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Abstract 
 

Due to environmental and energy security concerns, low emission vehicles present a vital 

necessity for clean transportation. In particular, electric vehicles (EVs) are the most 

promising solution due to the fact that the electrical power system is the most ready 

infrastructure to supply their requirement. Two possible energy delivery solutions to the 

EVs, namely the charging stations and the battery exchange stations (BESs) are the focus 

of research nowadays. In this paper, a new optimal operation approach is proposed for 

the BESs. The proposed new model determines the optimal charging, discharging, and 

exchange decisions for the battery stock throughout the day taking into consideration the 

customers’ arrivals, the variations in the grid price, the grid connection limitations, and 

the self-degradation of the batteries. The objective of the proposed approach is to 

maximize the BES owner profit while satisfying the EV owners’ requests. The BES 

operation optimization problem is formulated as mixed-integer programming (MIP) and 

is solved as a day-ahead scheme. The performance of the BES is compared to 

conventional EV charging stations, where the BES shows superior customer satisfaction 

and higher profit. 
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1. Introduction 

Global warming due to Green-House-Gas (GHG) emissions raised critical 
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environmental concerns in the last few decades. In addition, several concerns 

regarding the security of energy resources are raised due to the dependency of some 

essential sectors (e.g. transportation) on a single source of energy (e.g. fossil fuel) 

[1],[2]. To lower the GHG emissions and to increase energy security by diversifying 

the energy sources, electric vehicles (EVs) represent the most promising solution [3]. 

This is due to the availability of electric power systems’ infrastructure almost 

everywhere and the electricity generation sector has well established and 

economically feasible low-emission energy resources such as solar panels and wind 

turbines. An EV is any vehicle with an electric motor as a source of propulsion. There 

are three main types of EVs classed by the degree that electricity is used as their 

energy source, the hybrid electric vehicles (HEV), the plug-in hybrid electric vehicles 

(PHEV) and the battery electric vehicles (BEV) [4]. HEV’s source of energy is petrol 

or the electric energy generated by the braking system [5]. The PHEV, which is also 

known as extended-range EVs, is similar to the HEV; however, it can recharge the 

battery through both regenerative braking and plugging-in to an external electrical 

charging outlet. On the other hand, BEVs are pure EVs, meaning they are only 

powered by electricity and do not have a petrol engine, fuel tank, or exhaust pipes 

[6]. EVs are moving forward in the market and people are using these cars more and 

more. However, the percentage on roads is almost negligible and most people are still 

not comfortable with this technology [7]. This is due to many factors that make EVs 

users have a different life pattern compared to the normal fuel cars we use nowadays. 

Some of these factors that limit the widespread of EVs are the time required to charge 

the EVs’ battery and the limitation of the available charging stations. Also, the energy 

consumed by the high penetration of EV may cause severe consequences on the 

electrical grid, such as thermal overloading, under-voltage, and fuse failure [8], [9]. 

Therefore, the charging technology and the charging stations should be managed 

carefully to decrease the negative impacts on the grid side, increase the users’ 

satisfaction, the charging stations’ owners’ profit, and service quality. 



Table 1 Comparison between charging stations and BESs [14]-[16] 
 Charging Stations Battery Exchange Stations 

Advantages • Lower capital investment. 
• Easy to install. 
• Have different sizes. 

• Very fast service about 5 minutes. 
• Provide ancillary services to grid. 
• More reliable. 
• Low operational cost. 

Disadvantages • May have negative impact on the electric 
power system. 

• Very long service time. 

• Two to three times more capital investment. 
• Needs complicated and expensive robots for 

swapping. 
• The measurement of the charging curve and charging 

capacity is required. 
• Ownership of batteries. 

 
EV stations can be categorized into two types: charging stations and BES. The 

best EV conventional charging stations have fast chargers, which can charge the 

battery fully in as low as half an hour [10]. Battery exchange stations work in a 

different way where the service needs only few minutes by exchanging the battery 

with a previously charged one [11]. However, BES is still under research in its 

primitive stages and further intensive research is required to be practically feasible. 

The main difference between them is the service time which is very short for the BES. 

Table 1 shows the advantages and disadvantages of the charging station and the BES. 

 
As described in the next section, most of the existing research lacks optimal 

operational model for the BES, which considers the charging, discharging of 

batteries, replacement of batteries, and operation of multiple batteries and customers’ 

arrival over the day as well as the grid limit and demand charges and their impacts on 

the optimal decisions. The optimal operation of BES is related to optimal decisions 

about charging, discharging and replacement of batteries available on BES such that 

increasing the profit of BES and customer satisfaction. The main contributions of this 

work are summarized as follows: 

• Propose a new operation approach for the BES to satisfy customers’ 

requirements and minimize the operation costs. 

• We investigate the integration of the operation of multiple batteries while being 

exchanged in BES, and the arrivals of different customers over the day, and the grid power 

limitation on the chargers into the proposed operation approach. 



2. Literature review 
 

The difference between the charging station and BES in terms of the cost and 

technical factors has been investigated in [12]. In addition, the load scheduling 

schemes for hybrid electric vehicle BESs in smart grid have been studied in [13]. In 

[14], the authors built a model that estimates the energy consumption of an EV based 

on the driving style of the user. Also, many other papers considered using a renewable 

source of energy with BESs. In [15] and [16], the authors focused on building a model 

to provide the foundation for the planning and design of Photovoltaic (PV) system as 

a source of energy in the BES by modeling an optimization tool for finding the annual 

profit and the power generated by the PV system. Furthermore, an optimization 

model for minimizing the cost of an off-grid connected wind power system along 

with the BES has been discussed in [17]. With a different approach, the authors in 

[18] analyzed the historical sensing data of taxi routes and evaluated the battery 

swapping demand profile and the power consumption of individual taxis to propose 

a method to calculate an optimized battery-swapping station scheme. Also, in [19], 

the aim was to minimize the total cost considering three factors: the number of 

batteries taken from the stock to serve all the swapping orders from incoming EVs, 

potential charging damage with the use of high-rate chargers and electricity cost for 

different periods of the day. 

A new method is proposed in [20] to locate and size BES to maximize the present 

value. In [21], an optimization model was presented to maximize the total profit by 

considering both selling energy to the grid and buying energy from the grid to charge 

the batteries. The energy price and the battery demand uncertainties were considered 

in this model. In [22], the optimal scheduling for both batteries charging and 

discharging was obtained. However, it considered a combined operation between 

BES and conventional charging station and considered also logistics that facilitate 

this operation. The work in [23] implemented an approach to assign each customer 

to certain BES to minimize the path taken by the vehicle to the station and to minimize 

the generation cost. In [24], it considered the operation of both microgrid and BES. 

Further, the obtained model was used to minimize the microgrid cost and to minimize 

the BES cost considering the battery degradation cost, the replacement cost, and the 



charging cost. Moreover, it didn’t consider the battery characteristics, the different 

arrival times of the customers, the number of batteries dedicated to serving the 

customers in the  BES, and the  state of charge  (SOC) of each battery at each instant.   

In [25], decentralized demand-side management was proposed to force the residential 

load to follow a predetermined energy profile. The game theory was used in two stages. 

The first stage allowed the customers to make the day ahead predicted demand. In the 

second stage, the renewable energies, energy storage and charging/discharging of electric 

vehicles were availed to mitigate the deviation between the predicted and actual demand. 

The authors in [26] introduced optimal allocation of BES to minimize the implementation 

cost of BES, the travel time of EVs and the waiting time of EVs at BES. They divided the 

area into candidate regions and introduced the effect of varying both the number of 

regions and the number of BES on the objective function. The authors in [27] presented 

a model that only determined the number of battery to be charged or discharged according 

to the grid price and didn't consider the operation of BES, for example, the battery should 

be replaced, the customers’ arrival and the effect of charging/discharging on SOC of 

batteries and hence on the decision of replacement. 

Based on the previous discussion and the limited work in this area, it is obvious that 

the research in the field of BES is still in its early stages. All the previous work didn’t 

consider the optimal operation of BES. The work in [21] presented the most relevant 

operational model for BES. The authors considered the charging, discharging and 

replacement of batteries. However, they didn't consider the customers’ arrival, swapping 

time, possibility that the number of customers throughout the day may be higher than the 

number of batteries, the demand charge and the grid limit. They only considered the 

swapping process as energy demand required to be supplied. 

Accordingly, this research proposes to develop an operational approach for smart BES 

to maximize the total revenue for the investor. The proposed models and approaches will 

include consideration of the charging and discharging cycles of the battery pack, the 

operation of multiple batteries while being exchanged in BES, the arrivals of different 

customers over the day, and the grid technical constraints. In addition, the approach will 

consider the self-degradation factor of the batteries and the grid power limitation on the 

chargers. The necessity of proposing a new operation approach for the BES is the need 

for a day head plan to decide charging, discharging, and replacing the batteries in stock 



of BES. The aim of the approach should focus on serving as many customers as possible 

and on the maximizing revenue of the BES owner. However, the grid limit and demand 

charges should be considered in this model due to their impact on the optimal decisions 

obtained from the optimization problem. 

 
3. Problem and solution descriptions 

 
In this section, the structure of the BES and the proposed operation approach are 

described. All possible technical and economic aspects are discussed along with the 

proposed approach. 

 
3.1. BES System Structure 

 
The design of the BES is similar in some aspects to the available gas stations. For 

example, a typical BES may have 𝑛𝑛 exchanging units so that a maximum of 𝑛𝑛 cars 

can exchange their batteries at the same time and the rest will be waiting in the queue 

as shown in Fig. 1. The exchange can be done manually or automatically. The system 

structure shown in Fig. 2 consists of five main parts: the grid-side unit, the battery- 

side unit, the EVs/customers, the optimization unit, and the control unit. The grid- 

side unit is a bidirectional AC/DC converter to be used to maintain a fixed DC link 

voltage at the point of the common coupling (PCC) and the desired power factor at 

the grid side. The battery-side unit is a DC/DC converter that follows the battery 

characteristics for charging/discharging. These converters work in charging mode or 

discharging mode depending on the reference signal from the control unit. 

The charging and discharging cycles are dependent on the limitation of the power 

system, grid price, and the customers’ arrivals. The third unit receives the coming 

EVs to exchange the EV battery with the assigned battery to meet the station 

requirements trying to serve all incoming customers. The assigned battery must be 

disconnected from the battery-side unit before being exchanged with the depleted 

battery in the EV. The optimization unit is responsible for developing the optimal 

decisions based on the inputs assigned from the control unit. Finally, the control unit 

gets the data from the other three units and takes decisions about the charging, 

discharging, and exchanging decisions [13]. 



 
Fig. 1. BES schematic diagram. 

 

 
Fig. 2. BES system structure. 

 
3.2. BES Operation 

 
For the BES operation stage, all the assets are assumed to be available. Therefore, 

the inputs to the operation approach include economic aspects such as 



 

 
 

Fig. 3. Proposed BES operation approach. 
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Fig. 4. Grid price per hour for one day. 
 

the day-ahead electricity prices and the cost of battery exchange service. Also, the 

inputs include technical aspects such as the battery exchange requests from EV 

drivers, batteries status in the stock, and the grid technical limitations. All the inputs 

and outputs of the proposed smart operation approach are shown in Fig. 3. 

One of the input parameters to the proposed approach is the grid energy price. The 

battery exchange station is considered as an industrial customer to the grid. Thus, the 

industrial tariff should be adopted as an input to the smart operation. As an example, 

an industrial customer in Ontario, Canada, would pay the real-time energy price [14] 

in Fig. 4, in addition to, the charges shown in Table 2. 

Also, the EV arrivals schedule and their required energy should be known day- 

ahead. Furthermore, the status of the batteries that are being charged and replaced in 

the station should be tracked to serve the customers accordingly. For example, 

consider a battery with 35% State of Charge (SOC) is being replaced with a fully 

charged one. If the battery needs an hour to be fully recharged again, then this battery 

should be eliminated from the active service during that hour. However, the 
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Table 2 Monthly Charges for industrial customers [15] 
Description Amount 

Hourly market price Varies hourly as given in Fig.4. 
Global adjustment (¢/kWh) 3.00 
Wholesale market service (¢/kWh) 0.05 
Transmission charges ($/kW) 5.10 
Distribution charges ($/kW) 4.00 

 

Table 3 EV battery specifications 

Type: Laminated lithium-ion battery    

Parameter Symbol Value Unit 
Maximum Depth of Discharge MDOD 80 % 
Maximum Power Pmax 10 kW 
Maximum Energy Emax 50 kWh 
Efficiency 𝛈𝛈 80 % 
Initial State of Charge SOCo Varies % 

 
system will include this battery in the service for the customers coming in the next 

few hours. 

At the end of the day, the outputs of the proposed smart operation approach will 

include the total cost of charging the batteries using the grid and the revenue of 

replacing and selling the energy to the customers. In addition, a full analysis of the 

customers that have been served with the corresponding battery that was used will be 

reached to help in future analysis and design. For instance, if the customer/battery 

selection during this day reached to a conclusion that one customer cannot be served 

for any reason, such as the customers' queue was long, or unavailability of a charged 

battery when the customer arrived, a study will be conducted on it to prevent this 

problem in the next day analysis. In this case, different solutions may appear. For 

example, the battery/customer selection may be done differently to optimize the 

outputs or the number of batteries in the station may be increased to serve more 

customers. An example of the battery parameters is shown in Table 3. 

3.3. Proposed Approach Description 
 

The inputs to the proposed smart operation approach are the technical and 

economical parameters mentioned before. The decisions that need to be taken are 

charging, discharging, or replacing the battery. When a customer arrives, the third 

decision, which is exchanging a battery, will be valid. But, the decision of serving 



that customer or not depends on the availability of the required charged battery, the 

customer can be served by a battery with SOC in the range of 90 % to 100 % 

depending on the availability. By this, the approach should assign the batteries to the 

customers depending on their known daily arrivals in order to maximize the number 

of customers being served during the day as well as the operational profit. 

Furthermore, the maximum energy extracted from the grid is controlled in order not 

to exceed a specific limit. This limit is known from historical data for the station. The 

time segment is adjusted to be ∆𝑡𝑡 minutes, so the scheduling period is 𝑁𝑁𝑡𝑡 time 

segments through a day, i.e. 𝑡𝑡 ∈ 𝕋𝕋 = {1,2, … , 𝑁𝑁𝑡𝑡}, where 𝑡𝑡 and 𝕋𝕋 are the index and 

the set of time segments respectively. The index and set of the batteries in the station 

are 𝑏𝑏 and 𝐵𝐵 respectively. Finally, the index and the set of the customers coming to 

the station are 𝑐𝑐 and 𝐶𝐶 respectively. It is assumed that the number of batteries in the 

BES remains unchanged, where a battery 𝑏𝑏 can experience a sudden drop in energy 

when being exchanges with another depleted battery from an EV. 

 
4. Problem formulation 

 
In this section, the proposed problem formulation for optimal BES operation as a 

mixed integer programming (MIP) is explained in detail. The approach is used to 

optimize the charging, discharging, state of charge, and the energy replacement for 

each battery in the station depending on a specific customers’ arrival and the grid 

price. In addition, a test on the effect of different factors such as grid power limitation 

and battery self-degradation is discussed. Moreover, the conventional charging 

station formulation is included to be compared with the BES. 

 
4.1. Objective Function 

 
The objective of the proposed operation approach is maximizing the net profit of 

the BES, 𝑧𝑧, in $. It’s formulated as shown in (1) – (7). The decision variables are the 

charging, discharging, and battery exchange decisions. The revenue, 𝑅𝑅, is for the sold 

energy by the battery replacement as in (2). The included costs in the BES are the 

demand charges, 𝐶𝐶𝑘𝑘𝑘𝑘, and the charging/discharging costs, 𝐶𝐶𝑘𝑘𝑘𝑘ℎ. 𝐶𝐶𝑘𝑘𝑘𝑘 is determined 

based on the maximum demand consumed from the grid. The demand charges are 

paid monthly; thus, to include the impact of the daily operation on the demand 



𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
 

or 𝑃𝑃 as in (5) and (6). 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
 

(𝑡𝑡
 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
 

(𝑡𝑡,𝑏𝑏,𝑐𝑐) 

charges, we use the targeted or historical peak demand of the BES, 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 , in kW. 

As shown in (3), the peak demand charged are only considered for the maximum 

consumption that exceeded 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 . Note, that (3) involves Non-differentiable 

function; thus, it is replaced by (4). In (4), the maximum excess demand, defined by 
𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 , above 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 is defined. This term is zero if the maximum 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

consumption is below 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 and is the difference if the maximum consumption 

is above 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 . Thus, 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 should be the higher of the maximum consumption 
𝑀𝑀𝑀𝑀𝑀𝑀 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

For the energy charges, it is assumed that the energy purchased or sold to the grid 

has the same price as in (7). 
 

maximize 𝑧𝑧 = 𝑅𝑅 − (𝐶𝐶𝑘𝑘𝑘𝑘 + 𝐶𝐶𝑘𝑘𝑘𝑘ℎ) 
𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑥𝑥(𝑏𝑏,𝑐𝑐)

 
(𝑡𝑡,𝑏𝑏) (𝑡𝑡,𝑏𝑏) 

(1) 

Subject to:  

𝑅𝑅 =  ∑ ∑ ∑ 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑅𝑅𝑅𝑅𝑅𝑅 
(𝑡𝑡,𝑏𝑏,𝑐𝑐) 

𝑡𝑡∈𝕋𝕋 𝑏𝑏∈𝔹𝔹 c∈ℂ 

 
(2) 

𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝐶𝐶𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑘𝑘𝑘𝑘 × 𝑚𝑚𝑚𝑚𝑚𝑚 (0, (𝑚𝑚𝑚𝑚𝑚𝑚 (∑ (𝑡𝑡,𝑏𝑏) ) − 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 )) 

𝑡𝑡 𝜂𝜂 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 
𝑏𝑏∈𝔹𝔹 

 
(3) 

𝐶𝐶𝑘𝑘𝑘𝑘  =  𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑘𝑘𝑘𝑘(𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 ) 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (4) 

𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 ∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈  𝔹𝔹 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (5) 

𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≥ ∑  (𝑡𝑡,𝑏𝑏) ∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈  𝔹𝔹 

𝑏𝑏∈𝔹𝔹 η 
(6) 

𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝐶𝐶𝑘𝑘𝑘𝑘ℎ = ∑ ∑ 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑘𝑘𝑘𝑘ℎ (∆𝑡𝑡) ( (𝑡𝑡,𝑏𝑏) − 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝜂𝜂) 
(𝑡𝑡) 𝜂𝜂 (𝑡𝑡,𝑏𝑏) 

𝑡𝑡∈𝕋𝕋 𝑏𝑏∈𝔹𝔹 

 
(7) 

 
where, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑅𝑅𝑅𝑅𝑅𝑅 is replacement  energy  price  ($/kWh),  𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑘𝑘𝑘𝑘  is  demand  power 

from grid price ($/kW), 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑘𝑘𝑘𝑘ℎ is charging/discharging energy price ($/kWh), 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum historical demand consumed from the grid (kW). 

𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are the charging and discharging powers (kW) from the grid 
(𝑡𝑡,𝑏𝑏) (𝑡𝑡,𝑏𝑏) 

for each battery  𝑏𝑏  at time 𝑡𝑡. 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 is the energy drop due to replacing the battery 



(𝑡𝑡,𝑏𝑏
 

(𝑡𝑡=1,𝑏𝑏) 

(𝑡𝑡,𝑏𝑏,𝑐𝑐) 

which is a positive variable. In addition to the above constraints, there are other 

constraints related to battery charging/discharging constraints, battery exchange 

constraints, grid limit constraint, and battery self-degradation constrains which will be 

discussed in the following sections. 

 
4.2. Battery Charging/Discharging Constraints 

 
In (8), the stored energy in a battery 𝑏𝑏 at end of time slot 𝑡𝑡, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, is calculated 

as the sum of three terms: 1) the previously stored energy at 𝑡𝑡 − 1, 2) the added energy 

by charging the batteries or the subtracted energy by discharging the batteries from 

the grid, and 3) the energy drop due to replacing the battery, 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟   , with a customer 

battery. The energy stored at the end of the first time slot 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is related to the 

initial energy as in (9). The state of charge, 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝑏𝑏), for each battery is related to the 

stored energy and the maximum battery capacity 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 as in (10). The charging and 

discharging powers are limited by the maximum charger power, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, as formulated 

in (11) – (12). Also, the state of charge is limited by the maximum depth of discharge, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, for each battery as shown in (13). 
 
 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + ∆𝑡𝑡(𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) − ∑ 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 
(𝑡𝑡,𝑏𝑏) (𝑡𝑡−1,𝑏𝑏) (𝑡𝑡,𝑏𝑏) (𝑡𝑡,𝑏𝑏) (𝑡𝑡,𝑏𝑏,𝑐𝑐) 

c∈ℂ 

∀𝑡𝑡 ∈ {2,3, … , 𝑁𝑁𝑡𝑡} & 𝑏𝑏 ∈ 𝔹𝔹 & c ∈ ℂ 

 
(8) 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖𝑖𝑖 + (∆𝑡𝑡)(𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 
(𝑡𝑡=1,𝑏𝑏) (𝑡𝑡=1,𝑏𝑏) (𝑡𝑡=1,𝑏𝑏) 

∀ 𝑏𝑏  ∈ 𝔹𝔹 

 
(9) 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 
100 % 

∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈ 𝔹𝔹 
(𝑡𝑡,𝑏𝑏) (𝑡𝑡,𝑏𝑏) 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 

 
(10) 

𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈ 𝔹𝔹 
(𝑡𝑡,𝑏𝑏) (11) 

𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈ 𝔹𝔹 
(𝑡𝑡,𝑏𝑏) (12) 

100 %(1 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) ≤ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝑏𝑏) ≤ 100 % ∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈ 𝔹𝔹 (13) 

 
4.3. Battery Exchange Constraints 

 
The replaced energy is limited by the maximum energy capacity of the battery as 



(𝑡𝑡,𝑏𝑏,𝑐𝑐) 

(𝑡𝑡,𝑏𝑏,𝑐𝑐) 

(𝑡𝑡,𝑏𝑏
 

mentioned in (14) as the replaced energy must be less than the available capacities of 

the batteries. The decision of serving the customer or not depends on the customers’ 

arrival pattern, 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐), and the availability of the batteries. 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) is generated based 

on the customer requests and it has a value of 1 if customer 𝑐𝑐 is arriving at time 𝑡𝑡 and 

0 otherwise. This decision is controlled by the binary variable 𝑥𝑥(𝑏𝑏,𝑐𝑐), where 𝑥𝑥(𝑏𝑏,𝑐𝑐) of 

one indicates serving customer 𝑐𝑐 by battery 𝑏𝑏 as illustrated in (16). In (15), three cases 

may occur: 

• Case 1 of no customer request, i.e. 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐)  = 0, will enforce 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 
• Case 2 of customer request but service is denied, i.e. 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) = 1 and 𝑥𝑥(𝑏𝑏,𝑐𝑐) = 0, will 

enforce 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 
• Case 3 of customer request and service is granted, i.e. 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) = 1 and 𝑥𝑥(𝑏𝑏,𝑐𝑐) = 1, 

will enforce 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . 
(𝑡𝑡,𝑏𝑏,𝑐𝑐) (𝑡𝑡−1,𝑏𝑏) (𝑡𝑡,𝑐𝑐) 

Thus, for case 3, if  𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is substituted in (8), it will lead 
(𝑡𝑡,𝑏𝑏,𝑐𝑐) (𝑡𝑡−1,𝑏𝑏) (𝑡𝑡,𝑐𝑐) 

to 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 being the same as the arrival battery stored energy, which implies that the 

batteries have been exchanged. In (17), it is assumed that the customer will be served 

by only one battery. As in (18) and (19), which represent modified constraints to 

replace (11) and (12), the charging and discharging cycles cannot happen at the same 

time with the replacement. Also, the customer satisfaction factor, γ, which reflects 

the minimum SOC of a battery in stock to be acceptable for exchange, is included in 

(20) as the stored energy must be at least equal to the desired energy by the customer 

for the replacement to occur (case 3). 
 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈ 𝔹𝔹 & c ∈ ℂ 
(𝑡𝑡,𝑏𝑏,𝑐𝑐) (14) 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) 𝑥𝑥(𝑏𝑏,𝑐𝑐)(𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 
(𝑡𝑡,𝑏𝑏,𝑐𝑐) (𝑡𝑡−1,𝑏𝑏) (𝑡𝑡,𝑐𝑐) 

∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈ 𝔹𝔹 & c ∈ ℂ 

 
(15) 

𝑥𝑥(𝑏𝑏,𝑐𝑐) ∈ {0,1} (16) 

∑ 𝑥𝑥(𝑏𝑏,𝑐𝑐) ≤ 1 
𝑏𝑏∈𝔹𝔹 

 
(17) 

𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 (1 − 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) 𝑥𝑥(𝑏𝑏,𝑐𝑐)) 
(𝑡𝑡,𝑏𝑏) 

∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈ 𝔹𝔹 & c ∈ ℂ 

 
(18) 



(𝑡𝑡,𝑏𝑏,𝑐𝑐) 

(𝑡𝑡,𝑏𝑏,𝑐𝑐) 

 

𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 (1 − 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) 𝑥𝑥(𝑏𝑏,𝑐𝑐)) 
(𝑡𝑡,𝑏𝑏) 

∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈ 𝔹𝔹 & c ∈ ℂ (19) 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝛾𝛾 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 (∑ 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) 𝑥𝑥(𝑏𝑏,𝑐𝑐)) 
(𝑡𝑡,𝑏𝑏) 

c∈ℂ 
∀𝑡𝑡 ∈ 𝕋𝕋 & 𝑏𝑏 ∈ 𝔹𝔹 & c ∈ ℂ 

 

(20) 

 
 

The nonlinear equation (15) can be converted to the following three linear 

constraints in order to make the model MIP rather than mixed integer nonlinear 

programming (MINLP): 
 
 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 
(𝑡𝑡,𝑏𝑏,𝑐𝑐) (𝑡𝑡−1,𝑏𝑏) (𝑡𝑡,𝑐𝑐) (21) 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ∗ (1 − 𝑥𝑥(𝑏𝑏,𝑐𝑐)) 
(𝑡𝑡,𝑏𝑏,𝑐𝑐) (𝑡𝑡−1,𝑏𝑏) (𝑡𝑡,𝑐𝑐) (22) 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚  ∗ 𝑥𝑥(𝑏𝑏,𝑐𝑐) 
(𝑡𝑡,𝑏𝑏,𝑐𝑐) (23) 

 

If 𝑥𝑥(𝑏𝑏,𝑐𝑐)  = 1, so 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 will be equal [𝑎𝑎𝑎𝑎(𝑡𝑡,𝑐𝑐) (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)] from constraints 
(𝑡𝑡,𝑏𝑏,𝑐𝑐) (𝑡𝑡−1,𝑏𝑏) (𝑡𝑡,𝑐𝑐) 

(22) and (23). While constraint (24) is utilized to make 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 0 if 𝑥𝑥(𝑏𝑏,𝑐𝑐) = 0 as 
 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 is a positive variable. 

 
4.4. Grid Connection Limit constraint 

 
The charging power supplied from the grid at any time 𝑡𝑡 shouldn’t exceed the grid 

connection 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑚𝑚𝑚𝑚𝑚𝑚, as indicated in (24): 
 

∑ 𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 /𝜂𝜂 ≤ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑡𝑡 ∈ 𝕋𝕋 
(𝑡𝑡,𝑏𝑏) 

𝑏𝑏∈𝔹𝔹 
(24) 

4.5. Battery Self-Degradation constraints 
 

The batteries in the BES undergo many charging/discharging cycles which reduce 

the ability for the battery to store energy inside it causing an effect on the maximum 

capacity of the battery. This is called the battery degradation. As a result, the battery 

self-discharge rate and the internal resistance increase, which causes the battery to 

heat up due to power loss and lowers the output voltage. The degradation effect is 

added to the formulation by replacing (1) with (25). The battery lifetime is assumed 



by the number of charging/discharging cycles. So, the number of cycles for each 

battery, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑏𝑏), is utilized to evaluate the loss in SOC caused by degradation using 

(27), which is fitted from previous data in [28]. This is updated every time the battery 

is charged to keep track of the health of the battery which is required for a proper 

replacement. Then, the change in the price of the battery due to degradation can be 

defined as 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 as in (28), where 
 

maximize 𝑧𝑧 = 𝑅𝑅 − (𝐶𝐶𝑘𝑘𝑘𝑘 + 𝐶𝐶𝑘𝑘𝑘𝑘ℎ + 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷) 
𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑥𝑥(𝑏𝑏,𝑐𝑐)

 
(𝑡𝑡,𝑏𝑏) (𝑡𝑡,𝑏𝑏) 

(25) 

Subject to:  

Constraints (2) – (10), (13), (14), (16) – (24) (26) 

∆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑 = −8.954 × 10−10 × 𝐶𝐶𝐶𝐶𝐶𝐶3 + 7.883 × 10−7 × 𝐶𝐶𝐶𝐶𝐶𝐶2 − 2.814 × 10−4 
(𝑏𝑏) (𝑏𝑏) (𝑏𝑏) 

× 𝐶𝐶𝐶𝐶𝐶𝐶(𝑏𝑏) 

 
(27) 

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 100 % × ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 
(𝑏𝑏) (𝑏𝑏) 

𝑏𝑏∈𝔹𝔹 

 
(28) 

 
4.6. Charging Price Uncertainty 

 
BES purchases energy from the grid which is used to charge the batteries in BES 

when the charging price is low and sells energy to the grid through discharging the 

batteries when the charging price is high. Price uncertainty should be considered in the 

objective function to avoid a profit missing or increasing cost incurred by BES. The 

multi-band robust optimization approach is used to embrace this uncertainty [21]-[29]. 
The  price  range  for  each  band   [𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑘𝑘𝑘𝑘ℎ (min), 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑘𝑘𝑘𝑘ℎ (max)]   is  utilized  to 

(𝑡𝑡) (𝑡𝑡,𝑏𝑏𝑏𝑏) 

represent the deviations in the prices. Where 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑘𝑘𝑘𝑘ℎ (max) = 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑘𝑘𝑘𝑘ℎ (min) + 
(𝑡𝑡,𝑏𝑏𝑏𝑏) (𝑡𝑡) 

∆𝑝𝑝(𝑡𝑡,𝑏𝑏𝑏𝑏) and ∆𝑝𝑝(𝑡𝑡,𝑏𝑏𝑏𝑏) is the variation in the charging price for each band 𝑏𝑏𝑏𝑏 ∈ 𝔸𝔸. 𝑏𝑏𝑏𝑏 and 𝔸𝔸 

are index and set of bands, respectively. The multi-band robust optimization approach 

utilizes multiple bands where these bands are controlled by robustness parameter 𝜑𝜑(𝑏𝑏𝑏𝑏). 

The modified objective function can be expressed as follow: 
 

maximize 𝑧𝑧 = 𝑅𝑅 − (𝐶𝐶𝑘𝑘𝑘𝑘 + 𝐶𝐶𝑘𝑘𝑘𝑘ℎ + 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷) − ∑ 𝜑𝜑(𝑏𝑏𝑏𝑏)𝑣𝑣(𝑏𝑏𝑏𝑏) 
𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑥𝑥(𝑏𝑏,𝑐𝑐)

 
(𝑡𝑡,𝑏𝑏) (𝑡𝑡,𝑏𝑏) 𝑏𝑏𝑏𝑏∈𝔸𝔸 

− ∑ 𝑞𝑞(𝑡𝑡) 
𝑡𝑡∈𝕋𝕋 

 
(29) 



 

Subject to:  

Constraints (2) – (10), (13), (14), (16) – (24), (27), (28) (30) 

  
φ(𝑏𝑏𝑏𝑏) ∈ {0 |𝕌𝕌(𝑏𝑏𝑏𝑏)|}, ∀𝑏𝑏𝑏𝑏 ∈ 𝔸𝔸 

 
(31) 

∑ 𝜑𝜑(𝑏𝑏𝑏𝑏) ≤ 𝑁𝑁𝑡𝑡 

𝑏𝑏𝑏𝑏∈𝔸𝔸 

 
(32) 

𝑣𝑣 + 𝑞𝑞 ≥ ∆𝑝𝑝 ∗ ∑ 𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑡𝑡 ∈ 𝕌𝕌 & 𝑏𝑏𝑏𝑏 ∈ 𝔸𝔸 (33) (𝑏𝑏𝑏𝑏) (𝑡𝑡) (𝑡𝑡,𝑏𝑏𝑏𝑏) (𝑡𝑡,𝑏𝑏) (𝑏𝑏𝑏𝑏)  
  𝑏𝑏∈𝔹𝔹   

 

where 𝕌𝕌(𝑏𝑏𝑏𝑏) is set of time periods during which the uncertainty in electricity prices 

might occur for band 𝑏𝑏𝑏𝑏, 𝑣𝑣(𝑏𝑏𝑏𝑏) is auxiliary non negative variable for linearity in band 

𝑏𝑏𝑏𝑏, 𝑞𝑞(𝑡𝑡) is auxiliary variable to compute the uncertainty in the price of electricity during 

period 𝑡𝑡. 

In constraint (31), for each band 𝜑𝜑(𝑏𝑏𝑏𝑏) can take value from 0 to upper limit of uncertainty 

time set 𝕌𝕌(𝑏𝑏𝑏𝑏) for this band. If 𝜑𝜑(𝑏𝑏𝑏𝑏) = 0, the effect of price uncertainty is ignored and If 

𝜑𝜑𝑏𝑏𝑏𝑏 = |𝕌𝕌(𝑏𝑏𝑏𝑏)|, the effect of all price uncertainties during uncertainty time set 𝕌𝕌(𝑏𝑏𝑏𝑏) are 

considered. The summation of total periods of price uncertainty for all bands are less 

than or  equal total number  of time  segments  according to constraint (32). Constraint 

(33) guarantees feasibility for any deviation ∆𝑝𝑝(𝑡𝑡,𝑏𝑏𝑏𝑏). 

 
4.7. Conventional Charging Station Operation 

 
In the charging station, the only decision that can be taken is charging the batteries 

from the grid once the customer plug in his EV based on First come first serve (FCFS) 

as described in [30]. In this case, discharging isn’t allowed, and grid connection limit 

is respected. 

We formulate this problem as a preemptive goal programming [31]. Each 

customer is prioritized based on the arrival time, i.e. earlier customers receive higher 

priority. The following problem is solved for each customer k from highest priority 

to lowest in order. The objective is to minimize the weighted charging power, as in 

(34), where the power is weighted according to the time slot. Earlier time slots receive 

lower weight; thus, in a minimization problem, the charging will occur as early as 



possible limited to the constraints. 

The stored energy is updated as in (35) and (36). The charging only can occur 

after the customer arrives at the station as in (37), where 𝛿𝛿(𝑡𝑡,𝑐𝑐=𝑘𝑘) is a vector of length 

𝑁𝑁𝑡𝑡 containing zeros before the customer arrives and ones afterward. The SOC is 

limited as in (38) and (39). The grid limit is presented in (40) and the charging power 

is equated to the outcome of previous sub-problems, as in (41), of higher priority 

customers, where 𝕂𝕂𝑘𝑘 ⊂ ℂ is the subset of customers with higher priority with respect 

to customer 𝑘𝑘. 
 

𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
(𝑡𝑡,𝑐𝑐=𝑘𝑘) max 𝑧𝑧 = ∑ 𝛽𝛽𝑡𝑡 

Ω 𝜂𝜂 
𝑡𝑡∈𝕋𝕋 

 
(34) 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + ∆𝑡𝑡(𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 
(𝑡𝑡,𝑐𝑐=𝑘𝑘) (𝑡𝑡−1,𝑐𝑐=𝑘𝑘) (𝑡𝑡,𝑐𝑐=𝑘𝑘) (𝑡𝑡,𝑐𝑐=𝑘𝑘) 

 
∀𝑡𝑡  ∈ 𝕋𝕋 

 
(35) 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖𝑖𝑖 + ∆𝑡𝑡(𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 
(𝑡𝑡=1,𝑐𝑐=𝑘𝑘) (𝑡𝑡=1,𝑐𝑐=𝑘𝑘) (𝑡𝑡=1,𝑐𝑐=𝑘𝑘) (36) 

𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ δ(𝑡𝑡,𝑐𝑐=𝑘𝑘) 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑡𝑡 ∈ 𝕋𝕋 
(𝑡𝑡,𝑐𝑐=𝑘𝑘) (37) 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 
100 % 

∀𝑡𝑡 ∈ 𝕋𝕋 
(𝑡𝑡,𝑐𝑐=𝑘𝑘) (𝑡𝑡,𝑐𝑐=𝑘𝑘) 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 

 
(38) 

100 %(1 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) ≤ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝑐𝑐=𝑘𝑘) ≤ 100 % ∀𝑡𝑡 ∈ 𝕋𝕋 (39) 

∑ 𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑡𝑡 ∈ 𝕋𝕋 
(𝑡𝑡,𝑐𝑐) 

𝑐𝑐∈𝔹𝔹 

 
(40) 

𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃𝐶𝐶ℎ∗ ∀𝑡𝑡 ∈ 𝕋𝕋 , 𝑐𝑐 ∈ 𝕂𝕂𝑘𝑘 
(𝑡𝑡,𝑐𝑐) (𝑡𝑡,𝑐𝑐) (41) 

 
5. Results and analysis 

Different cases will be studied to investigate the effect of several aspects on the 

technical and economical features of the BES under the proposed operation approach. 

The first case study will be conducted on 30 customers and 13 batteries, which is 

considered as the base case and will be used for the comparison with the following 

cases. It is worth mentioning that using more than 13 batteries is useless as only 13 

batteries are needed to serve the 30 customers. The second case study will focus on 



the effect of the grid power limitation on the charging power and the revenue of the 

station. The third case study will focus on the impact of maximum historical demand 

and grid limit variations on the total revenue obtained by BES. Finally, a comparison 

between the conventional charging station and the BES is conducted. All cases 

include the battery self-degradation factor and study its negative effect on the state of 

charge of the battery and the maximum capacity. Finally, a summary of the different 

case studies and their results will be discussed. The replacement for each customer is 

done within a one-time segment. The General Algebraic Modelling Software 

(GAMS) was used to solve the optimization problems. The GAMS is a very powerful 

tool as well as it is an effective and simple platform for optimization problems 

regarding the power system applications [32]-[33]. It has many solvers to solve the 

different types of optimization problems. BARON is one of the solvers embedded in 

GAMS which is used for solving MINLP, NLP, MIP problems. BARON implements 

deterministic global optimization algorithms of the branch-and-bound type that are 

guaranteed to provide global optima under fairly general assumptions. 

 
5.1. Case 1: Base Case 

 
This case study represents the base case. The case includes 13 batteries, i.e.  𝑏𝑏  ∈ 

𝔹𝔹 = {1,2, … ,13}, with 100 % SOC at the beginning and at the end of the complete 

cycle.   Furthermore,   the   batteries   need   to   serve   30   customers,   i.e. 𝑐𝑐 ∈ ℂ = 

{1,2, … ,30}, throughout the day. The charging and discharging occur at different 

rates and different periods of the day depending on the grid price and the customers 

assigned for each station. Fig. 5 and Fig. 6 show the charging and discharging cycles 

for the 13 batteries. Most of the batteries have the discharging during the day that has 

the highest grid price as shown in Fig. 6. 
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Fig. 5. Charging cycles vs. time segments for the 13 Batteries. 
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Fig. 6. Discharging cycles vs. time segments for the 13 Batteries. 
 

The SOC variation with time is shown in Fig. 7. The direct drops indicate the 

replacements as mentioned before. Fig. 8 shows the batteries/customers' selection. 

Some batteries are chosen to serve two customers like station 10 but others are The 

SOC variation with time is shown in Fig. 7. The direct drops indicate the replacements 

as mentioned before. Fig. 8 shows the batteries/customers' selection. Some batteries 

are chosen to serve two customers like station 10 but others are serving 4 customers 
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like battery 4. This depends on the battery availability in each station, the required 

energy by each customer, and the time segment when the customer will reach the 

station. Customers 14, 15, 16, and 17 are being served by four different stations since 

they arrive at the station at the same time. All the 30 customers are being served 

without using all the 13 batteries. The maximum revenue from this case is about 

$125.9.  The  cost  of  purchased  energy  from  the  grid  to  charge  the  batteries is 

$70.5775, the  cost  of  selling energy to   the  grid  by  discharging  the  batteries  is 

$12.7371,       and       the       cost       of       selling       energy       by       replacing 
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Fig. 7. State of charge variation vs. time segments for the 13 Batteries. 
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Fig. 8. Batteries/Customers selection 
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𝑃𝑃 = 50 kW. 

batteries is $183.75. To study the effect of the charging price uncertainty, the 

modified objective function regarding the charging price uncertainty is considered. 

Two bands of 10% and 15% are considered in the uncertainty part. The two 

robustness parameters 𝜑𝜑(10%)  & 𝜑𝜑(15%)  can take any value in range of  {0  |𝕌𝕌(𝑏𝑏𝑏𝑏)|}  

for price deviation of ∆𝑝𝑝10% & ∆𝑝𝑝15%. However, the values of these parameters have to 

satisfy constraint (32) [𝜑𝜑(10%) + 𝜑𝜑(15%) ≤ 𝑁𝑁𝑡𝑡]. The maximum revenue from this case 

will be $121.41 (3.7% decrease). Furthermore, the cost/revenue of purchased energy, 

selling energy and replacing batteries will be $63.88, $5.54, and $183.75, 

respectively. Therefore, price uncertainty hasn’t a great impact on the revenue 

obtained by BES as the major superiority of BES is the flexibility in the starting time 

of charging of each battery and the main part of the profit is profit obtained from the 

replacement process. 

 
5.2. Case 2: Grid Power Limitation Effect 

 
In this section the grid power limit and the demand charges 𝐶𝐶𝑘𝑘𝑘𝑘 due to the 

maximum demand consumed from the grid are considered. In this case, the maximum 

power that can be consumed from the grid is 60 kW, i.e. 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑚𝑚𝑚𝑚𝑚𝑚 = 60 kW and the 

maximum historical demand consumed from the grid is assumed to be 50 kW, i.e. 
𝑀𝑀𝑀𝑀𝑀𝑀 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

As shown in Fig. 9, the optimal decisions for the BES choose to limit the total 

consumed power at 50 kW, i.e. 𝐶𝐶𝑘𝑘𝑘𝑘 = 0. As the main merit in the BES is the 

flexibility in the starting time of charging of each battery. Consequently, only five 

batteries can be charged from the grid simultaneously. Fig. 9 shows the charging 

power variation with time with and without the grid power and the maximum 

historical demand limitations. With these limitations, the width of the charging cycles 

is bigger to overcome the periods where the power was greater than 50 kW. As a 

result, the batteries/customers’ selection has been changed as shown in Fig. 10. With 

the grid power limitation, the station needs 13 batteries to serve the same customers. 

So, battery 6 is now serving customers 19, and 27. Adding the grid power limitation 

in this case study did not affect the revenue of the station ($124.97). However, it 

changed the decisions of the control unit. The cost of 
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Fig. 9. Charging Power vs. time with and without the grid power limitation. 
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Fig. 10. Batteries/Customers selection with grid power limitation. 
 

purchased energy from the grid to charge the batteries is $64.5598, the cost of selling 

energy to the grid by discharging the batteries is $5.784, and the cost of selling energy 

by replacing batteries is $183.75. In the case of the charging price uncertainty, the 

maximum revenue from this case will be $119.7 (4.6% decrease). Furthermore, the 

cost/revenue of purchased energy, selling energy, and replacing batteries will be 

$60.22, $0.08, and $183.75, respectively. 
 

5.3. Case 3: Sensitivity Analysis 
 

The aim of this case study is to evaluate the impacts of different parameters’ 

variations on the optimal decision and thus on the revenue obtained by BES while 

considering the charging price uncertainty. In this subsection, we investigate the 
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TABLE 4 IMPACT OF PARAMETERS’ VARIATIONS ON TOTAL REVENUE 

Grid Limit Cost/Revenue 
Maximum Historical Demand 

30 kW 50 kW 70 kW 
 
 
 
 

40 kW 

Total Revenue ($) 89.52 108.66 108.66 

Charging costs ($) 45.08 56.09 56.09 

Discharging Revenue ($) 0 0 0 

Replacement Revenue ($) 137.5 168.5 168.5 

No. of Served Customers 23 28 28 

Maximum power consumed from grid (kW) 30 40 40 

 
 
 

80 kW 

Total Revenue ($) 89.52 119.7 120.99 

Charging costs ($) 45.08 60.22 61.63 

Discharging Revenue ($) 0 0.0803 2.65 

Replacement Revenue ($) 137.5 183.75 183.75 

No. of Served Customers ($) 23 30 30 

Maximum power consumed from grid (kW) 30 50 70 

 

effect of varying both demand charge and grid limit on the charging, discharging and 

replacement cost/revenue. Table 4 demonstrates the results obtained in case of 

parameters’ variations. AS illustrated in Table 4, if the maximum historical demand is 

lower than the grid limit, the optimal decisions will be always limiting the total power 

consumed from the grid at the maximum historical demand limit so that no extra 

charges are incurred. However, the results indicate that if the power consumed from 

the gird is limited at 50 kW or higher, the BES will be able to serve all customers in 

our case. Furthermore, the change in power consumed from the gird over this value 

hasn’t a significant effect on the total revenue obtained by BES in our case study. 

Moreover, this value depends on the BES configuration including the number of 

batteries and the number of served customers per day. In case of power consumed from 

the grid is limited at a value lower than 50 kW, this will lead to not serving some 

customers due to this value have an impact on the batteries which can be charged 

simultaneously. Therefore, the batteries will not satisfy the customers’ satisfaction 

expressed in equation (20). 

 
5.4. Case 4: Comparison Between BES and Charging Stations 

 
In this case study, a comparison between the charging stations and the BESs is 

conducted in case of the grid limitation and maximum historical demand consumed 

from the grid. The charging curve for the BES and the charging station can be 



illustrated in Fig. 11. The maximum revenue from this case for BES and the charging 

station is about $124.97, and $35.37 respectively. For the charging station, each 

customer has to wait until its battery is charged. The mean waiting time for the 

customers in this case study is 147 minutes. While the waiting time for each customer 

in BES is only 5 minutes, the duration of the battery replacement service. However, 

each customer in the charging station may wait a delay time until the starting of the 

charging process as a result of the operation of the station with its maximum charging 

power. In this case study, the customers 28-30 have to wait 15 minutes to start the 

charging process. If the owners of the charging station decide to limit the power at 50 

kW to not charge extra cost due to maximum historical demand consumed from the 

grid. The total profit will increase and becomes $125. The revenue, in this case, will 

be nearly the same with the BES as the energy replacement price is considered to be 

fixed for this comparison although unrealistic of this condition. However, the delay 

time for the customers until the beginning of batteries charging will increase. For 

example, the customer 18 has to wait 125 minutes to start the charging process while 

the customer 30 has to wait 155 minutes in addition to the charging duration as shown 

in Fig. 12. This may lead to making these customers leave this station and charge at 

another station. 
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Fig. 11. Charging power variation vs. time for the BES and the charging station in case of a 60 kW 

limitation. 
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Fig. 12. Charging profile for customer 30 in case of 50 kW and 60 kW limitations. 
 

6. Conclusion 

This paper proposes a new approach for operating a BES to determine the optimal 

charging, discharging, and replacement decisions in order to maximize the profit 

based on the grid price and the customers’ requests. The optimization problem is 

formulated as MINLP with the objective of maximizing the BES investor profit while 

satisfying the EV owners’ requests. The variation of charging/discharging power, the 

state of charge, and the stored and replaced energy for all batteries in the station with 

time is analyzed considering different case studies. The results from the case studies 

on a typical BES demonstrate the effectiveness of the proposed approach while 

considering practical grid tariffs for industrial customers representing the BES owner. 

Moreover, a comparative study between conventional charging stations and BES is 

conducted, which shows that BES outperforms the conventional charging stations in 

terms of the service time, number of served customers, and the operational cost. Also, 

the grid power limitation and battery self-degradation are all considered to represent 

a practical BES structure. The results highlight the effectiveness of the proposed 

approach in satisfying the EV owners' requests while maximizing the BES investor 

profit. 
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