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Abstract 

 

Vigilance describes the ability to maintain alertness while performing a task for a 

prolonged time. Maintaining vigilance is one of the requirements in many workplaces, 

especially those that rely on monitoring, such as: surveillance tasks, security 

monitoring, and air traffic control. These tasks necessitate a specific level of arousal, to 

provide an acceptable level of cognitive efficiency. Vigilance decrement could result 

in fatal consequences like accidents, loss of life, and system failure. In this thesis, we 

investigated the possibility of assessing the vigilance levels using a fusion of 

Electroencephalography (EEG) and eye tracking data. Vigilance levels are induced by 

performing a modified version of Stroop Color-Word Task (SCWT) for 30 minutes. 

Feature-level fusion based on the canonical correlation analysis (CCA) has been 

employed to enhance the classification accuracy for vigilance level assessment. In the 

feature level fusion, EEG and eye tracking features are concatenated into a single 

vector-feature-space and then fed as an input to the Support Vector Machine classifier. 

The results of the fusion showed that both modalities’ accuracies have been enhanced. 

The highest accuracy for the fusion was using the EEG Delta band of 96.8± 0.6%, which 

is higher than using the EEG Delta band without the fusion (88.18±8.5%) or the eye 

tracking date alone (76.8 ± 8.4 %).     

 

Keywords: Vigilance detection accuracy; vigilance assessment; 

Electroencephalogram (EEG); eye tracking; data fusion. 
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Chapter 1. Introduction 

 

1.1. Motivation 

In today’s world, emphasis is focused on reducing risks and eliminating the 

chances of accidents and errors. Vigilance level assessment in real-time is very 

important to avoid human errors. Critical working environments, like air traffic control, 

driving, quality control, and military surveillance, require the operator to be alert the 

whole time [1]. Such tasks necessitate a specific level of arousal to have an acceptable 

level of cognitive efficiency. Without attention, we cannot selectively operate and 

discriminate between useful information and noise. Being vigilant increases 

preparedness when danger arises. In a real-life application, it was observed that work 

overload, stress, time, and drowsiness are major factors that cause vigilance decrement 

[2]. Early research has shown that maintaining vigilance in a stressful environment 

requires hard mental work [3]. Studies have shown that it takes 30 minutes for the target 

detection performance to decrease by 15% while performing a hard mental task [4]. 

Reduction in performance level leads to an increased reaction time, error rate, and may 

cause fatal consequences. For example, personnel who are responsible for monitoring 

security cameras may miss some important targets that may increase the risk level. 

Furthermore, drivers’ vigilance decrement could lead to traffic accidents. According to 

[5], 74% of European drivers suffer from fatigue while driving, and this may cause 

crashes; lower rates were reported amongst road users in North America (69%), Africa 

(64%), and Asia-Oceania (53%). 

1.2.  Background  

Vigilance is the ability to sustain attention for an extended period of time [6]. It 

is very important to stay vigilant, maintain focus and respond to any occurring stimulus 

in real-life applications; some examples of these that require vigilance include: driving 

a car on long highways, conducting a quality inspection in manufacturing, or 

maintaining video surveillance of public areas, etc. It has been noted that vigilance 

decrement is a major risk factor for car crashes and many other crises  [7].  Vigilance 

decrement may occur in many operational environments, but it is more common when 

there is a need for continuous concentration over a long period of time. Some reasons 

lie behind vigilance decrement, like a physiological need for neuronal stimulation or 
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mental fatigue associated with completing a task for a long period of time, where the 

performance in recognizing and reacting to changes in the system state begins to 

degrade [8]. In specific activities, the rate at which this degradation occurs varies. 

Parasuraman et al. [3], argue that tasks can be differentiated from those requiring 

judgments against a memory value such as driving a car in an area with a defined speed 

limit, and those involving comparative judgments (oil temperature and oil pressure in 

an airplane). As an effect, on time-on-task vigilance decrement can result in a slow 

reaction time or an increase in error rate. 

The term ‘cognitive workload’ has been described by Christopher Wickens as 

the “relation between the (quantitative) demands for resources imposed by a task and 

the ability to supply those resources by the operator” [9]. Bradley Cain defined it as “a 

mental construct that reflects the mental strain resulting from performing a task under 

specific environmental and operational conditions, coupled with the capability of the 

operator to respond to those demands” [9]. Using a multidimensional concept to 

describe workload, it appears to consist of four components: 1) Depletion factors, 2) 

Mental workload, 3) Performance, and 4) Task complexity [10]. According to Yerkes-

Dodson Law, a negative quadratic relationship between arousal and performance was 

predicted. When the individual is performing a task, the level of interest and 

engagement will start to increase gradually with time until the individual reaches a point 

delivering the optimum performance. The performance will consequently start to 

decrease because of different factors, mainly increased or decreased cognitive workload 

(Vigilance decrement). In Figure 1.1, a relationship has been plotted describing 

performance vs. anxiety [11]. 

 

Figure 1.1: Yerkes-Dodson curve showing the relationship between anxiety and performance [11]. 
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Many factors play a role in vigilance decrement such as: fatigue, distraction, 

boredom, task environment, and outside stressors [12]. Parasuraman et al. [13], related 

vigilance decrement to adverse environmental conditions and low motivation 

associated with lack of performance feedback. Schroeder et al. thought that the more 

involved the operator in decision-making and the more feedback the operator receives; 

the more aroused and alert (vigilant) the operator may be [14]. The fact that vigilance 

could decrease while performing a specific task in some critical monitoring 

environments can’t be afforded; a slip in attention may have dire if not fatal 

consequences. For 31 out of 78 train accidents reported in the UK, studies have shown 

that the top 3 occurrence categories of railway accidents are human failure (HF) to 

collision, derailment, and level crossing occurrence. This study indicated that human 

failure is the main contributor to train accidents. Reasons behind the operator failure 

could vary; examples are distraction, perception, fatigue, and workload (time, pressure, 

and stress) [15]. Kristin M. Finkbeiner proved that the inclusion of different types of 

rest breaks could help in improving the overall performance when someone is doing a 

task for a long period of time. The breaks discussed in Finkbeiner’s study were dog 

video breaks, robot video breaks, countdown breaks vs. continuous vigilance. The 

continuous group had the worst performance, while the other rest breaks helped in 

restoring attention and decreasing distress [16]. This study proves that operators may 

suffer from vigilance decrement and suggested some methods to improve it.  However, 

to improve vigilance level, vigilance must be assessed accurately first.  

Vigilance assessment is the first step to be done to enhance vigilance; assessing 

vigilance level accurately could help in any human failure in different work 

environments. There are three different methods to assess vigilance: subjective 

assessment, behavioral and objective assessment methods [9]. In the subjective 

assessment method, a person’s perception of self-assessment may be considered. Self-

assessment is usually measured by various techniques like surveys, questionnaires, or 

interviews. The problem with subjective measures is that it prevents us from 

understanding the multiple variations of workload during a task, in addition to being 

subject to a retrospective bias [17]. On the other hand, objective assessment is 

maintained when the measurement being identified uses quantitative data for specific 

task demands.  It is very important to assess vigilance level and continuously monitor 
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it using the best modalities; assessing vigilance level will help in evaluating the 

operator’s mental state while performing a task [18]. 

1.3. Hypothesis and Thesis Contribution 

Research in the field has shown that many studies proposed and designed new 

methods for vigilance level assessment. Such methods include heart rate variability, 

galvanic skin response [19], pupil diameter, eye blink frequency [1], and brain activity 

measurement, (EEG, EMG,... etc) [20]. Although all these modalities are considered 

effective in vigilance assessment, some limitations of modalities affect accuracy. Eye 

tracking features suffer from high intra-personal variability and are assumed to be 

sensitive to lighting conditions [21]. EEG and fNIRs provide poor spatial resolution 

[22]; EMG must be operated in a special environment for effective detection and it is 

very sensitive to movement [23], and ECoG is an invasive technique [24]. 

1.4.  Thesis Organization 

Across all the detection modalities mentioned in section 1.3, EEG is the most 

common modality used in vigilance assessment. Although EEG suffers from poor 

spatial resolution, it is still very popular for the following reasons [24]: 

1. EEG has a high time resolution. 

2. EEG is simple to operate, and it’s a non-invasive detection method. 

3. EEG cost is less than other modalities. 

4. Event-related potentials (ERPs) features are provided by EEG signals. These 

features have proven their capability to be utilized in studying the changes that 

occur in the human brain with respect to time. 

Eye tracking approach for data analysis is known to be friendly because of its 

ease of use, in addition to being non-intrusive. Research has shown that there are 

advantages of both EEG and eye tracking approaches; using eye tracking besides EEG 

could help in increasing the assessment accuracy [25]. 

This study hypothesizes that developing a fusion model to combine the EEG 

and eye tracking data can improve the accuracy of vigilance level assessment more than 

using either of the techniques alone. EEG and eye tracking possess several advantages 

as they are non-invasive, portable, less expensive, safe for long-term monitoring, and 
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can be good complementarily [26]. The integration of these two modalities offers a 

mean to partially overcome the limitations of each of the individual modalities by 

combining their complementary aspects in one single analysis. We further hypothesize 

that the decrement in the power spectral density is EEG band-specific; therefore, the 

assessment on vigilance will utilize four different EEG frequency bands. To evaluate 

our hypotheses, we propose a novel protocol to assess vigilance level under alertness 

and vigilance decrement using a computerized version of the Stroop color-word task 

(SCWT). Besides, we present a fusion method using the EEG and the eye tracking data 

to enhance the vigilance classification accuracy. The experimental results showed that 

the proposed fusion model successfully increased the classification accuracy. All EEG 

bands showed a high classification accuracy when data fusion was employed. 

1.5. Objectives 

This thesis aims to achieve the following objectives: 

1. To assess the level of vigilance based on EEG cortical activity and eye tracking 

data while performing a Stroop color work test. 

2. To develop a fusion model of EEG and eye tracking data to discover the 

association across them and examine if the model can improve vigilance level 

assessment over individual modalities. 

1.6. Thesis Layout 

Chapter 1 introduced the motivation, background, hypotheses, and objective of 

this work. The rest of this thesis is arranged as follows: Chapter 2 provides a detailed 

literature review related to vigilance assessment using a single modality, followed by 

more literature review for the enhancement of vigilance assessment using a fusion of 

two modalities. Chapter 3 discusses details of the data collection paradigm. Chapter 4 

discusses the processing techniques of EEG and eye tracking data fusion.  Chapter 5 

presents the results of the preprocessing applied on the EEG and the eye tracking data. 

Chapter 6 discusses the results of the vigilance assessment using the EEG as a single 

modality and the eye tracking alone. Chapter 7 discusses the results of vigilance 

assessment using the feature level fusion of both the EEG and the eye tracking data. 

Finally, conclusions and future work are highlighted in chapter 8.  
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Chapter 2. Literature Review 

 

In this chapter, we discuss the different approaches used for vigilance 

assessment and highlight the most common objective measures.  The objective measure 

includes physiological/ neurophysiological measures that can be used for cognitive 

workload assessment. The literature summarizes the vigilance assessment modalities 

that have been used in different research works, in addition, to summarize the 

approaches that has been utilized for the cognitive workload assessment using data 

fusion. 

2.1. Vigilance Assessment Methods 

Fatigue arises as a result of task factors; an example is task demand. In order to 

identify the fatigue level, both subjective and objective measures can be used. On one 

hand, the subjective measures depend on the operators reporting that they are tired or 

fatigued. To obtain a better assessment of fatigue level, measures that are more sensitive 

to changes in performance are required. On the other hand, objective measures can 

identify increased fatigue-related risks because of their sensitivity to changes across 

time, and under a range of different conditions. 

Objective measures could be physiological, neurophysiological, or behavioral 

responses of the operator during a task. The neurophysiological measures include 

electroencephalography and near-infrared functional spectroscopy. Physiological 

measures include electrocardiography, while behavioral measures include the 

following: dynamics of the keystrokes, mouse tracking, and body positioning [27]. 

Researchers have compared subjective and objective mental workload assessment and 

suggested that objective measures can provide a more comprehensive, and richer 

understanding of the workload.   

2.1.1. Vigilance assessment using subjective and behavioral approaches. 

The assessment of cognitive state can be done using subjective, behavioral, and 

physiological measures [18]. The subjective measures are limited when the assessment 

is disruptive to the real-time task. A study [28] explained that humans may not have an 

accurate judgment when it comes to their cognitive states all the time. On the other 

hand, behavioral vigilance assessments are more task-based, and their evaluation for 
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the cognitive state is a function of time [29]. Reaction time and target detection rate are 

some of the measures that can be obtained using the behavioral approach, where 

reaction time is the length of time it takes a person to respond to a given stimulus of an 

event, and the target detection rate refers to the number of hit events. It has also been 

found that the target detection rate and vigilance are directly related [30]; where target 

detection rate decreases with vigilance decrement. 

2.1.2. Vigilance assessment using physiological and neurophysiological 

approaches. The physiological measures used in assessing cognitive workload are very 

important. They can improve cognitive state assessment by adopting approaches that 

measure changes in the central and peripheral nervous system due to their sensitivity to 

real-time information for the cognitive workload. Accuracy in assessing cognitive 

workload has been found to significantly increase when physiological data was utilized 

[31]. Studies have shown that changes in vigilance levels are related to physiological 

changes, these changes are controlled by the brain and nervous system. Various 

physiological measures were utilized for cognitive workload assessment; for instance, 

many studies in literature employed eye tracking measurements for cognitive workload 

assessment. Many eye tracking features such as fixations duration, saccades, pupil size, 

and scan paths can help us understand human behaviors when performing attentional 

tasks. One of the key reasons behind traffic accidents and poor driving is the suboptimal 

level of cognitive functioning (inattention, drowsiness) [18].  A study compared 

between physiological and behavioral measures assessing the cognitive workload while 

driving found that physiological measures were more sensitive to variation in the 

cognitive workload, while behavioral measures (steering wheel reversals, velocity, and 

lane-keeping) were not as sensitive [29]. Hence, the inclusion of the physiological data 

would complement and enhance the assessment besides the behavioral metrics. Many 

of the physiological changes while performing a task can affect psychophysiological 

measures such as: heart rate, skin conductance, and the electrical activity of the brain. 

The electrical activity of the brain is more sensitive to change in vigilance, since it 

reflects the physiological changes that the operator is experiencing, such as: workload, 

drowsiness, stress, etc. 

Table 2.1 summarises the types of physiological/neurophysiological measures 

and the metrics that can be extracted to reflect the level of cognitive workload [32]. 
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Table 2.1: List of physiological/neurophysiological measures used in required mental resources 

quantification [32]. 

 

Measure 

 

Extracted metrics 

ECG Inter-beat interval (IBI) 

Heart rate variability (HRV) 

EEG SPDs for frontal theta, alpha, beta…etc 

TCD Bilateral CBFV in medial cerebral arteries 

fNIR Bilateral rSO₂ in the prefrontal cortex 

Eye tracker Mean fixation duration 

 

2.2. Cognitive Workload Assessment 

This section provides an overview of existing cognitive workload assessment 

contributions in the literature. The overview highlights different modalities that have 

been used to assess cognitive workload, in addition to different fusion techniques that 

have been utilized to increase the cognitive workload classification accuracy. 

2.2.1. Cognitive workload assessment through a single modality. A study 

[33] compared 7 measures to evaluate the mental workload; these measures are: pupil 

size, blink rate, blink duration, heart rate variability, parasympathetic/sympathetic ratio, 

and total power. A simulated experiment of computerized emergency operating 

procedures (EOPs) of different levels was carried out for 18 participants. The results 

showed that the blink rate is sensitive to the task level, while the error rate is sensitive 

to the arousal level. Blink duration tends to increase for long task periods regardless of 

the task level. This study indicated that eye response measures are useful in detecting 

the temporal changes of mental workload. On the other hand, cardiac measures can 

distinguish between task levels and evaluate the overall workload. Hwang et. al in study  

[34] investigated the operator’s mental workload and work performance of the nuclear 

power plants (NPP) environment. The experiment included two tasks: primary and 

secondary tasks; both tasks are simulation-based for the reactor shutdown procedure in 
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the fourth nuclear power plants (FNPP). In this study, both subjective and physiological 

measures (HRV) have been assessed by comparing the error rate between the 

physiological measures and the NASA-TLX questionnaire.  Group method and data 

handling (GMDH) (one of the better-known neural network methodologies) were 

utilized. In addition, the analysis of Pearson-product moment correlation was used to 

examine the relationship between two response variables (NASA-TLX scores and the 

error rates). The results showed an increase in the number of errors in the secondary 

task. This implies that the subjects were fatigued due to the heavy mental workload. The 

experiment also indicated that most of the participants’ heart rate and LF/HF 

components increased for high-level tasks. However, the heart rate variability (HRV) 

decreased for the same level of tasks (complicated tasks). 

Warm et al.,  [35] utilized Transcranial Doppler Sonography (TCD) measures. 

One of the TCD measures is the cerebral blood flow velocity (CBFV), which was used 

to diagnose the operator fatigue level. The study showed that vigilance decrement is 

reliably accompanied by the reduction of CBFV in the right hemisphere measured using 

TCD. Another study [36] investigated the level of blood oxygenation in frontal areas 

(measured by functional near-infrared spectroscopy (fNIRS)) in relation to mental 

workload. Results showed the sensitivity of fNIRS measures to mental task load and to 

the task level. This study also pointed the importance of employing fNIRS to monitor 

the hemodynamic changes in the brain areas for the operator in different fields.  

Dean J. Krusienski [37] presented a user-state detection system in an active 

virtual reality (VR) environment, which monitors the user behavior through tracking 

physiological signs, like the electroencephalogram (EEG) via the use of a VR process. 

The study assessed cognitive workload using EEG while performing a traditional n-

back task within an immersive VR environment. Fifteen participants performed the 

task, and the spatio-spectral EEG features were reviewed with respect to the job 

performance. Feature extraction was done using FFT and classified by rLDA with four-

fold cross-validation. The results of the cognitive workload assessment gave an 

accuracy of 73.6 and 60.6%, for task-level 0 and 2, respectively. By employing a high-

level task for the purpose of measuring cognitive workload using EEG, Pega Zarjam 

(2015)  [38] has compared the accuracy of detection using subjective ratings and EEG-

based method. Subjective rating (self-assessment) has often been a preferred measure 
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because of its simplicity and its relative response to cognitive load types. Through the 

analysis, the researcher used 7 different levels of workload to investigate workload 

differentiation dependent on EEG signals. The entropy, power, and standard deviation 

of the wavelet coefficients were obtained from the segmented EEG signals, that were 

found to change continually in accordance with the level of load. By applying discrete 

wavelet transform (DWT) for the signals recorded from 32-channel EEG, results 

showed that high task load discrimination was primarily found inside the frontal lobe 

of the brain, corresponding to the delta frequency band. This is supported by relevant 

results emphasizing that the frontal lobe is important for maintaining and carrying out 

cognitive tasks because of its tight relationship with attention and working memory. 

This study has also shown that their cognitive load classification methodology 

outperformed self-ratings, by accomplishing an extremely high detection accuracy of 

98% in discriminating seven load levels, compared to 31% classification accuracy of 

self-rating.  

Although some tasks are described as low cognitive level tasks, still sustaining 

attention is very critical, even if performing an easy task. Drowsiness is defined as a 

transition state between being asleep and awake, and it may have severe consequences 

when occurring while a task is being performed. Yugang Liu (2017) [15] proposed a 

fatigue detection system for high-speed train safety;  the system is based on monitoring 

train driver vigilance using a wireless wearable electroencephalograph (EEG). It helps 

in monitoring the alertness of the vehicle operators to prevent them from drifting off to 

sleep while driving. The system monitors the driver's face area using Haar feature 

classifiers, with a training set to quickly identify alterations in the face area of the driver. 

Data for 10 drivers was studied by applying FFT of 8-channels EEG and classified 

using support vector machines (SVM) classifier. The study showed that in the alert 

situation, lower frequency components were discovered in the region of the forehead 

and distributed in the occipital region. The system achieved an excellent classification 

efficiency of 90.70% for driver’s vigilance detection.  

For a similar application, F. Sauvet (2014)  [2] was interested in the fact that 

fatigue and sleepiness may reach high levels during long-haul overnight flights. Under 

these circumstances, voluntary or maybe even involuntary sleep periods could take 

place raising the chance of accidents. For 14 healthy pilots flying airplanes for flights 
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with the length 10 ± 2.0 h, STFT approach was applied to the collected EEG signals 

and using Fuzzy logic fusion, an agreement of the relative power had been observed 

utilizing the ratio (α + θ)/β. The O1-M2 channel offered the finest classification. Using 

a detection threshold that is entirely independent, and did not need to be tuned per 

subject, they achieved a 98.3% accuracy of vigilance state detection. 

Studies have used electroencephalography (EEG) to assess cognitive workload 

and reported that the higher the cognitive workload, the higher the theta band power 

and the lower the alpha band power.  Many of those studies lacked consistency; in 

addition, they did not take the individual differences into consideration. Sebastien Puma 

(2017) in [39] used EEG to measure the cognitive workload in a multi-tasking 

environment, with 20 participants performing a task that is common in an airline pilot 

recruitment in addition to more sub-tasks. Subjective ratings, performance scores, pupil 

size, and EEG signals were used to measure the cognitive workload. Results indicated 

that EEG allows for discriminating cognitive load by showing a widespread in theta 

rhythm and localized increase in the alpha rhythm. The study also reported that the 

higher the performance, the lower the band power.  

Although objective methods are better in detection compared to subjective ones, 

still their accuracy, temporal resolution, and latency need to be enhanced. The reason 

behind this is that these measures appeared to be sub-optimal when using objective 

approaches. In some cases, the system does not respond to changes in the task load 

because of the subject movement that could produce noise and artifacts.  It is a big 

challenge facing researchers to overcome this problem, and to do that, the fusion 

approach of modalities in assessing cognitive workload has been suggested in many 

research papers in order to improve the detection accuracy. The literature illustrates 

some successful work for cognitive workload assessment by applying data fusion of 

two modalities.   

2.2.2. Cognitive workload assessment through EEG-EMG fusion and 

EEG-fNIRs fusion. Data fusion is an incorporation of data taken from different sources 

for the purpose of inferring important information that cannot be obtained from a single 

modality. Data fusion is classified into three levels: feature level fusion, decision level 

fusion or hybrid models [9]. Even though the accuracy obtained was high using EEG 

in many of the cognitive workload assessment studies, in a real application the case is 
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significantly different, because information becomes corrupted, disturbed, as well as 

delayed. In such instances, instead of dealing with single sensor weaknesses, and 

enhancing information quality/accuracy, the use of multiple modalities is needed. 

Multi-modal fusion techniques have proven their efficiency in other domains such as 

wireless sensor networks. Extensive work has been done in improving the estimation 

accuracy of cognitive workload utilizing different sensor modalities. In any case, the 

general execution of various approaches and strategies remains problematic in real-

world applications. A few investigations in the literature showed that a single 

methodology may be adequate to evaluate cognitive workload, while in other 

applications it was not. Thus, data fusion can be used to increase the accuracy of 

evaluation. In some cases, due to subject movements, or the system suffering from noise 

and artifacts, the use of data fusion for two modalities may help in improving signal-

to-noise ratio, reducing ambiguity and uncertainty, enhancing performance, and 

improving temporal and spatial coverage. In the cognitive workload assessment 

literature, fusion by using data from two sensors appeared to be effective for real-time 

measurement of cognitive workload. 

According to Mehmet Akin (2008), in a study [40], earlier scientific studies 

made use of only EEG signals for estimating the vigilance level. The researcher aimed 

to estimate vigilance level by implementing both EMG and EEG signals for enhancing 

the accuracy of estimating vigilance level. The study developed a completely new 

strategy for estimating vigilance level by utilizing both EMG and EEG signals during 

transition state from wakefulness to sleep for 30 drivers. Extracting features from the 

sources has been done using DWT for efficient discrimination; chin EMG was used to 

eliminate movement artifacts, and ANN was used as a classifier. EEG signals showed 

less beta and alpha bands power when the individual is asleep. The study reported that 

the beta and alpha activities decreased during the shift from wakefulness to sleep stage 

when merging EMG and EEG. An accuracy of 98-99% was obtained for vigilance level 

assessment which outperformed another study that used only EEG with an accuracy of 

95-96%.  

Darren J. Leamy in study [41] approached dual-modality techniques that are 

very important to brain-computer interface (BCI) researchers, these techniques used to 

instigate the possibility of improving classification accuracy by demonstrating 
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enhancements to imagined-movement based BCIs. It was thought that the fusion 

analysis is going to lead to more precise BCIs. The modalities used were EEG and 

fNIRS, with which they recorded concurrent and co-locational electrical, and 

hemodynamic responses in the motor cortex during an imagined movement task 

participated by 2 subjects. An analysis and classification of fNIRS and EEG data was 

carried out using leave-one-out cross-validation (LOOCV), along with linear 

discriminant analysis (LDA). Each subject performed 40 experimental trials, and the 

accuracy for each of the two subjects was 58% and 66% for classification during an 

imagined movement-based task. Siamac Fazli (2012) in a study [42] applied the same 

two modalities for data fusion (fNIRS and EEG) motivated by the non-invasive Brain-

Computer Interfaces (BCI) since many reports on applications with 

electroencephalography (EEG) clearly showed a need for better accuracy and stability 

for the BCI systems. For that reason, the study investigated whether near-infrared 

spectroscopy (NIRS) could be utilized to improve the EEG classification. 14 subjects 

performed motor imagery and executed movements tasks to test how the classification 

of the NIRS will enhance the ongoing real-time EEG classification. The results obtained 

from 16 NIRS detectors and 37 EEG electrodes were classified by both cross-validation 

and LDA classifiers. The results demonstrated that measurements of EEG and NIRS 

can greatly enhance the classification accuracy of motor imagery in more than 90% of 

the subjects, as well to increase classification accuracy for the performance by 5% on 

average. In addition to the previous two studies, Xuxian Yin (2015) in study [43] tried 

to boost the number of states categorized by a brain-computer interface (BCI); Yin used 

a motor imagery task where the persons imagined both speed and force of hand 

clenching. The time-phase-frequency feature was obtained from EEG, and the HbD [the 

distinction of oxy hemoglobin] (HbO) was obtained from fNIRS. Deoxyhemoglobin 

(Hb) attribute was utilized to enhance the accuracy of fNIRS strategy. The BCI was 

utilized to instantly capture electroencephalographic (EEG) and functional near-

infrared spectroscopy (fNIRS) signals. Features were extracted by applying the Hilbert 

transform and complex wavelet convolution and then classified by extreme learning 

machines (ELMs). Classification accuracy for the decoding motor imagery task of 89% 

was obtained in addition to an enhancement by 1% to 5 % over the single EEG modality 

or the single fNIRS modality. 
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2.2.3. Cognitive workload assessment through EEG-ECG fusion. 

Sudarshan Kriya Yoga (SKY) is a kind of rhythmic breathing exercise, a significant 

kind of Pranayama that expresses physical, emotional, mental, and interpersonal well-

being. SKY was the task adopted in S. Chandra (2016) study for 25 subjects [44]. The 

goal of the study was to quantitatively measure if SKY is going to increase workload 

tolerance. The study also aimed at verifying the result of meditation in regulating stress 

and increasing task efficiency. DWT and Pan-Tompkins algorithms were used for 

extracting features of the EEG and the ECG signals. The study reported that the results 

of the fusion classified by ANN showed better accuracy in comparison with the SVM 

classifier, and reached up to 90%.  The study did not share any information about the 

system outperforming the sole EEG. According to XueWang (2017) [45], a mental 

workload classification accuracy of 90% was been obtained when 10 subjects 

performed an n-back task over 3 different levels. The accuracy mentioned was the result 

of the feature level fusion for both EEG and ECG modalities. Furthermore, and for the 

same study, an accuracy of 91% was obtained for the classifier level fusion. Features 

were extracted using Welch’s method and HRVAS and were classified by SVM.  

However, the study reported that fusion models did not show significant performance 

over single modality models. 

2.2.4. Cognitive workload assessment through EEG-eye tracking fusion. 

Eye response metrics, such as dilation of the pupils, blink frequency, and length of the 

blinks, correspond with cognitive workload regardless of the workload level. It was 

indicated by previous studies that blink frequency and blink length decrease with the 

high task demand and high cognitive load periods. Yifei Lu and Wei-Long Zheng 

(2015)  in study [46] have confirmed this through a study combining EEG and eye 

movement to enhance emotion recognition. The objective of the paper was to examine 

emotionally linked sixteen eye movements and describe the intrinsic patterns for the 

movement of the eye in three emotional states: positive, neutral, and negative. Another 

objective for the study was to combine EEG and eye movement for the purpose of 

analyzing various fusion modality approaches. Subjects were asked to watch some 

video clips, and the data was collected using 62-channels electrode. Feature extraction 

was done by applying STFT and classified by both SVM and LDS. Yifei Lu and Wei-

Long adopted fuzzy integral fusion strategy that showed a high accuracy of 87.59%. 

This was in comparison to the single EEG modality or the single eye movement 



29 

 

modality for emotion recognition with accuracies of 77.80% and 78.51%, respectively. 

Meanwhile, David Rozado (2015) [47] combined EEG and pupillometry for a high-

level task. In his study, 23 participants took a mental arithmetic task; the data was 

collected from 62-channel electrodes, and the features were extracted and classified by 

both LDA and SVMs classifiers. For simple arithmetic operations, an error rate of 17% 

for the fusion was calculated compared to an error rate of 26.1% for pupillometry alone 

and 24.1% for EEG alone. They achieved the workload assessment classification 

accuracy of 83.25% for the fusion approach. Brouwer (2017) in a study [48] 

investigated the cognitive workload assessment method when participants were 

conducting monitoring tasks. She has proposed that EEG and eye pupillometry could 

complement each other in order to reach a higher degree of understanding that none of 

the modalities would achieve independently. The eye monitoring approach has shown 

effectiveness to differentiate between hits and misses, whereas EEG has also shown to 

better help differentiate between goals and non-targets. Therefore, integrating the 

characteristics of both styles into one model improved the overall accuracy. 

Nonetheless, no statistical analyses have been recorded in the study. Jung-Hoon Kim 

(2017) in a study [49] tried to optimize the efficiency of the cognitive assessment 

methodologies by demonstrating a correlation between EEG and eye tracking data. 

Subjects performed simulated baggage screening task, and both eye tracking and EEG 

data were obtained. Results have indicated a significant correlation between cognitive 

workload metrics based on EEG and eye tracking measurements. In addition, Fares Al-

Shargie [50] reviewed vigilance enhancement by applying conventional and 

unconventional means. The study illustrated that unconventional means are effective in 

enhancing vigilance decrement. It has also shown that the unconventional means of 

enhancement depend on many factors, such as time-on-task and overall experimental 

protocol. 

Al-Shargie et. al. in [51] illustrated that the speed of reaction time, and accuracy 

to a specific stimulus decrease when the time on task increases. The experiment in this 

study was a Stroop color-word task (SCWT), and the enhancement part was based on 

audio stimulation with a pure tone of 250 Hz.  The study applied partial directed 

coherence (PDC) and graph theory analysis (GTA) to determine the coupling between 

brain regions under vigilance and enhanced mental states. Results showed that PDC is 

very sensitive to vigilance decrement, and thus, when the time on in task increases, the 
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brain connectivity network decreases, p <0.5. The study stated that enhancement using 

audio simulation is effective since the brain connectivity remained high compared to 

the vigilance phase. Another study [52] utilized “challenge integration” as a strategy to 

enhance vigilance; the task used in the study was a primary surveillance task integrated 

with a challenging stimulus for the purpose of detecting the changes in vigilance levels 

during the task. EEG and eye tracking data of 12 subjects were analyzed.  Frontal 

midline theta power and frontal theta to parietal alpha power ratio showed an increment 

for the challenge integration, while the delta band power of EEG decreased on the 

frontoparietal and occipital cortices due to challenge integration (p < 0.05). Saccade 

amplitude, saccade velocity and blink rate obtained from eye tracking data exhibited 

significant changes for the challenge stimulus as well.  

Fusion of modalities in studying cognitive workload assessment has shown an 

improvement in accuracy through some of the studies mentioned above, regardless to 

the level of task performed. The fusion of modalities was successful in different types 

of cognitive workload, whether it was a memory load task, perception channel 

discrimination task, mental arithmetic task, psychomotor or emotion recognition task. 

A challenge to be presented is proving that the accuracy of vigilance assessment can be 

enhanced by the fusion of two modalities. According to a recent paper [9] published in 

2019, only 27% of the studies combined EEG and fNIRS, and 4 out of the 10 studies 

showed significant improvement with the fusion;  all of these 4 studies applied the 

decision level fusion. For the studies that applied the feature level fusion, there was no 

improvement over the single EEG modality.  As a result, decision level fusion for EEG 

and fNIRS data is better compared to the single EEG modality. ECG and EEG fusion 

were only performed by 8% of all studies that adopted the fusion approach; the fusion 

of EEG and ECG at the feature level didn’t improve performance. Three studies have 

combined EEG and ECG, and none of them showed any better results for the fusion at 

the feature level. For this reason, the fusion of EEG and ECG is to be eliminated.  

This Thesis aims to study the possibility of enhancing vigilance assessment 

through the fusion of two modalities: eye tracking and EEG. The goal is to develop an 

adaptive vigilance model for monitoring vigilance. Eye movements are selected as the 

primary inputs of the proposed model since they can be continuously monitored and 

measured. Studies have shown the existence of a relationship between sustained 
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attention and eye movement [53]. Both, blink frequency and blink duration increase 

with vigilance decrement [54]. EEG is the second modality proposed for assessing 

vigilance; studies showed that prefrontal and parietal brain areas play important roles 

in regulating vigilance [55]. Vigilance decrement as a problem lies in the brain region; 

the fusion of EEG and eye tracking as two close sources to the problem are the best to 

be used. The literature for the EEG and eye tracking fusion for cognitive workload 

supports the idea of the proposed fusion approach. According to Essam Debie (2019) 

in [9], combining EEG with pupillometry has been done by only  6 studies of which 2 

only have recorded statistically significant improvement over the single EEG; these 2 

studies have applied the feature level fusion [9]. 
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Chapter 3. Experiment and Data Collection 

 

3.1. Data Collection 

The details of the experiment and the data collection are discussed in the 

following three sections, covering information about the participants in the experiment, 

experiment setup, and the procedure and the task sequence. 

3.1.1. Participants. In this study, 9 healthy volunteers who are students at the 

American University of Sharjah (age = 24.5 ± 5.5 years) were recruited to obtain EEG 

and eye tracking signals. All the participants met the predefined inclusion criteria of 

having normal hearing, normal/corrected to normal vision, no history of psychiatric or 

cognitive disorders, no symptoms of drug addiction or abuse, and no intake of long-

term medications. In addition, all recordings were performed in accordance with the 

medical ethical standards. In order for the experiment not to get affected by the potential 

circadian influences, the experiment took a place between 3.00 P.M. and 7:00 P.M. 

Participants have been informed about the experiment procedure's nature, and each 

participant gave informed written consent. The experiment protocol was designed 

following the declaration of Helsinki and was approved by the Institutional Review 

Board (IRB) of the American University of Sharjah. 

3.1.2. Experimental setup and physiological data acquisition. The 

experiment took place at the Biomedical Engineering Laboratory at the American 

University of Sharjah. The lab has a controlled level of both light and temperature. EEG 

and eye tracking were recorded during the experiment; the brain activity was measured 

using the 64-channel ANT Neuro EEG system at a sampling rate of 500 Hz. A wearable 

cap according to the standard 10-20 layout, and connected to a 64-channel EEG 

amplifier, was used, and data acquisition was done using ASA software. The cap 

consists of a set of 64 Ag/AgCl scalp EEG electrodes. The same software was also used 

to check the electrode impedances by applying a conductive gel layer and maintained 

below 10 KΩ. The AFz electrode is set as the system ground, and all other electrode 

signals are referenced to the mastoid electrodes M1 and M2. The subject’s response to 

the experiment was labelled as either “Correct”, “Incorrect”, or “Time is up”. 

Responses were collected using a parallel interface between the stimulus representation 

PC and the EEG recording PC [51]. Figure 3.1 shows the EEG electrode distribution 
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according to the 10-20 system layout that have been used in the experiment, and Figure 

3.2 shows the experiment protocol including the SCWT interface. 

 

Figure 3.1: EEG electrode distribution according to the 10-20 system layout [55]. 

Eye movement data from eye tracking glasses provide various eye tracking 

detailed parameters. The data was collected using the EyeLink Portable Duo system at 

a sampling rate of 500 Hz. This system is designed to use an infra-red camera to record 

non-invasively the gaze position and pupil diameter. Absolute stabilization of the 

participant’s head is unnecessary; therefore, instruction was given to the participant to 

reduce head movement to obtain better quality for both the eye tracking and EEG data. 

 

 

Figure 3.2: Experimental protocol (a) stroop color-word task (SCWT) presentation interface and (b) 

timing window. In the timing window, the plus sign in black background is for the pre- and post-

baseline. Thirty (30) min SCWT for vigilance group. 
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3.1.3. Procedure and task sequence. Participants performed a thirty minutes 

computerized Stroop color-word task (SCWT). EEG and eye tracking data were 

simultaneously recorded while participants were performing the SCWT. Before 

recording the EEG and eye tracking data, participants practiced the task for three 

minutes to get familiar with the SCWT task and were asked to fill a Brunel Mood Scale 

questionnaire [56]. After completing the task, the participants were asked to fill the 

same questionnaire again. Vigilance level will be assessed using the fusion of EEG and 

eye tracking data. The proposed computerized SCWT is briefly described. 

 

 

Figure 3.3: EEG data acquisition and experimental set up. 

An interactive and computerized SCWT was developed and presented using 

MATLAB with Graphical User Interface [51]. The SCWT used in this experiment 

involved displaying six basic colors: blue, green, red, magenta, cyan, and yellow. 

Figure 3.4 shows the interface of the SCWT. One word was displayed at a time, and 

the answers of the color word to be matched to are presented in random sequences in 

the computer screen monitor. The displayed color word on the monitor screen was 

written in a different color than the word’s meaning, and the correct answer is the color 

in which the word is displayed (e.g.: if Green is written in Cyan then Cyan is the correct 

answer). The participants picked their answers as quickly and accurately as possible by 

left-clicking the mouse on one of the six answering buttons. To eliminate the 

participant’s habituation, the challenge level has been increased by setting the 

background color of the button in a random way. The reaction time recorded during the 
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training phase was used to determine the maximum time for each trial. The response 

for each trial performed was displayed by a feedback message of “correct “or 

“incorrect” answer in addition to the recorded reaction time. In case the participant 

consumed all the time given for the trial with no response, the feedback message was 

“Time is up”. 

 

 

Figure 3.4: Main view of the developed SCWT. 
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Chapter 4. Data Analysis   

 

4.1. EEG and Eye Tracking Data Preprocessing  

The acquisition session of the EEG signals is usually divided into periods or 

epochs; once the data has been acquired, a preprocessing package is used to filter the 

signals as detailed. Signal preprocessing is considered a key factor for obtaining good 

classification rates. After signal filtering, machine learning classification algorithms are 

used to ass the level of vigilance [57] . This section discusses the preprocessing steps 

that have been applied to both the EEG and eye tracking data. 

Preprocessing of EEG signals involved the following steps: 

1. Import raw data. 

2. Read channel locations. 

3. Apply high pass filtering at a frequency of 0.1 Hz to remove background signal 

and DC offset. 

4. Carry out independent component analysis (ICA) to remove artifacts. 

5. Apply low pass filtering at a frequency of 40 Hz. 

6. Re-reference the EEG data into the average of all channels. 

7. Segment the EEG data into target-related EEG epochs of 1200 ms.  

8. Perform baseline extraction and removal using the whole duration of each 

epoch.  

9. Band-pass the clean EEG signals into four frequency bands corresponding to, 

delta (< 4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) frequency 

bands. 

Preprocessing of the eye tracking data involved steps which have been 

performed using the EyeLink Data Viewer software; the Data viewer software is a tool 

that allows users to display, filter, and create output reports from the EDF data files 

recorded with EyeLink Portable Duo. Additional filtration for the eye tracking data can 

also be done using MATLAB [58] [59].  In addition, reports in an excel format for the 
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eye tracking features can be created using the EyeLink Data Viewer software.  The 

researcher has used the EyeLink Data Viewer software to extract the following features: 

fixation duration, pupil size, saccade duration, saccade amplitude, saccade velocity, and 

blink duration. The mentioned features were preprocessed as follows: 

1. Prepare the raw data by having it in time series and convert the standard format 

of the eye tracker output for both eyes. 

2. Filter the raw data to avoid any invalid samples; the filtering process will 

reject any of the following samples: (a) dilation speed outliers and edge 

artifacts, (b) trend-line deviation outliers, and (c) temporally isolated sample. 

3. Merge nearby fixations with an amplitude threshold of 1.0°. 

4. Set a high pass filter of 100 ms and 20 ms for both fixation duration, and 

saccade duration, respectively. 

5. Set a low pass filter for saccade duration at 200 ms. 

6. Apply extending blinks technique by removing the data points that correspond 

to the 100 ms before, and after a blink is created. 

7. Set a high pass filter for saccade velocity of 30°/s. 

8. Set a high pass filter for saccade amplitude of 0.1° 

4.2. EEG Feature Extraction Method 

Vigilance reflects the interaction of multiple brain regions; this interaction can 

be detected to provide a quantitative and rich insight about the cognitive process in the 

brain. Many features  can be used to assess vigilance level for subjects performing 

critical tasks in various working environments. In our study, we have employed the 

power spectral density as a feature to assess vigilance level.  

4.2.1. Power spectral density. The EEG data analysis can be done with Fast 

Fourier Transformation to obtain the PSD, at which power is plotted versus frequency. 

The PSD has been performed by dividing the signal sequence into segments, and then 

multiply the segment with an appropriate window. Let 𝑥𝑑(𝑛) be the sequence, the 

signal intervals represented by 𝑑 = 1, 2, 3…L and 𝑀 is interval length. Thus, power 

spectral density extraction is defined in equation (1) by [60]:  
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where 𝑤(𝑛) is the hann window function. 

4.3. Eye Tracking Feature Extraction Method 

Researchers seek adequate eye tracking metrics to represent their studies. Eye 

tracking metrics are divided into four types of metrics: (1) metrics based on fixations, 

(2) metrics based on saccades, (3) metrics based on scanpaths, and (4) metrics of pupil 

size and blink rate. 

4.3.1. Metrics based on fixation. Metrics based on fixation are dived into two 

groups, the first group is metrics based on the number of fixations, and the second group 

is metrics based on the duration of the fixation, where Fixation Count (FC) is the total 

number of fixations in each area of interest (AOI). Study [61] reports that a higher 

number of fixations to a stimulus is an indication to inefficient information. Fixation 

rate (FR) is calculated using Equation (3): 

FR =
Total Number of Fixations in AOI

Total Number of Fixations in AOG
 (3) 

Total number of fixations in the area of glance (AOG) mentioned in the equation 

(3) reflects one of the following: (AOG) where it can be either the whole stimulus, 

meaning that you calculate the ratio of the total number of fixations in one AOI to all 

fixations, or it can be to another AOI, to show the ratio of fixations between two 

different AOIs. Fixation Spatial Density (𝑆𝐷) represents the number of cells containing 

at least one fixation, divided by the total number of cells when the stimuli are being 

presented by a grid.  Equation (4) calculates the 𝑆𝐷, where n is equal to the number of 

cells in the grid, and ci is equal to 1 if the cell number 𝑖 is visited, and equal to zero 

otherwise. The indication of 𝑆𝐷 is the “coverage of an area”; it also calculates the 

dispersion of the participant’s fixations. If 𝑆𝐷 is low, this is an indication of a small 

coverage area [62]. 
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Some metrics are based on the Duration of Fixations; the duration of fixations 

is equal to the required time to analyze a stimulus “the depth of processing”.  Measuring 

FC is not enough; some cases showed that even if you have low FC, you still can have 

a high duration of fixation. Thus, combing both metrics is important in the analysis 

process. Average Fixation Duration (𝐴𝐹𝐷), also called Mean Fixation Duration, is 

equal to the total of the durations of all the fixations divided by the number of fixations. 

Equation (5) expresses mathematically 𝐴𝐹𝐷: 

𝐴𝐹𝐷(𝐴𝑂𝐼) =
∑ (𝐸𝑇(𝐹𝑖) − 𝑆𝑇(𝐹𝑖))

𝑛

𝑖=1
in𝐴𝑂𝐼

𝑛
 (5) 

where (𝐸𝑇(𝐹𝑖), and 𝑆𝑇(𝐹𝑖) are the end time and start time for a fixation 𝐹𝑖 . The n is the 

total number of fixations in a given 𝐴𝑂𝐼 [63]. 

4.3.2. Metrics based on saccades. The Higher numbers of saccades indicate 

more searching and effort while performing a task [62], and the regressions rate 

indicates the percentage of backward saccades of any length. For an example, good 

readers will have few regressions, thus higher regressions rates indicate that the readers 

are having difficulty in reading and understanding a stimulus [64]. 

4.3.3. Metrics based on scanpaths. Attention switching expresses the 

participant focus change between different AOIs. The attention switch frequency can 

be measured by calculating the total number of switches between a set of AOIs per 

minute. The attention switching frequencies can be represented by a transitional matrix  

[65]; equation (6) represents the frequency transitions between AOIs: 

𝑇𝑀 =
∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1 𝑐𝑖,𝑗

𝑛2
 (6) 

where 𝑐𝑖,𝑗  is equal to 1 if the AOI is visited and 0 otherwise. A comparison between two 

transition matrices can be done by calculating the transition density. Transition density 

reflects the ratio between non-zero cells to the total cells of the matrix, where high 

transition density indicates an inefficient response to a given stimulus [65]. 

4.3.4. Pupil size and blink rate. Pupil size metrics and blink rate metrics are 

associated with measuring cognitive workload, where the lower the blink rates mean 
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higher workload and higher attention. Higher blink rates indicate loss of attention and 

fatigue. If the pupil size is large, then this is an indication of more effort being done by 

the participant [64]. In this thesis we have utilized six eye tracking features based on 

their importance in cognitive workload assessment as mentioned in the literature, the 

eye tracking features extracted were: Fixation duration, pupil size, saccade duration, 

saccade amplitude, saccade velocity, and blink duration. Using the EyeLink® Data 

Viewer software, features have been extracted and filtered. The software has a built-in 

algorithm for the eye tracking data preprocessing, it allows users to display, and create 

output reports from the EDF data files recorded with EyeLink Portable Duo. Reports in 

an excel format for the eye tracking features have been created using the EyeLink Data 

Viewer software. The Data Viewer software enables visualization options and also 

provides different types of analysis. 

4.4. Data Classification 

Many classification approaches are available in machine learning, such as: 

Navie Bayes classifier, Random Forest, K-Nearest Neighbors, and Decision Tree. 

Support vector machine classifiers are supervised learning models used in classification 

and regression analysis. SVM is a non-probabilistic binary linear classifier since it 

separates a binary set of training data and divides them by a clear gap as wide as 

possible [66]. In this study we have utilized the SVM classifier to classify different 

levels of vigilance; the kernel function of SVM in this study is the Radial Basis Function 

(RBF), and the learning method is minimal sequential optimization. For fine parameter 

tuning, we varied the soft margin regularization parameter C from the interval 10−2 to 

102 with the step of 10 based on cross-validation approach. The most suitable σ in the 

RBF kernel was searched in the range between 0.5 to 4 (step size of 0.5), and optimal 

values were set to C = 1 and σ = 3. The EEG, eye tracking data as well fusion of  EEG 

+ eye tracking data have been classified in the form of subject-independent 

classification where a 10-fold cross-validation approach with randomization was 

performed to each feature vector. In the 10-fold cross-validation, each of the EEG, the 

eye tracking, and EEG-eye tracking feature sets was divided into ten subsets. Nine of 

these subsets were used for classifier training, and the last tenth subset was used for 

estimation of classification accuracy, sensitivity, and specificity. This process was 

performed ten times with each subset having an equal chance of being the testing data, 

and the average classification accuracy, sensitivity, and specificity were then evaluated. 
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It is well known that the selected classifier is fast and successful in the field of brain-

computer interface (BCI). 

4.5. Data Fusion 

In this study, we have utilized feature level fusion by using canonical correlation 

analysis. The details of the proposed fusion method are briefly described. 

4.5.1. Feature level fusion. Feature level fusion is a fusion method where the 

data is represented by feature vectors. The features extracted from EEG and eye 

tracking data will be combined into a single fused feature vector. To produce the final 

feature vector, the vector must pass through appropriate feature normalization, 

transformation, and reduction schemes. 

Table 4.1 shows the features extracted from both EEG data and eye tracking data. 

Table 4.1: List of features extracted from both EEG and eye tracking data. 

 

 

 

EEG features 

 

 

Frequency domain 

features 

The normalized 

magnitudes in the 

frequency domain at the 

specific frequency bands 

obtained by using the 

Fourier transform 

 

Time-domain features 

kurtosis, skewness, 

minimum, maximum, 

variance, standard 

deviation and mean 

 

Eye tracking features 

Fixation duration, pupil size, saccade amplitude, 

saccade duration, saccadic mean velocity, and blink  

duration 

 

4.5.2. Canonical correlation analysis. The EEG signals have been band 

passed into four frequency bands (Delta, Theta, Alpha, and Beta). Our EEG provided 

62 features; each corresponds to one of the 62 electrodes used in recording the signal. 

The eye tracking on the other hand has been processed to provide 6 features (Fixation 

https://www.sciencedirect.com/topics/computer-science/fixation-duration
https://www.sciencedirect.com/topics/computer-science/fixation-duration
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duration, pupil size, saccade duration, saccade amplitude, saccadic mean velocity, 

and blink duration).The EEG and the eye tracking features were extracted for two time 

segments with a length of five minutes each. The first-time segment belongs to the first 

five minutes of the recording, and refers to the alertness state, while the second time 

segment belongs to the last five minutes of the recording and refers to the vigilance 

decrement state. Features from the two modalities have been extracted using a sliding 

window of 1 s. On one hand, 600 data points from the EEG were extracted, these data 

points refer to the power spectral density values extracted from both two windows 

(alertness and vigilance decrement) for each of the nine subjects. On the other hand, the 

eye tracking data was obtained by averaging the feature values in every 1s to obtain one 

data point at a time, this approach was performed for the two windows (alertness and 

vigilance decrement) with the length of five minutes each. Each subject data formed a 

matrix with a dimension of 600X 6, where 600 is the number of data points extracted 

from the two windows and the 6 refers to the number of eye tracking features. Our 

fusion approach was performed at the feature level. Suppose that we have two matrices 

of the features obtained from the two modalities: EEG and the eye tracking as follows,  

𝐴 ∈ ℝ𝑛×𝑝 and B ∈ ℝ𝑛×𝑞 , where 𝐴 and 𝐵 contains n samples, with p and q feature 

dimension, respectively. If 𝑆𝑎𝑎 ∈ ℝ𝑝×𝑝 , 𝑆𝑏𝑏 ∈ ℝ𝑞×𝑞  are the variance matrices of 𝐴 and 

 𝐵, respectively, and 𝑆𝑎𝑏 ∈ ℝ𝑝×𝑞 is the covariance matrix, where 𝑆𝑎𝑏 = 𝑆𝑏𝑎
𝑇 . The 

canonical correlation (CCA) is used to obtain the 𝐴∗ = 𝑊𝑎
𝑇𝐴 and 𝐵∗ = 𝑊𝑏

𝑇 𝐵 at which 

they represent the linear combination of the canonical variates [67] [68] [69]. The 

canonical variates provide the maximum correlation of shared variance between the 

two feature sets following equation (7): 

𝜌(𝐴∗, 𝐵∗) = 𝜌(𝑊𝑎
𝑇𝐴, 𝑊𝑏

𝑇𝐵) =
𝑊𝑎

𝑇𝑆𝑎𝑏𝑊𝑏

√(𝑊𝑎
𝑇𝑆𝑎𝑎𝑊𝑎)(𝑊𝑏

𝑇𝑆𝑏𝑏𝑊𝑏)
 (7) 

𝑊𝑎
  and 𝑊𝑏

  are two arbitrary vectors that are not equal to zero, where 𝑊𝑎 ∈ ℝ𝑝 and 

𝑊𝑏 ∈ ℝ𝑞. The below constraint must be placed to obtain the maximum correlation at 

which the two variances in the denominator are equal to 1: 

𝑊𝑎
𝑇𝑆𝑎𝑎𝑊𝑎 = 𝑊𝑏

𝑇𝑆𝑏𝑏𝑊𝑏 = 1 (8) 

Our model is summarized in equation (9), the maximization was calculated by 

applying the Lagrange multipliers on equation (7) by taking into consideration the 

constraint in equation (8), and noting that the canonical veritas 𝐴∗ and 𝐵∗ are 

https://www.sciencedirect.com/topics/computer-science/fixation-duration
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uncorrelated within each data set with a mean of zero and a unit variance. On the other 

hand, the canonical veritas 𝐴∗ and 𝐵∗ have a nonzero correlation in their corresponding 

indices. 

Model {

𝑚𝑎𝑥𝜌(𝐴∗, 𝐵∗)

𝑊𝑎
𝑇𝑆𝑎𝑎𝑊𝑎 = 𝑊𝑏

𝑇 𝑆𝑏𝑏𝑊𝑏 = 1

𝑊𝑎 ∈ ℝ𝑝, 𝑊𝑏 ∈ ℝ𝑞

 

 

 (9) 

 

𝐿(𝐴∗, 𝐵∗) = 𝐿(𝑊𝑎
𝑇𝐴, 𝑊𝑏

𝑇𝐵) = 𝑊𝑎
𝑇𝑆𝑎𝑏𝑊𝑏 −

𝜆1

2
(𝑊𝑎

𝑇𝑆𝑎𝑎𝑊𝑎 − 1) −
𝜆2

2
(𝑊𝑏

𝑇𝑆𝑏𝑏𝑊𝑏 − 1) (10) 

where  𝜆1 and 𝜆2 are the Lagrange multipliers. 

Note that setting the partial derivative for 𝐿(𝐴∗, 𝐵∗) in equation (10) with respect  

𝑊𝑎
  and 𝑊𝑏

  to be equal to zero, give us the following two equations: 

𝜕𝐿

𝜕𝑊𝑎
= 𝑆𝑎𝑏𝑊𝑏 − 𝜆1𝑆𝑎𝑎𝑊𝑎 = 0 (11) 

 

𝜕𝐿

𝜕𝑊𝑏
= 𝑆𝑏𝑎𝑊𝑎 − 𝜆1𝑆𝑏𝑏𝑊𝑏 = 0 (12) 

And by multiplying both sides of the derivative with 𝑊𝑎
𝑇  and 𝑊𝑏

𝑇   under the 

condition mentioned in equation (8), then: 

𝑊𝑎
𝑇𝑆𝑎𝑏𝑊𝑏 = 𝜆1 𝑊𝑎

𝑇𝑆𝑎𝑎𝑊𝑎 = 𝜆1  (13) 

 

𝑊𝑏
𝑇𝑆𝑏𝑎𝑊𝑎 = 𝜆2𝑊𝑏

𝑇 𝑆𝑏𝑏𝑊𝑏 = 𝜆2 (14) 

Let 𝜆1 =  𝜆2 = 𝜆  then: 

 
𝜌(𝐴∗, 𝐵∗) = 𝑊𝑎

𝑇𝑆𝑎𝑏𝑊𝑏 = 𝑊𝑏
𝑇 𝑆𝑏𝑎𝑊𝑎 = 𝜆 

 (15) 

Equation (15) shows that the Lagrange multipliers 𝜆1 and  𝜆2 are equal to the 

correlation coefficients 𝑊𝑎
𝑇  and 𝑊𝑏

𝑇 ; it is worth noting that substituting the partial 

derivative of the Lagrange multiplier with respect to 𝑊𝑎
  in the partial derivative of the 

Lagrange multiplier with respect to 𝑊𝑏
  will obtain the transformation matrices 

𝑊𝑎
  and 𝑊𝑏

   using the eigenvalue’s equations: 

𝑆𝑎𝑎
−1𝑆𝑎𝑏𝑆𝑏𝑏

−1𝑆𝑏𝑎𝑊𝑎 = 𝜆2𝑊𝑎 (16) 
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𝑆𝑏𝑏
−1𝑆𝑏𝑎𝑆𝑎𝑎

−1𝑆𝑎𝑏𝑊𝑏 = 𝜆2𝑊𝑏  (17) 

The transformation matrices 𝑊𝑎
  and 𝑊𝑏

  are the eigenvectors, and 𝜆2 is a vector 

of eigenvalues or squared of canonical correlations. The number of non-zero 

eigenvalues in each equation is stored in decreasing order. Finally,  the final form of 

fusion is performed by concatenation of the transformed feature vectors within the 

associated components according to the following equation [67]: 

𝐹 = (
𝐴∗

𝐵∗) = (
𝑊𝑎

𝑇𝐴

𝑊𝑏
𝑇𝐵

) = (
𝑊𝑎 0
0 𝑊𝑏

)
𝑇

(
𝐴
𝐵

) (18) 

where 𝐹 is the canonical correlation discriminant features. 

To summarize, Figure 4.1 shows the experiment processing framework which 

is fourfold: First, obtaining signals from both the EEG and the eye tracking 

simultaneously while performing a SCWT.  Second, extracting specific features from 

both modalities. Third, apply feature-level fusion based on canonical correlation for the 

features extracted from the EEG and the eye tracking. Fourth, classifying vigilance 

level using the SVM classifier. 

 

Figure 4.1: The framework of our experiment processing.  
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Chapter 5. EEG and Eye Tracking Preprocessing Results 

 

Chapter five discusses the results of the preprocessing approach performed on 

the EEG data in section 5.1 and on the eye tracking data in section 5.2. 

5.1. EEG Data Preprocessing Results 

The raw EEG signals were filtered with a 0.5Hz - 40Hz bandpass filter, and all 

electrode signals were referenced to the mastoid electrodes M1 and M2.  Using 

Independent analysis method, eye blinking artifacts were removed. For the eye blinking 

artifacts, components that appeared to contribute most to the artifacts were eliminated. 

For the EEG data, the processing is twofold: first, obtaining two windows with the 

length of five minutes each of the EEG data (alertness and vigilance decrement) . 

Second, FFT was used to convert the data from time domain to frequency domain to 

provide frequency information about the signals. Figure 5.1 shows the preprocessed 

EEG signal of subject 1 under alertness and vigilance decrement; the x-axis represents 

the time in milliseconds; the y-axis represents the electrodes, and the signal is divided 

into 4 epochs. 

 

Figure 5.1: Pre-processed EEG signals for subject 1, from 11 electrodes and for 4 epochs. 
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5.2. Eye Tracking Data Preprocessing Results 

The raw eye tracking data is plotted in Figure 5.2 for one of the subjects; the 

plot shows the gaze position, the pupil size (µm), and a heatmap created to show the 

eye movement. The pupil size values were plotted in (µm) in Figure 5.2, while it was 

plotted in (AU) in figure 5.3. The heat map of the eye movement shows that the subject 

focused on a specific region of the screen which indicates an area of interest for the 

subject while performing the SCWT. 

 

Figure 5.2: Eye tracking raw data for subject 1. 

Six eye tracking features were extracted from the raw eye tracking data and have 

been pre-processed independently. Pupil size has been pre-processed by accepting only 

samples within a specific range based on the subject data. Figure 5.3 shows a sample 

histogram created for subject 1, providing the pupil size value (AU) with its frequency. 

 

Figure 5.3: Subject 1 pupil size values and their frequencies.  
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The preprocessing of the pupil size values included accepting the values with 

the range (0-1500) for subject 1. Figure 5.4 shows the raw pupil size data and the 

preprocessed pupil values. 

 

Figure 5.4: Subject 1 raw and preprocessed pupil samples.  
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Chapter 6. EEG and Eye Tracking Vigilance Level Assessment 

 

6.1. EEG Vigilance Level Assessment 

Our EEG vigilance assessment is based on the EEG band power, the power 

spectral density was extracted for four EEG frequency bands for two windows: 

alertness and vigilance decrement. 

A comparison of PSD of all subjects under the two mental states (alert - 

vigilance decrement (VD)) for four frequency bands was done using a topographical 

map. For each of the four frequency bands, a topographical map was created for both 

alertness and vigilance decrement states. In addition to a topographical map based on 

the t-test between the states. This statistical t-test is useful in comparing the means of 

the PSD between alertness and vigilance decrement, it highlights the regions of the 

brain that are most sensitive to the change in the PSD.  Figure 6.1 shows the 

topographical map created for both alertness and vigilance decrement states using the 

PSD values, in addition to the map showing the results of the t-test indicating the 

regions of the brain that are most sensitive to vigilance decrement.  

 

Figure 6.1: Comparison of PSD over all subjects under the two mental states (alert - vigilance 

decrement (VD)) in the four EEG frequency bands. 

The classification accuracy of the vigilance assessment was obtained using 

SVM classifier for four EEG frequency bands. The SVM was set to 10 based on cross-

validation to measure the EEG vigilance level classification performance for four EEG 
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frequency bands.  Figure 6.2 is showing the confusion matrix obtained for the 

classification of vigilance assessment using EEG. 

 

Figure 6.2: EEG vigilance assessment classification confusion matrix. 

Table 6.1 shows the classification accuracy, sensitivity, and specificity for the 

two cognitive states: alertness and vigilance decrement for each of the EEG frequency 

bands. 

Table 6.1: EEG bands classification accuracy, specificity, and sensitivity for vigilance assessment. 

          Band  

 

Measure 

 

   Delta 

 

   Theta 

 

   Alpha 

 

   Beta 

Accuracy 88.1±8.5% 81.4±11.2% 81.5±12.1% 92.0±7.3% 

Sensitivity 86.8±10.3% 80.1±11.7% 80.9±13.0% 91.7±8.0% 

Specificity 89.5±7.5 82.7±11.3% 82.2±11.6% 92.2±7.1% 

 

6.2. Eye Tracking Vigilance Level Assessment 

Our eye tracking vigilance assessment is based on six eye tracking features 

(fixation duration, pupil size, saccade duration, saccade amplitude, saccade velocity, 

and blink duration). These features were extracted for both alertness state and vigilance 

decrement state. The box plot representation in Figure 6.3 shows the mean change in 
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the individual eye tracking feature between the alertness state and the vigilance 

decrement state, while, the box plot representation in Figure 6.4 shows the mean change 

in all eye tracking features between the alertness state and the vigilance decrement state. 

The six eye tracking features were fed to the SVM classifiers to investigate the 

classification accuracy of the vigilance level at which the classifier was set to 10 based 

on cross-validation to measure the eye tracking vigilance level classification 

performance. 

 

 

 

Figure 6.3: Mean change in the individual eye tracking features between alertness and vigilance 

decrement. 
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Figure 6.4: Mean change in all the eye tracking features between alertness and vigilance decrement. 

Figure 6.5 is showing the confusion matrix obtained for the classification of 

vigilance assessment using the eye tracking modality. The achieved accuracy, 

sensitivity, and specificity for vigilance level classification using the eye tracking 

features are summarized in table 6.2. 

 

Figure 6.5: Eye tracking vigilance assessment classification confusion matrix. 
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Table 6.2: Eye tracking features classification accuracy, sensitivity, and specificity for vigilance 

assessment. 

           Measure 

 

Feature 

 

Accuracy 

 

Sensitivity 

 

Sepecificity 

 

All features 

 

76.8 ± 8.4% 

 

76.4 ± 11.2% 

 

77.1 ± 8.5% 

 

Fixation duration 60.9 ± 11.6% 

 

57.0 ± 12.2% 

 

64.7 ± 12.5% 

 

Pupil size  

 

71.8 ± 13.0% 

 

68.1 ± 15.5% 

 

75.4 ± 10.9% 

 

Saccade duration 

 

58.8 ± 10.5% 

 

54.1 ± 11.9% 

 

63.4 ± 13.1% 

 

Saccade amplitude 

 

57.5 ± 9.6% 

 

56.3 ± 10.9% 

 

58.8 ± 9.9% 

 

Saccade velocity 

 

59.3 ± 8.8% 

 

57.3 ± 13.2% 

 

61.3 ± 10.3% 

 

Blink duration 56.5 ± 3.1 48.9 ± 27.4 64.1 ± 26.5 

 

  



53 

 

Chapter 7. EEG and Eye Tracking Fusion Vigilance Level Assessment  

 

In this chapter, we summarise the results of the vigilance assessment using the 

CCA feature level fusion. To enhance the accuracy of vigilance assessment, we have 

evaluated the feature sets from both the EEG and the eye tracking using feature-level 

fusion based on the canonical correlation analysis. Our target of the fusion is to seek 

the maximum correlation of shared variance between the feature matrices. The 

extracted feature matrices from the EEG and the eye tracking were utilized as inputs 

for the fusion, this fusion approach helped us to explore the correlation between the eye 

tracking data with the EEG data in different frequency bands. Machine learning 

classification analysis was employed to evaluate the effectiveness of detecting vigilance 

decrement based on the fusion of PSD features and the eye tracking features. Our 

primary focus was to enhance the vigilance level assessment based on the fusion of 

EEG and eye tracking data. Our SVM algorithm was set to 10 based on cross-validation 

for final classification. 

In Figure 7.1 we displayed the mean values of the correlation coefficient 

obtained from EEG-eye tracking CCA for each of the four-frequency bands beside a 

heat map for the cross-subject correlation matrix. We have analyzed the covariance 

matrices of the feature sets from the two modalities (EEG and eye tracking). The criteria 

of selection were based on the correlation level of components from the transformed 

feature vectors, discarding those with small canonical correlations. The canonical 

correlations of the eye tracking features and the EEG features for vigilance assessment 

were obtained by applying CCA to the entire data sets arranged in descending rank 

order. These canonical correlations were computed from the estimated joint covariance 

matrix. From in Figure 7.1, the correlation varies with the component used, where the 

components of the x-axis refer to the six EEG-eye tracking features, where the higher 

the correlation value, indicates a higher change in vigilance level. Figure 7.1 also 

displaying the cross-subject source correlation matrix (map). The cross-subject source 

correlation matrix is determined by calculating the correlation coefficients of the 

subjects and then averaging the correlation coefficients across all. The matrix shows 

the consistency in inter-subject correlation between the two modalities. 
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Figure 7.1: Values of the correlation coefficients for the EEG-Eye tracking CCA, and the cross-subject 

correlation heat map per EEG frequency band. 

Beta 

Alpha 

Theta 

Delta 
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Figure 7.2 is showing the confusion matrix obtained for the classification of 

vigilance assessment using the fusion of the EEG and the eye tracking. 

 

Figure 7.2: EEG-eye tracking data fusion vigilance assessment classification confusion matrix. 

Table 7.1 shows the SVM classification accuracies for vigilance assessment 

obtained using the EEG for four frequency bands, the eye tracking, and the EEG-eye 

tracking feature level fusion. 

Table 7.1: EEG, eye tracking, and EEG-eye tracking fusion SVM classification accuracies for all 

subjects 

    Modality 

 

 

Subject 

Eye 

Tracking 

EEG- 

Delta 

EEG- 

Theta 

EEG- 

Alpha 

EEG- 

Beta 

Fusion 

Delta 

Fusion 

Theta 

Fusion 

Alpha 

Fusion 

Beta 

Sub.1 86.5 91.3 84.5 85.6 97.6 96.10 95.8 95.6 98.8 

Sub.2 81.8 92.3 82.1 79.8 90.8 97.0 96.3 96.6 96.0 

Sub.3 73.3 77.0 72.8 73.3 82.6 95.8 96.0 95.5 95.8 

Sub.4 60.6 99.0 99.5 99.8 100.0 98.0 98.6 99.1 98.6 

Sub.5 69.5 96.8 95.6 96.0 98.8 96.5 96.8 95.8 96.6 

Sub.6 72.5 93.5 86.8 90.8 99.6 97.5 94.8 95.8 96.0 

Sub.7 83.1 76.1 70.1 70.1 81.1 96.8 96.1 96.8 96.3 

Sub.8 75.3 87.6 72.1 65.6 87.0 97.0 95.1 96.0 96.3 

Sub.9 88.3 80.0 69.1 72.8 90.1 96.8 95.6 96.0 97.0 
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Table 7.2 shows the classification accuracy, sensitivity and specificity obtained 

using the SVM classifier when data from every EEG frequency band was fused with 

the six eye tracking data to evaluate vigilance level. 

Table 7.2: EEG-eye tracking fusion classification accuracy, sensitivity, and specificity for vigilance 

assessment 

                Band  

 

Measure 

Delta-eye 

tracking 

fusion 

Theta-eye 

tracking 

fusion 

Alpha-eye 

tracking 

fusion 

Beta-eye 

tracking 

fusion 

Accuracy 96.8±0.6% 96.1±1.1% 96.3±1.1% 96.8±1.1% 

Sensitivity 97.3±1.0% 97.0±1.2% 97.0±1.1% 97.2±1.0% 

Specificity 96.3±0.9% 95.2±1.3% 95.7±1.6% 96.4±1.2% 

 

Figure 7.3 is a box plot classification accuracy obtained for the EEG and the 

eye tracking, in addition to showing the p-value calculated using the paired sample t-

test. F-D, F-T,F-A, and F-B in the figure refer to Data fusion using delta band, theta 

band, alpha band , and beta band, respectively. 

 

Figure 7.3: Boxplot classification accuracies obtained by the EEG and the eye tracking data, as well as 

CCA fusion. P-values were calculated the paired sample t-test. 
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Chapter 8. Conclusion and Future Work 

 

This thesis covers three main sections in assessing vigilance. The first relates to 

assessing vigilance using a single modality (EEG), where the data has been processed 

and analyzed to detect alertness and vigilance decrement using EEG only. In the second 

section, eye tracking data has been utilized to assess vigilance level. In the third section, 

eye tracking and EEG data have been fused for the same purpose of improving vigilance 

assessment. The thesis hypothesis according to the literature in chapter 2 is that the 

detection accuracy will increase using the fusion approach. The data for the analysis 

was obtained from 9 subjects who performed a Stroop color- word task, and the fusion 

approach utilised in this study is the feature level fusion based on the canonical 

correlation analysis. 

8.1.  Major Findings  

In this study, the study aimed at investigating the accuracy of adopting the EEG 

or the eye tracking for vigilance assessment. It was also the aim of the study to 

investigate if the fusion of bimodality (EEG-eye tracking) could enhance vigilance 

assessment. The approach adopted in the study was based on conducting data by 

simultaneously measuring the EEG and eye tracking of nine subjects. Subjects were 

asked to perform a SCWT for 30 minutes, our statistical analysis was performed on 

two-time segments of the recording; the first-time segment refers to the alertness state 

of the subjects, and the second refers to vigilance decrement. Four EEG frequency 

bands were utilized for vigilance assessment; the results of the EEG indicated that the 

Beta band provided the highest classification accuracy of 90.1±7.38%; Delta band 

followed with a close accuracy of 88.18±8.5%, While Alpha and Theta showed the 

lowest classification accuracy for vigilance assessment between the two states: 

alertness and vigilance decrement. Beta wave is known to be associated with alertness 

state and normal waking consciousness [70], [71]. Analysis of different cognitive 

processes like recognition tasks and informational differentiation processes are highly 

associated with the Beta range of the human EEG signals [72]. Delta wave is associated 

with sleep, deep sleep, and unconscious state. Study [73] reported that the Delta 

frequency band has a main role in carrying most of the information related to working 

memory load as it appeared to be related to the increment in the subjects’ concentration 
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during the experiment. Delta EEG band with its low-frequency activity contains 

significant electrophysiological correlates of cognitive processing and should receive 

more attention in future studies. In our study Beta and Delta bands were most sensitive 

to the change in the vigilance level due to their characteristic of being extremely related 

to either alertness or deep sleep. The SCWT requires high attention in recognizing 

colors in addition to a high memory strength to respond fast and minimize the reaction 

time.  Figure 6.1 showed a significant change in the PSD across some areas of the brain 

between the alertness states to vigilance decrement for all of the four EEG frequency 

bands using a topographical map. We can notice that the occipital and the frontal brain 

regions were most sensitive to vigilance decrement. The occipital brain region is 

associated with the processing of visual activities, memory formation, distance, and 

depth perception; in addition, it is assumed to be responsible for color determination, 

and the frontal brain region is responsible for high-level cognitive functions such as 

memory, emotions, impulse control, problem-solving, social interaction, and motor 

function [74]. The topographical map supports the results of the EEG classification 

since both Beta and delta waves are captured in the frontal lobes of the brain [75]. 

Likewise, the eye tracking data showed a lower classification accuracy for 

vigilance assessment of 76.8 ± 8.4% when six eye tracking features were utilized. A 

possible justification of the low accuracy obtained from the eye tracking data is that the 

eye tracking system is very sensitive and that the system suffers from a limitation at 

which it requires the eye of the subject to be held still and on-axis with respect to the 

eye tracking camera. In addition, eye tracking features are very sensitive to light; light 

control can improve the classification accuracy using the same features [76]. A 

comparison between all the six eye tracking features was done to check the contribution 

of every feature in vigilance assessment; as a result, the highest classification accuracy 

was obtained using the pupil size (71.8 ± 13.0%); many studies have reported high 

classification accuracy obtained using the pupil size feature [77], [78]. The box plot in 

Figure 6.4 shows the mean change in the eye tracking features between alertness and 

vigilance decrement. Vigilance decrement appeared to have less spread a lower mean 

compared to the alertness.  

A feature level fusion has been employed by grouping the temporal information 

of features for two modalities (EEG-eye tracking). Our fusion approach is based on the 
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canonical correlation analysis; CCA is a very common method to explore the 

correlation between two modalities [68], [69]. It is known that CCA is a flexible and 

powerful tool for finding associations among the various data types. It also helps in 

eliminating the redundancy in features and provides a feature vector with effective 

discriminant information [79].  The EEG and the eye tracking data are dissimilar in 

nature, which makes it very hard to perform the analysis on both types together. 

Therefore, fusing the data using canonical correlation analysis helped in reducing both 

modalities to a feature corresponding to alertness and vigilance decrement. The task 

was then to explore associations across these feature datasets by taking advantage of 

the intersubject covariations to measure the association across the two modalities [80], 

[81]. Table 7.2 shows that all-EEG bands displayed better accuracy with the fusion; the 

Delta band obtained the highest fusion accuracy of 96.8± 0.6%, and all the other bands 

obtained a close fusion accuracy to Delta. Delta band appeared to be the most sensitive 

to vigilance decrement, and thus the results of data fusion are consistent with the 

researcher’s expectations, as this band is associated with the deepest level of relaxation. 

In addition, it shows an increase in brain activity in the frontal leads during mental tasks 

as reported in [82]. A possible explanation for the contradiction between the increase 

of Delta waves during the SCWT task and the fact that Delta waves have been reported 

by many studies to be a result of sleep/deep sleep conditions has been justified as 

researchers argue about the presence of an inhibition that gets activated during a mental 

task to selectively suppress inappropriate or non-relevant neural activities 

[82]. Although the focus was very little on the low frequencies when it comes to the 

cognitive workload assessment, Study [83] has reported that the Delta band is 

associated with cognitive processes related to attention and the detection of 

motivationally salient stimuli in the environment as well as in behavioral inhibition. On 

the other hand, a study entitled [84] that the oscillation of the electric field in the brain 

determines the neural pool involved; this could explain why Delta wave oscillations 

may have a significant role in cognitive workload processing. The paper reported that 

during mental tasks, neural networks that are located away from the frontal lobes may 

be modulated by Delta that originates in the frontal cortex. 

Although the data fusion enhanced the classification accuracy for EEG all bands 

when all subject’s data was utilized, Table 7.1 showed that particularly, each subject 

had a different result of the fusion, where not all received the same enhancement. For 
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example, subject four accuracy has not been enhanced during the fusion, this could be 

justified with the low eye tracking classification accuracy obtained for this subject 

(60.6%). On the other hand, subject nine had a high eye tracking classification accuracy 

of (88.3%) which contributed much in showing great enhancement for the EEG 

classification accuracies using the fusion approach.  Subsequently, we can say that our 

fusion approach enhancement accuracy is dependent on the accuracies obtained from 

both inputs (EEG and eye tracking). 

We have shown a box plot classification accuracy obtained for the EEG and the 

eye tracking in Figure 7.2, in addition to showing the p-value calculated using the paired 

sample t-test. A significant difference appeared to be between the EEG Delta band and 

the fusion using the EEG Delta band (F-D) with a p < 0.01, the same result was obtained 

for the Theta and the Alpha bands. Beta band on the other hand showed of p = 0.06 for 

the difference between utilizing it alone and through our fusion approach (F-B). These 

results are an indication that the CCA enhances the accuracy significantly. 

8.2.  Conclusion  

This study employs fusion strategy by combining the eye tracking technology 

with the EEG technology for the target of vigilance assessment. The stimulus was a 

SWCT, where the beginning of the task corresponds to the alertness state, and the end 

of the task corresponds to the vigilance decrement state. Vigilance assessment is based 

on a Feature-level fusion of both EEG and eye tracking features using canonical 

correlation analysis. Nine healthy subjects experimented; results showed that both 

modalities’ accuracies have been enhanced using the fusion. The highest accuracy for 

the fusion was using EEG Delta band of 96.8± 0.6%, which is higher than using the 

EEG Delta band without the fusion (88.18±8.5%%) or the eye tracking date alone (76.8 

± 8.4 %). 

8.3.  Recommendations and Future Research Directions  

Due to the COVID 19 constraints, one of the main limitations of this thesis was 

the small sample size. A larger sample size is required to ensure adequate statistical 

analysis and further support to our findings.  Discussed are several future research 

recommendations provided based on this work: 
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• Connectivity patterns and graph theory analysis is very informative features that 

have been utilized in [85]  for vigilance assessment. These features have shown 

a good classification accuracy and proven their effectiveness in mental state 

discrimination contexts. These features are worth investigation using a data 

fusion approach that utilizes the connectivity patterns and the eye tracking data. 

This method could enhance the classification accuracy obtained for vigilance 

assessment. 

• In this work, we have utilized the SVM classifier, other classifiers namely, 

KNN, LDA, NBC, and DT are known to be fast and successful in the field of 

brain-computer interface (BCI), Future studies could consider investigating and 

comparing different classifiers to assess vigilance based on fused modalities.  

• In this work, the vigilance assessment was based on the data fusion between the 

EEG and the eye tracking modalities. Fusion was performed on the feature level 

using canonical correlation analysis.  Feature level fusion provided a high 

classification accuracy. However, decision level fusion is worth investigation to 

compare the results and support our finding. Although feature level fusion based 

on the canonical correlation analysis is very effective and common, other fusion 

techniques would provide an advantage in vigilance assessment such as the 

group sparse canonical correlation analysis (GSCCA) method which helps in 

exploring the correlation of the group structure between the two modalities. 

Future studies could consider investigating and comparing the different fusions 

approaches for vigilance assessment.  
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