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Abstract 

 

Electric Vehicles (EVs) nowadays have become increasingly prevalent due to the 

advancements in EV technology and their impact on reducing greenhouse emissions. 

However, there are still some factors affecting the fast deployment of EVs such as the 

limited driving range and the charging time. Due to the limited driving range, EVs need 

to be charged frequently, but charging requires a long period at traditional EV charging 

stations, whereas fast-charging stations still have concerns regarding the wait and the 

charging time, which might cause traffic jams near the station.  In this thesis, new 

dynamic optimal operation and planning approaches of EV battery-swapping stations 

(BSS) are introduced. In the operation phase, the goal is to maximize the daily profit 

using a rolling horizon optimization (RHO) mechanism and determining the optimal 

operating schedule for swapping and charging/discharging processes. The problem is 

formulated as mixed-integer linear programming (MILP) problem with nonlinear 

battery degradation characteristics included. Long-short-term memory (LSTM) 

recurrent neural network is used as a time series forecasting engine for predicting the 

EVs' arrivals.  The proposed approach is tested and compared with the unscheduled 

operation and day-ahead scheduling. The results show that the dynamic operations 

scheduling using the proposed RHO mechanism results in a higher profit. In the second 

phase, an optimal planning approach for a photovoltaic-based BSS system is proposed 

considering the PV system and EV arrivals uncertainty. The main goal of the planning 

part is to determine the optimal size of the BSS assets and to optimally allocate the BSS 

in the distribution network. Markov Chain Monte Carlo Simulation is used to tackle the 

uncertainty associated with photovoltaic output and EV arrivals. Simulation results 

show the effectiveness of the proposed BSS system and an optimal solution is obtained 

which maximizes the annualized profit. 

Keywords: Battery swapping stations; Battery-to-grid; EV charging stations; 

Electric Vehicles; Long short term memory; Optimization; Rolling Horizon, Markov 

Chain Monte Carlo Simulation.  
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Nomenclature 

 

A. Sets:  

𝐵 Set of batteries.  

𝐾 Set of chargers. 

𝑇 Set of time slots. 

𝑇𝛽
𝑎𝑟𝑣 A subset of time slots for the EV arrivals at each bay 𝛽. 

𝑇𝛽
𝑎𝑟𝑣′ A complementary subset representing time slots without EV 

arrivals at each bay 𝛽. 

𝑇𝑚,𝛽
′  A subset of time slots 𝑇 representing the time slots with no EV 

arrivals requesting type m batteries at bay β 

𝑇𝑝𝑣 A subset of time slots with PV generation 

𝑇𝑝𝑣′ A subset of time slots without PV generation 

𝑈 Set of charging bays. 

ℬ Set of distribution system buses 

𝜓𝑚 Group of set 𝐵 for batteries of type-m.  

𝜆𝑗 Group of set 𝐾 for chargers group j. 

  

B. Parameters:  

c𝜏
gr

 Dynamic grid price in cents per kWh. 

ckWh Fixed price per kWh swapped 

C𝑏
swap

 Fixed price in cents for replacing a battery. 

CDEG Cost of battery degradation 

CPV The cost of charging from the PV system. 

cy𝑏 Charging/discharging cycles of each battery. 

DODmax Maximum depth of battery discharge in %. 

𝑑 Discount rate 
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𝑑′ Effective discount rate 

e𝑏
max Maximum capacity of battery b in kWh. 

𝑒 Escalation factor 

FF Fill factor 

𝑙𝑐 Project Life cycle 

KI Current temperature coefficient V/℃ 

KV Voltage temperature coefficient A/℃ 

k A percentage shaping chargers' characteristics. 

Km Number of reduced scenarios using k-means 

N𝜏,𝛽
units The number of batteries requested by an EV. 

N𝛺
ch The number of chargers available in group j. 

NOCT Nominal cell operating temperature 

N𝑞 The number of historical data points in each season. 

N𝑠𝑐𝑒𝑛 The number of generated scenarios 

n Number of forecasted data points 

P𝑖
D The real load demand at bus i. 

p𝑏
MAXd Maximum battery discharging rate in kWh. 

p𝑏
MAXc Maximum battery charging rate in kWh. 

pGRIDc The limit for charging power from the grid. 

pGRIDd The limit for discharging power to the grid.  

P𝜏
pv

 The output power from the PV system at time 𝜏. 

Q𝑖
D The reactive load demand at bus i. 

R𝜏 A fraction of the rated load demand at time 𝜏. 

𝑟 Number of Multiple random initializations of Km centroids 

soc𝜏,𝛽
ev  State Of Charge of the arriving EVs DBs at time τ and bay β. 

soc𝑏
0 Initial SOC of each battery. 

soc𝑏
max Maximum SOC of any battery 100 % 

Vmax The upper bound on the bus voltage. 
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Vmin The lower bound on the bus voltage. 

𝑤𝑑
(𝑠)

 Probability of scenario 𝑠 

Y Number of clustered PV output power states 

Y𝑖,𝑗 The magnitude of the bus admittance matrix. 

𝜁 A percentage of the maximum battery capacity. 

∆soc𝑏
deg

 Degradation in the battery SOC. 

∆t The time step in hours. 

ηch The efficiency of charging. 

ηdch The efficiency of discharging. 

μ𝑏
deg

 Battery degradation price. 

γ𝑖,𝑗 The angle of the bus admittance matrix. 

  

C. Variables:  

𝐶𝐺2𝐵 Cost of purchasing energy from the grid 

𝑐ℎ𝜏,𝑏 Charging status of battery b at time τ (1 if charging, 0 

otherwise). 

𝑑𝑐ℎ𝜏,𝑏 Discharging status of battery b at time τ (1 if discharging, 0 

otherwise). 

𝐹 The total profit of the BSS. (objective function variable) 

𝐼𝑀𝑃𝑃 PV cell current at the maximum power point 

𝐼𝑝𝑣 PV cell output current 

𝐼𝑠𝑐 PV cell short circuit current 

𝑀𝜏,𝛽 Decision binary variable for serving an EV at time τ and bay β  

(1 if served, 0 otherwise) 

𝑂𝑏ℎ Observed EV arrivals data point ℎ 

𝑃𝑟ℎ Forecasted EV arrivals data point ℎ 

𝑃𝑖,𝜏
𝐵𝑆𝑆 The real power injected from the BSS at bus i at time 𝜏. 



15 

 

𝑝𝜏,𝑏
𝑐ℎ  Charging power of any battery b during time slot τ from the 

power grid. 

𝑝𝜏,𝑏
𝑑𝑐ℎ Discharging power of any battery b during time slot τ. 

𝑝𝜏,𝑏
𝑐ℎ𝑝𝑣

 Charging power of any battery b during time slot τ from the PV 

generation. 

𝑝𝜏,𝑏
𝑔𝑟𝑖𝑑

 Injected active power from the main substation in the 

distribution network 

𝑝𝜏,𝑏
𝑔𝑟𝑖𝑑

 Injected reactive power from the main substation in the 

distribution network 

𝑃𝜏
𝑙𝑜𝑠𝑠 The total power loss in the system due to the loading state at 𝜏. 

𝑅𝑠 Revenue from swapping. 

𝑅𝐵2𝐺 Revenue from selling energy to the grid. 

𝑅𝑝𝑣2𝐺 Revenue from selling excess PV generation to the grid. 

𝑆𝐼𝑅 Solar irradiance 𝑊𝑎𝑡𝑡/𝑚2 

𝑠𝑜𝑐𝜏,𝑏 State of charge at the end of time slot τ. 

∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

 The difference in SOC between a customers' DB and the 

swapped charged battery. 

𝑠𝑤𝜏,𝑏,𝛽 Swapping status of battery b at time τ and bay β (1 if swapped, 0 

otherwise). 

𝑇𝐴 Ambient temperature ℃ 

𝑇𝑐𝑒𝑙𝑙 PV cell temperature ℃ 

𝑉𝑖,𝜏 The voltage magnitude at bus i at the time 𝜏. 

𝑉𝑀𝑃𝑃 PV cell voltage at the maximum power point 

𝑉𝑜𝑐 PV cell open-circuit voltage 

𝑉𝑝𝑣 PV cell output voltage 

𝑧𝜏,𝑏 Intermediate variable replacing the product of a binary variable 

and a positive variable. 

𝛿𝑖,𝜏 The phase angle at bus i at the loading state 𝜏. 
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C. Indices:  

b Index of batteries 

c Index of chargers 

𝑑 Index of day 

i, j The bus indices 

𝛺 Index of the group of chargers 

𝑘 Index of centroid 

𝑙 Index of PV state in the transition matrix 

m Index of battery type 

𝑜 Index of PV state in the transition matrix 

𝑞 Index of seasons  

𝑠 Index of scenario 

𝑦 Index of PV output power state 

β Index of swapping bays 

τ Index of time 
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Chapter 1 . Introduction 

 

In this chapter, we provide a short introduction to Electric Vehicles and their 

impact on reducing greenhouse emissions. Then, we address the challenges preventing 

the fast deployment of electric vehicles and how battery swapping stations (BSSs) are 

a good solution for some of these challenges. Finally, the general organization of the 

thesis is presented. 

1.1. Overview 

Due to the advancement in Electric Vehicles (EV) technology and their impact 

on reducing greenhouse emissions and reliance on fossil fuels, the future of EVs is 

evolving rapidly. In fact, the number of EVs in the United States is expected to reach 

18.7 million by 2030 that is 7% of the expected available vehicles on road in 2030 [1]. 

Some governments already took actions to revolutionize their roads (e.g., The UK 

government has launched a plan named 'road to zero' such that all the vehicles on the 

roads will be zero emissions by 2040 [2]). However, there are still some factors 

affecting the fast deployment of EVs such as the limited driving range for an EV and 

the EV charging time. Although few companies started already to produce EVs with an 

extended driving range (e.g., Tesla Model S 402 miles and Tesla Model 3 322 miles 

[3]) but this is the official range, however, consumers know that in real-world usage 

this range is lesser. In this thesis, we deal with the issue of long charging times at EV 

charging stations. Fast-charging stations (FCSs) would take around 80 minutes to fully 

charge the Tesla Model S battery [4], whereas it takes only 12 minutes to swap a battery 

in a typical EV BSS in Shandong province of China [5]. 

 It can be noticed that EV battery swapping stations are being recently 

introduced in some research papers and the market as well, as it aims to eliminate the 

EV battery charging times at the charging stations and it's capable of providing grid 

ancillary services. The BSS concept is based on replacing the depleted battery of the 

EV owner with a charged battery. The customer's depleted battery is charged at the BSS 

using DC battery chargers that have less impact on the battery life compared to DC fast 

chargers. BSSs can provide a swapping service in less than 5 minutes [6].  
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1.2. Thesis Objectives 

Driven by the developing interest in battery swapping stations, and their impact on 

eliminating the EV charging time, we will focus on designing and planning battery 

swapping stations. Moreover, we provide a dynamic scheduling model based on a 

rolling horizon optimization mechanism. The objective of this work is to maximize the 

daily profit of the BSS considering many factors such as the battery degradation effect, 

and the battery heterogeneity of different EV types. Additionally, we conduct a set of 

case studies and sensitivity analyses to prove the model's effectiveness. Finally, a 

framework is developed for optimal planning of BSSs by optimizing the economic 

benefits during the station life cycle considering the annualized capital costs, operation 

costs, and, taking into account the maintenance and recycling costs. 

1.3. Research Contribution 

The contributions of this research work can be summarized as follows: 

 To the best of the author’s knowledge, this is the first model that assesses the 

BSS optimization problem dynamically using an RHO mechanism while 

employing a long-short term memory (LSTM) recurrent neural network as a 

time series forecasting engine to predict the future EVs swapping demand. 

 The diversity of the arriving EV type is adopted in this model by introducing 

multiple units and sizes of batteries. Hence, the BSS can serve an EV requesting 

single or multiple battery units (e.g. electric buses, trucks, or even large-size 

electric cars). 

 A comprehensive study comparing day-ahead operation and rolling horizon 

operation versus unscheduled operation is presented in this paper. 

1.4. Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides background 

about the BSS technology and recent literature in planning and modeling its operation. 

Moreover, related works of this research are discussed. The employed methods and 

algorithms are discussed in Chapter 3 along with the implementation of the proposed 

approach. Demand forecasting and rolling horizon optimization mechanism are 

presented in chapter 4. Chapter 5 presents a set of case studies and results analysis for 
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the operational phase. The planning problem formulation and results are presented in 

chapter 6. Finally, the conclusions are presented in Chapter 7.  
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Chapter 2 . Background and Literature Review 

 

In this chapter, we discuss the fundamentals and the background behind EVs 

charging. Then, we present the techniques used for charging EVs at different charging 

facilities and we focus on explaining the battery swapping station concept and how it 

provides an alternative for traditional EVs charging. Finally, we discuss the related 

work in this field of research. 

2.1. Background on EVs Charging 

There are many different ways to charge an Electric vehicle, in other words, the 

types of charging stations are categorized into four main categories: residential charging 

stations, charging while parked at public charging stations, fast-charging stations, and 

battery swapping stations. 

There are 3 main levels for the chargers used at the EV charging stations each 

has a different charging rating. In Table 2.1 the three main levels for charging are 

illustrated along with their ratings and the approximate time each charger would take 

to charge a 24kWh battery. In residential charging, the EVs are recharged usually 

overnight normally using level-1 chargers which is the slowest way to charge an EV. 

Whereas charging at public EV charging stations could be faster due to the use of level-

2 chargers which are relatively faster. However, FCSs have a very fast charging rate 

due to the use of fast DC chargers that are capable of charging a 24 kWh battery in 

about 30 minutes. Finally, battery swapping stations can provide a very fast alternative 

for charging EVs depleted batteries. The BSS extremely reduces the time of charging 

EVs similar to that for gasoline refueling of conventional vehicles. 

2.1.1. Fast charging stations. Fast charging is also known as rapid charging 

and it aims to decrease the EV charging time. FCS uses level 3 chargers that are capable 

to replenish more than 80% of the EV battery capacity in about 20 minutes. 

Consequently, the traveling range of the EVs is extended if there are FCSs on the way. 

Although FCS reduced the charging times significantly, it can still have concerns 

regarding the wait of electric vehicles to charge which might cause traffic jams near the 

station also fast chargers will significantly reduce the battery lifetime as well. Fast 

chargers also create an adverse challenge to our power system, namely high current 
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demand and harmonic contamination affecting the peak of our consumption and 

violating the demand side management. 

2.1.2. Battery swapping stations. The BSS concept is based on replacing the 

depleted batteries (DBs) of the customer's EV with a charged battery. This eliminates 

the EV charging time and provides a fast reliable swapping service in less than 10 

minutes. Figure 2.1 shows the operation principle of the BSS system [7]. Most of the 

BSSs are designed to trade power with the utility or with microgrids. The BSS sells and 

purchases energy from the utility based on the dynamic electricity tariff. Such that, the 

BSS sells power to the grid at high prices and buy power at low prices. Finally, the BSS 

can be also designed to provide other grid ancillary services e.g. (voltage support and 

supporting power outages in the power system). 

2.2. Related Work 

In order to design BSSs and provide optimal operation scheduling for it, an 

operational model has to be developed to generate profits while meeting the swapping 

demand. The main idea is to design the BSS station and model its daily operation as in 

[8]. Furthermore, this could be developed into a planning model over multiple years as  

 

Figure 2.1: The BSS operations [7]. 
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Table 2.1: Types of EV Charges 

Charger type Power supply Charger power 

Charging time 

(Approx.) for a 

24kWh battery 

Level-1  

(AC charging) 

120 VAC 

12A to 16 A 

(single phase) 

~1.44kW to ~ 

1.92kW 
~17 hrs 

Level-2 

(AC charging) 

208 ~ 240VAC 

15A ~ 80A 

(single phase / 

split phase) 

~3.1 kW to 

~19.2kW 
~8 hrs 

Level-3 

(DC fast charging) 

300 ~ 600VDC 

Max 400A 

(polyphase) 

~120kW to 

~240kW 
~30 minutes 

 

in [9]. This can be done typically considering a day-ahead problem where the BSS can 

take actions considering the dynamic electricity price and the market price as modeled 

in [10]. Such that, it sells electricity at high prices during the day and purchase it at a 

low price while meeting the swapping demand. Mostly the optimization problem is 

based on the fact that charging of the batteries occurs at the BSS station. However, 

some like Xiaochuan Liu et al. combined both operations of BSS and battery charging 

station, where BSS is only used as a store and depleted batteries are to be charged at 

battery charging station then delivered to the BSS [11]. However, this would require us 

to model a transportation system for the batteries and there's no need for it if swapping 

and charging processes could be done at the same station, which is assumed in this 

thesis. 

2.2.1. BSS with renewable generation and microgrid. Some models 

considered BSS can run independently if coupled with a micro-grid [12] considering 

MG and BSS conflicting objectives. Some researchers have studied the operation of 

BSSs with renewable generation to minimize the costs. Researchers in [13] proposed a 

BSS coupled with PV generation and the grid considering swapping and PV demand 

uncertainties. A PV-based BSS is modeled in [14] by considering the service 
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availability and self-consumption of PV. However, these studies ignored the difficulty 

of installing renewable energy infrastructures in urban cities. Therefore, the proposed 

model in this thesis will not use any renewable generation to reduce the operating costs. 

Recently Mingfei Pan incorporated BSS with networked nano-grids [15]. 

2.2.2. BSSs serving a specific EV type. In [5] an operation model for a BSS 

serving only electric busses was proposed, whereas in [4] a study has been investigated 

on a BSS serving electric taxis only in an urban city and it was assumed that most of 

the stations are operating only from 9.00 a.m. to 8.00 p.m. Hence, the BSS model 

proposed in this research is operating continuously during the whole day and it's 

capable of serving any type of electric vehicle. 

2.2.3. Variable chargers and battery heterogeneity. While many 

researchers used a constant charging rate as it's easier to be modeled and reduces the 

nonlinearity in the model very few researchers used continuously controlled chargers 

as in [16] which makes it more flexible to provide grid services. Hence, variable 

chargers are used in this research. In [17] different charging control methods have been 

proposed considering providing ancillary services to the grid. Very few research works 

introduced battery heterogeneity into BSSs modeling [18], but they used some 

impractical assumptions as they require the customers to request battery swapping 

reservations earlier and specify the battery type and use the expected EV arrival time 

in their modeling. Thus, we cannot rely on that model in practical operation. In this 

thesis, a new dynamic operation model for a BSS is proposed which makes it very close 

to practical operation. 

2.2.4. Demand forecasting. There are various research efforts towards 

determining the Battery swapping demand (e.g. in [10] Robust inventory theory has 

been used to model the demand uncertainty). Some research work considered the 

battery swapping uncertainty by modeling the swapping requests probabilistically due 

to the lack of historical data and the anthropogenic factors in EV arrivals [12]. However 

in some systems as in [4], the swapping demand could be easily computed since all 

taxis nearly have the same operation, thus the travel distance and the taxi location are 

used to predict the swapping demand. Data-driven demand prediction has been subject 

to research as well. Previous research work as in [5] a backpropagation neural network 

prediction model is proposed to predict the swapping requests for one day ahead. Also, 



24 

 

a wavelet neural network could be used to predict the EV swapping demand [14]. There 

are also many time series forecasting methods used for predicting the demand for BSSs 

or EVs charging demand at the parking lot as demonstrated in [19], [20] ARIMA 

method has been used. Also, time series forecasting using deep learning is one of these 

methods that could be used for predicting demand for future time steps. It's illustrated 

in [21] how to forecast time series data using a long short-term memory recurrent neural 

network (RNN). Unlike convolutional neural networks and backpropagation neural 

networks, RNN is capable of taking a sequence of data and predicts a future sequence, 

it has also the capability of updating the network state with the observed values instead 

of the predicted values [21] – [22]. 

2.2.5. Solving the optimization problem. BSS Scheduling and operation is 

formulated as a mixed-integer nonlinear optimization problem. Recently heuristic 

optimization algorithms have shown good results in solving such problems as shown in 

[8], [9], and [23]. The authors in [8] integrated algorithm was used to solve the 

optimization problem for charging schedule for BSS batteries using genetic algorithms, 

particle swarm optimization, and differential evolution which has proven better results 

than the typical evolutionary algorithms. In [9] a heuristic technique is used to solve 

the optimization problem using differential evolution enhanced by fitness sharing 

which requires less computational time and searches the global optimum more 

effectively. In [23] a dynamic crossover and adaptive mutation strategy into a hybrid 

algorithm of particle swarm optimization and genetic algorithm are introduced. 

However, there's no guarantee that heuristics will result in an optimal solution. Hence, 

in this model, an exact optimization approach is used. In [10] Mushfiqur R. Sarker 

represented his problem as a mixed-integer linear programming problem and solved it 

using CPLEX. Research effort has also been placed to solve large-scale optimization 

problems that accommodate nonlinearities (e.g. in [16] a generalized benders 

decomposition algorithm was used to solve the problem such that each sub-problem 

can be further divided into multiple independent quadratic programming problems. 

2.2.6. Rolling horizon predictive scheduling. RHO solves the optimization 

problem over a moving window which is more robust to uncertainty and better than 

offline approaches such that it forecasts the arrival of customers with depleted batteries 

for a future time horizon based on historical data and updates of the actual arrivals at 
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the current time interval. Many researchers have used the online rolling window 

predictive methods as shown in [24] where a rolling window is used for optimal control 

of an energy storage unit in a grid-connected microgrid. In [25] an online model 

predictive controller is demonstrated for a microgrid with plug-in electric vehicles. 

Also, Alison O'Connell [26] presented a rolling optimization method that focuses on 

controlling the rate and times at which EVs charge over a 24-h time horizon. On the 

other hand, the majority of research work related to BSSs preferred modeling the 

system as a day-ahead problem. 

2.2.7. BSS planning. In [9], a proposed study on optimally determining the 

locations to install BSSs in urban cities, while using a heuristic approach to determine 

the charging/discharging scheduling of an EV. The problem is modeled as maximizing 

the net present value of the BSS considering load type, network reinforcement, and 

reliability analysis. A data-driven approach for solving the BSS location selection 

problem to satisfy the battery swapping demand of EVs was investigated in [27] while 

using large-scale GPS data from taxis and electricity requests. Some researchers as Qi 

Kang introduced a centralized charging strategy of EVs under a battery swapping 

scenario considering optimal charging priority and charging location (station or bus 

node in a power system) based on spot electric price [23]. Similarly in [28], the authors 

introduced a centralized solution for an optimal scheduling problem for battery 

swapping that assigns to each EV a best based on the station location and the SOC while 

considering EV range constraints, grid operational constraints, and ac power flow 

equations and assuming that distribution grid, battery stations, and EVs are managed 

centrally by the same operator. In [29] the same case in [28] was investigated but with 

a distributed solution such that the distribution grid, stations, and EVs are managed by 

separate entities. Since BSS is an emerging technology most of the literature work 

disregarded many factors such as queuing analysis, battery heterogeneity, and the 

diversity of arriving EV type (e.g. Electric cars, Taxis, Busses, and trucks). The queuing 

analysis is a very important factor for estimating the queue length and waiting time and 

essential part of planning and sizing of battery swapping stations. However, queuing 

analysis has been widely adopted in research articles related to fast-charging stations 

[30]-[32].   
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Chapter 3 . Methodology 

 

In this chapter, a general framework of the proposed BSS is presented. The 

assumptions used in modeling the BSS are highlighted. We also formulate a 

mathematical model for the BSS operations. 

3.1. The Structure of the Proposed BSS System 

A general framework of the proposed BSS is illustrated in Figure 3.1. as it 

shows that the BSS consists of five main parts, namely, i) The power system, ii) The 

charging partition, iii) The fully charged battery inventory (FCBI), iv) The swapping 

bays, v) The BSS control center. 

Figure 3.1: The structure of the proposed BSS model. 

3.1.1. Details of the system model. In this model, a fully automated swapping 

system using robots is proposed. Once a battery is fully charged it's automatically 

transferred to the FCBI. The BSS model is mainly providing service to EVs by 

unloading the DBs from the arriving EV and replacing it with a fully charged one from 

the FCBI or a partially charged battery from the charging racks. The minimum SOC of 

a partially charged battery cannot be less than a certain Threshold (𝜁). Our BSS consists 

of several swapping bays for EVs requesting single battery units, while some other bays 

are used to serve EVs requesting more than one battery unit (e.g. Electric busses or 
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trucks). Meanwhile, the BSS has a heterogeneous battery stock that contains different 

battery types for serving different types of EVs.  Since different types of batteries can 

vary greatly due to different manufacturers and models, also to avoid problems such as 

compatibility which is one of the concerns for lithium-ion batteries the BSS has 

different groups of DC chargers each is specified for a certain type of battery. These 

chargers are advanced chargers that could charge/discharge with a continuously 

controlled power to get more flexibility while supplying energy to the grid. Hence, fully 

utilize the battery-to-grid (B2G), grid-to-battery (G2B), and battery-to-battery (B2B) 

concepts and efficiently provide grid ancillary services. The BSS has a control center 

that is responsible for providing an optimal schedule for 

charging/discharging/swapping processes at the BSS, while continuously monitoring 

and predicting the BSS demand, number of charged batteries in stock, and the SOC of 

the batteries, and the dynamic price of electricity. 

3.1.2. Assumptions. It is assumed that batteries are owned by the BSS so that 

it's responsible for its charging/discharging, state of health, and degradation. There must 

be a contract between the BSS operator and the customers including that customers are 

not allowed to charge the battery elsewhere and return it for swapping at the BSS before 

a certain date. A heterogeneous battery inventory is proposed for serving different EV 

models from different manufacturers. It’s also assumed that different EV types for a 

certain manufacturer (e.g. cars, buses, or trucks) can use single or multiple units of a 

unified battery type. The SOC of a customer's DB cannot go below a certain minimum 

value. Meanwhile, the SOC of a charged battery swapped to a customer should not less 

be than a certain threshold. A fully automated swapping system is assumed with a 

proposed swapping service under 10 minutes. All data such as EV actual arrivals, SOC 

of the DBs, and SOC of each battery at the charging racks and the number of fully 

charged batteries in stock are obtained and transferred immediately to the BSS control 

center to set the scheduling actions.  

3.2. Optimization Model   

The proposed optimization model is based on an RHO mechanism which is later 

explained in chapter 4. Such that the BSS control center predicts the EV arrivals for an 

upcoming time horizon and optimization takes place based on the predicted arrivals. 

Thus, charging /discharging and swapping schedules are to be optimally acquired.  
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3.2.1. The BSS mathematical model. The optimization model is given in (1-

28) for batteries 𝑏 ∈ 𝐵 = {1,2, … , Nbat}, swapping bays 𝛽 ∈ 𝑈 = {1,2, … , Nbay}, 

chargers 𝑐 ∈ 𝐾 = {1,2, … , Nch}, type of batteries 𝜓 =  {𝜓1, 𝜓2, … , 𝜓𝑚 }, and a group 

of chargers 𝜆 =  {𝜆1, 𝜆2, … , 𝜆Ω}. Where [𝜓1 ∪ 𝜓2 ∪ …∪ 𝜓𝑚 = 𝐵], [𝜓1 ∩ 𝜓2 ∩ …∩

𝜓𝑚 = {𝜙}], [𝜆1 ∪ 𝜆2 ∪ …∪ 𝜆Ω = 𝐾],[𝜆1 ∩ 𝜆2 ∩ …∩ 𝜆Ω = {𝜙}]; where m and j are the 

indices of battery types and charger groups available at the BSS respectively. A group 

of chargers has chargers of the same type and characteristics. Each group of chargers is 

assigned to a certain battery type. In the following formulation chargers group, 𝜆𝑗 is 

assigned to battery type 𝜓𝑚, ∀(𝑚 = Ω). The number of chargers in each group Ω is 

NΩ
ch. In the objective function (3.1), the profit of the BSS during a certain time interval 

is represented as the submission of the revenue from the battery swapping to the 

customers and the revenue from selling energy to the grid and deducting the costs which 

are mainly the cost of energy purchased from the grid to charge the batteries and the 

battery degradation cost. 

max
𝐹

= 𝑅𝑠 + 𝑅𝐵2𝐺 − 𝐶𝐺2𝐵 − CDEG (3.1) 

𝑅𝑠 = ∑ ∑ ∑ 𝑠𝑤𝜏,𝑏,𝛽
(𝛽∈𝑈)(𝑏∈𝐵)(𝜏∈𝑇)

× c𝑏
swap

+ ∑ ∑
𝑒𝑚𝑎𝑥𝑏
100

× ∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝  × ckWh

(𝑏∈𝐵)(𝜏∈𝑇) }
 
 

 
 

 (3.2) 

𝑅𝐵2𝐺 = ∑ ∑ ∆t × c𝜏
gr
(ηdch × 𝑝𝜏,𝑏

𝑑𝑐ℎ)

(𝑏∈𝐵)(𝜏∈𝑇)

 (3.3) 

𝐶𝐺2𝐵 = ∑ ∑ ∆t × c𝜏
gr
(
𝑝𝜏,𝑏
𝑐ℎ

ηch
 )

(𝑏∈𝐵)(𝜏∈𝑇)

 
 

(3.4) 

Subject to: 

∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝 = ∑ (𝑠𝑜𝑐𝜏−1,𝑏 − soc𝜏,𝛽

ev ) × 𝑠𝑤𝜏,𝑏,𝛽
(𝛽∈𝑈)

 

∀(𝜏 ≥ 2) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

(3.5) 

∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

= ∑ (soc𝑏
0 − soc𝜏,𝛽

ev ) × 𝑠𝑤𝜏,𝑏,𝛽
(𝛽∈𝑈)

 

(𝜏 = 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

(3.6) 
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                          𝑐ℎ𝜏,𝑏 + ∑ 𝑠𝑤𝜏,𝑏,𝛽
(𝛽∈𝑈)

 ≤ 1                            ∀𝜏 ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, (3.7) 

𝑠𝑜𝑐𝜏,𝑏 = 𝑠𝑜𝑐𝜏−1,𝑏 +
(𝑝𝜏,𝑏

𝑐ℎ − 𝑝𝜏,𝑏
𝑑𝑐ℎ ) × ∆t

e𝑏
max × 100 − ∆𝑠𝑜𝑐𝜏,𝑏

𝑠𝑤𝑎𝑝
 

∀(𝜏 ≥ 2) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

 (3.8) 

𝑠𝑜𝑐𝜏,𝑏 = soc𝑏
0 +

(𝑝𝜏,𝑏
𝑐ℎ − 𝑝𝜏,𝑏

𝑑𝑐ℎ ) × ∆t

e𝑏
max × 100 − ∆𝑠𝑜𝑐𝜏,𝑏

𝑠𝑤𝑎𝑝
 

(𝜏 = 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

 (3.9) 

(soc𝑏
𝑚𝑎𝑥 − DODmax) ≤  𝑠𝑜𝑐𝜏,𝑏 ≤ soc𝑏

𝑚𝑎𝑥 

∀𝜏 ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 
(3.10) 

𝑠𝑜𝑐𝜏−1,𝑏  ≥ 𝜁 × ∑
     

𝑠𝑤𝜏,𝑏,𝛽 
(𝛽∈U)

 

 ∀(𝜏 ≥ 2) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

(3.11) 

soc𝑏
0  ≥ 𝜁 × ∑

     
𝑠𝑤𝜏,𝑏,𝛽 

(𝛽∈𝑈)

 

(𝜏 = 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

 (3.12) 

The decision variable vector 𝐹 = (𝑝𝜏,𝑏
𝑐ℎ , 𝑝𝜏,𝑏

𝑑𝑐ℎ, 𝑐ℎ𝜏,𝑏 , 𝑠𝑤𝜏,𝑏,𝛽)
𝑇
 includes the 

variables for batteries charging/discharging and swapping processes. In (3.2) the binary 

variable 𝑠𝑤𝜏,𝑏,𝛽 represents the status of the battery b at any time τ at any swapping bay 

β such that it's 1 if a battery is swapped at a certain bay at the end of time slot τ and 0 

otherwise. Meanwhile, the revenue from swapping is represented as submission of two 

terms a) fixed price per replacement of a battery unit b) revenue per kWh replaced to 

customers. In (3.3) & (3.4) the price of energy charged/discharged from the grid is 

calculated based on TOU. Equations (3.5) & (3.6) calculate the drop in the SOC of a 

certain battery b if it's replaced by a DB arriving with socτ,b
ev  at any time τ. If a battery 

b is not swapped at any swapping bay β at time τ, therefore, the variables 𝑠𝑤𝜏,𝑏,𝛽 & 

∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

 are 0. Constraint (3.7) states that any battery at any time τ is either swapped 

at any swapping bay β if 𝑠𝑤𝜏,𝑏,𝛽  is 1 or charging at the charging racks if the binary 

variable 𝑐ℎ𝑡,𝑏 is 1, thus both charging and swapping processes cannot occur at the same 

time for the same battery. It also ensures that a certain battery b cannot be replaced at 

two different swapping bays at the same time slot. In (3.8) & (3.9) the state of charge 

of each battery b at any time τ is calculated while taking the SOC at the previous time 

slot τ-1, charging and discharging power efficiencies ηc & ηd into consideration. The 
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SOC of any battery in the BSS cannot be discharged less than the 𝐷𝑂𝐷𝑚𝑎𝑥 and cannot 

exceed soc𝑏
𝑚𝑎𝑥 as shown in (3.10). Equation (3.11) provides the option for swapping 

partially charged batteries from the charging racks as it states that any battery is eligible 

to be swapped to a customer at any bay if it maintains a SOC above a certain threshold 

such that if a customer arrives at a time τ the SOC at time τ -1 of the charged battery 

has to be above a certain Threshold (𝜁). This provides a more flexible service as not 

only FBs from the inventory are swapped but also partially charged ones. Similarly, 

equation (3.12) ensures maintaining an initial soc𝑏
0  for any battery above a certain 

threshold at the beginning of the day if this battery is to be replaced at the end of the 

first time slot (τ = 1). 

                    ∑ 𝑠𝑤𝜏,𝑏,𝛽
(𝑏∈𝐵)

 = N𝜏,𝛽
units ×𝑀𝜏,𝛽                  ∀𝑡 ∈ 𝑇𝛽

𝑎𝑟𝑣, ∀ 𝛽 ∈ 𝑈, (3.13) 

                               𝑠𝑤𝑡,𝑏,𝛽  = 0                              ∀𝜏 ∈ 𝑇𝛽
𝑎𝑟𝑣′ , ∀ 𝑏 ∈ 𝐵, ∀ 𝛽 ∈ 𝑈, (3.14) 

At any time slot τ at the same bay β only one customer can swap a single or 

multiple battery unit(s). The customer also swaps a specific battery type for his EV 

from the types offered by the BSS as shown later in (3.20). Constraint (3.13) states that 

EVs arriving at bay β at time τ requesting N𝜏,𝛽
units units of batteries for swapping could 

be served or not; where 𝑀𝜏,𝛽 is a binary variable equal to 1 if the EV is served and 0 

otherwise. Whereas equation (3.14) fixes the 𝑠𝑤𝜏,𝑏,𝛽 variable to zero at any bay β at the 

time slots 𝑇𝛽
𝑎𝑟𝑣′ at that bay. 

0 ≤ 𝑝𝜏,𝑏
𝑐ℎ ≤ (p𝑐

MAXc × 𝑒

k−𝑠𝑜𝑐𝑡,𝑏
P𝑐
MAXc

) × 𝑐ℎ𝜏,𝑏 

∀𝜏 ∈ 𝑇  ∀𝑏 ∈ 𝜓𝑚   ∀𝑐 ∈  𝜆𝛺  ∀(𝑚 = 𝛺) ∈ 𝜓, 

(3.15) 

0 ≤ 𝑝𝜏,𝑏
𝑐ℎ ≤ p𝑐

MAXc × 𝑐ℎ𝜏,𝑏 

∀𝜏 ∈ 𝑇  ∀𝑏 ∈ 𝜓𝑚    ∀𝑐 ∈  𝜆𝛺  ∀(𝑚 = 𝛺) ∈ 𝜓,  
(3.16) 

0 ≤ 𝑝𝜏,𝑏
𝑑𝑐ℎ ≤ p𝑐

MAXd × 𝑐ℎ𝜏,𝑏 

∀𝜏 ∈ 𝑇  ∀𝑏 ∈ 𝜓𝑚    ∀𝑐 ∈  𝜆𝛺  ∀(𝑚 = 𝛺) ∈ 𝜓 , 
(3.17) 

∑ 𝑝𝜏,𝑏
𝑐ℎ

(𝑏∈𝐵)

 ≤  pGRIDc 

∀𝜏 ∈ 𝑇, 

(3.18) 
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∑ 𝑝𝜏,𝑏
𝑑𝑐ℎ

(𝑏∈𝐵)

 ≤  pGRIDd 

∀𝜏 ∈ 𝑇, 

(3.19) 

To fully utilize the benefits from the grid services variable rate chargers were 

used rather than the constant current chargers that are controlled by simple on/off 

control methods. The combination of constraints (3.15) and (3.16) shapes the variable 

charger characteristics as they define the bounds on the charging power. The variable 

charging characteristics are modeled as a function of the battery SOC as it decreases 

exponentially less than p𝑐
MAXc when the SOC exceeds a certain k% as shown in (3.15). 

In (3.17) a battery could only be discharged at the rated power p𝑐
MAXd. The parameters 

p𝑐
MAXc and p𝑐

MAXd are set according to the group of chargers 𝜆𝑗 assigned to each battery 

type 𝜓𝑚 ; recall, in this model, we assign (𝑚 = 𝛺). Constraints (3.18) & (3.19) 

represent the upper bound and lower bound on the total power charged/discharged from 

the grid at time τ. 

3.2.2. Battery heterogeneity. The proposed BSS framework introduces 

battery heterogeneity to get a realistic model for real BSS operation. Equation (3.20) 

use the subset of time slots 𝑇𝑚,𝛽
′   when there's no EV arrival requesting battery type 𝜓𝑚 

at bay β and prevents swapping charged batteries of this type 𝜓𝑚 by setting 𝑠𝑤𝜏,𝑏,𝛽  =

0 at these time slots. Due to the different types of batteries available, each type 𝜓𝑚 is 

assigned for a group of chargers 𝜆𝑗, where (m=j). In (3.21) the total number of batteries 

of a certain type 𝜓𝑚 that can be charging at the same time are restricted to the number 

of chargers N𝑗
ch in group 𝜆𝑗 assigned to this type. 

𝑠𝑤𝜏,𝑏,𝛽  = 0 

∀𝜏 ∈ 𝑇𝑚,𝛽
′  ∀ 𝑏 ∈ 𝜓𝑚   ∀𝑚 ∈ 𝜓  ∀ 𝛽 ∈ 𝑈, 

(3.20) 

                                            ∑ 𝑐ℎ𝜏,𝑏
(𝑏∈𝜓𝑚)

 ≤  N𝛺
ch
                  ∀𝜏 ∈ 𝑇  ∀(𝑚 = 𝛺) ∈ 𝜓, (3.21) 

3.2.3. Battery degradation effect. The batteries in the BSS undergo many 

charging/discharging cycles, which reduce the battery lifetime and result in decreasing 

the maximum capacity of the battery. In this model battery characteristics is highly 

dependent on the number of cycles, as illustrated in [26], however, other battery 
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chemistries are highly sensitive to the DODmax [27]. The degradation in a certain 

battery SOC is calculated in (3.22) as a function of the number of cycles. The 

degradation effect is added to the formulation by subtracting the degradation cost from 

the total revenue as shown in (3.1). Equation (3.23) calculates the degradation cost for 

all the batteries available at the BSS.  

∆soc𝑏
deg

= −8.954 × 10−10 × cy𝑏
3 + 7.883 × 10−7 × cy𝑏

2 − 2.814

× 10−4 × cy𝑏                                                                                         ∀𝑏 ∈ 𝐵. 
(3.22) 

CDEG = ∑ 100 % × ∆soc𝑏
deg

 ×  μ𝑏
deg

(𝑏∈𝐵)

 (3.23) 

3.2.3. Linearization. To deal with run time issues some equations are to be 

linearized. In (3.5) the term 𝑠𝑜𝑐𝜏−1,𝑏 × 𝑠𝑤𝜏,𝑏,𝛽  = 0 is nonlinear so in order to linearize 

this equation it is replaced by equations (3.24)-(3.27), such that the nonlinear term is 

replaced by a positive variable 𝑧𝑡,𝑏 which equals to 𝑠𝑜𝑐𝜏−1,𝑏 from equations 

(3.26)&(3.27) if 𝑠𝑤𝜏,𝑏,𝛽 = 1. If 𝑠𝑤𝜏,𝑏,𝛽 = 0 variable 𝑧𝜏,𝑏 is forced to 0 in (3.25) & 

(3.26) since it's a positive variable. 

∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝 = ∑ (𝑧𝜏,𝑏 − soc𝜏,𝛽

ev × 𝑠𝑤𝜏,𝑏,𝛽)

(𝛽∈𝑈)

 

∀(𝜏 ≥ 2) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

(3.24) 

𝑧𝜏,𝑏 ≤ 𝑠𝑤𝜏,𝑏,𝛽 × soc𝑏
𝑚𝑎𝑥 

∀𝜏 ∈ 𝑇𝛽
𝑎𝑟𝑟 , ∀ 𝑏 ∈ 𝐵, ∀ 𝛽 ∈ 𝑈, 

(3.25) 

𝑧𝜏,𝑏 ≥ 𝑠𝑜𝑐𝜏−1,𝑏 − (1 − 𝑠𝑤𝜏,𝑏,𝛽) × soc𝑏
𝑚𝑎𝑥 

∀(𝜏 ≥ 2) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, ∀ 𝛽 ∈ 𝑈, 

(3.26) 

𝑧𝜏,𝑏 ≤ 𝑠𝑜𝑐𝜏−1,𝑏 

∀(𝜏 ≥ 2) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, ∀ 𝛽 ∈ 𝑈,  

(3.27) 

𝑝𝜏,𝑏
𝐶 ≤ −𝛼𝑠𝑜𝑐𝜏,𝑏 + 𝛾 

∀𝜏 ∈ 𝑇, ∀𝑏 ∈ 𝐵,  

(3.28) 
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Chapter 4 . Demand Forecasting   

 

In this chapter, we present a dynamic optimal operation mechanism for the BSS. 

We deal with the optimization problem in a dynamic manner using a rolling horizon 

predictive controller. Moreover, we employ the long-short term memory recurrent 

neural network which is a deep learning technique used as a time series forecasting 

engine to forecast the EV arrivals. 

4.1. Rolling Horizon Predictive Controller  

The idea of rolling horizon optimization is to consider forecasted data over a 

limited horizon in addition to the currently available information to develop the optimal 

decisions. The rolling horizon mechanism can be implemented by defining three 

horizons—namely, the scheduling horizon, the control horizon (𝑪), and the forecasting 

horizon (𝒖) [28]. For a BSS, at each time slot 𝜏, the optimization model considers the 

current EV arrivals at the control horizon and the forecasted arrivals at future time slots 

𝜏 + 𝒖 over the scheduling period 𝑇 where 1 ≤ 𝒖 ≤ 𝑁𝑇 − 1; 𝑁𝑇 is the number of time 

slots in the scheduling horizon.  

Figure 4.1: Rolling horizon mechanism 

The optimized scheduling for the whole day is done after the rolling horizon 

keeps rolling till reaching the last time slot in the day as clarified in Figure 4.1 The 

rolling horizon mechanism can be implemented as follows: 
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 Start by initializing the system and specifying the length of the scheduling 

horizon, the control horizon, and the forecasting horizon. 

 Execute the first optimization interval and solve the scheduling problem. 

 Save the decisions and the variables of the control horizon to be used as initial 

conditions for the following optimization interval. 

 Start the following optimization interval after updating the control horizon and 

the forecasting horizon. 

 Keep looping until the new schedule corresponds to the last time slot of the day. 

4.2. LSTM for Forecasting 

To forecast the number of customers arriving and the type of requested 

battery(s) at each time slot RNNs is an efficient time series forecasting engine that 

allows feeding values forward in time since it uses not only the input data but also the 

previous outputs for making the current prediction. However, it's very hard to train and 

forgettable so we used an evolution of RNN which was introduced by Hochreiter and 

Schmidhuber [33]. This network has a gated memory unit for neural networks and it is 

capable of learning long-term dependencies and remembering information for long 

periods. The LSTM structure shown in Figure 4.2 has memory blocks called cells and 

it has 3 gates managing the memory contents each gate is a logistic function with 

weighted sums. Equations (4.1), (4.2), and (4.3) represent the forget gate, input gate, 

and output gate respectively, and the sigmoid function in each decides about the data 

that will be omitted from each cell. The input gate decides which new inputs flow into 

the cell state, the forget gate determines which values from the old output to forget and 

which values remain by looking at the current input (𝑋𝜏) and the previous output (ℎ𝜏−1) 

and the output gate decides about values to be executed. Equation (4.4) is responsible 

for updating the current cell state which is equal to the values omitted from the previous 

cell state plus the new candidate values entering the cell state. The output values from 

the output gate are enhanced and produced in a filtered version as shown in (4.5). The 

root mean squared error (RMSE) is commonly used as an evaluation for the forecasting 

performance as it compares the predicted values with the actual observed values. In 

equation (4.6) the RMSE is calculated, where 𝑂𝑏𝑖 & 𝑃𝑟𝑖 are observed and predicted EV 

arrivals respectively. The framework combining LSTM with the RHO is further 
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detailed in lines 1-13 in Algorithm 1. where 𝑏𝑖, 𝑏𝑓, 𝑏𝑜& 𝑏𝑐 are bias, and 𝑊𝑖, 

𝑊𝑓, 𝑊𝑜& 𝑊𝑐 represent weight matrices. 

Algorithm 1: Pseudo code for the RHO and LSTM 

Input: Historical EV arrivals data and current EV arrivals 

Output: RHO scheduling for the BSS operations 

Initialize 𝑪, 𝒖, 𝑁𝑇, and the length of the LSTM training set (𝑄) 

1: for 𝜏 = 1: ( 𝑁𝑇 − 1)  do 

2:    Update the system state with the EV arrivals 𝑁𝜏
𝑎𝑟𝑟 in 𝑪 

3:       LSTM Forecasting for the interval 𝜏 + 𝒖: 

4:           Data preprocessing (e.g. normalize the training set)            

5            Create the input sequence and train LSTM: 

6:           𝑋𝑇={𝑋𝜏−𝑄, ⋯,𝑋𝜏−2, 𝑋𝜏−1}={𝑁𝜏−𝑄
𝑎𝑟𝑟 , ⋯ , 𝑁𝜏−2

𝑎𝑟𝑟 , 𝑁𝜏−1
𝑎𝑟𝑟}  

7:           Predict output sequence 𝑂              LSTM(𝑋): 

8:           𝑂𝑇 = {𝑁𝜏
𝑎𝑟𝑟 , 𝑁𝜏+1

𝑎𝑟𝑟 , ⋯ , 𝑁𝜏+𝒖
𝑎𝑟𝑟} = {𝑂𝜏, 𝑂𝜏+1⋯ ,𝑂𝜏+𝒖} 

9:           Evaluate the forecasting performance using RMSE 

10:         Update the training interval 𝑄 ≔ 𝑄 + 𝑪 

11:   Run BSS scheduling model over the horizon 𝑪 + 𝒖 

12:   Save the decision variables 𝐹 for the period 𝑪 

13:end for 

 

𝑓𝜏 = 𝜎(𝑊𝑓 × +𝑈𝑓 × ℎ𝜏−1 + 𝑏𝑓) (4.1) 

𝑖𝜏 = 𝜎(𝑊𝑖 × 𝑋𝜏 + 𝑈𝑖 × ℎ𝜏−1 + 𝑏𝑖) (4.2) 

𝑂𝜏 = 𝜎(𝑊𝑜 × 𝑋𝜏 + 𝑈𝑜 × ℎ𝜏−1 + 𝑏𝑜) (4.3) 

𝐶𝜏 = 𝑓𝜏 × 𝐶𝜏−1 + 𝑖𝜏 × 𝑡𝑎𝑛ℎ(𝑊𝑐 × 𝑋𝜏 + 𝑈𝑐 × ℎ𝜏−1 + 𝑏𝑐) (4.4) 

ℎ𝜏 = 𝑂𝜏 × 𝑡𝑎𝑛ℎ(𝐶𝜏) (4.5) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑂𝑏ℎ − 𝑃𝑟ℎ)2
𝑛

ℎ=1

 (4.6) 
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Figure 4.2: The LSTM cell structure 
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Chapter 5 . Operation Case Studies and Simulation 

 

This chapter carries out a set of case studies to show the effectiveness of the 

RHO mechanism and comparing optimization results versus unscheduled operation and 

day-ahead scheduling of the BSS. The model is defined as a MILP and it's implemented 

in GAMS 30.3.0 and solved using CPLEX solver [34].  

Table 5.1: Parameters of the BSS Simulation 

Parameters Value 

𝑏 ∈ 𝜓1 indices   (b = [1-30]) 

𝑏 ∈ 𝜓2 indices  (b = [31-60]) 

c𝑏
swap

 500 ¢ if 𝑏 ∈ 𝜓1, 1200 ¢ if 𝑏 ∈ 𝜓2 

ckWh 50 ¢/kWh 

DODmax 80% 

emax𝑏 16 kWh if 𝑏 ∈ 𝜓1, 42 kWh if 𝑏 ∈ 𝜓2 

k 70% 

Nch 26; N1
ch = N2

ch=13 

No. of batteries (Nbatt)  60; 30 of type 𝜓1+30 of type 𝜓2   

No. of bays (Nbay) 3 

No. of EV arrivals 150  

p𝑐
MAXc, p𝑐

MAXc 8 kW if 𝑐 ∈ 𝜆1, 25 kW if 𝑐 ∈ 𝜆2. 

Batteries of type 𝜓1 Charged with chargers group 𝑐 ∈ 𝜆1 

Batteries of type 𝜓2 Charged with chargers group 𝑐 ∈ 𝜆2 

pGRIDc, pGRIDd 429 kW 

soc𝑏
0 100 % 

𝜁 90 % 

∆t 1/6 

ηch, ηdch 0.94 

μ𝑏
deg

 40 ¢ 



38 

 

The LSTM forecasting is implemented in MATLAB [35]. The swapping service 

is provided within 10 minutes. Thus the simulation is tested over the 24 hours of the 

day equivalent to 144-time slots each is 10 minutes. 

Table 5.1 defines the parameters used in the simulation. The parameters are 

mainly the prices of the swapping service, the operation costs, and limitations on 

charging/discharging, and limitations on the power exchange with the power grid. The 

actual EV arrivals can be shown in Figure 5.4 and the grid TOU price can be shown in 

Figure 5.6. 

5.1. Case Study I (Day-Ahead Scheduling for a Small Battery Stock) 

 This is an illustrative case study to validate the optimization model and to ensure 

meeting the constraints in section III. The same values of the parameters from Table 

5.1 are used. However, for simplicity,  the number of batteries is reduced to three units: 

two of type 𝜓1 and one type 𝜓2. Also, only 1 charger for each battery type is used. Six 

customers arrived at different swapping bays at different time slots of the day. EVs 

requesting more than one battery unit arrive at bay (β = 3) in all case studies and 

represented by a black square or circle. In Figure 5.1, batteries with indices (b = 1 & 2) 

are of type 𝜓1, whereas batteries with index (b = 3) are of type 𝜓2. Day-ahead 

scheduling applied to the EV arrivals profile in Figure 5.1. In day-ahead scheduling, it 

is assumed that the day starts and ends with charged batteries equal to or above 90% 

SOC. Therefore constraint (4.6) is added for charging the batteries at the end of the day 

to 90% or above. Thus, ensuring batteries are charged before the beginning of the next 

day. 

In Figure 5.1, the sudden drop in a certain battery SOC indicates swapping this 

battery with the depleted one of the arriving EVs. In all the case studies, the EV arrivals 

point highlighted in yellow represent served customers. EVs arriving at 4:10 AM and 

5:50 AM request type 𝜓2 batteries and it can be seen that only batteries with index 

(b=3) swapped. Whereas, the rest of EVs arrivals request type 𝜓1 batteries and could 

only be swapped with batteries (b = 1 & 2) It can be observed that the SOC of batteries 

swapped at any time τ is equal to or above the threshold (𝜁 = 90%) at the end of time 

slot τ-1 before swapping. Since there’s only one charger available for type 𝜓1 batteries, 

therefore b = 1 & 2 cannot be charging at the same time; one is charging while the other 

is constant and vice-versa. The large EV arriving at 4:50 PM requests 2 battery units of  
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Figure 5.1: Day-ahead scheduling for a small battery stock. 

 

type 𝜓1, thus the optimization favored swapping 2 units to this customer and rejected 

the customer requesting one unit at 4:30 PM. 

𝑠𝑜𝑐𝜏=144,𝑏  ≥ 90 

∀ 𝑏 ∈ 𝐵. 
  (5.1) 

5.2. Case Study II (Unscheduled Operation) 
 

 This case study represents the base case for a BSS operating without 

optimization. The idea is mainly based on serving a customer and swapping his DB if 

there’s an available charged battery otherwise batteries are either charging or stored at 

Figure 5.2. Unscheduled operation of BSS while charging as soon as possible 
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Figure 5.3: The profit and the number of EV arrivals in the unscheduled operation. 

 

the FCBI. The parameters in Table 5.1 are used in this case study. Figure 5.2 shows the 

SOC for a sample of three batteries during the day. For comparison, the EV arrivals 

used in this case are the same actual EV arrivals in case-D. This unscheduled operation 

case is defined as charging as soon as possible to serve more customers while excluding 

discharging to the grid. It's considered a greedy algorithm as DBs are immediately 

charged after swapping as shown in Figure 5.2 to serve more customers. The hourly 

profit, in this case, is presented in Figure 5.3, the profit in red is a negative profit due 

to replenishing the energy of the two DBs received from the two customers arriving at 

the beginning of the day. Meanwhile, there are no EV arrivals at these time slots to 

achieve revenue from swapping. This operation resulted in a total daily profit of 

$2073.5, 150 customers were served, and 162 batteries were swapped. 

5.3. Case Study III (Day-Ahead Scheduling with Perfect Forecasting) 

In this case study, day-ahead scheduling is applied on the same actual EV arrival 

data in the unscheduled operation case impractically assuming that the swapping 

requests were perfectly forecasted in advance. Figure 5.4 Shows the SOC for a sample 

of three batteries during the day. The simulation starts with fully charged batteries. It 

can be seen that the customers arriving at the end of the day will not be served, since 

all batteries are charging to achieve SOC above 90% at the end of the day according to 

(5.1). The high energy consumed at the end of the day to charge all the depleted batteries 

before the next day resulted in a negative profit at the last two hours of the day as shown  
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Figure 5.4. Day-ahead operation of the BSS 

 

 

Figure 5.5: The profit and the number of EVs in the day-ahead operation case. 

 

in figure 5.5. The day ahead scheduling resulted in a total daily profit of $1889.9 while 

serving 136 customers and swapping 142 battery units. However, day-ahead could 

achieve more profit by serving end-day customers if (5.1) is eliminated, in this case, it 

should be assumed that the BSS receives newly charged batteries at the beginning of 

the next day that was previously charged elsewhere. In Figure 5.6, the total B2G, G2B, 

and B2B power of the BSS at any time during the day is represented. It can also be 

observed that the optimization favored discharging to the grid at the highest grid price. 
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Figure 5.6: Total energy charged and discharged from the power grid and battery-to-battery energy 

exchange in day-ahead operation 

5.4. Case Study IV (Rolling Horizon Scheduling) 

This case study assesses the BSS dynamic scheduling using a rolling horizon 

optimization environment. The scheduling horizon is 24 hours of the day. The control 

horizon is the 10 minutes time slot, whereas a forecasting horizon of 6 hours is used. 

Forecasting is carried out for each battery type independently. In Figure 5.7, the LSTM 

network uses the historical data of four consecutive days of the EV arrivals requesting 

battery type 𝜓1 to forecast future arrivals. The historical data of the EV arrivals were 

recorded every 10 minutes. The LSTM network state is continuously updated with the 

actual EV arrivals in the control horizon to update the forecasting horizon. For 

comparison, the actual EV arrivals data are the same data used in the unscheduled and 

day-ahead operation case studies.  

 

Figure 5.7. Forecasting for the arrivals of customers requesting a certain type of battery. 
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Figure 5.8. RHO scheduling of BSS. 

One of the merits of the proposed RHO mechanism is that it runs continuously 

and it's not mandatory to have charged batteries at the end of the day. Unlike day-ahead 

operation, the RHO continues scheduling for the new day after the day ends while 

always ensuring the SOC of the charged batteries are above 90% before swapping 

according to (3.11) in section III, thus serving end-day customers as shown in Figure 

5.8. The B2G discharge at the beginning of the day in Figure 5.10 took place since the 

6 hours forecasting horizon initially contained a few arrivals so excess energy was 

available for discharging, however as the window rolls more customers appear in the  

 

 

Figure 5.9: The profit and the EV arrivals in the RHO operation case study. 
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Figure 5.10: Total energy charged and discharged from the power grid & battery-to-battery energy 

exchange in RHO operation. 

 

 

Figure 5.11. The charging power and energy are stored inside batteries indexed (b=25). 

forecasting horizon and the batteries are charged in advance to serve the forecasted 

customers, this is also reflected in Figure 5.9 as a high profit at the beginning of the day 

then a negative profit for preparing the batteries after the customers showed up in the 

forecasting horizon. The RHO served 149 customers by swapping 158 battery units and 

resulted in a total daily profit of $2235.6 which is more than the previous cases. 

Although, the customers served, in this case, are nearly the same as the unscheduled 

operation but it’s economically better due to discharging to the power grid. In Figure 

5.11, the variable charger characteristics are presented, as it shows the energy and the 

charging power of a battery of type 𝜓1with index (b = 25). It can be noticed that the 

charging rate has a kind of exponential decrease from the maximum charging rate in 

the constant voltage charging mode when the battery SOC exceeds (k = 70%).  
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Chapter 6 . BSS Planning 

 

In this chapter, we employ an optimal planning strategy of BSS while 

incorporating PV generation to minimize the operational costs. The importance of this 

planning stage is to decide about the size of the BSS system and its resources. Due to 

the high cost of batteries, chargers, and the size of the BSS infrastructure in general, 

unreasonable planning will cost more investments and extra maintenances on 

fundamental equipment. Not only are we interested in the sizing of the BSS system and 

resources but also we are concerned about the optimal allocation of the BSS in the 

distribution systems. To provide adequate modeling for the system taking uncertainty 

into account probabilistic models are considered for modeling the PV generation output 

and the battery swapping demand. 

6.1. System Costs 

The traditional planning problems split the system costs into two main parts: the 

investment capital cost (CAPEX) and the operational costs (OPEX). OPEX includes 

mainly the cost of energy purchased from the grid, the cost of energy losses. CAPEX 

includes the cost of investment for the BSS resources (e.g. the number of batteries, the 

number of chargers, and the number of swapping bays). Traditional systems usually 

ignore the cost of maintenance and recycling and disposal costs. Hence, the 

maintenance and disposal costs are included in this research. 

6.2. Modeling of PV 

To model the PV module output power we utilize the historical data of the solar 

irradiance and the ambient temperature of the site as well as the characteristics of the 

module itself. The PV output power of the module is calculated as in (6.1)-(6.5). The 

historical PV output power and Markov Chain Monte Carlo (MCMC) simulation 

method are utilized to generate 𝑁𝑠𝑐𝑒𝑛virtual scenarios of the PV power. Each year is 

clustered into 4 days, each day represents a season, each is denoted by 𝑞 ∈ {1, 2,⋯ , 4}, 

The historical data of each season is used, such that each day 𝑑 is divided into 24 hourly 

time segments 𝜏 ∈ {1, 2,⋯ , 24}. It’s assumed that the weather conditions for each time 

slot 𝜏 are the same for the whole 𝑞𝑡ℎ season. The PV output power historical data is 

clustered into Y states using the k-means algorithm except the first state is generated 

separately as it represents the lack of sunlight at night with a minimum output power of  
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Algorithm 2: Pseudo code for generating PV scenarios 

Input: Matrix of PV output power historical data for each season  𝐏𝒒
𝐡𝐢𝐬𝐭 ∈ ℝ𝑁𝑞×𝑁𝑇. 

Output: Matrix of PV output power virtual scenarios for 𝐏𝒒 of size 𝑁𝑠𝑐𝑒𝑛 ×𝑁𝑇. 

1:   for 𝑞 = 1 to 𝑁𝑠𝑒𝑎𝑠𝑜𝑛 do, 

2:      Cluster PV historical output data into [Y states]           k-means(𝐏𝒒
𝐡𝐢𝐬𝐭, Y); 

3:      Round the historical data to the nearest 𝑦𝑡ℎ state; 

4:      Normalize the historical data to per unit values; 

5:      Set the initial state at (𝜏 = 1) as ones vector  𝐈𝝉 = 𝟏𝑵𝒔𝒄𝒆𝒏×𝟏; 

6:      for 𝜏 = 1 to 23 do, 

7:         Build the transition matrix 𝐆𝒒,𝝉 as in (6.6); 

8:         Build the discrete cumulative transition matrix 𝐆𝒒,𝝉
𝐜𝐝𝐟 as in (6.7); 

9:         for 𝑠 = 1 to 𝑁𝑠𝑐𝑒𝑛 do, 

10:           Generate a uniformly distributed random variable 𝑢; 

11:           𝑙 =  𝐈𝝉(𝑠); 

12:           Apply discrete inverse CDF as in (6.8) and update [ 𝑜 ← DICDF(𝑢)]; 

13:           𝐈𝝉+𝟏(𝑠) = 𝑜; 

14:           Map the 𝑜𝑡ℎ state to its corresponding PV output power value; 

15:          Store the mapped state PV-power in 𝐏𝒒(𝑠, 𝜏 + 1); 

16:        end for 

17:     end for 

18:  end for 

19:  return; 

 

 

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝐴 + 𝑆𝐼𝑅 × (
NOCT − 20

0.8 kW/m2
) (6.1) 

𝐼𝑝𝑣 = 𝑆𝐼𝑅 × (𝐼𝑠𝑐 + KI(𝑇𝑐𝑒𝑙𝑙 − 25)) (6.2) 

𝑉𝑝𝑣 = 𝑉𝑜𝑐 −  KV(𝑇𝑐𝑒𝑙𝑙 − 25) (6.3) 

Ppv = 𝑁𝑐𝑒𝑙𝑙𝑠 × 𝐹𝐹 × 𝑉𝑝𝑣 × 𝐼𝑝𝑣 (6.4) 

𝐹𝐹 =
𝑉𝑀𝑃𝑃 × 𝐼𝑀𝑃𝑃
𝑉𝑜𝑐 × 𝐼𝑠𝑐

 (6.5) 
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0 p.u for the PV system, for the rest of the states each range of PV output is grouped 

into one state. The generation of 𝑁𝑠𝑐𝑒𝑛 annual scenarios are detailed in Algorithm 2.  

The algorithm is initialized and starts building a transition matrix 𝐆𝒒,𝝉 for every hour 𝜏 

of the day. The transition matrix represents the probability of transition from all states 

at time 𝜏 to all states 𝜏 + 1. Since the transition matrix is calculated for each time slot 

the total number of transition matrices for all seasons is 24 × 4 = 96 matrices. Each 

element in the transition matrix 𝑔𝑙,𝑜 shows the probability of occurrence of state 𝑜 at 

time 𝜏 + 1 if the previous state was 𝑙 at time 𝜏. The transition matrix elements can be 

obtained as follows: 

𝑔𝑙𝑜 = 𝑃(𝑦𝜏 = 𝑜 |𝑦𝑡+1 = 𝑙) =
𝑛𝑙𝑜

∑ 𝑛𝑙𝑦𝑦
 

∀𝑙, 𝑜 ∈ {1, 2,⋯ , Y + 1},  

(6.6) 

where 𝑛𝑙𝑜 is the number of transitions from state 𝑙 at 𝜏 to state 𝑜 at 𝜏 + 1. After 

obtaining all the transition matrices the discrete transition CDF matrices 𝐆𝒒,𝝉
𝐜𝐝𝐟 are 

constructed as in (6.7) 

𝑔𝑙𝑜
𝑐𝑑𝑓

=∑𝑃(𝑦𝜏 = 𝑜 |𝑦𝜏+1 = 𝑙)

𝑜−1

1

 

∀𝑙 ∈ {1, 2,⋯ , Y + 1},  

(6.7) 

where 𝑔𝑙𝑜
𝑐𝑑𝑓

 represent the elements of the discrete CDF matrix. The CDF matrix can be 

then used to generate 𝑁𝑠𝑐𝑒𝑛 scenarios using the Discrete Inverse CDF (DICDF) method 

as in (6.8) 

𝐶𝐷𝐹−1(𝑢) = 𝐢𝐧𝐟{ 𝑜 ∶  [𝑔𝑙1
𝑐𝑑𝑓
, 𝑔𝑙2

𝑐𝑑𝑓
, ⋯ , 𝑔𝑙𝑜

𝑐𝑑𝑓
] ≥ 𝑢} 

∀𝑙 ∈ {1, 2,⋯ , Y + 1},  
(6.8) 

where 𝑢 is a uniformly distributed random variable. 

 The scenario generation algorithm is applied to generate 1000 scenarios for each 

season. A sample of the generated scenarios for each season is presented in Figure 6.1. 

To speed up optimization problems generated virtual scenarios are usually reduced 

using one of many scenario reduction techniques while taking the weight of each 

scenario as a representation for the probability of its occurrence. 
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Algorithm 3: Virtual scenario reduction using k-means 

Input: Matrix 𝐗 with 𝑁𝑠𝑐𝑒𝑛 virtual scenarios and dimension 𝑁𝑇;  𝐗 ∈ ℝ𝑁𝑠𝑐𝑒𝑛×𝑁𝑇 

Output: A matrix 𝐑 of 𝐾𝑚 centroids reducing the scenarios; 𝐑 ∈ ℝ𝐾𝑚×𝑁𝑇,  

           A Vector that has the probability of each centroid (reduced scenario) 𝐖 ∈ ℝ𝐾𝑚×1  

Initialize A vector of cluster indices assigned to each scenario 𝐂 ∈ ℝ𝑁𝑠𝑐𝑒𝑛×1 

1:    //Multiple random initializations 

2:    for 𝑟 = 1 𝑡𝑜 𝑁 

3:       Initialize Kmcluster centroids and store in 𝛍𝒓 = {𝜇1, 𝜇2, ⋯ , 𝜇𝑘}; where 𝜇𝑘 ∈ ℝ
1×𝑁𝑇 

4:        for 𝑠 = 1 to 𝑁𝑠𝑐𝑒𝑛 do, 

5:           J(r) = ∑ ∑ ‖𝑥(𝑠) − 𝜇𝑘‖
2

𝑠𝑘 ;  

6:        end for 

7:    end for 

8: Select best Km initial centroids corresponding to 𝑟𝑡ℎ initialization 𝑟 ← argmin(J(r)) 

9: Save the best initial centroids 𝛍𝒓 

10:    repeat{ 

11:       //Cluster assignment 

12:       for 𝑠 = 1 to 𝑁𝑠𝑐𝑒𝑛 do, 

13:          𝐂(𝑠) ≔ argmin
𝜇𝑘

‖𝑥(𝑠) − 𝜇𝑘‖
2
 

14:       end for 

15:       //Move centroid 

16:       for 𝑘 = 1 to Km do, 

17:          𝜇𝑘 ∶=  
1

|𝑐𝑘|
∑ 𝑥(𝑠)𝑠∈𝑐𝑘  

18:       end for 

19:    until the centroid position don’t change} 

20: 𝐖(𝑘) =
∑ 𝐂(𝑘)𝑘

𝑁𝑠𝑐𝑒𝑛
, ∀𝑘 ∈ 𝐾𝑚 

21: return 𝐑 ← [𝜇1, 𝜇2, ⋯ , 𝜇𝑘]
𝐓, 𝐖  

 

 

The generated 𝑁𝑠𝑐𝑒𝑛 scenarios can be further reduced into Km scenarios using 

k-means algorithm for this purpose as detailed in Algorithm 3. In Algorithm 3 the used 
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k-means algorithm starts by initializing the centroids with 𝑟 multiple random 

initializations of Km centroids, each centroid 𝜇𝑘 is 𝑁𝑇 dimensional vector; where 𝑁𝑇 =

24 time slots. Hence, the best initial centroid is selected using multiple random 

initializations and k- means algorithm is performed over two well-known steps-namely: 

the cluster assignment step and the moving of the centroid step. Finally, the centroids 

reducing the 𝑁𝑠𝑐𝑒𝑛virtual scenarios are saved and the probability of each is calculated 

as detailed in Algorithm 3. Figure 6.2 shows the results of the scenario reduction 

algorithm to reduce the 1000 PV scenarios generated for the spring season to only five 

scenarios. 

 

 

Figure 6.1: A sample of the generated PV scenarios for each season 

 

 

Figure 6.2: Scenario reduction for the generated scenarios of PV output power in the spring season 
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6.3. Modeling of EV Arrival Rates 

A generalized model utilizing the Monte Carlo simulation (MCS) technique is 

proposed for probabilistic modeling of EV arrivals. The EV arrivals historical data is 

used is obtained from several EV charging stations in Toronto, Ontario, Canada. The 

proposed EV arrivals model is detailed in the flow chart in Figure 6.3. As clarified in 

the figure, the historical hourly data of EV arrivals are clustered into 4 seasons each 

season is divided into weekday and weekend. Hence, the entire year is modeled as 8 

days; 2 days for each season. Each day has 24 hourly time slots.  

 

Figure 6.3: The proposed EV arrival rate scenario generation model 
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Figure 6.4: Sample of the generated scenarios of EV arrivals for weekend and week day in the spring 

season. 

The Maximum likelihood estimate is used to fit the hourly historical data of 

each of the eight days using different PDFs for each hour. The CDF for each hour of 

the eight days is obtained and denoted by 𝑉𝑑,𝜏. The EV arrivals virtual scenarios for 

each day 𝑑 are generated using the well-known inverse CDF method and stored in the 

matrix 𝐄𝒅  ∈ ℝ
𝑁𝑠𝑐𝑒𝑛×𝑁𝑇 , each element in the 𝑑𝑡ℎ matrix is 𝑒𝑑,𝑠,𝜏 as shown in (6.9). 

𝑒𝑑,𝑠,𝜏 = ICDF𝑉𝑑,𝜏(𝑢𝑠) 

∀𝑑, 𝑠, 𝜏 ≤ 𝑁𝑠𝑐𝑒𝑛 

(6.9) 

The generated EV arrivals scenarios are reduced by k-means clustering as 

explained earlier in Algorithm 3. Moreover, a sample of 6 virtual scenarios for the EV 

hourly arrival rate in the spring season is presented in Figure 6.4. As shown in the 

figure, the weekday and weekend are represented by 3 scenarios each. 

6.4. Optimization Problem Formulation 

This section describes the mathematical formulation of the PV-based BSS 

planning problem while incorporating the BSS allocation in the distribution network. 

The problem is formulated as a mixed-integer linear programming (MILP) and is based 

on the following fitness function. 

6.4.1. The objective function. The objective function used for the BSS 

planning problem is mainly to maximize the annualized profit as follows 
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max
𝑍,𝜌1,𝜌2

= 𝐴𝑅 − 𝐴𝐶𝑂 − 𝐴𝐶𝐼 − 𝐴𝑆 − 𝐴𝐶𝑀 (6.10) 

where 𝑍 is the decision variable vector including the operational decision variables as 

illustrated in chapter 3 in addition to the newly added decision variable related to 

charging from the PV system 𝑍 = (𝑝𝜏,𝑏
𝑐ℎ , 𝑝𝜏,𝑏

𝑑𝑐ℎ, 𝑐ℎ𝜏,𝑏 , 𝑠𝑤𝜏,𝑏,𝛽 , 𝑝𝜏,𝑏
𝑐ℎ𝑝𝑣)

𝑇
. 𝜌1 and 𝜌2 are the 

sets of the decision variables representing the BSS installed resources and location in 

the distribution network respectively. Such that the set 𝜌1 = {𝑁𝑏𝑎𝑡, 𝑁𝑐ℎ} includes the 

number of batteries and chargers which are considered as the main assets for the BSS 

system and 𝜌2 = {𝑖} where 𝑖 is the index of the bus in the distribution system to which 

the BSS is connected to. For suitable economic analysis, the CAPEX is represented by 

equal annual payments over the project life cycle 𝑙𝑐, using the capital recovery factor 

(CRF), whereas the OPEX is also annualized and levelized using the levelization factor 

(LF), thus we have 

CRF =  
𝑑(1 + 𝑑)𝑙𝑐

(1 + 𝑑)𝑙𝑐 − 1
 (6.11) 

LF =  CRF ×
(1 + 𝑑′)𝑙𝑐 − 1

𝑑′(1 + 𝑑′)𝑙𝑐
,      𝑑′ =

𝑑 − 𝑒

1 + 𝑒
 (6.12) 

where 𝑑 is the discount rate; 𝑑′ is the effective discount rate; 𝑒 is the escalation factor. 

Due to the increase in the fuel prices which would consequently increase the 

prices of electricity during the project life cycle, As result, the annual cost of 

operation(𝐴𝐶𝑂), the annual salaries of the employees(𝐴𝑆), and the annual revenue 

(𝐴𝑅) are to be levelized. 

 The probability of each of the PV and the EV arrivals reduced scenarios Km  are 

permutated together to have a total number of reduced scenarios [Km PV scenarios × 

Km EV arrivals scenarios]. The 𝐴𝑅 determines the revenue generated from the BSS 

operations by swapping and discharging energy to grid. The 𝐴𝑅 is levelized due to the 

escalation in the service price with the number of years as follows: 

𝐴𝑅 =  LF ×∑𝑁𝑑

8

𝑑=1

∑𝑤𝑑
(𝑘)

Km

𝑘=1

[𝑅𝑠 + 𝑅𝐵2𝐺 + 𝑅𝑃𝑉2𝐺]𝑑,𝑘 (6.13) 
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𝑅𝑃𝑉2𝐺 = ∑ (P𝜏
pv
× c𝜏

gr
− ∑ 𝑝𝜏,𝑏

𝑐ℎ𝑝𝑣 × Cpv

(𝑏∈𝐵)

)

(𝜏∈𝑇𝑝𝑣)

∆t (6.14) 

where 𝑅𝑠 and 𝑅𝐵2𝐺 are demonstrated already in chapter 3; 𝑅𝑃𝑉2𝐺 is the revenue from 

discharging excess PV generation to the power grid; 𝑤𝑑
(𝑘) is the weight of the 𝑘𝑡ℎ  

scenario in the 𝑑𝑡ℎ day; 𝑁𝑑 is the number of days represented by a particular day 𝑑. 

 The annualized cost of operation(𝐴𝐶𝑂) can be calculated by: 

𝐴𝐶𝑂 =  LF ×∑𝑁𝑑

8

𝑑=1

∑𝑤𝑑
(𝑘)

𝐾𝑚

𝑘=1

[𝐶𝐺2𝐵 + CEloss]
𝑑,𝑘

 (6.15) 

CEloss =∑𝑃𝜏
𝑙𝑜𝑠𝑠 × ∆t × 𝐶𝑙𝑜𝑠𝑠

𝑘𝑊ℎ

𝜏∈𝑇

 (6.16) 

The annualized cost of investment (𝐴𝐶𝐼) can be calculated by: 

𝐴𝐶𝐼 =  CRF × [𝐶𝑏𝑎𝑡𝑡 + 𝐶𝑐ℎ] (6.17) 

𝐶𝑏𝑎𝑡𝑡 = 𝑁𝑏𝑎𝑡 × Prbat (6.18) 

𝐶𝑐ℎ = 𝑁
𝑐ℎ × Prch (6.19) 

where 𝐶𝑏𝑎𝑡𝑡 and 𝐶𝑐ℎ are the investment costs of batteries and chargers at the BSS 

respectively; Prbat and Prbat are the prices per battery unit and charger respectively. 

 The annualized salaries of the employees and the cost of maintenance are 

levelized using the following equations: 

𝐴𝑆 =  LF × Total annual salaries of employees (6.20) 

𝐴𝐶𝑀 = LF × Total annual cost of maintenance (6.21) 

6.4.2. Operation constraints of the PV-based BSS system. The BSS 

operational constraints used for the planning problem are slightly modified from those 

used in chapter 3 to incorporate the PV system. At this point, it is also assumed that the 

BSS operations are considering only a specific type of battery and charger. The BSS 

problem is subjected to the following constraints: 

Constraints (3.6), (3.10)-(3.12), (3.18), (3.20), (3.21), (24-28) in chapter 3, and 
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𝑠𝑜𝑐𝜏,𝑏 = 𝑠𝑜𝑐𝜏−1,𝑏 +
(𝑝𝜏,𝑏

𝑐ℎ + 𝑝𝜏,𝑏
𝑐ℎ𝑝𝑣 − 𝑝𝜏,𝑏

𝑑𝑐ℎ ) × ∆t

e𝑏
max × 100 − ∆𝑠𝑜𝑐𝜏,𝑏

𝑠𝑤𝑎𝑝
 

∀(𝜏 ≥ 2) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

 (6.22) 

𝑠𝑜𝑐𝜏,𝑏 = soc𝑏
0 +

(𝑝𝜏,𝑏
𝑐ℎ + 𝑝𝜏,𝑏

𝑐ℎ𝑝𝑣 − 𝑝𝜏,𝑏
𝑑𝑐ℎ ) × ∆t

e𝑏
max × 100 − ∆𝑠𝑜𝑐𝜏,𝑏

𝑠𝑤𝑎𝑝
 

(𝜏 = 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

 (6.23) 

                                 0 ≤ 𝑝𝜏,𝑏
𝑐ℎ +𝑝

𝜏,𝑏
𝑐ℎ𝑝𝑣 ≤ PMAXc× 𝑐ℎ𝜏,𝑏                  ∀𝜏 ∈ 𝑇, 𝑏 ∈ 𝐵, (6.24)  

                                                  𝑝
𝜏,𝑏
𝑐ℎ𝑝𝑣 = 0                                                 ∀𝜏 ∈ 𝑇𝑝𝑣′ , 𝑏 ∈ 𝐵,  

                             0 ≤ 𝑝𝜏,𝑏
𝑑𝑐ℎ ≤ PMAXd ×𝑑𝑐ℎ𝜏,𝑏                                    ∀𝜏 ∈ 𝑇, 𝑏 ∈ 𝐵, (6.25)  

                       𝑐ℎ𝜏,𝑏 + 𝑑𝑐ℎ𝜏,𝑏 + ∑ 𝑠𝑤𝜏,𝑏,𝛽
(𝛽∈𝑈)

 ≤ 1               ∀𝜏 ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, (6.26) 

∑ 𝑝𝜏,𝑏
𝑐ℎ𝑝𝑣

(𝑏∈𝐵)

 ≤  P𝜏
pv

 

∀𝜏 ∈ 𝑇, 

(6.27) 

P𝜏
pv
− ∑ 𝑝𝜏,𝑏

𝑐ℎ𝑝𝑣

(𝑏∈𝐵)

+ ∑ 𝑝𝜏,𝑏
𝑑𝑐ℎ

(𝑏∈𝐵)

≤ pGRIDd 

∀𝜏 ∈ 𝑇, 

(6.28) 

 The total BSS power exchange with the power grid can be calculated as in 

(6.29), where the term 𝑃𝜏
𝐵𝑆𝑆 is positive when the BSS is discharging to the power grid 

and it’s negative when the BSS is charging from the power grid. The total BSS power 

exchange with the grid is treated as a distributed energy storage connected to one of the 

distribution system buses as elaborated in the following section. 

𝑃𝜏
𝐵𝑆𝑆 = (P𝜏

pv
− ∑ 𝑝𝜏,𝑏

𝑐ℎ𝑝𝑣

(𝑏∈𝐵)

) + ∑ 𝑝𝜏,𝑏
𝑑𝑐ℎ

(𝑏∈𝐵)

− ∑ 𝑝𝜏,𝑏
𝑐ℎ

(𝑏∈𝐵)

  

∀𝜏 ∈ 𝑇. 

(6.29) 

6.4.3. Operation constraints of the distribution system. The objective 

function in (6.10) is subjected to the constraints of the active and reactive power flow 

equations for each bus 𝑖 and at all the time slots of the day 𝜏 as in (6.30) and (6.31) 

𝑃𝑖,𝜏
𝑔𝑟𝑖𝑑

+ 𝑃𝑖,𝜏
𝐵𝑆𝑆 − P𝑖

D × R𝜏 =∑𝑉𝑖,𝜏𝑉𝑗,𝜏Y𝑖,𝑗 cos(γ𝑖,𝑗 + 𝛿𝑗,𝜏 − 𝛿𝑖,𝜏)

𝑗∈ℬ

 

∀𝑖 ∈ ℬ  ∀𝜏 ∈ 𝑇, 

(6.30) 
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𝑄𝑖,𝜏
𝑔𝑟𝑖𝑑

− Q𝑖
D × R𝜏 = −∑𝑉𝑖,𝜏𝑉𝑗,𝑘Y𝑖,𝑗 sin(γ𝑖,𝑗 + 𝛿𝑗,𝜏 − 𝛿𝑖,𝜏)

𝑗∈ℬ

 

∀𝑖 ∈ ℬ  ∀𝜏 ∈ 𝑇, 

(6.31) 

The main substation in the distribution system is connected to bus 𝑖 = 1, such 

that the injected active and reactive power are represented by equations (6.32)-(6.34) 

𝑃𝑖,𝜏
𝑔𝑟𝑖𝑑

= 0 

∀𝑖 ≠ 1, ∀𝜏 ∈ 𝑇, 
(6.32) 

0 ≤ 𝑃𝑖,𝜏
𝑔𝑟𝑖𝑑

≤ Pmax
grid

 

∀𝑖 ∈ ℬ  ∀𝜏 ∈ 𝑇. 
(6.33) 

0 ≤ 𝑄𝑖,𝜏
𝑔𝑟𝑖𝑑

≤ Qmax
grid

 

∀𝑖 ∈ ℬ  ∀𝜏 ∈ 𝑇. 
(6.34) 

The bus voltage has to be kept within its minimum and maximum limits 

prescribed in the voltage regulation standards e.g. ANSI C84.1. 

Vmax ≤ 𝑉𝑖,𝜏 ≤ Vmin 

∀𝑖 ∈ ℬ  ∀𝜏 ∈ 𝑇. 
(6.35) 

The power loss in the system at any time 𝜏 is defined in (6.36). The power losses 

in the distribution network would be highly affected by the BSS location. Hence, The 

BSS allocation is an important key role to provide planning for these types of stations. 

𝑃𝜏
𝑙𝑜𝑠𝑠 =∑𝑃𝑖,𝜏

𝑔𝑟𝑖𝑑
+ 𝑃𝑖,𝜏

𝐵𝑆𝑆 − P𝑖
D × R𝜏

𝑖∈ℬ

 

∀𝜏 ∈ 𝑇, 

(6.36) 

6.5. Proposed Solution 

As mentioned earlier, the proposed formulation is a MILP problem. The 

problem is broken down into two interdependent sub-problems, namely-outer sub-

problem and inner sub-problem each sub-problem separately is a MILP. The problem 

is solved using a combination of metaheuristic and deterministic approaches to 

managing the outer and inner sub-problems at the same time. A detailed flow chart is 

presented in figure 6.5 explaining the proposed solution mechanism. As shown in the 

figure, the genetic algorithm toolbox GA is implemented in the MATLAB environment 

as a metaheuristic technique for the outer search sub-problem, such that it aims to 

generate a set of candidate solution for the size of the installed assets 𝜌1 and the location 

of the BSS in the distribution network 𝜌2. 
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Figure 6.5: Proposed solution approach 

As for the inner sub-problem, it mainly deals with the BSS operation scheduling 

as it handles the daily operational profit which is the difference between the daily 

operational revenue and the daily operational costs which is related to the annualized 

profit part in the objective [𝐴𝑅 − 𝐴𝐶𝑂]. The inner sub-problem takes the variables 𝜌1 

and 𝜌2 as inputs from the outer sub-problem and the solution of the problem yields to 

the set of decision variables 𝑧 for the operation schedule. The inner problem is solved 

under the GAMS optimization environment as a day-ahead problem using the CPLEX 

MILP solver, such that the problem is solved for each day 𝑑 for all the possible 
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scenarios 𝑠. The main objective is to maximize the annualized benefits. Therefore, the 

outer problem receives the output from the inner problem which is ([𝑅𝑠 + 𝑅𝐵2𝐺 +

𝑅𝑃𝑉2𝐺]𝑑,𝑠 − [𝐶
𝐺2𝐵 + CEloss]

𝑑,𝑘
) for each day and scenario. Hence, each scenario 𝑠 is 

multiplied by the probability of its occurrence (𝑤𝑑
(𝑘)) and each day 𝑑 is multiplied by 

the frequency of its occurrence (𝑁𝑑) and uses it in the fitness function of the GA until 

an optimal solution that maximizes the annualized profits is achieved. 

6.6. Planning Results and Analysis 

This section carries out the results of the BSS planning case study. The proposed 

planning framework is tested on the IEEE 38-bus distribution system shown in Figure 

6.5. The system contains different types of loads: Industrial loads, commercial loads, 

and residential loads. The rated voltage of the system is 12.66 kV. 

Table 6.1: Data of the BSS 

Parameters Value 

Battery capacity   42 kWh 

Swapped energy cost 0.5 $/kWh 

Cost of labor, maintenance, and material $3500/charger 

Cost of the battery unit 4000 $ 

Cost of battery charger 5000 $ 

Cost of PV system 1400 $/kW 

Capital Investment of BSS 3.5 MVAR 

DODmax 80% 

Fixed swapping cost 12 $ 

PMAXc, PMAXd 25 kW 

soc𝑏
0 100 % 

𝜁 90 % 

∆t 1/6 

ηch, ηdch 0.94 

 

The total real and reactive load are equal to 3.715 MW and 2.3 MVAR 

respectively. The data of the system are given in [36]. The interest rate is assumed to 
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be 6% and the escalation rate is assumed to be 2%. The parameters of the PV-based 

BSS are presented in Table 6.1. The BSS system is treated as if it’s a large distributed 

energy storage (DES) system to be installed at one of the buses in the distribution 

system. 

It’s worth noting that in distribution network planning problems the candidate 

buses to install DES or DGs are usually selected based on a techno-economic planning 

analysis; however, it’s out of the scope of this research work and assumed as inputs to 

this study. Hence, In this case study, we chose arbitrary ten candidate buses for 

installing the BSS, which are buses 28-38. The chosen candidate buses are distributed 

all over the test system to cover different regions as presented in figure 6.6. The table 

displays the operational parameters of the BSS and the installation prices for the 

planning purpose. Table 6.2 demonstrates the results obtained considering three cases: 

(a) BSS planning without allocation, (b) BSS planning with allocation, and (c) the 

distribution system Energy losses without BSS. After solving the planning problem the 

optimal planning chose the number of batteries at the BSS inventory to be 50 batteries 

and the number of chargers to be 38 chargers. Meanwhile, the optimal location for 

installing the BSS system is bus number 𝑖 = 36. The optimal planning resulted in a 

total annualized profit of $321,490/ year. 

 

 

Figure 6.6: IEEE 38-bus distribution system 
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Table 6.2: Planning results 

 BSS  at bus 𝒊 = 𝟑𝟎 BSS Allocation Without BSS 

No. of batteries 45 50  

No. of chargers 45 38  

BSS optimal location  36  

Annualized profit (S) 315,910 321,490  

Annual Distribution 

system losses (MWh) 

1312.5 1360.3 1249.61 
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Chapter 7 . Conclusion 

 

Battery Swapping Stations (BSS) provides a fast alternative service compared 

to charging EVs at the charging stations. In this thesis, a new model for the dynamic 

operation of the BSS is presented in the operational phase. The goal of the model is to 

provide optimal dynamic scheduling of the batteries at the BSS for swapping and 

charging coordination using an LSTM-based (RHO) mechanism. The batteries at the 

BSS are scheduled to operate in B2G, G2B, and B2B modes. Battery heterogeneity and 

the diversity of the EV types are adopted in this model. Hence, the battery management 

is unified which achieved global gains. Furthermore, detailed modeling of the variable 

charger characteristics for charging lithium-ion batteries is provided instead of 

traditional constant current chargers to fully utilize the grid services. The optimization 

of BSS is modeled as Mixed-integer linear programming (MILP) and solved using an 

exact optimization approach to obtain an optimal solution that maximizes the total daily 

profit. Compared with unscheduled and day-ahead operations the dynamic RHO model 

of the BSS is more reliable and achieved higher profits. In the planning phase, an 

optimal planning approach is proposed to determine the size of the assets of the BSS 

system and to optimally allocate the BSS in the distribution system considering its 

impact on the distribution network. Moreover, the Markov Chain Monte Carlo 

(MCMC) simulation technique is utilized to tackle the uncertainty with the photovoltaic 

generation and the EV arrivals. The planning problem is broken into two interdependent 

subproblems and solved using a combination of metaheuristic and deterministic 

approaches to managing the two subproblems concurrently. Simulation results showed 

the effectiveness of BSS planning and an optimal solution is obtained which maximizes 

the annualized benefits. As a result, this thesis provides future guidance for BSS 

operators. 
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