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ABSTRACT This paper proposes two novel methods to classify semantic vigilance levels by utilizing
EEG directed connectivity patterns with their corresponding graphical network measures. We estimate the
directed connectivity using relative wavelet transform entropy (RWTE) and partial directed coherence (PDC)
and the graphical network measures by graph theory analysis (GTA) at four frequency bands. The RWTE
and PDC quantify the strength and directionality of information flow between EEG nodes. On the other
hand, the GTA of the complex network measures summarizes the topological structure of the network.
We then evaluate the proposed methods using machine learning classifiers. We carried out an experiment
on nine subjects performing semantic vigilance task (Stroop color word test (SCWT)) for approximately
45 minutes. Behaviorally, all subjects demonstrated vigilance decrement as reflected by the significant
increase in response time and reduced accuracy. The strength and directionality of information flow in
the connectivity network by RWTE/PDC and the GTA measures significantly decrease with vigilance
decrement, p<0.05. The classification results show that the proposed methods outperform other related and
competitive methods available in the literature and achieve 100% accuracy in subject-dependent and above
89% in subject-independent level in each of the four frequency bands. The overall results indicate that the
proposed methods of directed connectivity patterns and GTA provide a complementary aspect of functional
connectivity. Our study suggests directed functional connectivity with GTA as informative features and
highlight Support Vector Machine as the suitable classifier for classifying semantic vigilance levels.

INDEX TERMS Vigilance decrement, electroencephalogram, relative wavelet transform entropy, partial
directed coherence, graph theory analysis, machine learning.

I. INTRODUCTION
Vigilance refers to the mental capacity to sustain attention
over an extended time. Previous research has demonstrated
that cognitive performance typically declines with time on
task (TOT), which is a phenomenon commonly denoted as
the vigilance decrement [1], [2]. Different vigilance tasks can
significantly affect the degree of vigilance decrement. In par-
ticular, complex vigilance tasks are mentally demanding and
stressful [3]. In this context, mental effort and frustration
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are the major contributors to the high levels of perceived
cognitive workload in vigilance tasks. The cognitive resource
theory of vigilance decrement has stated that during the
performance of high workload, cognitive resources become
depleted, leading to decrement in perceptual sensitivity [4].
The underload theory predicts a faster decrement in less chal-
lenging tasks. This decrement has been alternatively ascribed
to either withdrawal of the supervisory attentional system,
due to under arousal caused by the insufficient workload,
or to a decreased attentional capacity and thus the impos-
sibility to sustain mental attention [5]. In particular, vigi-
lance decrement is a severe matter of a broad array of work
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environments, including surveillance, airport security, indus-
trial control, driving and medical monitoring [2], [6]. In all
these domains, individuals are required to keep the mental
states with high vigilance level. Hence, an effective method
of detecting vigilance levels is of paramount importance to
prevent vigilance-related risks and productivity losses.

Several physiological indicators, such as electrocardio-
gram (ECG), electrooculogram (EOG) [7], electromyogram
(EMG) [8], eye-closure [9], [10] and electroencephalogram
(EEG) [11]–[13] have been used for vigilance level detec-
tion. However, identifying reliable and valid biomarkers
remains a challenge within the research community. EEG
has been regarded as one of the most reliable and effec-
tive measurements for identifying vigilance state since it is
the direct reaction of the brain states [14]. Besides, EEG
technology is safe, non-invasive, low cost, easy to operate,
and has high temporal resolution. The transitions of vigi-
lance state are usually accompanied by the changes in the
power spectrum in EEG, suggesting a robust and efficient
way for vigilance level detection. Spectral powers in typical
frequency bands are closely related to vigilance decrement.
Data analysis presented in this study involve four frequency
bands, [delta (< 4 Hz), theta (4–7 Hz), alpha (8–12 Hz), and
beta (13–30 Hz) frequency bands]. Different brain regions
may show different level of sensitivities to vigilance levels.
Generally speaking, studies have reported frontal increase in
alpha and theta power, during vigilance decrement, which
indicates a loss of cortical arousal [13], [15]–[17].

Meanwhile, other studies showed that alpha and theta
bands activities in the central and occipital regions are more
correlated to fatigue due to vigilance tasks [18]–[20]. In line
with these findings, Parikh andMicheli-Tzanakou [21] found
an increased power of alpha and theta associated with a
decreased power of beta at the occipital area of the brain.
In particular, the alpha rhythm increased when human’s vigi-
lance level decreased, while at the same time, the beta rhythm
decreased [22], [23]. Interestingly, alpha rhythm has sub-
sequently proved to be diagnostic of cognitive fatigue and
loss of alertness in a range of applied settings [24]–[27].
An increase in frontal sites near 4 Hz theta and decrease
near 40 Hz gamma have specifically been correlated with
reduced arousal drowsiness [28]. Particularly, frontal theta
power typically increasedwithmental workload and demands
on working memory [29], suggesting its sensitivity to mental
effort associated with vigilance decrement [30], [31].

Some studies have reported that occipital alpha and beta,
in addition to, frontal delta and theta decrease with vigilance
decrement [32], [33]. The phenomenon where the alpha peak
frequency exhibits a slight decrease is observed during the
transition to drowsiness. This is in line with a study that
showed beta band significantly decreased during the state
of driving sleepiness. The decrease appeared in frontal [19],
central [34], and temporal [34] regions. Delta and gamma
bands were also reported to be associated with drowsiness
[34]. However, it remains unclear which frequency band
and brain region is highly sensitive to changes in resource

utilization during vigilance decrement due to a complex task.
In particular, most of the studies describe the EEG signals of
a single channel in a local brain region and do not involve
the interactions between brain regions. Ishii et al. [35] have
demonstrated that the complex neural mechanism of men-
tal fatigue in vigilance tasks included a facilitation system
and an inhibition system involving a wide range of brain
regions, not limited to task-related regions. In line with that,
few studies have utilized functional connectivity to esti-
mate the functional coupling between brain regions under
fatigue [36]–[38]. The studies found that when mental fatigue
level increases due to vigilance tasks, the functional cou-
pling decreased, specifically over the parietal-to-frontal areas
in individual theta, alpha and beta frequency bands. How-
ever, for the simulated driving task, studies have reported an
increase in the connectivity network in the frontal-central, and
central-parietal/occipital areas at the end of driving sessions
[39]–[41]. Besides, a recent study has reported both; decrease
and increase in the connectivity networks in driving fatigue
[42]. The decreased connections were found across most of
the brain regions, while the increased connections were found
from frontal to parietal or occipital regions. It seems that the
frontal region is still an essential part during the alert and
fatigue states. Besides, the occipital region is related with the
visual task.

To date, few studies have utilized vigilance tasks that
involve cognition and sensory processes. In the present
work, we aim at studying the neural mechanism of vigi-
lance state while doing novel semantic vigilance task using
SCWT. In semantic vigilance tasks, operators are required
to respond to targets that are lexical and withhold response
to neutral stimuli, which are not semantically representa-
tive or related to target signals. Thus, the tasks are unique
in that they do not fall neatly into the cognitive sensory
vigilance distinction and involve both cognitive and sen-
sory processes. In particular, the semantic task requires high
mental demand, high effort and frustration. To this end,
we propose to utilize RWTE and PDC to estimate the func-
tional connectivity and GTA to summarize the topological
structure of the network for vigilance levels. Data analysis
presented in this study involves the four frequency bands,
due to the unknown influence of vigilance decrement on
frequency bands with respect to a semantic task. Furthermore,
we assessed the feasibility of applicable vigilance detec-
tion through five different classifiers: K-Nearest Neighbors
(KNN), Linear Discriminant Analysis (LDA), Decision Tree
(DT), Naïve Bayes Classifier (NBC), and Support Vector
Machines (SVM).

This paper is organized as follows. Section II describes the
participants, experiment protocol, data acquisition and signal
preprocessing. Section III presents the proposed methods of
EEG connectivity, graph theory analysis, feature extraction,
statistical analysis and classification. Section IV presents the
results of connectivity and classification. Section V provides
a detailed discussion on the findings. Finally, section VI
concludes this paper.
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II. EXPERIMENT
A. PARTICIPANTS
Nine healthy young students from the American University
of Sharjah (age: 22 ± 2 years, (mean ± standard devia-
tion)) have participated in this study. All participants had
normal or corrected to normal vision and no reported hearing
deficits/difficulties. Besides, they had no history of neurolog-
ical or psychiatric illnesses and had no current or prior use
of psychoactive medication. The experiment was conducted
between 3.00 pm and 7.00 pm to avoid the influences of
circadian rhythm on cognitive vigilance performance [43].
The aims and procedures of the experiment were explained
to all the subjects before commencing the experiment. They
were asked to give a written informed consent before partic-
ipation in the study. The participants were free to stop their
participation during the experiment or to withdraw from the
experiment for any reason. All participants were asked to
abstain from caffeine, exercise, energy drink, and tobacco
use for 24 hours before testing. All methods performed fol-
lowed the Declaration of Helsinki. The Institutional Review
Board of the American University of Sharjah approved the
experiment.

B. EXPERIMENT PROOCOL
The experiment task was designed based on SCWT and
presented to participants using a graphical user interface
designed with MATLAB (Mathworks, Natick, MA). The
SCWT involved six color words (such as [‘Blue’, ‘Green’,
‘Red’, ‘Magenta’, ‘Cyan’, and ‘Yellow’]) presented ran-
domly on the computer monitor and the answer for each color
word to bematchedwas presented in random sequences. Only
one color-word is displayed on the monitor screen at a time,
see FIGURE 1(a). The displayed color-word is written in a
different color than the word’s meaning. The correct answer
for the color-word is the color in which the word is displayed.
The participants pick their answers as quickly and accurately
as possible by left-clicking the mouse on one of the six
answering buttons as shown in FIGURE 1(a). The matching
answers were presented with random colored-background to
add more attention to the task. Answering incorreclty or fail-
ing to answer each question within the allocated time, would
present feedback to the participants on their performance, i.e.
a message of ‘‘Correct’’ or ‘‘Wrong’’ or ‘‘Time is out’’ is
displayed on the monitor.

Behavioral data such as reaction time (RT) to stimuli and
accuracy of detection were collected while solving the task.
In this task, four indicators measure participants’ attention
levels: commission error, omission error, reaction time and
accuracy. A commission error occurs when a participant fails
to inhibit the response and incorrectly responds to a non-color
word. In contrast, an omission error occurs when a participant
is unable to pick-up or react to the color word. Once partic-
ipants’ responses are checked, the time they spent on task is
recorded. The RT is measured as the average time it takes
for the participant to respond correctly to a target stimulus.

FIGURE 1. The experimental design a) Stroop color-word task (SCWT)
presentation interface and b) timing window. In the timing window,
the plus sign in black background is for the pre and post-baseline. Thirty
(30) min SCWT is for the vigilance task presentation.

The number of trials also depended on the participant’s rating
speed. Different markers were sent to mark the start and the
end of epochs in each SCWT question. The overall accuracy
is calculated based on the number of the color word correctly
matched over the total number of the displayed color word
targets.

The overall experimental time frame for each participant
included 6 minutes for training and filling the question-
naire, 2 minutes for pre-baseline, 30 minutes for performing
SCWT, 2 minutes for post-baseline and 5 minutes for filling
another survey. FIGURE 1(b) shows the time window of the
experiment.

The questionnaire used in this study was based on Brunel
Mood Scale (BRMUS) [44]. All participants filled-in the
questionnaires before and after they performed the seman-
tic vigilance task. The BRMUS composed of 32 items.
These items correspond to an 8-factor model includ-
ing ‘‘Anger,’’ ‘‘Tension’’, ‘‘Confusion,’’ ‘‘Depression,’’
‘‘Fatigue,’’ ‘‘Happy,’’ ‘‘Calmness’’ and ‘‘Vigor.’’ Each item
has 5-point Likert scale ranges from ‘0’ to ‘4’ representing
‘‘not at all’’ to ‘‘extremely’’ depending on the participant’s
feelings.

C. DATA ACQUISITION AND PREPROCESSING
EEG data was recorded using 64 Ag/AgCl scalp electrodes
according to the standard 10–20 system (Waveguard, ANT
B.V., Netherlands) at a sampling rate of 500 Hz. Electrode
impedance was kept below 10 k� throughout all the record-
ings and referenced to the left and right mastoids; M1 and
M2. Main interferences were avoided by anti-aliasing with a
band-pass (0.5-70 Hz) and a 50 Hz notch filter.

Raw EEG signals were preprocessed using EEGLAB tool-
boxes (9.0.4) [45] as well as using custom scripts developed
in our previous studies [46]–[49]. The raw EEG signals were
band-pass filtered using a finite impulse response (FIR) filter
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with 0.1 Hz to 30 Hz bandwidth. All the EEG signals were
then re-referenced to the common average reference and
segmented into target-related EEG epochs of 1200 ms. Inde-
pendent Component Analysis (ICA) was then employed to
remove noise. We extracted the baseline and removed it using
the whole duration of each epoch. The epochs were baseline
corrected by subtracting the −100 to 0 milliseconds pre-
stimulus baseline from all data points in the epoch. Finally,
all EEG epochs were visually double-checked to eliminate
data segments contaminated with noise.

Then, we defined two types of vigilance states for subjects
within the 30-min EEG recordings: 1) the alert state/high
vigilance, including the first 5 min of EEG signals (corre-
sponding to 80 trials) while doing the SCWT, 2) the vigilance
decrement state, which referred to the last 5 min of EEG sig-
nals within the SCWT (corresponding to 80 trials). Then we
investigated the relative wavelet transform entropy and partial
directed coherence in each trial to quantify the strength and
directionality of information flow between nodes. Besides,
we estimated the complex network measures to summarize
the topological structure of the network for each mental state
at four different frequency bands.

III. METHODOLOGY
A. RELATIVE WAVELET TRANSFORM ENTROPY
First, we employed wavelet analysis through the Orthogonal
Discrete Wavelet Transform (ODWT) to obtain the wavelet
coefficients series at 4-different resolutions for each EEG
channel, one for each brain rhythm [50]. Data analysis, pre-
sented in this study, involves four frequency bands; [δ wavelet
(0.1∼4Hz), θ wavelet (4∼8Hz), α wavelet (8∼13Hz), and β
wavelet (14∼30Hz)], as described in [51], [52]. The ODWT
for a given EEG signal X (t) is obtained using:

X (t) =
∑4

j=1

∑600

k=1
dj(k)ψj,k (t), (1)

where, dj(k) is the wavelet coefficient at time interval k
(k=1200ms or 600 EEG data points). Then, the subband
wavelet entropy is defined in terms of the relative wavelet
energy of the wavelet coefficients. The energy at each resolu-
tion level j = 1 . . . 4, is estimated by squaring and summing
the wavelet coefficients d(k) corresponding to each EEG
rhythm:

Ej =
∑
k

∣∣dj(k)∣∣2, j = 1 . . . 4 (2)

The total energy of the wavelet coefficients are then calcu-
lated using:

Etotal =
4∑
j=1

Ej (3)

The relative energies at each level are estimated by dividing
each absolute energy value with the total energy:

pj = Ej/Etotal (4)

Obviously,
∑
j
pj = 1 and the distribution is considered

as time-scale density. The wavelet entropy for each trial is,
in turn defined as:

WEm = −
∑
j

m(pj) log2 m(pj),

j = 1, 2, . . . .4, m = 1, 2, . . .N (5)

where m(pj) is the relative wavelet energy of channel m and
N is the number of nodes.

Second, to obtain the relative wavelet transform entropy
RWTE we regard each channel as a node and then determine
the connections between nodes m and n in term of the relative
wavelet entropy calculated using the following equation:

RWTE(m|n) =
∑
j

m(pj) log2

[
m(pj)
n(pj)

]
,

j = 1, 2, . . . 4, m = 1, 2, . . .N , n = 1, 2, . . . ,N (6)

wherem(pj) and n(pj) represent the relative wavelet energy of
channel m and n, respectively, and N is the number of nodes.
The directed RWTE values are stored in N×N matrix, which
is not symmetric with reference to the main diagonal.

B. PARTIAL DIRECTED COHERENCE
PDC is a multivariate spectral measure used to determine
the directed influences of Granger causality between EEG
signals in a multivariate set.

Let X (n) = [x1(n), x2(n), . . . , xN (n)]T represents an N
channel EEG signal (N=62 in this study), then a multivariate
model with m channels of EEG signals and order p is defined
by Eq. 7:

X (n) =
p∑

r=1

ArX (n− r)+W (n), (7)

where W (n) is a white Gaussian noise with mean zero, and
the matrix Ar contains the coefficient matrix, p is the order of
multivariate autoregressive model (MVAR) determined using
Akaike information criterion (AIC) [53] according to:

AIC(p) = 2 log[det(6)]+
2N 2p
Ntotal

, (8)

where, det(6) denotes the covariance matrix of noise vector
W (n) and Ntotal is the total number of EEG samples in all
trials. In the present study, the average MVAR model order
p for all subjects was 7. Once the coefficients of the MVAR
model are adequately estimated, a representation of Granger
causality in the frequency domain can be obtained from the
difference between the N-dimensional identity matrix I and
the Fourier transform of the coefficient series Ar (r = 1,
2, . . . , p) according to:

A(f ) = I −
p∑

r=1

Are−j2π fr (9)
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Finally, the directional flow of information at frequency f
from channel j to channel i is defined as

PDCi,j(f ) =
|Ai,j(f )|√∑

k
A∗kj(f )Akj(f )

, (10)

where the asterisk denotes matrix transposition and complex
conjugate, Aij are elements of the matrix A(f ), and PDCi,j
indicates the direction and weight of the information flow
from channel j to i at the frequency f . In this study we used
a moving time window of 1200ms to compute PDC values.
This results in 160 PDC network matrices (each has the size
of 62 × 62 weighted directed matrix) that are created for
each subject in each frequency band. PDC gives values in the
range between [0, 1]. High value indicates higher interaction
between the two nodes.

The statistical significance of PDC values was then esti-
mated using surrogate analysis. Specifically, the original time
series from each channel and epoch were randomly shuffled
to remove the phase interactions between signals and then
we re-calculated the PDC spectra. An empirical distribution
of PDC values under the null hypothesis of no causal rela-
tionships was obtained by repeating the surrogate approach
100 times. Based on this observed distribution, the PDC
values were considered to be a real connection when they
were above the threshold (p = 0.05).

C. GRAPH THEORY ANALYSIS (GTA)
Graph theoretical analysis provides quantitative measure-
ments for assessing the topological architecture of a network.
We considered six network measures to characterize men-
tal state under alert and vigilance decrement. We use the
local: nodal degree (ND), clustering coefficient (CC), local
efficiency (LE), and the global: efficiency (GE) transitivity
(Tr), and modularity (Q) to characterize the derived complex
network. The measures are defined as follows:

NODAL DEGREE (ND): This is the number of edges
linked directly to a particular node, which can be regarded
as the measure of centrality. For a brain network, degree
centrality reflects the cerebral cortex regions that play an
essential role in the information transmission and processing
of the brain.

CLUSTERING COEFFICIENT (CC): is a measure of
network segregation that estimates the degree to which neigh-
boring nodes form complete networks or cliques. For node i,
the local clustering coefficient CC is calculated as the ratio
between the sum of geometric means of all existing weighted
triangles and the number of all possible triangles. In particu-
lar, CC measures how well the cluster of node communicates
and a high value of CC relates to the high local efficiency of
information transfer.

LOCAL EFFICIENCY (LE): is a measure of the fault
tolerance of a network (measure of segregation). It verifies
whether the communication between nodes is still efficient
when a node is removed from the network. Higher LE, indi-
cate the robustness of the network at the local scale.

GLOBAL EFFICIENCY (GE): is a global measure of
how efficiently a network exchanges information internally.
GE is the average of the inverse of the shortest path between
two nodes in the network. GE represents the efficiency of
the communication between all the nodes within the net-
work. A network with high global efficiency indicates that,
on average, nodes are reached by short communications. The
efficiency is then used to quantify the global communication
of a network, often referred to ‘‘global integration’’.

TRANSITIVITY (TR): is a simple measure of segrega-
tion based on the number of triangles in a network. Tr is
a classical version of the clustering coefficient, having the
advantages of not influenced by nodes with a low degree.

MODULARITY (Q): Themodularity shows the tendency
of a network to be partitioned into modules or communities of
high internal connectivity and low external connectivity. The
modularity is equal to the fraction of sum of the weights of
edges that connect nodes in the same community minus what
that fraction would be on average if communities remained
fixed but the edge weights were randomly distributed [54].
The higher the Q, the more confident one can be that a
significant community scatter has been found. The full math-
ematical expressions of the GTA measures can be found in
previous studies [54]–[56].

Because graph-theoretic metrics can be threshold depen-
dent, we examine graph measurements over a range of possi-
ble connection strength. Following prior studies [56], results
were obtained for common graph sparsity thresholded at the
top 30% of individual subject connections.

D. FEATURE EXTRACTION
First, for each subject the RWTE/PDC were computed indi-
vidually for four frequency bands, each resulting in a total of
4×62×62 vectorized weighted directed connectivity features
per trial (we have a total of 80 trials). Second, a set of com-
plex network matrices (62 clustering coefficients, 62 local
efficiency, 1 global efficiency, and 62 node degrees, 1 tran-
sitivity and 1 modularity, were derived from the RWTE/PDC
matrices for each frequency band as a function of threshold.

E. STATISTICAL ANALYSIS AND CLASSIFICATION
A paired t-test was used to examine (the alert state vs
vigilance decrement) differences of subjective, behavioral
responses, directed connectivity and graph theory measures
of the RWTE and PDC for all the frequency bands. Before
conducting the t-test, we used the Kolmogorov-Smirnov test
to check if the data is normally distributed [57]. In this
paper, we investigated functional connectivity based on
strength/weight, directionality and graph theory analysis
measures of two different methods discussed above within
the four frequency bands. FIGURE 2 shows the flow chart of
the proposed method.

To distinguish the two mental states (alert vs. vigilance
decrement), we employed five classifiers namely, KNN,
LDA, NBC, DT, and SVM. The mathematical formula-
tions of the employed classifiers can be found in [58]–[60].
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FIGURE 2. Flow chart of the proposed method.

The classifiers were selected due to the fact they are fast and
successful classifiers in the field of brain-computer interface
(BCI). In addition, we aim to investigate which of the five
classifiers perform better in classifying vigilance levels. This
will help scientists and researchers to select the most suitable
classifier in developing a framework for their vigilance stud-
ies. The classifiers are briefly explained below.

K-NEAREST NEIGHBOUR (KNN) is a technique
based on minimum distance classifier, that is, the N-labeled
sample points in the initial category are selected as the initial
center point, distance is calculated from the newly added
sample to each category, the nearest category is taken as the
category of the sample to be stored, and finally center of each
category is updated. In this study, K-value was searched in the
interval between 1 and 10 with a step size of 1. The optimal
value was then set to 3.

LINEAR DISCRIMINANT ANALYSIS (LDA) is a
classifier used to describe the distinctive nature of two or
more classes by finding a linear combination of features.
These combinations used for dimensionality reduction as
a linear classifier for classification. The ratio of between-
classes variance to the within-class variance is maximized.

NAIVE BAYES CLASSIFIER (NBC) is a probabilis-
tic classifier based on Bayes theorem. It assumes that the
predictor variables are independent random variables. This
assumption helps it to compute probabilities required by
the Bayes formula from even a small training data. Also if
these attributes are not independent, it is possible to obtain a
reasonable classification performance.

DECISION TREE (DT) is a classifier used to construct
a decision tree with branches and nodes using the extracted

feature set. A set of rules representing the different classes is
then derived from the tree. These rules are used to predict the
class of a new sample with an unknown class.

SUPPORT VECTOR MACHINE (SVM) is a binary
classification model constructed in the feature space to find
a hyperplane to maximizes the margin between the input
data classes. The kernel function of SVM in this study is
the Radial Basis Function (RBF), and the learning method
is minimal sequential optimization. For fine parameter tun-
ing, we varied the soft margin regularization parameter C
from the interval 10−2 to 102 with the step of 10 based on
cross-validation approach. The most suitable σ in the RBF
kernel was searched in the range between 0.5 to 4 (step size
of 0.5), and optimal values were set to C = 1 and σ = 3.
In all the classifiers, we investigated the classification accu-
racy of mental state in the form of subject-dependent and
subject-independent classification.

SUBJECT-DEPENDENT CLASSIFICATION: we
employ 10-fold cross-validation to estimate the classification
accuracy. To be concrete, feature sets from the alert state and
vigilance-decrement state are randomly and evenly split into
10 equally-sized subsets. We then do training on nine subsets
and testing on the remaining one subset. With the aim of
obtaining all predicted labels of all samples, we repeat this
procedure 10 times so that each subset is used for validation.
Thus, the classification accuracy can be defined as the ratio
of correctly predicted samples to all samples in the data set.
To reduce the deviation of a random partition of the data set in
the cross-validation, we perform the 10-fold cross-validation
10 times independently and estimate the final classification
accuracy of alert and vigilance-decrement states utilizing the
average value of 10 independent implementations of 10-fold
cross-validation

SUBJECT-INDEPENDENT CLASSIFICATION: We
adopt the leave-one-subject-out (LOSO) cross-validation
strategy to evaluate the EEG vigilance level classifica-
tion performance of the proposed methods. The EEG data
of 8-subjects are used for training the classifiers, and the
remaining EEG data of one subject is used as testing data. The
classifications procedures are repeated such that the EEG data
of each subject is used as the testing data. The average classi-
fication accuracies and standard deviations corresponding to
the propose methods of EEG analysis at the four frequency
bands are respectively calculated.

IV. RESULTS
A. BEHAVIORAL DATA
We examined the subjective assessment of vigilance level
with the BRMUS scores and found significant effect of
task (pre- vs. post experiment) in engagement. Two sample
t-test comparing emotional states before and after the SCWT
revealed significant reduction of engagement. The statistical
analysis showed that anger, tension, vigor, fatigue, and con-
fusion, have significantly increased after performing the task
with p<0.01, while happy, and calmness have significantly
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FIGURE 3. Reaction Time and Accuracy in 5-min interval for SCWT. Error
bars represent standard deviation of the mean across subjects. The
asterisk ‘∗∗’ indicates the differences is significant with p<0.01.

decreased, p<0.05. Then, we investigated the behavioral data
(reaction time RT and accuracy) for trial-design SCWT ses-
sions (first 5-min vs. last 5-min). The RT was calculated as
the average time taken to answer each question in the SCWT
to the number of trials. As expected, we found significant
increase in the RT associated with a decrease in the accuracy
with p<0.01. FIGURE 3 shows the trend of RT and accuracy
for the entire 30 min record in 5 min bins for all the subjects.
Thus, the overall behavioral results indicate that the 30 min
of SCWT was effective in eliciting vigilance decrement to all
participants.

B. RWTE AND PDC CONNECTIVITY
The results of connectivity network showed decrement from
alertness to vigilance decrement states in most of the EEG
nodes. The average differences that are statistically signifi-
cant in the connectivity strengths and directionalities between
the two mental states; alert state - vigilance decrement state
(p<0.05), measured by RWTE and PDC, are shown in
FIGURE 4 and FIGURE 5, respectively. FIGURE 4 shows
the average difference in connectivity strength and direction-
ality measure by RWTE in all the frequency bands (delta
[δ1 − δ2]; theta [θ1 − θ2]; alpha [α1 − α2]; and beta
[β1 − β2]). Note that the variables δ1, θ1, α1 and β1 are
all for alert state while δ2, θ2, α2 and β2 are for vigilance
decrement state. We only considered the node-strength that
is significant at p<0.05. The zero value of RWTE shown
in the center of the color bar means that the connectivity
strength in alert state is equal to the connectivity strength
in the vigilance decrement state. Meanwhile, positive value
of RWTE indicates significant decrease in the connectivity
strength from mental alert to vigilance decrement state and
the negative RWTE value indicates significant increment in
the connectivity at the vigilance decrement level. By looking
at the connectivity network in each frequency band alone as
shown in FIGURE 4, it’s clearly seen that the differences
in the connectivity strength increases from delta to theta to
alpha to beta. Specifically, the higher significant differences
in the connectivity network (in red color map) are located and
directed towards the right hemisphere. Only few electrodes
show significant increase in the connectivity strength from

FIGURE 4. Difference in EEG connectivity. Group mean RWTE strength and
directionality differences between alert and vigilance decrement in the
four frequency bands. The group differences are significantly different at
level α = 0.05 using two-sample t-test.

FIGURE 5. Difference in EEG connectivity. Group mean PDC strength and
directionality differences between alert and vigilance decrement in the
four frequency bands. The group differences are significantly different at
level α = 0.05 using two-sample t-test.

alertness to vigilance decrement at p<0.05. The directions of
their networks are towards the left hemisphere as shown by
the green-to-blue color map in FIGURE 4.

Likewise, connectivity patterns are obtained using PDC.
We conducted a statistical analysis on the obtained connec-
tivity network between alertness and vigilance decrement to
test if they are significantly different at p<0.05. Only the
significant connectivity strengths were reconstructed to form
the connectivity network. FIGURE 5 shows the differences
in connectivity strength and directionality of information
flow between alert and vigilance decrement state in all the
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FIGURE 6. Comparison of estimated weighted node degree (in and out degree) averaged over all subjects under the two mental states (alert - vigilance
decrement) in the four frequency bands. The asterisk ‘*’ showed the significant electrodes at p < 0.05.

frequency bands (delta [δ1 − δ2]; theta [θ1 − θ2]; alpha
[α1−α2]; and beta [β1−β2]). Positive PDC value indicates
decrease in the connectivity strength from alertness to vigi-
lance decrement state and negative PDCvalue indicates incre-
ment in the connectivity strength from alertness to vigilance
decrement. Interestingly, the connectivity results show that
the connectivity network in the right hemisphere are much
sensitive to vigilance decrement in all the frequency bands.
Meanwhile, small increment in the connectivity network
from alertness to vigilance decrement is shown in the left
hemisphere in all the frequency bands. It is also noted that the
strength of the connectivity network in PDC is much higher
than that in RWTE. This shows the superiority of PDC to
RWTE. Additionally, from FIGURE 4 and FIGURE 5, it is
clearly seen that large quantities of edges are directed towards
right hemisphere and frontal brain regions in all the frequency
bands.

FIGURE 6 shows the average differences that are statisti-
cally significant in the node degree between alert and vigi-
lance decrement states measured by RWTE and PDC in the
four frequency bands (delta [δ1− δ2]; theta [θ1− θ2]; alpha
[α1−α2]; and beta [β1−β2]). The results of the nodal degree
in FIGURE 6 show significant decrements (p<0.05) from
alert to vigilance decrement state in all the bands specifically
over the frontal and right hemisphere regions as shown in the
topographical maps. Positive ND indicates decrease in the
connectivity from alertness to vigilance decrement state and
negative ND indicates increment in the connectivity degree.
The higher nodal degrees over frontal and right hemisphere
in FIGURE 6 (in both; RWTE and PDC) are consistent with
the flows of information shown in FIGURE 4 and FIGURE 5.

This support the sensitivity of right hemisphere to vigilance
decrement state.

C. GRAPH THEORY ANALYSIS MEASURES
The local graphical analysis of the RWTE and PDC net-
works shows significant decrement from alert to vigilance
decrement states in most of the brain regions as shown in
FIGURE 7. FIGURE 7 shows a heat maps of the average
differences in clustering coefficient (CC) and local efficiency
(LE) between alert and vigilance decrement states in the
four frequency bands (delta [δ1 − δ2]; theta [θ1 − θ2];
alpha [α1 − α2]; and beta [β1 − β2]). Positive value of
CC and LE in the heat map indicate decrement in the
segregation of the network from alert to vigilance decre-
ment and negative value indicate increment in the segre-
gation. The statistical significant between the two mental
state in all the four frequencies is shown by asterisk ‘∗’
in which single asterisk corresponding to p<0.05. Signif-
icant node indicates the robustness of the network at the
local scale. Notably, the local graphical analysis of CC
and LE in PDC shows more significant nodes than that in
the RWTE.

Likewise, FIGURE 8 shows the global graphical network
analysis under alert (green color) and vigilance decrement
(violet color) in the four frequency bands (delta [δ1 − δ2];
theta [θ1−θ2]; alpha [α1−α2]; and beta [β1−β2]). The dis-
tribution of the global network analysis measurements shows
significant decrement from alertness to vigilance decrement
state in the global efficiency (GE) and Transitivity (Tr)
across all subjects at all the frequency bands. Meanwhile,
the modularity (Q) measure shows significant increase from
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FIGURE 7. Local GTA metrics for the differences between two mental states (alert -vigilance decrement) in the four frequency bands.
The strikes. ‘*’, indicate that the differences between the two mental state is significant with p<0.05.

FIGURE 8. Global GTA metrics for two mental states (alert -vigilance decrement) in the four frequency bands. The strikes ‘*’, ‘**’
and ‘***’ indicate that the differences between the two mental state is significant with p<0.05; p<0.01 and, p<0.005, respectively.

alertness to vigilance decrement state. The overall statistical
analysis between the alertness and vigilance decrement state
as measure by global graphical analysis measurements is

represented by asterisk ‘∗’ in which single asterisk corre-
sponding to p<0.05, and ‘∗∗’ correspond to p<0.01 and
‘∗∗∗’ equivalent to p<0.005. Fascinatingly, higher frequency
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at alpha and beta bands show higher significant decrement
compared to lower frequency bands indicating their sensitiv-
ity to vigilance decrement.

D. CLASSIFICATION
To classify the vigilance levels, we combine the strength and
directionality of RWTE/PDC with their corresponding com-
plex network graphical measures to form feature vectors for
classification. In particular, we first classified RWTE/PDC
separately and found that it can realize the classification
with acceptable accuracy. We then combined strength and
directionality values of RWTE/PDC with GTA measures
(node degree, clustering coefficient, local efficiency, global
efficiency, transitivity and modularity) to improve the classi-
fication accuracy.

The overall classification results in term of the aver-
age accuracies and standard deviations of the proposed
methods with the types of classifiers and bands are pre-
sented in Table 1 for subject-dependent and in Table 2 for
subject-independent classification experiments. The results
suggest that RWTE+GTA and PDC+GTA are capable of
obtaining intrinsic and effective features from EEG data and
the classification accuracy significantly increase using the
propose methods. The combination of RWTE/PDC strength
and directionality with the GTA measures opens up a new
venue to address the challenges in EEG analysis.

Besides, we compared the results of the propose meth-
ods with some existing works in EEG classification, includ-
ing power spectral density feature (PSD) [61], differential
entropy (DE), [62] and wavelet entropy (WE) [63]. The PSD,
DE and WE features are respectively extracted in each of the
frequency bands (δ band, θ band, α band, and β band) to con-
stitute the feature vectors. Feature vectors composed of PSD,
DE, and WE were then fed separately into the classifiers to
recognize vigilance states. The average classification results
of all the methods are also presented in Tables 1 and 2.

From Table 1 and 2, we obtain the following significant
points:
• The best classification accuracy is obtained when
combining the PDC+GTA in all frequency bands com-
pare to all other methods. With PDC+GTA for subject
dependent classification, we achieved 100% accuracy
using KNN, LDA, and SVM and 99.2% accuracy using
NB and DT. However, for subject independent clas-
sification, we achieved 89%, 90%, 92%, 88% and
87% accuracy using KNN, LDA, SVM, NB and DT
respectively. For RWTE+GTA in subject dependent
analysis, we achieved 98%, 98.2%, 100%, 92%, and
98% accuracy using KNN, LDA, SVM, NB, and DT
respectively. Meanwhile, in subject independent exper-
iments we achieved 86% accuracy using KNN, LDA,
98% using SVM, 82% using NB and 87% using DT
respectively.

• For most kind of method, the classification accura-
cies associated with higher frequency bands are better
than the ones in the lower frequency bands. Beta band

outperforms other bands with more than 5% in PSD,
3% in DE and 2% in WE in the subject dependent
and subject independent under all kind of classifiers.
Other methods show higher accuracy in the higher bands
compare to lower frequency bands but not significant.

• For each kind of classifier, SVM performs better than
other classifiers in all the analysis methods. Thus,
we limited our discussion to the results obtained by SVM
classifier.

We also conducted one-tailed paired t-test with significance
levels 0.05 on the results of every two methods (one pro-
posed vs one baseline method) to validate whether the dif-
ference between the means of the two methods is statistically
significant. Therewas a significant improvement in the classi-
fication accuracy by the proposedmethods compare to the tra-
ditional methods as well as to the sole RWTE/PDC methods,
p<0.05. We thus, suggest using strength and directionality
of RWTE/PDC with their corresponding GTA measures for
future vigilance studies.

V. SUMMARY AND DISCUSSION
In this study, we proposed to utilize EEG directed con-
nectivity measured by RWTE and PDC with their corre-
sponding GTA measures to classify semantic vigilance level.
To the best of our knowledge, this is the first study to use
RWTE+GTA and PDC+GTA to classify semantic vigilance
levels. The significant findings are summarized as follows:
first, the developed computerized SCWT was effective in
eliciting vigilance decrement with time-on-task of 30minutes
as shown in behavioral performance depicted by the reac-
tion time and accuracy in FIGURE 3. Second, a common
reduction in the functional connectivity networks (strength
and directionality) were revealed in all the frequency bands
and methods (RWTE and PDC) under vigilance decrement
as shown in FIGURE 4 and FIGURE 5. Third, the local
and global graphical analysis of connectivity network demon-
strated significant reduction with vigilance decrement in all
the frequency bands and methods as shown in FIGURE
6 to FIGURE 8. Fourth, using RWTE/PDC in combina-
tion with their corresponding graph theory analysis mea-
sures (RWTE+GTA/PDC+GTA) as features, we achieved
the highest classification accuracy, in both subject-dependent
and subject-independent tests, as summarized in Table 1, and
Table 2 respectively. The overall findings are discussed in
details in the following paragraphs.

In this study, we found that performing SCWT continu-
ously for 30 minutes significantly influenced the transient
state of mood of all participants. It was shown that all par-
ticipants reported high level of fatigue and confusion after
performing the SCWT due to the high cognitive load required
to sustain attention to the task. There was a significant decline
in behavioral responses from alertness to vigilance decrement
state. The average reaction time taken to answer the SCWT
increased from the first 5-min to the last 5-min of the task
by +14%. Meanwhile, the accuracy of detecting the SCWT
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TABLE 1. Comparisons of the average accuracies and standard deviations (%) of subject dependent eeg-based semantic vigilance level classification
among the various methods.

stimuli decreased by −10%. In line with our previous obser-
vations [64], the significant increase in the RT, suggesting a
genuine reduction in the accuracy for timely responding as
opposed a speed-accuracy tradeoff [65]. The increase in RT
indicated that participants lose their interest in performing the
task or found it stressful. The overall behavioral findings in
this study is in line with previous studies that reported decline
in the cognitive efficiency over time as result ofmental fatigue
to driving tasks [2], [40].

The functional connectivity network analysis measured
by RWTE/PDC showed that, when vigilance level drops,
the flow of information significantly decreased in all the
frequency bands as shown in FIGURE 4 and FIGURE 5.
The GTA measurements including nodal degree, clustering
coefficient, global efficiency and transitivity significantly
decreased with vigilance decrement indicating a loss of infor-
mation exchange between brain regions as demonstrated in
FIGURE 6 to FIGURE 8. Consistent with this observation,
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TABLE 2. Comparisons of the average accuracies and standard deviations (%) of subject independent eeg-based semantic vigilance level classification
among the various methods.

we have previously reported a vigilance-related significant
decrease of cluster coefficient and node degree over a 60-min
SCWT in one frequency band at 0.1-30 Hz [64]. Previous
studies have investigated various mental tasks in the single
frequency bands [36], [40] and there is lack of research in
essential properties in different bands.

In this paper, the functional connectivity network and
graph theoretical analysis measurements were estimated in
four frequency bands to measure the organization of brain

functional connectivity. The statistical analysis showed sig-
nificant decrement, p<0.05, in these analysis measurements
in all the frequency bands from alert to vigilance decrement
state. In particular, the highest common-decrement in the
connectivity strength and topological network parameters
were within the right hemisphere and over parietal-to-frontal
regions demonstrated in all the frequency bands. The decre-
ment in the connectivity network across these regions in all
the frequency bands confirm the vigilance decrement. It has
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been shown previously that frontal-to-parietal direction of
information flux within EEG functional coupling is an intrin-
sic feature of brain network connectivity [66]. Our finding is
in line with previous functional connectivity studies which
found when mental fatigue level increases, the functional
coupling decreases, specifically over the parietal-to-frontal
regions in the single frequency bands [36]–[38]. The study
in this paper also extended the functional connectivity and
graph theoretical analysis from single band to multi-bands
using two different methods of analysis. Hence, the overall
decrease in functional connectivity and GTA parameters in
all the frequency bands in our study is a significant indicator
of vigilance decrement.

Correspondingly, in this study we found significant
increase in the modularity from alertness to vigilance decre-
ment state in all the frequency bands measured by RWTE and
PDC. The increment ofmodularity can be interpreted as a loss
of connections between the nodes due to vigilance decrement.
It is worth noting that, when vigilance level drop, the informa-
tion distributes and shares betweenmodules. Thus, the overall
increase in the modularity confirm the scattering of network
modules or communities with decreasing vigilance level.
Besides, the increment in modularity in this study was also
associated with the decrement in node degree and cluster
coefficient, which suggest it as a reliable index of vigilance
decrement. Overall, it should be noted that the PDC and its
GTA measures were much sensitive to vigilance decrement
compare to RWTE. Although, the two methods are nonlinear
measures reflecting the uncertainty of EEG signals, PDC is
insensitive to zero-phase delay between two EEG signals
occurring due to the effect of volume conduction [67].

In addition, the features extracted from RWTE/PDC
alone and RWTE/PDC with their corresponding GTA mea-
sures successfully classify vigilance levels with high accu-
racy. RWTE features alone showed classification accuracy
above 90% in subject-dependent and above 80% in the
subject-independent level using SVM classifier in all the
frequency bands as summarized in Table 1, and Table 2.
Notably, higher accuracies of 92% and 80.65% were found
in the beta frequency band for subject-dependent and
subject-independent respectively. Although, other classifiers
showed comparable accuracy, SVM performed better in
all the frequency bands as mentioned earlier. Meanwhile,
the combined RWTE and GTA features achieved 100%
accuracy in the subject-dependent and above 89% accuracy in
subject-independent in each of the four frequency bands using
SVM classifier. The combined features of RWTE+GTA out-
performed sole RWTE classification on average of+9.5% in
each of the frequency bands. The higher improvement in the
accuracy is due to that, GTA provide intrinsic and effective
features associated with brain network characteristics. The
improvement in the accuracy obtained by RWTE+GTA is
also in line with previous study that utilized the directional
flow of information with functional connectivity in neuro-
developmental analysis and achieved 4% improvement in
classification [68].

Similar improvement were also fond when combining
PDC with GTA measurements indicating their complemen-
tary nature. Features from PDC alone showed classification
accuracy above 94.7%, and 84.7% in subject-independent and
subject-dependent level respectively in each frequency band.
Meanwhile, combination of PDC+GTA features demon-
strated the highest accuracy with 100% in the subject-
dependent and above 92.1% in subject-independent level
respectively. The combination of PDC+GTA outperformed
PDC alone on average of +7%. This improvement also sug-
gest GTA features provide complementary aspect to PDC
features. It is worth noting that, the classification accuracy
of PDC+GTA outperformed RWTF+GTA by+3% in all the
frequency bands. This suggest PDC+GTA as a robust method
for estimating vigilance levels.

Indeed, in order to highlight the important of combining
strength and directionality of RWTE/PDC with their corre-
sponding GTA parameters, we also take three baseline meth-
ods; PSD, DE and WE for comparison. The classification
accuracy of all the three-baseline methods exceed 82%, 83%,
and 72% in subject-dependent and 71%, 71%, and 62% in
the subject independent level in all the frequency bands.
Our proposed methods of PDC+GTA/RWTE+GTA signif-
icantly outperform theses baseline methods, p<0.01 in all
the frequency bands with minimum improvement of 17% in
the subject dependent and 20% in the subject independent
level using SVM classifier. These improvements highlight
the importance of using graph theory analysis in studying the
reorganization of functional connectivity in vigilance studies.
We also suggest using SVM as golden standard classifier for
vigilance studies. In particular, compare to other classifiers
SVM yielded good performance in many applications, espe-
cially for solving problems with high dimension, nonlinearity
and small dataset [69].

Although we achieved 100% classification accuracy in the
subject dependent level, the maximum accuracy we achieved
in the subject independent was 93.08% for beta band. This
accuracy needs further improvement to establish a robust
BCI system. Dimitrakopoulos et.al [40] reported 97% sub-
ject independent classification accuracy in θ band. Likewise,
Wang et.al [42] utilized phase synchronization and achieved
96.76% classification accuracy using the discriminative con-
nection features in β band. One of the reason we achieved less
accuracy in the subject independent compare to [40], [42] is
that we did not apply any feature selection method to select
the most discriminative feature subset. Subject independent
discriminative features can be obtain using sequential floating
forward selection (SFFS) [70]. The kernel of SFFS can be
used to iteratively select features to maximize the objective
function and to remove the unnecessary contents to avoid the
local maxima. Another reasonmay be due to the small sample
size of 9-subjects in our study. Nevertheless, we should take
into consideration the type of stimuli used to induce vigilance
decrement. In our study we utilized SCWT which is complex
and mentally demanding cognitive task compare to simple
psychomotor vigilance task in [70]. The same study in [70]
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achieved less accuracy of 92% when using cognitive tasks
that involved mental rotation and N-back task.

Besides, our study has some limitations. First, the vigi-
lance levels were classified into two discrete categories: alert
and vigilance decrement. Vigilance could be categorized into
several levels by following the recent Hourglass models of
emotion in the multimodal sentiment analysis [71], [72].
Second, this study focused on vigilance classification with-
out considering any neurofeedback. Developing an adaptive
closed-loop BCI system that consists of vigilance level detec-
tion and feedback is very useful in real-time environment.
In the near future, vigilance detection and prediction tech-
nologies will undoubtedly help guarantee the workplace and
road safety. Third, in this study, we utilized a large number
of EEG channels. Future studies should reduce the number
of EEG channels by removing channels, which are relatively
uncorrelated with one another across trials, or by applying a
source localization method. Correlation-based channel selec-
tion [73] and weighted edit distance [74] could be potential
candidates. In future work, our classification results can be
further improved by utilizing deep learning, or by fusing the
functional connectivity network measures with the cortical
activations [49], [75]. Another area to investigate in the future
to improve the classification accuracy is by combining EEG
modality with functional near-infrared spectroscopy (fNIRS)
[46] or Eye-tracking [76]. These modalities contain comple-
mentary information and can be integrated to construct amore
robust vigilance estimation model.

VI. CONCLUSION
In the present work, we achieved semantic vigilance
level classification based on a combination of RWTE/PDC
and GTA measures. Experimental results revealed that
RWTE+GTA and PDC+GTA perform better than sole
RWTE/PDC and other baseline methods in classifying vig-
ilance level. Besides, the highest classification accuracy
was achieved using PDC+GTA with 100% accuracy in the
subject-dependent and above 92.1% in subject-independent
tests. The overall results indicated that the directed infor-
mation flows and complex network measures provide a
complementary aspect of functional connectivity and sug-
gest PDC+GTA as very informative features for classifying
semantic vigilance.
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