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Abstract—This paper proposes an efficient planning algorithm
for allocating smart electric vehicle (EV) charging stations in
remote communities. The planning problem jointly allocates and
sizes a set of distributed generators (DGs) along with the EV
charging stations to balance the supply with the total demand of
regular loads and EV charging. The planning algorithm specifies
optimal locations and sizes of the EV charging stations and
DG units that minimize two conflicting objectives: (a) deploy-
ment and operation costs and (b) associated green house gas
emissions, while satisfying the microgrid technical constraints.
This is achieved by iteratively solving a multi-objective mixed
integer non-linear program. An outer sub-problem determines
the locations and sizes of the DG units and charging stations using
a non-dominated sorting Genetic algorithm (NSGA-II). Given the
allocation and sizing decisions, an inner sub-problem ensures
smart, reliable, and eco-friendly operation of the microgrid by
solving a non-linear scheduling problem. The proposed algorithm
results in a Pareto frontier that captures the trade-off between
the conflicting planning objectives. Simulation studies investigate
the performance of the proposed planning algorithm in order to
obtain a compromise planning solution.

Index Terms—EV charging stations, remote microgrids, is-
landed microgrids, hybrid microgrids, microgrid planning.

I. INTRODUCTION

REMOTE communities are challenged by a limited access
to fossil fuel. One effective approach to reduce the

dependance on fossil fuel strives to rely more on electric
vehicles (EVs). In addition, wide adoption of EVs promotes
eco-friendliness in remote communities since EVs are charac-
terized by zero green house gas (GHG) emissions. However,
to ensure effective wide adoption of EVs, efficient planning
algorithms are required to properly allocate and size EV
charging stations in such remote microgrids.

Research works in literature focus mainly on smart opera-
tion strategies of EV charging stations [1] - [12]. In specific,
temporal coordination of EV charging demands is adopted
to satisfy the EV charging requests subject to the microgrid
technical constraints. Limited attention is given in literature to
planning problems of EV charging stations in the distribution
grid [13] - [16]. A natural question that arises in this case
is how to balance the supply with the total demand in terms
of the regular loads and the EV charging. One way to handle
this issue is to consider a microgrid setting with an already in-
stalled set of distributed generators (DGs) and rely on demand
response strategies to balance the supply with the total demand
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while allocating the EV charging stations [17]. However,
such an approach might lead to infeasible solutions for wide
deployment of EV charging stations. Hence, the tolerance
gained by adopting demand response strategies can lead to
only a limited number of EV charging stations that can be
installed in the microgrid while satisfying the power balance
constraints. This limited number of installed EV stations might
be insufficient to serve the expected EV charging requests.
This challenge is more pronounced in a remote microgrid
that operates in an islanded mode, and hence, isolated from
the main bulk generation. Consequently, a more effective
approach is to jointly allocate EV charging stations and DGs
in order to balance both supply and demand while serving
the EV charging requests and satisfying the grid technical
constraints. Again, to reduce the dependance on fossil fuel
and promote a sustainable and eco-friendly remote community,
a mixed set of renewable and non-renewable DGs should
be deployed. Unfortunately, the literature lacks an efficient
planning algorithm that can jointly allocate and size both
DGs and EV charging stations in a remote microgrid while
satisfying the microgrid technical constraints and accounting
for the intermittent nature of the renewable DGs and the
coordinated nature of EV charging.

This paper fills the gap in literature by proposing an efficient
joint planning algorithm for EV charging stations and DGs in
remote microgrids. The main contributions of the proposed
joint planning algorithm can be summarized as follows:

• The planning problem is formulated as a multi-objective
mixed integer non-linear program (MINLP) that jointly
specifies optimal locations and sizes of renewable and
non-renewable mix of DG units and EV charging stations
in remote islanded microgrids. The multi-objective func-
tion of the planning problem considers both economical
and environmental dimensions in terms of capital and
operation costs, CAPEX and OPEX, respectively, along
with GHG emissions. Furthermore, the formulated prob-
lem accounts for the operational feasibility of the plan-
ning decisions in terms of active and reactive power bal-
ance, voltage and frequency stability, and reserve margin
constraints. Moreover, appropriate stochastic modeling is
considered in the problem formulation for the intermittent
renewable DG units along with random arrivals and
departures of EV charging requests.

• An efficient planning algorithm is proposed to solve the
NP-hard joint planning problem. An outer sub-problem
allocates and sizes the DGs and EV charging stations, and
hence, specifies the CAPEX, following a non-dominated
sorting Genetic algorithm (NSGA-II). On the other hand,
an inner sub-problem ensures that the planning decisions
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reached by the outer sub-problem satisfies the micro-
grid technical constraints and determines the expected
OPEX and the associated GHG emissions. The two sub-
problems are solved iteratively and an optimal Pareto
frontier is obtained, which captures the trade-off between
the conflicting objective functions.

• Simulation studies are carried out to investigate the
performance of the planning algorithm. A compromise
joint planning solution is shown to offer an acceptable
performance for the conflicting objectives.

The rest of this paper is organized as follows. The system
model is presented in Section II. The problem formulation and
the proposed planning algorithm are given in Sections III and
IV, respectively. Simulation results are discussed in Section V,
and conclusions are outlined in Section VI.

II. SYSTEM MODEL

This section describes the system model in terms of the
stochastic models, hybrid microgrid setting, dispatchable and
renewable DG models, EV coordinated charging mechanism,
and the charging price model, in addition to the GHG emission
models.

A. Stochastic Models

Define a set of scenarios Y that are used to capture the
stochastic nature of the problem in terms of regular load
consumptions, generation from the renewable-based DG units,
and EV demands. Each scenario y ∈ Y is further divided into
set of periods T with equal duration τ .

In order to generate Y , historical data are used for the
regular load consumptions, solar irradiance, and EV arrivals
and parking durations in a parking lot. The year is divided into
4 seasons, and each season is represented by two days, namely,
weekday and weekend. The available data within each day
type in each season is discretized using K-means clustering.
Cumulative distributed functions (CDFs) are calculated for the
regular load consumptions, solar irradiance, and EV arrivals
and parking durations at each hour over each day type in each
season. Furthermore, the desired EV battery state-of-charge
(SOC) and the initial SOC are assumed to follow standard
uniform distributions bounded by lower and upper values that
are selected according to the available EVs in the market.
Using the developed CDFs and random SOC models, scenario
y ∈ Y can be generated with probability p(y) to model a
realization of the regular load consumptions, generation from
the renewable-based DG units, and EV charging demands.

B. Hybrid Microgrid Model

Consider a remote hybrid AC/DC islanded microgrid that
consists of two disjoint sets of AC buses, NAC and DC buses,
NDC. The union of the disjoint subsets of AC and DC buses
is denoted by N . Let K represent a set of AC/DC interlinking
converters that are located within the microgrid to transfer the
power between the AC and DC sections of the microgrid.

Let Pk,n(t, y) and Qk,n(t, y) denote the active and reactive
powers at converter k ∈ K on bus n ∈ N at time instant t ∈

T for scenario y ∈ Y , respectively. The maximum apparent
power capability for converter k ∈ K is denoted by Smax

k,n . For
bus n ∈ N , let Pn(t, y) and PL,n(t, y) denote the net injected
active power and the load active consumption, respectively.
On the other hand, the net injected reactive power and the
load reactive consumption are defined only for bus n ∈ NAC

as Qn(t, y) and QL,n(t, y), respectively.
For bus n ∈ N , the voltage magnitude and angle is given by

Vn(t, y) and δn(t, y), respectively. The upper and lower limits
for the voltage magnitude Vn(t, y) are denoted as V max and
V min, respectively. Similarly, the upper and lower limits for
the system operation frequency ω(t, y) are ωmax and ωmin,
respectively. For two buses n and n′ ∈ NAC, define the
magnitude and angle of the Y-bus element as Yn,n′ and θn,n′ ,
respectively. Also, for two buses n and n′ ∈ NDC, let the Gn,n′

denote the conductance.

C. DG Models

The set of available generation technologies is denoted as D,
which is further divided into two disjoint sub-sets, namely, D1

and D2 for dispatchable (gas-based) generators and renewable
(PV-based) DGs, respectively. Binary decision variable xd,n

defines whether DG technology d ∈ D is allocated on bus
n ∈ N (xd,n = 1) or not (xd,n = 0). By default, a DG d ∈ D1

is allocated on a bus in NAC while a DG d ∈ D2 is allocated on
a bus inNDC. Such an approach is adopted in order to avoid the
extra cost required for the installation of converters. For any
DG unit d ∈ D, let the capital cost and capital recovery factor
be CC,d and Rd, respectively. Denote the first year annual
OPEX for DG d ∈ D by C0,d in $, which accounts for the
fuel cost for the dispatchable generators in D1. As a result, the
levelized OPEX can be defined as CL,d = C0,dfdRd with fd
represents the present value function [18]. The active power
injected on bus n ∈ N by any DG unit d ∈ D is denoted
by Pd,n(t, y) and the DG unit total capacity is Pmax

d,n . The
generated solar power from a PV unit PPV(t, y) is defined as
a fraction of the PV unit total capacity.

Let Qd,n(t, y) denote the reactive power injected by DG
unit d ∈ D1 on bus n ∈ NAC. The apparent capacity for
d ∈ D1 is given by Smax

d,n . Droop control is applied to stabilize
the voltage and frequency levels within the microgrid. Define
ω̂d,n(t, y) and V̂d,n(t) as the no-load reference frequency and
voltage settings for the DG unit d, respectively. Let αd,n(t, y)
and βd,n(t, y) denote the droop slope for active and reactive
powers of the DG unit, respectively.

D. EV Models

Let M denote a set of smart EV charging stations. The
set of chargers available at a given charging station m ∈ M
is given by Im, which has a minimum number of Imin

m and
a maximum number of Imax

m chargers. Let xm,n represent
a binary decision variable that indicates whether a charging
station m is allocated on bus n ∈ NDC (xm,n = 1) or not
(xm,n = 0). Also, let xim,n be a binary decision variable that
indicate whether charger im is allocated in charging station
m (xim,n = 1) or not (xim,n = 0). Define the CAPEX and



3

capital recovery factor per charger i in station m to be CC,i

and Ri, respectively. The charger capacity is denoted as Pmax
im,n.

Let zim,n(t, y) denote a binary charging decision variable
that indicates if an EV connected to charger im ∈ Im in
charging station m ∈M should be charged during period t ∈
T for scenario y ∈ Y (zim,n(t, y) = 1) or not (zim,n(t, y) =
0). Denote B INT

im,n(t, y), BDES
im,n(t, y), and BFN

im,n(t, y) as the
initial, desirable, and final SOC values during period t and
scenario y for an EV connected to charger im in charging
station m that is allocated on bus n. The battery capacity for
an EV that is connected to charger im is given by Emax

im,n and
the energy delivered to the EV’s battery by the end of period
t is denoted as Eim,n(t, y). The charger’s power transfer limit
is P CH

im,n(t, y), the consumed power by an EV connected to
charger im in station m allocated at bus n is Pim,n(t, y), and
the charger’s efficiency is η.

A linear price model is adopted to reflect the dependency be-
tween the charging price ρm,n(t, y) in kWh and the amount of
requested charging by the EV owner as described by the desir-
able SOC BDES

im,n(t, y). Specifically, the charging price presents
maximum and minimum values of ρmax and ρmin, respectively.
At a specific period t and scenario y, when the charging price
is set to ρmax, BDES

im,n(t, y) is set to a minimum value Bmin.
On the other hand, when the charging price is set to ρmin,
BDES

im,n(t, y) is set to a maximum value Bmax. In between, a
linear relationship is assumed between the charging price and
the desirable SOC, i.e., BDES

im,n(t, y) = Bmax − ∆ρm,n(t, y),
where the slope ∆ = (Bmax −Bmin)/(ρmax − ρmin).

E. Green House Gas Emission Models

Two elements contribute to the amount of GHG emissions
in the microgrid, namely, the dispatchable DG units and the
EVs. Let µd denote the amount of emitted GHG in kg for
each generated kWh of energy from dispatchable DG d ∈ D1.
For conventional fossil-fueled vehicles, denote the amount of
emitted GHG in kg for each driven km by ν. When an EV
replaces a conventional vehicle, the amount of emitted GHG
will be reduced due to the zero emissions of EVs. To account
for such a reduction, define D as the distance traveled in km
for each kWh charging of the EV.

III. PROBLEM FORMULATION

The formulation of the multi-objective planning problem
in a remote hybrid micro-grid covers both economical and
environmental aspects while satisfying the technical con-
straints. Both CAPEX and OPEX of different components are
accounted for and various technical constraints are considered
to ensure the feasibility of the proposed planning solution.

A. Economical Objective

The first objective of the planning problem is to jointly
allocate and size the DG units and EV charging stations in a
manner that minimizes the annualized CAPEX and levelized
OPEX over all possible scenarios. The total annualized costs
can be expressed as

CT = CCT + COT, (1)

where CCT denotes the total annualized CAPEX and COT

represents the expected levelized OPEX.
The total annualized CAPEX accounts for the investments

required to install the DG units and the EV charging stations,
and hence, it can be expressed as

CCT = CCD + CCM, (2)

where CCD and CCM represent the total annualized CAPEX for
the DG units and the EV charging stations, respectively. For
the DGs in D, the total annualized CAPEX is given by

CCD =
∑
n∈N

∑
d∈D

xd,nP
max
d,n CC,dRd. (3)

Similarly, the annualized CAPEX of the EV stations is given
by

CCM =
∑

n∈NDC

∑
m∈M

xm,n

∑
im∈Im

xim,nP
max
im,nCC,iRi, (4)

with Imin
m ≤ im ≤ Imax

m .
The expected levelized OPEX COP is described as the

difference between the expected fuel cost of the dispatchable
generators in D1 and the expected profit from the investment
in the EV charging stations, i.e.,

COP = COP
D − COP

M , (5)

where the levelized expected OPEX due to the DG units, COP
D ,

is given by

COP
D =

∑
y∈Y

p(y)
∑
t∈T

∑
n∈NAC

∑
d∈D1

xd,nCL,dPd,n(t, y), (6)

and the expected profit due to the EV charging station, COP
M ,

is expressed by

COP
M =

∑
y∈Y

p(y)
∑
t∈T

∑
n∈NDC

∑
m∈M

xm,n

∑
im∈Im

{xim,n

ρm,n(t, y)Eim,n(t, y)}.
(7)

B. Environmental Objective

The second objective of the planning problem is to minimize
the harmful GHG emissions by inserting EVs in the remote
community as a substitute to the conventional fossil-fueled
vehicles. The total emission HT can be expressed as

HT = HD −HM, (8)

where HD denotes the total emissions due to the allocated
dispatchable generators and HM indicates the total emission
reduction due to replacing conventional fossil fueled vehicles
by EVs. The DG emissions are given by

HD =
∑
y∈Y

p(y)
∑
t∈T

∑
n∈NAC

∑
d∈D1

xd,nµdPd,n(t, y). (9)

The total reduction in emissions due to the allocation of EV
charging stations is given by

HM =
∑
y∈Y

p(y)
∑
t∈T

∑
n∈NDC

∑
m∈M

xm,n

∑
im∈Im

{xim,nν

DEim,n(t, y)}.
(10)
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C. Technical Constraints

For every n, t, y, the power flow constraints at the AC buses
n, n′ ∈ NAC are given by

Pn(t, y) =
∑

n′∈NAC

Vn(t, y)Vn′(t, y)Yn,n′ cos(θn,n′+

δn′(t, y)− δn(t, y)),

Qn(t, y) =
∑

n′∈NAC

Vn(t, y)Vn′(t, y)Yn,n′ sin(θn,n′+

δn′(t, y)− δn(t, y)).

(11)

On the other hand, the power flow constraints at the DC buses
n, n′ ∈ NDC for every n, t, y are given by

Pn(t, y) =
∑

n′∈NDC

Vn(t, y)Vn′(t, y)Gn,n′ . (12)

The net injected active and reactive powers defined in (11)
and (12) are given by

Pn(t, y) =
∑
d∈D

xd,nPd,n(t, y) +
∑
k∈K

γPk,n(t, y)−∑
m∈M

xm,n

∑
im∈Im

xim,nPim,n(t, y)− PL,n(t, y),

Qn(t, y) =
∑
d∈D1

xd,nQd,n(t, y) +
∑
k∈K

γQk,n(t, y)−

QL,n(t, y),

(13)

where γ = 1 to reflect an injected power at interlinking
converter k for n ∈ NAC and γ = −1 to reflect a consumed
power at interlinking converter k for n ∈ NDC.

Furthermore, in (11) and (12), the voltage Vn(t, y) should
be within its upper and lower limits for every bus n ∈ N , i.e.,

V min ≤ Vn(t, y) ≤ V max. (14)

The following constraints hold for the AC/DC interlinking
converters for every t, y

P 2
k,n(t, y) +Q2

k,n(t, y) ≤ Smax 2
k,n , ∀n ∈ N

Qn(t, y) = 0, ∀n ∈ NDC.
(15)

For dispatchable generators, the generated active and reac-
tive powers satisfy the following constraint

P 2
d,n(t, y)+Q2

d,n(t, y) ≤ Smax 2
d,n , ∀d ∈ D1, n ∈ NAC, t ∈ T .

(16)
In addition, the droop control enforces the following con-
straints for every d ∈ D1, n ∈ NAC, t ∈ T , y ∈ Y

Pd,n(t, y) = (αd,n(t, y))
−1(ω̂d,n(t, y)− ω(t, y)),

Qd,n(t, y) = (βd,n(t, y))
−1(V̂d,n(t, y)− Vn(t, y)).

(17)

Moreover, the operation frequency within the microgrid sat-
isfies the upper and lower limits, i.e., for all n ∈ NAC, t ∈
T , y ∈ Y

ωmin ≤ ω(t, y) ≤ ωmax. (18)

For every PV unit d ∈ D2, the generated active power
satisfies the following constraint

Pd,n(t, y) ≤ Pmax
d,n PPV(t, y), ∀n ∈ NDC, t ∈ T , y ∈ Y.

(19)

The consumed power by the EVs connected to charger im
in station m allocated at bus n can be described by

Pim,n(t, y) =
∑

m∈M

∑
im∈Im

1

η
zim,n(t, y)P

CH
im,n(t, y),

∀n ∈ NDC, t ∈ T , y ∈ Y,
(20)

The charger power transfer limit P CH
im,n(t, y) can be expressed

as
P CH
im,n(t, y) = f(BFN

im,n(t, y)), (21)

where f(·) is a function that describes the characteristics of
the EV battery connected to charger im in station m that is
allocated at bus n ∈ NDC. The energy delivered to the EVs
due to charger im in station m on bus n ∈ NDC is given by

Eim,n(t, y) = Emax
im,n{BFN

im,n(t, y)−B INT
im,n(t, y)}. (22)

The final battery SOC for the EV connected at charger im in
station m on bus n ∈ NDC is limited by the desirable SOC,
i.e.,

BFN
im,n(t, y) ≤ BDES

im,n(t, y). (23)

The update of the SOC from one time period to the next one
can be described as follows

BFN
im,n(t+1, y) = BFN

im,n(t, y)+
zim,n(t, y)P

CH
im,n(t, y)

Emax
im,n

. (24)

To ensure a sustainable power flow in the remote microgrid,
the sizes of the DG units should present a sufficient margin
as a reserve in case of failures and to serve the load growth,
i.e.,∑
n∈N

∑
d∈D

Pmax
d,n ≥ δ

∑
n∈N

{Pmax
L,n +

∑
m∈M

∑
im∈Im

Pim,n(t, y)},

(25)
with δ > 1. Moreover, the dispatchable DGs should be able
to serve the loads in the remote microgrid when the PV units
are partially or totally unavailable, and hence,∑
n∈N

∑
d∈D1

Pmax
d,n ≥ κ

∑
n∈N

{Pmax
L,n +

∑
m∈M

∑
im∈Im

Pim,n(t, y)},

(26)
where κ < 1.

D. Optimal Planning Problem
Define the following allocation and sizing decision vari-

ables: X = {xd,n, xm,n, xim,n ∀n ∈ N , d ∈ D,m ∈
M, im ∈ Im}, Pmax = {Pmax

d,n , Pmax
im,nn ∈ N , d ∈ D,m ∈

M, im ∈ Im}, Smax = {Smax
d,n ∀n ∈ N , d ∈ D}. Fur-

thermore, the operational decision variables are defined as:
Z = {zim,n(t, y) ∀n ∈ NDC,m ∈ M, im ∈ Im, t ∈ T , y ∈
Y}, P = {Pn(t, y), Pd,n(t, y), Pim,n(t, y), Pk,n(t, y) ∀n ∈
N , d ∈ D,m ∈ M, im ∈ Im, k ∈ K, t ∈ T , y ∈ Y},
Q = {Qn(t, y), Qd,n(t, y), Qk,n(t, y) ∀n ∈ N , d ∈ D1, k ∈
K, t ∈ T , y ∈ Y}, and the droop control variables are
Ψ = {αd,n(t, y), βd,n(t, y), ω̂d,n(t, y), V̂d,n(t, y) ∀n ∈ N , d ∈
D1, t ∈ T , y ∈ Y}. The multi-objective joint planning problem
can be expressed as

min
X,Pmax,Smax,Z,P,Q,Ψ

(CT,HT)

s.t. (11)− (26),
X,Z ∈ {0, 1},

(27)
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with CT and HT described by (1) - (7) and (8) - (10),
respectively. The optimization in (27) jointly allocates and
sizes DG units and EV charging stations, through the decision
variables X,Pmax, and Smax, in order to minimize the total
cost and emissions in the remote microgrid. The optimiza-
tion in (27) satisfies the operational technical constraints on
the decision variables Z,P,Q, and Ψ. The joint planning
problem presents two conflicting objectives and a set of
binary decision variables (X and Z) and continuous decision
variables (Pmax,Smax,P,Q, and Ψ). Moreover, many of
the constraints in (11)-(26) are non-linear. As a result, (27)
represents a multi-objective MINLP, which is NP-hard and
incurs high computational complexity. In order to efficiently
solve the joint planning problem (27), a two-stage planning
algorithm is presented in the next section.

IV. JOINT PLANNING ALGORITHM

The proposed joint planning algorithm solves (27) iter-
atively via outer and inner sub-problems. The outer sub-
problem determines the allocation and sizing decisions
X,Pmax, and Smax, and hence, calculates the annualized
CAPEX. The inner sub-problem then tackles the operational
aspects of (27) by specifying Z,P,Q, and Ψ, and hence,
determining the levelized OPEX and the corresponding emis-
sions. Further details about the joint planning algorithm is
given in the next subsections.

A. Allocation and Sizing Sub-problem

The first sub-problem aims to jointly allocate and size
the DGs and EV charging stations in the remote microgrid.
The proposed solution should satisfy the load growth and
availability constraints in (25) and (26), respectively. In order
to efficiently solve such an allocation and sizing problem
especially in a large microgrid, heuristic optimization tech-
niques can be adopted. In this work, the NSGA-II is employed
as it offers a reduced computational complexity and faster
convergence time compared with other heuristic techniques
[19].

A set of candidate buses are selected for the allocation of
dispatchable generators, ND1 , PV units, ND2 , and EV charging
stations, NM, according to techno-economical studies. The
NSGA-II is a population-based algorithm. Each population
consists of a set of individuals (chromosomes). Each individual
adopts the following structure: the first group of elements,
|ND1 | × |D1|, specifies the allocation and sizing of dispatch-
able generators, the next group, |ND2 | × |D2|, specifies the
allocation and sizing of the PV units, and the last group,
2 × |NM| × |M|, specifies the allocation and sizing of the
EV charging stations, where |A| denotes the cardinality of
set A. For the dispatchable generators, each group of |ND1 |
elements specifies the allocation and sizing decision variables
for a given technology in D1. Consider a given group of |ND1 |
elements. If an element value equals 0, then the corresponding
technology in D1 shall not be allocated in the the candidate
bus represented by that element. Otherwise, the value assigned
to that element represents the capacity Sd,n of the allocated
generator from the corresponding technology on the candidate

Fig. 1. Illustration of the chromosome structure.

bus. Similarly, the allocation and sizing of the PV units follows
the same approach. For the allocation and sizing of the EV
charging stations, consider a given group of |NM| elements. If
an element value equals 0, then no charging station is allocated
on the candidate bus represented by that element. Otherwise,
the value assigned to that element represent the number of
chargers installed in the charging station allocated on that
candidate bus, and the corresponding element on the next |NM|
group specifies the capacity Pmax

im,n per installed charger. The
structure of the individual is illustrated in Figure 1.

The outer sub-problem is solved via the following steps:

1) A population Gg of size |Gg| individuals (with g = 0
initially) is randomly generated such that the constraints
(25) and (26) are satisfied.

2) The annualized CAPEX CCT is calculated for the indi-
viduals in Gg.

3) The inner sub-problem is called in order to check
the operational feasibility of the allocation and sizing
decisions and to calculate the expected levelized OPEX
COP and the expected total emissions HT, as will be
explained in Section IV.B. If the allocation and sizing
decision vector of a given individual is infeasible, a
large penalty value is assigned as the expected levelized
OPEX and emissions, e.g., COP = HT = 1020.

4) Two Fitness values are now associated with each indi-
vidual in Gg , namely, FGg

1 = CCT +COP and F
Gg

2 = HT.
5) An off-spring population G̃g is generated from Gg via

tournament selection, recombination, and mutation. The
annualized CAPEX CCT is calculated for the individuals
in G̃g . The inner sub-problem is also called to check the
feasibility of the individuals in G̃g and to calculate the
expected levelized OPEX COP and the expected total
emissions HT. Two Fitness values are also associated
with each individual in G̃g , namely, F G̃g

1 = CCT + COP

and F
G̃g

2 = HT.
6) The populations Gg and G̃g are recombined and their

individuals are ranked according to their non-dominance.
Specifically, an individual a⃗1 has a rank R1 if it is not
dominated by any other individual in terms of the two
fitness values F1 and F2, i.e., there is no other individual
a⃗ where F1(⃗a) < F1(⃗a1) and F2(⃗a) < F2(⃗a1). An
individual with rank R2 is dominated by only one
individual, and so on.
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7) A new population is now formed for the next iteration
using the non-dominated sorting of the individuals of
the combined generations Gg and G̃g. Let g ← g + 1.
The new population Gg should have the same size as
the original population. This is achieved by considering
all individuals with rank R1, then rank R2, and so
on. In case that the individuals of a given rank Rr

result in a larger population size for the new Gg when
added to the individuals of higher ranks, only a subset
of individuals with rank Rr is considered such that
the correct size of Gg is obtained. In order to specify
which individuals with rank Rr to be considered in
Gg+1, crowd distance sorting is applied to the individuals
with rank Rr. Crowd distance sorting within individuals
of Rr results in a more diverse solution in the Pareto
frontier by selecting individuals with less density. The
crowd distance is calculated first for each fitness function
of each individual by calculating the difference between
the two fitness values to the right and left of that
individual. Then, the the overall crowd distance of that
individual is calculated by summing the crowd distance
calculated for the two fitness functions. The individuals
within rank Rr are then sorted in descending order of
their crowd distance and the top most individuals are
selected to complete the new population Gg .

8) If the total number of generations (iterations) is not met,
go to step 2, else go to the next step.

9) The Pareto front is specified by the set of individuals
with rank R1. In order to achieve an acceptable trade-
off between the two conflicting objectives, a compromise
solution is calculated as explained in Section IV.C.

B. Operation Sub-problem

The inner sub-problem checks the operational feasibility of
the candidate solution obtained by the outer sub-problem, and
if feasible, the levelized OPEX and the corresponding emis-
sions are determined. To reduce the computational complexity,
the inner sub-problem first solves the following relaxed OPEX
minimization sub-problem for a given scenario y ∈ Y

min
Z,P,Q,Ψ

COT

s.t. (11)− (24), 0 ≤ Z ≤ 1.
(28)

As shown in (28), the binary decision variable Z is relaxed to
be a continuous variable. Hence, (28) is simplified to a non-
linear program (NLP). In order to find a global solution for
(28), we first remove the trigonometric functions in the power
flow constraints in (11) using Taylor expansion. The modified
power flow constraints can be expressed as follows

Pn(t, y) =
∑

n′∈NAC

Vn(t, y)Vn′(t, y){ℜ(Yn,n′)(1−

Λ2
n,n′(t, y)

2
)−ℑ(Yn,n′)(Λn,n′(t, y)−

Λ3
n,n′(t, y)

3
)},

Qn(t, y) =
∑

n′∈NAC

Vn(t, y)Vn′(t, y){ℑ(Yn,n′)(1−

Λ2
n,n′(t, y)

2
)−ℜ(Yn,n′)(Λn,n′(t, y)−

Λ3
n,n′(t, y)

3
)},

(29)

where ℜ(Yn,n′) = Yn,n′ cos(θn,n′), ℑ(Yn,n′) =
Yn,n′ sin(θn,n′), and Λn,n′(t, y) = δn′(t, y) − δn(t, y).
Now, the global solver BARON can be used to solve the
operation sub-problem by solving (28) while replacing (11)
by (29). Upon calculating the expected levelized OPEX, i.e.,
say COT = Σ, the emission minimization sub-problem is
written as follows

min
Z,P,Q,Ψ

HT

s.t. (12)− (24), (29), COT = Σ

0 ≤ Z ≤ 1.

(30)

The minimization (30) is also solved using BARON to specify
the expected total emissions for the scenario y ∈ Y . It should
be noted that the minimization problems (28) and (30) are
solved sequentially for each scenario y ∈ Y , and the final
expected levelized OPEX and total emissions are calculated by
summing the obtained weighted solutions (with weight p(y))
over all scenarios.

The inner sub-problem is solved via the following steps:
1) Do the following for each individual in Gg:
2) Do the following for each scenario y ∈ Y:
3) Solve the operational minimization sub-problem (28)

while considering the modified power flow equations
(29).

4) If the operational minimization sub-problem is infea-
sible, set COT and HT to a high penalty value, e.g.,
1020. Otherwise, solve the emission minimization sub-
problem (31).

5) Go to step 2 if more scenarios still exist in Y , otherwise,
calculate the expected levelized OPEX for that individ-
ual by summing a weighted version of the calculated COT

overall scenarios. The same is also done to calculate the
expected total emissions for that individual.

6) Go to step 1 if more individuals still exist in Gg,
otherwise, stop.

C. Compromise Solution

Any point on the Pareto frontier can be chosen as an
optimal solution for the joint planning problem according to
the preference of the microgrid operator. However, it is widely
accepted to select a compromise solution on the Pareto frontier
that minimizes the distance between the Pareto frontier and
an ideal solution that is referred to as the utopia point [19].
This ideal solution minimizes both the total cost and the total
GHG emissions, which is impossible to achieve in practice
as both objectives are conflicting. Hence, the utopia point lies
outside the feasible region. The normalized distance between
the utopia point and a point j on the Pareto frontier is given
by

Υj =

√√√√ 2∑
l=1

(Fl(σj)− Fl(σl))2

F 2
l (σl))

, (31)

where F1(·) and F2(·) denote the two conflicting objectives,
namely, the total cost and total emissions, respectively, σj

captures the decision variables related to point j on the
Pareto frontier, and σl represents the decision variables that
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Fig. 2. Schematic of the hybrid AC/DC 38-bus test system under considera-
tion.

minimizes the objective Fl(·) for l = 1, 2. The compromise
point is the point on the Pareto frontier that results in the
minimum Υj among all the points on the frontier. In this work,
the compromise point is selected as the solution to the joint
planning problem in (27).

V. SIMULATION RESULTS AND DISCUSSIONS

The proposed joint planning algorithm is tested on a 38-
bus radial distribution system, as shown in Figure 2. Two
AC/DC interlinking converters are installed between buses
3 and 23 and between buses 6 and 26 in the microgrid to
connect the AC and DC sections. The remote microgrid has
total regular active and reactive power demands of 3.715 MW
and 2.3 Mvar, respectively. The upper and lower voltage and
frequency limits are V min = 0.9, V max = 1.1, ωmin = 0.99,
and ωmax = 1.01. Natural gas DG units is chosen for the
dispatchable generators set D1, which presents a base supply
for the remote microgrid. The CAPEX for the natural gas DG
units is 1, 104, 000 [20]. The fuel escalation factor is 3%. The
candidate buses for the allocation of the dispatchable DG units
are ND1 = {1, 4, 10, 22, 34, 37}. The CAPEX of the PV unit
in D2 is 2, 500, 000 $. The candidate buses for the allocation
of the PV units are ND2 = {24, 25, 29, 32}. The EV charging
stations in C has a minimum chargers of 5 and maximum
chargers of 200, and each charger has a capacity of 7 kW and
a CAPEX of 4000 $. The candidate buses for the allocation
of the EV charging stations are NM = {23, 27, 33, 38}. The
interest rate is 10%. Let γ = 1.2 and κ = 70%.

First, we investigate the impact of the EV charging price
on the EV charging profit. Given the linear charging price
model described in Section II, a large price would discourage
customers from using EVs, which in turn would have a
negative effect on the environment due to the resulting emis-
sions. In this case study, we consider only a single objective
of minimizing the total cost in the microgrid. Learning the
appropriate EV charging price parameters (ρmax and ρmin)

Fig. 3. Impact of EV charging price on the joint planning.

from this case study, we then test the multi-objective joint
planning algorithm and specify the compromise solution that
balances both the total cost and the carbon dioxide emissions.
In this case study, the fuel price for the dispatchable generators
is fixed at 35 $/MWh for DDG. The maximum and minimum
EV charging prices (ρmax and ρmin) are varried as shown
in Figure 3. The EV charging profit shown in Figure 3 is
the levelized revenue after subtracting the CAPEX of the EV
chargers. As shown in Figure 3, the profit almost increases
with a rate or 4, 110 $ per each 1 cent/kWh increase in the
maximum EV charging price. Increasing the maximum price
while fixing the minimum EV charging price lead to higher
EV required charging energy for same offered price, as shown
in Figure 3. On the other hand, increasing the minimum EV
charging price while keeping the same maximum energy price
have the same effect on the revenue, except that the increase
in the revenue is less, which is about 3, 380 $ per 1 cent/kWh
increase.

From the aforementioned study, feasible ranges for the fuel
price of the dispatchable generators and the maximum and
minimum EV charging prices are specified. These values can
be used in the study that presents a multi-objective joint
planning with focus on two objectives: total system annulaized
cost and annual emissions. These two objectives are usually
contradicting as the low cost DG units have considerable
contribution to the GHG emissions while clean renewable
resources such as PV-based DG units have high CAPEX. In
addition to DG units, the EV charging effect on reducing the
GHG emissions is considered. Every kWh of EV charging
replaces an amount of gasoline that have negative impact on
the environment. Thus, the EV charging effect on emissions
is assumed always to be a reduction. As shown in Figure 4,
the result of the Pareto front shows possible solutions for
the investor in terms of costs and corresponding emissions.
Two extreme solutions can be noticed in the figure, namely,
minimum emissions solution A and minimum cost solution
B. The details of each solution are as follow. Solution A
is characterized by total annual emissions of 5, 034, 808 kg
CO2 and total annual cost of 1, 869, 558 $. The allocated
DG capacities are 5 MW and 1.67 MW for dispatchable
DGs and PV-based DGs, respectively. This is the maximum
allowable allocated capacity of dispatchable DGs and PV-
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Fig. 4. Pareto front for the joint planning problem.

based DGs as the PV-based DGs are allowed only up to 30 %
of the dispatchable DGs’ capacity. Such maximum allowable
capacities are deployed in order to be able to support 200
allocated chargers in the remote microgrid, which represents
the maximum limit. The emissions from the dispatchable
generators are 6, 271, 437 kg CO2, while the reduction due
to EV charging is 1, 236, 629 kg CO2, which is equivalent to
19.7 % reduction in the dispatchable DG emissions. On the
other hand, solution B is characterized by a minimum cost
of 1, 486, 793 $ and annual emissions of 5, 746, 948 kg CO2.
Hence, the emissions are increased by 14.14 % and the costs
are reduced by 20.5 % compared with solution A. Solution B
allocates 3.467 MW of dispatchable DGs, zero PV-based DGs,
and 85 EV chargers. The utopia point, which represents the
minimum system costs and the minimum system emissions, is
defined as solution C, which lies outside the feasible region,
as shown in Fig. 4. The costs and emissions for this ideal
scenario are 1, 486, 793 and 5, 034, 808 kg CO2, respectively.
The normalized distance criteria presented in (31) is used to
find a possible compromising solution for the investors, which
is defined to be point D as shown in Figure 4. Solution D is
characterized by emissions of 5, 353, 321 kg CO2 and cost
of 1, 539, 557 $. Solution D suggests allocating 3.57 MW of
dispatchable DGs, 0.30 MW of PV-based DGs, and 200 EV
chargers, which is the maximum limit for EV chargers. This
compromising solution has only 6.3 % more emissions than
solution A and 3.5 % more costs than solution B.

VI. CONCLUSIONS

A joint planning algorithm is presented in this paper to
allocate both DG units and EV charging stations in remote
hybrid microgrids. The objective of the planning algorithm is
to minimize the total costs including both CAPEX and OPEX
while promoting an eco-friendly community by minimizing
the associated GHG emissions as well. The joint planning
solution satisfies the microgrid technical constraints for power
flow, sustainability, and reliability. The planning algorithm
results in a Pareto frontier that offers a set of optimal so-
lutions presenting a trade-off between the economical and

environmental objectives. Furthermore, the planning algorithm
suggests a compromise solution that presents an attractive
balance between the two conflicting objectives.
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