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Abstract 

 

As smart city applications are moving from conceptual models to the development 

phase, smart transportation, of smart cities’ applications, is gaining ground nowadays. 

Electric vehicles (EVs) are considered to be one of the major pillars of smart 

transportation. EVs are ever-growing in popularity due to their potential contribution 

in reducing dependency on fossil fuels and greenhouse gas emissions. However, large-

scale deployment of EV charging stations poses multiple challenges to the power grid 

and public infrastructure. The solution to this problem lies in the utilization of 

scheduling algorithms to better manage the growing public charging demand. Modeling 

EV charging behavior using data-driven tools and machine learning algorithms can 

improve scheduling algorithms. Researchers have focused on using historical charging 

data for predictions of behaviors such as departure time and energy needs. However, 

variables such as weather, traffic, and nearby events, which have been neglected to a 

large extent, can perhaps add meaningful representations, and provide more accurate 

predictions.  Therefore, in this thesis we propose the usage of historical charging data 

in conjunction with the weather, traffic, and events data to predict EV departure time 

and energy consumption. Several popular machine learning algorithms including 

random forest, support vector machine, XGBoost, and deep neural networks are 

investigated. The best predictive performance is achieved by an ensemble-learning 

model, which improves upon the existing works in the literature with SMAPES of 9.9% 

and 11.6% for session duration and energy consumptions, respectively. In both 

predictions, we demonstrate a significant improvement compared to previous work on 

the same dataset and we highlight the importance of traffic and weather information for 

charging behavior predictions.   

 

Keywords: Electric vehicles (EVs); charging behavior; machine learning; smart 

city; smart transportation. 
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Chapter 1. Introduction 

 

In this chapter, we provide a short introduction about electric vehicles (EVs) 

and the growth in their popularity as well as the problems related to their charging. We 

also summarize the recent works utilizing data-driven approaches for solving the EV 

charging problem and discuss some of their limitations. Then, we present the problem 

investigated in this study in addition to the thesis contribution. Finally, the general 

organization of the thesis report is presented. 

1.1. Overview 

In recent years, climate change has become a growing concern. As such, the 

United Nations (UN) has placed combatting climate change under one of the 

sustainable development goals, with plans to jointly raise one hundred billion dollars 

by 2020 to fight the crisis [1]. Additionally, thirty-three countries jointly declared a 

climate emergency as of January 2021 further adding to the significance of the global 

crisis [2]. The transportation sector is responsible for over a quarter of the world’s 

energy consumption [3]. According to the UN, two-thirds of the world population is 

projected to live in urban areas by 2050 [4], which would inherently increase the 

demand for vehicles to provide urban mobility, and in turn, increase fossil fuel 

consumption and greenhouse emissions. According to a Chinese study, electric vehicles 

(EVs) could potentially provide a 45% reduction in carbon emissions compared to 

conventional internal combustion engine (ICE) vehicles after considering the energy 

cost of production, assembly, transportation and usage [5]. Therefore, EVs are 

considered to be the frontrunners in providing a clean source of transportation. 

Within the smart cities context, the massive growth in EV popularity [6] can be 

attributed to the rapid improvements in battery technology. The latest EVs can travel 

between 300-500 km per full charge, unlike the older models which would often last 

less than 200 km per full charge [7]. The improvement in battery technology has made 

EVs far more usable, not only for commuting short distances but also for inter-city 

travel. Consequently, the number of EV charging stations have grown, allowing greater 

flexibility for drivers to plan their drives. Moreover, the reliability of EVs has improved 

considerably since the earlier days, thereby offering greater consumer trust and 

satisfaction. For example, according to a case study to investigate EV user satisfaction 
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in South Korea, it was found that cost-savings played a major role in EV satisfaction 

[8]. The study also concluded that user satisfaction is statistically significant for existing 

EV users to repurchase EVs as well as recommend the purchase of EVs to others. The 

overall technological improvement can also be attributed to the market competitiveness 

with many private and public companies taking the initiative to produce commercial 

EVs. In the last decade, the growth in the number of EVs worldwide has skyrocketed 

as shown in Figure 1.1. It provides a comparison of the number of plug-in hybrid 

electric vehicles (PHEV), battery electric vehicles (BEV) across China, Europe, the US 

and globally. 

 

Figure 1.1: The significant increase in EV sales across the globe in the last decade [9] 

 

Despite the promising signs, there remain a few challenges. Firstly, most EVs 

take a long time to charge therefore causing great inconvenience. In addition to this, 

many EV owners cannot charge their cars at home but must rely on public charging 

stations. The power requirements of EV charging is very high and often unpredictable. 

Munkhammar et al. [10] presented a case study where the integration of household-

level EV charging increased the electricity use by 14-61% and the standard deviation 

of power consumption by 100-900%. Therefore, integrating EVs on a massive scale 

will place huge constraints on the power distribution grid [11]. Un-coordinated EV 

charging behavior is likely to cause further degradation and instability in power 

distribution networks. The implications of the power constraints indicate that it is 

virtually impossible to increase the charging station capacity to meet the growing 

changing needs. Unlike gas stations for ICE vehicles, where the vehicles can get 

refueled in minutes, EVs often require hours to recharge. The simple solution of 
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increasing the public charging capacity by deploying more stations is not suitable 

because, in addition to the power needs, there also exists a physical space limitation. 

Therefore, the number of charging stations can only be increased to a limited number. 

Rather, the optimal solution is to better manage the scheduling of charging stations.  

Several works have focused on scheduling to efficiently manage the charging 

load using optimization problems [12], [13]. In [12], multiobjective optimization was 

used to determine the charging station that can result in minimum charging cost as well 

as quickest charging and travel time. The authors in [13] on the other hand, maximized 

the total revenue for a parking lot and the number of EVs fulfilling their charging 

requirement. Such approaches can provide useful guidance for determining EV 

charging operations and management strategies, in terms of factors such as maximum 

capacity and revenue. However, day-to-day management of the charging load requires 

a more sophisticated approach. 

Studies have shown that energy management with regards to EV charging 

greatly impacts the wholesale electricity market [14] as well as the overall CO2 

emissions, adding further significance to the need for understanding charging behavior. 

Researchers have investigated the psychological dynamics that influence charging 

behavior [15], [16]. The authors in [15] concluded that EV users found the charging 

process to be convenient overall and that most users exhibit a pattern of charging their 

vehicles three times every week and driving about thirty-seven kilometers every day. 

According to [16], most users start their charges with 40-50% state of charge (SOC) 

whereas about 8% of the users engage in risky charging behavior with less than 20 

miles of range remaining in their vehicles. They also conclude that EV drivers are less 

likely to charge their vehicles in the morning and adjusting the time of use (TOU) 

pricing based on this could help to distribute the charging load better. Spoelstra [17] 

used charging transactions data and interviews with EV drivers to provide an analysis 

of EV charging behavior and factors that influence such behavior. For instance, it was 

noted that charging behavior is generally based on habits and convenience and that 

drivers usually connect their vehicles to the same charging ports that are known to them. 

Furthermore, the battery level does not influence the EV drivers’ charging decisions 

and the charging behavior is consistent between urban and rural areas of the 

Netherlands, where the study was conducted. Although the outcome of these studies 



17 
 

provides a high-level understanding of EV charging behavior, it is important to quantify 

the results for scheduling and management.  

Bi et al. [18] performed an agent-based traffic simulation, where the charging 

stations are deployed at existing petrol stations and residential parking locations in 

Singapore. They concluded that charging behavior significantly impacts the simulation 

outcomes. In [19], a stochastic simulation is proposed to study the charging behavior 

over longer periods, without the need for a sophisticated transportation dataset. 

Analysis of charging behavior using such simulations contain assumptions that might 

not hold in real-world scenarios.  

An estimation of EV behavior derived from ICE vehicle driving data is 

presented in [20] using car travel data in Sweden. The authors in [21] developed a 

framework for generating synthetic data for EVs using probabilistic models and nine 

months of GPS data collected from EVs in Ireland. Although useful for specific case 

studies, these datasets may not reflect the unpredictable nature of charging behavior in 

everyday scenario. However, synthetically generated data can be beneficial in certain 

situations, such as when real-world datasets are not available and when the size of the 

datasets are significantly smaller. Other strategies such as multi-location charging, 

whereby employees are encouraged to charge at home as well as the workplace, to 

control the charging load have shown promising results [22]. However, these 

approaches are only suitable in theory as it is not easy to control or enforce user 

charging behavior.  

With the emergence of big data analytics and machine learning (ML), which 

have revolutionized fields of natural language processing, audio, and video recognition, 

the focus has shifted towards utilizing data-driven approaches [23] to solve the EV 

charging problem. Using historical data of charging load and user behavior, ML 

algorithms can be applied to learn the various trends and patterns from the data. After 

the training phase, accurate predictions can be obtained. Such predictions can then be 

utilized, either independently or in conjunction with other algorithms, to enhance EV 

charging scheduling strategies. Studies have shown that ML algorithms are capable of 

providing good forecasts for time series data [24], and can thus be used for charging 

behavior predictions which are time-dependent. However, the performance of an ML 

algorithm depends, to a large extent, on the quality of the dataset as well as the selection 
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of input features used to train the model. Therefore, it is important to formulate the right 

problem and provide the models with distinguishable input features for them to provide 

accurate predictions. 

1.2.  Thesis Objectives 

Driven by the recent success of ML algorithms in various domains and the great 

challenges in EV charging, the focus of this work will be on predicting two of the most 

important aspects of EV charging behavior pertaining to scheduling, namely, EV 

session duration and energy consumption. Accurate predictions of these behaviors can 

not only lead to better management of the charging demand but also provide great 

benefits to EV charging operators by minimizing the operating costs. In this work, we 

will train various supervised ML algorithms using weather, traffic, and local events 

data, which were not considered by previous works in the literature, along with 

historical charging data to improve charging behavior predictions. Although previous 

works have shown ML models to be effective in predicting the charging behavior, we 

believe that with the addition of the new variables, we can improve upon the results of 

the existing works.  

1.3. Research Contribution 

The contributions of this thesis can be summarized as follows:   

• It presents a novel approach in EV charging behavior prediction that take 

advantage of weather, traffic, and local events data in addition to the historical 

charging records. 

• It trains several machine learning algorithms including random forest, support 

vector machine, artificial neural networks and ensemble learning models for 

predictions of session duration and energy consumption on the adaptive 

charging network (ACN) dataset. 

• It provides an empirical analysis with regards to the impact of using the 

additional features on the accuracy of predictions and highlights the 

improvements upon previous works. 

1.4.  Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides background 

information about EV charging as well as the building blocks of ML and the variations 
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of ML algorithms. Then, various regression ML models and their evaluation metrics 

are clearly defined. Moreover, we organize related works into three categories in 

Chapter 2. The first two contains ML applications for charging behavior using 

clustering approaches and various other charging behaviors besides session duration 

and energy consumption, respectively. The final part of the literature review compares 

the existing works utilizing ML for the prediction of session duration and energy 

consumption, which is the focus of this thesis. The overall methodology is clearly 

outlined in Chapter 3. This includes a definition of the charging behavior as well as the 

relevant datasets and the merging process. Furthermore, preprocessing steps including 

data cleaning and handling outliers is also described in this chapter. Chapter 4 presents 

an exploratory analysis of the dataset which illustrates the relationships between the 

different variables. Feature engineering steps such as encoding cyclic features are also 

clearly outlined in this chapter. The experimental setup is likewise explained in this 

chapter and further supported by a graphical representation of the proposed framework. 

The results obtained across various models and their comparisons are presented in 

Chapter 5. This chapter also provides an analysis of the results and a comparison with 

previous works in the literature. Finally, Chapter 6 concludes the thesis and outlines 

future work that could be used for further improvements.  
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Chapter 2. Background and Literature Review 

 

In this chapter, we discuss various levels of EV charging and their distinctions. 

Then, we present an overview of ML algorithms including supervised, unsupervised, 

and deep learning. We also discuss the popular ML algorithms used in this work as well 

as some of the existing works and provide the common metrics for the evaluation of 

regression-based ML algorithms. Next, we provide a comprehensive literature review 

of the existing works that have utilized ML for the analysis and prediction of EV 

charging behavior. Finally, we highlight the problem statement and discuss some of the 

motivations behind this work. 

2.1. EV Charging Standards and Categories 

EV charging is primarily divided into three charging levels as defined by the 

Electric Power Research Institute. Level 1 charging provides the slowest charging rate, 

operating at standard 120 V/15A [25]. The charging equipment, in this case, is installed 

on the EV and the power is transferred to the vehicle using a plug and cord set. This 

category was popular in the earlier days, when EVs were first introduced, but are less 

common today. Level 2 charging, on the other hand, uses 240 VAC and has been 

utilized for both private and public facilities. It provides faster charging as compared to 

Level 1 but requires the installation of dedicated charging equipment. Level 3, also 

referred to as ‘fast charging’, utilizes 480 VAC and is typically deployed in commercial 

or public spaces to provide ‘grab and go’ service that is similar to gas stations for ICE 

vehicles. Level 3 provides the quickest charging rate which allows vehicles to recharge 

in less than thirty minutes. This is considered to be the future charging technology for 

EVs along with wireless charging. Figure 2.1 illustrates the three charging techniques. 

Despite the emergence of fast EV charging, the number of publicly accessible 

fast chargers is less than half compared to slow chargers. Figure 2.2 illustrates a 

comparison between the two charging rates across various countries. According to [9], 

publicly accessible chargers make up 12% of global light-duty vehicle chargers in 2019. 

However, the number of both slow and fast publicly accessible chargers have grown by 

60% in 2019 and the trend is likely to continue.  
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Figure 2.1: The three levels of EV charging [26] 

 

 

Figure 2.2: A comparison of slow (left) and fast (right) publicly accessible chargers in 
2019 [9] 

 

EV charging can also be categorized into residential charging and non-

residential (commercial) charging. Typically, Level 1 and Level 2 chargers are 

deployed for residential purposes. Residential charging behavior is more predictable, 

and scheduling is therefore considered easier. In most cases, users leave their vehicles 

to charge overnight or arrange charging sessions depending on their working hours. The 

number of vehicles using residential charging is also predictable because usually, 
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people who own EVs in a given area is likely to utilize the stations within that 

residential area. As a result of user flexibility, a quicker rate of charging is often not 

required because the charging can take place whenever the car is parked. This allows 

the operators in residential charging to distribute the charging load evenly based on the 

TOU. In contrast, a non-residential charging station is unpredictable and depends on a 

lot of factors. There is also an expectation for a faster charging rate as users may not 

necessarily spend longer hours outdoors. Also, take for instance the example of a public 

charging facility near a shopping mall. The charging traffic in this case will depend on 

a lot of factors including weather, day of the week and mall offers. Therefore, it is more 

significant to understand the charging behavior of non-residential charging facilities, 

which are dynamic in nature, to provide more precise scheduling. 

2.2. Machine Learning and Predictive Analytics 

Machine learning (ML) provides computer systems with the ability to learn 

from experience without the need for explicit programming. The experience in this 

context is the dataset that the algorithms used to train themselves on. With time, the 

models can discover the underlying trends and patterns in the dataset. Therefore, the 

quality of the dataset in terms of the data being clean and the input features being 

relevant is highly significant. Upon successful learning, these models can make 

accurate predictions and therefore provide predictive analytics. ML algorithms are 

typically categorized into supervised and unsupervised learning. Further categorization 

can be done depending on the type of the variable to be predicted, also known as the 

response variable. If the response variable is continuous, the problem being solved is 

called a regression problem. Conversely, if the response variable is categorical, the 

problem is called a classification problem. Figure 2.3 illustrates the difference between 

regression and classification in the context of EV charging. The figure on the left 

portrays the prediction of energy consumption based on charging session duration. This 

is a regression problem because the response variable, energy, is a continuous value. In 

contrast, the figure on the right portrays the distinction of EV drivers who prefer to 

charge their vehicles during nighttime against those who prefer to charge their vehicles 

during the day. In this case, it is a classification problem because the variable of interest 

is categorical. 
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Figure 2.3: Illustration of regression problem (left) and classification problem (right) 
[26] 

 

2.2.1. Supervised learning. In supervised machine learning, models are 

trained from the labelled training dataset. As such, the dataset contains both the input 

variables and the corresponding response variable, often called the target variable. The 

model iteratively learns the mapping between the input and the response variables by 

optimizing a given objective function. A simple example in the context of EV charging 

is a dataset containing the arrival time of the vehicle, the name of the city, and the 

departure time of the vehicle. If the goal is to predict the departure time, the ML model 

will learn the relationship between the arrival time, the name of the city (input variables) 

and the departure time (response variable). A discussion of all the supervised learning 

algorithms is beyond the scope of this work. However, the algorithms used in this work 

as well as some of the ones used in the related works for the prediction of EV charging 

behavior is provided next. 

2.2.1.1. Linear Regression. Linear regression (LR) can be used to model the 

mathematical relationship between the output variable and one or multiple input 

variables (multiple LR). In LR, it is assumed that there is a linear relationship between 

the response variable and the input features. LR can be represented by Equation 1: 

𝑦𝑦 =  𝑏𝑏𝑜𝑜 +  𝑏𝑏1 𝑥𝑥1 +  𝑏𝑏2 𝑥𝑥2 +  ⋯  +  𝑏𝑏𝑛𝑛 𝑥𝑥𝑛𝑛  (1) 

 

where 𝑦𝑦 represents the target variable, 𝑏𝑏𝑜𝑜 represents the y-intercept, [𝑥𝑥1, 𝑥𝑥2 ⋯𝑥𝑥𝑛𝑛 ] 

represents the input features and [𝑏𝑏1, 𝑏𝑏2 ⋯𝑏𝑏𝑛𝑛  ] represents the regression coefficients. 

Gradient descent [27] method is often used to find the coefficients by minimizing the 
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sum of the squared error iteratively after starting with random values for the 

coefficients.  As the name suggests, LR is used for regression problems and is 

particularly useful when the dataset is linearly separable. Moreover, the algorithm itself 

is very simple to implement and explain. Overfitting [28] is a major challenge in 

training most ML algorithms. Overfitting occurs when a given model performs 

exceptionally well during the training phase, often by using unnecessary input features, 

but fails to make generalized predictions. The performance of LR can be impacted by 

overfitting as well as the presence of outliers. Another drawback of LR is that it assumes 

the data to be independent of each other and this is not always true. Therefore, LR is 

generally used only as a baseline model for complex problems. 

2.2.1.2. Random forest. The term ‘forest’ comes from the fact that this 

algorithm is composed of multiple trees. A decision tree (DT) can be used for both 

classification and regression problems. Similar to a flow chart, DTs separate complex 

decisions into a combination of simpler decisions using split points from the input 

features. The points where decisions take place are called decision nodes. The points 

where no further split is made are called the leaf nodes. For regression problems, the 

average value of all the items in the leaf node is taken for prediction. For classification 

problems, the leaf nodes are the set of classes being predicted, and the class obtained in 

a leaf node is taken as the final prediction. DTs are simple to explain, usually by plotting 

a tree diagram which can help in understanding the prediction making process. 

However, a single DT often fails to provide good predictions and is prone to overfitting. 

In a random forest (RF) algorithm, predictions are made by aggregating multiple 

decision trees. Bagging method is used in this case where the trees are created from the 

various bootstrap sample, i.e., sample with replacement. For regression, the average 

predictions of the trees are taken and for classification majority vote across the trees are 

taken [29] as final predictions. RF is an example of ensemble ML, where individual 

ML models are first evaluated and then integrated into a single model that can often 

produce superior predictive performance than the individual models. The motivation 

behind such an approach is similar to asking multiple experts about an opinion, and 

then taking their votes to make the final decision [30]. An RF model greatly reduces 

overfitting as compared to a simple DT model. Moreover, both DT as well as RF can 

be used for classification and regression problems, unlike LR. However, significantly 

more computational resources are needed for RFs as compared to DTs because a large 
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number of DTs are needed for building an RF. As a result, the training time is also 

considerably longer. Furthermore, unlike both LR and DT, the results obtained using 

RF is difficult to interpret because it is difficult to visualize the decision-making process 

due to the model complexity. 

2.2.1.3. Gradient boosting. Similar to an RF, a gradient boosting algorithm [31] 

uses multiple DTs. However, in this algorithm, each tree is built sequentially and as a 

result, the errors made by previous trees are taken into consideration, which often leads 

to superior performance. In contrast, RF is an ensemble of trees that are considered 

independent of each other. XGBoost [32] is a more recent variation of the gradient 

boosting algorithm. XGBoost has gained popularity over the last few years due to its 

success in machine learning competitions, mainly because of its effectiveness in dealing 

with the bias-variance tradeoff [33]. This means that the algorithm can avoid overfitting 

on the training data while at the same time, maintaining enough complexity to obtain 

meaningful representations. As the trees are built sequentially, the training time for 

gradient boosting algorithms are usually longer than RFs. Also, gradient boosting 

algorithms are generally more prone to the presence of outliers and can overfit more 

compared to RFs. 

2.2.1.4. Support vector machine. A support vector machine (SVM) [34] is 

mainly used for classification problems, but can also be used for regression in which 

case, they are often referred to as support vector regression (SVR) [35]. SVM uses the 

maximum margin algorithm concept, where the goal is to find the perfect hyperplane 

that can maximize the margin between the respective classes. Using kernels such as 

linear, polynomial, and radial basis function (RBF), the inputs can be mapped to high 

dimensional feature spaces where they can be linearly separable. The use of different 

kernels allows the model to find solutions to a wide range of complex problems. Also, 

the use of a regularization parameter ensures greater generalization compared to other 

models. However, SVMs are not suitable for larger datasets due to their long training 

time. It is also difficult to interpret the results obtained using SVMs. 

2.2.1.5. K-Nearest Neighbor. Although k-nearest neighbor (K-NN) [36] 

algorithms can be used for both regression and classification, they are more popular for 

classification problems. For K-NN, a dedicated training phase is not required, and it is 

also known as a form of lazy learning. For predicting a new data point, a distance 
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measure, typically Euclidean distance, is used to find its k nearest neighbors. Then it is 

assigned to the class that constitute a majority of the neighbors. Figure 2.4 illustrates 

this process where k is set to three and therefore can be also called a 3-NN algorithm. 

 

Figure 2.4: Illustration of new member assignment in the k-NN algorithm using three 
neighbors [26] 

 

In the above example, assuming two initial classes, orange and blue, the task is 

to classify the new item into one of the classes. Assuming 3-NN, Euclidean distance 

can be used to find the three nearest neighbors to the new item. The three neighbors of 

the new point are the two orange points and one blue point. Therefore, the new item 

will be assigned to the orange class as it constitutes the majority. In regression, the 

average value of the neighboring points is taken as the prediction value. K-NN has 

numerous advantages as compared to the aforementioned algorithms mainly due to it 

not requiring dedicated training. As a result, it is faster to implement and new data 

points can easily be added without retraining the model. However, K-NN is usually not 

recommended for larger datasets due to the growing cost of calculating the distance 

between points. Moreover, the algorithm is highly sensitive to noisy data and outliers 

and requires feature scaling such as normalization. 
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2.2.2. Ensemble learning. In ensemble learning, a set of individually trained 

classifiers are combined and then used to predict new instances, often providing more 

accurate predictive performance than the individual classifiers [37]. Figure 2.5 

illustrates the concept of ensemble learning. Both RF and XGBoost are examples of 

ensemble learning, where individual models (in these cases DTs) are first evaluated and 

then integrated into a single model. The motivation behind such an approach is similar 

to asking multiple experts about an opinion, and then taking their votes to make the 

final decision [30]. The main advantage is that ensemble learning models generally do 

not suffer from overfitting because they can greatly reduce the model variances. 

However, ensemble learning is computationally very expensive and can be limited by 

memory constraints and long training times. This problem is often solved by utilizing 

parallel computation, whereby the base models are trained independently across various 

machines to speed up the training process. Furthermore, ensemble learning models 

suffer from a lack of interpretability as it is difficult to explain the predictive process 

when many base models are involved. 

 

Figure 2.5: Illustration of ensemble learning 

 

2.2.3. Unsupervised learning. In unsupervised learning, the training dataset 

is comprised of only input variables, without labeled output variables. The goal of the 

ML model is to find structure within the dataset. Cluster analysis is a common example 

of unsupervised learning, whereby the objective of the ML model is to find clusters of 
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items that have some common elements between them. Unsupervised learning can be 

utilized to find clusters of EV behavioral patterns. Figure 2.6 provides an illustration of 

clustering in the context of EV charging. Based on the arrival time and day of the week, 

we notice three distinct clusters or groups of charging behavior. The main advantage of 

unsupervised learning is that labeling the data is often costly and requires manual work, 

whereas unsupervised learning does not require labeling of the response variable. 

Furthermore, interesting patterns can be automatically discovered using this approach 

as the model is only trained to find structure within the dataset and not necessarily make 

a specific prediction. However, not being able to make specific prediction can be a 

disadvantage in various applications which require precision. Finally, the learning 

process is slower in many cases because the algorithm calculates various possibilities 

of organizing different points in the dataset. 

 

Figure 2.6: A Simple illustration of clustering in the context of EV charging behavior 
[26] 

 

2.2.3.1. Clustering algorithms. In k-means clustering, individual data points 

form k clusters, with each point being assigned at the beginning to k center points in a 

random manner. Next, the data points are reassigned to the closest center based on new 
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center calculations. The number of clusters must be known beforehand or can be 

calculated best on the elbow method [38]. K-means is a simple clustering algorithm that 

is sensitive to outliers and initial assignment. K-means is among the most popular 

clustering algorithms along with Density-based spatial clustering of applications with 

noise (DBSCAN) and hierarchical clustering. 

2.2.3.2. Gaussian mixture model. Gaussian mixture model (GMM) [39] is a 

probabilistic learning model that can represent normally distributed subpopulations by 

considering multiple normal distributions of the dataset. Although GMMs are mainly 

used as unsupervised learning, variations of them exist for supervised learning. For the 

unsupervised model, prior knowledge of the subpopulations is not required. Based on 

the distributions of the dataset, such as binomial, Poisson, and exponential, various 

forms of mixture models can be derived. Other common mixture models include the 

beta mixture model (BMM), where the beta probability distribution is considered. 

Unlike k-means, GMMs can produce non-convex clusters which are usually more 

accurate. GMMs also allow mixed membership of the data points, i.e., a point in the 

dataset can belong to more than one cluster, which is not possible in other clustering 

algorithms. This can be useful in specific applications depending on the requirements. 

2.2.3.3. Kernel density estimator. The shape of the probability density function 

(PDF) must be assumed in parametric estimation methods. When this is not possible, a 

nonparametric estimation can be used to estimate the PDF of a continuous random 

variable using kernel functions. Kernel functions must be symmetrical, nonnegative, 

and the area under the function curve must be equal to one. Popular kernels for KDE 

include normal or gaussian KDE (GKDE) and diffusion-based KDE (DKDE) [40]. 

2.2.4. Deep learning. Deep learning is a subset of ML that utilizes artificial 

neural networks (ANNs). Deep learning models, unlike ML models, contain a large 

amount of composition of learned functions. More specifically, using a layered 

hierarchy of concepts, complex concepts are defined in terms of simpler concepts and 

more abstract representations are gathered using less abstract ones [41]. Although deep 

learning is an emerging technology, it dates back to the 1940s. It was known by various 

names, such as connectionism and cybernetics, during earlier days. The recent success 

of deep learning-based models can be attributed to two main factors: 1) Availability of 

larger datasets to train DL models. 2) Availability of powerful computers to build and 
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train complex models to achieve groundbreaking results [41]. Currently, deep learning-

based models provide cutting-edge solutions to various areas in natural language 

processing, audio classification and computer vision. 

Among the most common deep learning methods is the multilayer perceptron 

(MLP), which is often simply referred to as ANN. MLP uses non-linear approximation 

given a set of input features and MLPs can be applied for both regression and 

classification problems. An MLP consists of an input layer that takes in the set of 

features, the hidden layers that learn the representations, and the output layer that 

computes the final predictions. As the number of hidden layer increases, the depth of 

the network grows and consequently the overall complexity. Figure 2.7 shows an MLP 

with three hidden layers for binary classification, where the response variable belongs 

to either one of the two classes. 

 

Figure 2.7: ANN with three hidden layers [26] 

 

2.2.5. Evaluations of regression models. To assess the performance of ML 

models and perform comparative studies, it is important to define quantitative metrics 

for model evaluation. In this work, regression models will be considered due to the 

nature of the problem being solved and therefore we present four common metrics used 

for the evaluation of regression models. Assuming that the original value is represented 
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by 𝑦𝑦 and the predicted value is represented by 𝑦𝑦𝑦, the average of the actual values is 

represented by 𝜇𝜇 and 𝑛𝑛 represents the groups of values in the dataset, then the following 

methods (Equations 2-5) are commonly used to evaluate the performance of regression 

models: 

Root Mean Square Error (RMSE): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
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(2) 

Mean Absolute Error (MAE): 
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Coefficient of determination or R2: 
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(4) 

Symmetric Mean Absolute Percentage Error (SMAPE): 

𝑅𝑅𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 =  
1
𝑛𝑛

 �
|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑖𝑖|

(|𝑦𝑦𝑖𝑖| − |𝑦𝑦𝑦𝑖𝑖|)/2
∗ 100

𝑛𝑛

𝑖𝑖=1

  
(5) 

 

If the predicted value, 𝑦𝑦𝑦 is very different from the actual value 𝑦𝑦, the result of 

all of these metrics except R2 will be high. Generally, lower scores of RMSE, MAE and 

SMAPE indicate accurate predictions, and this occurs when the predicted value, 𝑦𝑦𝑦 is 

very close to the actual value 𝑦𝑦. The R2 value is a measure of goodness of fit for 

regression and is usually a score between 0 and 1. A score of 1 indicates perfect 

predictions and generally, a higher value represents better performance. We do not 

consider mean absolute percentage error (MAPE) because it is inconvenient when the 

actual value 𝑦𝑦 is close to zero, therefore creating a bias. Rather we consider SMAPE 

which is more suitable for EV charging prediction since both the original and the 

predicted values are in the denominator [42]. In RMSE, large errors are given higher 

weights and therefore it is suitable for applications where large errors are specifically 

undesirable. MAE, on the other hand, is much easier to interpret. 
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2.2.6. EV charging datasets. The success of a good predictive ML model 

depends on the quality of the dataset. This section will go over the commonly used 

datasets for studying EV charging behavior. Two EV charging datasets were presented 

in [43], one of them containing about 8500 residential charging sessions and the other 

dataset containing more than one million sessions from a public charging facility in the 

Netherlands. The residential dataset contains charging data spanning for a year (March 

2012-March 2013) along with the trip details of EVs using a GPS logger. This provides 

a good platform for studying residential EV driving and charging behavior. The non-

residential dataset spans from January 2011 until December 2015 and was collected by 

ElaadNL. My Electric Avenue [44] consists of the driving and charging behavior of 

UK drivers from January 2014 to November 2015. Residential water and energy data 

collected by Pecan Street’s water and electricity research is hosted by Dataport [45]. 

Although this dataset is available to the public for research, it is limited to residential 

EV charging behavior. ACN-Data [46] is among the most recently released public 

dataset on EV charging, containing more than thirty thousand charging sessions 

collected from two non-residential charging sites in California. Additional user data 

such as estimated departure time and requested energy is collected through user mobile 

application by scanning a QR code. When a user does not use the mobile application, 

default values are generated for these fields, without attaching user identifier for such 

sessions. 

2.3. Related Work 

This section provides an overview of the existing works utilizing ML for 

analysis and prediction of EV charging behavior. The focus of this work is on predicting 

two specific charging behavior, namely, the session duration and energy consumption 

due to their usefulness for EV scheduling. These fall under the category of supervised 

machine learning. Nonetheless, we will present a brief review of unsupervised learning 

approaches as well as other types of EV charging behavior, such as charging rate and 

fast charge usage. 

2.3.1. Unsupervised learning approaches. GMM was used in [47] to find 

thirteen distinct clusters of charging behavior for non-residential charging. Charging 

sessions containing information about start time, connection duration, the distance 

between two sessions and hours between sessions were considered as features. The 
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distinction between daytime and overnight charging was found to be the largest 

distinction between the types of charging sessions. The clustering result was evaluated 

using adjusted Rand index (ARI) for clusters 7-13, with all except one (ARI of 0.54) 

ARI value being below 0.6, and therefore indicating good agreement in general. GMM 

was also used in [48] to create EV profiles that captured charging behavior by 

considering several charging events, start time and SOC. The EV charging profiles 

generated were then validated with average charging demand. Flammini et al. [49] used 

charging transaction data and developed a BMM to represent the multi-modal 

probability distributions of variables such as connection time and idle time. The 

proposed model showed a good fit when compared to the empirical data graphically. 

Additionally, the following conclusions were made after analysis: 25% of the total 

energy is supplied in the weekend, significant differences were noticed for plug-in and 

plug-out profiles among weekdays and weekends, 50% of the recharges last for less 

than four hours, and the idle time on average lasts for four hours. While these results 

provide good insight into charging behavior, the proposed model was not validated for 

predictive performance. DBSCAN clustering was used in [50] to find three clusters of 

EV charging behavior based on arrival and departure times. The first cluster, named 

charge near home, contained sessions with most arrival times during afternoon and 

evening and most departures the next morning. The second cluster, named charge near 

work, contained sessions with arrivals in the morning and departures in the evening. 

The final cluster, named park to charge, contained sessions scattered throughout the 

day with short idle time (i.e., they charge quickly and leave). The authors also provided 

qualitative and graphical analysis using violin plots to explain charging behavior but 

failed to provide a performance evaluation of clustering. The work in [51] used k-means 

clustering with Euclidian distance cost function to categorize user charging behavior 

into four groups, using mean and standard deviation of arrival and departure times as 

well as the Pearson correlation coefficient between stay duration and energy 

consumption. The authors did not provide an evaluation for clustering, but the labels 

generated by clustering were then used by ANN to classify user behavior. A similar 

approach was presented in [52] where k-means clustering was used to find three clusters 

of charging behavior using Euclidean distance measure. The cluster evaluation was not 

performed, but the results were used by the K-NN algorithm for classification and the 

accuracy of classification was 97.9 with the area under a ROC curve value of 0.994. 
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The authors in [53] used spectral clustering with Euclidian distance with a penalty term 

to cluster charging tails, which are the start and end times for EV battery absorption 

stage portion of the charging curve. The number of clusters was selected to be 6 after 

comparing the silhouette scores. The clusters were then transformed into two-

dimensional space using the t-distributed stochastic neighbor embedding for 

visualization. Gerossier et al. [54] used hierarchical clustering with the Ward linkage 

method to understand the EV charging behavior of forty-six residential EVs. The 

clustering result indicated four groups of behaviors which were night and morning 

chargers (which makes up more than 50% of the sample), evening chargers when 

people usually return from work, charging sessions scattered throughout the day, and 

late evening chargers. The performance of clustering was not evaluated, but the results 

were used to forecast the charging load using an RF model that achieved comparable 

results (MAE of 4.9 kW) to the benchmark gradient boosting method. An expectation 

maximization algorithm was used in [55] to find four clusters of charging behavior. 

Then, a mixture model was used to predict EV behavior and simulation results showed 

that as prediction error increases, the cost reduction and savings decreases. In [56], k-

means clustering was used to find patterns in EV charging profiles of three UK counties. 

To find the optimum number of clusters, Davies–Bouldin evaluation criterion was used. 

Although plots were used to display cluster centroids and provide a graphical analysis 

of daily charging demand, the paper did not provide a performance evaluation of the 

clustering. The results obtained from clustering of charging behavior can be helpful in 

the operation and management of charging station. For instance, they can provide a 

comparison of the various charging groups and help the operators determine the peak 

and non-peak charging hours. Consequently, the operators can utilize the TOU to cut 

down on electricity costs and maximize profit. However, the results obtained from these 

approaches cannot directly be integrated into the scheduling framework, which is 

crucial for managing the charging load as discussed previously. 

2.3.2. Other charging behaviors. Although we are considering the 

predictions of session duration and energy consumptions in this work, it is worth 

pointing out some of the other examples of charging behavior that can be predicted 

using ML. In [57], the authors used ensemble models including RF, naive bayes (NB) 

and ANNs to predict whether or not the EVs will be charged the next day in a 

household. The hours of the day in which the EVs will be charged the next day is also 
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predicted. Among the input features used for the predictive models included charging 

consumption of the previous day and charging occurrence time of the previous day. The 

combination of RF, NB, AdaBoost, and gradient boosting algorithms provided the best 

performance achieving a true positive rate of 0.996 for predicting whether the EVs will 

be charged the next day. They also obtained an accuracy of 0.724 for predicting the 

hours of the next day when the EVs will be charged. Binary logistic regression was 

used in [58] to classify whether or not the driver will make use of fast charging in a 

given day. Features such as travel time duration, driving speed, temperature, and 

whether the driver’s last trajectory included fast charging was used to develop the 

predictive model. The proposed model achieved superior performance compared to an 

LR model with an overall prediction accuracy of 0.894. Additionally, the following 

conclusions were drawn; drivers are more likely to fast charge with increased travel 

duration and travel distance, and drivers who exhibit fast charging habits are more 

likely to use fast charging on their next day trajectories. Venticinque et al. [59] used 

SVR with RBF kernel to predict the time to the next plug. Using residential charging 

data, the best performing model achieved an MAE of 0.124 minutes and RMSE of 0.158 

minutes. In [60], a dataset consisting of charging processes, i.e. time-series data of 

charging power, was used from a workplace to predict charge profiles. The best 

performance was achieved by XGBoost model with an MAE of 126 W outperforming 

ANN and LR models. The result of this approach when integrated to form schedules 

resulted in up to a 21% increase in energy charge for the EV. Mies et al. [61] used LR 

to model charging speed by considering variables such as temperature, connection time, 

and SOC. Some variables such as temperature were found to impact charging speed. 

For instance, it was noted that an increase in one degree Celsius resulted in a charging 

speed increase of 3.7 W. The model was analyzed graphically and statistically, and 

while the charging speed is very relevant in terms of predicting the departure time, the 

study failed to consider the predictive performance of the model. The authors in [62] 

used an RF model to predict charging capacity and the daily charging times. The 

proposed model outperformed SVR on the training set and achieved MAPE of 9.76% 

on prediction of the charging load for the next fifteen minutes for a single station. For 

a group of charging stations, the proposed RF model once again outperformed both 

SVR and DT models with a MAPE of 12.8%. Feature importance analysis showed that 

previous day’s charge was the most important predictor. A time series-based 
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forecasting method, autoregressive integrated moving average (ARIMA), was used in 

[63] to predict the parking lot charging demand using expected arrival and departure 

times. The proposed model, which decouples the daily charging demand of EV parking 

area from the seasonally changing load profile, outperformed regular ARIMA 

achieving MAPE of 1.44%. Time series-based forecasting methods rely solely on the 

historical data of the response variable and do not consider other features for prediction. 

The predictions are made by interpolating the general trend of the past values. For a 

detailed review of all aspects of EV charging behavior, the readers are encouraged to 

refer to the survey paper in [26]. Although useful for various applications, these types 

of charging behavior cannot directly be used by a scheduler to manage the charging 

load. Next, we will provide a detailed review of the related works that focused on the 

prediction of session duration and energy consumption using supervised ML. 

2.3.3. Supervised learning for predictions of session duration and energy 

consumption. As will be defined in the following sections, session duration is directly 

related to the departure time. It is the departure time minus the arrival time, which is a 

known variable. Therefore, one can assume the prediction of either the session duration 

or the departure time to have the same application. Lee et al. [46] introduced a novel 

dataset for non-residential EV charging consisting of over thirty-thousand charging 

sessions. They used GMM to predict session duration and energy needs by considering 

the distribution of the known arrival times. The testing dataset included the month of 

December 2018 and the reported SMAPEs were 14.4% and 15.9% for the session 

duration and energy consumption, respectively. Result comparisons show that the 

GMM predictive model achieved significantly greater predictions when compared to 

user inputs, where the users were asked to estimate their departure times and energy 

needs. In this work, only historical charging data was considered for obtaining the 

predictions. The paper also presented other useful application such as integrating solar 

generation into workplace charging. In [64], the authors utilized an SVM model for the 

prediction of arrival and departure time for EV commuters. The dataset used for training 

consisted of three years (2012-2014) of charging data of commuters using EVs in the 

University of California, San Diego campus. Using historical arrival and departure 

times and temporal features i.e., week, day, and hour, the reported MAPEs were 2.9% 

and 3.7% for arrival and departure times, respectively. The proposed model 

demonstrated superior performance against a simple persistence reference forecast. The 
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paper failed to address SVM hyperparameter tuning which can often enhance 

predictions [65]. Frendo et al. [66] predicted the departure time of EVs using regression 

models. The models were trained on historical data containing over one-hundred 

thousand charging sessions spanning over three years. Eight input features were used 

including, car ID, car type, weekday, charging point, car park location, parking floor, 

and arrival time. For prediction, three regression models were trained namely, linear 

regression, XGBoost, and ANN. XGBoost achieved the best results with an MAE of 

eighty-two minutes. The predictions made by the ML models had a significant impact 

on scheduling quality. In [42], several ML models, including DT, K-NN, and RF was 

utilized to predict session duration and energy consumption from two charging datasets. 

The first dataset contained charging sessions from the University of California, Los 

Angeles (UCLA) campus, thus representing non-residential charging behavior. The 

second dataset represented residential charging data from EV drivers in the UK. For 

session duration, SVR performed the best (SMAPE 10.54%) followed by LR (SMAPE 

11.05%). As for energy consumption, RF performed the best (SMAPE 8.65%) with 

DKDE a close second (SMAPE 8.73%). Based on the preliminary results obtained by 

various models, the authors selected SVR, RF, and DKDE to form an ensemble model. 

The proposed ensemble model outperformed the individual models in both predictions. 

The SMAPE for charging duration was 10.4% and the SMAPE for energy consumption 

was 7.5%. The results from the proposed model when applied to a scheduling algorithm 

not only reduced peak load by 27% but also reduced charging cost by 4%.  

Xiong et al. [67] predicted the start time and session duration using mean 

estimation. Session duration was then used to obtain energy consumption predictions 

using LR. The charging behavior predictions were integrated to flatten the charging 

load profile and stabilize the power grid. However, the predictions were not evaluated 

quantitatively and therefore does not indicate how well the proposed LR model 

functions. In [68], several regression models were used to predict the energy 

requirements using public charging stations data for the US state of Nebraska. Besides 

historical charging data, parameters such as season, weekday, location type, and 

charging fees were used as input features. On the test set, XGBoost outperformed LR, 

RF, and SVM obtaining an R2 value of 0.52 and an MAE of 4.6 kWh. The authors in 

[69] used K-NN to predict energy consumption at a charging outlet using data from a 

university campus. The problem was formulated as a time-series forecast, whereby 
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energy consumption prediction for the next day (next 24 hours) was made using energy 

consumption of previous days. The highest SMAPE was 15.3% using a K value of 1 

(1-NN) and a time-weighted dot product dissimilarity measure. The predictive model 

was integrated into a cell phone application that can predict the end time of charging 

and the available energy in about one second. Similarly, Majidpour et al. [70] also 

predicted the next day energy needs of a charging station based on previous days energy 

consumption using various algorithms including SVM and RF. This work also 

experimented with pattern sequence-based forecasting (PSF) [71], where clustering is 

first applied to classify the days and predictions are consequently made for that day. In 

this approach, clustering ensures that the predictive algorithm takes into account similar 

data points and consequently learn the patterns withing each cluster. PSF and SVR 

methods achieved the best performance on the UCLA dataset, with the current hour and 

previous hour energy being the most significant input variables. However, it must be 

noted that the SVR took a significantly longer time for hyperparameter tuning. The 

PSF-based approach provided the most accurate results with average SMAPE value of 

14.1%. Khaki et al. [72] used a non-parametric approach to predict session duration 

and energy consumption. They used historical charging data from the UCLA campus 

which was collected over twenty months. Using a graphical plot of mean estimation 

deviation (MED) for comparison, the proposed DKDE method was superior compared 

to GKDE. The prediction results minimized load variance and charging cost. However, 

the prediction results were not quantified and therefore cannot be used to assess the 

quality of the predictive model. A Hybrid estimator that uses both GKDE and DKDE 

was proposed in [73] to predict charging session duration and energy consumption. A 

combination of the UCLA charging dataset and UK driver’s charging data from My 

Electric Avenue was used for training. Comparison of MED shows that the accuracy of 

prediction is better using the hybrid model as compared to the individual models, with 

the reported MED being 0.75 hours for stay duration and 1.68 kWh for energy 

consumption. Table 2.1 provides a summary of the related works in the literature, 

specifically in the context of session duration and energy consumption predictions 

using ML algorithms.  
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Table 2.1: Supervised learning for session duration and energy consumption 

Source Prediction Model Input Features Results 
[46] Session length, 

energy 
consumption 

GMM Historical 
charging data 

SMAPE: 14.4% 
duration, 15.9% 

consumption 
[64] Arrival time, 

departure time 
SVM Historical 

charging data  
MAPE: 2.9% 
arrival, 3.7% 

departure  
[66] Departure time XGBoost Historical 

charging data, 
vehicle type, 

charging location 

MAE: 82 
minutes 

[42] Session length, 
energy 

consumption 

Ensemble 
model of 
SVM, RF 
& DKDE 

Historical 
charging data 

SMAPE: 10.4% 
duration, 7.5% 
consumption 

[67] Start time, 
session length, 

energy 
consumption 

Linear 
regression 

Historical 
charging data 

- 

[68] Energy 
requirements 

XGBoost Historical 
charging data, 

season, weekday, 
location type, 
charging fees 

E: : 0.52, MA2R
4.6 kWh 

[69] Energy 
consumption 

k-NN Last few days 
energy 

consumption 

SMAPE: 15.3% 

[70] Energy 
consumption 

PSF Last few days 
energy 

consumption 

SMAPE: 14.1% 

[72] Session length, 
energy 

consumption 

DKDE & 
GKDE 

Historical 
charging data 

- 

[73] Session length, 
energy 

consumption 

Hybrid 
KDE 

Historical 
charging data 

(combination of 
US & UK 
datasets) 

MED: 0.75 hours 
duration, 1.68 

kWh 
consumption 

 

2.4. Motivation and Problem Statement 

Although the above works from the literature have successfully applied ML for 

the prediction of session duration and energy consumption, they have mainly focused 

on utilizing historical charging data. In some cases, additional features such as vehicle 

information, charging location information, and seasonal information were used. This 
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has motivated us in this work to investigate the use of additional input features 

including weather, traffic, and local events and consequently observe its impact on the 

accuracy of charging behavior predictions.  

The motivation for improving the performance of predictive models, with 

regards to EV charging behavior, results from the significant impact these models can 

have on EV charging operations. In [42], the predictions of stay duration and energy 

consumption obtained using the ensemble model is utilized by an optimal scheduling 

algorithm which reduces charging cost and minimizes the load variance. During high 

TOU, the electricity price is higher, so the algorithm performs peak load shaving and 

conversely during low TOU, the algorithm performs valley filling to take advantage of 

the low electricity cost. Numerical simulation applied to real-world data showed that 

by using predictions made by ML, peak load was reduced by 27% and charging cost 

was reduced by 4%. The load and cost reduction was in comparison to uncoordinated 

EV charging, in which case EV load profiles were not considered with the TOU. 

Moreover, coordinated charging using ML predictions and real data both resulted in 

similar cost reductions, indicating the quality of predictions to be accurate. Similarly, 

[55] considered the wholesale electricity price to calculate energy savings and cost 

reduction. The authors compared the impact of prediction error on cost savings and 

concluded that as prediction error increases, the cost reduction and saving decreases. 

They also performed a simulation to study the impact of ML prediction and cost savings 

for EV charging. Using the simulation results from [55], we have produced the plots 

shown in Figure 2.8 that highlight the significance of accurate predictions made by ML 

models. Therefore, a key motivation of this work is to develop ML models that can 

improve upon existing works and consequently lead to EV charging cost savings. 

 

Figure 2.8: Impact of ML prediction accuracy on EV charging cost reductions (left) 
and savings (right) 
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The ML framework presented in [60] utilized XGBoost algorithm for 

predictions of charge profiles. The study performed further simulations to show a 21% 

increase in charging efficiency when the results of the ML model is integrated as 

opposed to not obtaining predictions of user charging behavior. The time-series model 

presented in [63] reported a potential saving of $770k annually for the 6-bus system 

and $240M for the IEEE-24 bus system if the proposed method is used to forecast 

charging load profiles. Given the promising impacts of ML models in benefiting EV 

charging operations and the fact that even a small improvement in predictions can have 

a large impact on cost reductions and savings, we were further incentivized to utilize 

additional input features that could potentially lead to more accurate charging behavior 

predictions. Therefore, in this work, our objective is to consider variables that have 

largely been ignored by existing works including weather data, traffic data, and daily 

events near the charging station to obtain improved predictions  
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Chapter 3. Methodology 

 

In this chapter, we first define the EV charging behavior considered for 

prediction. We then introduce the charging dataset as well as the additional weather, 

traffic, and campus events data. Finally, we outline the necessary steps used for pre-

processing the dataset. 

3.1. EV Charging Behavior 

Assuming 𝑡𝑡𝑐𝑐𝑜𝑜𝑛𝑛 represents the connection time when the car first plugs in, 𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑𝑐𝑐𝑜𝑜𝑛𝑛 

represents the disconnection time when the car plugs out and leaves the station, and 𝑒𝑒 

represents the energy delivered to the car during the session, we consider the session 

charging behavior 𝐵𝐵𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑖𝑖𝑜𝑜𝑛𝑛 as following: 

𝐵𝐵𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑖𝑖𝑜𝑜𝑛𝑛  ≜  (𝑡𝑡𝑐𝑐𝑜𝑜𝑛𝑛, 𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑𝑐𝑐𝑜𝑜𝑛𝑛, 𝑒𝑒) (6) 

Based on the above, we can define the length of the charging session or the 

session duration, 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑, as follows: 

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑  =  𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑𝑐𝑐𝑜𝑜𝑛𝑛  −  𝑡𝑡𝑐𝑐𝑜𝑜𝑛𝑛  (7) 

In this work, we predict both the session duration and the session energy 

consumption of an individual charging record and assume that the connection time is 

known. 

3.2. Dataset Description 

Besides the charging dataset, we also make use of weather, traffic, and local 

events data to predict the charging behavior. First, we describe the datasets used in this 

work and the approaches in data collection. Additionally, the attributes of the datasets 

are highlighted. 

3.2.1. Charging dataset. Scheduling of EV charging is more significant in 

public charging structures due to the unpredictable nature of the charging behavior, 

especially in public spaces like shopping malls. The ACN [46] dataset is among the few 

publicly available datasets for non-residential EV charging and thus will be utilized in 

this work. The dataset contains charging records from two stations on the Caltech 

university campus, namely JPL and Caltech. Unlike the Caltech station which is open 

to the public, the JPL station is only accessible to employees. Therefore, the JPL station 

data will not be considered in this work. More than eighty charging ports are available 
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in the Caltech facility with a power capacity of 300 kWh that can support forty-two 

ports at a time. In addition to the automated data collection related to charging sessions 

such as the connection time and energy delivered, users may manually enter further 

details such as their estimated departure and energy requirements, by scanning a QR 

code using a mobile application. The dataset can be accessed from [74] by either a web 

portal or a python application programming interface (API). 

3.2.2. Weather data. Although there is a small weather station located at the 

Caltech campus [75], which is close to the ACN charging facility, we did not consider 

the data from this station in this work due to the presence of missing values and irregular 

interval recordings for the wind variable. This could potentially make predictive models 

less reliable. Moreover, this station did not record variables such as rainfall and 

snowfall which could potentially impact charging behavior. We, therefore, used the 

weather data from NASA’s Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2) [76] which provides data for the precise location 

of the charging station. The accuracy of satellite weather data in comparison to ground 

stations has been compared in [77]. Although it has been shown that given a specific 

location some weather parameters may be more accurately detected using ground 

stations, for the purpose of this work we do not require a high level of accuracy. Rather, 

a more general perception of the impact of weather on the charging behavior is required. 

For example, we are interested in observing the impact of charging behavior during 

heavy rainfall as opposed to drier conditions. The weather variables used, and their 

respective descriptions and units are summarized in Table 3.1. 

Table 3.1: Weather variable and their descriptions 

Weather Parameter Description Unit 

Temperature Temperature at 2m above 
ground level Kelvin 

Relative humidity Relative humidity at 2m 
above ground level Percentage 

Wind speed Wind speed at 10m above 
ground level Meter per second 

Rainfall The depth of rainfall Millimeters 

Snowfall The density of snowfall Kilograms per meter 
squared 

Snow depth The depth of snowfall Meters 
Short-wave 
irradiation 

Surface incoming shortwave 
irradiation (broadband) 

Watts per meter 
squared 
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3.2.3. Traffic data. Obtaining historical traffic data for specific roads and 

regions is challenging. Conventional traffic collection methods include intrusive 

approaches such as road tubes and piezoelectric sensors as well as non-intrusive 

approaches like microwave radar and video image detection [78]. With most of these 

approaches, scalability is a concern. Also, in most cases, specific roads that are required 

for a study are not covered. For instance, the city of Pasadena (where the charging data 

originates from) provides an open data site [79] for the traffic count around the city. 

However, for most roads in the city, it only contains traffic count for some time. 

Therefore, it is not usable in our case where we require regular interval data. 

Additionally, not all roads and streets are covered. As a result, we decided to use traffic 

data from google maps, which has also been used in previous ML applications [80]. 

The data is collected by recording the location data from the commuter’s mobile 

devices, provided they use the application and have agreed to share their location. The 

data collected from individuals are anonymized and aggregated to address any privacy 

concerns [81]. The google maps distance matrix API can be used to retrieve the data. 

Given source and destination coordinates, the travel distance and the time taken for the 

trip is provided for a given departure time. We retrieved historical trip time for nine of 

the closest roads and streets which one must take to access the charging station. 

3.2.4. Events data. Since the charging station is located on the Caltech 

university campus, we decided to include campus events and find out if the number of 

events has an impact on the charging behavior. The number of events in an hour was 

obtained from the Caltech university website calendar [82]. Certain events that were 

listed on the calendar did not take place at the Caltech campus. For instance, many 

sports events took place at other venues and seminars held at different universities were 

also listed on the calendar. We utilized the description provided with the event to find 

out whether the event took place at the Caltech campus. Events on both weekdays and 

weekends as well as holidays were considered. Furthermore, we opted not to include 

the holidays themselves as events although it is listed as such on the calendar. For 

simplification, we decided to round the minutes to the nearest hour. Therefore, if an 

event started at 10.20 am, it was counted as an event starting at 10 am. Figure 3.1 

displays some of the campus events on January 11, 2019.  
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Figure 3.1: A sample of the campus events taken from the Caltech university calendar 
[82] 

 

3.3. Data Preprocessing 

Cleaning and preprocessing the dataset is vital to ensuring the quality of the 

predictive models. Factors such as the presence of outliers and missing values can 

negatively impact the performance of many models, as discussed in Section 2.2. The 

preprocessing steps include removing faulty records and handling outliers.  

The presence of outliers can negatively impact model performance. A common 

technique of graphically detecting outliers is boxplots [83]. The boxplots for both target 

variables contained outliers, as illustrated in Figure 3.2. We noticed that the outliers for 

both variables are not consistent, i.e., we have far too many outlier points for energy 

consumption as compared to the session duration. Certain vehicles may consume a far 

greater amount of energy even if the session duration is not too long. Therefore, 

counting these values as outliers is not appropriate as it would result in discarding 

valuable data points.    
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Figure 3.2: Boxplots of energy consumption (left), session duration (right) 

 

Consequently, we opted to perform multivariate outlier detection using the 

isolation forest algorithm. The algorithm constructs an ensemble of iTrees for a given 

data set. The outliers are those instances that have short average path lengths on the 

iTrees [84]. By randomly selecting a variable and a split value between the minimum 

and maximum of the selected variable, the observations are ‘isolated’. Partitioning of 

observations is repeated recursively until all of them have been isolated. After the 

partitioning, observations that have shorter path lengths for some particular points are 

likely to be the outliers. Figure 3.3 illustrates the outlier detection process of the target 

variables. The region within the red line contains the inliers, points that are considered 

normal, and those outside the red line are outliers. The x and the y axis have been 

normalized for both variables. A total of 697 outliers were detected which accounts for 

4% of the total observations.  

For the charging data, we only considered charging records that were registered, 

i.e., contained user IDs, and this accounted for 97% of the records. For the weather data, 

the time of recording was in universal time and we used the pytz [85] library in python 

to convert the time zone to be the same as that of the charging records (i.e. California 

local time). We also converted the temperature units from kelvin to degrees Celsius. 

Then, for each given hour, we computed the average of the previous seven hours of 

weather as well as the average of the next ten hours. This would allow us to understand 

the manner in which the previous weather and the weather after arrival impacts the 

charging decision. For instance, heavy snowfall in the previous hours may account for 
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shorter charging duration and so on. With regards to the traffic data, we also converted 

the time zone from coordinated universal time into California local time to make the 

merging process convenient. We then aggregated the traffic for each hour across the 

nine selected roads and streets. It must be noted that we considered the average trip 

time as well as the maximum trip time as estimated by google maps. Finally, we 

aggregated the total events on the campus for each hour. 

 

Figure 3.3: Outlier detection using isolation forest 

 

To merge the various data, the time-series fields were converted to date-time 

objects using pandas [86] library. Then to obtain weather, traffic, and events for a 

particular charging record, we first obtained the nearest hour that the connection time 

belongs to. For example, the connection time of 22:11 belongs to 10 pm. This allows 

us to easily extract the other information because they were recorded in hourly intervals. 

Instead of simply selecting the traffic level for a given time, we selected the total traffic 

after arrival until the end of the day. If a vehicle arrived at 2 pm, for instance, we 

accumulated the traffic from 2 pm until the end of that day. This would allow the model 
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to learn the manner in which the traffic level impact the charging behavior. Similarly, 

we considered the total events after arrival until the end of the day.  
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Chapter 4. Data Analysis and Experimental Setup   

 

In this chapter, we first present an exploratory data analysis to identify various 

trends and patterns. Next, we describe the feature engineering methods to transform 

several variables into more meaningful representations. Finally, we summarize our 

experimental setup and present a graphical illustration of the framework.  

4.1. Exploratory Data Analysis 

Data visualization allows us to discover the relationships between different 

variables of the dataset and this can prove useful in feature engineering and selection. 

For visualization, ggplot [87] library from the R programming language was used.  

Figure 4.1 presents the total number of charging sessions recorded by each day 

of the week, i.e., the number of charging sessions aggregated for a given day of the 

week. 

 

Figure 4.1: Number of sessions recorded by day of the week 

 

It is quite clear that during weekdays about ten times more charging sessions 

occur compared to weekends (Saturday and Sunday). A possible explanation for this is 

that due to the charging station being located at a university campus, it is likely that 

most users who utilize this charging facility are the students and staff of the university. 
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Therefore, naturally, the number of vehicles on weekdays, during which the classes are 

ongoing, will be higher. We also note that Fridays record a significantly lower number 

of sessions than other weekdays. This is probably because it is the last day of the week 

and some users may avoid charging during this day. Next, we display the various graphs 

pertaining to session duration before presenting the graphs related to energy 

consumption.   

4.1.1. Visualization for session duration. Figure 4.2 shows the data 

distribution of the total session duration. It highlights the total number of records for 

the various ranges of session durations. This can help us understand how long most 

users spend charging their EVs. 

 

Figure 4.2: Distribution of session duration 

 

We notice from the session duration distribution that on average most EVs tend 

to spend between 550 and 650 minutes (about 9-11 hours) in a session. In very rare 

cases, some sessions lasted for more than 800 minutes (about 13 hours). There is also 

a large number of shorter sessions that are between 20 minutes and 400 minutes. Figure 

4.3 plots session duration by month and Figure 4.4 illustrates session duration by days 

of the week. 
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Figure 4.3: Session duration by month 

 

 

Figure 4.4: Session duration by days of the week 

 

There are no significant differences among the month in terms of session 

duration, but January records the longest durations on average. From the day of the 

week plot, we notice that during weekends the session duration is significantly shorter 

as users tend to stay for shorter durations and get on with their weekend activities. 

Conversely, during weekdays many prefer to stay around their working hours resulting 

in longer charging sessions. We also notice shorter durations on Fridays compared to 

other weekdays. This is most probably because it is the last day of the week and many 

users may prefer to leave the campus earlier during this day. We will next present some 

of the meaningful visualizations of weather variables with regards to session duration. 

In Figure 4.5, we illustrate the temperature against the session duration. 
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Figure 4.5: Previous temperature (left) and next temperature (right) against session 
duration 

 

We notice a general downward trend for the previous average temperature, i.e., 

as the temperature before the arrival increases from 20 to 30 degrees, session length 

decreases. The density of the plot decreases as the temperature increases, suggesting a 

smaller number of sessions during warmer temperatures. We do not see any significant 

trend for the temperature of the next few hours after the arrival. Since relative humidity 

generally has an inverse relationship to temperature, we observe the opposite trend for 

the humidity against session duration plots, which are presented in Appendix A1. 

Figure 4.6 displays the trend between rainfall and session duration. 

 

Figure 4.6: Previous rainfall (left) and next rainfall (right) against session duration 

 

A slight downward trend is noticeable in the previous rainfall curve which 

indicates that generally session duration tends to be lower as the amount of rainfall prior 

to the EV arrival increases. For the rainfall amount after arrival, we do not observe any 

significant trend. Both snowfall and windspeed plots did not display any important 
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trends with regards to session duration, and they are presented in Appendix A2 and A3, 

respectively. In Figure 4.7, we plot the irradiation against session duration. 

 

Figure 4.7: Previous irradiation (left) and next irradiation (right) against session 
duration 

 

From the left curve in Figure 4.7, we observe that as the average of the previous 

hours’ irradiation increases the session length tends to be shorter. As for the irradiation 

after arrival, no significant trend is noticed. We next illustrate the traffic and events 

after arrival against session duration in Figure 4.8. 

 

Figure 4.8: Traffic count level (left) and total campus events (right) against session 
duration 

 

We notice an upward trend for traffic level with regards to session duration. 

This implies that as traffic level increases, session duration tends to be longer. For the 

total number of events after arrival, no significant relationship can be observed with 

regards to session duration. Next, we will analyze the graphs for the second response 

variable, energy consumption. 
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4.1.2. Visualization for energy consumption. Figure 4.9 displays the 

distribution of energy consumption. This can help us identify the most common energy 

consumption ranges as well as the extreme ones. 

 

Figure 4.9: Distribution of energy consumption 

 

From the energy consumption distribution, we see that most sessions fall under 

5-15 kWh, with a few sessions exceeding 30 kWh. Figure 4.10 plots energy 

consumption by month and Figure 4.11 shows consumption by days of the week.  

 

Figure 4.10: Energy consumption by month 
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Figure 4.11: Energy consumption by days of the week 

 

There are no significant differences among the month in terms of average 

energy consumption, but we observe a slight increase towards the end of the year, i.e., 

from October to December. It is also evident that Mondays record the highest 

consumption on average from Figure 4.11. No other significant difference in energy 

consumption was noticed between weekdays and weekends. Next, we illustrate the 

energy consumption by federal holidays in Figure 4.12. 

 

Figure 4.12: Energy consumption by US federal holidays, 0 indicates non-holidays 
and 1 indicates holidays 

 

From the above plot, we notice that during federal holidays, energy 

consumption on average is slightly higher. We next present some of the noteworthy 
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visualizations of weather variables with regards to energy consumption. In Figure 4.13, 

we plot temperature against energy consumption. 

 

Figure 4.13: Previous temperature (left) and next temperature (right) against energy 
consumption 

 

We notice a general downward trend for energy consumption, i.e., as 

temperature before EV arrival increases from 20 to 30 degrees, consumption decreases. 

This conclusion is consistent with the analysis for the session duration. Likewise, we 

do not see any significant trend for the temperature of the next few hours after arrival 

and the energy consumption. The humidity against session duration, presented in 

Appendix A4, displayed the opposite trend to that of the temperature. Figure 4.14 

illustrates the rainfall and energy consumption trend. 

 

Figure 4.14: Previous rainfall (left) and next rainfall (right) against energy 
consumption 

 

A slight downward trend is noticeable in the previous average rainfall curve, 

which signifies that for increasing rainfall prior to EV arrival, energy consumption is 

slightly lower. For the rainfall amount after arrival, we do not observe any significant 
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trend. The snowfall and windspeed plots are presented in Appendix A5 and A6, 

respectively. We did not observe any significant trends for both of these plots. Figure 

4.15 displays irradiation against energy consumption.  

 

Figure 4.15: Previous irradiation (left) and next irradiation (right) against energy 
consumption 

 

We observe that as the average of the previous hours’ irradiation increases, the 

consumption tends to be lower, but no significant trend is noticed for irradiation after 

arrival. We next present the traffic and events after arrival with regards to energy 

consumption in Figure 4.16. 

 

Figure 4.16: Traffic count level (left) and total campus events (right) against energy 
consumption 

 

Similar to the session duration analysis, an upward trend can be noticed for the 

traffic count, indicating a higher consumption as the traffic level increases. No 

significant conclusion can be drawn for the number of events after arrival. In the next 

section, we describe the feature engineering steps. 
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4.2. Feature Engineering 

Feature engineering refers to the transformation of data into meaningful 

representation using human knowledge. This process is labor intensive but important 

nonetheless because this is a weakness of the learning algorithms. Feature engineering 

relies on human ingenuity and prior knowledge to compensate for the inability of the 

algorithms to extract and organize discriminative information from the data [88]. For 

instance, a date value as input to the model is perhaps better represented as multiple 

features of the day, month, and year. We discuss future engineering steps next.  

Firstly, we converted the time fields that will be used by the models into the 

numeric format by simply dividing the minute by sixty and adding to the hour. This 

would convert the time 5:39, for instance, into 5.65. Next, for each charging record, we 

identified the corresponding user and found out their average departure time, session 

duration, and energy consumption. This was done by finding out the user ID of the 

charging record and aggregating his previous records. We used the arrival time as a 

numeric feature as this is assumed to be a known variable. However, the arrival time 

also has other components such as the date information. Using this, we extracted the 

hour of the day, day of the month, the month of the year, day of the week, whether the 

day is a weekend and whether the day falls in a US federal holiday. However, temporal 

information such as day, hour, and month are cyclic ordinal features. This is because 

the hour value of 23 corresponding to 11 pm, for example, is close to the hour value of 

0 which corresponds to 12 am. To represent the proximity of these values, trigonometric 

transformation was performed as follows: 

𝑓𝑓𝑥𝑥  =  sin �
2𝜋𝜋𝑓𝑓

𝑚𝑚𝑚𝑚𝑥𝑥(𝑓𝑓)� 
(8) 

𝑓𝑓𝑦𝑦  =  𝑐𝑐𝑐𝑐𝑐𝑐 �
2𝜋𝜋𝑓𝑓

𝑚𝑚𝑚𝑚𝑥𝑥(𝑓𝑓)� 
(9) 

where 𝑓𝑓 represents the cyclic feature to be transformed, 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 represents the first 

and second components of the cyclic feature, respectively.  To transform other 

categorical variables, one-hot encoding was used. In this approach, a single variable 

with n points and k distinct classes is transformed into k binary variables with n points 

each.  
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Table 4.1: List of input features and their descriptions 

Feature Description 
session_length Length of charging duration, the target variable 
kWh_delivered Session energy consumption, the target variable 

time_con Numerical representation of the connection time 
(arrival time) 

day_of_week Day of the week, one-hot encoded 
is_weekend Binary variable indicating whether the session 

took place on a weekend 
holiday Binary variable indicating whether the session 

took place on a US federal holiday 
hr_x Sine components of the hour 
hr_y Cosine component of the hour 

day_x Sine components of the day 
day_y Cosine components of the day 

mnth_x Sine component of the month 
mnth_y Cosine component of the month 

mean_d_time Historical average departure time 
mean_con Historical average consumption 
mean_dur Historical average session length 

traffic_aft_arvl Average traffic level after arrival 
max_traffic_aft_arvl Maximum traffic level after arrival 
events_after_arrival Total campus events after arrival 

avg_temp_prv The average temperature of the last 7 hours 
avg_temp_nxt The average temperature of the next 10 hours 
avg_hum_prv The average humidity of the last 7 hours 
avg_hum_nxt The average humidity of the next 10 hours 
avg_win_prv The average wind speed of the last 7 hours 
avg_win_nxt The average wind speed of the next 10 hours 
avg_rain_prv The average rainfall of the last 7 hours 
avg_rain_nxt The average rainfall of the next 10 hours 

avg_snwfall_prv The average snowfall of the last 7 hours 
avg_snwfall_nxt The average snowfall of next 10 hours 
avg_snwdpth_prv The average snow depth of the last 7 hours 
avg_snwdpth_nxt The average snow depth of the next 10 hours 

avg_irradiation_prv The average irradiation of the last 7 hours 
avg_irradiation_nxt The average irradiation of the next 10 hours 

 

For a suitable representation of numeric variables, feature scaling is a common 

transformation, where the goal is to normalize the range of the numeric features. Feature 

scaling is important because it results in faster training convergence for various models. 

Moreover, for certain models, feature scaling ensures that the performance is not 

affected by extreme values. In other cases, feature scaling can speed up the model 

training process. There are various scaling techniques, including scaling by domain 



60 
 

where all the features are scaled to a specific range such as [0, 1] and scaling to minmax 

where the features are scaled to the range [0, R], in which case the minimum of the 

maximum value of the feature in all directions is assigned as the radius of the sphere R 

[89]. However, in this work, we used standardization which ensures the values of each 

feature have zero mean and unit variance. The transformations were performed using 

the preprocessing package of the Scikit-learn [90] library. Table 4.1 lists all the features 

used for model training in this work along with their descriptions. In total, we identified 

thirty input features for model training, which is significantly large when compared to 

the existing works.  

4.3. Model Selection and Experimental Setup 

We selected all charging sessions from the ACN dataset that belonged to the 

2019 calendar year, which ensures we consider the seasonal factors during training. 

Due to the COVID-19 pandemic, we opted not to select the charging records belonging 

to 2020 because the lockdown measures around the globe will not represent the usual 

charging behavior. The dataset was split such that 80% of the records were used for 

model training and 20% for model evaluation. During the training phase, we performed 

K-fold cross-validation, where the algorithms are repeatedly trained K times with a 

fraction of 1/K training examples left out for testing [91]. In this case, we selected the 

common K value of 10. This procedure was chosen to find out the optimal sets of 

parameters. To configure model hyperparameters, we utilized a grid search method that 

determines the optimal set of parameters from a given list by trying out all possible 

values of the specified parameters [92]. After finding out the best parameters, the model 

was retrained on the entire training set using these parameters. Following this, the 

model was evaluated using the aforementioned regression metrics on the data it has 

never seen before, i.e., the test set.  

Inspired by the success of ensemble learning methods in some of the previous 

works in the literature, we also decided to experiment with ensemble learning. We used 

two variants of ensemble models, namely voting regressor and stacking regressor, using 

the ensemble package of the Scikit-learn library. In a voting regressor, several base 

regressors are trained on the entire training set, and the average of the predictions made 

by the base models are treated as the final prediction. The stacking regressor is based 

on the concept of stacked generalization, where predictions made by the base models 
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are used as inputs to a final estimator, which is trained using cross-validation, to 

generate predictions [93]. Figure 4.17 provides a graphical representation of the 

proposed framework in this work.  

 

Figure 4.17: Visual representation of the proposed framework 

 

After successfully merging the weather, traffic, and events data with the ACN 

charging data using the approach mentioned in Section 3.3, we perform the necessary 

preprocessing and feature engineering steps as described earlier. We then split the 

dataset into training and test set in an 80-20 split ratio. Next, we use the training dataset 

to train six popular ML algorithms, namely, K-NN, LR, RF, deep ANN, SVM, and 

XGBoost. To determine the best sets of hyperparameters for all the models, we utilize 

10-fold cross-validation. Next, using these models we develop the voting and stacking 

ensemble regressor. It must be noted that not all the individual ML models are 

necessarily going to be used to construct the ensemble models. Rather, depending on 

the initial results in the training set, the best performing models will be utilized 

accordingly for constructing the ensemble models. Finally, we assess all the base 

models as well as the ensemble learning models on the test set, which the models have 

not encountered before. For evaluation, we use the four metrics defined earlier in 

Section 2.2.5. This enables us to evaluate how well the models have generalized to data 

it has not come across before and also allows us to determine whether or not overfitting 
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has taken place during the training phase. The same process for model training is 

repeated for both the predictions of session duration and energy consumption. 

However, the data cleaning and preprocessing steps are not repeated, i.e., it is a common 

step for both predictions. Finally, in order to compare our results to those in the previous 

works, we select the result of the model that achieved the highest accuracy in the test 

set to be the representative.  
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Chapter 5. Results and Analysis 

 

In this chapter, we first present the feature selection approach as well as a 

visualization of the feature importance plots. The results obtained from the model 

training phase is presented next, showing a comparison across various ML models and 

the development of the ensemble models. We then present the results on the test set for 

all the models and also provide an analysis of the performance. Finally, we compare 

our work with the existing works in the literature. 

5.1. Feature Selection 

 We begin the experiment with an RF algorithm that can be used to visualize the 

variable importance [29], whereby features that contribute most to accurate predictions 

can be identified. This is a method for feature selection, where certain variables, that 

are not important and can often hinder performance, are removed. Variables that have 

almost no relationship to the response variable can often confuse the model and produce 

inferior performance. For our case, the inclusion of the least important variables had a 

very insignificant performance gain and hence we decided to include them in model 

training. In other words, removing the least important variables made the performance 

slightly worse.  

Moreover, variables can be ranked in terms of their relative importance to each 

other. This is determined by each feature’s contribution in producing the most effective 

splits in an RF algorithm. The feature that contributes the most to the decision-making 

process will be ranked higher. In Figure 5.1, we illustrate the top ten important variables 

for session duration predictions. The size of the horizontal bar represents the relative 

importance. 

The two most important predictors of session duration are the maximum traffic 

after arrival and the time of connection. This indicates the effectiveness of including 

the traffic information for the prediction of session duration, which has not been 

considered in previous related works. Following this, we have the historical average 

session duration, departure time, and energy consumption that contributed significantly. 

Based on this we can conclude that the historical charging behavior of EV is important 

to consider for predictions, and therefore, methods such as using a mobile phone 

application that allows historical data collection is important. Finally, we have five of 
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the weather parameters that are represented in the top ten features and hence this 

highlights the usefulness of including the weather information. Irradiation, temperature, 

wind, and humidity are found to be more useful than rainfall and snowfall. However, it 

must be noted that the campus events variable was not part of the top ten features. The 

two least important features were federal holidays and snowfall. Next, the feature 

importance plot for energy consumption is presented in Figure 5.2.   

 

Figure 5.1: Top ten features for session duration 

 

 

Figure 5.2: Top ten features for energy consumption 
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In the case of energy consumption predictions, the historical average energy 

consumption is by far the most significant of the predictors. This is because a specific 

EV will consume similar energy if its session duration is consistent. This yet again 

highlights the importance of obtaining historical user data. The arrival or connection 

time is the second most significant, followed by the historical average session duration 

and departure time. For both session duration and energy consumption, the EV arrival 

time, therefore, had a significant impact on the charging behavior. The remaining top 

ten features were made up of several weather variables along with the maximum traffic 

after arrival. This further demonstrates the value of including these variables as 

additional information. Similar to the session duration, irradiation, wind, temperature, 

and humidity were found to be more important than rainfall and snowfall. The three 

least significant predictors were the days of the week, federal holidays, and snowfall. 

Next, we present the results obtained from training the ML models for session duration 

predictions. 

5.2. Session Duration Predictions 

As mentioned earlier, the hyperparameters for the models were determined 

using the grid search approach and 10-fold cross-validation on the training data set. For 

the deep ANN training, we experimentally determined an architecture with three hidden 

layers of 64, 32 and 16 nodes, respectively to be the most suitable using 10-fold cross-

validation. Rectified Linear Units (ReLU) [94] was used as the activation function for 

all hidden layers and the output layer contained a linear activation as the prediction is 

expected to be a continuous numeric value. The learning rate value was set to 0.001 and 

Adam [95] algorithm was utilized for model optimization. The training batch size was 

selected to be 32 and the model was allowed to train for a total of fifteen iterations. 

Figure 5.3 displays the curve for determining the number of neighbors for K-NN as 

well as the training loss curve for deep ANN.  

For determining the optimal K value for K-NN, we decided to use a portion of 

the training data as validation. This means we trained the model a total of fifty times 

for k values ranging from 1 to 50 and evaluated the models on a validation set. As can 

be seen from the left figure in Figure 5.3, the performance does not increase after 

increasing the number of neighbors to more than ten. As a result, we have selected the 

K parameter to be ten and the model was consequently a 10-NN one. We then combined 
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the validation set with the training set and retrained the model using the optimal 

parameter. From the ANN loss curve in the right of Figure 5.3, it is clear that as the 

training and validation losses are almost identical, there was no overfitting of the model. 

The training process was relatively quick and did not require additional graphical 

processing power. Table 5.1 summarizes the scores for all ML models on the training 

set, which is the average across 10-folds as mentioned earlier. 

 

Figure 5.3: Determining K value for K-NN (left) and ANN training loss curve (right) 
for session duration 

 

Table 5.1: Results from the training set across all ML models for prediction of 
session duration 

Metrics/Model RMSE 
(minutes) 

MAE 
(minutes) 

R2 SMAPE 
(%) 

LR 109 78.5 0.67 12.0 
K-NN 111 79.1 0.65 11.6 

RF 100 68.7 0.72 10.1 
SVM 102 68.2 0.71 10.2 

XGBoost 100 69.3 0.72 10.3 
Deep ANN 103 73.1 0.71 10.7 

Voting 
Ensemble 

99.5 67.4 0.72 10.0 

Stacking 
Ensemble 

99.5 68.0 0.72 10.1 

 

The three best performing models on the training set were RF, XGBoost, and 

SVM. Deep ANN comes close to these performances in terms of RMSE and R2 values. 

However, if we only consider MAE and SMAPE, deep ANN performs worse than the 

top three. Moreover, both LR and K-NN scores are far worse than the rest. As a result, 
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we aggregated the three best performing model in the training phase into two ensemble 

models, which resulted in an improved training score, as can be seen from Table 5.1. 

Next, we present the results on the test set, not encountered by the predictive models 

before. For reference, we also selected the user estimates of their departures as a 

prediction. This value was collected through a smartphone application where users were 

asked to enter their estimates of their departure time and consumption upon arrival. We 

summarize the results on the test set in Table 5.2. 

Table 5.2: Results from the test set across all ML models for prediction of 
session duration 

Metrics/Model RMSE 
(minutes) 

MAE 
(minutes) 

R2 SMAPE 
(%) 

LR 107 77.3 0.53 12.0 
K-NN 110 78.2 0.53 11.5 

RF 98.7 68.0 0.63 10.1 
SVM 101 67.4 0.64 10.1 

XGBoost 97.9 68.0 0.63 10.1 
Deep ANN 101 73.7 0.57 10.9 

Voting 
Ensemble 

97.7 66.5 0.73 9.92 

Stacking 
Ensemble 

97.5 67.1 0.73 9.95 

User 
predictions 

430 394 -4.20 69.9 

 

As highlighted, the best results were obtained using the ensemble learning 

approach, which is consistent with previous works [42], [57]. The voting regressor 

performs best on MAE and SMAPE and the stacking regressor performs the best in 

terms of RMSE, whereas they both achieve the same R2 score. The results are consistent 

with the training performance with RF, SVM and XGBoost resulting in similar 

performance and deep ANN slightly worse. Both LR and K-NN performs much worse 

compared to the other models. Predictions made by the users about their session length 

is also inaccurate compared to their actual session length. This indicates that relying on 

users to provide an estimate of their own departure time is perhaps not suitable. Further 

analysis of the results is presented in Section 5.4, in comparison to the energy 

consumption predictions, which are presented next. 
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5.3. Energy Consumption Predictions 

A similar approach to the session duration prediction was also used for energy 

consumption predictions. However, we selected a different deep ANN architecture after 

experimentation, which in this case contained two hidden layers with 64 and 16 nodes, 

respectively. Likewise, ReLU activation function for hidden layers and Adam 

optimization was used. The training batch size was 64 and the number of epochs was 

set to 20. Figure 5.4 displays the plot for determining the number of K-NN neighbors 

as well as the training loss curve for deep ANN training. 

 

Figure 5.4: Determining K value for K-NN (left) and ANN training loss curve (right) 
for energy consumption 

  

We selected a portion of the training data as validation data for finding out the 

optimal K value for K-NN model. Next, we trained the model a total of fifty times for 

K values ranging from one to fifty and evaluated all the models on the validation set. 

The RMSE values fluctuate after any K values of more than ten, as can be seen on the 

left of Figure 5.4. The lowest value of K was seven, which was selected to develop a 7-

NN model. We then combined the validation set with the training set and retrained the 

model using the optimal parameter. The ANN training loss curve, as shown in the right 

of Figure 5.4, displays no overfitting as the training and validation losses are almost 

identical. Table 5.3 summarizes the scores obtained on the training set, which are the 

average scores from the 10-fold cross-validation.  
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Table 5.3: Results from the training set across all ML models for prediction of 
energy consumption 

Metrics/Model RMSE 
(minutes) 

MAE 
(minutes) 

R2 SMAPE 
(%) 

LR 5.78 3.75 0.65 14.1 
K-NN 6.71 4.72 0.53 18.0 

RF 5.49 3.40 0.69 11.9 
SVM 5.65 3.53 0.67 12.6 

XGBoost 5.56 3.49 0.68 12.4 
Deep ANN 5.61 3.60 0.67 12.9 

Voting 
Ensemble 

5.50 3.42 0.69 12.0 

Stacking 
Ensemble 

5.48 3.40 0.69 11.9 

 

RF obtained the best training scores whereas XGBoost, SVM and deep ANN 

achieved similar scores in terms of SMAPE. Consistent with the session duration 

predictions, both LR and K-NN models performed the worst. We selected the top three 

models, i.e., RF, SVM, and XGBoost to form the two ensemble models. In this case, 

the ensemble models did not improve upon the best performing RF model, but rather 

achieved similar results on training. The results from the test set, which the models have 

not seen before, are presented in Table 5.4. We also compare the results with user 

predictions about their respective consumptions.  

Table 5.4: Results from the test set across all ML models for prediction of 
energy consumption 

Metrics/Model RMSE 
(minutes) 

MAE 
(minutes) 

R2 SMAPE 
(%) 

LR 5.83 3.74 0.46 13.9 
K-NN 6.68 4.71 0.05 17.7 

RF 5.50 3.39 0.54 11.7 
SVM 5.69 3.54 0.51 12.4 

XGBoost 5.61 3.48 0.51 12.1 
Deep ANN 5.65 3.55 0.55 12.5 

Voting 
Ensemble 

5.54 3.41 0.69 11.8 

Stacking 
Ensemble 

5.50 3.38 0.70 11.6 

User 
predictions 

20.6 11.8 0.04 55.0 
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The best results as highlighted were obtained using the stacking ensemble 

model. The improvement using ensemble learning for energy consumption prediction 

was not as significant when we compare it with the session duration predictions. K-NN 

performance is by far the worst with an R2 value of 0.05. The user predictions about 

their energy consumptions are not accurate in this case as well. In the next section, we 

further discuss the above results in comparison to session duration predictions and 

provide additional justifications. 

5.4. Comparison and Discussion 

When we compare across both the predictions, looking at the overall R2 and the 

SMAPE, it appears that the prediction of energy consumption is perhaps more 

challenging. In general, better values of R2 and SMAPE are obtained in session duration 

predictions. This is consistent with the previous work on the ACN data [46]. However, 

in another case the opposite was observed [42], i.e., the prediction of energy 

consumption was simpler.  

We also noticed earlier from the feature importance plot in Section 5.1 that the 

energy consumption was greatly influenced by one single predictor, i.e., the historical 

energy consumption. In contrast, the session duration was influenced by multiple 

predictors including traffic, arrival time and historical data. Therefore, predictive 

models for energy consumption in situations where no historical data is available is 

likely to produce significantly worse performance. 

Moreover, in both scenarios, it was also noticed that the user predictions about 

their behavior are very different from their actual behavior, which further emphasizes 

the need for predictive analytics. The users’ predictions in terms of their energy 

consumption are slightly more accurate when compared to their predictions of session 

duration, as indicated by better R2 and SMAPE values. The inaccuracy in users’ 

predictions can be attributed to the users’ lack of interest in entering their estimates 

every time they decide to charge their vehicles. A possible solution is to incentivize 

users to provide more accurate estimates which could potentially lead to the users being 

more responsible in entering their estimates. This could in turn provide the ML models 

with an additional predictor.  
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When comparing across the various ML models, both K-NN and LR models 

were by far the two worst performing models in both predictions. It is likely that the 

results for K-NN were not very accurate due to it being more suited for classification 

tasks. In regression problems, taking the average of all the neighboring points is not 

ideal because we are assuming that similar users have a common average departure 

time or energy consumption. Also, LR assumes a simple linear relationship between 

the different variables. However, in a complex problem such as this one, a simple linear 

model cannot provide an accurate fit of the dataset. We also noticed that deep ANN 

performed slightly worse than the other three traditional ML models. Deep learning 

models are proven to be superior in dealing with images and audio data, where feature 

extraction is generally not performed. However, in applications such as this where we 

perform feature extraction, traditional ML models can often lead to better performance. 

This conclusion is also consistent with other ML applications with regards to energy 

management, where traditional machine learning outperformed the deep learning-based 

model [96].  

Furthermore, predictions obtained using ensemble learning were more accurate 

in comparison to those obtained by individual ML models in both scenarios, although 

the impact was more significant for session duration prediction. This is most likely 

because, in the first scenario, the top three performing models had similar training 

performance and combining their predictions resulted in an improvement. However, in 

the latter scenario, one model outperformed all the other models in training and hence 

the improvement using ensemble learning was not as significant.  

Looking at the previous works in the literature, the results obtained in this work 

outperformed all the previous works that reported similar evaluation metrics ([46], [66], 

[68], [69], [70]). We summarize the results from the previous works in comparison to 

the one achieved in this work in Table 5.5.  

In comparison to [42], the results obtained in this work for session duration is 

more accurate although we do not improve upon their results for energy consumption. 

This is most likely because the authors in [42] utilized both residential and non-

residential data for their predictions, and residential charging behavior in most cases 

are more consistent and simpler to predict. Conversely, in this thesis, only non-

residential charging data was used for predictions. Therefore, it is possible that the 
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overall accuracy for energy consumption prediction in [42] is superior because it was 

greatly influenced by the more accurate predictions in residential charging sessions. 

Table 5.5: Performance comparison with previous related works in the 
literature 

Source Session Duration Energy 
Consumption 

Dataset Used 

[46] SMAPE: 14.4%  SMAPE: 15.9% ACN (historical charging) 
[66] MAE: 82 minutes Not considered German charging data 

(historical charging, 
vehicle & location info) 

[42] SMAPE: 10.4%  SMAPE: 7.5% UCLA campus (historical 
charging) and Residential 

charging data from the 
UK 

[68] Not considered R2: 0.52 Nebraska public charging 
(historical charging, 
temporal & location) 

[69] Not considered SMAPE: 15.3% UCLA campus (historical 
energy) 

[70] Not considered SMAPE: 14.1% UCLA campus (historical 
energy) 

Our 
work 

SMAPE: 9.92%, 
MAE: 66.5 

minutes 

SMAPE: 11.6%, 
R2: 0.7 

ACN, weather, traffic, 
and events data 

 

However, it must be noted that all previous works except [46] used a different 

dataset compared to this work and therefore a comparison is perhaps not suitable. 

Therefore, keeping the comparison across the same dataset, we can conclude that the 

utilization of the additional weather, traffic, and events data resulted in an improvement 

in the EV charging behavior predictions. The proposed approach can be implemented 

for the other datasets as part of future research work. 

We summarize the comparison of session duration in Figure 5.5 and Figure 5.6 

based on SMAPE and MAE. Similarly, the comparison of energy consumption is 

presented in Figure 5.7 and Figure 5.8 based on SMAPE and R2. In Figure 5.5, Figure 

5.6, and Figure 5.7 a lower vertical size of the bar indicates better performance because 

we are comparing the mean absolute errors of the predictive models. However, in 

Figure 5.8, a higher vertical size of the bar indicates better performance because we are 
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comparing the R2, which provides an indication about the accuracy of the regression 

model rather than the error.  

 

Figure 5.5: Performance comparison of session duration with previous works using 
SMAPE (lower SMAPE indicates better performance) 

 

 

Figure 5.6: Performance comparison of session duration with previous works using 
MAE (lower MAE indicates better performance) 
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Figure 5.7: Performance comparison of energy consumption with previous works 
using SMAPE (lower SMAPE indicates better performance) 

 

 

Figure 5.8: Performance comparison of energy consumption with previous works 
using R2 (higher R2 indicates better performance) 
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Scheduling remains an important tool for the effective management of EV 

charging. While we have highlighted the improvement in scheduling and the reduction 

in charging operating costs by increasing ML prediction accuracies, it would be 

interesting to determine how scheduling performance would be impacted using the 

additional features proposed in this study. A conceptual framework of such a system 

that integrates ML with scheduling is shown in Figure 5.9. 

 

Figure 5.9: Application of the proposed ML algorithm on scheduling for public 
charging infrastructure 

 

Upon the EV’s arrival at the charging station, a pre-trained ML model will 

compute the predictions regarding the charging behavior of the corresponding vehicle. 

Specifically, the prediction of the vehicle’s expected departure time and energy needs 

will be obtained.  The predictions made by the ML framework can then be fed into the 

smart charging scheduler for producing optimal scheduling. Public charging facilities 

usually have more parking spots and charging ports than they can accommodate. For 

instance, the charging facility in [46] had over 80 charging ports but only with a power 

capacity of 300 kWh that can support 42 ports at a given time. In peak time and 

definitely in the future with the increasing number of EVs, we will be presented with a 

scenario where the charging facility is packed with EVs. In this case, if the behavior of 

EVs is known beforehand such as their expected stay duration, we can prioritize 

charging vehicles that will leave the station earlier. One possible way to obtain 
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knowledge of these behaviors is to request the drivers for their estimated departure time 

and other requirements. However, this method is not realistic because of human bias 

and the inaccuracy of human predictions was highlighted in Chapter 5. Similarly, if the 

EV is predicted to be consuming more energy during the charging session than average, 

it would be more efficient to distribute the charging overtime. As discussed in section 

2.4, the scheduler can utilize the predictions made by ML models to reduce overall cost 

and energy for the charging operator. By using real-time electricity price rate and TOU, 

the scheduler can reschedule low priority EVs, as determined by the ML to have latest 

departure time. Therefore, if the current time is high TOU, these low priority vehicles 

may be rescheduled to have their charges delivered during low TOU. Similarly, EVs 

with high energy needs and flexible stay duration can be scheduled during low TOU to 

take advantage of the lower electricity rates. In addition, when the parking space is in 

high demand, if the ML algorithm predicts the EV to stay for longer hours, the operator 

can inform the user of additional charges if the vehicle is parked even after it has 

finished charging. Therefore, by considering dynamic charging load demand through 

real-time TOU data and electricity price, the EV charging operators can maximize on 

their profits using the charging behavior predictions from the predictive models.  
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Chapter 6. Conclusion and Future Work 

 

In this thesis, we presented a framework for the prediction of two of the most 

important EV charging behaviors with regards to scheduling, namely session duration 

and energy consumption. Unlike previous work, we took advantage of weather, traffic, 

and events data along with historical EV charging data. We presented a framework for 

successfully integrating the additional data with historical charging records. Moreover, 

we provided detailed preprocessing steps for data formatting and handling outliers. We 

utilized various feature engineering techniques including trigonometric transformation 

and feature scaling. Furthermore, we trained six popular ML models along with two 

ensemble learning algorithms for the prediction of the two charging behaviors. The 

results obtained in terms of prediction performance was demonstrated to be superior to 

the results in the previous works. We obtained a SMAPE score of 9.92% in session 

duration predictions and a SMAPE score of 11.6% on energy consumption predictions. 

We have also provided a significant improvement in charging behavior prediction on 

the ACN dataset and demonstrated the potential of utilizing traffic and weather 

information in charging behavior prediction. 

We have quantitatively shown in the previous chapter that the traffic and 

weather variables are important predictors in EV charging behavior, particularly in the 

case of session duration. Although the use of local events data (campus events in this 

case) had an insignificant impact in terms of performance gain, it cannot be ruled out 

for future work. In this work, we obtained all campus events from the Caltech university 

calendar. However, perhaps only the major events that generally draw more crowds to 

the campus should be taken into consideration. It is also possible that events data may 

not impact EV charging behavior in a university campus significantly. However, for 

other public spaces such as shopping malls, for example, events such as the end of the 

year sale could be important predictors. Therefore, similar experiments on other public 

charging spaces should be carried out to determine the impact of local events.  

Social media can also be explored as a means to obtain information about local 

events as well as EV driving behavior. For example, a larger social media activity 

around the charging facility compared to usual could indicate a special event or 

occasion. It may also be possible to use social media data directly for predicting user 
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behavior if the data can be associated with the user ID. However, this will require the 

user to register with the charging facility mobile application using a social media 

account and can raise privacy concerns. The use of social media nonetheless has 

potential for charging behavior prediction. For instance, social media is an effective 

tool for estimating human behavior [97] and is also a significant predictor of truck 

drivers’ travel time [98].  

Moreover, it is likely that the use of vehicle information such as the vehicle 

model and vehicle type can improve predictions, especially in terms of energy 

consumption. This is because a particular EV model will have a fixed charging rate and 

battery capacity. This is also accurate for the type of vehicle being charged. An electric 

bus, for instance, will probably require a greater charging time than a light EV. The use 

of vehicle information has been supported by previous research works. For example, 

one of the previous works utilized vehicle information [66] but not in conjunction with 

the weather, traffic, and events data. Therefore, this work can be extended to include 

vehicle information by requesting the user to enter their vehicle details when registering 

with the mobile application. This user input is likely to be accurate because it is only 

requested once during registration.  

Furthermore, it is worth investigating the use of clustering algorithms and 

utilizing the results obtained from those algorithms as an input feature into the 

supervised learning model. This can be implemented using a PSF-based approach such 

as the one proposed in [71] and other similar approaches. The use of clustering will 

help by first narrowing down similar groups of users to a specific category. The ML 

predictions can then be obtained within that particular category. Consequently, the 

category the user belongs to can also be used as an additional input feature to the model. 

It is worth mentioning that this approach does not add any new information, but rather 

serves as an alternative feature representation for the models.    

Moreover, in this work, we considered nine of the closest roads and streets in 

terms of geographical proximity to the charging facility. However, given the 

importance of traffic data, it is worth looking at a greater number of roads and streets 

across the city to further enhance the performance. An in-depth study could be carried 

out to determine the optimal number of roads and streets to consider for a particular 

area.  
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Prediction of idle time can also be considered as an additional charging 

behavior. This is the time between the departure time and the time when the vehicle has 

been fully charged. Many drivers may decide to stay connected even after their vehicle 

has been fully charged. If ML algorithms can be trained to predict the idle time, we can 

prioritize charging vehicles that have shorter idle times historically and control the 

charging rate of vehicles with long idle times. This prediction can be easily integrated 

into the conceptual framework shown in Figure 5.9.   

Furthermore, we have only considered charging sessions that were recorded by 

user ID. Although in this case, such records represented an overwhelming majority of 

the dataset, we cannot ignore the predictions of sessions that have no ID associated. 

These sessions could belong to non-regular campus visitors who do not have their 

vehicles registered with the mobile application. Therefore, a separate predictive model 

can be trained to predict the charging behavior of sessions without any historical data.  

In this work, we considered six popular ML models including one deep learning 

model. It is also worth investigating with time-series models such as ARIMA as well 

as probabilistic models and perhaps integrating their predictions into the ensemble 

learning models. Moreover, recurrent neural networks that consider historical 

information by using memory blocks can prove to be useful in this application. 

Although less significant than public charging, the proposed approach could be used to 

determine the impacts of weather, traffic, and events on residential charging behavior. 

Finally, we only considered data for the year 2019 in this study. Therefore, this work 

can be further extended for 2020 and 2021 to study the EV charging behavior during 

the COVID-19 pandemic. 
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Appendix A 

 

In this section, we present the figures related to the exploratory data analysis 

where no significant relationship between the variables were observed. For both session 

duration and energy consumption, the respective figures for the humidity, wind speed, 

and snowfall are presented from Appendix 1 to Appendix 6. 

 

Appendix 1 Previous humidity (left) and next humidity (right) against session 
duration 

 

 

Appendix 2 Previous wind speed (left) and next wind speed (right) against session 
duration 
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Appendix 3 Previous snowfall (left) and next snowfall (right) against session duration 

 

 

Appendix 4 Previous humidity (left) and next humidity (right) against energy 
consumption 

 

 

Appendix 5 Previous wind speed (left) and next wind speed (right) against energy 
consumption 
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Appendix 6 Previous snowfall (left) and next snowfall (right) against energy 
consumption 
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