
1

A Multistage Passive Islanding Detection Method
for Synchronous-Based Distributed Generation

Abstract—A multistage approach to passive islanding detec-
tion is proposed that utilizes a decision-tree-like classification
algorithm. The novelty of the proposed method is centered on
the way in which features are passed to subsequent stages of
the decision tree (DT). Feature sets extracted using different
sized time windows are passed to successive stages of the tree.
This provides two important advantages: (i) cases which can be
easily determined as either islanding or non-islanding events are
flagged as soon as possible without waiting for the full feature
set to become available (ii) because the algorithm allows for the
use of different sized time windows, features are analyzed in
time-scales which fit their natural patterns of temporal evolution.
The proposed classifier is trained and tested using a database of
feature vectors, obtained using PSCAD, which were designed to
reflect a variety of commonly encountered events on an IEEE
34-bus distribution system. One of the key requirements for the
proposed algorithm was that easy cases should be flagged as
soon as possible; this property was confirmed by the observation
that most events (≈79%) were detected within 10-20ms, while at
the same time retaining a very high detection rate overall cases
(> 99%).

Index Terms—Islanding detection, non-detection zone, decision
tree, distributed generation.

I. INTRODUCTION

ISLANDING detection can be conducted locally at the
point of common coupling (PCC) or remotely at the utility

side by means of advanced communication techniques. Local
methods can generally be grouped into active and passive
methods depending on their operating mechanism [1]. When
the detection method fails to identify an islanding case within
the preset time limit, the incident event is said to fall within the
non-detection zone (NDZ) of the method [2]. Many research
efforts have focused on reducing the size of the NDZ in
active schemes by carefully setting the thresholds on various
parameters [3].

An active method operates by intentionally injecting per-
turbations into the grid at the PCC and then relies on the
main utility to maintain the system in a stable state. Active
schemes are deemed to have smaller NDZs compared to
passive schemes [2]. The main disadvantage of active schemes
is the instability introduced by the injected perturbations and
the subsequent degradation of power quality [4].

In contrast, a passive detection scheme uses only the mea-
surements made at the PCC. A relay equipped with a pas-
sive detection algorithm observes various local measurement
parameters then makes the decision to trip based on prede-
fined thresholds. Typical passive methods include over/under
voltage and over/under frequency protection (OVP/UVP and
OFP/UFP) [5], the rate of change of system parameters like
frequency [6], rate of change of active power [7], rate of
change of phase angle difference [8], and the rate of change

of frequency with power [9]. The change in voltage angle has
also been used as a parameter in vector surge relays [10]. The
use of the voltage unbalance to detect islanding was studied
in [11]. More sophisticated signal processing techniques such
as the discrete wavelet transform and S-transform have also
been applied to achieve faster detection [12]. In summary, both
passive and active approaches have their respective advantages
and disadvantages. In this paper, our focus is on the use of
intelligent algorithms for islanding detection, which tend to
be more relevant to passive detection methods. However, it is
not our intention to argue that one approach is superior to the
other.

A. Literature Review

The application of intelligent and machine learning algo-
rithms in detecting islanding events is described in [13] - [21].
For example, the research work in [13] proposes the use of
the naı̈ve-Bayes classifier to classify the coefficients extracted
from applying estimation of signal parameters via rotational
invariant technique. Even though this method resulted in a
good classification accuracy, it is limited to a single time
window of 100ms duration. In [14], a fast gauss-Newton
algorithm was presented for the islanding detection problem,
which works in recursive and decoupled manner. In [15], a
decision tree (DT)-based approach which used 11 features was
proposed for use with a system with synchronous-based DG.
The decision-making times were in the range of 45 to 50 ms,
and the mis-classification rate was 0% for non-islanding events
and 16% for islanding events. The work in [16] presented
a comparison between using three classifiers: DTs, support
vector machines (SVM) and probabilistic neural networks for
islanding detection. The classifiers were trained using features
extracted at a fixed time window size after applying discrete
wavelet transform to extract features. The results showed that
the DT classifier achieved the highest classification accuracy
of the three, at 80%.

In [17], features including positive and negative sequence
quantities are extracted using discrete Fourier transform and
a decision tree is trained to build the data mining model for
islanding detection. In [18], a multi-feature SVM-based classi-
fier is proposed for islanding detection. In [19], autoregressive
signal modeling is utilized to extract signal features which
are then passed to an SVM classifier for detecting islanding
conditions. In [20], signal features are extracted using hyper-
bolic S-transform, time-domain transform and mathematical
morphology methods and similarly SVM is implemented to
distinguish islanding from other power quality events. In [21],
wavelet is used to extract features and machine learning algo-
rithms are implemented to automate the classification process.
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The use of SVM as a dual-functional classifier for detecting
and discriminating islanding against grid-connected mode and
grid fault against the normal condition is proposed in [22]. In
[23], a method that relies on adaptive neuro-fuzzy inference
system is proposed where seven parameters are monitored at
the DG point of common coupling and it has been shown that
the proposed method will depend on the sampled time as well
as the number of samples.

B. Contribution and Paper Organization

A common feature of the examples listed above is that
they are based on feature vectors that are derived from time
windows of uniform length. While this assumption simplifies
the feature extraction and classification process, it is certainly
not a self-evident fact. As a counterpoint, we put forward the
following two postulations:

1) Many commonly encountered power system events are
simple in that they can be easily classified as either is-
landing or non-islanding occurrences. If this is true, then
it should be possible to quickly identify and flag these
events accordingly, thus avoiding unnecessary delays in
the decision-making process.

2) The temporal evolution of islanding-related features
occur over different time scales. As such, extracting
features from uniformly sized time windows is akin to
taking a “one-size-fits-all” approach. If this is true, then
using variable-sized time windows may result in higher
accuracy rates compared to traditional methods.

All aforementioned islanding detection methods relying on
feature extraction, utilize one window size for determining
the features as well as their thresholds to be utilized for
islanding detection. The features extracted will depend on the
time window size (sampled time) as indicated in [23]. Thus,
the main contribution of this paper is developing an islanding
detection method with minimal NDZ while achieving fast
detection by utilizing a multi-stage multi-window approach
where in each time window (stage) the optimal features and
their thresholds are determined.

In this paper, we seek to demonstrate the validity of these
two statements by developing and testing a novel, multi-
stage islanding detection method on a system incorporating
synchronous-based DG. The proposed method is based on a
decision tree-like (DTL) algorithm that operates on features
derived from a series of time windows of increasing length.
While traditional DTs use a single stationary set of features,
the approach presented uses features extracted from the dif-
ferent time windows as input to successive stages in the tree.

The proposed approach is tested on the standard IEEE
34-bus radial distribution system that is modeled using
PSCAD/EMTDC software. A comprehensive training database
that covers a wide variety of loads, real and reactive power
mismatches and different scenarios encompassing both island-
ing and non-islanding events has been generated and is used
to train and test the DTL classifier. For a given DG capacity,
the active and reactive power mismatch is adjusted by varying
the load resistance, inductance and capacitance to achieve the
desired percentage mismatches in active and reactive power at

Fig. 1. IEEE 34-Bus System with a synchronous-based DG unit

the DG PCC. Finally, the results obtained for different sets of
training and testing data sizes are compared.

II. SYSTEM MODELING AND SIMULATIONS

In this study, the IEEE 34-bus distribution network with
synchronous-based distributed generator (DG) is modeled us-
ing PSCAD/EMTDC simulations. A set of events correspond-
ing to islanding and non-islanding cases are simulated using
various loading conditions at different locations. Sixteen fea-
tures were extracted based on the values of voltage, power and
frequency measured at the PCC. For real-time implementation
for the proposed algorithm, system parameters (for example,
frequency and voltage) will be continuously monitored and the
first stage of the algorithm will be triggered at the moment
when any noticeable deviation is detected in such parameters.

A. System under study

A schematic of the IEEE 34-bus distribution network is
shown in Fig. 1. The distribution system is connected with
the grid through a 69kV/24.9kV transformer. A synchronous-
based DG rated for 1MVA, operating at unity power factor, is
connected at node 848 through a 24.9 kV/6.6 kV transformer.
This DG is equipped with an IEEE Type-1 exciter model. In
distribution systems, loads can vary from constant power loads
to loads that are voltage and frequency dependent. It has been
shown, in [19] and [24], that the load type can have an impact
on the islanding detection capability and thus it is important
to consider the load voltage and frequency dependence when
analyzing islanding detection. Loads modeled in this system
are of the static type load model mentioned in [25]. The
mathematical representation of the static load characteristics
is as follows:

P = P0

(
V

V0

)NP
(1 +Kpf∆f) (1)

Q = Q0

(
V

V0

)NQ
(1 +Kqf∆f) (2)
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TABLE I
SUMMARY OF SIMULATED EVENTS

Event description Number of events Event class
RLC loads with active and
reactive power mismatch

5,906 islanding

Single-phase short circuit
at various locations

620 non-islanding

Three-phase short circuit
at various locations

628 non-islanding

Capacitor switching at
various locations

1,260 non-islanding

Load switching at various
locations

3,151 non-islanding

Non-linear load switching
at various locations

800 non-islanding

Motor switching at vari-
ous locations

630 non-islanding

where V0, P0, and Q0 are the nominal load’s voltage, active,
and reactive power respectively. ∆f is the deviation in fre-
quency from the rated value (f−f0). NP and NQ have values
between 0 and 2 which determine the load’s characteristic
(constant power, constant current or constant impedance when
the values are 0, 1, or 2 respectively). The constants Kpf and
Kqf shape the load’s response for frequency deviation [25].

In addition to load variation, two system loading conditions
are considered: normal and reduced system loading; the latter
was simulated by disconnecting the link between nodes 834
and 860, which removes all subsequent loads.

B. Simulated cases

Table I summarizes the simulated events. As can be seen,
two major categories of events were simulated, namely “is-
landing” and “non-islanding”. IEEE Standard 1547 mandates
that the detection method be tested on various mismatches
between the power generated and the demands of these local
loads. To satisfy this requirement, a variety of local load com-
binations were simulated for the islanding cases by controlling
the real and reactive power mismatches within the range from
0% to 15%.

For the non-islanding category, disturbances that may occur
during the normal operation of the system were simulated.
Hence, five main types of non-islanding events have been
simulated: (1) Single and three-phase short circuit faults taking
place at various locations and lasting for 100ms before being
cleared; (2) Capacitor switching events at various locations
with total capacity of 12.29 µF , 8.29 µF and 5.29 µF ;
(3) RLC loads rated between 0.3MW and 1.4MW switching
events at various locations and different power factors from
0.90 to 0.98; (4) Non-linear load switching; and (5) Induc-
tion motor switching at different locations. The variations in
capacitor as well as load values have been chosen such that
the voltage levels are within the IEEE Std. 1547 threshold
values during normal operating conditions [26]. In summary,
a total of 7089 non-islanding and 5906 islanding events were
generated, as is shown in table I.

Voltage and frequency waveforms measured at the PCC
during islanding events at various active power mismatch

Fig. 2. Detailed steps involving dataset generation

conditions are shown in Fig. 3, while the corresponding
waveforms for non-islanding events related to load switching,
capacitor switching, single and three-phase short circuits are
shown in Fig. 4. It can be clearly seen that the islanding
event has minimal deviation and is hence not detectable
using OVP/UVP or OFP/UFP protective relays. Hence, more
intelligent islanding detection methods are required when DG
units are involved.

C. Feature extraction

Fig. 2 shows the detailed steps involved in dataset gener-
ation. Feature vectors corresponding to the simulated events
are extracted from measurements made at the PCC. Features
are extracted using sliding windows of 10ms, 20ms, ... , 50ms
in length and are then stored in five different matrices along
with the target vectors as shown in the figure. In this paper,
in addition to voltage symmetrical components, features for
islanding detection were selected based on available features
used in [10], [15], [27]- [30]. During an islanding event, there
could be excess or deficit generation capacity in the islanded
system. Such a mismatch between the generation and load will
result in changes in both voltage and frequency which in turn
will impact the active and reactive power generated by the DG.
For this reason, such parameters in addition to their rate of
change could be effective in distinguishing an islanding event.
Furthermore, transients generated after an islanding event on
a three-phase system are unbalanced due to the time shift in
the opening of the breaker poles on each phase (the breaker
poles open at the current zero-crossing) which thus affect the
voltage symmetrical components magnitude as well as THD.

In this study, the following features are considered as
potential predictors of islanding: DG units active and reactive
power P and Q, rated voltage V , terminal frequency F ,
the negative, positive and zero-sequence voltage components
V−, V+, and V0, and the total harmonic distortion of voltage
THDV . The Fast Fourier Transform and symmetrical com-
ponent transformation block in PSCAD/EMTDC was utilized
for determining the value of THD and sequence components.
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Fig. 3. (a) System voltage and (b) frequency waveforms at PCC due to a islanding event occurred at 15.0s for the following mismatches in active power
supplied: -10%, -2%, -0.5%, +0.5%, and +2% while the system is carrying an RLC load with a power factor of 0.98 supplied by a single DG at bus 832
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Fig. 4. (a) System voltage and (b) frequency waveforms at PCC due to disturbances (non-islanding events) occurred at 15.0s at the bus 812.

TABLE II
LIST OF THE POTENTIAL FEATURES COLLECTED AT THE PCC

V F P Q V− V+ V0 THDV

δV δF δP δQ δV− δV+ δV0 δTHDV

THDV =

√
V 2
2 + V 2

3 + · · ·+ V 2
h

V1
(3)

where h is the number of harmonics and Vi is the voltage
magnitude of the ith harmonic order.

In addition to the above features, the derivative of each
signal has been also included in the set of features. Derivatives
were estimated by splitting the respective time window into
two parts then taking the difference between the average of
each part divided by the total window size. For example, the
derivative of a feature K is calculated as shown in Eq. (4)
below:

δK =
2

n

n/2∑
i=1

Ki −
n∑

i=n/2+1

Ki

/w (4)

where n is the number of samples taken in the given time
window, w is the window size in seconds, and Ki is the ith

sample of the feature K. The set of features considered in this
study is provided in Table II.

III. TRAINING THE DTL CLASSIFIER

The proposed method consists of multiple classification
stages that act on features extracted from time windows of
different lengths. At each stage, events falling outside the pre-
set decision boundaries are classified as either islanding or
non-islanding, while events that fall within the boundaries (i.e.
the NDZ of that stage) are passed to successive stages. So the
problem of training the DTL classifier translates to (1) the
process of identifying the optimal feature (or features) to be
used in each stage and (2) setting the respective thresholds
and associating these with the correct class labels.

It would be possible to conceive a variety of schemes for
performing these operations, but whatever the exact algorithm
used, it should be designed to reduce the overall classification
time by minimizing the number of events falling within the
NDZ at each stage. For this study, a greedy training algorithm
was designed which explicitly satisfied the above requirement.
As will be seen, the proposed algorithm is easy to implement,
yet resulted in a very efficient performance.

Input to the training algorithm is a data of training sam-
ples having their features sampled at different time windows
(stages) while the output is a decision tree made of the features
that are the most informative at each stage associated with their
thresholds values and recommended class labels. The first step
in the algorithm, considering two features per stage, is to iden-



5

δQ

−800 −600 −400 −200 0 200 400 600 800

LBi1 UBi1

+ islanding
x non-islanding

Fig. 5. Setting the upper and lower bounds for δQ at label switching points

tify the best combination of two features which can classify
most of the training samples, whereas the remaining samples
will be classified during the subsequent stage. Assuming the
algorithm is evaluating the pair of features δQ and THDV

respectively, initially all training samples are sorted ascending
on δQ values along with their class labels. The first switch in
class label, i.e. from islanding to non-islanding or vise versa,
denotes the threshold value of the lower boundary LBδQ. Then
training samples are sorted descending on δQ values and the
first switch in class label will denotes the threshold value of
the upper boundary UBδQ as explained in Fig. 5. In a similar
way, the method evaluates the other feature THDV , but after
excluding the training samples having their δQ below LBδQ
or above UBδQ from the training samples which produces
LBTHDV

and UBTHDV
. Finally, features combination with

lowest number of remaining unclassified samples is selected
in the particular stage and the algorithm continues to the next
stage until all the training samples are classified.

Note that having the training data presented as a set of fea-
ture matrices corresponding to different window sizes reflects
the present situation where features extracted using shorter
time windows will be available sooner, while features which
require longer time windows will only be used later if required.

For a new data sample, classification is performed as
follows: the value of the feature in the head of DT is compared
against the lower and upper boundaries. If this value is within
the boundaries LB and UB of that feature, comparison moves
on to the second feature in the tree. Otherwise if the value
is less than LB or above UB, the label associated with the
particular boundary will be recommended as a predicted class
label for the new sample.

IV. RESULTS AND DISCUSSION

The proposed algorithm is implemented in Matlab and
tested on the feature dataset extracted from the results of the
IEEE 34-bus PSCAD simulation. The mechanism by which the
proposed islanding detection approach discriminates between
different kinds of events can be visually depicted using the
NDZ graph. At each stage, the selected features progressively
eliminate successfully classified subsets, while the remaining
unclassified cases are passed on to subsequent stages and the
procedure is repeated. This is illustrated in Fig. 6 where it can
be seen that islanding events falling within region A cannot
be correctly classified using only bounds on the two features
THDV and δQ. Thus, an event falling into that area will be
passed to the next stage where a new set of feature bounds
has to be identified. For the case where two features are used
in each stage, the complete list of selected features along with
the corresponding lower and upper thresholds are shown in
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Fig. 6. Lower and upper bounds of THDV and δQ. Islanding and non-
islanding cases outside the bounds are detected, while area A is a NDZ.
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−8.1167 >
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Fig. 7. A DTL classifier uses multiple time windows to detect islanding.
(label ”non” and “isl” denotes the non-islanding and islanding events)

Fig. 7 as a decision tree. The labels non and isl denote the
non-islanding and islanding events respectively.

As can also be seen in Fig. 7, two separate collections of
features are used, the first is extracted from the 0−10ms time
window and the second from the 10 − 20ms time window.
From this figure, it can be seen that some decisions are made
after 10ms while others are deferred to the 20ms point.
As explained earlier, this segregation of the data set into
different stages allows for “easier” cases to be detected much
sooner (10ms) while decisions on more difficult cases will be
postponed until more information becomes available.
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Fig. 8. Decision trees for feature sets of size M = 1, 2, 3, and 4 per stage

A. Case I: Feature set size

DTL classifiers using feature subsets of size {1, 2, 3, 4}
were trained then tested using data sets corresponding to
time windows ranging from 10ms to 50ms. The database is
randomly divided using stratified sampling into two segments:
6,500 cases which were used to train the model, and a further
6,495 cases which were reserved for testing.

Feature sets are ranked based on the number of training
events excluded by the feature thresholds. Table III shows the
top-ranked, pairwise feature sets obtained after the first stage
of the training algorithm. The sets are sorted in descending
order based on the column Ni1 + Ni1,i2 which represents
the number of cases correctly classified (excluded) using
thresholds on the joint feature pairs fi1 and fi2 . If two sets
have the same value of jointly excluded cases, the number of
the cases excluded by only the first feature is used for sorting
then the number of the cases excluded by the second feature.
This is to give more priority to the feature fi1 so as to get
minimal number of features.

From Table III, it can be seen that almost 79% of the events
can be classified at this first stage (5130 out of 6500 events).
This validates our original motivation that the DTL would be
able to discriminate between most islanding or non-islanding
events within a very short period of time (10ms).

The structures of the DTLs produced using the proposed
training algorithm are shown in Fig. 8 (a, b, c, and d) for
feature sets of size 1, 2, 3 and 4 respectively. The values
presented in Fig. 8 are the upper and lower limits of the fea-
tures which were extracted using the proposed DTL algorithm.
As can be seen, the produced DTL classifiers vary somewhat
in size and the features selected. When only one feature per
time window is used, the resulting tree has 5 decision levels.
This is because the predictive capability of one feature is less
than that of a combination of two or more features, which
necessitates the use of more stages. However, the tree produced
using subsets of size 4 is composed of 5 level of rules, though

these are contained within two DTL stages. This points to
a tradeoff between the complexity of each layer, determined
by the number of decision rules used, and the time taken to
correctly classify a case, which is a function of the number
of stages in the DTL. More studies are needed to determine
the optimum balance but in general, having some “tunability”
in the system was perceived to be a good thing as it suggests
that the proposed approach can be customized to suit different
applications and requirements.

It can also be observed that the trees which use 2, 3, and
4 feature subsets have the same root node THDV , and the
trees which use 3 and 4 feature subsets share a common set
of features for the first three levels, which were THDV , δV+
and δF . From this we can infer that this group of features has
the best predictive capability at this time scale. It can also be
noticed, from Fig. 8(c) and (d), that the DTL needs only one
feature in the 10 − 20ms window to classify the remaining
cases, even though it is allowed to have up to 3 and 4 features
respectively.

Another interesting observation can be made by comparing
the trees depicted in Fig. 8(b) and (d). Here, it can be seen
that in tree (b), four features are used: two of which were

TABLE III
THE NUMBER OF CASES CLASSIFIED BY SETS OF TWO FEATURES OUT

OF 6,500 CASES

fi1 fi2 Ni1 +Ni1,i2 Ni1 Ni1,i2
THDV δQ 5130 1624 3506
THDV δV 4816 1624 3192
THDV δV+ 4626 1624 3002
V+ δF 4493 2880 1613
δV δV+ 4293 2520 1773
δV+ δV− 4264 3086 1178
V+ δP 4237 2880 1357
V δV0 4066 2859 1207
δV+ δV0 4008 3086 922
V δF 3939 2859 1080
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TABLE IV
FEATURE SETS AND CLASSIFICATION ERROR WHEN USING DIFFERENT

SUBSETS OF DATA FOR BUILDING THE TREES

Feature set
size

10% 20% 30% 40% 50%

1

δV+ δV+ δV+ δV+ δV+

δV− δV− δV− δV− δV−
V− V− V− V− V−
V− F F F F
F V− V V V−

Error (%) 0.69% 0.25% 0.07% 0.02% 0.02%

2

THDV THDV THDV THDV THDV

δQ δQ δQ δQ δQ
F Q δTHDV δTHDV δTHDV

δQ δV− δV− δV− δV−
Error (%) 0.17% 0.26% 0.01% 0.00% 0.02%

3

THDV THDV THDV THDV THDV

δV+ δV+ δV+ δV+ δV+

V− δF δF δF δF
δQ δQ δQ δQ δQ

Error (%) 0.08% 0.05% 0.05% 0.05% 0.06%

4

THDV THDV THDV THDV THDV

δV+ δV+ δV+ δV+ δV+

δF δF δF δF δF
δV− δV− δV− δV− δV−
Q δQ δQ δQ δQ

Error (%) 0.51% 0.22% 0.05% 0.05% 0.02%

extracted from the 0− 10ms window and the other two from
the 10− 20ms window; tree (d), on the other hand, uses four
features extracted from the 0 − 10ms window but these are
incapable of classifying all the cases and a fifth feature is
required from the 20ms window. This clearly shows the time
dependant nature of the best feature vector combination. It is
worth noting that the number of training cases detected within
20ms for subsets of one, two, three and four features are 3096,
5103, 5893 and 6363 respectively. Hence, using four features
per stage allows the detection of more cases in less time but
at the cost of greater complexity per stage and lower accuracy
as will be explained in the next section.

B. Case II: Training set size

System disturbances are included during the simulation
stage. Hence, the set of simulated cases includes many sys-
tem normal and abnormal conditions that can occur in real
power systems and accounted for during the selection of the
boundaries. Therefore to study the robustness of the algorithm,
random subsets consisting of 10%, 20%, 30%, 40%, and 50%
of the total number of the simulated cases were chosen to be
utilized for extracting the prominent feature groups and their
boundaries while the rest of the cases are used for testing.

The feature sets used and classification errors of the result-
ing decision trees are shown in Table IV. As can be seen
there are slight changes in the feature sets obtained using
the different sizes of training sets. Fig. 10 shows the errors
corresponding to each feature subset size and data subset. For
all combinations there were small numbers of misclassified
cases but the misclassification rates were invariably very low
(> 1% for all cases, and > 0.1% in 14 out of 20 cases).
In addition, as expected the classification errors were broadly
lower when larger training sets were used, as a result of better
coverage of the possible test cases. However, this cannot be
guaranteed for all instances and there are some exceptions (for
the combinations of 50% training set size with feature set sizes

Fig. 9. Flowchart of the proposed method considering two features per stage
(tree (b) in Fig. 8)

of 2 and 3); in both instances, the increases are very small and
amount to only 1 or 2 misclassified cases out of thousands of
test cases.

Feature sets of sizes 2 and 3 achieved lower classification er-
rors, averaging 0.092% and 0.058% respectively while feature
sets of sizes 1 and 4 had 0.21% and 0.17% misclassification
rates respectively. Even though all four cases considered gave
reasonably good accuracy for the various data set sizes, which
shows the robustness of the proposed method, the selection of
feature set size per time window depends on the test system
under consideration.

For training set size of 50%, for the two-feature per stage,
there are two misclassified cases; one islanding and one non-
islanding cases. For the three-feature per stage, there is one
islanding case and two non-islanding cases that were misclas-
sified. It is worthy to note that those misclassified cases are out
of 12995 cases (5906 islanding and 7086 non-islanding). The
training set was chosen randomly but it has been found that
further improvement can be achieved if the misclassified cases
are included in the training stage. To prove this, the inclusion
of the aforementioned misclassified cases in the training set
produced updated δQ and δTHDV threshold values which
subsequently resulted in 100% classification accuracy. Thus,
the proposed method has a considerably very small (almost
negligible) NDZ comparable to the methods reported in [15]
and [16].

Fig. 9 presents the flowchart of the proposed method con-
sidering two features per stage. The first stage (first 10ms)
includes the calculation of features THDV and δQ and setting
thresholds on both parameters. Islanding cases that are not
detected in the first stage are passed to the second stage which
includes the calculation of features δTHDV and δV−. Those
features are calculated based on a 20ms window size where



8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4

Er
ro

r 
(%

)

Size of the features set

10% 20% 30% 40% 50%

Training dataset size

Fig. 10. Classification error at different feature sets and training dataset size.
Using two features and a training dataset of size 40%, the proposed method
was able to achieve zero classification error.

thresholds are set on those features for islanding detection.
Islanding detection methods have been proposed in the

literature for either synchronous or inverter-based DG. Each
type of DG performs differently during an islanding condition.
For example, with an inverter-based DG, the reactive power
mismatches is primarily responsible for frequency deviations
[31]. On the contrary, the frequency during an islanding
condition with synchronous-based DG will deviate depending
on the active power mismatch [32]. In addition, the interface
control of each type is different and some islanding detection
methods such as SFS that are applicable to inverter-based
DG are not applicable to synchronous-based [33]. For this
reason, this paper focuses on developing an efficient islanding
detection method for synchronous-based DG only.

C. Case III: Impact of inverter-based DG interconnection

The proposed algorithm is further tested to examine the
impact of inverter-based DG interconnection on the proposed
islanding detection method as such modification is considered
a major change in the distribution system.

inverter-based DG can be equipped with either active or
passive islanding detecting methods. It is worthy to mention
that inveter based DG equipped with active islanding detection
methods will further enhance the islanding detection capa-
bilities since those methods rely on forcing a drift in either
frequency and voltage. To consider a harder case, in this
study, the inverter-based DG is assumed to be equipped with
a passive method that relies on voltage and frequency relays.
A 500 kVA inverter-based DG is connected in parallel with
a 500 kVA synchronous-based DG. A total of 100 islanding
cases are simulated and tested on a DT with two features per
stage. The classification accuracy is 95% when using training
set that does not include any cases involving inverter-based DG
which is expected for a learning-based approach to have lower
accuracy. Furthermore, the accuracy was enhanced to 100%
after including those new cases in the training set without
jeopardizing the overall accuracy.

In light of such result we conclude that although the DT was
not trained on a system configuration with inverted based DG
but still it shows good results. Including this new configuration
in the training set enhanced the DT performance.

54.6%

45.4%

54.6% 14.6%

19.5% 11.2%

23.8% 30.7%

5.2% 40.3%

non-islanding

islanding

Dataset#1:
One DG only

Dataset#2:
Two Sync-DGs 

and Inv-DG Using δQ only

(a) (b) (c)

Fig. 11. Comparing the classification results of using the proposed method
on a system with (a) one Sync-DG, and (b) two Sync-DGs and one Inv-DG.
Results in (c) are for using only δ Q for islanding detection.

D. Case IV: Impact of synchronus-based DG

In this case study, an intricate scenario of having another
synchronous DG connected in the network is examined to
evaluate the performance of the proposed islanding detection
method.

Towards this end, in addition to the 500 kVA synchronous
DG and 500 kVA inverter-based DG both connected at bus
848, another 500 kVA synchronous DG is connected to the
network at bus 832. A total of 205 islanding and non-islanding
cases are simulated and the signals are stored as dataset#2.
Using dataset#1, which corresponds to the previously simu-
lated cases on the network with only one synchronous DG
connected, a DT with two features per stage is trained. The
performance of the DT is then tested on dataset#2 and the
results are shown in Fig. 11 as two confusion matrices. The
figure indicates that the 100% classification accuracy in Fig.
11-(a) achieved using dataset#1 has dropped to approximately
65.8% in Fig. 11-(b) when the DT tested on dataset#2. This
is because the training set that does not include any cases
involving two DGs which is expected for a learning-based
approach to have lower accuracy. However, using samples
from both dataset#1 and dataset#2 to train the DT, the accuracy
was enhanced to 100%.

E. Discussion

Islanding detection is a protection requirement for DG and it
is important while designing resilient and reliable distribution
systems to develop an islanding detection method that is
capable of distinguish between normal system disturbances
and islanding events.

The rate of change of reactive power has been proposed
for synchronous based DGs in [34]. However, this method
relies only on the rate of change of reactive power, whereas
the proposed multi-stage islanding detection method relies on
multiple features as in [15] and [35], and also determines the
optimal features and their thresholds for each time window
(stage). This allows for timely and accurate islanding detec-
tion. Many islanding events can be detected in the first stage
(i.e., after 10 msec), while in the second stage (i.e., after 20
msec) more difficult cases are detected. The proposed method
has been compared with the rate of change of reactive power
where the same approach was utilized but considering only the
rate of change of reactive power as the only available feature
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and only one stage (20 msec). For a 20 msec detection time,
Fig. 11-(a) and (c) presents a comparative analysis highlighting
both the accuracy of the proposed method as well as the rate
of change of reactive power method. As can been seen, the
classification accuracy has dropped from 100% to 69.1% using
the rate of change of reactive power method for a 20 msec time
window and thus the proposed approach has negligible NDZ.

Considering the islanding events, the proposed method is
capable of detecting 72.6% of the cases in 10 msec (first stage)
and the rest in 20 msec (second stage). This detection time is
less than the times 100 msec, 104 msec, and 200 msec reported
in [34], [36], and [37], respectively.

It is worthy to note that the concept of multistage islanding
detection can be further extended by including features such
as the phase angle, individual current harmonics and their rate
of changes which can be considered for future work.

The proposed islanding detection method is suitable for
synchronous-based DG. For inverter-based DG, the proposed
multi-stage islanding detection concept can be applied but due
to the difference between the two DG type characteristics,
a new feature set would need to be determined for inverter-
based DG which is out of the scope of this paper and can be
considered for future work. The proposed islanding detection
method is implemented at each DG location and thus does not
require communication.

V. CONCLUSION

In this paper a novel, multistage islanding detection ap-
proach based on the decision tree-like classifier is proposed
and tested on a system which incorporates a synchronous-
based DG. The proposed islanding detection approach was
tested on a standard IEEE 34-bus radial distribution test
system with a variety of disturbances. In this passive islanding
detection approach, each stage uses a different feature set
collected over a range of time windows for detecting and
distinguishing between islanding and non-islanding events.
The results indicate that the use of multiple features in
the detection method is more effective when different time
windows are considered for the various groups of features to
reduce the NDZ. The proposed method has also been tested
for systems with both inverter and synchronous-based DG and
it has been shown that the proposed method has negligible
NDZ. The best features to be used for each detection stage
will depend on the chosen window size and thus finding
the optimal window size can be considered for future work.
In addition, the interaction between multiple synchronous-
based DG and its effect on the feature selection may require
further investigations. While the IEEE 1547 standard specifies
a detection time below 2 seconds, any method which is able
to further reduce the detection time is an improvement since
there may be unforeseen situations which are not represented
in the current training or testing set. In such situations, having
as larger time “buffer” as possible is clearly valuable as long as
it does not add further complexity to the system. Furthermore,
the proposed approach simplifies the decision process since
many cases are classified immediately after observing only
one or two features.
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