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A B S T R A C T 

Stochastic photovoltaic (PV) modeling that can be used for long-term planning of power systems is essential 

for future renewable power generation. One of the most prevalent problems that PV systems face is the 

accumulation of dust on the PV panel surface that negatively impacts the output power. Wind speed along 

with other weather variables including relative humidity, temperature, and precipitation are some of the 

major factors that contribute to dust accumulation. This paper presents a novel dynamic model of the PV 

output power profile including the dust accumulation using a Markov chain model. The proposed model 

incorporates the seasonal variations in ambient temperature, solar irradiance, dust accumulation, and rate of 

dust accumulation as well as the desired cleaning frequency, which affect the overall energy yield of the PV 

system. The outcome of the model is virtually generated scenarios that can be used by the investors to decide 

on the optimal size of the PV system and the optimal cleaning frequency for each season. The model 

outcome shows an error of less than 5% when compared to actual data collected from the field without 

cleaning. This error can be reduced by increasing the number of states, which affects the computational 

time. Various case studies are presented to show the effectiveness of the proposed model and its benefits. 
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1. INTRODUCTION 

The recent growth in solar energy in the Middle East and specifically the United Arab Emirates (UAE) has led to numerous 

solar plants being built in the region. This includes the Shams Solar Power Station and the Masdar 10 MW Solar Photovoltaic (PV) 

Farm in Abu Dhabi and the 1000 MW Mohammed Bin Rashid Al Maktoum Solar Park in Dubai [1]. Other solar farms in the 

region include the Benban Solar Park in Egypt with a 1650 MW capacity and the Sakaka Solar Plant in Saudi Arabia with a 300 

MW capacity [2]. Similarly, in the USA, there are solar farms like the Solar Star with a 579 MW capacity and the Topaz Solar 

Farm with a 550 MW capacity as well [2]. However, a common concern in almost every solar plant is the accumulation of dust on 

the solar panel surface, which negatively impacts its performance [3]. While numerous factors including aging, radiation, shading, 

temperature, and pollution impact the performance of a PV, dust is one of the most problematic issues out of all of them [4]. As 

the rate of dust deposition on a PV surface increases, the efficiency and power output of the module would decrease. In desert 

climates, dust accumulation reduces the overall power output of PVs by close to 40% on average over a year [5].  

The dust accumulation problem is affected by many factors such as particle size [6], panel tilt angle [7], wind velocity [8], 

temperature and relative humidity. The relative humidity plays a key role in long-term soiling as 40-80% relative humidity 

increases adhesion to 80% due to the capillary forces that stick dust particles onto a solar panel surface [9].  

Another major factor dictating the rate of dust accumulation on a solar panel is how close it is to an area where dust is highly 

likely to travel airborne. In dry climates [10], airborne dust particles find themselves on the surface of solar panels primarily due 

to adhesive forces. In wet conditions, on the other hand, dust particles adhere to the surface of the solar panel due to the presence 

of fog, rain, and snow. In [11], the dust deposition rates of Egypt and Colorado indicated that desert climates were likely to have 

far greater dust deposition rates close to 300 mg/m2.  

 Currently, manual cleaning and automated cleaning are the most common cleaning methods for PV that have been implemented 

around the world [12], [13]. However, as water is a scarce resource and continuous cleaning will be costly from labour and 

resources points of view, it is important to optimally clean solar panels while using minimal resources. Consequently, there is a 

need to model the PV output power considering dust accumulation and a need for a mechanism to incorporate different cleaning 

frequencies. With such a model, the optimal cleaning frequency for PVs can be determined, which can later be used for long-term 

investments.  

The contribution of this paper thus involves the development of a novel model for the stochastic nature of PV performance 

including the effect of dust accumulation using meteorological data. The model includes a unique mechanism that depicts dust 

accumulation levels at different cleaning frequencies in the PV system. 

The paper is organized as follows: Section II details the related work. Section III includes an overview of the proposed model, 

its different stages, and how the model can be used to develop virtual scenarios. Section IV discusses an application of the proposed 

model to develop the power profile of a PV. Section V analyzes the virtual scenarios for dust accumulation with varying cleaning 

frequencies followed by a validation of the overall model. Finally, Section VI discusses the implementation of the proposed model 

in a PV power plant for a specific case study and Section VII concludes the work. 

2. RELATED WORK 

The modeling of PV and dust accumulation has been carried out through numerous techniques depending on the complexity of 

the model and the assumptions made. When it comes to modeling PV energy production alone, it has often been performed by 

clustering daily values of solar irradiance together or by using monthly-hourly data to guarantee greater precision [14]. In most 

research works, solar irradiance is generally modeled statistically as a beta distribution [15]. At the same time, others have modeled 

global solar irradiance through exponential, Weibull, gamma, normal, lognormal, beta, or geometric distributions [16]. Other 

models have used solar irradiance and air temperature data for short-term forecasting using a power probability density function 

that is based on the Bayesian autoregressive time-series model [17].   

However, an accurate model of PV output should consider the numerous weather factors that impact it and, in particular, dust 

accumulation. A common way of modeling dust accumulation levels, as seen in [18], is by directly using the PV output and 

predicting the level of dust that accumulates on the surface of the panel based on the performance. Other models rely on Monte 

Carlo simulations (MCS) for stochastically generating possible soiling profiles on a daily basis [19]. Other research proposed the 

use of a fixed rate for dust accumulation [20]-[23]. However, the rate of dust accumulation is never fixed as the weather variables 

surrounding the PV at any time can either increase or decrease the rate of dust accumulation that occurs.  Dust accumulation 

modeling has also been performed using particulate matter concentration to help predict future precipitation patterns [24].  

PV yield can also be used to model dust accumulation and PV soiling loss as in [25] using the stochastic rate and recovery 

(SSR) method, which is based on MCS. Dust accumulation rates along with soiling rates have also been modeled in [26] using the 

Theil-Sen estimator assuming a dry period of at least 14 days. 

Overall, while the modeling of dust as a constant factor may fit certain research criteria, a more realistic approach would be to 

develop a dynamic model for dust accumulation. Consequently, there is a lack of literature on the dynamic modeling of dust 
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accumulation and its corresponding impact on PV performance. Moreover, the cleaning rate should be varied across the year as 

the dust accumulation is not fixed. Thus, the model should be able to incorporate varying cleaning rates. 

3. PROPOSED MODEL 

The proposed model in this work takes into consideration ambient temperature, solar irradiance, dust accumulation, and rate of 

dust accumulation and their influence on dust accumulation through a Markov chain model. This section provides a description to 

the proposed model, which is divided into three stages, as shown in Fig. 1.  The outcome of this model can be described as virtual 

scenarios of ambient temperature, solar irradiance, and rate of dust accumulation based upon the dust accumulation state. The 

advantage of using virtual scenarios is that they include as many variations as possible of the weather variables mentioned earlier. 

While historical data of a random variable only represents one way of how the variable changes, the use of virtual scenarios allows 

the model to capture the stochastic nature of the random variable. 

3.1. Stage 1: Data Acquisition and Processing 

The PV power measurements and climate data used in this paper were for 𝑁𝑦 years of hourly historical data from Arizona City 

in the United States of America. This included data regarding ambient temperature ( 𝑇ambient ), solar irradiance ( 𝑆𝐼 ), dust 

accumulation (𝐷acc), and rate of dust accumulation (𝑅𝐷𝐴) as all of these factors impact power. The PV measurements were made 

from a solar panel with a fixed tilt angle of 30 degrees. While other factors including wind speed, relative humidity, and 

precipitation are also valid weather variables to include, the data for dust accumulation would account for any changes in the 

previously mentioned three weather variables. Furthermore, 𝑅𝐷𝐴 was calculated using the dust accumulation data by noting the 

change in dust levels at any given hour in comparison with the one succeeding it seen in (1). Additionally, as the panels were 

initially clean, dust levels began at zero. At this point, we have four data sets, which include 𝑇ambient, 𝑆𝐼, 𝐷acc, and 𝑅𝐷𝐴. 

𝑅𝐷𝐴 =
𝐷𝑎𝑐𝑐(𝑡) − 𝐷𝑎𝑐𝑐(𝑡−1)

∆𝑡
 (1) 

 

To analyze and use the hourly historical data, the discretization of all data points was necessary so that it could then be used in 

the Markov chain model. Consequently, the most efficient way to discretize the data and cluster them based on the centroids was 

using the k-means clustering algorithm [30], which is based on the squared error function in (2). 

arg min
𝑆

= ∑ ∑ ∣∣ 𝑥 − μc ∣∣2 𝑥 ∈𝑆c

𝑘
𝑐=1 , (2) 

where 𝑘 represents the number of centroids, 𝑐 represents the index of the centroids, 𝑥 represents the data, 𝑆 represents the data 

divided into 𝑘 sets and  μc represents the mean of data points in subset 𝑆c. 

In this model, NRDA is the number of states for the rate of dust accumulation, 𝑁SI is the number of states for solar irradiance, 𝑁T 

is the number of states for temperature, and 𝑁D is the number of dust accumulation states. By increasing the number of states that 

the data is clustered into, the accuracy of the model increases but also the level of complexity increases, which is reflected in the 

computational time. The four data sets of 𝑇ambient, 𝑆𝐼, 𝐷acc, and 𝑅𝐷𝐴 were discretized after which the primary and secondary 

categorization is performed as follows. 
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Fig. 1 - Overall system model flowchart. 

 

3.1.1. Primary Categorization  

The four data sets are then categorized according to the season such that the model could account for seasonal variations in 

ambient temperature, solar irradiance, dust accumulation, and rate of dust accumulation. Each data set is categorized as follows. 

The 𝑇ambient data set is organized in matrix 𝑇 = [𝑇𝑖,ℎ], the 𝑆𝐼 data set in matrix 𝑆𝐼 = [𝑆𝐼𝑖,ℎ], the 𝐷acc data set in matrix 𝐷 = [𝐷𝑖,ℎ], 

and the 𝑅𝐷𝐴 data set in matrix 𝑅𝐷𝐴 = [𝑅𝐷𝐴𝑖,ℎ]. In each element of the above matrices, 𝑖 ∈ ℐ, where 𝑖 is the days in the original 

data and ℐ is the original data set of days, and ℎ is the hour of the day, which ranges from 1 to 24. When categorizing these data 

sets further according to the four seasons, the 𝑇ambient seasonal data is organized in a matrix 𝑇𝑠 = [𝑇𝑖,ℎ
𝑠 ], the 𝑆𝐼 data set in a matrix 

𝑆𝐼𝑠 = [𝑆𝐼𝑖,ℎ
𝑠 ], the 𝐷acc data set in a matrix 𝐷𝑠 = [𝐷𝑖,ℎ

𝑠 ], and the 𝑅𝐷𝐴 data set in a matrix 𝑅𝐷𝐴𝑠 = [𝑅𝐷𝐴𝑖,ℎ
𝑠 ]. In this case, sample 

𝑖 ∈ ℐ𝑠 ⊂ ℐ, where ℐ𝑠 is the subset of days in each season (almost 90 ×  𝑁𝑦 days) and 𝑠 ∈ {1,2,3,4} represents the seasons assuming 

that data is available for 𝑁𝑦  years. At this point, there are a total of 16 × 24 data sets in total and 4 × 24 data sets for each season. 

3.1.2. Secondary Categorization  

The seasonal data sets 𝑇ambient, 𝑆𝐼, and 𝑅𝐷𝐴 are then categorized further to 𝑁D groups, as shown in Fig. 2, based on the dust level 

in the first hour of the day assuming that the dust level would not change for the rest of the day. By doing this, the 𝑇ambient seasonal 

data would then be represented in a matrix 𝑇𝑠,𝑑 = [𝑇𝑖,ℎ
𝑠,𝑑], the 𝑆𝐼 data set in a matrix 𝑆𝐼𝑠,𝑑 = [𝑆𝐼𝑖,ℎ

𝑠,𝑑], and the 𝑅𝐷𝐴 data set in a 

matrix 𝑅𝐷𝐴𝑠,𝑑 = [𝑅𝐷𝐴𝑖,ℎ
𝑠,𝑑]. In these matrices, 𝑑 ∈ {1,2, … , 𝑁𝐷} would represent the dust level. At this point, there are 12 × 𝑁𝐷 

data sets in total and 3 × 𝑁𝐷 data sets per season. In other words, for any day 𝑖 in season 𝑠, the 𝑇ambient, 𝑆𝐼, and 𝑅𝐷𝐴 data are 

categorized together if the dust level in the first hour of day 𝑖 for that season matches the dust level in the 𝐷𝑠 matrix. In this case, 

25 data elements , which are made up of the 24 hours of the day in focus and the first hour of the following day from matrices 

𝑇𝑠, 𝑆𝐼𝑠, and 𝑅𝐷𝐴𝑠 are categorized together to form matrices 𝑇𝑠,𝑑, 𝑆𝐼𝑠,𝑑, and 𝑅𝐷𝐴𝑠,𝑑, respectively. The first 24 points are necessary 

to understand the behavior of the different data sets within the specific day with respect to dust. In addition, the 25 th point, which 

is the first hour of the next day, is necessary to transition to the next day and will be used in the Markov Chain Model explained in 

the next stage. 

To analyze all the data together and not separately as three different matrices, it was important to put all the data under a single 

matrix. Hence, to generate an overall multi-state model, the three variables of temperature, solar irradiance, and rate of dust 

accumulation that affect the PV are combined into one matrix 𝑀𝑠,𝑑  = [𝑀𝑖,ℎ
𝑠,𝑑]. Each element of the matrix 𝑀𝑠,𝑑 is composed of an 

element from each of the matrices 𝑇𝑠,𝑑, 𝑆𝐼𝑠,𝑑, and 𝑅𝐷𝐴𝑠,𝑑. The three matrix elements are then replaced with an equivalent system 

state value and stored in a single element in 𝑀𝑠,𝑑. The total number of system states that describe all possible conditions should 

thus be 

𝑁SYS =  𝑁SI ×  𝑁T ×  𝑁RDA. (3) 
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Fig. 2 - Seasonal data organization. 

 

Each data point is then assigned to one of the system states 1, … , 𝑁SYS  that would correspond to a specific state for 

𝑁SI, 𝑁T, and 𝑁RDA. By doing so, the 𝑁v different weather variables, in this case four, could later be analyzed inside a single matrix. 

We assume there is no correlation between these random variables occurring at a certain hour of a certain season at the same dust 

level. 

3.2. Stage 2: Markov Chain Model 

While there are numerous stochastic modeling techniques used in research for PV modeling forecasting, one of the most common 

ones is the Markov chain model. While every forecasting model has its own advantages in solving complex real-world problems, 

the Markov process is commonly used when modeling dynamic stochastic systems and the state transitions that exist in complex 

stochastic systems. A Markov chain model is a discrete-time stochastic process that models how a random variable changes at 

discrete points of time. The Markov chain model has therefore been employed in this paper to model the behavior of numerous 

weather factors and their impact on dust accumulation to analyze the performance of a PV.   

 The discrete-time Markov chain 𝑀(𝑡) is a discrete-time stochastic process based on the idea that each time step 𝑡 is 

occupied by one state 𝐸μ in a series of states defined as 𝐸1, …, 𝐸N. Each of these states is defined stochastically on the basis of 

only the previous state and this satisfies the Markov property. In other words, the probability distribution of any state at any time 

step 𝑡 +  1 is dependent on the state 𝑡 and not dependent upon the previous states that lead to the state at time 𝑡. More importantly, 

the state transition that occurs between time step 𝑡 and 𝑡 +  1 is independent of time. The time steps involved in the entire process 

can be defined from 𝑡 = 1, … , 𝑇 with 𝜇 = 1, … , 𝑁 representing the index of the state the Markov chain is in. After that, the 

transition matrices must be generated. As the Markov process moves from time step 𝑡 to the next time step at 𝑡 +  1, the state of 

the process at time 𝑡 +  1 can be determined from the state at time step 𝑡 using the transition probabilities given as   

𝑃μv(𝑡) ≡ Prob (𝑋t+1 = 𝐸v |𝑋t =  𝐸μ). (4) 

It is important to note that (4) satisfies the Markov property. Using this, the transition matrices 𝑃, which are square matrices, 

can be generated with dimensions 𝑁 ×  𝑁. For each 𝑁D for dust accumulation, there are 24 different Markov transition matrices 

with each matrix representing the transition from a specific hour of the day to the following hour. As there are now 24 transition 

matrices for each dust level for each season, the total number of Markov transition matrices, 𝑀TMT, can be calculated as follows: 

𝑀TMT =  24 ×  4 ×  𝑁D. (5) 

The transition matrices each have dimensions 𝑁SYS × 𝑁SYS, with the columns and rows representing the different system map 

values. Each element within the transition matrix 𝑃 represents the probability of state 𝑣 occurring at time slot 𝑡 + 1 given that the 
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previous state at time slot 𝑡 is considered as 𝜇. The way the probabilities for each matrix value were calculated is using the 

maximum likelihood (𝑀L) estimation, which can be found as  

𝑀L =  𝑛μv/ ∑ 𝑛μp

𝑝
, (6) 

where 𝑛μv is the number of transitions from state 𝜇 at the time instance 𝑡 till time instance 𝑡 + 1. The maximum likelihood estimate 

is used to calculate the probability, which is the frequency of occurrences divided by the total number of possible occurrences. To 

guarantee that each transition matrix was calculated accurately, the sum of each row for the transition matrices had be equal to 1 

as it is an important characteristic of the Markov model. 

3.3. Stage 3: Cumulative Distribution Function Generation 

Using the transition probability matrices, the cumulative distribution function (CDF) could be created that would later be used 

for generating virtual scenarios. The CDF of a random variable 𝑋, when plotted, would form a staircase plot with the CDF of any 

random variable flat between 𝑥k and 𝑥k+1. The probability mass function (PMF), which is the data from the Markov transition 

matrices, is used to develop the CDF 𝐹X(x) as follows: 

𝐹X(𝑥) = ∑ 𝑃X(𝑥k)

𝑥k≤𝑥

. (7) 

3.4. Virtual Scenarios Generation 

The output of the model can now be used to develop virtual scenarios showing dust accumulation levels across an entire year as 

seen in Fig. 3. The random virtual scenario instant is equal to the inverse CDF of a uniformly distributed random number between 

0 and 1. Assuming there are 𝑁scenarios that are to be modeled, the dimensions of the virtual scenarios matrix will be 8760× 𝑁scenarios 

with the columns representing each hour of the day for a complete year. This will be generated by using the inverse of the CDF 

generated from Stage 3. It is important to note that the first column of the virtual scenarios matrix was calculated differently than 

the rest of the columns as it is not based on any previous information before that first day. Therefore, for the first hour of the first 

day for each row of the virtual scenario matrix, the initial data was converted into a transition matrix without any separation based 

on correlating it with any level of dust accumulation. After that, it is converted into the system map, which is then systematically 

placed as the first column of the virtual scenario matrix. With the first column of the virtual scenario calculated, the remaining 

parts of the virtual scenarios were calculated with the information from the transition matrix CDF’s and the first column of the 

virtual scenario matrix. Depending upon the value of the first number in the first column of the virtual scenario matrix, the 

corresponding row for the transition matrix CDF for hour one to hour two was calculated. To do this, a uniformly distributed 

random number between 0 and 1 was generated, and depending upon that value, the corresponding two numbers around that 

uniformly distributed random number were selected. For every uniformly distributed random number, there will be a number less 

than and greater than it in the transition matrix CDF. Between the two numbers, the number that is greater than it is chosen and 

selected as the second-row value in the second column of the virtual scenario matrix. This is because the values in the second 

column represent the transition from hour one to hour two of the first day that is virtually generated. A similar process is followed 

for the remaining hours of the day and for each day of the year.  

An important aspect of the virtual scenario design is also the implementation of the desired cleaning pattern synthetically. Given 

the solar panels are cleaned every desired 𝑁clean days throughout the year, the first column after the 𝑁clean day utilizes the CDFs 

correposding to the clean dust level (the first dust state). Then, as the dust accumulation increases over the days, the corresponding 

transition matrix with a different dust level is chosen. After each hour of the virtual generation, the dust level is measured, using 

information from the rate of dust accumulation, to determine if the dust level has entered another category of 𝑁d. If this occurs, a 

different hourly transition for a different dust state transition matrix is used to continue. 

4. POWER PROFILE GENERATION MECHANISM 

The proposed model can now be used to develop the power profile of a PV. In this section, a relationship between dust 

accumulation and the power output is developed and then applied to the virtual scenarios as shown in Fig. 4. 
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Fig. 3 - Application of overall model. 

 

Fig. 4 - Dust accumulation and received solar irradiance relationship. 

We start with the existing equations for the module short-circuit current (𝐼𝑠𝑐), module open-circuit voltage (𝑉𝑜𝑐), 𝑇𝑐𝑒𝑙𝑙 , and the 

PV maximum power output (𝑃𝑚𝑎𝑥) in [28], which were modified as follows: 

𝐼𝑠𝑐 = 𝐼𝑠𝑐𝑠𝑡𝑐
× (1 + 𝐾𝑖𝑠𝑐 × (𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑠𝑡𝑐)) ×

𝑆𝑅

𝑆𝑠𝑡𝑐
, (8) 

𝑉𝑜𝑐 = 𝑉𝑜𝑐𝑠𝑡𝑐
× (1 + 𝐾𝑣𝑜𝑐 × (𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑠𝑡𝑐)), (9) 

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝐴 + 𝑆𝑅 × (
𝑁𝑂𝐶𝑇−𝑇𝑁𝑂𝐶𝑇

𝑆𝑁𝑂𝐶𝑇
), (10) 

𝑃𝑚𝑎𝑥 = 𝐹𝐹 × 𝐼𝑠𝑐 ×  𝑉𝑜𝑐  × 𝑁𝑃𝑉𝑀𝑜𝑑𝑢𝑙𝑒𝑠, (11) 

 

where 𝐼𝑠𝑐 𝑠𝑡𝑐
 represents the short-circuit current at standard test conditions, 𝐾𝑖𝑠𝑐  the temperature coefficient for 𝐼𝑠𝑐 , 𝑇𝑐𝑒𝑙𝑙  the 

temperature of the cell, 𝑇𝑠𝑡𝑐 the temperature at standard test conditions, 𝑆𝑅 the solar irradiance received, 𝑆𝑠𝑡𝑐  the solar irradiance 

at standard test conditions, 𝑉𝑜𝑐𝑠𝑡𝑐
 the open-circuit voltage at standard test conditions, 𝐾𝑣 the temperature coefficient for 𝑉𝑜𝑐 , 𝑁𝑂𝐶𝑇 

the nominal operating cell temperature, 𝑇𝑁𝑂𝐶𝑇  the temperature at the nominal operating cell temperature, 𝑆𝑁𝑂𝐶𝑇  the solar irradiance 

at that specific nominal operating cell temperature, 𝐹𝐹 the fill factor, and finally, 𝑁𝑃𝑉𝑀𝑜𝑑𝑢𝑙𝑒𝑠 the number of PV modules. Equations 

(8)-(10) were re-written so that they would only be two equations, one for 𝐼𝑠𝑐  and one for 𝑉𝑜𝑐 , and they would only be in terms of 

𝑇𝐴 and 𝑆𝑅. The reason why this is done is that every parameter in (8)-10) is a fixed variable based on any PV module characteristic 

and the only values that will change are 𝑇𝐴 and 𝑆𝑅. In addition to that, dust accumulation results in a drop in solar irradiance 

received, which directly results in a drop in current and current directly impacts the overall power. Consequently, by re-writing 

(8)-(10) into two equations for 𝐼𝑠𝑐  and for 𝑉𝑜𝑐 , they can be substituted into (11) where the 𝐹𝐹  and 𝑁𝑃𝑉𝑀𝑜𝑑𝑢𝑙𝑒𝑠 are also fixed 

variables, to determine 𝑃𝑚𝑎𝑥 . The rearranged equation for 𝑃𝑚𝑎𝑥  can be seen in (12) with 𝐶 representing a constant that is generated 

during the re-arranging process. 
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𝑃𝑚𝑎𝑥 = 𝑇𝐴
2 × 𝑆𝑅 × 𝐶. (12) 

At this point, there is a single equation to calculate 𝑃𝑚𝑎𝑥 that is only in terms of 𝑇𝐴 and 𝑆𝑅. Therefore, (12) can now be rewritten 

to solve for 𝑆𝑅 with 𝑇𝐴 and 𝑃𝑚𝑎𝑥  being required for it as seen in (13). 

𝑆𝑅 =
𝑃𝑚𝑎𝑥

𝑇𝐴
2 × 𝐶

 . (13) 

 Using (13), historical data from 𝑁𝑦 years regarding 𝑇𝐴 and 𝑃𝑚𝑎𝑥  can be acquired. In this case, 𝑃𝑚𝑎𝑥 would represent the power 

that the solar panel is generating over the course of 𝑁𝑦 years of historical data. The reason this information is relevant is that solar 

panels generally have built-in methods to determine the ideal solar irradiance available at a certain time of the day. However, when 

considering the existence of dust, the solar irradiance absorbed by the solar panel is not what the reference cell on the solar panel 

would suggest as it would be less. 

Therefore, given 𝑃𝑚𝑎𝑥  generated by a solar panel and the corresponding 𝑇𝐴 for 𝑁𝑦 years of historical data, the actual 𝑆𝑅 that is 

unknown can be determined. After determining what 𝑆𝑅 is, it can be compared to 𝑆𝑖𝑑𝑒𝑎𝑙 , the optimal solar irradiance assuming no 

dust from a reference cell, to determine solar irradiance percentage loss 𝑆𝑙𝑜𝑠𝑠, which can then be plotted versus dust accumulation 

for 𝑁𝑦 years of historical data to determine a relationship between the two. This can be seen in Fig. 5. 

Also, from Fig. 5, as dust accumulation increases, 𝑆𝑙𝑜𝑠𝑠 also increases. The best fit curve was determined after comparing the 

linear, quadratic, exponential, and quartic relation between the two data types. After determining the best fit curve to represent the 

relationship between 𝑆𝑙𝑜𝑠𝑠 and dust accumulation as the quartic relation, an overall relationship connecting dust accumulation and 

power output can be established. This relation is used to generate the power output in Fig. 6. 

In Fig. 6, the power output of a PV for 𝑁𝑦 years of historical data across a year can be seen and is represented by 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 . It is 

important to note that in this specific case, there is no cleaning done and dust is expected to accumulate naturally on the panel 

overtime for the entire year. Also, 𝑃𝑖𝑑𝑒𝑎𝑙  represents the solar panel power output assuming it receives maximum solar irradiance 

with no dust, which is recorded by the reference cell on the panel and calculated using (8)-(11). It is important to point out that the 

reference cell is not affected by the dust as the typical practice when taking measurements using the reference cell is to keep it 

covered and only uncover it when measurements of solar irradiance must be taken. Across the entire year, the average percentage 

difference is as high as 62.7% between 𝑃𝑎𝑐𝑡𝑢𝑎𝑙  and 𝑃𝑖𝑑𝑒𝑎𝑙 . As expected, there is a huge difference between the actual power output 

of the panel and its ideal power output assuming no dust and no hindrance to overall solar irradiance. Using the relationship 

determined earlier between 𝑆𝑙𝑜𝑠𝑠  and dust accumulation, existing data for dust accumulation and maximum solar irradiance from 

the reference cell for the same panel can be used to determine the 𝑆𝑙𝑜𝑠𝑠 for any data set. 

Now, using the calculated 𝑆𝑙𝑜𝑠𝑠, 𝑆𝑅 can be determined. Using 𝑆𝑅 with 𝑇𝐴, 𝑃𝑚𝑎𝑥  can then be calculated and is represented by 

𝑃𝑚𝑜𝑑𝑒𝑙  in Fig. 6. Across the entire year, the difference between 𝑃𝑚𝑜𝑑𝑒𝑙  and 𝑃𝑎𝑐𝑡𝑢𝑎𝑙  is 2.08%, which highlights the accuracy of the 

relationships determined earlier between dust accumulation and 𝑆𝑙𝑜𝑠𝑠 . This also supports the fact that the overall relationship 

determined between dust accumulation and power output of a solar panel is accurate. 

5. RESULTS AND ANALYSIS 

This section explores how the dust behavior and dust accumulation models in the virtual scenarios can be used to determine 

optimal PV cleaning frequencies depending upon the season of the year.  

5.1. Virtual Scenarios Analysis 

We carried out investigations for two seasons; summer and winter, while varying the cleaning frequencies. The virtual scenarios 

that were generated focused on a 90-day period, which is close to a 3-month period that would account for a complete season. 

More specifically, the winter season was specified for 90 days after December 1st  and the summer season would last for 90 days 

after June 1st. The five cleaning frequencies would range from cleaning every week to cleaning every five weeks. 
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Fig. 5 - Percentage loss in solar irradiance versus dust accumulation. 

 

 

Fig. 6 - Power output of a solar panel under ideal, actual, and model conditions. 
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Fig. 7 - Virtually generated dust accumulation on solar panels during the summer season with five different cleaning frequencies. 

A summary of the results for both the maximum and average dust levels across the summer and winter seasons for the five 

different cleaning frequencies can be seen in Tables 1 and 2 where the cleaning frequencies are compared. As seen from the 

Tables, the need to clean in the summer is far greater with dust levels reaching over 4 mg more than in winter. With cleaning 

every 5 weeks, the levels of dust during the summer reached a peak level of 7.9116 mg while, during the winter months, it 

reaches a maximum of 4.5734 mg. This indicates that the need for cleaning is far greater in the summer as the rate of dust 

accumulation is very close to double that in the winter. When comparing the average dust levels for both seasons, similar 

results can also be seen. The summer has an average dust level close to 3.6672 mg when cleaning occurs every five weeks 

while the winter has an average level of 1.4115 mg. Evidently, the average dust level during the summer is over double that 

in the winter, which indicates a far greater dust accumulation rate and a greater need for cleaning. When analyzing this 

further, it would take cleaning to occur every week for the average dust level to drop close to that when cleaning occurs every 

five weeks in the winter. If cleaning occurs every week in the summer, dust levels can drop significantly and the power losses 

that PVs face will be far less. In fact, the difference in the average dust level during the summer for every week and every 

five weeks is 1.7432 mg. When comparing this to the winter, the difference between the two extremes of cleaning frequencies 

is less than half at 0.6276 mg. Evidently, there is a far greater benefit of cleaning every week in the summer than there is in 

the winter as dust accumulation levels would decrease by close to 2 mg on average, which will make a huge difference to 

overall PV performance. Consequently, cleaning does not have to occur anywhere near as frequently during the winter season 

as the difference in average dust levels is far less. 

5.2. Model Validation 

The virtual scenarios generated depict results for dust accumulation throughout the year, which must be validated. To carry 

out the validation process, the mean value of dust accumulation for each hour of each season was gathered from the virtual 

scenarios and the 𝑁𝑦 years of historical data. It is important to note that the generation of the virtual scenarios was done 

assuming no cleaning throughout the year. 

TABLE 1 - Maximum dust levels across the summer and winter season 
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Cleaning Frequency Summer Winter 

Every 7 Days 6.0785 mg 2.7246 mg 

Every 14 Days 6.4206 mg 3.2258 mg 

Every 21 Days 6.7535 mg 4.1370 mg 

Every 28 Days 7.0889 mg 4.0536 mg 

Every 35 Days 7.9116 mg 4.5734 mg 

 

TABLE 2 - Average dust levels across the summer and winter season 

Cleaning Frequency Summer Winter 

Every 7 Days 1.9240 mg 0.7839 mg 

Every 14 Days 2.5347 mg 0.8267 mg 

Every 21 Days 2.5704 mg 1.2431 mg 

Every 28 Days 2.7221 mg 1.4115 mg 

Every 35 Days 3.6672 mg 1.4792 mg 

 

 

Fig. 8 - Virtually generated dust accumulation on solar panels during the winter season with five different cleaning frequencies. 

This is because the existing 𝑁𝑦 years of historical data is of dust accumulation with no cleaning. The mean values were then 

plotted together for an entire year and can be seen in Fig. 9. 

As seen in Fig. 9, there is a seasonal variation between the mean values of the levels of dust accumulation. An important 

observation is the large increase in dust accumulation levels between the seasons as is visible from the spring to the summer 

seasons. The reason behind this large increase is because the first hour of summer represents the mean value of dust 

accumulation for every first hour of the day over the entire season. Consequently, there is no gradual increase in dust 

accumulation but a sudden one. In order to interpret the results of the mean values of dust accumulation for the virtual 

scenarios and the 𝑁𝑦 years of historical data, the percentage difference between the mean values was calculated for the entire 

year and can be seen in Table 3. Over the course of the year, the average percentage difference was 4.57% and the maximum 

percentage difference was 9.78%, which highlights the accepTable accuracy of the model. In addition, the standard deviation 

was also calculated for the virtual scenarios and the 𝑁𝑦 years of historical data. Using the standard deviation, the coefficient 

of variation (CV) was calculated as 
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𝐶𝑉 =  
𝜎

𝜑
, (14) 

where 𝜎 represents the standard deviation and 𝜑 represents the mean. For the virtual scenario generated, a standard deviation 

of 0.078 and a mean of 0.457 gave a CV of 17.06%, which is an accepTable 5alue. Hence, there is not a massive dispersion 

of the data around the mean and, instead, the estimates from the modeled virtual scenarios are precise.  

6. PV SYSTEM SIZING USING THE PROPOSED MODEL 

The proposed model can be implemented to size PV power plants, where the proposed model will impact economical 

aspects severely. To highlight this impact, a case study was developed for a 100-MW PV power plant. The parameters that 

were varied in this case study was the cleaning frequency and the method of cleaning. There were five different cleaning 

frequencies, which included daily, weekly, biweekly, monthly, and no cleaning. In terms of the method of cleaning, there 

was automated and manual cleaning. Table 4 summarizes the parameters of the case study that were used to get a cost 

estimate. All costs related to cleaning were acquired from an existing case study in [29].  

6.1. Cleaning Cost Per Cycle for Different Cleaning Methods 

The first step to calculate the cost estimate of cleaning was to determine the overall cost of a single cleaning cycle for the 

entire PV power plant assuming the different cleaning methods. Starting with manual cleaning, the cost of water, labor, and 

other materials was calculated to reach a total sum of $17,921 per cleaning cycle. It is important to note that in this calculation, 

there is no inclusion of any capital cost as this is not automated cleaning. For automated cleaning, costs were divided into 

either running or capital. With the running costs calculated first, the total automated running costs when including water, 

labor, and other materials is $2,344 while the automated total capital cost is $57,620. 

 

Fig. 9 - Dust accumulation mean comparison for different seasons. 

 

TABLE 3 – Maximum and minimum percentage difference across all seasons 
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Seasons 
Maximum Percentage 

Difference (%) 

Minimum Percentage  

Difference (%) 

Spring 9.78 0.27 

Summer 8.34 0.41 

Autumn 9.33 0.47 

Winter 9.15 1.92 

 

TABLE 4 - Parameters for cleaning a 100 mw PV power plant 

Parameter Value Parameter Value 

Power Plant Size (MW) 100 Capital Equipment ($) 90,000 

Power Plant Area (m2) 717,949 Consumable & Maintenance Cost ($/hr) 7 

Module efficiency 14% Allocated Capital Cost ($/hr) 3.12 

Cost of Water ($/liter) 0.0024 Automated Cleaning Rate (m2/hr) 4460 

Water Consumption (liter/m2) 0.5 Discount rate  5% 

Time to Clean 1 Panel (min) 0.5 Escalation rate  1% 

Labor Rate ($/hr) 4.45 Loan period (yrs) 20 

Cost of Other Materials ($/m2) 0.0053   

 

6.2. Levelized Cleaning Costs  

To calculate the yearly cleaning cost depending on the different frequencies, the levelized cleaning cost of the different 

cleaning frequencies must first be calculated. To do that, the levelizing factor (𝐿𝐹) was first calculated using 

𝐿𝐹 = (
(1 + 𝑑′)𝑛𝑙𝑜𝑎𝑛 − 1

𝑑′(1 + 𝑑′)𝑛𝑙𝑜𝑎𝑛
) × (

𝑑(1 + 𝑑)𝑛𝑙𝑜𝑎𝑛

(1 + 𝑑)𝑛𝑙𝑜𝑎𝑛 − 1
) , (15) 

𝑑′ =
𝑑 − 𝑒

1 + 𝑒
 , 

(16) 

where 𝑑 represents the nominal discount rate, and 𝑑′ is the effective discount rate with escalation, 𝑒 the escalation rate, 

and 𝑛𝑙𝑜𝑎𝑛 the loan term. The 𝐿𝐹 can now be multiplied with the total cleaning cost per cycle for both cleaning types and with 

the cleaning frequency as well. The results of the levelized cleaning cost based on cleaning frequency for a year can be seen 

in Table 5. As seen in Table 5, the cost for using automated cleaning is far cheaper no matter what the cleaning frequency is. 

Consequently, only the automated cleaning option will be used in further calculations. 

 

TABLE 5 - Levelized cleaning cost based on cleaning frequency 

Cleaning Frequency Manual Cleaning Automated Cleaning 

Daily $7,158,522 $994,074 

Weekly $1,019,844 $191,033 

Biweekly $509,922 $124,327 

Monthly $235,349 $88,408 

6.3. Cost Analysis 

With the costs of automated cleaning for different cleaning frequencies acquired, the proposed model can now be simulated 

and sized to fit a 100-MW PV power plant. However, the model will also vary the cleaning frequency for an entire year and 

determine the average energy production for different seasons. A summary of the results can be seen in Table 6. With the 

cost of electricity assumed at $60 per MWh, the levelized annual cost per season can be calculated without any cleaning cost 

and can be seen in Table 7. Using the levelized cleaning costs based on the cleaning frequency calculated earlier, the total 

net profit including cleaning costs can be seen in Table 8. 
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As seen in Table 8, depending on the season, certain cleaning frequencies would be more profiTable. In this specific case 

with the cost of electricity set at $60 per MWh, weekly cleaning would be the ideal cleaning frequency in spring, daily 

cleaning in the summer and autumn season, and weekly cleaning again in the winter season. 

 

 
TABLE 6 - Average energy in MWh for different seasons depending on cleaning frequency 

Cleaning Frequency Spring Summer Autumn Winter 

Daily 18,232 35,683 34,451 13,138 
Weekly 16,562 32,193 30,943 11,860 

Biweekly 15,419 30,642 29,276 11,203 
Monthly 14,336 28,500 26,867 10,351 

None 12,815 24,742 23,845 8,946 

TABLE 7 - Levelized annual cost per season in US Dollars 
 

Cleaning Frequency Spring Summer Autumn Winter Total 

Daily 1,197,187 2,343,047 2,262,175 862,665 6,665,076 

Weekly 1,087,494 2,113,939 2,031,824 778,766 6,012,025 

Biweekly 1,012,487 2,012,075 1,922,365 735,654 5,682,583 
Monthly 941,383 1,871,421 1,764,197 679,668 5,256,670 

None 841,509 1,624,618 1,565,752 587,424 4,619,305 

 

TABLE 8 - Total net profit in US Dollars 
  

Cleaning Frequency Spring Summer Autumn Winter Total 
Percentage Increase 

Compared to No Cleaning 

Daily 948,669 2,094,528 2,013,657 614,147 5,671,002 22.8% 

Weekly 1,039,736 2,066,181 1,984,066 731,007 5,829,992 26.2% 

Biweekly 981,406 1,980,994 1,891,284 704,572 5,558,256 20.3% 

Monthly 919,281 1,849,319 1,742,095 657,566 5,168,262 11.9% 

None 841,509 1,624,618 1,565,752 587,424 4,619,305 0% 

Maximum (Fixed Cleaning 

Schedule) 

1,039,736 2,066,181 1,984,066 731,007 5,829,992 26.2% 

Maximum (Varying Cleaning 

Schedule) 

1,039,736 2,094,528 2,013,657 731,007 5,878,930 27.3% 

 

If the same cleaning frequency was followed for every season, profits would not be maximized. The final row of Table 8 

indicates the maximum values for each of the seasons to get the highest net total profit. The percentage difference between 

the highest net total profit by choosing the optimal cleaning frequency in different seasons and no cleaning is the most at 

27.3%. By keeping the same cleaning frequency for the entire year, the percentage difference with no cleaning frequency is 

22.8%, 26.2%, 20.3%, and 11.9%, for daily, weekly, biweekly, and monthly cleaning, respectively. In monetary terms, the 

loss in profit when not cleaning when compared to implementing the optimum cleaning frequency depending on the season 

is estimated at $1,259,625. Even by keeping monthly cleaning for the entire year, the loss amount is as large as $710,667. 

Hence, there is a need to optimally choose the ideal cleaning frequency depending upon the season and not use the same 

cleaning frequency for the entire year. Overall, the maximum total net profit is an accepTable and realistic amount for a 100-

MW PV power plant. In addition, depending upon the cost of electricity, the recommended cleaning frequency would change 

depending upon the season to maximize profit. To understand this further, a summary of the result of varying the cost of 

electricity starting from $40 per MWh going up in steps of $20 per MWh until $160 per MWh can be seen in Table 9. 

As seen in Table 9, the recommended cleaning frequency when the price of electricity was $40 was weekly cleaning for 

all seasons throughout the year for maximum profit. As the price of electricity increased, the recommended cleaning 

frequencies for the summer and autumn season became daily. This pattern remained the same until the cost of electricity was 

$120 where the spring recommended cleaning frequency became daily. Finally, at an electricity cost of $160, the cleaning 

frequency for all seasons became daily. More importantly, when comparing the percentage increase in profit when compared 

to no cleaning for the specified cost of electricity in Table 9, it was 23.9%, 27.3%, 30.5%, 32.4%, 33.9%, 35.1%, and 36.2%. 

The importance of percentage increase in profit when there is a varying cleaning frequency based on the proposed model can 

be seen when comparing it to the percentage increase in profit when there is a fixed cleaning frequency in Table 10. For every 

cost of electricity, the varying cleaning frequency allows for equal or a greater percentage increase in profit with there being 
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no cases where having a fixed cleaning frequency is more profiTable than a varying one. 

In addition to the above, Table 8 indicates how the 100-MW PV plant would have varying degrees of financial benefit 

depending on the cleaning frequency they use over an entire year. As the objective of the case study was to vary the cleaning 

frequencies in a 100-MV PV plant, the benefits of implementing the proposed model can be seen from a financial point of 

view. If the 100-MW PV farm was to maintain the same cleaning frequency with electricity costing $60 per MWh for an 

entire year, it would not maximize its net profit. With a weekly cleaning frequency, the 100 MW PV farm would make 

$5,829,992 total net profit. Similarly, with a daily, bi-weekly, monthly, or no cleaning, the PV farm would make $5,671,002, 

$5,558,256, $5,168,262, and $4,619,305, respectively. However, after implementing the model, Table 8 indicates that by 

varying the cleaning frequency in different seasons, a higher total net profit can be made. In this case, if the spring season is 

cleaned on a weekly basis, the summer and autumn seasons cleaned daily, and the winter season cleaned on a weekly basis, 

a higher total net profit of $5,878,930 can be achieved.  

TABLE 9 – Recommended cleaning frequency for different seasons for varying Feed-in tariff (FiT)   

Cost of 

Electricity 

($/MWh) 

Recommended Cleaning Frequency to Maximize Profit (Variable Frequency) 

Spring Summer Autumn Winter Profit ($) 

Percentage 

Increase 

Compared to No 
Cleaning 

40 Weekly Weekly Weekly Weekly 3,816,984 23.9 

60 Weekly Daily Daily Weekly 5,878,930 27.3 

80 Weekly Daily Daily Weekly 8,036,091 30.5 
100 Weekly Daily Daily Weekly 10,193,253 32.4 

120 Daily Daily Daily Weekly 12,369,040 33.9 

140 Daily Daily Daily Weekly 14,562,765 35.1 
160 Daily Daily Daily Daily 16,779,463 36.2 

 

TABLE 10 - Fixed cleaning frequency for different seasons for varying Feed-in tariff (FiT)   

Cost of 

Electricity 
($/MWh) 

Recommended Cleaning Frequency to Maximize Profit (Fixed Frequency) 

Spring Summer Autumn Winter Profit ($) 

Percentage 

Increase 
Compared to No 

Cleaning 

40 Weekly Weekly Weekly Weekly 3,816,984 23.9 
60 Weekly Weekly Weekly Weekly 5,820,992 26.0 

80 Weekly Weekly Weekly Weekly 7,825,001 27.0 

100 Daily Daily Daily Daily 10,114,386 31.4 
120 Daily Daily Daily Daily 12,336,089 33.5 

140 Daily Daily Daily Daily 14,557,771 35.1 

160 Daily Daily Daily Daily 16,779,463 36.2 
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7. CONCLUSION 

There has been a need for modeling dust accumulation as a function of time and not a fixed variable in order to achieve 

higher accuracy. The proposed work is able to achieve this by introducing the impact of ambient temperature, solar irradiance, 

dust accumulation, and rate of dust accumulation to better mimic the realistic behavior of dust accumulation. The virtual 

scenarios generated were able to show that dust accumulation would increase at certain times and decrease as well depending 

upon the aforementioned weather variables in different seasons of the year. As a result, the paper was able to address what 

was lacking in literature today by modeling dust as a function of time which is a major benefit of this work. Additionally, 

another important outcome of the proposed model is determining the optimum cleaning frequency for a PV farm to maximize 

net profit. After the proposed model was tested a case study for a 100-MW PV power plant, results showed that depending 

upon the cost of electricity, the need for cleaning at different frequencies could profit PV power plants more or less. By 

allocating all resources towards automated cleaning, as it was shown to be more economical than manual cleaning, a PV 

power plant could maximize profit by determining at which frequency they would want to clean in a specific season. 

Furthermore, the paper also developed an accurate relationship between the output power of a PV and dust accumulation.  

In terms of recommendations for future work, it is important to note that the proposed model only included data for solar 

irradiance, ambient temperature, dust accumulation, and rate of dust accumulation. While other factors including relative 

humidity, wind speed, and precipitation are also important for dust accumulation, their information was assumed to be 

embedded within the data for dust accumulation as noted in Section III. Consequently, including separate data for relative 

humidity, wind speed, and precipitation along with dust accumulation would further improve the accuracy of the model. In 

addition, other factors including dust particle size, PV tilt angle, and pollutants in the environment can also be taken into 

consideration as they also dictate the behavior of dust accumulation. Therefore, by including the aforementioned factors 

affecting the behavior of dust, the proposed model would more accurately depict dust accumulation on a PV. The resulting 

output of the improved model would better decide when to optimally clean large PV systems that suffer greatly from dust 

like in the Middle East depending on the season. 
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