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Abstract: Over the past few decades, immunotherapy has emerged as a promising therapeutic approach to treat some types of cancer. 
Moreover, antibody-based cancer therapies can trigger apoptosis and cell growth inhibition to induce immune cell destruction of target cells 
through antibody-dependent cellular cytotoxicity (ADCC). Nevertheless, immunotherapeutic efficiency is often restricted due to deficient 
delivery or low accumulation of therapeutic molecules at the tumor site. The development of pegylated liposomes with monoclonal antibodies 
conjugated to their surfaces (immunoliposomes) and triggered with ultrasound can effectively improve drug accessibility by enhancing cell 
membrane permeability and drug release. This review summarizes existing traditional cancer treatments and their limitations, emphasizing the 
recent advancements in ultrasound-triggered immunotherapy 
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1. INTRODUCTION
Cancer is the second leading cause of death globally; it is

caused by environmental and genetic factors, including 
radiation, bacterial infection, and genetic abnormalities [1]. 
Cancer can be further categorized into (1) carcinoma, (2) 
sarcoma, (3) lymphoma, (4) leukemia, and (5) myeloma; 
Table (1) details the different types of cancer [2, 3]. 

Traditional cancer therapies include radiation therapy, 
chemotherapy, and surgery. Surgery is the oldest form of 
cancer treatment; it is used to prevent, diagnose, stage, and 
treat cancer. Currently, the surgical treatment of cancer is 
paired with chemotherapy and radiation therapy to decrease the 
chance of recurrence. Chemotherapy utilizes toxic drugs to kill 
abnormal cells; the main drawback of chemotherapy is that it 
is nonspecific, causing damage to healthy cells as well as 
cancerous ones. Another challenge is multidrug resistance 
(MDR) to chemotherapeutic drugs [4-6]. MDR can develop 
against every anticancer drug and can occur due to several 
mechanisms, including decreased drug uptake, increased drug 
efflux, activation of DNA repair mechanisms, and evasion of 
drug-induced apoptosis [7]. Moreover, the non-selectivity of 
chemotherapy can cause hepatotoxicity, nephrotoxicity, and 
cardiotoxicity. 

Radiotherapy is another method of cancer treatment, 
developed in 1896 by Emil Grubbe [8]. It treats cancer by 
degrading DNA and inhibiting cell division and is often used 
in combination with other treatments such as surgery. 
Unfortunately, radiation has proven ineffective in the 
treatment of metastatic cancer. Also, radiotherapy is 
associated with radiation-related complications to the heart 
and lungs and damages healthy cells, stimulating the 
formation of new tumors [9, 10]. 

Although traditional means of treatment can effectively 
treat early-stage cancers, new treatments are needed to offset 
the limitations of the existing methods, such as the inability 
to control recurrence and metastasis. For instance, 
chemotherapy has been improved using biologically targeted 
therapies [11]. Modern hormonal and targeted therapies 

interfere with cancer cell proliferation by blocking certain 
processes and targeting specific receptors and antigens 
expressed on these abnormal cells [12]. Recently, 
immunotherapy has witnessed dramatic progress and has 
shown impressive results in terms of the overall survival of 
patients with advanced-stage cancers [13]. Immunotherapies, 
specifically monoclonal antibodies (mAbs) [14] and 
chimeric antigen-specific receptor-transfected T-cells (CAR-
T cells), target tumor cells by manipulating immune 
regulation [15, 16]. However, this form of immunotherapy is 
limited by over specificity, resulting in an effective treatment 
in 49-72% of patients with metastatic cancers [17, 18]. 
Another type of immunotherapy uses checkpoint inhibitors 
(CI), such as anti-PD-1 antibodies (aPD-1), to release the 
“natural brakes” of the immune system so that T-cells can 
recognize and attack tumors. CI drugs have been successful 
in clinical use [19]. Despite some success with aPD-1 based 
therapies, many immunotherapies fail to deliver sufficient 
concentrations of therapeutic molecules to the tumor site 
[20]. 
Nano immunotherapy utilizes functionalizable, nanosized 
chemical structures to address the limitations of 
immunotherapy and enhance the efficacy of immune-based 
therapies [21]. Immunoliposomes are liposomes 
encapsulating therapeutic drugs and functionalized with 
antibodies. The encapsulation of anticancer drugs inside 
liposomes protects them from degradation. The circulation 
time can be increased by coating liposomes with polyethylene 
glycol (PEG), which prevents the opsonization and uptake of 
the liposomes by the reticuloendothelial system (RES) [22-
25]. Immunoliposomes are commonly functionalized with 
mAbs or antibody fragments, which actively target 
overexpressed antigens on the surfaces of cancer cells [26, 
27]. Immunoliposomes constitute a promising form of cancer 
therapy, having undergone clinical trials but have yet to 
receive clinical approval and reach the market. The different 
cancer treatment methods discussed so far are summarized in 
Table (2). 

Table 1. Types of Cancers. 
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Cancer Types Description 

Carcinoma Cancer found in epithelial tissues, lining organs, glands, and body structures 

Sarcoma Tumors of connective tissues including cartilage, fat, muscle, tendon, and bone 

Lymphoma Abnormal cells originating from the nodes or glands of the lymphatic system or brain and breast organs 

Leukemia Bone marrow cancer, which inhibits the production of red and white blood cells and platelets 

Myeloma Malignant cells which grow in the plasma cells of the bone marrow and can form bone tumors 
 
 
Table 2. Overview of Cancer Treatments. 

Cancer Therapy Advantages Disadvantages 

Radiation Therapy − Inhibits cancer cell growth using radiation 
− Radiation-related complications due to non-specificity 

− Can cause the formation of new cancers 

Chemotherapy − Kills abnormal cells using toxic drugs 
− Damages healthy cells 

− Cells can become resistant to anti-neoplastic drugs 

Surgery − Removes abnormal cells 
− Cancer must be caught early 

− Best used in conjunction with radiation and/or chemotherapy 

Hormonal/Targeted Therapy − Directly discriminates cancerous cells − Targeted molecules may be expressed on healthy tissues 

Immunotherapy 
− Manipulates the body’s immune system, reducing damage to 

healthy cells − Can be over specific and misses malignant cells 

Immunoliposomes 

− Easily modified to target cancer cells 
− Release can be controlled 

− Circulates well in the body 
− Can be made echogenic 

− Targeted antigens may be expressed on healthy tissues 

The efficacy of antibody-targeted liposomes in 
increasing the concentration of therapeutic drugs at the tumor 
site relies on the liposome's drug release rate at the target site. 
Immunoliposomes need to have temporal and spatial control 
to ensure uninhibited circulation in the bloodstream, 
accumulation at the target site, and specific release in the 
presence of stimuli. There are several stimuli-based 
nanoparticles covered in recent reviews [28]. Many studies 
reinforced the use of focused ultrasound (FUS), not just as a 
way to improve the effectiveness of immunotherapeutic drug 
delivery but also to enhance the efficacy of immunotherapy 
by amplifying the natural anticancer immune response [29, 
30]. FUS agitates the tumor, generating tumor fragments and 
tumor-associated antigens, which leads to stimulating the 
immune response towards the tumor cells [31-33]. 
Liposomes and immunoliposomes are easily modified to be 
echogenic and induce the release of anticancer drugs upon 
exposure to ultrasound (US). This article reviews the use of 
antibody-modified liposomes and nanoparticles to treat 
cancer and discusses the potential and limitations of 
ultrasound-triggered (US triggered) immunoliposomes. 

2. ANTI-BODY TARGETED IMMUNO-CARRIERS 
FOR CANCER THERAPY 

Immunotherapy has established a significant clinical scheme 
for cancer treatment. Consequently, the number of approved 
immunotherapy drugs continues to increase. However, they 
still suffer from certain limitations such as autoimmune 
complexity and the enhancement of nonspecific irritation [34]. 
To overcome these limitations, it is essential to improve their 
targeting specificity and reduce their off-target effects. 

The delivery of drugs and genes to cancer cells is hampered by 
various obstacles, including tumor vessels, the interstitium, 
and the cell membrane. Some of these obstacles are 
summarized in Table (3). Drug delivery vehicles control the 
location and rate at which a drug is released, consequently 
controlling the therapeutic agent infusion rate and required 
concentrations of the different therapeutic agents at the 
diseased site. Drug delivery carriers not only improve the 
safety and efficacy of drugs, but also allow for the 
administration of new therapies, previously considered highly 
toxic to be delivered via conventional ways. This led to the 
development of different drug delivery systems, such as 
mechanical pumps (implants), polymer matrices (micro-
particulates), externally applied transdermal patches, and drug 
delivery vehicles. Each drug delivery system has advantages 



and disadvantages; for example, implants are invasive as they 
require surgical administration and removal, while 
microparticles are considered too large for drug targeting and 
intravenous administration [35]. 

 

 
The field of nanomedicine utilizes nanoparticles to 

improve selectivity, extended activity, and control drug release 
as well as the cellular uptake of drugs. The most significant 
advantage of this technology is its ability to cross physiological 
barriers, overcome drug resistance, and significantly reduce 
chemotherapeutic side effects [23, 24]. Moreover, 
nanoparticles can extravasate at the tumor site due to their 
small size making them suitable delivery systems for 
intracellular targeting and gene delivery [36]. Nano-based 
therapeutics is a rapidly evolving field characterized by the 
continuous improvement in the biocompatibility and shelf-life 
of the developed nanocarriers. There is a wide variety of 
nanocarriers, with sizes ranging between 10-800 nm. 
Nanocarriers include nanocrystals (quantum dots), 
nanosuspensions, nanotubes, nanowires, micelles, liposomes, 
metal-organic frameworks (MOFs), ceramic nanoparticles, 
dendrimers, solid-lipid nanoparticles, and hydrogel 
nanoparticles [37]. Micelles and liposomes are the most widely 
researched nanocarriers [38, 39]. Micelles are colloidal 
elements ranging in size between 5-100 nm, consisting of a 
hydrophobic core shaped by Vander Waals interactions and 
surrounded by a hydrophilic casing. However, due to their 
small size, micelles have a limited capacity. Additionally, 
micelles can only encapsulate hydrophobic drugs [40]. 

3. ULTRASOUND AS A TRIGGER FOR 
NANOCARRIER MEDIATED DRUG RELEASE 

Triggering mechanisms are employed to control the 
therapeutic agent's release from nanocarriers and facilitate 
drug penetration into the tumor [53]. Triggering mechanisms 

reduce the unwanted side effects and circumvent the 
induction of drug resistance due to long accumulation times. 
However, triggering methods involving quick release can 
damage healthy cells, whereas a slow drug release will stop 
drugs from reaching cytotoxic therapeutic concentrations. 
Thus, a mechanism to control the release spatially and 
temporally is needed. 

(US) refers to mechanical waves with frequencies above 
the human hearing ability (>20 kHz) [54]. US waves are cyclic 
sinusoidal acoustic waves with high pressure phases 
(compression) at the upper peaks and low pressure phases 
(refraction) at the lower peaks. US waves propagate through a 
medium by transferring energy through the oscillation of 
particles; thus, they propagate faster in solids than in fluids. US 
attenuation occurs as the waves travel through the medium, as 
energy is lost either by absorption or being transformed into 
other energy forms [55]. The biological effects of US can be 
divided into thermal and mechanical effects, i.e., cavitation 
[32]. Acoustic cavitation effects have the propensity to 
enhance the immune response towards cancer because US 
enhances the delivery of genes and antigens to abnormal cells, 
which activates the anticancer immune response [29, 56]. 

High-intensity focused ultrasound (HIFU) is a non-
invasive cancer therapy that utilizes non-ionizing US waves to 
heat tissues [57]. HIFU employs a variety of mechanisms to 

Table 3. Types of obstacles hindering ingmmunotherapy. 
Types of Cellular Barriers Description 

Cell membrane delivery barrier 

Cancer immunotherapy effectiveness is limited by the efficiency of drug delivery to cells. Tumors have irregular and 
disorderly blood vessels with avascular spaces of diverse sizes, rendering their vessels leaky [41, 42]. Therapeutic drugs 
targeting the brain must overcome the blood-brain barrier (BBB),, composed of tight junctions of endothelial cells, limit 

ing the delivery of anticancer therapies from the blood to the brain [43]. 

Enhanced interstitial fluid pres- 
sure 

Breast, colorectal tumors, and metastatic melanoma have increased interstitial fluid pressure (IFP) [44]. The mechanical 
stress induced by tumor cell proliferation [45] results from stromal cells and the extracellular matrix (ECM) [46] 

compressing blood vessels and raising IFP as well as, limiting therapeutic and lymphocyte access to the tumor site. 
Hyperpermeable vessels and the lack of functional lymphatic vessels in tumors emphasize the elevated IFP. 

Vascular normalization of tumor 
environment 

Normalizing vascular structure in tumors can improve the delivery of anticancer drugs and tumor-infiltrating 
lymphocytes [48, 49]. An advanced-stage epithelial ovarian cancer mouse model treated with 3TSR, showed enhanced 

tumor 
blood perfusion, indicating potential normalization of tumor vasculature. The treatment, consequently, allowed greater 
intratumoral permeation of immune cells, including macrophages, natural killer (NK) cells, cytotoxic T-cells, and T- 

helper cells, compared to the untreated mice. [40]. Additionally, modifying the physical or chemical properties of drugs, 
such as molecular weight, shape, and charge, can enhance their delivery to tumor tissues and cellular uptake [50]. 

Modulation of the tumor-microen- 
vironment 

As indicated by increased T-cell numbers in tumor tissue slices treated with collagenase, human lung tumors in 
fibronectin-rich environments have a lower abundance of T-cells than in loose fibronectin areas, despite decreased stro- 
mal collagen content [51]. Additionally, CAR-redirected T lymphocytes (CAR-T-cells), designed to express heparanase 

and degrade heparan sulfate polymeric molecules (ECM proteins), have heightened tumor permeation potential and 
antitumor effects [52]. 

 



augment blood or lymph flow or to disrupt tumor tissues [58]. 
The operating frequency of HIFU presents a trade-off between 
image resolution and penetration depth; because at higher 
frequencies, the image resolution is improved; however, there 
is less penetration depth, making high-frequency HIFU 
suitable for superficial applications. In contrast, low-frequency 
HIFU has poorer resolution but greater penetration depths, 
rendering low-frequency HIFU transducers useful for general 
abdominopelvic uses [59]. The benefit of HIFU treatments lies 
in their ability to be applied within a short period, at a 
reasonable cost, and with little to no threat of infections [58]. 
The fundamental challenge with HIFU-triggered drug delivery 
is to design suitable biologically active carriers that will 
respond to US and accumulate at the tumor site. US exposure 
releases energy and heat causing coagulative necrosis when 
applied to cancerous cells [58]. 

Using US in combination with nanocarriers was shown to 
increase the penetration of several therapeutic agents into 
tumors, such as chemotherapeutic drugs and genes [54], [60]. 
A suitable strategy for US-mediated delivery should be able 
to (1) pass through biological barriers including the vascular 
endothelium, interstitium, cell membrane, or blood-tumor 
barrier (BTB), and (2) improve the diffusion of therapeutic 
components in interstitial tissue [61-63]. US is widely used as 
a mechanism to trigger release due to its low cost, safety, and 
ability to be focused on specific areas. Moreover, US has a 
synergetic effect with chemotherapeutic agents making it an 
ideal triggering mechanism [54]. 

As mentioned earlier, US-triggered release is due to two 
different processes, namely thermal and mechanical effects. 
Thermal release of therapeutic agents from nanocarriers occurs 
when US is applied, for a specific period (a few seconds to half 
an hour), at moderate intensities and pressures, inducing higher 
temperatures (42-43°C). Temperature-sensitive liposomes 
(TSL) contain the drug inside the intermediate phase to reduce 
toxicity. At elevated temperatures, the lipid shell content is 
modified, undergoing a liquid-crystalline phase transition, 
which releases the drug [64-66]. Studies have shown that these 
agents can release approximately 80% of their contents after 15 
minutes of hyperthermia at 43°C [67]. However, the crucial 
disadvantage of USinduced hyperthermia is the need for 
prolonged treatment sessions, thus increasing the risk of 
hyperthermic side effects. Mechanical effects of US result from 
acoustic wave propagation and pressure variations. Acoustic 
cavitation, in which gas bubbles are formed in liquids due to 
pressure changes, depends on the intensity of US and only 
occurs at a specific threshold. At low-pressure amplitudes, the 
gas bubbles exhibit stable oscillation as they contract and 
expand (i.e., stable cavitation). Inertial cavitation, on the other 
hand, results from high-pressure amplitudes causing gas-
bubbles to collapse. The bubbles increase rapidly in size until 
they reach their resonant size, where they collapse. The gas-
bubble collapse results in high pressures and temperatures, 
which produce sonic jets of fluid and shock waves causing 
transient pore formation on the cellular membranes 
(sonoporation effect). Finally, new small bubbles are formed 
and reinitiate the cycle. Stable and inertial cavitation occur 

simultaneously and follow each other. Another mechanical 
effect is acoustic streaming, which is a direct result of US wave 
propagation through the medium. In acoustic streaming, 
particles move in the direction of the flow, resulting in micro-
streaming, bulk-streaming, or both. Bulk-streaming is 
considered a powerful mechanism, which facilitates the 
delivery and distribution of drugs [68]. US-oriented drug-
delivery is especially relevant to the development of liposomes 
as general drug delivery carriers [69]. 

4. ULTRASOUND-MEDIATED TUMOR  
 IMMUNOTHERAPY 

Tumor immunotherapy is a promising cancer treatment 
approach since it is designed to target tumor cells more 
specifically/preferentially compared to conventional treatments. 
Immunotherapy involves stimulating the body’s immune system 
against cancer by introducing tumor vaccines, mAbs, cytokines, 
or immune cells. Immunotherapies can be classified into active 
or passive immunotherapy. Active immunotherapies rely on 
stimulating the immune system to eliminate malignant cells, 
while passive immunotherapies employ cytokines, mAbs, and 
immune cells to act directly on the tumor cells. Regardless of the 
type of immunotherapy used, the treatment needs to be delivered 
intravenously, which has some drawbacks that reduce the 
efficiency of delivering these drugs. US and microbubble-
targeted delivery (UMTD) technology has made some progress 
in tumor immunotherapy. In the following sections, we briefly 
discuss the applications of UMTD technology in cancer 
immunotherapy. 

4.1. Dendritic Cell-based Vaccines 
US can amplify the delivery of vaccines (Ags, peptides, 

proteins, pDNA, or mRNA) enclosed in dendritic cells (DC), 
a type of antigen-presenting cell (APC), into tumor cells and 
APCs [70, 71]. An in vivo study reported a 500-800 fold 
increase in gene expression in APCs, when mannose-
modified gene carrier bubble lipoplexes (Man-PEG2000) were 
treated with US or transfected by mRNA-lipoplexes, and 
displayed tumor regression in addition to long-term antigen-
specific immunological memory [72-74]. Furthermore, 
prophylactic immunization with BL/US-treated DCs provided 
a four-fold decrease in the frequency of melanoma lung 
metastases [75]. 

4.2. Regulatory T-cells 
Regulatory T-cells (Tregs) are a target for immunotherapies 

because of their role in subduing the immune response against 
cancer by suppressing auto-reactive immune cells [76]. 
Specifically, short interfering RNA (siRNA) can be used to 
knock down the expression of Treg target genes and limit the 
immune protective tumor activity of Tregs. It was previously 
demonstrated that combining US and SonoVue microbubbles 
on CD4(+)CD25(+)Tregs affected Tregs proliferation. Moreover, 
the optimal Treg transfection rate was obtained using 10% 
microbubbles and US exposure for150/180s under a 
mechanical index (MI) of 1.4 [77]. Sonication with US with 
no microbubbles was also found to decrease Treg proliferation 



However, a prolonged exposure time is needed. Cell viability 
and Treg proliferation decrease optimally with a 10% 
concentration of cavitation microbubbles, which deliver 
siRNA of Forkhead box P3 (FoxP3) into Tregs [78]. 
4.3. Natural Killer Cell Therapy 

Natural killer (NK) cells are naturally occurring antitumor 
immune cells, whose killing efficiency proportionally increases 
with the ratio of effector to target cells [79]. Autologous NK 
cells can be activated and expanded ex vivo and adoptively 
transferred back to patients to target tumors. Studies that 
achieved some success using NK cells therapy suggest that the 
efficacy of this treatment is dependent on NK cells’ 
discrimination of tumors [80]. US is applied to enhance the 
ability of NK cells and NK-92 (human NK cell line) to 
overcome the constraints imposed by the BBB [81]. 

5. ULTRASOUND-MEDIATED CYTOKINE-BASED 
TUMOR IMMUNOTHERAPY 

US-mediated cytokine-based tumor immunotherapy 
utilizes US to induce cavitation and the subsequent 
sonoporation effect on cellular membranes, allowing 
extracellular plasmid DNA of cytokines, such as the clinically 
approved IFN-beta and IL-2, to induce a local anticancer 
immune response [82]. A study revealed that cationic 
liposomal IFNβ gene therapy combined with US was able to 
produce antitumor effects in vitro. Additionally, the survival 
of mice with a metastatic hepatic tumor of Colon26 cells was 
significantly extended by cationic liposomal IFNβ gene 
therapy alone. However, sonoporation further increased the 
survival rate and inhibited the mice's tumor growth rate [83]. 
Moreover, IL-12 gene delivery using US-mediated liposomes 
could inhibit tumor growth via significant migration of 
CD8(+) T cells in mice [84]. Another study exhibited 
increased local expression of cytokines following the 
combination of DOTMA, a transfection complex containing 
IL-12 plasmid (15 
µg), and US (1.5W/cm2, 5 min) to treat SCCVII murine 
tumors [82, 85]. Another study has shown the promising 
potentials of the sonoporation-mediated Interleukin-27 (IL-
27) gene delivery [86]. In another study, the delivery of IFN-
beta pDNA to murine subcutaneous ovarian carcinoma (OV-
HM) model enhanced the local IL-12 production and 
stimulated the migration of CD8+ T-cells to the tumor site 
upon intratumoral injection and treatment with US and bubble 
liposomes (1 MHz, 0.7 W/cm2, 1 min) [84, 87]. 
Unfortunately, intratumoral injection is relatively invasive 
and difficult to translate to deeply located tumors; therefore, 
US-mediated delivery of cytokine genes has better potential 
at increasing local cytokine expression and suppressing tumor 
growth. 

6. ULTRASOUND-MEDIATED IMMUNOTHERAPY 

6.1. Antitumor Antibodies 
Antibodies are naturally produced by B-cells in 

response to antigen presentation by helper T-cells. Antigen-
antibody binding through an epitope is the fundamental 

theory of immunogenicity. Antibody-based cancer 
therapies are a promising chemotherapeutic method [14, 88] 
and are particularly promising due to their specificity, high 
efficacy, favorable pharmacokinetics, and optimized 
manufacturing, [89]. The FDA has approved several mAbs 
for cancer treatment [90]. The ability to provoke an immune 
response depends on the immunogen size, chemical 
composition, conformation, and its foreign capacity [27]. 
An example of an FDA approved mAbs treatment against 
cancer is Trastuzumab. 

Trastuzumab: also known as Herceptin, is a humanized 
IgG(1) kappa mAb (molecular weight of 145.5 kDa) 
with a high and specific affinity towards the HER2 
receptors overexpressed in breast tumor cells [53]. 
Trastuzumab can prevent HER2 hetero-dimerization 
and stop cell signaling related to tumor development; 
it is considered a HER2 receptor antagonist [91]. 
Trastuzumab was shown to reduce the risk of cancer 
recurrence when used in adjuvant therapy and was also 
shown to augment the effects of chemotherapy [50, 92-
94]. It is commonly used in combination with 
Paclitaxel, Docetaxel, Navelbine, Gemcitabine, and 
Capecitabine in Antibody-drug Conjugates (ADCs) 
[95, 96]. 

Pertuzumab: also known as Perjeta, can destroy 
HER2-positive breast carcinoma via binding 
to the HER2 receptor and hindering the 
cancer cells’ capability to accept growth 
signals [91, 97]. 

Ado-trastuzumab emtansine: referred to as 
Kadcyla, is an arrangement of Herceptin and 
emtansine that 
delivers emtansine to HER2+cells in a targeted 
method, which further binds to HER2 receptors on 
the tumor cells and transports emtansine directly 
to the tumor [23, 54, 91]. 

Rituximab: an anti-CD20 mAb, is used as a 
conjugate in nanoparticles to target lymphoma 
tumors overexpressing CD20 receptors. CD20 
receptors do not internalize their anti- CD20 
mAbs in contrast to CD19 receptors [98]. 

However, limitations to mAbs include expensive 
production, immunogenicity, and limited conjugation 
density due to their large size [99]. Also, mouse-derived 
antibodies were shown to induce some allergy-like reactions 
when used in humans, prompting the need for chimeric, or 
humanized murine-derived antibodies, or full human mAbs 
[100]. Chimeric mAbs are considered less compatible with 
humans than humanized ones. The variable fragment of 
chimeric mAbs is derived from a murine source, while the 
constant region is from a human source. Contrary to 
humanized mAbs where only the complementary 
determining regions of the variable regions (CDRs) are 
from a murine source. Fully human mAbs are developed 
using phage-display technologies [101]. However, further 
modifications to mAbs are needed for conjugation purposes. 



Sites for chemical binding in antibodies, and proteins, in 
general, include thiol groups (sulfhydryl groups) found in 
the cysteine residue of the protein, amine groups located in 
the lysine residue, and carbohydrates [102]. Typically, 
sulfhydryl bonds in proteins are found in their reduced 
version as disulfide bonds (in cysteine), which first need to 
be activated into a free thiol group for the conjugation to be 
successful [103]. These modifications are known to affect 
the antigen-antibody binding sites except for the 
carbohydrate modification. For disulfide modification at 
low pH, damage control can be achieved [104]. 

So far, mAb therapies have shown little success against 
solid tumors due to the irregular physiologies of the tumor 
microenvironment [105], and the relatively large size of 
mAbs, which leads to reduced vascular permeability inside 
tissues [106]. Moreover, the repeated delivery of antibodies 
in high doses needed to reach therapeutic concentrations 
increases the costs and can exacerbate the treatment's 
negative side effects [99]. The nonspecific interactions 
between the antibodies and cells or ECMs are also 
responsible for ineffective immunotherapy. To achieve 
success in immunotherapy, the modification of antibodies 
and a deeper understanding of the different physiological 
factors that enable enhanced vascular absorbency are needed 
[107-109]. 

6.2. Ultrasound-triggered Immunoliposomes 
Liposomes are small, spherically shaped vesicles with a 

diameter ranging between 20 and 1000 nm. Liposomes are 
composed of a phospholipid membrane bilayer, where the 
hydrophilic tails are directed inwards while the hydrophilic 
heads are directed outwards towards the aqueous environment 
[40, 110]. Liposomes are the most widely used nanocarriers in 
drug delivery. They can selectively target tumor cells by 
utilizing the enhanced permeability and retention (EPR) effect 
when they range in size between 12.5 and 200 nm. 
Chemotherapeutic drugs commonly loaded into liposomes 
include doxorubicin (Dox), annamycin, daunorubicin, 
vincristine, cisplatin derivatives, paclitaxel, 5-fluorouracil 
derivatives, camptothecin derivatives, and retinoids [111]. 
Liposomes can also be used to entrap various types of other 
molecules, including vaccines, plasmid DNA, peptides, 
hormones, antisense oligonucleotides or ribozymes, antibodies, 
nutraceuticals, and cosmetics [112, 113]. As mentioned earlier, 
PEG renders the liposomal carriers sterically stable and less 
immunogenic, which increases their blood circulation time and 
protects them from degradation in the plasma [114]. 

Liposomes having mAbs or antibody fragments conjugated 
to their surfaces are called ‘immune-liposomes’ or 
‘immunoliposomes’ [114]. Highly investigated targets for 
antibodies include VEGFR, EGFR, HER2, transferrin 
receptors, and the prostate-specific membrane antigen (PSMA) 
[115]. HER2 receptors can internalize their ligands resulting in 
the endocytosis of the antibody-mediated nanoparticles. A 
known humanized mAb targeting HER2 is trastuzumab, which 
is an FDA approved cancer medicine. Nanoparticles, coupled 
with trastuzumab have been intensively investigated in the 
treatment of HER2 positive breast cancer [97, 116]. In 2018, 

Amal [117] demonstrated the high efficiency of LFUS in 
triggering drug release from both the conventional and 
trastuzumab-conjugated pegylated liposomes. 

Stimuli-responsive immunoliposomes are designed to 
accumulate in the targeted tissue and release their contents in 
response to a particular stimulus. This trigger can be either 
intrinsic, such as a change in pH, temperature, or enzyme 
concentration, or external such as light, magnetic or electric 
fields, and US [118]. Liposomes can be modified to be more 
sensitive to US. Echogenic liposomes are rendered sensitive to 
US by entrapping emulsions into their core and releasing their 
contents when US is applied. A study investigated the US-
mediated delivery of anti-smooth muscle cell actin antibody to 
vascular smooth muscle cells (VSMCs) in vitro using 
echogenic immunoliposomes (ELIP) as a vector [119]. 
Bevacizumab, an anti-angiogenic antibody to vascular 
endothelial growth factor (VEGF-A), was loaded into 
echogenic liposomes (BEV-ELIP) and was exposed to 
colorDoppler US at three acoustic pressures for 3.5 min during 
treatment at physiologic temperature and fluid pressure using 
ex vivo carotid arteries [120]. Another study showed that US-
enhanced bevacizumab release from echogenic liposomes 
could result in atheroma progression in vitro [121]. Moreover, 
liposomes encapsulating nanoemulsions (eliposomes), utilize 
the ability of nano-emulsions to change from the liquid phase 
to the gas phase in response to US, thus leading to the 
immediate disruption of the nanoparticle and the subsequent 
drug release. In another study, calcein release from liposomes 
was reported to be higher at LFUS than at high-frequency 
ultrasound (HFUS) [122]. The effect of liposomal membrane 
structure on drug release following the exposure to LFUS was 
studied in Dox-loaded liposomes under LFUS effects; the 
results showed 30% higher release from 
DOPE-based liposomes compared to DSPE-based liposomes 
[123]. Moreover, PEGylated liposomes similarly 
exhibited a 10-fold increase in permeabilization upon 
exposure to LFUS. 

6.3. Ultrasound-mediated Microbubbles Conjugated 
Antibody Therapy 

Another approach to improve the transport and accumulation 
of antibodies at tumor sites is through US-triggered 
microbubbles therapy. In 2016, a research group demonstrated 
that membrane disruption using FUS combined with antibody 
therapy could inhibit the growth of breast cancer brain metastasis 
[124]. Another study showed that cetuximab, a mAb, can bind 
to the EGFR antigen in the extracellular domain of tumor cells, 
and the addition of US can enhance the drug delivery to tumors 
[125]. A study reported that US, in conjunction with 
microbubbles, may enhance the effect of cetuximab cytotoxicity 
in HNSCC by repressing tumor growth, which was confirmed  



Table 4. Ultrasound triggered different immunotherapeutic approach in cancer. 

Immunoliposomes 

Material Cell Line Animal Model Immunological Agent US Parameters Outcome   Ref.   

Liposome (DSPC, 
DSPE-PEG) - 

Murine ovarian 
carcinoma 

(OV-HM cells) 
Cytokine (IL-12 corded pD- 

NA) 1MHz 
1 MHz US with novel US-sensitive 
liposomes, which contain the US imaging 
(gas perfluoro propane), resulted in a 
significant migration of CD8(+) T cells in 
the mice. 

[84] 

Liposome Murine colon adenocarcinoma 
cell line Colo 26 

Xeenograft mice 
model inoculated 

with Colo26 Cytokine (IFNbeta) 
1 MHz, 0.5 W/cm2, 20% duty cycle, 

30 s; in vivo:1 MHz, 2 W/cm2, 50% duty 
cycle, 10 min; 

Suppressed tumor growth and increased 
survival [83] 

Liposome 
6–8-week-old female SCCVII 

tumor -bearing mice 
squamous carcinoma 

cells Cytokine (IL-12) 1 MHz, 0.7 W/cm2, 60s 
US treatment produced significantly higher 
levels of IL-12 in the tumor that further 
inhibited tumor growth. [85] 

Liposome HER2-positive breast cancer - Trastuzumab 20kHz, 7.46-17.31mW/cm2 Enhanced release rates [117] 
Echogenic 
immunoliposomes (ELIP) - 

Vascular smooth 
muscle cells 
(VSMCs) 

Anti-smooth muscle cell actin 
antibody 1 MHz, 0.23 ± 0.05 MPa, 2 min 

Increased site-specific calcein uptake 
[119] 

Echogenic 
immunoliposomes (ELIP) 

- Ex vivo carotid 
arteries bevacizumab 1.75 MHz frequency and 10 cycle pulse 

duration 

Enhanced bevacizumab penetration, was 
observed in arteries treated with BEVELIP 
and combinations of color-Doppler US, 
especially in those arteries exhibiting 
extensive atheromatous lesions and 
neointima.  

[120] 

Echogenic 
immunoliposomes (ELIP) 

Human umbilical vein 
endothelial cell (HUVEC) cul- 

tures - bevacizumab 6 MHz color Doppler ultrasound (MI = 
0.4) for 5 min. 

BEV-ELIP retained its VEGF-binding 
activity in a liposomal formulation and that 
clinical Doppler US could significantly 
increase that activity, both by releasing 
free BEV and by enhancing the surface 
exposure of the immunoreactive antibody. 

[121] 

Microbubble 
Murine prostate cancer cell 

line TRAMP-C1 and TRAM- 
P-C2 

 
pORF-mIL-27 

1 MHz, 50% duty cycle, 45 V, 2 Hz, 
2 min, 1 W/cm2, acoustic pressure of 

0.12 MPa 
Reduction of Prostate tumor 

[86] 

Liposome Sonovue ® 
microbubble 

MDA-MB-468 and MCF7 cells MDA-MB-468 
xenograft mice model 

EGFR 1.1 MHz, 2 MPa, 3000 cycles, 1.2 sec 
pulse period, 2.5 min total exposure 

Enhanced drug delivery to tumors [128] 

Man-PEG2000 bubble 
lipoplexes 

CD8-OVA1.3 cells, EL4 cells, 
E.G7-OVA  pDNA expresses OVA 2.062 MHz, duty cycle 50%; burst rate, 

10 Hz; 4.0 W/cm2, 20 s 
Suppressed tumor growth [72] 

Man-PEG2000 bubble 
lipoplexes 

B16BL6 melanoma cells  pDNA expresses gp100 and 
TRP-2 

1.045 MHz; duty, 50%; burst rate, 10 
Hz; 1.0 W/cm2; 2 min 

Increased CTLs prevented metastasis and 
relapsed melanoma 

[73] 

microbubble B16/BL6 melanoma cell line A mouse model with 
lung metastasis 

Dendritic cell Vaccine 
(Melanoma-derived antigen) 

2 MHz, 2 W/cm2, 10% duty, 3x10 
seconds 

A decrease in the frequency of melanoma 
lung metastasis 

[75] 

mRNA-lipoplex loaded 
microbubbles  DC from bone 

marrow of C57Bl/6 
mice 

mRNA 1 MHz, 2 W/cm2, 50% duty cycle, 30 s DC maturation [74] 

mRNA-loaded 
microbubbles 

Mouse melanoma cell line 
MO4 and T cell lymphoma 

E.G7-OVA Mice with OVA 
tumors 

antigen mRNA and TriMix 
mRNA 

1 MHz, 2 W/cm2, negative peak 
pressure 800 kPa, 20% duty cycle (2 m 

on, 
8 m off), 30 s total insonation time per 

OptiCell ™ 

Increased CD8 + T cells, which suppressed 
tumor growth and increased survival 

[130] 

microbubbles Tregs from patients with HCC  Foxp3-miRNA/shRNA 2.5 MHz, MI of 1.4, 150/181 s Decreased ratio of Tregs/CD4+ T cells 
suppressed tumor growth 

[78] 

SonoVue ® microbubble Hepatocellular carcinoma  CCD4+CD25+ regulatory T 
cells (Tregs) 

1.4 MI, 150 or 180 sec Increased Treg proliferation [77] 

Definity® 
Human HER2-expressing 

MDA-MB-231 breast tumor 
cells 

 NK-92 551.5 kHz FUS, range 0.32–0.35 Mpa 
HER2-specific NK92 cells accumulating in 
tumors suppressed tumor growth and 
increased survival [81] 

microbubbles Human colorectal 
adenocarcinoma cells 

(LS174T) 
 NK cells 510 kHz transducer,0.50 MPa peak 

acoustic pressure 
NK cell accumulation in tumors increased 
water content and edema 

[80] 

Emtansine (DM1) 
microbubbles MDAMB-361 cells 

 
Trastuzumab and Pertuzumab 

FUS 
of 10-ms burst 

sonication was applied having1 Hz 
repetition frequency, 60 s duration). 
Acoustic powers between 0.40 and 

0.70 W were used. 

BBB disruption using focused US in 
combination with antibody therapy can 
inhibit the growth of breast cancer brain 
metastasis [124] 

microbubble 
Human head and neck 

squamous carcinoma cell lines 
6-week old xenograft 
mice inoculated with 

BT474 Cetuximab 
1.0 MHz, MI: 0.5, a pulse repetition 
period of 5s, 20% duty cycle, 5 min 

Suppressed tumor growth and increased 
survival. [126] 

microbubbles 
HER2/neu-positive human 
breast cancer cells BT474 

6-week old xenograft 
mice inoculated with 

BT474 Trastuzumab 
PRF:1 Hz, 1% DC, PNP:0.69 MPa, 

sonications were 60 s in duration and 
consisted of 10 m bursts 

Suppressed tumor growth and increased 
survival  [127] 

microbubbles Murine colorectal cancer cell 
line CT26 

 
Anti PD-1 antibody 

1 MHz transducer, 50 0.1-ms-long 
pulses spaced 1 m apart, 20 s intervals, 
duration of 2 min Peak negative pres- 

sures 1.65 Mpa 

Suppressed tumor growth and increased 
survival, increase in the antitumor effects 
of CI therapy [129] 

microbubbles U14 and Hela cervical cancer 
cell line 

SPF-level BALB/c 
female mice Anti-PD-L1 mAb 

1 MHz, pulse repetition frequency of 1 
kHz, SATP intensity of 1 W/cm2, duty 
cycle of 50%, duration of 90s, probe 

diameter of 10 mm. 

The growth of the tumor was significantly 
slower in the combined treatment group 
compared to the group treated with either 
drug or microbubbles 

[131] 
 



by a regression in tumor size in vivo [126]. The authors 
suggested that US-mediated antibody delivery is, therefore, able 
to enhance cetuximab dispersion by reducing barriers in the 
vasculature. Similarly, trastuzumab [127], in conjunction with 
FUS and microbubbles, was shown by MRI to cross the BBB to 
treat brain metastases. 111In-EGF-LP-Dox showed specificity for 
and cytotoxicity  towards  EGFR-overexpressing  cancer  cells.  
Delivery to tumors was enhanced by the use of US-mediated 
cavitation of Sonovue® microbubbles, indicating that this 
approach has the potential to deliver cytotoxic levels of 
therapeutic radionuclides to solid tumors [128]. These findings 
indicate that US-mediated antibody delivery allows an efficient 
delivery of different antibodies by overcoming vascular barriers 
or the BBB and thus, amplifying the concentration of 
therapeutics at the tumor site. The accumulation and binding of 
antibodies at the tumor site induce specific antitumor immune 
responses by blocking inhibitory signals of immune cells and 
governing cells to eliminate abnormal cells. However, further 
studies are needed to determine the specific immune responses 
mediated by US-triggered antibody therapy. 
6.4. Enhancing Checkpoint Inhibitor Therapy with 
Ultrasound Stimulated Microbubbles 

CI immunotherapy utilizes antibodies, such as anti-PD-1 
antibodies (aPD-1), to prevent the checkpoint-mediated 
inhibition of T-cell responses toward abnormal cells [8, 9]. 
Unfortunately, only a minority of the patients treated with CI 
immunotherapy exhibited significant antitumor immune 
responses [129]. The observed ineffectiveness is attributed to 
the immunosuppressed tumor microenvironments in clinical 
settings. A study investigated coupling aPD-1 with 
microbubbles triggered by low-intensity US has shown that the 
combination therapy was able to amplify immune-tumor 
responses and increase survival rate compared to the 
independent treatments [129]. Table 4() presents a summary of 
some relevant studies using US-triggered immuno-carriers for 
cancer therapy. 

CONCLUSION 
The future of cancer immunotherapy relies on developing 

effective methods to deliver immunotherapeutic agents to 
diseased cells. US-mediated liposome or microbubble 
treatments can help overcome biological barriers, thereby 
offering an alternative approach to present therapies. The use 
of mAbs is a significant advancement in the treatment of 
cancer. There are growing efforts to enhance the production 
of tumor-targeted antibodies and to understand the detailed 
immunogenic responses as well as their delivery portfolio. 
However, this field is still in its infancy as many of the 
fundamental mechanisms of these bioprocesses are not fully 
understood. In addition, the ultrasonic delivery of immuno-
liposomes has been limited to in vitro experiments. Recently, 
emerging in vivo data have shown promising potentials of this 
therapeutic platform to reaching clinical trials. Other factors, 
such as the genetic background, type of cancer, age, drug 
mechanism, US parameters (frequency, power density, pulse 
duration), as well as safe delivery protocols, should be 
considered. 
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