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Abstract: Background: Metal-organic frameworks (MOFs), as attractive hybrid crystalline porous materials, are being increasingly 
investigated in biomedical applications owing to their exceptional properties, including high porosity, ultrahigh surface areas, tailorable 
composition and structure, and tunability and surface functionality. Of interest, in this review, is the design and development of MOF-based 
drug delivery systems (DDSs) that have excellent biocompatibility, good stability under physiological conditions, high drug loading capacity, 
and controlled/targeted drug release. 

Objective: This review highlights the latest advances in MOFs as anticancer drug delivery systems (DDSs) along with insights on their 
design, fabrication, and performance under different stimuli that are either internal or external. The synthesis methods of MOFs, along with 
their advantages and disadvantages, are briefly discussed. The emergence of multifunctional MOF-based theranostic platforms is also 
discussed. Finally, the future challenges facing the developments of MOFs in the field of drug delivery are discussed. 
Methods: The review was prepared by carrying out a comprehensive literature survey using relevant work published in various scientific 
databases. 

Results: Novel MOFs in biomedical applications, especially in drug delivery, have shown great potential. MOF-based DDSs can be 
classified into normal (non-controllable) DDSs, stimuli-responsive DDSs, and theranostic platforms. The normal DDSs are pristine MOFs 
loaded with MOFs and offer little to no control over drug delivery. Stimuli-responsive DDSs offer better spatiotemporal control over the 
drug release by responding to either endogenous (pH, redox, ions, ATP) or exogenous stimuli (light, magnetism, US, pressure, temperature). 
The theranostic platforms combine stimuli-responsive drug delivery with diagnostic imaging functionality, paving the road for imaging-
guided drug delivery. 
Conclusion: This review presented a summary of the various methods utilized in MOF's synthesis along with the advantages and 
disadvantages of each method. Furthermore, the review highlighted and discussed the latest developments in the field of MOF-based DDSs 
and theranostic platforms. The review is focused on the characteristics of MOF-based DDSs, the encapsulation of different anticancer drugs 
as well as their stimuli-responsive release. 

1. INTRODUCTION
Cancer remains one of the deadliest known diseases in human

history. It presents a significant health hazard at a global level, 
threatening both developed and undeveloped countries [1]. There are 
many types of cancer treatments, including surgical intervention,  

radiotherapy, chemotherapy [2], and often combined treatments 
are required to cure or control various cancers. Among treatments 
for malignancies, chemotherapy emerged as one of the most widely 
used, as some cancer tumors are challenging to resect, or they may 
become immune to radiotherapy [3]. However, the toxicity of 
chemotherapy lies in the fact that it is a non-targeted treatment 
method, causing severe side effects, such as nausea, vomiting, hair 
loss, acute cholinergic gastrointestinal effects, heart problems 
(cardiotoxicity), etc [4]. This treatment, which is not able to 
discriminate between healthy and diseased cells, has paved the way 
for the development of novel drug carriers. 

Traditionally, drug delivery methods are based on two types of 
carries, organic or inorganic. Organic  carriers,  such  as liposomes, 
micelles, and polymersomes, are used to encapsulate the therapeutics 
drug [5-7]. They offer biocompatibility, biodegradability and can be 
modified chemically to improve their release properties and increase 
their accumulation at the tumor site [8]. However, these carriers 

suffer from uncontrolled release due to the lack of well-defined 
porosity and weak interaction with the drug [9]. The second type of 
nanovehicles, i.e., inorganic carriers, such as iron oxide nanoparticle 
(NPs), carbon nanotubes, quantum dots, etc., are either conjugated 
to the therapeutic molecules or offer a large surface area for the agent 
to adsorb (and hence encapsulate) [10-12]. The major drawback of 
these carriers is low biocompatibility (i.e., high immunogenicity) 
[10, 13]. Thus, there is an urgent need to develop an alternative, 
safer, and more efficient drug carrier type. 

Metal-organic frameworks have emerged as hybrid 
organic/inorganic porous materials that opened the door for 
numerous biomedical applications (e.g., drug delivery, biosensing, 
bioimaging, and their use as antimicrobial agents) [14-18]. The 
crystalline construction of MOFs offers an open porous structure that 
gives some exceptional and unique properties, such as an extensive 
high internal surface area (1000 – 7000 m2/g) [19, 20], high thermal 
stabilities (ranging from 250 to 500 °C), low density (the lowest 
density reported is 0.126 g/cm3) [21], large pore volumes (ranging 
from 1.1 to 4.4 cm3/g) [19, 20], permanent porosities, in addition to 
flexible frameworks that render them more useful compared to other 
conventional porous solids [22].
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Table 1. Comparison between MOF synthetic methods based on the advantages and disadvantages. 

Method Description Advantages Disadvantages References 

Slow diffusion 
(low evaporation) 

Metal salts and organic ligands are mixed with a solvent at 
room temperature. Then crystal growth takes place with the 

slow evaporation of the solvent. 

• Ambient pressure and 
tempera-ture. Sometimes low 

temperature is employed 
• Suitable when single 
crystals areneeded for analysis via 

single-crys- 
tal X-ray diffraction 

• A very slow process (time-consuming) 
• Not suitable for large scale production [36-40] 

Layer-by-layer deposition 
(self-assembly) 

A 2D functionalized organic surface is subjected to sequential 
immersion into solutions containing the organic ligand and 
metal ions, which serve as a nucleation site to grow MOF 

crystals in a step-by-step fashion. 

• Possibility to 
fabricate structuresnot attainable 

by conventional synthesis 
methods 

• Enables the study of 
the reaction kinetics of the 

individual steps involved in the 
synthesis • Allows better control 
over the growth and morphology 

of thin 
MOF films 

• Time-consuming 
• Difficult to implement on a large scale [41-44] 

Solvothermal 
The metal salts and organic ligands and the solvent are mixed 

at an elevated temperature and pressure below the critical 
conditions in a closed vessel. 

• Wide range for 
operating temper-atures 

• Easy for industrial 
scale-up 

• Temperature control 
that pro-motes crystal growth 

• High energy consumption 
• Long reaction times 

• High costs for vessels that 
can handlehigh temperature and pressure 

[45-48] 

Microwave-assisted The method involves heating the reactants and solvent 
mixture through microwave radiation. 

• Rapid and uniform 
crystalgrowth and yield 

• Offers more control 
of particlesize distribution and 

morphology 
of crystals 

Challenging to implement on a large 
industrial scale [49-51] 

Sonochemical 
(Ultrasound) 

High-energy ultrasound waves induce a cavitation 
phenomenon in which the rapid formation and collapse of 

bubbles produce high temperatures and pressures that drive 
the reaction and MOFs formation. 

• Produces more 
uniform particlesize distribution 

and morphology of crystals 
• Short reaction times 
• Efficient when nano-

scale MOFsare desired 

• Not suitable when a single 
crystal isneeded for analysis 

• Challenging to implement 
on a largescale 

[51-54] 

Electrochemical 
The metal is introduced as an electrode that reacts with an 

organic linker dissolved in an electrolyte solution along with 
a conducting salt upon applying a voltage or current. 

• Offers the advantage 
of continu-ous production of 

MOFs 
• Fast reaction rates 

The diffusion of the organic linker and/or 
conducting salt molecules into the pores 

of the crystals during crystallization 
leads to an inferior-quality MOF com- 
pared to those synthesized with other 

methods 

[51, 55, 56] 

Mechanochemical 
A solvent-free method, where a mechanical force such as 

grinding induces a chemical reaction that produces the MOF 
crystals 

• A solvent-free 
method 

• Heating and high 
pressure arenot required 

• Relatively short 
reaction times 

• Defects (secondary phases) 
in theformed crystals are usually 

obtained 
• Difficult to obtain a 
distinguishable sin-gle crystal for 

analysis 

[51, 57, 58] 

The high surface area and large pore volume of MOFs enable the 
efficient encapsulation of biomolecules of different sizes, rendering 
them more attractive for drug delivery applications. Meanwhile, 
MOFs' tunability in terms of chemical functionalization and particle 
sizes allowed scientists to design efficient drug delivery systems 
(DDSs). The chemical functionalization of MOFs enables the design 
of MOF-based DDSs that offer dual therapeutic and diagnostic 
modalities [23, 24]. Controlling the size of MOF nanocarriers allows 
us to utilize the enhanced permeability and retention (EPR) 
phenomenon in order to increase the concentration of the therapeutic 
agents in targeted tumor region. 

Several reviews about MOFs' application in drug delivery are 
available in the literature, each with a different approach and 
perspective. Some reviews broadly discuss the biomedical 
applications of MOFs, which encompass not only drug delivery, but 
also bioimaging, biosensing, and biocatalysis [25-28]. Other reviews 
focus on the synthesis and drug-loading strategies, as well as release 

efficiencies and mechanisms [2, 29-31]. The present review 
highlights the recent advancements in the design of novel MOF-
based DDSs. Additionally, it aims to critically discuss the 
classification of MOF-based DDSs, their performance, advantages 
and disadvantages, their role in future developments in the field 
of drug delivery, and the challenges facing the design and 
implementation of MOF-based DDSs. To this end, the review is 
organized into three sections: a brief introduction to MOFs’ 
synthesis and their applications in biomedicine, MOF-based 
DDSs, and their classification, and finally, the challenges and 
future outlook of MOF-based DDSs. 

2. METAL-ORGANIC FRAMEWORKS (MOFS) 
The investigation of MOFs as potential drug carriers emerged 

due to their flexible structure; hence the synthesis process, the 
pore size, and shape can be designed to accommodate the 
molecule to be encapsulated in these structures [32]. MOFs also 



enjoy other properties that are required for a successful drug 
delivery system, that include high loading capacity, high 
chemical and thermal stability, controlled drug release 
properties, biocompatibility, and ease of surface modification 
and tunability through a systematic approach to conjugate 
functional groups and/or change the pore size [33]. In this 
section, the synthetic routes to produce MOFs will be discussed, 
along with the strategies to load them for biomedical, 
specifically, drug delivery applications. Also, some 
representative examples of various biomedical MOF applications 
will be highlighted. 

2.1. Synthesis of MOFs 
There are several methods used for the synthesis of MOFs, each 

with its advantages and disadvantages. Moreover, when it comes to 
selecting the synthesis method, several points must be taken into 
consideration, such as the nature and type of the metal and the 
organic ligand, the agent/drug to be loaded, the targeted structure 
and characteristics of the MOF, and their applications [34, 35]. The 
most common synthesis strategies widely reported in the literature 
include slow diffusion, solvothermal, microwave-assisted, 
ultrasound-assisted, electrochemical, self-assembly, and 
mechanochemical. (Table 1) presents a summary of these techniques 
[36-58]. 

In general, the synthesis of MOFs involves mixing the 
metalcontaining reactant with the organic compound (linker), either 
in a solvent or without a solvent (mechanochemical method). The 
selection of the solvent plays an important role in the reaction 
(coordination) environment, as the crystals of the MOF are formed 
in the solvent medium. Thus careful consideration must be taken 
when selecting the suitable solvent in order to obtain the desired 
MOF structure [59]. The factors that need to be considered when 
selecting the appropriate solvent include the solubility of the metal 
and organic compounds, solvent reactivity, selectivity, polarity, and 
thermodynamic properties [60]. It is also preferred to select a solvent 
that has low vapor pressure, is non-toxic, non-flammable, 
biodegradable, and recyclable [61]. Recently, several new solvents 
have been used to synthesize MOFs, including ionic liquids, deep 
eutectic solvents, and surfactants. 

In recent years, ionic liquids (ILs) have been investigated in the 
synthesis of MOFs. ILs are different from typical low-boilingpoint 
solvents in that they have negligible vapor pressure, are 
nonflammable, thermally stable, and have high ionic conductivity 
and polarity that enable them to dissolve metal salts and organic 

linkers, rendering them potential alternatives to traditional solvents 
[62, 63]. Also, deep eutectic solvents (DESs) are another possible 
alternative to conventional solvents. Although DESs have the same 
physicochemical characteristics as ILs, they are more advantageous 
than ILs in that they are cheaper, easier to prepare, not affected by 
the moisture in the air, and eco-friendly [64-66]. In addition, 
surfactants have been used in the preparation of MOFs. Surfactants 
are amphiphilic compounds that contain water-soluble (hydrophilic) 
and oil-soluble (hydrophobic) groups [61]. This remarkable feature 
enables them to enhance the solubility of both metal salts and 
organic ligands. Also, surfactant molecules can self-assemble in the 
reaction media into different aggregates, which can be useful for 
controlling the size and shape of the MOF’s crystal [67]. Moreover, 
similar to ILs and DESs, surfactants have low vapor pressure and 
high thermal stability [61]. 

MOF synthesis and functionalization for biomedical 
applications, especially drug delivery, faces several challenges, 
including controlling the pore dimensions and particle size, loading 
capacity, control over the release of cargo, biocompatibility, and 
physiological stability [25]. To this end, several strategies to 
incorporate different molecules such as drugs (or other 
biomolecules) in MOFs have been implemented, as shown in Fig. 
(1). The surface adsorption, covalent conjugation, and pore 
encapsulation strategies consist of mixing the synthesized MOF 
particles with drug-containing solutions. The difference between 
these strategies manifests in the type of drug-MOF interaction. In 
surface adsorption (attachment) and pore encapsulation, the 
dominant interactions are Van der Waals, π-π stacking, and 
hydrogen bonding, while drug encapsulation via covalent 
conjugation is characterized by chemical bonding between the drug 
and the MOF [15]. The leading drug-MOF interaction in the in situ 
encapsulation strategy is similar to pore encapsulation, however, the 
MOF-based nanocarrier’s synthesis and drug immobilization take 
place simultaneously, which is referred to as the one-pot synthesis 
[15]. Moreover, the biomolecule (e.g., proteins, amino acids, 
peptides, porphyrins, and cyclodextrins) can be directly incorporated 
into the MOF as the linker building block in the framework, resulting 
in a BioMOF [15]. 

2.2. MOFs for Biomedical Applications 
Due to MOFs' unique features, growing efforts have been 

dedicated to investigating these structures in various biomedical 
applications such as drug delivery, disease diagnosis, biosensing, 
and bioimaging. These attractive features include (1) a nanoscale 
size that enables easier cellular infusion, higher blood circulation 

 

Fig. (1). Schematic representation of the strategies to load drugs into MOFs. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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rates, faster kinetics for drug delivery, and being able to utilize 
the enhanced permeability and retention (EPR) effect [68, 69]; 
(2) biocompatibility, biodegradability, and chemical stability 
which means that MOFs can be safely deployed in different 
biomedical applications because they can be synthesized from 
biologically-safe metals and organic ligands [69] (BioMOFs can 
be directly synthesized from biomolecules that are naturally-
occurring in the human body; thus they can metabolize safely 
with little physiological side effects [70]), (3) high and 
permanent porosity and internal surface area that improve the 
loading efficiency of different molecules ranging from small to 
macro sizes [71], (4) easy chemical tuning and functionalization, 
which make MOFs versatile for a wide range of biomedical 
applications. Examples related to MOFs and MOF-based 
composites' potential use in biomedical applications are 
summarized in (Table 2) [72-109]. 

3. MOF-BASED DRUG DELIVERY SYSTEMS (DDSS) 
In recent years, the use of MOFs as a drug delivery system 

(DDS) has seen tremendous developments in terms of features and 
functionalities, which bodes well for the overall progress in the drug 
delivery field to achieve enhanced drug loading, faster/controllable 
release kinetics, and chemical/colloidal stability under physiological 
conditions. The design of MOF-based DDSs has evolved over the 
years from normal (non-controllable) to single/multi stimuli-
responsive DDS, and more recently into combined therapeutic and 
diagnostic (theranostic) platforms. This evolution is depicted in Fig. 
(2), which reveals that the classification of the systems depends on 
their design complexity. As the ability to optimize the design of the 
DDS in terms of functionality and tuning increases, the complexity 
of the system increases. On the other hand, the ability to control the 
drug release in the body also increases, in turn, improving drug 
delivery to the targeted cells while reducing the potential side effects 
of the drug. It is always desired to keep the design of the DDS as 
simple as possible, provided that it serves the requirements in order 
to scale up the design and deploy it in practical applications. In this 
section, the different MOF-based DDSs and representative examples 
of the recent developments in this field are discussed.  

Table 2. Examples of MOFs and MOF-based composites used in biomedical applications. 
Potential 

application Example Remarks Reference 

Disease 
diagnosis and 
drug delivery 

UiO-66 
UiO-66 was functionalized with polyethylene glycol (PEG). The PEGylated UiO-66 was loaded with 

dichloroacetic acid (DCA) [72] 

ZIF-90 ZIF-90 loaded with two anticancer drugs (DOX and 5-FU) [73] 

NH2-MIL-101(Fe) NH2-MIL-101(Fe) loaded with camptothecin (CAM) and functionalized by folic acid via surface modification [74] 

MIL-100(Fe) 
MIL-100(Fe) functionalized with Cyclodextrin (CD) via surface anchoring and PEG. The MOF was loaded with 

azidothymidine (AZT) [75] 

UiO-Cis 
Zr-based UiO MOF with amino-TPDC ligand was loaded with cisplatin and MDR gene-silencing siRNAs for 

ovarian cancer treatment [76] 

RIgG@Cu-MOF 
Cu-MOF loaded with rabbit antimouse immunoglobulin G antibody (RIgG) for colorimetric immunoassay for 

antigen mIgG [77] 

PCN-333 PCN-333 loaded with the enzyme tyrosinase (TYR) for the activation of Paracetamol (APAP) in cancer cells [78] 

Ni-MOF 
A Ni-MOF loaded with Hemin used as an artificial enzyme for the detection of human breast cancer cells (M- 

CF-7) [79] 

Cu-TCPP(Fe) 
2D Cu-TCPP(Fe)/GOx was constructed by the adsorption of GOx on a 2D Cu-TCPP(Fe) nanosheets for in vivo 

wound healing [80] 

Biosensing 

ZIF-8 
Glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes encapsulated in ZIF-8 (GOx&HRP/ZIF-8) 

for glucose detection [81] 

ZIF-8 thin film GOx and HRP enzymes incorporated in a ZIF-8 thin film for glucose detection [82] 

HP-PCN-224(Fe) 
GOx and uricase were immobilized on HP-PCN-224(Fe) to synthesize a mimic multienzyme system that was 

used for the colorimetric detection of glucose and uric acid [83] 

Fe-MIL-88B-NH2 GOx immobilized on Fe-MIL-88B-NH2 and was used for the colorimetric detection of glucose [84] 

In-AIP HRP immobilized on luminescent In-AIP nanosheets and was used for the detection of H2O2 and glucose [85] 

ZIF-8 
ZIF-8 loaded with bovine hemoglobin (BHb) using a one-pot synthesis approach. The composite was applied for 

the detection of H2O2 [86] 

AuNP@MIL-101(Cr) 
Gold nanoparticles (AuNPs) encapsulated in MIL-101(Cr) to form AuNP@MIL-101(Cr) and then loaded with 

GOx and LOx. The produced composite was used for the in vitro detection of glucose and lactate [87] 

R-UiO A dual emissive phosphorescence/fluorescence MOF designed for intracellular O2 sensing in live cells [88] 

EAUC 
Eu3+/Ag+@UiO-66-(COOH)2 MOF composite for the detection of H2S as a MOF-based platform for the tentative 

diagnosis of asthma [89] 

Zr-MOF Zirconium-based MOFs were synthesized as platforms for biosensing of lysozyme proteins [90] 
 



Potential 
application Example Remarks Reference 

Bioimaging 

ZIF-90 
ZIF-90 loaded with Rhodamine B (RhB) was used for mitochondrial ATP fluorescence imaging in live cells 

upon the disassembly of the MOF and the release of RhB [91] 

TP-PCN-58 

A Zr-based MOF (PCN-58) covalently modified with two-photon (TP) fluorescent organic probes to add 
fluorescence-responsive properties to the MOF, which serve to sense and image H2S and Zn2+ in live cells and 

tissue 
slices using two-photon microscopy 

[92] 

Bi-NU-901 
Bismuth NU-901 was tested as an X-ray computed tomography (CT) agent. The MOF was compared with a 
commercially available CT contrast agent (iodixanol), giving approximately 14 times better contrast than the 
commer- 

cial contrast agent 
[93] 

USPIO-MIL-100(Fe) 
MIL-100(Fe) MOF coated with maghemite (γ-Fe2O3) NPs was used in vivo as an efficient magnetic resonance 

imaging (MRI) contrast agent [94] 

Gd- BBDC-Glu 
Yb-BBDC-Glu 

Two nanoscale MOF composites synthesized using Gd and Yb as metal nodes, 5-boronobenzene-1,3-
dicarboxylic acid (BBDC) as the organic linker and coated with glucose. Gd- BBDC-Glu was used for MRI-

guided chemotherapy, while Yb-BBDC-Glu was used for X-ray CT imaging of the gastrointestinal tract. [95] 

Au@MIL-88(Fe) 
Gold nanorods encapsulated in MIL-88(Fe) were constructed for the in vivo imaging as imaging nanoprobes in 

X-ray CT/MRI/PAI systems [96] 

Fe3O4@UiO-66@WP6 

Core-shell nanocomposites in which Fe3O4 particles are the core and UiO-66 MOFs constitute the shell were 
constructed, followed by surface coating with carboxylatopillar [6]arene (WP6) that acts as nanovalves and gives 
the composite multistimuli-responsive release capability. The nanoplatform was used in MRI imaging and MRI-

guided cancer therapy. 
[97] 

HMONs-PMOF 
Hollow mesoporous organosilica NPs combined with polydopamine-MOF. The HMONs-PMOF nanoplatform 

exhibited dual-modality capacity, which enhanced the MRI and PAI sensitivity. [98] 

Fe3O4@ZIF-8 
Fe3O4 encapsulated ZIF-8 was utilized as a contrast agent. In vivo experiments showed that the composite 

material displayed contrast enhancement, distinguishing the normal and tumor tissues under MRI. [99] 

Antimicrobial 

Ceftazidime@ZIF-8 
The antibacterial agent Ceftazidime encapsulated in ZIF-8 MOF showed bactericidal activity against Escherichia 

coli (E. coli) upon sustained release of the antibacterial cargo [100] 

Ag3(3-phosphonobenzoate) 
Silver-based MOFs were tested as bactericidal material against 6 strains of bacteria by utilizing the release of 

silver ions [101] 

Cu-BTC Cu-BTC MOFs showed biocidal activity against fungus and yeast due to the release of copper ions. [102] 

ZIF-8 

A “MOFilter” mask was fabricated as proof of concept by sandwiching ZIF-8 NPs between two non-woven 
fabric (NWF) layers. The photocatalytic bactericidal performance of the mask was tested by subjecting it to 

synthet- 
ic pathogenic aerosols generated by the E. coli suspension. The construct showed a significant drop in the levels 

of bacteria in the mask in comparison to that of the commercial mask (N95) 

[103] 

Vancomycin@MOF-53(Fe) 
Antibiotic Vancomycin encapsulated in MOF-53(Fe) showed high antibacterial efficacy against Staphylococcus 

aureus (S. aureus) [104] 

PCN-224-Ag-HA 
Antimicrobial nanocomposites were prepared by coating Ag-loaded PCN-224 with hyaluronic acid (HA). These 

structures showed good biocompatibility with healthy cells while exhibiting an antibacterial effect toward S. 
aureus and MRSA bacteria. The nanoplatform also showed no significant cell cytotoxicity. [105] 

D-AzAla@MIL-100 (Fe) 
3-azido-D-alanine encapsulated in MIL-100(Fe) nanocomposite demonstrated the ability to target the cell walls 

of methicillin-resistant S. aureus (MRSA) bacteria in vivo. [106] 

ZIF-8-PAA-MB@AgNPs@Van-PEG 

The composite is constructed by loading ammonium methylbenzene blue (MB) into ZIF-8 MOF functionalized 
with Polyacrylic acid (PAA), followed by two modifications: Ag NPs and vancomycin/PEG. The material's 

bacte- 
ricidal property was demonstrated against three types of bacteria (E. coli, S. aureus, and MRSA). In vitro and in 

vivo experiments were conducted to prove the biocompatibility and antibacterial effect of the composite 

[107] 

GS5-CL-Ag@CD-MOF 
Ag NPs were embedded in cyclodextrins MOF (CD-MOF) and further functionalized via cross-linking with the 

GRGDS synthetic peptide to produce a nanocomposite named GS5-CL-Ag@CD-MOF. The nanocomposite 
exhibited a synergistic antibacterial effect and wound healing enhancement 

[108] 

PHY@ZIF-8 
Physcion (PHY) drug encapsulated in ZIF-8 MOF. The composite exhibited enhanced antibacterial activity in 

comparison to the pure PHY drug. [109] 
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3.1. Normal (non-controllable) MOF-based DDSs 
Normal MOF-based DDSs are simply produced by encapsulating the 
drug molecules into MOF pores via the loading strategies discussed 
in section 2.1. The system delivers the drug with minimum to no 
stimulus by either disintegrating the MOF structure in the tumor 
microenvironment (TME) or any other targeted cells, which will 
provide a burst release or by diffusion (or slow degradation) in which 
the release profile will be sustained over a longer period. The desired 
release rate will depend on the nature of the drug and the planned 
application [110]. 

Leng and coworkers investigated the loading and release 
efficiencies of MIL-53(Fe) for the anticancer drug Oridonin (Ori) 
[111]. The MOF achieved a loading efficiency of 56.25 wt.% and a  

 

high release (up to 91.75%)  in  a  7-day  period. Further studies 
of the cytotoxic effects of Ori-loaded MOFs on HepG2 cells 
compared to free Ori at the same concentrations showed that Ori-
loaded MOFs exhibited the same cell viability as that of the free Ori. 
In contrast, Ori-loaded MOFs required a more extended period to 
induce cell death, thus indicating the slow release of the agent from 
the MOFs and the low cellular uptake. 

Also, Lian et al. synthesized a PCN-333(Al) MOF from 
aluminum trimeric clusters and TATB (4,4’,4”-s-triazine-2,4,6-triyl-
triben-zoicacid) organic ligand using the solvothermal method 
[112]. The MOF was encapsulated with the tyrosinase (TYR) 
enzyme as a prodrug Paracetamol (APAP) activator, and the loading 
efficiency was 80 wt.%. The high loading efficiency could be 
attributed to the synergistic matching between the MOF’s pore size 
and the TYR size, which also provided good protection from leakage 
and degradation in the TME. Also, upon the release of TYR, APAP 
could be activated, which promoted a cytotoxic effect towards the 
cancer cells through inducing the generation of reactive oxygen 
species (ROS) and Glutathione (GSH) depletion. The results 
revealed that the TYR@PCN-333(Al) caused notable tumor 
regression in the presence of APAP for up to 3 days. 

In addition, to prevent the premature drug leakage from the 
carrier before reaching the diseased cells or to evade the immune 

system of the body, coating or functionalization of the MOF with 
other material such as silicon dioxide [113], lipids [114, 115], and 
exosomes [116] have been reported to improve the performance of 
MOFs as DDSs. For example, Illes et al. investigated the ability of 
MIL-88A to encapsulate a cocktail of drugs and attempted to control 
the release by coating the MOFs with a lipid bilayer (liposome) to 
act as a seal [117]. The loading capacity of MIL-88A with two 
chemotherapeutic drugs, namely Irinotecan and Floxuridine, was 
studied individually and as a dual drug mixture. The MOF’s 
individual loading capacity for each drug was 21 and 14.7 wt % for 
Irinotecan and Floxuridine, respectively. For the mixture of the 
drugs, a 0.5 mM solution was prepared for each drug and mixed 
(ratio 1:1) yielding a loading of 10.3 wt % for Irinotecan and 6.9 
wt% for Floxuridine (based on UV/Vis measurements). These  

 

results confirm the effectiveness of MIL-88A as a promising 
nanocarrier to deliver a cocktail of drugs. Illes et al. further 
compared the performance of MIL-88A with the coated liposomal 
MOFs (named Lip-MIL-88A). The MIL-88A was loaded with 
calcein and incubated for 2 hours in the liposomal solution, DOPC 
(1,2-dioleoyl- sn-glycero-3-phosphocholine). A sample of the Lip-
MIL-88A was used as a test for leakage against uncoated loaded 
MIL-88A and other samples treated with Triton X-100 and artificial 
lysosomal fluid (ALF) that induce the rupture of the liposomes 
coating. The coated MOFs showed no release even after several 
hours compared to uncoated MOFs that showed a fluorescence 
increase thus, proving the effectiveness of the liposomes seal. Both 
the Triton X-100 and ALF treated MOFs showed dramatic release 
compared to coated untreated MOFs and uncoated MOFs, which is 
explained by the release of calcein that diffused into the area between 
the MOFs and the liposomes’ inner surface. Cell release experiments 
were conducted to study the uptake of cells to Lip-MIL-88A by 
incubating the calcein-loaded nanocarriers with HeLa cells. 
Lysosomes started breaking up the coated MOF after 2 days and the 
release of calcein was observed. This established the ability of the 
hybrid liposomes/MOFs system to exhibit strong drug delivery 
capability without premature release. Further, single and multidrug 
MTT assays were conducted for Lip-MIL-88A loaded with 
irinotecan and floxuridine individually and as a mixture of the two 

 

Fig. (2). Developments trend in the MOF-based DDSs. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 



drugs. Multi-drug loaded Lip-MIL-88A reduced cell viability up to 
30.6%, surpassing single drug-loaded carriers. 

Furthermore, Wuttke et al. studied coating MIL-100(Fe) and 
MIL-101(Cr) MOFs via a lipid bilayer using a controlled solvent 
deposition exchange procedure [114]. Moreover, fluorescence 
release experiments were conducted on both calcein-loaded 
MOF@lipid nanocarriers, and no significant release over a onehour 
period was observed. In contrast, the addition of Triton X-100 
showed a rapid fluorescence increase, which confirmed the bilayer 
localization on the MOFs’ surface. The localization of the lipid 
bilayer was further explored utilizing a fluorescence confocal 
microscope. In vitro experiments were also conducted to find the 
cellular uptake of coated MIL-101(Cr) by bladder carcinoma. The 
cellular uptake was detected within 6 hours and lasted for 48 hours. 

In addition, Yang et al. focused on resolving the biological 
instability of Zirconium (Zr) MOFs [115]. The existence of 
phosphate in most biological systems limited the use of Zr-MOFs as 
drug carriers due to the high affinity of phosphate-to-metals 
compared to the organic linker. Consequently, this affinity can 
induce the substitution of the organic linkers by the phosphate group 
and result in the collapse of the MOF’s structure. In their work, Yang 
et al. reported coating a Zr-based porphyrinic MOF (PCN-223) with 
DOPC lipids in two stages; the first stage was dissolving the lipids 
in chloroform then stirring the resultant solution in the presence of 
the MOF for 24 hours. This resulted in the formation of a monolayer 
by the attachment of the free oxygen sites on the surface of MOF to 
the phosphate group of DOPC lipids. In the second stage, DOPC and 
cholesterol were dissolved in ethanol, and a water solution, followed 
by the addition of the monolayer coated MOFs and gradual 
evaporation of the solvents. The presence of the bilayer on PCN-223 
was confirmed using several methods including, FTIR, TEM, XRD 
and DLS. Samples incubated in phosphate-buffered saline (PBS) at 
pH 7.4 of phospholipid-coated and bare MOFs showed less than 3% 
degradation after 7 days in PBS for the coated MOFs, compared to 
the bare MOFs (about 89%). Various solutions of chemicals that 
nanocarriers can encounter under physiological conditions such as 
H2O2, H4PDP, and phosphate were exposed to 

both coated and uncoated MOFs. The bare MOFs showed significant 
degradation upon exposure to H2O2, H4PDP, and phosphate ions, 
whereas the coated MOFs showed no significant degradations in all 
the solutions, establishing the sealing ability and impermeability of 
the lipid bilayer. 

3.2. Stimuli-responsive MOF-based DDSs 
As shown in Fig. (3), a MOF-based stimuli-responsive DDS is a 

system that, upon a specific stimulus or a change in the physiological 
conditions, responds by undergoing a change in their characteristics 
and/or structure, making it possible for the release of the 
encapsulated cargo in a temporal, targeted, and dosage-controlled 
fashion. The changes may or may not be reversible depending on the 
parameters used in the system. The stimuli can be grouped into two 
main categories; endogenous (internal), such as pH, redox, ATP, 
ions, etc., or exogenous (external), such as light, heat, 
electromagnetic, magnetic fields, ultrasound, etc [118, 119]. This 
section discusses the different types of stimuli-responsive MOF-
based DDSs, along with some examples. A summary of 
representative examples of stimuli-responsive MOF-based DDSs 
and their loading/release efficiencies is presented in (Table 3) [120-
172]. 

3.2.1. Endogenous Stimuli-responsive Drug Delivery 
Endogenous stimuli refer to the differences between the 
physiological properties of the target diseased cells and the 
surrounding healthy cells. For example, cancerous cells have a 
different tumor microenvironment (TME) compared to the 
surrounding normal cells in terms of pH, redox state, and the 
nature and amounts of  ions (or other biomolecules) [173], and thus 
these gradients can be exploited as triggers for the targeted release 
of the encapsulated drug from the DDS against the target cells. 
However, endogenous stimuli-responsive DDSs may suffer from a 
low level of flexibility and control, especially when it comes to 
timely drug delivery since the release of the drug from the DDS will 
be triggered as soon as it reaches the stimuli-containing target. One 
approach to resolve this issue is by modifying the MOF’s surface by 
coating with polymers such as polyethylene glycol (PEG) [174], 
which will extend release time by slowing down the disintegration 

 

Fig. (3). Schematic illustration of MOF-based stimuli-responsive DDSs. (A higher resolution / colour version of this figure is available in the electronic copy 
of the article). 
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of the DDS in the physiological environment. Another modification 
strategy is the functionalization of the MOF with molecules that act 
as gates, essentially preventing the release of the drug from the DDS 

until a particular endogenous stimulus such as pH, ATP, enzyme, 
etc. triggers the “unlocking” of the “gate,” thus allowing the release 
of the drug [149, 175]. 

 

 

Table 3. Representative examples of stimuli-responsive MOF-based DDSs and their loading and release efficiencies. 
  

MOF-based DDS Drug (Cargo) Loading strategy Stimuli type Loading* Release* Reference 

IRMOF-3@Gel DOX, CEL Pore encapsulation pH DOX = 46.85 
CEL = 26.47 

DOX ≈ 80 
CEL = 65.77 [120] 

CCM@ZIF-L CCM In situ Encapsulation pH 98.21 81.2 [121] 

DOX@CMC/MOF-5/GO DOX Pore encapsulation pH 6 26 [122] 

ZGGO@ZIF-8-DOX DOX Surface adsorption pH 93.2 47.8 [123] 

UCNPs@MIL-PEG DOX Surface adsorption pH 60 58 [124] 

APT-Mn-ZIF-90 5-FU Surface adsorption pH 67.93 90 [125] 

FZIF-8/DOX-PD-FA DOX Pore encapsulation pH 258.8 mg/g 57 [126] 

Ca/Pt(IV)@pHis-PEG Pt(IV) In situ Encapsulation pH – 95 [127] 

Sgc-8 aptamer-PDA-DOX/ZIF-8 FA–
PDA–DOX/ZIF-8 DOX Pore encapsulation pH 68.78 ≈ 100 [128] 

 



MOF-based DDS Drug (Cargo) Loading strategy Stimuli type Loading* Release* Reference 

ZnO-DOX@ZIF-8 DOX In situ Encapsulation pH 11.2 80 [129] 

FUGY/DOX DOX Surface adsorption pH 43.8 48.6 [130] 

Cu-MOF/MTX@GM MTX Pore encapsulation pH 68 67.52 [131] 

5-FU@Dy(III)-MOF 5-FU Pore encapsulation pH 20.6 75 [132] 

5-FU@ Zn-MOF 5-FU Pore encapsulation pH 36.82 86.5 [133] 

DOX@ZIF-8@AS1411 DOX In situ Encapsulation pH 0.1 mg/mg 80 [134] 

DOX@ZIF-8/PEG DOX In situ Encapsulation pH 10 ≈ 100 [135] 

BSA/DOX@ZIF-8 DOX In situ Encapsulation pH 19 80 [136] 

[Zn2(ad)2(fmdb) (H2O)](DMF)3 5-FU Pore encapsulation pH 44.6 76.3 [137] 

URODF DOX Covalent conjugation pH 6.0 79.8 [138] 

DOX@PCN-224-DNA DOX Pore encapsulation pH 50 μg/mg 45 [139] 

5-FU@nano-1 5-FU Pore encapsulation pH 34.32 70.1 [140] 

PEG-FA/(DOX+VER)@ZIF-8 DOX, VER In situ Encapsulation pH 
DOX = 8.9 
VER = 32 

DOX = 
41.61 VER = 

76.48 
[141] 

Fe/La-MOF@SiO2-NH2 DOX Surface adsorption pH 150.24 mg/g 95 [142] 

ORI@MOF-5 ORI Pore encapsulation pH 52.86 87 [143] 

DOX@CS/Bio-MOF DOX Pore encapsulation pH 92.5 93 [144] 

UiO-66-350-PA-Pt Cisplatin Covalent conjugation Ion (phosphate ions) 25.7 71 [145] 

NU-1000 Insulin Pore encapsulation Ion (phosphate ions) 40 90 [146] 

DOX@MOF-Au-PEG DOX Pore encapsulation Ion (phosphate ions) 247.4 μg/mg 100 [147] 

UiO-68/hydrogel DOX Pore encapsulation ATP 79.1 nmol/mg 100 [148] 

UiO-68-AS1411 DOX Pore encapsulation ATP 46.5 nmol/mg 100 [149] 

ZIF-90 Cas9 In situ Encapsulation ATP > 90 > 90 [150] 

DOX@PCN-224-HA DOX Pore encapsulation Redox (Enzyme) 108 mg/mg – [151] 

HA/α-TOS@ZIF-8 α-TOS In situ Encapsulation Redox (Enzyme) 43.03 74 [152] 

CCM@Zr-DTBA CCM Pore encapsulation Redox (GSH) 78.7 85 [153] 

PEGNH2@5-FU-UiO-AZB 5-FU Pore encapsulation Light (UV) 15 – [154] 

AuNR@MOFs@CPT CPT Pore encapsulation Light (NIR) 25.57 30 [155] 

(ZIF-8,Tb20)@AuNP 5-FU Pore encapsulation Temperature ≈ 27 > 40 [156] 

Fe-BTC/MSN@DOX Zn-
BTC/MSN@DOX DOX In situ encapsulation pH, liposome 80 ≈ 100 [157] 

ZIF-8@DOX@Organosilica DOX In situ Encapsulation pH, redox 41.2 85 [158] 

PUWPFa 5-FU Pore encapsulation pH, temperature 0.61 μmol/mg ≈ 70 [159] 

MTX@ Zn-GA MTX In situ Encapsulation pH, temperature 12.85 ≈ 100 [160] 

5-FU@Zn-cpon-1 5-FU Pore encapsulation pH, temperature 44.75 96 [161] 

MTX@Zn-TBDA MTX In situ Encapsulation pH, temperature 12.59 100 [162] 

ICG@ZIF-8-DOX DOX Pore encapsulation pH, NIR 1.71 57 [163] 

DOX/Pd@Au@ZIF-8 DOX In situ encapsulation pH, NIR 39.32 mg/g 70 [164] 

H-ZIF-8/PDA-CD DOX, HCPT Pore encapsulation pH, NIR DOX = 42 
HCPT = 9.8 

DOX ≈ 86 
HCPT ≈ 56 [165] 

ZIF-8/GQD DOX In situ Encapsulation pH, NIR 47 μg/mg 80 [166] 

poly(DH-Se/PEG/PPG urethane)@MOF DOX Pore encapsulation Light, redox 84.2 75 [167] 

GSNO/Ce6@ZIF-8@Cytomembrane GSNO, Ce6 In situ encapsulation pH, US GSNO = 53.1 
Ce6 = 72.8 Ce6 ≈ 80 [168] 

CP5-capped UiO-66-NH-Q 5-FU Pore encapsulation Zn+2, temperature 115 μmol/g ≈ 70 [169] 

CP5-capped UiO-66-NH-A 5-FU Pore encapsulation Ca+2, pH, temperature 247 μmol/g 80 [170] 

Fe3O4@UiO-66@WP6 5-FU Pore encapsulation pH, temperature, ions (Ca2+, Zn2+) 0.83 μmol/mg 30 [97] 

PD/M-NMOF DOX, MB In situ encapsulation Magnetism, light DOX = 0.69 
MB = 4.3 

DOX = 95 
MB = 72 [171] 

ZIF-8@ABFs RhB In situ Encapsulation pH, magnetism – – [172] 

* Unless otherwise stated, the unites of Loading and Release are percent (%) 
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3.2.1.1. pH-triggered Drug Release 
The most common stimulus employed in controlled drug 

delivery is pH. The pH of human blood is around 7.4, along with 
most healthy tissues around the body, contrary to the more acidic 
nature of the extracellular TME, and its intracellular compartments 
[176]. These pH gradients could be exploited by acting as a trigger 
for many nanocarriers, including MOF-based DDSs that incorporate 
pH-sensitive groups in their structure to release their payload [177, 
178]. For example, a study by Garcia et al. [179], utilized 
aminofunctionalized MOFs MIL-100 and MIL-101 as a pH-
responsive nanoplatform to load the chemotherapeutic drug 
camptothecin (CPT) by covalent bonding. CPT is a very cytotoxic 
drug with effective antitumor activity. In vitro experiments showed 
no significant release at physiological pH levels (7.4), compared to 
a pH level of 5, where the release was highly effective. Also, more 
recently, Liu et al. utilized a water-stable copper-based MOF for the 
pH-triggered release of 5-Fluorouracil (5-FU) [180]. The 
synthesized MOF was loaded with the drug 5-FU through surface 
adsorption and the loading efficiency was 37.22 wt%. The release of 
the loaded MOF was simulated in PBS at 37 °C at three different pH 
levels (7.4, 6.8 and 5.8). Experimental results showed that the release 
at low pH was much more effective than at 7.4. Furthermore, the 
MTT assay showed that the prepared DDS exhibited no obvious 
cytotoxicity, was biocompatible, and showed good anticancer 
activity against A549 and HeLa cell lines. 

3.2.1.2. Redox-triggered Drug Release 
In recent studies, the redox potential difference between 

intracellular and extracellular regions has been utilized as a 
triggering mechanism in stimuli-responsive DDSs. Compared to 
normal healthy tissues, tumor cells have higher concentrations of 
glutathione (GSH), which leads to an elevated redox potential in the 
TME [181]. Intracellular GSH, as a reducing agent, can be oxidized 
when encountering disulfide bonds, which undergo a rapid bond 
cleavage [119]. This type of bond could be incorporated in the MOF 
via surface modification to produce a redox-responsive DDS. Upon 
encountering the high GSH concentration, these disulfide bonds will 
be cleaved, causing the DDS to disassemble and release the 
encapsulated drug [181]. Various disulfide bond-containing 
molecules, e.g., methacrylate-disulfide-camptothecin (CPT), 4,4′-
dithiobisbenzoic acid (4,4′-DTBA), and 3,3'-
disulfanediyldipropanoyl chloride (DTPC), have been incorporated 
into MOFs through crosslinking or surface modification [153, 182, 
183]. The first attempt to design a redox-responsive MOF-based 
DDS was reported by Lei et al. [153]. The research group developed 
a novel method to study the effectiveness of a redox stimuli-sensitive 
MOF in delivering curcumin (CCM) as a chemotherapeutic drug. 
The MOF was synthesized with zirconium as the metal component 
and 4,4′-dithiobisbenzoic acid (4,4′-DTBA) as the organic linker. 
The disulfide bonds in 4,4′-DTBA act as oxidizers to GSH, which is 
often highly concentrated in the tumor cells. The drug release was 
tested both in vitro and in vivo. The redox-responsiveness was tested 
in vitro in PBS containing different concentrations of GSH at pH 
levels of 7.4 and 5.5. The results showed successful release at 

both pH levels; however, with increasing concentrations of GSH 
in PBS, the release of CCM from CCM@MOF-Zr(DTBA) 
accelerated, indicating the capability of the DDS in stabilizing 
CCM under normal physiological conditions while being able to 
release the drug at the tumor site. Also, the in vivo antitumor 
efficiency studies showed a successful reduction in tumor size 
compared to injecting free CCM. In another study by Xue et al. 
[183], the group designed cubic gel particles (ssCGP) with GSH-
responsive features by crosslinking cyclodextrins-based MOF 

(CD-MOF) templates with DTPC. The DDS exhibited a high 
loading capacity when loaded with DOX in a period of 40 
minutes (45 mg DOX/g DDS). High drug release was achieved 
in a period of 2 hours in a 100 mM GSH medium. 

3.2.1.3. Enzyme-triggered Drug Release 
Many enzymes have been recently exploited in MOF-based 

DDSs as a triggering stimulus, such that the drug will be released 
upon the disintegration of the enzyme-responsive DDS in the 
enzyme-rich TME by the redox reaction between the enzyme and 
the MOF [152]. For example, Sun et al. constructed an enzyme-
responsive DDS based on ZIF-8 MOF with α-Tocopherol 
succinate (α-TOS) loading capacity of 43.03 wt.% [152]. The 
loaded MOF was prepared via a one-pot synthetic route and then 
coated with hyaluronic acid (HA) layer to form the HA/α-
TOS@ZIF-8 nanoplatform. The release was achieved through 
the breakage of the HA layer by hyaluronidase (HAdase) 
enzymes in the TME, which exposes α-TOS@ZIF-8, hence 
leading to the disintegration of ZIF-8 to release the encapsulated 
α-TOS. Similarly, Kim et al. reported the release of encapsulated 
DOX from HA-coated PCN-224 via an enzyme-mediated 
mechanism [151]. The in vitro drug release experiment was 
carried out in an aqueous solution that contained HAdase 
enzymes, while the control experiment was HAdase free. The 
results showed that HAdase enzymes degraded the HA layer 
attached to the PCN-224 surface, leading to drug release. On the 
other hand, in the absence of HAdase enzymes from the aqueous 
solution, the HA-coated PCN-224 displayed limited DOX 
release, suggesting that HA coating provided efficient blocking 
of DOX premature release. 

3.2.1.4. ATP-triggered Drug Release 
Another stimulus that can be utilized for the release of drugs 

is Adenosine triphosphate (ATP), which is a highly active 
compound that exists in living organisms, acting as a reservoir of 
energy necessary for many biological processes in a living cell. 
Usually, ATP is overexpressed in cancerous cells, which can be 
exploited for the ATP-responsive release of drugs in the targeted 
cells [184]. For instance, Chen et al. prepared a DOX-loaded 
ATP-responsive DDS by coating UiO-68 with a polyacrylamide 
hydrogel layer that can degrade by forming an ATP-aptamer 
complex, which allows the release of the drug [148]. DOX 
loading was 79.1 nmol/mg, while random leakage was limited to 
8%. More recently, Yang et al. prepared an ATP-responsive ZIF-
90 to deliver Cas9 (a protein used in genome editing) [150]. The 
DDS encapsulation efficiency was 90%, and the intracellular 
delivery experiments showed around 90% release of the protein. 
The DDS was also used to demonstrate the delivery of cytotoxic 
Ribonuclease A (RNase A), which showed remarkable tumor cell 
growth inhibition. Moreover, the ATP-mediated release 
mechanism was determined to be due to the formation of 
coordination bonds between Zn2+ and ATP, leading to breaking 
the Zn2+/imidazole coordination bond, and hence the disassembly 
of the MOF. 

3.2.1.5. Ions-triggered Drug Release 
The presence of ions in the body (e.g., phosphates, calcium, 

potassium, zinc, etc.) can be utilized as bases for the design of ion-
responsive DDSs. The ion-triggered release can be achieved by 
anion exchange with the metal cluster that leads to the breakage of 



the MOF structure and the release of the encapsulated drug. Also, 
the MOF-based DDS can be functionalized with an ion-responsive 
group that possesses a high binding affinity with ions [169]. An 
example of an ion-triggered drug release was reported by Lin et al. 
where they designed a phosphate-responsive DDS for the delivery 
of the anti-neoplastic drug cisplatin by the coordination of –PO3H2 

(from phosphonoacetic acid) to the metal sites Zr4+ of UiO-66 [145]. 
Cisplatin molecules were incorporated into the modified UiO-66 via 
covalent conjugation with a loading efficiency of 25.7 wt.%. 
Cisplatin release was investigated in vitro in 10 mM PBS and 7.4 
pH. The reported release, after 2 h, was 71%. The release mechanism 
could be attributed to the competitive coordination of phosphate, 
hydrogen phosphate, and dihydrogen phosphate ions from the PBS 
to the Zr6 centers, causing the breakage of the MOF’s structure and 
release of the therapeutic agent. 

3.2.2. Exogenous Stimuli-responsive Drug Delivery 
Exogenous stimuli-responsive DDSs employ stimuli that are 

applied outside the body, such as light, magnetic field, ultrasound, 
etc. These stimuli have a major advantage over their endogenous 
counterparts by offering a better spatiotemporal/dosage control of 
the drug release from the DDS. Another advantage is that drug 
release is often independent of the physiological conditions of the 
human body, minimizing variable results among different 
individuals. Using external stimuli allows us to start and stop the 
drug release by activating and deactivating the stimulus, the same 
way an on/off switch works. One of the drawbacks of this type of 
DDSs is the absence of autonomy, where drug release cannot be 
initiated or controlled without the external stimuli as opposed to the 
endogenous stimuli-responsive systems. In addition, the degree of 
external stimuli (e.g., light, magnetic field, or ultrasound) 
penetration into the body to reach the target cells and activate the 
drug release from the nanocarrier poses a significant challenge. In 
addition, with respect to the magnetic-responsive DDSs, the 
performance of the composite is dependent on the amount of the 
magnetic-sensitive particles incorporated into the MOF. Thus a large 
amount of the samples may be needed for the magnetic stimulus to 
trigger drug release [110]. 

3.2.2.1. Light-triggered Drug Release 
Light-triggered drug release is widely investigated in stimuli-

responsive DDSs design thanks to the controllability, non-
invasiveness, and ease of operation it offers [119]. Light-responsive 
DDSs contain photosensitive molecules that, upon illumination, 
convert light (electromagnetic radiation) into a different form of 
energy, causing conformational changes or bond cleavage in the 
MOF’s structure, which leads to drug release [185]. Drug delivery 
can be either in a single release (upon the disintegration of the DDS) 
or in multiple stages when the DDS acts as an on/off switch upon 
activation/deactivation of the light-stimulus [110]. Also, the 
photosensitive material utilized in the design of the DDSs can be 
either an organic ligand that is part of the building block of the MOF 
structure (e.g., porphyrin, azobenzene dicarboxylate, and 
indocyanine green) [154, 167, 186] or nanoparticles (NPs) that are 
incorporated into the MOF (e.g., silver/gold-based NPs, 
upconversion (NIR to visible light) nanoparticles (UCNP), etc.) 
[164, 187, 188]. In addition, the therapeutic strategies achieved by 
light-responsive DDSs can be categorized into either photodynamic 
therapy (PDT) and/or pho- 
tothermal therapy (PTT). In PDT, the activation of photosensitizers 
leads to energy transfer to the target cell generating reactive oxygen 
species (ROS), which can induce cell apoptosis and cell necrosis in 
the target tissue [189]. In the case of PTT, the energy absorbed is 

converted into heat. When it comes to infections and cancerous 
tumors, elevated temperatures denature cell proteins, inhibit DNA 
replication (growth inhibition), and cause membrane rupture, killing 
the pathogens and cancer cells [189]. More importantly, for drug 
delivery purposes, elevated temperatures due to light irradiation 
cause the destabilization of the MOF’s structure leading to drug 
release. An example of a light-responsive MOF-based DDS design 
was reported by Roth Stefaniak et al. [154]. They prepared an 
intelligent DDS based on a UiO-type MOF using the photosensitive 
ligand azobenzene dicarboxylate (AZB) for the light-responsive 
release of the anticancer drug Fluorouracil (5-FU). The MOF was 
further modified by an amine-functionalized polyethylene glycol 
(PEG-NH2) coating via a post-synthetic modification route to 
enhance the aqueous stability, biocompatibility, and half-life of the 
drug-encapsulated MOF. Due to this unique modification, the 
modified UiO MOF exhibited good stability in the dark and released 
the drug upon structure degradation when irradiated with 340-nm 
UV light. However, it should be noted that UV light as a stimulus is 
not suitable in real applications due to its ionizing nature and hence 
bioincompatibility. For this reason, visible light or near-infrared 
(NIR) sources have been investigated as a stimulus in light-
responsive DDSs. For example, Zeng et al. constructed NIR-
responsive DDS consisting of gold nanorods (AuNR) as a core and 
porphyrinic MOF as the shell [155]. The drug Camptothecin (CPT) 
was encapsulated into the nanocomposite with a loading efficiency 
of more than 25%. After 24 hours, less than 10% of the encapsulated 
CPT was released, but the rate of release increased to around 30% 
when the NIR-stimulus was applied at a pH of 5.0 and 808 nm NIR 
laser. Furthermore, the DDS exhibited synergistic photodynamic and 
photothermal effects for damaging the cancer cell in vitro and 
hampering tumor growth in vivo. 

3.2.2.2. Other Exogenous Stimuli for Drug Release 
Other utilized stimuli used to trigger drug release from 

MOFbased DDSs include ultrasound (US), magnetic fields, and 
temperature. The US-triggered release consists of sound waves at 
frequencies above the hearing range of humans (>20 kHz). These 
non-invasive waves induce drug release from the DDS via 
thermomechanical effects generated by sound waves and acoustic 
cavitation phenomena [190]. This happens because the oscillatory 
growth and collapse of the microbubbles (cavities) formed near the 
nanocarrier interface induce high shear stresses capable of 
destabilizing the nanocarrier’s structure, releasing the drug in the 
process. Also, the cavitation phenomenon was found to enhance 
vessel permeability, thereby increasing the cellular uptake of the 
drug [118]. In addition to cavitation (mechanical effects), ultrasound 
can induce hyperthermia, which is currently researched to induce 
drug delivery. 

Magnetic-responsive DDSs offer an attractive option to targeted 
drug delivery. The use of a magnetic field allows guiding the DDS 
to a specific area (e.g., tissues, organs, etc.), offering more 
concentrated and targeted drug release, thereby enhancing the 
treatment efficacy [110]. Also, the conversion of magnetic energy to 
thermal energy provides an enhanced therapeutic effect by inducing 
tumor hyperthermia [189]. This type of MOF-based DDS is 
constructed either using a magnetic MOF [191, 192] or incorporating 
magnetic-sensitive NPs such as iron oxides NPs into the structure of 
the MOF via encapsulation (core-shell composites) [193-196]. 
Furthermore, thermal-responsive MOFs can be applied to trigger 
drug release from MOF-based DDSs, since higher temperatures lead 
to the destabilization of the MOF’s structure and weak- 

en the interaction between the MOF and the encapsulated cargo. 
Through implementing this strategy, Silva et al. fabricated a 
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thermal-responsive core-shell nanocomposite that consists of a gold 
NPs (AuNPs) core surrounded by ZIF-8 with an incorporated 
trivalent Terbium (Tb3+) shell [156]. The nanocomposite was loaded 
with 5-FU and achieved controlled drug release at physiological 
temperatures. Light irradiation (at 514.5 nm and 700 mW cm−2) was 
employed for thermally-triggered release; hence thermal-responsive 
MOF-based DDSs can be tentatively combined with light-
responsive DDSs under the same classification. 

3.2.3. Multistimuli-responsive Drug Delivery 
Multistimuli-responsive DDSs refer to systems that utilize two 

or more triggering mechanisms to achieve targeted and controlled 
drug delivery. In order to improve the efficiency of drug delivery, 
DDSs are usually designed to respond to more than one stimulus, 
either of the same class (endogenous or exogenous) or a combination 
of endogenous/exogenous stimuli. An example of multi stimuli-
responsive MOF-based DDSs, a pH/US-responsive nanocomposite, 
was designed by An et al. [168]. The DDS was fabricated by 
encapsulating S-Nitrosoglutathione (GSNO) and chlorin e6 (Ce6) 
into ZIF-8 and then coating it with the cytomembrane of a cancerous 
cell. According to their study, the DDS (dubbed GCZ@M) exhibited 
excellent biocompatibility, good retention in tumor tissue and 
provided a sustainable pH/US-triggered release of both GSNO and 
Ce6. The US-triggered release of GSNO and Ce6 into tumor cells 
leads to the release of nitric oxide (NO) gas from GSNO and ROS 
generation from Ce6, which react with each other, producing highly 
reactive ONOO− molecules that significantly increased anticancer 
effects. Also, the sonodynamic therapy (SDT) effects were enhanced 
due to the longer and effective tumor hypoxia relief realized by US. 

Moreover, an interesting trend in multi stimuli-responsive DDSs 
is the incorporation of supramolecules such as cyclodextrins [197-
199] and pillararenes [169, 170, 200, 201] that endow the MOF with 
useful host-guest features. For example, Wu et al. synthesized a 
triple-responsive UiO-66-NH2 MOF-based DDS [97]. The UiO-66-
NH2 MOF was encapsulated with Fe3O4 NPS followed by surface 
modification with 1-(6-bromohexyl) pyridinium bromide (Py) and 
the loading of the anti-neoplastic agent 5-FU. The surface 
functionalization with Py allowed for the anchoring of carboxylate 
pillar [6]arene (WP6) via dynamic host-guest interactions. The WP6 
molecules act as nanovalves that prevent the premature release of the 
loaded drug and grants the DDS the capability of targeted, multi 
stimuli-responsive drug release over a prolonged time period in 
response to pH changes, temperature variations, and competitive 
ions (Ca2+ and Zn2+). 

The combination of a magnetic field and other stimuli (e.g., light 
or pH) has also been reported [171, 172]. Sharma et al. synthesized 
magnetic MOF (MIL-88B) encapsulating the chemotherapy drug 
DOX and the photosensitizer methylene blue (MB) dye for the 
magnetic-guided chemotherapy and light-activated PDT [171]. 
Their findings showed that the therapeutic potential of the dual drug-
loaded MOF was enhanced by the magnetically-targeted delivery to 
the cells. Moreover, the ability to guide the DDS toward a specific 
part of the body under magnetic-field control is opening the door to 
a new territory in DDSs design. Recently, Wang et al. designed a 
motile MOF that can act as self-propelled micro robot (MOFBOT) 
under a magnetic field to deliver drugs to specific targets in the body 
[172]. The MOFBOT was constructed as a coreshell structure from 
artificial bacterial flagella (ABF) with a helical microstructure and 
coated with biocompatible and pH-responsive ZIF-8. The 
researchers loaded the ZIF-8 matrix with the fluores- 

cent rhodamine B (RhB) dye as a proof of concept; however, this 
approach will lead to new advancements in developing micro 
robotics for drug delivery applications. 

3.3. Multifunctional MOFs as Theranostic Platforms 
MOF-based theranostic platforms refer to systems that combine 

therapeutic and diagnostic functionalities in a single system. In 
essence, they are stimuli-responsive DDSs combined with 
diagnostic imaging capabilities. These systems promise various 
advantages such as better/faster diagnosis, imaging-guided drug 
delivery, and reduced side effects by enabling the real-time 
monitoring of drug release, which will provide a treatment tailored 
to the individual needs of the patients [202, 203]. The approach to 
design these platforms depends on the desired imaging technique 
(modality). For example, in magnetic resonance imaging (MRI), 
incorporation of magnetic-responsive material, either as part of the 
MOF’s structure as a metal cluster (e.g., iron) [204] or by 
encapsulating magnetic NPs [23, 205], enables the platform to be 
used as contrast agents. Similarly, the incorporation of luminescent 
material in the MOF, either as ligands [24] or by encapsulating 
fluorescent molecules/NPs [206, 207], endow the platform with 
fluorescence imaging capabilities. Herein, some representative 
examples of recently developed MOF-based theranostic platforms 
are highlighted. 

Recently, Mukherjee et al. prepared a nanocomposite based on 
MIL-53(Fe) for theranostic applications [208]. The platform was 
fabricated by conjugating UCNPs (NaGdF4:Yb/Er) on the surface of 
MIL-53(Fe) and loading it with DOX. At the same time, folic acid 
(FA) was also conjugated to the surface of MIL-53(Fe) to enhance 
the targeted delivery of the nanocarrier. Drug release was studied in 
PBS (pH 7.4 and 5.2), and the nanocomposite achieved a 67.5% and 
80% release after 48 hours at pH 7.4 and 5.2, respectively. 
Furthermore, the nanocomposite exhibited excellent 
biocompatibility, strong antitumor performance, and cancer-
improved cellular uptake according to the cytotoxicity and 
intracellular uptake studies. Because of the presence of UCNPs, the 
nanoplatform demonstrated good fluorescence and magnetic 
characteristics, indicating that it can be used in fluorescence 
imaging-guided drug delivery and as an MRI contrast agent (T1 and 
T2 modes). 

In another study, Zhang et al. designed a multimodal theranostic 
platform that can be implemented in MRI-guided chemotherapy and 
fluorescent imaging [95]. The nanoplatform was synthesized using 
Gadolinium (Gd) metal ions and 5-boronobenzene-1,3-dicarboxylic 
acid (BBDC) ligand and loaded with DOX with a loading efficiency 
of 43.2%. Further, to enhance the biocompatibility and improve the 
active targeting of tumor cells, the surface of the MOF was coated 
with glucose. The enhanced surface coating with glucose acted as a 
pH-responsive layer preventing premature leakage of DOX and 
allowing the gradual drug release in comparison to the uncoated one. 
The group also extended the design strategy by replacing Gd with 
Ytterbium (Yb). The MOF was also coated with glucose and 
demonstrated the pH-responsive release of DOX. The Yb-MOF-Glu 
MOF confirmed its ability as an efficient x-ray computerized 
tomography (CT) contrast agent, thanks to the high X-ray 
attenuation exhibited by Yb. As a demonstration, the group utilized 
Yb-MOF-Glu to create 3D-rendering CT images of the 
gastrointestinal tract. 

Another imaging technique that can be exploited through MOF-
based theranostic platforms is photoacoustic imaging (PAI). This 
technique utilizes the detection of sound waves generated upon light 
excitation of a material (photoacoustic effect). For instance, Zhang 
et al. reported curcumin-loaded MIL-100(Fe) for the construction of 
a theranostic platform that combines PAI functionality with dual 
chemo-photothermal therapy [209]. First, curcumin was loaded into 
MIL-100(Fe)via pore encapsulation (MC NP); then, the loaded MOF 
was coated with polydopamine-modified hyaluronic acid (HA-PDA) 



to improve the biocompatibility and colloidal stability of the 
composite (MCH NP) under physiological conditions. Moreover, 
HA-PDA coating improved the targeted drug delivery due to the 
interaction between HA and the overexpressed receptors (CD44) on 
the surface of the cancerous cells. Furthermore, the addition of the 
HA-PDA coating enhanced the NIR absorption of the 
nanocomposite compared to MIL-100(Fe) and MC NPs, leading to 
higher photothermal conversion efficiency. This was demonstrated 
by the increase in the temperature of the solution containing MCH 
NPs (ΔT was 38.9 °C), which was higher than in the case of MIL-
100(Fe) and MC NPs (ΔT was negligible and 25.2 °C, respectively). 
Besides, the presence of HA-PDA added photoacoustic capability to 
the nanoplatform, which enabled the PAI-guided chemo-
photothermal therapy. 

Moreover, a dual-modality (MRI and PAI) theranostic system 
for combined chemo-photothermal therapy was constructed by Chen 
et al.via merging Fe-based MOF with hollow mesoporous 
organosilica nanoparticles (HMONs) with a PDA interlayer [98]. 
The DOX (used for its therapeutic effect) and indocyanine green 
(ICG) (used for its photothermal therapy) were successfully loaded 
into the composite with an encapsulating capacity of 11.88%. The 
synthesis of the composite consisted of first preparing HMONs, 
followed by the surface modification with PDA to obtain HMONs-
PDA. Then, Fe-based MOF was grown on the surface via the layer-
by-layer deposition method, and finally, the formed composite was 
PEGylated using PEG-NH2. DOX was loaded in the interior cavity 
of HMONs prior to the surface modification with PDA, while ICG 
was deposited on the outer surface of the composite after the 
PEGylation step. The loaded nanoplatform (dubbed DI@HMONs-
PMOF) exhibited a pH/NIR stimuli-responsive drug release. Also, 
the platform showed the utility of a dual MRI and PAI functionality 
thanks to the Fe ions coordinated with PDA, as well as the ICG 
molecules on the MOF surface. Finally, the dual chemo-
photothermal therapeutic efficiency was proven both in vitro and in 
vivo. 

4. FUTURE OUTLOOK AND CHALLENGES 
This review has shown the great potential of novel MOFs in 

biomedical applications, especially in drug delivery. Their attractive 
features such as large surface area, large pore volume, thermal and 
chemical stability, excellent loading capacities, and structural 
tunability led to the remarkable progress, witnessed in recent years, 
in the field of MOF-based DDSs and theranostic platforms. The 
current status of research and developments in relation to MOFbased 
biomedical devices promises an exciting future, where advanced 
systems that offer the capability of on-demand DDSs, self-regulated 
(autonomous) DDSs, micro-and nano-robotics will undoubtedly lead 
to substantial improvements in human healthcare. 

Although remarkable developments have been made in 
MOFbased DDSs, significant hurdles and challenges still exist and 
must be tackled before moving to clinical trials. First, the 
biocompatibility of MOF-based DDSs is a major challenge that must 
be addressed. The in vivo short-term and long-term toxicity of MOFs 
needs to be investigated thoroughly. Their degradation mechanisms 
under physiological conditions must also be studied in vivo, starting 
from absorption, going through distribution, metabolism, and ending 
with excretion. Moreover, to aid in studying the degradation 
mechanism, the pharmacokinetic/pharmacodynamic behavior in the 
human body must be investigated and modeled. Another major 
challenge in the design of MOF-based DDSs is their 
colloidal/chemical stability. The design of the DDS must take into 
account 

the stability of the platform under physiological conditions. To 
enhance drug delivery efficacy, the DDS's physicochemical 
properties must be optimized to avoid aggregation and premature 
immune clearance, enhance blood circulation, and prevent 
premature drug release. 

The synthesis of MOFs requires more environment-friendly 
methods. As discussed in the synthesis section, one of the most 
challenging aspects of synthesizing MOF is the selection of a safe 
and efficient solvent. Additionally, the synthesis methods must be 
selected to be implemented on a large scale while minimizing waste 
and maximizing yields. Finally, an essential aspect in constructing 
MOF-based DDSs is avoiding complex structural designs as much 
as possible since this may pose a challenge to batch preparation 
repeatability and future bulk synthesis. As a result, it leads to 
variations in the DDSs’ performance. 

CONCLUSION 
In conclusion, this review presented a summary/discussion 

regarding the latest developments and advances in the field of 
MOFbased DDSs and theranostic platforms. The various methods 
utilized in MOF synthesis are summarized along with the advantages 
and disadvantages of each method. The MOF-based DDS 
preparation techniques are discussed, including preparation by 
incorporating the drug/biomolecule into the MOF’s structure using 
surface adsorption, covalent conjugation, pore encapsulation, and in 
situ encapsulation or by directly applying the biomolecule as a ligand 
in the framework (bioMOF). MOFs' remarkable characteristics have 
led to a wide range of possible applications in biomedicine, 
including drug delivery. The MOF-based DDSs can be classified 
into normal (non-controllable) DDSs, stimuli-responsive DDSs, and 
theranostic platforms. The normal DDSs are pristine therapeutic 
agents loaded with therapeutic agents and offer little to no control 
over the drug release. Stimuli-responsive DDSs offer better 
spatiotemporal control over drug release by responding to either 
endogenous (pH, redox, ions, ATP) or exogenous stimuli (light, 
magnetism, US, pressure, temperature). The theranostic platforms 
combine stimuli-responsive drug delivery with diagnostic imaging 
functionality, paving the road for imaging-guided drug delivery. The 
reports summarized in this literature review (in terms of drug loading 
efficiencies and targeted/controlled release) promise a great future 
in the fight against diseases. However, numerous challenges must be 
addressed before moving to clinical applications. 
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