 𝑡+𝑚𝑟

2𝑟
).

Finally, one can get the results by using the fact that

[sin(𝑡𝑟)]2𝑛 = [1 − (cos(𝑡𝑟))2]𝑛

= 1 +
𝑛∑(

𝑛

𝑘

)
(−1)𝑘 (cos(𝑡𝑟))2𝑘 . □
𝑘=1

2

Note that a similar formula for odd power of sin𝑥 can also be derived 
in Theorem 1 by using [sin(𝑡𝑟)]2𝑛−1 = 1 + ∑∞

𝑘=1
(𝑛−1∕𝑘

𝑘

)
(−1)𝑘

(
cos2(𝑡𝑟)

)𝑘
. 

However, the formula is not useful in this paper. Next corollary defines 
interesting families of multimodal distributions with closed form char-

acteristic functions.

Corollary 1. Let 𝑋 be an absolutely continuous random variable with cu-

mulative density and characteristic functions 𝐹𝑋 (.) and 𝜓𝑋 (.) respectively, 
then

𝑔(𝑥) =
4𝑛[cos(𝑥𝑟)]2𝑛𝑓𝑋 (𝑥)∑2𝑛
𝑤=0

(2𝑛
𝑤

)
𝜓𝑋 (2𝑟(𝑤− 𝑛))

, (1)

is a pdf with characteristic function is given by

𝜓(𝑡) =
∑2𝑛
𝑤=0

(2𝑛
𝑤

)
𝜓𝑋 (2𝑟(𝑤− 𝑛) + 𝑡)∑2𝑛

𝑤=0
(2𝑛
𝑤

)
𝜓𝑋 (2𝑟(𝑤− 𝑛))

. (2)

Moreover

𝑔(𝑥) =
[sin(𝑥𝑟)]2𝑛𝑓𝑋 (𝑥)

1 +
∑𝑛

𝑘=1
(𝑛
𝑘

)
(−1

4
)𝑘
∑2𝑘
𝑤=0

(2𝑘
𝑤

)
𝜓𝑋 (2𝑟(𝑤− 𝑘))

, (3)

is a pdf with characteristic function is given by

𝜓(𝑡) =
𝜓𝑋 (𝑡) +

∑𝑛

𝑘=1
(𝑛
𝑘

)
(−1

4
)𝑘
∑2𝑘
𝑤=0

(2𝑘
𝑤

)
𝜓𝑋 (2𝑟(𝑤− 𝑘) + 𝑡)

1 +
∑𝑛

𝑘=1
(𝑛
𝑘

)
(−1

4
)𝑘
∑2𝑘
𝑤=0

(2𝑘
𝑤

)
𝜓𝑋 (2𝑟(𝑤− 𝑘))

. (4)

Remarks.

I. If 𝑛 = 0, then the pdfs in (1) and (3) reduce to the baseline distribu-

tion 𝑓𝑋 (𝑥). Therefore, (1) and (3) can be considered as multimodal 
generalizations of 𝑓𝑋 (𝑥).

II. The families of distributions defined in equations (1) and (3) can 
be viewed as weighted family of distributions of the form 𝑔(𝑥) =
𝑤(𝑥)𝑓𝑋 (𝑥)
𝐸(𝑤(𝑋))

with weight functions, respectively, are [cos(𝑟𝑥)]2𝑛 and 

[sin(𝑟𝑥)]2𝑛.
III. If 𝑋 has a symmetric pdf, then the characteristic function is real 

and even function [9, Page 165]. Moreover, the even power mo-

ments of sine and cosine functions are given by

∞

∫
−∞

[cos(𝑡𝑟)]2𝑛𝑑𝐹𝑋 (𝑡) =

(2𝑛
𝑛

)
+ 2

∑𝑛

𝑤=1
( 2𝑛
𝑛−𝑤

)
𝜓(2𝑟𝑤)

4𝑛
,

and

∞

∫
−∞

[sin(𝑡𝑟)]2𝑛𝑑𝐹𝑋 (𝑡) =1 +
𝑛∑
𝑘=1

(
𝑛

𝑘

)(
2𝑘
𝑘

)
(−1

4
)𝑘

+ 2
𝑛∑
𝑘=1

(
𝑛

𝑘

)
(−1

4
)𝑘

𝑘∑
𝑤=1

(
2𝑘
𝑘−𝑤

)
𝜓(2𝑟𝑤).

3. Applications

In this section, we present some applications of the results in Sec-

tion 2. In particular, Example 1 shows how some complex improper 
integrals can be calculated easily. Example 2 presents an example of a 
weighted multimodal distribution generated using the 𝑡 distribution as 
a baseline.

It is interesting to note that the characteristic function of some ran-

dom variables has been used to solve some difficult integrals. For exam-

ple, Gut [9] utilized the characteristic function to solve ∫ ∞
0

sin 𝑥
𝑥
𝑑𝑥 and 

∫ ∞
0

sin2 𝑥
𝑑𝑥. In Example 1, we show how the characteristic function 
𝑥2
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can be used easily to solve some other integrals. Moreover an interest-

ing explicit expression for solving the improper integral ∫ ∞
0

sin𝑚(𝑥)
𝑥𝑚

𝑑𝑥

is also derived for any integer 𝑚. First we state the following theorem 
from [10] with some minor changes referred as the theory of positive 
definite densities.

Theorem 1. Let 𝜓𝑋 (𝑡) be a real characteristic function such that

∫ ∞
−∞ |𝜓𝑋 (𝑡)|𝑑𝑡 <∞, then 𝑋 has an absolutely continuous distribution with a 

bounded, symmetric pdf 𝑓𝑋 = 𝐹 ′
𝑋

, given by

𝑓𝑋 (𝑥) =
1
2𝜋

∞

∫
−∞

𝑒𝑖𝑡𝑥𝜓𝑋 (𝑡)𝑑𝑡.

Moreover 𝑔𝑋 (𝑥) =
𝜓𝑋 (𝑥)
2𝜋𝑓𝑋 (0)

is a symmetric pdf with symmetric characteristic 
function 𝜓∗, given by

𝜓∗
𝑋
(𝑡) =

𝑓𝑋 (𝑡)
𝑓𝑋 (0)

.

Example 1 (Explicit formulas of some improper integrals). In this exam-

ple, we show how Lemma 1 and Theorem 1 can be used in order 
to derive closed form solutions for some interesting integrals such as 
∫ ∞
0

sin𝑚(𝑥)
𝑥𝑚

𝑑𝑥, 𝑚 ∈ℕ.

Let the random variable 𝑋 follow the Triangular distribution with 
pdf given by

𝑓𝑋 (𝑥) =
𝑐 − |𝑥|
𝑐2

𝐼[−𝑐,𝑐](𝑥).

It is easy to see that

𝜓𝑋 (𝑡) = 21 − cos(𝑐𝑡)
𝑐2𝑡2

𝐼[−∞,∞](𝑡).

By using Corollary 1 and Lemma 1, we get the following two pdfs

4𝑛[cos(𝑟𝑥)]2𝑛 𝑐 − |𝑥|
𝑐(2𝑛

𝑛

)
+ 2

∑𝑛

𝑤=1
(2𝑛
𝑤

)
𝜓(2𝑟𝑤)

(5)

and

4𝑛[cos(𝑟𝑥)]2𝑛−1 𝑐 − |𝑥|
𝑐

2
∑2𝑛−1
𝑤=0

(2𝑛−1
𝑤

)
𝜓(2𝑟(𝑤− 𝑛) + 𝑟)

. (6)

The corresponding characteristic functions, respectively, given by∑2𝑛
𝑤=0

(2𝑛
𝑤

)
𝜓(2𝑟(𝑤− 𝑛) + 𝑡)(2𝑛

𝑛

)
+ 2

∑𝑛

𝑤=1
(2𝑛
𝑤

)
𝜓(2𝑟𝑤)

(7)

and∑2𝑛−1
𝑤=0

(2𝑛−1
𝑤

)
𝜓(2𝑟(𝑤− 𝑛) + 𝑟+ 𝑡)∑2𝑛−1

𝑤=0
(2𝑛−1
𝑤

)
𝜓(2𝑟(𝑤− 𝑛) + 𝑟)

. (8)

Corollary 2. The following explicit formulas can be obtained.

(i) From equations (5) and (7) and Theorem 1, we get the following result

𝑐(𝑐 − |𝑥|)𝜋4𝑛[cos(𝑟𝑥)]2𝑛 = 2𝑛∑
𝑤=0

(
2𝑛
𝑤

) ∞

∫
−∞

𝑒𝑖𝑡𝑥
1 − cos(𝑐(2𝑟(𝑤− 𝑛) + 𝑡))

(2𝑟(𝑤− 𝑛) + 𝑡)2
𝑑𝑡.

(9)

(ii) From equations (6) and (8) and Theorem 1, we get the following result

𝑐(𝑐 − |𝑥|)𝜋4𝑛[cos(𝑟𝑥)]2𝑛−1
=

2𝑛−1∑
𝑤=0

(
2𝑛− 1
𝑤

) ∞

∫ 𝑒𝑖𝑡𝑥
1 − cos(𝑐(2𝑟(𝑤− 𝑛) + 𝑟+ 𝑡))

(2𝑟(𝑤− 𝑛) + 𝑟+ 𝑡)2
𝑑𝑡. (10)
−∞

3

On setting 𝑛 = 𝑥 = 0 and 𝑐 = 1 in equation (9), we get

𝜋 =

∞

∫
−∞

1 − cos 𝑡
𝑡2

𝑑𝑡

and hence

𝜋

2
=

∞

∫
0

sin2(𝑡)
𝑡2

𝑑𝑡.

Now, for the general case, ∫ ∞
0

sin𝑚(𝑥)
𝑥𝑚

𝑑𝑥, 𝑚 ∈ℕ, consider 𝑋1, 𝑋2, … ,
𝑋𝑚 to be independent and uniformly distributed random variables on 
(−1, 1). Then the random variable 𝑌 =

∑𝑚

𝑗=1𝑋𝑗 has the characteristic 

function 𝜓∑𝑚
𝑗=1𝑋𝑗

(𝑡) = sin𝑚(𝑡)
𝑡𝑚

and equidistributed with 2𝑍 −𝑚, where 𝑍
follows the Irwin–Hall distribution [11]. Therefore,

𝑓∑𝑚
𝑗=1𝑋𝑗

(𝑦) =

∑𝑚

𝑘=0(−1)
𝑘
(𝑚
𝑘

)( 𝑦+𝑚
2

− 𝑘
)𝑚−1

sgn
(
𝑦+𝑚
2

− 𝑘
)

4(𝑚− 1)!
,−𝑚 ≤ 𝑦 ≤𝑚,

(11)

where 𝑠𝑔𝑛(.) is the sign function defined as

sgn(𝑥) =
⎧⎪⎨⎪⎩
−1, 𝑥 < 0
0, 𝑥 = 0
+1, 𝑥 > 0.

Now, from equation (11), Corollary 1 and Lemma 1, it is straightfor-

ward to see that

𝑔𝑌 (𝑦) =
4𝑛−1[cos(𝑟𝑦)]2𝑛

∑𝑚

𝑘=0(−1)
𝑘
(𝑚
𝑘

)( 𝑦+𝑚
2

− 𝑘
)𝑚−1

sgn
(
𝑦+𝑚
2

− 𝑘
)

(𝑚− 1)!
[(2𝑛

𝑛

)
+ 2

∑𝑛

𝑤=1
( 2𝑛
𝑛−𝑤

)( sin(2𝑟𝑤)
2𝑟𝑤

)𝑚] ,

is a probability density function with the following characteristic func-

tion

𝜙𝑌 (𝑡) =

(2𝑛
𝑛

)
+
∑𝑛

𝑤=1 2
( 2𝑛
𝑤−𝑛

)( sin(2𝑟𝑤+ 𝑡)
2𝑟𝑤+ 𝑡

)𝑚
(2𝑛
𝑛

)
+
∑𝑛

𝑤=1 2
( 2𝑛
𝑤−𝑛

)( sin(2𝑟𝑤)
2𝑟𝑤

)𝑚 .

Or by symmetry,

𝜙𝑌 (𝑡) =

∑2𝑛
𝑤=0

(2𝑛
𝑤

)( sin(2𝑟(𝑤− 𝑛) + 𝑡)
2𝑟(𝑤− 𝑛) + 𝑡

)𝑚
∑2𝑛
𝑤=0

(2𝑛
𝑤

)( sin(2𝑟(𝑤− 𝑛))
2𝑟(𝑤− 𝑛)

)𝑚 .

Now by using Theorem 1, we get the following result

2𝑛∑
𝑤=0

(
2𝑛
𝑤

) ∞

∫
−∞

𝑒𝑖𝑡𝑦
(
sin(2𝑟(𝑤− 𝑛) + 𝑡)
2𝑟(𝑤− 𝑛) + 𝑡

)𝑚
𝑑𝑡 =

𝜋22𝑛−1[cos(𝑟𝑦)]2𝑛
∑𝑚

𝑘=0(−1)
𝑘
(𝑚
𝑘

)( 𝑦+𝑚
2

− 𝑘
)𝑚−1

sgn
(
𝑦+𝑚
2

− 𝑘
)

(𝑚− 1)!
. (12)

Corollary 3. Setting 𝑛 = 0 and 𝑦 = 0 in equation (12), we get

∞

∫
0

sin𝑚(𝑥)
𝑥𝑚

𝑑𝑥 = 𝜋
4

∑𝑚

𝑘=0(−1)
𝑘
(𝑚
𝑘

)(𝑚
2
− 𝑘

)𝑚−1
sgn

(
𝑚

2
− 𝑘

)
(𝑚− 1)!

.

In Table 1, we used the explicit formula in Corollary 3 to compute 
the exact value of ∫ ∞

0
sin𝑚(𝑥)

𝑑𝑥 for 𝑚 = 1, 2, … , 9.

𝑥𝑚
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Fig. 1. PDF plots of the multimodal cosine form of the t-distribution with degree of freedom 𝑠 = 1.
Table 1. Exact value of ∫ ∞
0

sin𝑚(𝑥)
𝑥𝑚

, 𝑚 = 1, 2, … , 9.

m 1 2 3 4 5 6 7 8 9

Value
1
2
𝜋

1
2
𝜋

3
8
𝜋

1
3
𝜋

115
384

𝜋
11
40
𝜋

5887
23040

𝜋
151
630

𝜋
259723
1146880

𝜋

Example 2 (Sine and cosine multimodal generalizations of t-distribution). 
In this example, we use Corollary 1 in order to generate weighted multi-

modal extensions of a baseline distribution 𝑓𝑋 (𝑥). In particular, we use 
the standard 𝑡 distribution as a baseline for illustration.

The student 𝑡 distribution with 𝑠 degree of freedom has the following 
symmetric pdf

𝑓𝑋 (𝑥, 𝑠) =
Γ
(
𝑠+ 1
2

)
√
𝑠𝜋Γ

(
𝑠

2

) (
1 + 𝑥

2

𝑠

)−
𝑠+ 1
2

. (13)

The corresponding integral form of the characteristic function [12] is 
given by

𝜓𝑋 (𝑡, 𝑠) =
(2
√
𝑠)
𝑠

Γ(𝑠) ∫
ℝ

𝑒−
√
𝑠(2𝑥+|𝑡|)(𝑥(𝑥+ |𝑡|)) 𝑠−12 𝑑𝑥. (14)

On using Corollary 1 and equation (14), we get the following two 
weighted probability distributions with pdfs given by

𝑔1(𝑥, 𝑠) =
4𝑛[cos(𝑟𝑥)]2𝑛𝑓𝑋 (𝑥, 𝑠)∑2𝑛
𝑤=0

(2𝑛
𝑤

)
𝜓𝑋,𝑠(2𝑟(𝑤− 𝑛))

, (15)

and

𝑔2(𝑥, 𝑠) =
[sin(𝑟𝑥)]2𝑛𝑓𝑋 (𝑥, 𝑠)

1 +
∑𝑛

𝑘=1
(𝑛
𝑘

)(
−1

4

)𝑘∑2𝑘
𝑤=0

(2𝑘
𝑤

)
𝜓𝑋 (2𝑟(𝑤− 𝑘), 𝑠)

. (16)

Plots of the pdf and the cdf for cosine 𝑡 distribution [equation (15)] 
and sine 𝑡 distribution [equation (16)] are, respectively, depicted for 
various parameter values in Figs. 1 and 2.

Example 3 (Further discussions on 𝑡 distribution with odd degree of free-
dom). The pdf of 𝑡 distribution with even degree of freedom can be 
approximated by using the nearest odd degree of freedom. The charac-

teristic function of 𝑡 distribution has been investigated by many authors. 
An integral form of the characteristic function of 𝑡 distribution was 
derived by Dreier [12] and recently Guant [13] presented a simple 
derivation of this function. More details about the characteristic func-

tion of the 𝑡 distribution can be found in [12] and [13].

In this example, we present a derivation of the characteristic func-

tion of the 𝑡 distribution with odd degree of freedom. Also, we derive 
an explicit form of the pdf of sum of independent 𝑡 distributed random 
variables with odd degree of freedom.

A recurrence formula for the characteristic function of 𝑡 distribution 
with odd degree of freedom was derived by Mitra [14] as follows
4

𝜓(𝑡,2𝑚− 1) = 𝑒−|𝑡√2𝑚−1| 𝑚−1∑
𝑗=0
𝑐𝑗,𝑚−1|𝑡√2𝑚− 1|𝑗 , (17)

where 𝑐0,𝑚 = 𝑐1,𝑚 = 1, 𝑐𝑚−1,𝑚 = 1
1 × 3…(2𝑚− 5) × (2𝑚− 3)

, and 𝑐𝑗,𝑚 =

𝑐𝑗−1,𝑚−1 + (2𝑚− 3 − 𝑗)𝑐𝑗,𝑚−1
2𝑚− 3

, 1 ≤ 𝑗 ≤𝑚 −1. For more details, see also [15, 
Chapter 28] and [16, Chapter 3]. Next, we derive an explicit form for 
the characteristic function of 𝑡 distribution with odd degree of freedom.

Theorem 2. The characteristic function of the 𝑡 distribution in (13) with 
2𝑚 − 1, 𝑚 ∈ℕ degree of freedom is given by

𝜓(𝑡,2𝑚− 1) = 𝑒−|√2𝑚−1𝑡| 𝑚−1∑
𝑗=0

(2𝑚−𝑗−2
𝑚−1

)
(2𝑚−2
𝑚−1

) (2
√
2𝑚− 1𝑡)𝑗

𝑗!
. (18)

Proof. Let 𝑋1, 𝑋2, … , 𝑋𝑚 be a random sample from the standard 
laplace distribution with pdf 𝑓𝑋 (𝑥) =

1
2
𝑒−|𝑥|, 𝑥 ∈ ℝ and characteristic 

function 𝜓𝑋 (𝑡) =
1

1 + 𝑡2
, 𝑡 ∈ ℝ. Therefore, 𝜓∑𝑚

𝑖=1𝑋𝑖
(𝑡) = 1

(1 + 𝑡2)𝑚
. Now, 

using Theorem 1 and the fact that [15, Chapter 24]

𝑓∑𝑚
𝑖=1𝑋𝑖

(𝑥) = 𝑒−|𝑥|
22𝑚−1

𝑚−1∑
𝑗=0

(
2𝑚− 𝑗 − 2
𝑚− 1

)
(2𝑥)𝑗

𝑗!
,

we get

∞

∫
−∞

𝑒𝑖𝑡𝑦

(1 + 𝑡2)𝑚
𝑑𝑡 =

∞

∫
−∞

𝑒𝑖𝑡𝑦𝜓∑𝑚
𝑖=1𝑋𝑖

(𝑡)𝑑𝑡

= 2𝜋𝑓∑𝑚
𝑖=1𝑋𝑖

(𝑦)

= 2𝜋 𝑒
−|𝑦|

22𝑚−1

𝑚−1∑
𝑗=0

(
2𝑚− 𝑗 − 2
𝑚− 1

)
(2𝑦)𝑗

𝑗!
.

Hence, the characteristic function of the 𝑡 distribution with 2𝑚 −1, 𝑚 ∈ ℕ
degree of freedom is given by

𝜓𝑇2𝑚−1
(𝑡) = ∫

ℝ

𝑒𝑖𝑡𝑥
Γ(𝑚)√

(2𝑚− 1)𝜋Γ( 2𝑚− 1
2

)
(1 + 𝑥2

2𝑚− 1
)−𝑚𝑑𝑥

= Γ(𝑚)√
𝜋Γ( 2𝑚− 1

2
) ∫ℝ

𝑒𝑖
√
2𝑚−1𝑡𝑥

(1 + 𝑥2)𝑚
𝑑𝑥

= 22𝑚−2[(𝑚− 1)!]2

𝜋(2𝑚− 2)!
× 2𝜋 𝑒

−|√2𝑚−1𝑡|
22𝑚−1

𝑚−1∑
𝑗=0

(
2𝑚− 𝑗 − 2
𝑚− 1

)
(2
√
2𝑚− 1𝑡)𝑗

𝑗!

= 𝑒−|√2𝑚−1𝑡| 𝑚−1∑ (2𝑚−𝑗−2
𝑚−1

)
(2𝑚−2) (2

√
2𝑚− 1𝑡)𝑗

𝑗!
. □ (19)
𝑗=0 𝑚−1
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Fig. 2. PDF plots of multimodal sine form of t-distribution with degree of freedom 𝑠 = 1.
Corollary 4. From Theorem 2, the coefficient of the recurrence formula in
(17) from Mitra [14] can be explicitly written as

𝑐𝑗,𝑚−1 =

(2𝑚−𝑗−2
𝑚−1

)
2𝑗(2𝑚−2

𝑚−1

)
𝑗!
.

Next, we derive an explicit form for the pdf of linear combination of 
independent 𝑡 random variables with odd degrees of freedom.

Theorem 3. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent 𝑡 distributed random vari-

ables with 2𝑚𝑖 − 1, 𝑖 = 1, 2, … , 𝑛, 𝑚𝑖 ∈ ℕ degrees of freedom. Then the pdf of 
𝑌 =

∑𝑛

𝑖=1 𝛼𝑖𝑋𝑖, 𝛼𝑖 ∈ℝ is given by

𝑓𝑌 (𝑦) =

∑𝑚1−1
𝑗1=0

⋯
∑𝑚𝑛−1
𝑗𝑛=0

𝑐𝑗1 ,𝑚1−1 … 𝑐𝑗𝑛,𝑚𝑛−1ℎ(𝛼1
√
2𝑚1 − 1, 𝑗1, 𝑦)…ℎ(𝛼𝑛

√
2𝑚𝑛 − 1, 𝑗𝑛, 𝑦)∑𝑚1−1

𝑗1=0
⋯

∑𝑚𝑛−1
𝑗𝑛=0

𝑐𝑗1 ,𝑚1−1 … 𝑐𝑗𝑛,𝑚𝑛−1
Γ(𝑗1 + 1)

|𝛼1√2𝑚1 − 1| …
Γ(𝑗𝑛 + 1)

|𝛼𝑛√2𝑚𝑛 − 1|
,

where ℎ(𝛾, 𝑘, 𝑦) is given in equation (20).

Proof. From Theorem 2, we have

𝜓𝑌 (𝑡) =
𝑛∏
𝑖=1
𝜓𝑋𝑖

(𝑡𝛼𝑖)

=
𝑛∏
𝑖=1
𝑒−|√2𝑚𝑖−1𝑡𝛼𝑖| 𝑚𝑖−1∑

𝑗𝑖=0

(2𝑚𝑖−𝑗𝑖−2
𝑚𝑖−1

)
(2𝑚𝑖−2
𝑚𝑖−1

) (2
√
2𝑚𝑖 − 1𝑡𝛼𝑖)𝑗𝑖
𝑗𝑖!

= 𝑒−|𝑡|∑𝑛𝑖=1 |𝛼𝑖√2𝑚𝑖−1| 𝑚1−1∑
𝑗1=0

⋯
𝑚𝑛−1∑
𝑗𝑛=0

(2𝑚1−𝑗1−2
𝑚1−1

)
(2𝑚1−2
𝑚1−1

) (2
√
2𝑚1 − 1𝑡𝛼1)𝑗1
𝑗1!

×…

×

(2𝑚𝑛−𝑗𝑛−2
𝑚𝑛−1

)
(2𝑚𝑛−2
𝑚𝑛−1

) (2
√
2𝑚𝑛 − 1𝑡𝛼𝑛)𝑗𝑛
𝑗𝑛!

.

Now, from Theorem 1 we have 𝑓𝑌 (𝑦) =
∫ℝ 𝑒𝑖𝑡𝑦𝜓𝑌 (𝑡)𝑑𝑡
∫ℝ 𝜓𝑌 (𝑡)𝑑𝑡

.

One can show that

∫
ℝ

𝑒−|𝑡𝛾||𝑡𝛾|𝑘𝑑𝑡 = 2|𝛾|Γ(𝑘+ 1)

and

∫
ℝ

𝑒−|𝑡𝛾||𝑡𝛾|𝑘𝑒𝑖𝑡𝑦𝑑𝑡 = 2Γ(𝑘+ 1)|𝛾|
⎡⎢⎢⎢⎢⎣
1 +

∑
𝑤=𝑘−1,𝑘−3,…,(0or1)

(𝑘+1
𝑤

)( 𝑖𝑦|𝛾|
)𝑘+1−𝑤

(
1 + 𝑦

2

𝛾2

)𝑘+1
⎤⎥⎥⎥⎥⎦

(20)
5

The proof ends by setting ℎ(𝛾, 𝑘, 𝑦) = ∫ℝ 𝑒−|𝑡𝛾||𝑡𝛾|𝑘𝑒𝑖𝑡𝑦, and noting that 

𝑐𝑗,𝑚−1 =

(2𝑚−𝑗−2
𝑚−1

)
2𝑗(2𝑚−2

𝑚−1

)
𝑗!

. □

4. Conclusion

Special case of weighted distributions with the corresponding char-

acteristic functions have been proposed and discussed in this paper. The 
weighted distributions have the multimodal property with sine and co-

sine functions as their corresponding weight functions. Also, a method 
of calculating some interesting improper integrals is discussed in this 
paper including a closed form of ∫ ∞

0
𝑠𝑖𝑛𝑚(𝑥)
𝑥𝑚

𝑑𝑥. Furthermore, closed 
form of the probability density function for linear combination of inde-

pendent 𝑡 distributed random variables with odd degrees of freedom is 
derived. The structural properties of the proposed multimodal weighted 
family of distributions can be studied in detail in future study.
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